
High Performance Control

T. T. Tay1

I. M. Y. Mareels2

J. B. Moore3

1997

1. Department of Electrical Engineering, National University of Singapore, Sin-
gapore.
2. Department of Electrical and Electronic Engineering, University of Melbourne,
Australia.
3. Department of Systems Engineering, Research School of Information Sciences
and Engineering, Australian National University, Australia.

Preface

The engineering objective of high performance control using the tools of optimal
control theory, robust control theory, and adaptive control theory is more achiev-
able now than ever before, and the need has never been greater. Of course, when
we use the termhigh performance controlwe are thinking of achieving this in
the real world with all its complexity, uncertainty and variability. Since we do not
expect to always achieve our desires, a more complete title for this book could be
“Towards High Performance Control”.

To illustrate our task, consider as an example a disk drive tracking system for a
portable computer. The better the controller performance in the presence of eccen-
tricity uncertainties and external disturbances, such as vibrations when operated
in a moving vehicle, the more tracks can be used on the disk and the more memory
it has. Many systems today are control system limited and the quest is for high
performance in the real world.

In our other texts Anderson and Moore (1989), Anderson and Moore (1979),
Elliott, Aggoun and Moore (1994), Helmke and Moore (1994) and Mareels and
Polderman (1996), the emphasis has been on optimization techniques, optimal es-
timation and control, and adaptive control as separate tools. Of course, robustness
issues are addressed in these separate approaches to system design, but the task
of blending optimal control and adaptive control in such a way that the strengths
of each is exploited to cover the weakness of the other seems to us the only way
to achieve high performance control in uncertain and noisy environments.

The concepts upon which we build were first tested by one of us, John Moore,
on high order NASA flexible wing aircraft models with flutter mode uncertainties.
This was at Boeing Commercial Airplane Company in the late 1970s, working
with Dagfinn Gangsaas. The engineering intuition seemed to work surprisingly
well and indeed 180◦ phase margins at high gains was achieved, but there was
a shortfall in supporting theory. The first global convergence results of the late
1970s for adaptive control schemes were based on least squares identification.
These were harnessed to design adaptive loops and were used in conjunction with

vi Preface

linear quadratic optimal control with frequency shaping to achieve robustness to
flutter phase uncertainty. However, the blending of those methodologies in itself
lacked theoretical support at the time, and it was not clear how to proceed to
systematic designs with guaranteed stability and performance properties.

A study leave at Cambridge University working with Keith Glover allowed
time for contemplation and reading the current literature. An interpretation of the
Youla-Kučera result on the class of all stabilizing controllers by John Doyle gave
a clue. Doyle had characterized the class of stabilizing controllers in terms of a
stable filter appended to a standard linear quadratic Gaussian LQG controller de-
sign. But this was exactly where our adaptive filters were placed in the designs
we developed at Boeing. Could we improve our designs and build a complete
theory now? A graduate student Teng Tiow Tay set to work. Just as the first simu-
lation studies were highly successful, so the first new theories and new algorithms
seemed very powerful. Tay had also initiated studies for nonlinear plants, conve-
niently characterizing the class of all stabilizing controllers for such plants.

At this time we had to contain ourselves not to start writing a book right
away. We decided to wait until others could flesh out our approach. Iven Mareels
and his PhD student Zhi Wang set to work using averaging theory, and Roberto
Horowitz and his PhD student James McCormick worked applications to disk
drives. Meanwhile, work on Boeing aircraft models proceeded with more con-
servative objectives than those of a decade earlier. No aircraft engineer will trust
an adaptive scheme that can take over where off-line designs are working well.
Weiyong Yan worked on more aircraft models and developed nested-loop or it-
erated designs based on a sequence of identification and control exercises. Also
Andrew Paice and Laurence Irlicht worked on nonlinear factorization theory and
functional learning versions of the results. Other colleagues Brian Anderson and
Robert Bitmead and their coworkers Michel Gevers and Robert Kosut and their
PhD students have been extending and refining such design approaches. Also,
back in Singapore, Tay has been applying the various techniques to problems
arising in the context of the disk drive and process control industries.

Now is the time for this book to come together. Our objective is to present the
practice and theory of high performance control for real world environments. We
proceed through the door of our research and applications. Our approach special-
izes to standard techniques, yet gives confidence to go beyond these. The idea is
to use prior information as much as possible, and on-line information where this is
helpful. The aim is to achieve the performance objectives in the presence of vari-
ations, uncertainties and disturbances. Together the off-line and on-line approach
allows high performance to be achieved in realistic environments.

This work is written for graduate students with some undergraduate back-
ground in linear algebra, probability theory, linear dynamical systems, and prefer-
ably some background in control theory. However, the book is complete in itself,
including appropriate appendices in the background areas. It should appeal to
those wanting to take only one or two graduate level semester courses in control
and wishing to be exposed to key ideas in optimal and adaptive control. Yet stu-
dents having done some traditional graduate courses in control theory should find

Preface vii

that the work complements and extends their capabilities. Likewise control engi-
neers in industry may find that this text goes beyond their background knowledge
and that it will help them to be successful in their real world controller designs.

Acknowledgements

This work was partially supported by grants from Boeing Commercial Airplane
Company, and the Cooperative Research Centre for Robust and Adaptive Sys-
tems. We wish to acknowledge the typesetting and typing support of James Ash-
ton and Marita Rendina, and proof reading support of PhD students Andrew Lim
and Jason Ford.

Contents

Preface v

Contents ix

List of Figures xiii

List of Tables xvii

1 Performance Enhancement 1
1.1 Introduction . 1
1.2 Beyond Classical Control . 3
1.3 Robustness and Performance . 6
1.4 Implementation Aspects and Case Studies 14
1.5 Book Outline . 14
1.6 Study Guide . 16
1.7 Main Points of Chapter . 16
1.8 Notes and References . 17

2 Stabilizing Controllers 19
2.1 Introduction . 19
2.2 The Nominal Plant Model . 20
2.3 The Stabilizing Controller . 28
2.4 Coprime Factorization . 34
2.5 All Stabilizing Feedback Controllers 41
2.6 All Stabilizing Regulators . 51
2.7 Notes and References . 52

3 Design Environment 59
3.1 Introduction . 59

x Contents

3.2 Signals and Disturbances . 59
3.3 Plant Uncertainties . 64
3.4 Plants Stabilized by a Controller 68
3.5 State Space Representation . 81
3.6 Notes and References . 89

4 Off-line Controller Design 91
4.1 Introduction . 91
4.2 Selection of Performance Index 92
4.3 An LQG/LTR Design . 100
4.4 H∞ Optimal Design . 111
4.5 An`1 Design Approach . 115
4.6 Notes and References . 126

5 Iterated and Nested(Q, S) Design 127
5.1 Introduction . 127
5.2 Iterated(Q, S) Design . 129
5.3 Nested(Q, S) Design . 145
5.4 Notes and References . 155

6 Direct Adaptive-Q Control 157
6.1 Introduction . 157
6.2 Q-Augmented Controller Structure: Ideal Model Case 158
6.3 Adaptive-Q Algorithm . 160
6.4 Analysis of the Adaptive-Q Algorithm: Ideal Case 162
6.5 Q-augmented Controller Structure: Plant-model Mismatch 166
6.6 Adaptive Algorithm . 169
6.7 Analysis of the Adaptive-Q Algorithm: Unmodeled Dynamics

Situation . 171
6.8 Notes and References . 176

7 Indirect (Q, S) Adaptive Control 179
7.1 Introduction . 179
7.2 System Description and Control Problem Formulation 180
7.3 Adaptive Algorithms . 185
7.4 Adaptive Algorithm Analysis: Ideal case 187
7.5 Adaptive Algorithm Analysis: Nonideal Case 195
7.6 Notes and References . 204

8 Adaptive-Q Application to Nonlinear Systems 207
8.1 Introduction . 207
8.2 Adaptive-Q Method for Nonlinear Control 208
8.3 Stability Properties . 219
8.4 Learning-Q Schemes . 231
8.5 Notes and References . 242

Contents xi

9 Real-time Implementation 243
9.1 Introduction . 243
9.2 Algorithms for Continuous-time Plant 245
9.3 Hardware Platform . 246
9.4 Software Platform . 264
9.5 Other Issues . 268
9.6 Notes and References . 270

10 Laboratory Case Studies 271
10.1 Introduction . 271
10.2 Control of Hard-disk Drives . 271
10.3 Control of a Heat Exchanger . 279
10.4 Aerospace Resonance Suppression 289
10.5 Notes and References . 296

A Linear Algebra 297
A.1 Matrices and Vectors . 297
A.2 Addition and Multiplication of Matrices 298
A.3 Determinant and Rank of a Matrix 298
A.4 Range Space, Kernel and Inverses 299
A.5 Eigenvalues, Eigenvectors and Trace 299
A.6 Similar Matrices . 300
A.7 Positive Definite Matrices and Matrix Decompositions 300
A.8 Norms of Vectors and Matrices 301
A.9 Differentiation and Integration 302
A.10 Lemma of Lyapunov . 302
A.11 Vector Spaces and Subspaces . 303
A.12 Basis and Dimension . 303
A.13 Mappings and Linear Mappings 304

B Dynamical Systems 305
B.1 Linear Dynamical Systems . 305
B.2 Norms, Spaces and Stability Concepts 309
B.3 Nonlinear Systems Stability . 310

C Averaging Analysis For Adaptive Systems 313
C.1 Introduction . 313
C.2 Averaging . 313
C.3 Transforming an adaptive system into standard form 320
C.4 Averaging Approximation . 323

References 325

Author Index 333

Subject Index 337

List of Figures

1.1.1 Block diagram of feedback control system 2
1.3.1 Nominal plant, robust stabilizing controller 7
1.3.2 Performance enhancement controller 8
1.3.3 Plant augmentation with frequency shaped filters 9
1.3.4 Plant/controller(Q, S) parameterization 11
1.3.5 Two loops must be stabilizing 11

2.2.1 Plant . 21
2.2.2 A useful plant model . 21
2.3.1 The closed-loop system . 29
2.3.2 A stabilizing feedback controller 30
2.3.3 A rearrangement of Figure 2.3.1 32
2.3.4 Feedforward/feedback controller 32
2.3.5 Feedforward/feedback controller as a feedback controller for

an augmented plant . 33
2.4.1 State estimate feedback controller 38
2.5.1 Class of all stabilizing controllers 44
2.5.2 Class of all stabilizing controllers in terms of factors 44
2.5.3 Reorganization of class of all stabilizing controllers 45
2.5.4 Class of all stabilizing controllers with state estimates feedback

nominal controller . 46
2.5.5 Closed-loop transfer functions for the class of all stabilizing

controllers . 46
2.5.6 A stabilizing feedforward/feedback controller 50
2.5.7 Class of all stabilizing feedforward/feedback controllers 50
2.7.1 Signal model for Problem 5 55

3.4.1 Class of all proper plants stabilized byK 70
3.4.2 Magnitude/phase plots forG, S, andG(S) 73

xiv List of Figures

3.4.3 Magnitude/phase plots forSand a second order approximation
for Ŝ . 74

3.4.4 Magnitude/phase plots forM andM(S) 74
3.4.5 Magnitude/phase plots for the newG(S), SandG 75
3.4.6 Robust stability property . 77
3.4.7 Cancellations in theJ, JG connections 77
3.4.8 Closed-loop transfer function 78
3.4.9 Plant/noise model . 80

4.2.1 Transient specifications of the step response 94
4.3.1 Target state feedback design 104
4.3.2 Target estimator feedback loop design 105
4.3.3 Nyquist plots—LQ, LQG . 110
4.3.4 Nyquist plots—LQG/LTR:α = 0.5, 0.95 110
4.5.1 Limits of performance curve for an infinity norm index for a

general system . 116
4.5.2 Plant with controller configuration 118
4.5.3 The regionR and the required contour line shown in solid line . 121
4.5.4 Limits-of-performance curve 125

5.2.1 An iterative-Q design . 130
5.2.2 Closed-loop identification . 131
5.2.3 Iterated-Q design . 134
5.2.4 Frequency shaping fory . 139
5.2.5 Frequency shaping foru . 139
5.2.6 Closed-loop frequency responses 140
5.2.7 Modeling error

∥∥Ḡ− G
∥∥ . 143

5.2.8 Magnitude and phase plots ofF(P, K), F(P̄, K) 143
5.2.9 Magnitude and phase plots ofF

(
P̄, K (Q)

)
. 144

5.3.1 Step 1 in nested design . 146
5.3.2 Step 2 in nested design . 148
5.3.3 Stepm in nested design . 149
5.3.4 The class of all stabilizing controllers forP 151
5.3.5 The class of all stabilizing controllers forP, m= 1 151
5.3.6 Robust stabilization ofP, m= 1 151
5.3.7 The(m− i + 2)-loop control diagram 153

6.7.1 Example . 173

7.5.1 Plant . 200
7.5.2 Controlled loop . 201
7.5.3 Adaptive control loop . 201
7.5.4 Response of̂g . 202
7.5.5 Response ofe . 202
7.5.6 Plant outputy and plant inputu 204

List of Figures xv

8.2.1 The augmented plant arrangement 210
8.2.2 The linearized augmented plant 210
8.2.3 Class of all stabilizing controllers—the linear time-varying case 213
8.2.4 Class of all stabilizing time-varying linear controllers 213
8.2.5 AdaptiveQ for disturbance response minimization 215
8.2.6 Two degree-of-freedom adaptive-Q scheme 215
8.2.7 The least squares adaptive-Q arrangement 216
8.2.8 Two degree-of-freedom adaptive-Q scheme 217
8.2.9 Model reference adaptive control special case 218
8.3.1 The feedback system(1G∗(S), K ∗(Q)) 222
8.3.2 The feedback system(Q, S) 224
8.3.3 Open Loop Trajectories . 227
8.3.4 LQG/LTR/Adaptive-Q Trajectories 228
8.4.1 Two degree-of-freedom learning-Q scheme 235
8.4.2 Five optimal regulation trajectories in0x1,x2 space 238
8.4.3 Comparison of error surfaces learned for various grid cases . . . 241

9.2.1 Implementation of a discrete-time controller for a continuous-
time plant . 245

9.3.1 The internals of a stand-alone controller system 247
9.3.2 Schematic of overhead crane 248
9.3.3 Measurement of swing angle 249
9.3.4 Design of controller for overhead crane 250
9.3.5 Schematic of heat exchanger 251
9.3.6 Design of controller for heat exchanger 252
9.3.7 Setup for software development environment 253
9.3.8 Flowchart for bootstrap loader 254
9.3.9 Mechanism of single-stepping 257
9.3.10 Implementation of a software queue for the serial port 258
9.3.11 Design of a fast universal controller 260
9.3.12 Design of universal input/output card 263
9.4.1 Program to design and simulate LQG control 266
9.4.2 Program to implement real-time LQG control 267

10.2.1 Block diagram of servo system 273
10.2.2 Magnitude response of three system models 274
10.2.3 Measured magnitude response of the system 274
10.2.4 Drive 2 measured and model response 275
10.2.5 Histogram of ‘pes’ for a typical run 276
10.2.6 Adaptive controller for Drive 2 277
10.2.7 Power spectrum density of the ‘pes’—nominal and adaptive . . 278
10.2.8 Error rejection function—nominal and adaptive 278
10.3.1 Laboratory scale heat exchanger 279
10.3.2 Schematic of heat exchanger 280
10.3.3 Shell-tube heat exchanger . 282

xvi List of Figures

10.3.4 Temperature output and PRBS input signal 285
10.3.5 Level output and PRBS input signal 285
10.3.6 Temperature response and control effort of steam valve due to

step change in both level and temperature reference signals . . . 286
10.3.7 Level response and control effort of flow valve due to step

change in both level and temperature reference signals 287
10.3.8 Temperature and level response due to step change in tempera-

ture reference signal . 288
10.3.9 Control effort of steam and flow valves due to step change in

temperature reference signal 288
10.4.1 Comparative performance at 2 000 ft 292
10.4.2 Comparative performance at 10 000 ft 293
10.4.3 Comparisons for nominal model 295
10.4.4 Comparisons for a different flight condition than for the nomi-

nal case . 295
10.4.5 Flutter suppression via indirect adaptive-Q pole assignment . . 296

List of Tables

4.5.1 System and regulator order and estimated computation effort . . 124

5.2.1 Transfer functions . 138

7.5.1 Comparison of performance 203

8.3.1 1I for Trajectory 1,x(0) = [0 1] 228
8.3.2 1I for Trajectory 1 with unmodeled dynamics,x(0) = [0 1 0] . 229
8.3.3 1I for Trajectory 2,x(0) = [1 0.5] 230
8.3.4 1I for Trajectory 2 with unmodeled dynamics,x(0) =

[1 0.5 0] . 230
8.4.1 Error index for global and local learning 238
8.4.2 Improvement after learning 239
8.4.3 Comparison of grid sizes and approximations 240
8.4.4 Error index averages without unmodeled dynamics 241
8.4.5 Error index averages with unmodeled dynamics 241

10.2.1 Comparison of performance of`1 andH2 controller 277

CHAPTER 1

Performance Enhancement

1.1 Introduction

Science has traditionally been concerned with describing nature using mathemati-
cal symbols and equations. Applied mathematicians have traditionally been study-
ing the sort of equations of interest to scientists. More recently, engineers have
come onto the scene with the aim of manipulating or controlling various pro-
cesses. They introduce (additional) control variables and adjustable parameters to
the mathematical models. In this way, they go beyond the traditions of science and
mathematics, yet use the tools of science and mathematics and, indeed, provide
challenges for the next generation of mathematicians and scientists.

Control engineers, working across all areas of engineering, are concerned with
addingactuatorsandsensorsto engineering systems which they callplants. They
want to monitor and control these plants with controllers which process informa-
tion from both desired responses (commands) and sensor signals. The controllers
send control signals to the actuators which in turn affect the behavior of the plant.
They are concerned with issues such as actuator and sensor selection and location.
They must concern themselves with the underlying processes to be controlled and
work with relevant experts depending on whether the plant is a chemical system,
a mechanical system, an electrical system, a biological system, or an economic
system. They work with block diagrams, which depict actuators, sensors, proces-
sors, and controllers as separate blocks. There are directed arrows interconnecting
these blocks showing the direction of information flow as in Figure 1.1. The di-
rected arrows represent signals, the blocks represent functional operations on the
signals. Matrix operations, integrations, and delays are all represented as blocks.
The blocks may be (matrix) transfer functions or more general time-varying or
nonlinear operators.

Control engineers talk in terms of thecontrollability of a plant (the effective-
ness of actuators for controlling the process), and theobservabilityof the plant
(the effectiveness of sensors for observing the process). Their big concept is that

2 Chapter 1. Performance Enhancement

Actuators Sensors

Controller

Disturbances

Plant

FIGURE 1.1. Block diagram of feedback control system

of feedback, and their big challenge is that offeedback controllerdesign. Their
territory covers the study ofdynamical systemsandoptimization. If the plant is not
performing to expectations, they want to detect this under-performance from sen-
sors and suitably process this sensor information incontrollers. The controllers in
turn generate performance enhancing feedback signals to the actuators. How do
they do this?

The approach to controller design is to first understand the physics or other sci-
entific laws which govern the behavior of the plant. This usually leads to a math-
ematical model of the process, termed aplant model. There are invariably aspects
of plant behavior which are not captured in precise terms by the plant model.
Some uncertainties can be viewed asdisturbance signals, and/orplant parameter
variationswhich in turn are perhaps characterized by probabilistic models.Un-
modeled dynamicsis a name given to dynamics neglected in the plant model. Such
are sometimes characterized in frequency domain terms. Next,performance mea-
suresare formulated in terms of the plant model and taking account of uncertain-
ties. There could well be hardconstraintssuch as limits on the controls or states.
Control engineers then apply mathematical tools based in optimization theory to
achieve their design of the control scheme. The design process inevitably requires
compromises or trade-offs between various conflicting performance objectives.
For example, achievinghigh performancefor a particular set of conditions may
mean that the controller is too finely tuned, and so can not yet cope with the con-
tingencies of everyday situations. A racing car can cope well on the race track,
but not in city traffic.

The designer would like to improve performance, and this is done through in-
creased feedback in the control scheme. However, in the face of disturbances or
plant variations or uncertainties, increasing feedback in the frequency bands of
high uncertainty can cause instability. Feedback can give us high performance for
the plant model, and indeed insensitivity to small plant variations, but poor per-
formance or even instability of the actual plant. The term controllerrobustnessis
used to denote the ability of a controller to cope with these real world uncertain-
ties. Canhigh performancebe achieved in the face of uncertainty and change?
This is the challenge taken up in this book.

1.2. Beyond Classical Control 3

1.2 Beyond Classical Control

Many control tasks in industry have been successfully tackled by very simple
analog technology using classical control theory. This theory has matched well
the technology of its day. Classical three-term-controllers are easy to design, are
robust to plant uncertainties and perform reasonably well. However, for improved
performance and more advanced applications, a more general control theory is
required. It has taken a number of decades for digital technology to become the
norm and for modern control theory, created to match this technology, to find its
way into advanced applications. The market place is now much more competitive
so the demands for high performance controllers at low cost is the driving force for
much of what is happening in control. Even so, the arguments between classical
control and modern control persist. Why?

The classical control designer should never be underestimated. Such a person
is capable of achieving good trade-offs between performance and robustness. Fre-
quency domain concepts give a real feel for what is happening in a process, and
give insight as to what happens loop-by-loop as they are closed carefully in se-
quence. An important question for a modern control person (with a sophisticated
optimization armory of Riccati equations and numerical programming packages
and the like) to ask is: How can we use classical insights to make sure our mod-
ern approach is really going to work in this situation? And then we should ask:
Where does the adaptive control expert fit into this scene? Has this expert got to
fight both the classical and modern notions for a niche?

This book is written with a view to blending insights and methods from classi-
cal, optimal, and adaptive control so that each contributes at its point of strength
and compensates for the weakness of others, so as to achieve bothrobust control
andhigh performance control. Let us examine these strengths and weaknesses in
turn, and then explore some design concepts which are perhaps at the interface of
all three methods, callediterated design, plug-in controller design, hierarchical
designandnested controller design.

Some readers may think of optimal control for linear systems subject to qua-
dratic performance indices as classical control, since it is now well established
in industry, but we refer to such control here as optimal control. Likewise, self-
tuning control is now established in industry, but we refer to this as adaptive con-
trol.

Classical Control

The strength of classical control is that it works in the frequency domain. Distur-
bances, unmodeled dynamics, control actions, and system responses all predom-
inate in certain frequency bands. In those frequency bands where there is high
phase uncertainty in the plant, feedback gains must be low. Frequency character-
istics at the unity gain cross-over frequency are crucial. Controllers are designed
to shape the frequency responses so as to achieve stability in the face of plant
uncertainty, and moreover, to achieve good performance in the face of this uncer-

4 Chapter 1. Performance Enhancement

tainty. In other words, a key objective isrobustness.
It is then not surprising that the classical control designer is comfortable work-

ing with transfer functions, poles and zeros, magnitude and phase frequency re-
sponses, and the like.

The plant models of classical control are linear and of low order. This is the
case even when the real plant is obviously highly complex and nonlinear. A small
signal analysis or identification procedure is perhaps the first step to achieve the
linear models. With such models, controller design is then fairly straightforward.
For a recent reference, see Ogata (1990).

The limitation of classical control is that it is fundamentally a design approach
for a single-input, single-output plant working in the neighborhood of a single op-
erating point. Of course, much effort has gone into handling multivariable plants
by closing control loops one at a time, but what is the best sequence for this?

In our integrated approach to controller design, we would like to tackle con-
trol problems with the strengths of the frequency domain, and work with transfer
functions where possible. We would like to achieve high performance in the face
of uncertainty. The important point for us here is that we do not designfrequency
shaping filtersin the first instance for the control loop, as in classical designs,
but rather for formulating performance objectives. The optimal multivariable and
adaptive methods then systematically achieve controllers which incorporate the
frequency shaping insights of the classical control designer, and thereby the ap-
propriate frequency shaped filters for the control loop.

Optimal Control

The strength of optimal control is that powerful numerical algorithms can be im-
plemented off-line to design controllers to optimize certain performance objec-
tives. The optimization is formulated and achieved in the time domain. However,
in the case of time-invariant systems, it is often feasible to formulate an equiva-
lent optimization problem in the frequency domain. The optimization can be for
multivariable plants and controllers.

One particular class of optimal control problems which has proved powerful
and now ubiquitous is the so-called linear quadratic Gaussian (LQG) method, see
Anderson and Moore (1989), and Kwakernaak and Sivan (1972). A key result is
theSeparation Theoremwhich allows decomposition of an optimal control prob-
lem for linear plants with Gaussian noise disturbances and quadratic indices into
two subproblems. First, the optimal control of linear plants is addressed assuming
knowledge of the internal variables (states). It turns out that the optimal solu-
tions for a noise free (deterministic) setting and an additive white Gaussian plant
driving noise setting are identical. The second task addressed is the estimation
of the plant model’s internal variables (states) from the plant measurements in a
noise (stochastic) setting. The Separation Theorem then tells us that the best de-
sign approach is to apply theCertainty Equivalence Principle, namely to use the
state estimates in lieu of the actual states in the feedback control law. Remarkably,
under the relevant assumptions, optimality is achieved. This task decomposition

1.2. Beyond Classical Control 5

allows the designer to focus on the effectiveness of actuators and sensors sepa-
rately, and indeed to address areas of weakness one at a time. Certainly, if a state
feedback design does not deliver performance, then how can any output feedback
controller? If a state estimator achieves poor state estimates, how can internal
variables be controlled effectively? Unfortunately, this Separation Principle does
not apply for general nonlinear plants, although such a principle does apply when
working with so-calledinformation statesinstead of state estimates. Information
states are really the totality of knowledge about the plant states embedded in the
plant observations.

Of course, in replacing states by state estimates there is some loss. It turns out
that there can be severe loss of robustness to phase uncertainties. However, this
loss can be recovered, at least to some extent, at the expense of optimality of the
original performance index, by a technique known asloop recoveryin which the
feedback system sensitivity properties for state feedback are recovered in the case
of state estimate feedback. This is achieved by working with colored fictitious
noise in the nominal plant model, representing plant uncertainty in the vicinity of
the so-called cross-over frequency where loop gains are near unity. There can be
“total” sensitivity recovery in the case of minimum phase plants.

There are other optimal methods which are in some sense a more sophisticated
generalization of the LQG methods, and are potentially more powerful. They go
by such names asH∞ and`1 optimal control. These methods in effect do not
perform the optimization over only one set of input disturbances but rather the
optimization is performed over an entire class of input disturbances. This gives
rise to a so-called worst case control strategy and is often referred to as robust
controller design, see for example, Green and Limebeer (1994), and Morari and
Zafiriou (1989).

The inherent weakness of the optimization approach is that although it allows
incorporation of a class of robustness measures in a performance index, it is not
clear how to best incorporateall the robustness requirements of interest into the
performance objectives. This is where classical control concepts come to the res-
cue, such as in the loop recovery ideas mentioned above, or in appending other
frequency shaping filtersto the nominal model. The designer should expect a trial-
and-error process so as to gain a feel for the particular problem in terms of the
trade-offs between performance for a nominal plant, and robustness of the con-
troller design in the face of plant uncertainties. Thinking should take place both
in the frequency domain and the time domain, keeping in mind the objectives of
robustness and performance. Of course, any trial-and-error experiment should be
executed with the most advanced mathematical and software tools available and
not in an ad hoc manner.

Adaptive Control

The usual setting for adaptive control is that of low order single-input, single-
output plants as for classical design. There are usually half a dozen or so pa-
rameters to adjust on-line requiring some kind ofgradient searchprocedure, see

6 Chapter 1. Performance Enhancement

for example Goodwin and Sin (1984) and Mareels and Polderman (1996). This
setting is just as limited as that for classical control. Of course, there are cases
where tens of parameters can be adapted on-line, including cases for multivari-
able plants, but such situations must be tackled with great caution. The more
parameters to learn, the slower the learning rate. The more inputs and outputs,
the more problems can arise concerning uniqueness of parameterization. Usually,
the so-calledinput/output representationsare used in adaptive control, but these
are notoriously sensitive to parameter variations as model order increases. Finally,
naively designed adaptive schemes can let you down, even catastrophically.

So then, what are the strengths of adaptive control, and when can it be used to
advantage? Our position is that taken by some of the very first adaptive control
designers, namely that adaptive schemes should be designed to augment robust
off-line-designed controllers. The idea is that for a prescribed range of plant vari-
ations or uncertainties, the adaptive scheme should only improve performance
over that of the robust controller. Beyond this range, the adaptive scheme may do
well with enough freedom built into it, but it may cause instability. Our approach
is to eliminate risk of failure, by avoiding too difficult a design task or using either
a too simple or too complicated adaptive scheme. Any adaptive scheme should be
a reasonably simple one involving only a few adaptive gains so that adaptations
can be rapid. It should fail softly as it approaches its limits, and these limits should
be known in advance of application.

With such adaptive controller augmentations for robust controllers, it makes
sense for the robust controller to focus on stability objectives over the known
range of possible plant variations and uncertainties, and for the adaptive orself-
tuning schemeto beef up performance for any particular situation or setting. In
this way performance can be achieved along with robustness without the compro-
mises usually expected in the absence of adaptations or on-line calculations.

A key issue in adaptive schemes is that of control signal excitation for associ-
atedon-line identificationor parameter adjustment. The termssufficiently exciting
andpersistence of excitationare used to describe signals in the adaptation context.
Learning objectives are in conflict with control objectives, so that there must be a
balance in applying excitation signals to achieve a stable, robust, and indeed high
performance adaptive controller. This balancing of conflicting interests is termed
dual control.

1.3 Robustness and Performance

With the lofty goal of achieving high performance in the face of disturbances,
plant variations and uncertainties, how do we proceed? It is crucial in any con-
troller design approach to first formulate a plant model, characterize uncertain-
ties and disturbances, and quantify measures of performance. This is a starting
point. The best next step is open to debate. Our approach is to work with the class
of stabilizing controllers for a nominal plant model, search within this class for

1.3. Robustness and Performance 7

Disturbances

Commands

Control
input

Real
world
plant

Sensor
output

Nominal
plant

Robust
stabilizing
controller

Unmodelled
dynamics

FIGURE 3.1. Nominal plant, robust stabilizing controller

a robust controller which stabilizes the plant in the face of its uncertainties and
variations, and then tune the controller on-line to enhance controller performance,
moment by moment, adapting to the real world situation. The adaptation may in-
clude reidentification of the plant, it may reshape the nominal plant, requantify
the uncertainties and disturbances and even shift the performance objectives.

The situation is depicted in Figures 3.1 and 3.2. In Figure 3.1, the real world
plant is viewed as consisting of a nominal plant and unmodeled dynamics driven
by a control input and disturbances. There are sensor outputs which in turn feed
into a feedback controller driven also by commands. It should be both stabilizing
for the nominal plant and robust in that it copes with the unmodeled dynamics
and disturbances. In Figure 3.2 there is a further feedback control loop around the
real world plant/robust controller scheme of Figure 3.1. The additional controller
is termed a performance enhancement controller.

Nominal Plant Models

Our interest is in dynamical systems, as opposed to static ones. Often for main-
taining a steady state situation with small control actions, real world plants can be
approximated bylinear dynamical systems. A useful generalization is to include
random disturbances in the model so that they becomelinear dynamical stochas-
tic systems. The simplest form of disturbance is linearly filtered white, zero mean,
Gaussian noise. Control theory is most developed for such deterministic or sto-
chastic plant models, and more so for the case of time-invariant systems. We build
as much of our theory as possible forlinear, time-invariant, finite-dimensional dy-
namical systemswith the view to subsequent generalizations.

Control theory can be developed for eithercontinuous-time (analog) models,
or discrete-time (digital) models, and indeed some operator formulations do not

8 Chapter 1. Performance Enhancement

Commands

Control
input

Sensor
output

Robust stabilizing
controller

Disturbances

Robust
controller

Real world
plant

Performance
enhancement

controller

FIGURE 3.2. Performance enhancement controller

distinguish between the two. We select a discrete-time setting with the view to
computer implementation of controllers. Of course, most real world engineering
plants are in continuous time, but since analog-to-digital and digital-to-analog
conversion are part and parcel of modern controllers, the discrete-time setting
seems to us the one of most interest. We touch on sampling rate selection, inter-
sample behavior and related issues when dealing with implementation aspects.

Most of our theoretical developments, even for the adaptive control loops, are
carried out in a multivariable setting, that is, the signals are vectors.

Of course, the class of nominal plants for design purposes may be restricted as
just discussed, but the expectation in so-called robust controller design is that the
controller designed for the nominal plant also copes well with actual plants that
are “near” in some sense to the nominal one. To achieve this goal, actual plant
nonlinearities or uncertainties are often, perhaps crudely, represented asfictitious
noise disturbances, such as is obtained from filtered white noise introduced into
a linear system.

It is important that the plant model also include sensor and actuator dynamics.
It is also important to append so-calledfrequency shaping filtersto the nominal
plant with the view to controlling the outputs of these filters, termedderived vari-
ablesor disturbance responsevariables, see Figure 3.3. This allows us to more
readily incorporate robustness measures into a performance index. This last point
is further discussed in the next subsections.

Unmodeled Dynamics

A nominal model usually neglects what it cannot conveniently and precisely char-
acterize about a plant. However, it makes sense to characterize what has been ne-

1.3. Robustness and Performance 9

Commands

Control input

Augmented plant

 Plant

Frequency
shaping filters

Controller

Distubances
Sensor outputs

Disturbance response
or derived variables

FIGURE 3.3. Plant augmentation with frequency shaped filters

glected in as convenient a way as possible, albeit loosely. Aerospace models, for
example, derived from finite element methods are very high in order, and often
too complicated to work with in a controller design. It is reasonable then at first
to neglect all modes above the frequency range of expected significant control ac-
tions. Fortunately in aircraft, such neglected modes are stable, albeit perhaps very
lightly damped in flexible wing aircraft. It is absolutely vital that these modes not
be excited by control actions that could arise from controller designs synthesized
from studies with low order models. The neglected dynamics introduce phase
uncertainty in the low order model as frequency increases, and this fact should
somehow be taken into account. Such uncertainties are referred to asunmodeled
dynamics.

Performance Measures and Constraints

In an airplane flying in turbulence, wing root stress should be minimized along
with other variables. But there is no sensor that measures this stress. It must be es-
timated from sensor measurements such as pitch measurements and accelerome-
ters, and knowledge of the aircraft dynamics (kinematics and aerodynamics). This
example illustrates that performance measures may involve internal (state) vari-
ables. Actually, it is often worthwhile to work with filtered versions of these state
variables, and indeed with filtered control variables, and filtered output variables,
since we may be interested in their behavior only in certain frequency bands. As
already noted, we term all these relevant variablesderived variablesor distur-
bance responsevariables. Usually, there must be a compromise between control
energy and performance in terms of these derived variables. Derived variables are
usually generated by appropriatefrequency shaping filteraugmentations to a “first
cut” plant model, as depicted in Figure 3.3. The resulting model is the nominal
model of interest for controller design purposes.

In control theory, performance measures are usually designed for aregulation

10 Chapter 1. Performance Enhancement

situation, or for atrackingsituation. In regulation, ideally there should be a steady
state situation, and if there is perturbance from this by external disturbances, then
we would like to regulate to zero any disturbance response in the derived vari-
ables. The disturbance can be random such as when wind gusts impinge on an
antenna, ordeterministicsuch as when there is eccentricity in a disk drive system
giving rise to periodic disturbances.

In tracking situations, there is some desired trajectory which should be followed
by certain plant variables; again these can be derived variables rather than sensor
measurements. Clearly, regulation is a special case of tracking.

In this text we consider first traditional performance measures for nominal plant
models, such as are used inlinear quadratic Gaussian(LQG) control theory, see
Anderson and Moore (1989) and in the so-calledH∞ control and`1 control the-
ories, see Francis (1987), Vidyasagar (1986) and Green and Limebeer (1994).

The LQG theory is derived based on penalizing control energy and plant energy
of internal variables, termedstates, in the presence ofwhite noise disturbances.
That is, there is a sum of squares index which is optimized over all control actions.
In the linear quadratic Gaussian context it turns out that the optimal control signal
is given from a feedback control law. TheH∞ theory is based on penalizing a
sum of squares index in the presence ofworst case disturbancesin an appropri-
ate class. Thè1 theory is based on penalizing the worst peak in the response of
internal states and/or control effort in the presence of worst case bounded distur-
bances. Such a theory is most appropriate when there are hard constraints on the
control signals or states.

The Class of Stabilizing Controllers

Crucial to our technical approach is a characterization of the class of all stabilizing
controllers in terms of a parameter termedQ. In fact, Q is not a parameter such
as a gain or time constant, but is a stable (bounded-input, bounded-output) filter
built into a stabilizing controller in a manner to be described in some detail as
we proceed. This theory has been developed in a discrete-time setting by Kučera
(1979) and in a continuous-time setting by Youla, Bongiorno and Jabr (1976a).
Moreover, all the relevant input/output operators, (matrix transfer functions) of the
associated closed-loop system turn out to be linear, or more precisely affine, in the
operator (matrix transfer function)Q. In turn, this facilitates optimization over
stableQ, or equivalently, over the class of stabilizing controllers for a nominal
plant, see Vidyasagar (1985) and Boyd and Barratt (1991).

Our performance enhancement techniques work with finite-dimensional adap-
tive filters Q with parameters adjusted on line so as to minimize a sum of squares
performance index. The effectiveness of this arrangement seems to depend on the
initial stabilizing controller being a robust controller, probably because it exploits
effectively alla priori knowledge of the plant.

A dual concept is the class of all plants stabilized by a given stabilizing con-
troller which is parameterized in terms of stable “filter”S.

In our approach, depicted in Figure 3.4, the unmodeled dynamics of a plant

1.3. Robustness and Performance 11

Nominal
plant

Nominal
stabilizing
controller

Plant
parametrized
with
uncertainties S

Q

S

Controller
parametrized
in terms of a
filter Q

FIGURE 3.4. Plant/controller(Q, S) parameterization

model can be represented in terms of this “filter”S, which is zero when the plant
model is a precise representation of the plant. Indeed with a plant parameterized
in terms ofS and a controller parameterized in terms ofQ, the resulting closed-
loop system turns out to be stable if and only if the nominal controller (with
Q = 0) stabilizes the nominal plant (withS= 0) andQ stabilizesS, irrespective
of whether or notQ andS are stable themselves, see Figure 3.5. This result is a
basis for our controller performance (and robustness) analysis. With the original
stabilizing controller being robust, it appears that althoughS is of high order,
it can be approximated in many of our design examples as a low order, or at
least a low gain system without too much loss. When this situation occurs, the
proposed controllers involving only low order, possibly adaptiveQ can achieve
high performance enhancement.

Nominal
plant

Nominal
controller

Q

S

FIGURE 3.5. Two loops must be stabilizing

12 Chapter 1. Performance Enhancement

Adaptations

Adaptive schemes perform best when as much as possiblea priori information
about the plant is incorporated into the design of the adaptive algorithms. It is
clear that a good way to achieve this is to first include such information into the
off-line design of a fixedrobust controller.

In direct adaptive control, the parameters for adaptation are those of a fixed
structure controller, whereas inindirect adaptive control, the parameters for tun-
ing are, in the first instance, those of some plant model. These plant parameters
which are estimated on-line, are then used in a controller design law to construct
on-line a controller with adaptive properties.

Adaptive schemes that work effectively in changing environments usually re-
quire suitably strong and richexcitationof control signals. Such excitation of itself
is in fact against the control objectives. Of course, one could argue that if the plant
is performing well at some time, there is no need for adaptation or of excitation
signals. However the worst case scenario in such a situation is that the adjustable
parameters adjust themselves on the basis of insufficient data and drift to where
they cause instability. The instability may be just a burst, for the excitation asso-
ciated with the instability could lead to appropriate adjustment of parameters to
achieve stability. But then again, the instability may not lead to suitably rich sig-
nals for adequate learning and thus adequate control. This point is taken up again
below. Such situations are completely avoided in our approach, becausea pri-
ori constraints are set on the range of allowable adjustment, based on ana priori
stability analysis.

One method to achieve a sufficiently rich excitation signal is to introduce ran-
dom (bounded) noise, that isstochastic excitation, for then even the most “devi-
ous” adaptive controller will not cancel out the unpredictable components of this
noise, as it could perhaps for predictable deterministic signals.

Should there be instability, then it is important that one does not rely on the
signal build up itself as a source of excitation, since this will usually reflect only
one unstable mode which dominates all other excitation, and allow estimation of
only the one or two parameters associated with this mode, with other parameters
perhaps drifting. It is important that the frequency rich (possibly random) exci-
tation signal grows according to the instability. Only in this way can all modes
be identified at similar rates and incipient instability be nipped in the bud by the
consequent adaptive control action.

How does one analyze an adaptive scheme for performance? Our approach is
to useaveraging analysis, see Sanders and Verhulst (1985), Anderson, Bitmead,
Johnson, Kokotovic, Kosut, Mareels, Praly and Riedle (1986), Mareels and Pol-
derman (1996) and Solo and Kong (1995). This analysis looks at averaging out
the effects of fast dynamics in the closed loop so as to highlight the effect of
the relative slow adaptation process. Thistime scale separationapproach is very
powerful when adaptations are relatively slow compared to the dynamics of the
system. Averaging techniques tell us that our adaptations can help performance
of a robust controller. There is less guaranteed performance enhancement at the
margins of robust controller stability.

1.3. Robustness and Performance 13

Iterated Design

Of course, on-line adaptations using simple adaptive schemes are ideal when these
work effectively, but perhaps as a result of implementing a possibly crude con-
troller with limited a priori knowledge, direct or indirect adaptations may not be
effective. Thea priori knowledge should be updated using some identification
in closed loop, not necessarily of the plant itself. The identification can then be
used to refine the controller design. This interaction between identification and
controller design, which is at the heart of on-line adaptive control, is sometimes
best carried out in an iterative fashion based on a more complete data analysis
than could be achieved by simple recursive schemes, see for example Anderson
and Kosut (1991), Zang, Bitmead and Gevers (1991), Schrama (1992a) and Lee,
Anderson, Kosut and Mareels (1993). Even so, we see such an off-line design
approach as being in the spirit of adaptive control. Most importantly, we show
that for a range of control objectives, one can proceed in an iterated identification
control design manner, without losing the ability to reach an optimal design. That
is, the iterated control design is able to incrementally improve the control perfor-
mance at each iteration, given accurate models. Moreover, it can recover from any
bad design at a later stage.

Nested or Recursive Design

Concepts related to those behind iterated design are that of aplug-in controller
augmentation and that ofhierarchical design. We are familiar with the classical
design approach of adding controllers here and there in a complex system to en-
hance performance as experience with the system grows. Of course, the catch
is that the most recent plug-in controller addition may counter earlier controller
actions. Can we somehow proceed in a systematic manner?

Also, we are familiar with different control loops dealing with different aspects
of the control task. The inner loop is for tight tracking, say, and an outer loop is for
the determination of some desired (perhaps optimal) trajectory, and even further
control levels may exist in a hierarchy to set control tasks at a more strategic
level. Is there a natural way to embed control loops within control loops, and set
up hierarchies of control?

Our position on plug-in controllers is that controller designs can be performed
so that plug-in additions can take place in a systematic manner. With each ad-
dition, there is an optimization which takes the design a step in the direction of
the overall goal. The optimizations for each introduced plug-in controller must
not conflict with each other. It may be that the first controller focuses on one
frequency band, and later controllers introduce focus on other bands as more in-
formation becomes available. It may be that the first controller is designed for
robustness and the second to enhance performance for a particular setting, and a
third “controller” is designed to switch in appropriate controllers as required. It
may be that the first controller uses a frequency domain criterion for optimization
and a second controller works in the time domain. Our experience is that a natural
way to proceed is from a robust design, to adaptations for performance enhance-

14 Chapter 1. Performance Enhancement

ment, and then to learning so as to build up a data base of experience for future
decisions.

There is a key to a systematic approach to iterated design, plug-in controller
design, and hierarchical control, which we termrecursive controlleror nested
controller design. It exploits the mathematical concept of successive approxima-
tion by continued linear fraction expansions, for the control setting.

1.4 Implementation Aspects and Case Studies

Control theory has in the past been well in advance of practical implementation,
whereas today the hardware and software technology is available for complex yet
reliable controller design and implementation. Now it is possible for quite gen-
eral purpose application software such as Rlab or commercially available pack-
ages MATLAB∗ and Xmath† to facilitate the controller design process, and even
to implement the resultant controller from within the packages. For implementa-
tion in microcontrollerhardware not supported by these packages, there are other
software packages such as Matcom which can machine translate the generic algo-
rithms into more widely supported computer languages such as C and Assembler.
As the on-line digital technology becomes faster and the calculations are paral-
lelized, the sampling rates for the signals and the controller algorithm complexity
can be increased.

There will always be applications at the limits of technology. With the goal
of increased system efficiency and thus increased controller performance in all
operating environments, even simple processes and control tasks will push the
limits of the technology as well as theory.

One aim in this book is to set the stage for practical implementation of high per-
formance controllers. We explore various hardware and software options for the
control engineer and raise questions which must be addressed in practical imple-
mentation.Multirate samplingstrategies and sampling rate selection are discussed
along with other issues of getting a controller into action.

Our aim in presenting controller design laboratory case studies is to show the
sort of compromises that are made in real world implementations of advanced
high performance control strategies.

1.5 Book Outline

In Chapter 2, a class of linear plantstabilizing controllersfor a linear plant model
is parameterized in terms of a stable filter, denotedQ. This work is based on a
theory ofcoprime factorizationand linear fractional representations. The idea is

∗MATLAB  is a registered trademark of the MathWorks, Inc.
†Xmath is a registered trademark of Integrated Systems, Inc.

1.5. Book Outline 15

introduced that any stabilizing controller can be augmented to include a physi-
cal stable filterQ, and this filter tuned either off-line or on-line to optimize per-
formance. The notion of the class ofstabilizing regulatorsto absorb classes of
deterministic disturbances is also developed.

In Chapter 3, the controllerdesign environmentis characterized in terms of
the uncertainties associated with any plant model, be they signal uncertainties,
structuredor unstructured plant uncertainties. The concept of frequency shaped
uncertainties is developed as a dual theory to theQ-parameterizationtheory of
Chapter 2. In particular, the class of plants stabilized by a given controller is stud-
ied via anS-parameterization. The need for plant model identification in certain
environments is raised.

In Chapter 4, the notion of off-line optimizing a stabilizing controller design
to achieve various performance objectives is introduced. One approach is that of
optimal-Q filter selection. Various performance indices and methods to achieve
optimality are studied such as those penalizing energy of the tracking error and
control energy, or penalizing maximum tracking error subject to control limits, or
penalizing peak spectral response.

Chapter 5 discusses the interaction between control via theQ-parameterization
of all stabilizing controllers for a nominal plant model and identification via the
S-parameterization of all plants stabilized by a controller. Two different schemes
are presented. They differ in the way the identification proceeds. In the so-called
iterated design, the sameSparameterization is refined in recursive steps, followed
by a control update step. In the so-called nested design, successiveS parameters
of the residual plant-model mismatch are identified. Each nestedSparameter has
a corresponding nestedQ plug-in controller. Various control objectives are dis-
cussed. It is shown that the iterated and nested(Q, S) design framework is capable
of achieving optimal control performance in a staged way.

In Chapter 6, a direct adaptive-Q method is presented. The premise is that the
plant dynamics are well known but that the control performance of the nominal
controller needs refinement. The adaptive method is capable of achieving opti-
mal performance. It is shown that under very reasonable conditions the adaptive
scheme improves the performance of the nominal controller. Particular control
objectives we pay attention to are disturbance rejection and (unknown) reference
tracking. The main difference from classical adaptive methods is that we assume
from the outset that a stabilizing controller is available. The adaptive mechanism
is only included for performance improvement. The adaptively controlled loop is
analyzed using averaging techniques, exploiting the observation that the adapta-
tion proceeds slowly as compared to the actual plant dynamics.

The direct adaptive scheme adjusts only a plug-in controllerQ. This scheme
can not handle significant model mismatch. To overcome this problem an indirect
adaptive-Q method is introduced in Chapter 7. This method is an adaptive version
of the nested(Q, S) design framework. An estimate forS is obtained on line. On
the basis of this estimate we computeQ. The analysis is again performed using
time scale separation ideas. The necessary tools for this are concisely developed
in Appendix C.

16 Chapter 1. Performance Enhancement

In Chapter 8, the direct adaptive-Q scheme is applied for optimal control of
nonlinear systems by means oflinearization techniques. The idea is that in the real
world setting these closed-loop controllers should achieve as close as possible the
performance of an optimal open-loop control for the nominal plant. The concept
of a learning-Q scheme is developed.

In Chapter 9, real-time controller implementation aspects are discussed, includ-
ing the various hardware and software options for a controller designer. The role
of the ubiquitous personal computer,digital signal processing chipand microcon-
trollers is discussed, along with the high level design andsimulation languages
and low level implementation languages.

In Chapter 10, some laboratory case studies are introduced. First, adisk drive
control systemis studied where sampling rates are high and compromises must
be made on the complexity of the controller applied. Next, the control of aheat
exchangeris studied. Since speed is not a critical factor, sampling rates can be low
and the control algorithm design can be quite sophisticated. In a third simulation
study, we apply the adaptive techniques developed to the model of a current com-
mercial aircraft and show the potential for performance enhancement of aflight
control system.

Finally, in the appendices, background results inlinear algebra, probability
theoryandaveraging theoryare summarized briefly, and some useful computer
programs are included.

1.6 Study Guide

The most recent and most fascinating results in the book are those of the last chap-
ters concerning adaptive-Q schemes. Some readers with a graduate level back-
ground in control theory can go straight to these chapters. Other readers will need
to build up to this material chapter by chapter. Certainly, the theory of robust lin-
ear control and adaptive control is not fully developed in the earlier chapters, since
this is adequately covered elsewhere, but only the very relevant results summa-
rized in the form of a user’s guide.

Thus it is that advanced students could cover the book in a one semester course,
whereas beginning graduate students may require longer, particularly if they wish
to master robust and optimal control theory from other sources as well. Also, as
an aid to the beginning student, some of the more technical sections are starred to
indicate that the material may be omitted on first reading.

1.7 Main Points of Chapter

High performance control in the real world is our agenda. It goes beyond clas-
sical control, optimal control, robust control and adaptive control by blending
the strengths of each. With today’s software and hardware capabilities, there is

1.8. Notes and References 17

a chance to realize significant performance gains using the tools of high perfor-
mance control.

1.8 Notes and References

For a modern textbook treatment of classical control, we recommend
Ogata (1990) and also Doyle, Francis and Tannenbaum (1992). A development
of linear quadratic Gaussian control is given in Anderson and Moore (1989), and
Kwakernaak and Sivan (1972). Robust control methods are studied in Green and
Limebeer (1994) and Morari and Zafiriou (1989). For controller designs based on
a factorization approach and optimizing over the class of stabilizing controllers,
see Boyd and Barratt (1991) and Vidyasagar (1985). Adaptive control methods
are studied in Mareels and Polderman (1996), Goodwin and Sin (1984) and An-
derson et al. (1986). References to seminal material for the text, found only in
papers, are given in the relevant chapters.

CHAPTER 2

Stabilizing Controllers

2.1 Introduction

In this chapter, our focus is on plant and controller descriptions. The minimum
requirement is that any practical controller stabilizes or maintains the stability of
the plant. We set the stage with various mathematical representations, also termed
models, for the plants to be controlled. Our prime focus is on discrete-time, linear,
finite-dimensional, dynamical system representations in terms of state space equa-
tions and (matrix) transfer functions; actually, virtually all of the results carry over
to continuous time, and indeed time-varying systems as discussed in Chapter 8. A
block partition notation for the system representations is introduced which allows
for ready association of the transfer function with the state space description of
the plant. It proves convenient to develop dexterity with the block partition nota-
tion. Manipulations such as concatenation, inverse, and feedback interconnection
of systems are easily expressed using this formalism. Controllers are considered
with the same dynamical system representations.

The key result in this chapter is the derivation of the class of all stabilizing
linear controllers for a linear, time-invariant plant model. We show that all stabi-
lizing controllers for the plant can be synthesized by conveniently parameterized
augmentations to any stabilizing controller, called a nominal controller. The aug-
mentations are parameterized by an arbitrary stable filter which we denote byQ.
The class of all stabilizing linear controllers for the plant is generated as the sta-
ble (matrix) transfer function of the filterQ spans the class of all stable (matrix)
transfer functions.

We next view any stabilizing controller as providing control action from two
sources; the original stabilizing controller and the controller augmentations in-
cluding the stable filterQ. This allows us to think of controller designs in two
stages. The first stage is to design a nominal stabilizing controller, most probably
from a nominal plant model. This controller needs only to achieve certain limited
objectives such asrobuststability, in that not only is the nominal plant stabilized

20 Chapter 2. Stabilizing Controllers

by the controller, but all plants in a suitably large neighborhood of the nominal
plant are also stabilized. This is followed by a second stage design, which aims to
enhance the performance of the nominal controller in any particular environment.
This is achieved with augmentations including a stable filterQ. This second stage
could result in an on-line adaptation.

At center stage for the generation of the class of all stabilizing controllers for a
plant arecoprime matrix fraction descriptionsof a dynamical system. These are
introduced, and we should note that their nonuniqueness is a key in our develop-
ment.

In the next section, we introduce a nominal plant model description with focus
on a discrete-time linear model, possibly derived from a continuous-time plant, as
for example is discussed in Chapter 8. The block partition notation is introduced.
In Section 2.3, a definition of stability is introduced and the notion a stabilizing
feedback controller is developed to include also controllers involving feedforward
control. In Section 2.4, coprime factorizations, and the associated Bezout identity
are studied. A method to obtain coprime factors via stabilizing feedback control
design is also presented. In Section 2.5, the theory for the class of all stabilizing
controllers, parameterized in terms of a stableQ filter, is developed. The case
of two-degree-of-freedom controllersis covered by the theory. Finally, as in all
chapters, the chapter concludes with notes and references on the chapter topics.

2.2 The Nominal Plant Model

In this section, we describe the various plant representations that are used through-
out the book as a basis for the design of controllers. A feature of our presentation
here is the block partition notation used to represent linear systems. The various
elementary operations using the block partition notation are described.

The Plant Model

The control of a plant begins with a modeling of the particular physical process.
The models can take various forms. They can range from a simple mathemati-
cal model parameterized by a gain and a rise time, used often in the design of
simple classical controllers for industrial processes, to sophisticated nonlinear,
time-varying, partial differential equation models as used for example in fluid
flow models. In this book, we are not concerned with the physical processes and
the derivation of the mathematical models for these. This aspect can be found in
many excellent books and papers, and the readers are referred to Ogata (1990),
Åstrom and Wittenmark (1984), Ljung (1987) and their references for a detailed
exposition.

We start with a mathematical description of the plant. We lump the underlying
dynamical processes, sensors and actuators together and assume that the mathe-
matical model includes the modeling of all sensors and actuators for the plant. Of

2.2. The Nominal Plant Model 21

Disturbance w
Disturbance
response e

Sensor
output y

Actuator
input u

Plant
P

FIGURE 2.1. Plant

course the range of control signals for which the models are relevant should be
kept in mind in the design. Actuators have limits on signal magnitudes as well as
on rates of change of the control signal. What we have termed the plant is depicted
in Figure 2.1. It is drawn as a two-by-two block with input variablesw, u and out-
put variablese, y which are functions of time and are vectors in general. Here the
block P is an operator mapping the generalized input(w,u) to the generalized
output(e, y). At this point in our development, the precise nature of the operator
and the signal spaces linked by it are not crucial. More complete descriptions are
introduced as we progress. Figure 2.1, in operator notation, is then

[
e

y

]
= [P]

[
w

u

]
, P =

[
P11 P12

P21 P22

]
. (2.1)

For these models,u is a variable subject to our control, and is termed thecontrol
input, andw is a variable not available for control purposes and often consists of
disturbances and/or driving signals termed simplydisturbances. This inputw is
sometimes referred to as anexogenous inputor anauxiliary input. The output
variable y is the collection of measurements taken from the sensors. The two-
by-two block structure of Figure 2.1 includes an additional disturbance response
vectore, also referred to as a derived variable. This vectore is useful in assessing
performance. In selecting control signalsu, we seek to minimizee in some sense.
This responsee is not necessarily measured, or measurable, since it may include
internal variables of the plant dynamics. The disturbance responseewill normally
include a list of all the critical signals in the plant. Note that the commonly used
arrangement of Figure 2.2 is a special case of Figure 2.1.

G
u y

u

�

�

�

�
��

�
1

�
2

FIGURE 2.2. A useful plant model

22 Chapter 2. Stabilizing Controllers

e

y

 =

[

0 0

G I

] [
I

G

]
[
G I

]
G



[
w1

w2

]
u

 . (2.2)

Note thate = [u′ y′]′ in this specialization, andw1 andw2 are both disturbance
input vectors. Note thatP22 = G.

Discrete-time Linear Model

The essential building block in our plant description is a multiple-input, multiple-
output (MIMO) operator. In the case of linear, time invariant, discrete-time sys-
tems, denoted byW in operator notation, we use the following state space de-
scription:

W : xk+1 = Axk + Buk; x0,

yk = Cxk + Duk.
(2.3)

Herek ∈ Z
+
= {0, 1, 2, . . . } indicates sample time,xk ∈ R

n is a state vector
with initial value x0, uk ∈ R

p is the input vector andyk ∈ R
m is the output

vector. The coefficients,A ∈ R
n×n, B ∈ R

n×p, C ∈ R
m×n and D ∈ R

m×p are
constant matrices. For reference material on matrices, see Appendix A, and on
linear dynamical systems, see Appendix B.

It is usual to assume that the pair(A, B) is controllable, or at leaststabilizable,
and that the pair(C, A) is observableor at least isdetectable, see definitions in
Appendix B. In systems which are not stabilizable or detectable, there are un-
stable modes which are not controllable and/or observable. In practice, lack of
controllability or observability could indicate the need for more actuators and
sensors, respectively. Of particular concern is the case of unstable modes or per-
haps lightly damped modes that are uncontrollable or unobservable, since these
can significantly affect performance. Without loss of generality we assumeB to
be of full column rank andC full row rank∗. In our discussion we will only work
with systems showing the properties of detectability and stabilizability.

The transfer matrix function of the blockW, can be written as

W(z) = C(z I − A)−1B+ D. (2.4)

HereW(∞) = D andW(z) is by definition aproper transfer function matrix.
ThusW ∈ Rp, the class ofrational propertransfer function matrices. When the
coefficientD is a zero matrix, there is no direct feedthrough in the plant. In this
case,W(∞) = 0 and so we haveW ∈ Rsp, the class of rationalstrictly proper
transfer function matrices.

The transformation from the state space description to the matrix transfer func-
tion description is unique and is given by (2.4). However the transformation from

∗A discussion of redundancy at input actuators or output sensors is outside the scope of this text

2.2. The Nominal Plant Model 23

the transfer function description to the state space description is not unique. The
various transformations can be found in many references. The readers are referred
to Kailath (1980), Chen (1984), Wolovich (1977) and Appendix B.

Block Partition Notation

Having introduced the basic building block, in the context of linear MIMO sys-
tems, we now concentrate on how to interconnect different blocks, as suggested
in Figure 1.1.1.

For algebraic manipulations of systems described by matrix transfer functions
or sets of state-space equations, it proves convenient to work with a block par-
titioned notation which can be easily related to their (matrix) transfer functions
as well as their state space realizations. In this subsection, we present the nota-
tion and introduce some elementary operations. For definitions of controllability,
observability, asymptotic stability and coordinate basis transformation for linear
systems, the readers are referred to Appendix B.

Representation

Let us consider a dynamic systemW with state space description given in (2.3).
The (matrix) transfer function is given by (2.4) and in the block partition notation,
the system with state equations (2.3) is written as

W :

 A B

C D

 . (2.5)

The two solid lines within the square brackets are used to demarcate the
(A, B,C, D) matrices, or more generally the(1, 1), (1, 2), (2, 1) and(2, 2) sub-
blocks. In this notation, the number of input and output variables are given by
the number of columns and rows of the(2, 2) subblock, respectively. In the case
where(A, B) is controllable and(A,C) is observable, the representation of the
system (2.5) is said to be aminimal representationand the dimension of the(1, 1)
subblock gives theorder of the system.

Subpartitioning

With block partitioning ofA, B, C, D as in the following state equations,

W : xk+1 =

[
A11 A12

A21 A22

]
xk +

[
B11 B12

B21 B22

]
uk,

yk =

[
C11 C12

C21 C22

]
xk +

[
D11 D12

D21 D22

]
uk,

(2.6)

24 Chapter 2. Stabilizing Controllers

the block partition notation for the systemW is

W =

[
W11 W12

W21 W22

]
:


A11 A12 B11 B12

A21 A22 B21 B22

C11 C12 D11 D12

C21 C22 D21 D22

 , (2.7)

whereWi j denotes the state space equations for the subsystem with inputj and
outputi . By inspection,

W11 :


A11 A12 B11

A21 A22 B21

C11 C12 D11

 , W12 :


A11 A12 B21

A21 A22 B22

C11 C12 D12

 ,

W21 :


A11 A12 B11

A21 A22 B21

C21 C22 D21

 , W22 :


A11 A12 B12

A21 A22 B22

C21 C22 D22

 ,
(2.8)

and the associated state space equations of the subsystemsWi j can be written
down immediately, for example

W12 : xk+1 =

[
A11 A12

A21 A22

]
xk +

[
B21

B22

]
u2k,

y1k =

[
C11 C12

]
xk + D12u2k.

These state space realizations are not necessarily minimal.

Sums

Let us consider the parallel connection of two systems with the same input and
output dimensions. For two systems,W1 andW2 given as

W1 :

 A1 B1

C1 D1

 , W2 :

 A2 B2

C2 D2

 , (2.9)

their sum (parallel connection) in block partition notation is given by:

W1+W2 :


A1 0 B1

0 A2 B2

C1 C2 D1+ D2

 . (2.10)

2.2. The Nominal Plant Model 25

This can be checked by examining the state-space model of the parallel connec-
tion. The order of the sum of the (matrix) transfer functions is the sum of the
orders of each transfer function, in general. However in certain cases, as when
A1 = A2, we can eliminate uncontrollable or unobservable modes in the parallel
connection to achieve a reduced order minimal realization. (See problems at the
end of the chapter for some discussion.)

Multiplication

Consider again two systems as given in (2.9), assuming that the output dimension
of W2 equals the input dimension ofW1. The product, or series connection, of the
two systemsW1 andW2 (W1 afterW2) may be represented as:

W1W2 :


A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

 . (2.11)

Again this representation is not minimal when there are pole/zero cancellations
in W1W2, although it is minimal in the generic case; that is whenA1, A2, B1,
B2, C1, C2, D1, D2 have no special structure or element values. (Notice that
W1W2 6= W2W1. Also, even whenW1W2 is defined,W2W1, may not be!).

Inverse

It is readily checked that under the condition thatD−1
1 exists, the inverse of the

systemW1 exists and is proper and is given by

W−1
1 :

 A1− B1D−1
1 C1 −B1D−1

1

D−1
1 C1 D−1

1

 . (2.12)

Notice that

W−1
1 W1 = W1W−1

1 :

[
0 0

0 I

]
. (2.13)

Transpose

The transpose of the systemW1 is given by

W′1 :

 A′1 C′1

B′1 D′1

 . (2.14)

26 Chapter 2. Stabilizing Controllers

Stable Uncontrollable Modes

Consider the following systemW with its associated state-space realization:

W :


A11 A12 B1

0 A22 0

C1 C2 D

 , (2.15)

where the eigenvalues ofA22 are inside the unit circle, that is|λi (A22)| < 1,
and so the modes associated withA22 are asymptotically stable. Clearly for the
systemW with its associated state-space realization, the states associated with
A22 are not controllable from the inputs. Moreover, since the modes associated
with A22 are asymptotically stable, the associated states decay exponentially to
zero from arbitrary initial values. From a control point of view these modes may
be ignored, simplifying theW representation to:

Ws :

 A11 B1

C1 D

 . (2.16)

Stable Unobservable Modes

The “dual” case to the above is where there are stable unobservable modes. Con-
sider the system with associated state-space realization given by

W :


A11 0 B1

A21 A22 B2

C1 0 D

 , (2.17)

where again|λi (A22)| < 1 for all i . In this case, the states associated withA22
can be excited from the inputs but they do not affect the states associated with
A11 or the system output. These states are therefore not observable and if ignored
allow the simpler representation.

Ws :

 A11 B1

C1 D

 . (2.18)

The above simplifications are allowed from the control point of view. Obviously
these unobservable/uncontrollable models do affect the internal system behavior
and the transient behavior.

Coordinate Basis Transformation

For a linear systemW of (2.5), let us consider the effect of transformations of
the associated state-space variables. Thus consider transformations of the state

2.2. The Nominal Plant Model 27

vectorx, input vectoru and output vectory by nonsingular matricesT , S andR
as follows.

x̄ = T x, ū = Su, ȳ = Ry. (2.19)

The system from̄u to ȳ, denotedW̄, is then given by

W̄ :

 T AT−1 T BS−1

RCT−1 RDS−1

 . (2.20)

On many occasions in the book, cascade or parallel connections of subsystems
using formulas given in (2.10) or (2.11) give rise to high dimensional systemsW
with stable uncontrollable or unobservable modes in their state-space realizations.
The associated system descriptions can then be simplified by removing (or ignor-
ing) such modes as in derivingWs. That is, it is possible to find a transformation
matrix, T (with R = I and S = I) such that the transformed (matrix) transfer
function is of the form (2.15) with stable uncontrollable modes, or (2.17) with
stable unobservable modes. The stable uncontrollable or unobservable modes can
then be removed by the appropriate line and column deletion to achieve the sim-
pler system descriptionWs.

In fact, a number of the manipulations in our controller design approaches yield
system descriptions that can be simplified by one of the following very simple
transformationsT .[

I I

0 I

]
,

[
I −I

0 I

]
,

[
I 0

I I

]
,

[
I 0

−I I

]
. (2.21)

There are short cuts when dealing with these simple transformations. The trans-
formations can be performed using operations similar to the elementary rows and
columns operations in the solution of a set of linear equations using the Gaussian
elimination method. Let us work with an example.

Example. Consider the systemW given as

W :


A11 A12 B1

A21 A22 B2

C1 C2 D

 , (2.22)

whereA11, A12, A21 and A22 are of the same dimension. Under the transforma-
tions R= I , S= I and

T =

[
I I

0 I

]
, T−1

=

[
I −I

0 I

]
, (2.23)

28 Chapter 2. Stabilizing Controllers

the systemW can be represented in the transformed coordinate basis as

W :


A11+ A21 A12+ A22− A11− A21 B1+ B2

A21 A22− A21 B2

C1 C2− C1 D

 . (2.24)

The transformed system description is obtained as follows. First ignore the verti-
cal and horizontal partitioning lines and viewW as a 3 block by 3 block structure.
Now addblock row 2of the array toblock row 1of the array to get the intermedi-
ate structure:

A11+ A21 A12+ A22 B1+ B2

A21 A22 B2

C1 C2 D

.

Leavingblock column 1of the above intermediate array unchanged, we then sub-
tractblock column 1from theblock column 2to get the final transformed system
description of (2.24). In fact, we can generalize the procedure as follows.

For a system description withp inputs andm outputs expressed in the block
partition form such that theA matrix of the associated state-space realization is an
(n× n) matrix, then the input/output property of the systemW is not changed by
the following operations. Interpreting the block partition notation representation
of the system as an(n+m)× (n+ p) array, add (subtract) thei th row to the j th
row of the array where 1≤ i, j ≤ n, leaving thei th row unchanged, to give an
intermediate array, and then follow by subtracting (adding) thej th column from
the i th column of the intermediate array, leaving thej th column unchanged.

Main Points of Section

In this section, a two port operator description for the plant is introduced. Plant
transfer function matrix and state space representations are given in the context of
linear, time-invariant, discrete-time systems. A shorthand block partition notation
is presented which allows ready manipulation of subsystems, including series and
parallel connections and inverses.

2.3 The Stabilizing Controller

In this section, we first work with a controller and model of the plant in a closed-
loop feedback control arrangement used forregulationof output variables to zero
in the presence of disturbances. We then move on to the more general tracking
case which has feedforward control as well as feedback control so that there is
close tracking of external signals in the presence of disturbances.

2.3. The Stabilizing Controller 29

The Closed-loop System

Consider the plant model shown in Figure 2.1. Notice that sinceP is a linear
operator it can be block partitioned into four operators as

P =

[
P11 P12

P21 P22

]
. (3.1)

Let us introduce a feedback controllerK in a feedback control arrangement as
shown in Figure 3.1. The blockP generates not only the plant sensor outputs
y, but also the signale, termed the disturbance response, which is used to eval-
uate the performance of the feedback system. The feedback controller seeks to
minimize the disturbance responsee in some sense. The feedback controller is
sometimes referred to as aone-degree-of-freedom controller, in contrast to atwo-
degree-of-freedom controllerwith additional command inputs discussed subse-
quently.

Feedback controller

K

Disturbance� Disturbance response
e

� e

yu

Control
input

Sensor
output

FK

P � �
P11 P12
P21 P22 �

FIGURE 3.1. The closed-loop system

For the system of Figure 3.1, we have the following equations in operator no-
tation: [

e

y

]
=

[
P11 P12

P21 P22

][
w

u

]
,

u = K y.

(3.2)

Assumingwell-posednessof the interconnection, or equivalently, that the relevant
inverses exist, the disturbance response is given by:

e= FKw, FK = P11+ P12K (I − P22K)−1P21. (3.3)

30 Chapter 2. Stabilizing Controllers

A Stabilizing Feedback Controller

Next we consider stability issues. We restrict ourselves in this chapter to the case
where all operators correspond to time-invariant, multiple-input multiple-output,
discrete-time, finite-dimensional systems. In this context all operators have cor-
responding proper rational transfer function matrices. In Chapter 7, the case of
time-varying systems is seen to follow much of the development here when the
transfer functions are generalized to time-varying operators.

The underlying stability concept of interest to us here isbounded-input,
bounded-output stability(BIBO):

Definition. A system is called BIBO stable if any norm bounded input yields a
norm bounded output. When the class of inputs is bounded in an`2 norm sense
and leads tò2 norm bounded outputs, the system is said to beBIBO stable in an
`2 sense. (Recall that̀ 2 bounded signals in discrete-time are square summable,
see also Appendix B.)

In the context of linear systems, BIBO stability in an`2 sense is equivalent to
small gain stabilityandasymptotic stabilityof the state space description. Trans-
fer functions which are BIBO stable in aǹ2 sense are said to belong to theH∞
space and if rational to belong to the rationalH∞ space, denotedRH∞. For fur-
ther technical details on these spaces and stability issues, see Appendix B. Suffice
it to say here:H(z) ∈ RH∞ if and only if every element ofH(z) is rational and
has no pole in|z| ≥ 1.

As a starting point, we use the representation as in Figure 3.2 to discuss stabil-
ity.

u
G

K

�

�

�

�

��

�
1

�
2

e1 y or e2

FIGURE 3.2. A stabilizing feedback controller

Let us consider the feedback control loop of Figure 3.2 with a feedback con-
troller K ∈ Rp applied to a plantG ∈ Rp. Noting that[

I −K

−G I

][
e1

e2

]
=

[
w1

w2

]
,

then we have under well-posedness, or equivalently assuming that the inverse

2.3. The Stabilizing Controller 31

exists, [
e1

e2

]
=

[
I −K

−G I

]−1[
w1

w2

]
. (3.4)

Closed-loop stability, also termedinternal stability, is defined as BIBO stability
in an `2 sense, in that any bounded input to the closed-loop system will give
rise to bounded-output signals everywhere within the loop. Here for linear, time-
invariant systems, internal stability is identical to asymptotic stability of the state
space description of the closed loop. Applying these notions to (3.4) leads to the
following result.

Theorem 3.1. A necessary and sufficient condition to ensure internal stability of
the feedback control loop of Figure 3.2 is that[

I −K

−G I

]−1

∈ RH∞. (3.5)

Equivalently, [
(I − K G)−1 K (I − GK)−1

G(I − K G)−1 (I − GK)−1

]
∈ RH∞. (3.6)

Definition. We say thatK stabilizesG or (G, K) is a stabilizing pair if (3.5) or
equivalently (3.6) holds.

We see that forK to stabilizeG, there is a requirement that each of the four
(matrix) transfer functions(I − K G)−1, K (I −GK)−1, G(I − K G)−1 and(I −
GK)−1 be asymptotically stable. For the single-input, single-output case, where
G andK are scalar transfer functions, the stability condition (3.6) is equivalent to
the stability condition that(I − GK)−1

∈ RH∞, and that there be no pole/zero
cancellations in the open-loop transfer functionK G, or GK.

For the system of Figure 3.1, internal stability will imply stability of the closed-
loop (matrix) transfer functionFK of (3.3). Moreover, Theorem 3.1 is readily gen-
eralized by working with a rearranged version of Figure 3.1, namely Figure 3.3.
Thus apply the results of Theorem 3.1 withG replaced byP andK replaced by[

0 0
0 K

]
. This leads to the following.

Theorem 3.2. A necessary and sufficient condition to ensure internal stability of
the closed-loop feedback control system of Figure 3.1, or equivalently Figure 3.3,
is that  I −

[
0 0

0 K

]
−P I


−1

∈ RH∞, (3.7)

32 Chapter 2. Stabilizing Controllers

K

0

or

P P�
u

e

y

�
0 0
0 K �

FIGURE 3.3. A rearrangement of Figure 3.1

or equivalently, with a partitioning ofP as in(2.1)[
I −K

−P22 I

]−1

∈ RH∞, P12(I − K P22)
−1
[
I K

]
∈ RH∞,

P

[
I

K

]
(I − P22K)−1P21 ∈ RH∞. (3.8)

We remark that a necessary condition for stability is that the pair(P22, K) is
stabilizing. To connect to earlier results we setP22 = G so that this condition is
the familiar condition that(G, K) is stabilizing. If in addition,P11 ∈ RH∞, and
P21, P12 belong toRH∞ or P21 and/orP12 are identical toG = P22, then this
condition is also sufficient for stability.

A Stabilizing Feedforward/Feedback Controller

Consider thefeedforward/feedback controllerarrangement of Figure 3.4. Notice
that in this arrangement, both the plant outputy, and a reference signald, possi-
bly some desired output trajectory, are used to generate the control signal. Con-
sider now the rearrangement of the scheme of Figure 3.4 as a feedback controller
scheme for an augmented plant depicted in Figure 3.5. The original plantG and
disturbance signalw2 are augmented as follows:

G→

[
0

G

]
=: G, w2→

[
d

w2

]
. (3.9)

Reference signal

d
yPlant

G
u

�

��

�
��

�
1

�
2

�����
K f K �

FIGURE 3.4. Feedforward/feedback controller

2.3. The Stabilizing Controller 33

Augmented
plantu

�
��

�� �
�

1 �
d�
2 � �

d
y ���� � 0

G �
	 ��

K f K �

FIGURE 3.5. Feedforward/feedback controller as a feedback controller for an augmented
plant

Under this augmentation, thetwo-degree-of-freedom controllerfor G is identical
to the one-degree-of-freedom controller for the augmented plantG. Applying the
earlier internal stability results for a one-degree-of-freedom controller to this aug-
mented system leads to internal stability results for the two-degree-of-freedom
system. Thus consider a two-degree-of-freedom controllerK = [K f K] ∈ Rp for
the plantG ∈ Rp. Then the controllerK internally stabilizesG and thusG if and
only if

 I −K

−G I

−1

=


[I] −

[
K f K

]
−

[
0

G

] [
I 0

0 I

]

−1

∈ RH∞, (3.10)

or equivalently, if and only if (I − K G)−1 (I − K G)−1K f K (I − GK)−1

0 I 0

G(I − K G)−1 G(I − K G)−1K f (I − GK)−1

 ∈ RH∞, (3.11)

or equivalently, if and only if[
I −K

−G I

]−1

∈ RH∞,

[
I

G

]
(I − K G)−1K f ∈ RH∞. (3.12)

The first condition tells us that there must be internal stability of the feedback
system consisting ofG and the feedback controllerK . The second condition tells
us that any unstable modes ofK f must be contained inK . That is, in the event
thatK f is unstable, it should be implemented along withK in the one blockK =
[K K f] with a minimal state space representation. IfK f andK are implemented
separately, thenK f must be stable. This is a well known result for the stability
of two-degrees-of-freedom controllers, see Vidyasagar (1985), but the derivation
here is more suited to our approach.

34 Chapter 2. Stabilizing Controllers

Main Points of Section

In this section we have considered stability properties when applying controllers
to plants. Internal stability is linked to the stability of certain (matrix) transfer
functions associated with the feedback loops. Both one-degree-of-freedom and
two-degrees-of-freedom controller structures are examined. Conditions ensuring
stability are identified.

2.4 Coprime Factorization

An important step towards the next section’s objective of characterizing the class
of all stabilizing controllers is thecoprime factorizationof the plant model and
controller. For scalar models and controllers, factorization leads to the models
and controllers being represented as the ratio of two stable transfer functions.
This factorization is termed coprime when the two transfer functions have no
common zeros in|z| > 1. Coprimeness excludes unstable pole/zero cancellations
in the fractional representation. In the multivariable case, the plant model and
nominal controller (matrix) transfer functions are factored into the product of a
stable (matrix) transfer function and a (matrix) transfer function with a stable
inverse. Coprimeness can be expressed as a full rank condition on the matrices in
|z| > 1, see below. In this section, we discuss various ways to achieve coprime
factorizations.

The Bezout Identity

Let us denote stable, coprime factorizations for the plantG(z) ∈ Rp of (2.3) and
a nominal controllerK (z) ∈ Rp as follows.

G = N M−1
= M̃−1Ñ; N,M, Ñ, M̃ ∈ RH∞, (4.1)

K = U V−1
= Ṽ−1Ũ ; U,V, Ũ , Ṽ ∈ RH∞. (4.2)

It turns out that there exist such factorizations for any plant and controller. We
defer until later in this section the question of existence and construction of such
factorizations in our setting.Coprimenessof the factorsN and M means that[

M
N

]
has full column rank in|z| > 1, or equivalently, that its left inverse exists in

RH∞. Coprimeness ofM̃ , Ñ requires correspondingly that [M̃ Ñ] has full rank
in |z| > 1, or equivalently, has a right inverse inRH∞.

To illustrate the idea, consider the more familiar setting of scalar transfer func-
tions. Let

G(z) =
b(z)

a(z)
, (4.3)

whereb(z),a(z) are polynomials inz. Assume thata has degreen, b is of degree
less than or equal ton, and thata is monic in that the coefficient ofzn is unity.

2.4. Coprime Factorization 35

Also, assume thata(z), b(z) have no common zeros. A coprime factorization as
in (4.1) is then given as

G(z) =

(
b(z)

zn

) (
a(z)

zn

)−1

. (4.4)

By constructionb(z)/zn, a(z)/zn
∈ RH∞.

In our setting here, we restrict attention to the situation whereK stabilizesG
and later give existence and constructive procedures for achieving the desired fac-
torizations. First, we study in our context a set of equations known as theBezout
or Diophantineequations which are associated with coprimeness properties.

As a first step, examine the four closed-loop (matrix) transfer functions of (3.6),
under the equalities of (4.1) and (4.2).

It is straightforward to see that

(I − K G)−1
= (I − Ṽ−1Ũ N M−1)−1

= M(Ṽ M − Ũ N)−1Ṽ,
(4.5)

G(I − K G)−1
= N(Ṽ M − Ũ N)−1Ṽ, (4.6)

Also, since(I − K G)K = K (I − GK), then

K (I − GK)−1
= (I − K G)−1K

= M(Ṽ M − Ũ N)−1Ũ ,
(4.7)

and

(I − GK)−1
= I + GK(I − GK)−1

= I + G(I − K G)−1K

= I + N(Ṽ M − Ũ N)−1Ũ .

(4.8)

Thus [
I −K

−G I

]−1

=

[
M

N

]
(Ṽ M − Ũ N)−1

[
Ṽ Ũ

]
+

[
0 0

0 I

]
. (4.9)

This result leads to the following lemma.

Lemma 4.1. Consider the plantG ∈ Rp, and controllerK ∈ Rp. ThenK stabi-
lizesG if and only if there exist coprime factorizationsG = N M−1

= M̃−1Ñ,
K = U V−1

= Ṽ−1Ũ with N,M, Ñ, M̃,U,V, Ũ , Ṽ ∈ RH∞ such that either of
the followingBezout (Diophantine)equations hold,

Ṽ M − Ũ N = I , (4.10)

M̃V − ÑU = I , (4.11)

36 Chapter 2. Stabilizing Controllers

or equivalently, under the lemma conditions the followingdouble Bezout equation
holds[

Ṽ −Ũ

−Ñ M̃

][
M U

N V

]
=

[
M U

N V

][
Ṽ −Ũ

−Ñ M̃

]
=

[
I 0

0 I

]
. (4.12)

Proof. It is clear that if the stable pairsM, N andŨ , Ṽ satisfy the Bezout equa-
tion (4.10), the right hand side of (4.9) is stable. This implies that the left hand
side of (4.9) is stable, or equivalently,K stabilizesG. Conversely, ifK stabilizes
G, the left hand side of (4.9) is stable. BecauseM, N andŨ , Ṽ are coprime there
exists a left inverse for

[
M
N

]
and a right inverse for[Ṽ Ũ] in RH∞. Hence we

obtain the result that

(Ṽ M − Ũ N)−1
= Z ∈ RH∞. (4.13)

Now, define a new coprime factorization forG : G = (N Z)(M Z)−1. Then (4.10)
follows.

By interchanging the roleG and K in the above arguments so that we view
G as stabilizingK , we are led to the alternative dual condition to (4.10), namely
(4.11).

Corollary 4.2. With (4.1), (4.2) holding, necessary and sufficient conditions for
the pair(G, K) to be stabilizing are that[

Ṽ −Ũ

−Ñ M̃

]−1

∈ RH∞, or

[
M U

N V

]−1

∈ RH∞. (4.14)

These conditions are equivalent to(3.5), (3.6).

The above corollary is transparent noting that (4.12) implies (4.14), and (4.14)
leads to [

I −K

−G I

]−1

=

[
M 0

0 V

][
M U

N V

]−1

∈ RH∞,

or equivalently, that(G, K) is a stabilizing pair.

Normalized Coprime Factors

Normalized coprime factors(M, N) or
(
M̃, Ñ

)
are left or right coprime factors

with the special normalization property

N−N + M−M = I ,

Ñ Ñ− + M̃ M̃− = I ,
(4.15)

2.4. Coprime Factorization 37

for all |z| = 1. HereM−(z) denotesM ′(z−1) etc. Our developments do not feature
these factorizations with their interesting properties as do those of McFarlane and
Glover (1989). We note in passing that these factorizations may be obtained in
principle from any coprime factors by aspectral factorization. Thus forÑ Ñ− +
M̃ M̃− = Z̃ Z̃− with Z̃, Z̃−1

∈ RH∞ we have normalized left coprime factors(
Z̃−1Ñ, Z̃−1M̃

)
. Likewise forN−N + M−M = Z−Z with Z, Z−1

∈ RH∞ we
have normalized right coprime factors

(
N Z−1,M Z−1

)
.

State Estimate Feedback Controllers

Let us construct stable, coprime factorizations for a plant model and a special
class of controllers known as state estimate feedback controllers. Consider a plant
G with a state space description given as follows.

G :

 A B

C D

 . (4.16)

Under astabilizability assumption on the pair(A, B), it is possible using stan-
dard methods to construct a constantstabilizing state feedback gain(matrix) F ,
in that(A+ BF) has all eigenvalues within the unit circle. Likewise, under ade-
tectabilityassumption on the pair(A,C), it is possible to construct a constant sta-
bilizing output injection(matrix) H , in that(A+ HC) has all eigenvalues within
the unit circle. The gainsF and H can be obtained from various methodolo-
gies for controller designs. Examples are the so-called linear-quadratic-Gaussian
(LQG) methods, see Anderson and Moore (1989), Kwakernaak and Sivan (1972)
or eigenvalues assignment approaches in Ogata (1990). The stabilizing controller
K with its associated state space is then given by

K :

 A+ BF + HC + H DF −H

F 0

 . (4.17)

The plant/controller arrangement is depicted in Figure 4.1. Stable coprime fac-
torizations forG(z) andK (z) are then given as follows.

[
M U

N V

]
:


A+ BF B −H

F I 0

C + DF D I

 , (4.18)

[
Ṽ −Ũ

−Ñ M̃

]
:


A+ HC −(B+ H D) H

F I 0

C −D I

 . (4.19)

38 Chapter 2. Stabilizing Controllers

u

Plant
G

A

B

F

y

D

C

�

�

�

�

�

�

�

�

��

�

�����

�
1

�
2

z� 1� H

FIGURE 4.1. State estimate feedback controller

To verify thatN M−1 is indeed a factorization forG, proceed as follows:

M :

 A+ BF B

F I

 , N :

 A+ BF B

C + DF D

 .
HereM−1 obviously exists, and has a representation

M−1 :

 A+ BF − BF −B

F I

 =
 A −B

F I

 .
We have then forN M−1:

N M−1 :


A+ BF BF B

0 A −B

C + DF DF D

 .
Using the state space transformationT =

[
I I
0 I

]
which leavesN M−1 unchanged,

we find

N M−1 :


A+ BF 0 0

0 A −B

C + DF −C D

 .
Hence after removing stable, uncontrollable modes and changing the signs of the
input and output matrices, we have:

N M−1 :

 A B

C D

 : G.

2.4. Coprime Factorization 39

In a similar way, we can show thatU V−1 is a factorization ofK .
These factorizations as presented by (4.18), (4.19) satisfy the double Bezout

equations. This may be verified by a now familiar sequence of steps as follows:


A+ BF B −H

F I 0

C + DF D I




A+ HC −(B+ H D) H

F I 0

C −D I



=


A+ BF BF− HC (B+ H D) −H

0 A+ HC −(B+ H D) H

F F I 0

C + DF C + DF 0 I



=


A+ BF 0 0 0

0 A+ HC −(B+ H D) H

F 0 I 0

C + DF 0 0 I


:

[
I 0

0 I

]
.

Notice that the second equality is obtained via the block state transformation
T =

[
I I
0 I

]
, with identity input and output transformations. The third equality

is obtained by removing uncontrollable and unobservable modes.
It turns out that special selections of stabilizingF andH yield thenormalized

coprime factorssatisfying (4.16). More on this in Chapter 4.

More General Stabilizing Controllers†

We consider the coprime factorizations with respect to an arbitrary stabilizing
controllerK . Let K be given by

K :

 Ǎ B̌

Č Ď

 , (4.20)

†This material, included for completeness, is somewhat condensed and may be merely skimmed
on first reading.

40 Chapter 2. Stabilizing Controllers

with the pairs
(
Ǎ, B̌

)
stabilizable and

(
Ǎ, Č

)
detectable. Because(G, K) is sta-

bilizing:

[
I −K

−G I

]−1

:




A 0 −B 0

0 Ǎ 0 −B̌

0 Č I −Ď

C 0 −D I





−1

:


A+ BYĎC BYČ BY BYĎ

B̌ZC Ǎ+ B̌Z DČ B̌Z D B̌Z

YĎC YČ Y YĎ

ZC Z DČ Z D Z

 ∈ RH∞.

(4.21)

whereY = (I − ĎD)−1 andZ = (I − DĎ)−1.
To perform the coprime factorization, a key step which only becomes obvious

in hindsight is to first construct state feedback gainsF andF̌ under stabilizability
assumptions on the pairs(A, B) and

(
Ǎ, B̌

)
such thatA+ BF and Ǎ+ B̌F̌ have

all eigenvalues within the unit circle. These matrix gains are easily obtained by
performing a state feedback design for the pairs(A, B) and

(
Ǎ, B̌

)
, respectively.

The coprime factorizations forG andK are then given by

[
M U

N V

]
:


A+ BF 0 B 0

0 Ǎ+ B̌F̌ 0 B̌

F Č + Ď F̌ I Ď

C + DF F̌ D I

 , (4.22)

and

[
Ṽ −Ũ

−Ñ M̃

]
:


A+ BYĎC BYČ −BY BYĎ

B̌ZC Ǎ+ B̌Z DČ −B̌Z D B̌Z

F − YĎC −YČ Y YĎ

ZC −

(
F̌ − Z DČ

)
Z D Z

 . (4.23)

Comparing with the closed-loop (matrix) transfer functions (4.21), it is clear that
the factorizations here are stable only because of the construction of the state feed-
back gainsF , F̌ . The factorizations can be verified to satisfy the double Bezout
equation by direct multiplication; see problems.

2.5. All Stabilizing Feedback Controllers 41

Main Points of Section

In this section, we have examined the representation of the (matrix) transfer func-
tion of a plant and its stabilizing controller using stable, coprime factors. A key
result is that internal stability of the closed-loop system is equivalent to the ex-
istence of coprime fractional representations for the plant model and controller
that satisfy the Bezout equation. This has been exploited to provide an explicit
construction of coprime factorizations of the plant model and a stabilizing state
feedback controller. Coprime factorizations associated with other stabilizing con-
trollers can be derived.

2.5 All Stabilizing Feedback Controllers

In this section, the class of all stabilizing controllers for a plant is parameterized
in terms of a stable, proper filter, denotedQ.

TheQ-Parameterization

Let K ∈ Rp be a nominal controller which stabilizes a plantG ∈ Rp and with
coprime factorizations given by (4.1), (4.2) satisfying the double Bezout equation
(4.12). Consider also the following class of controllersK (Q) parameterized in
terms ofQ ∈ RH∞ and in right factored form:

K (Q) := U (Q)V(Q)−1, (5.1)

U (Q) = U + M Q, V(Q) = V + N Q; (5.2)

or in left factored form:

K (Q) := Ṽ(Q)−1Ũ (Q), (5.3)

Ũ (Q) = Ũ + QM̃, Ṽ(Q) = Ṽ + QÑ. (5.4)

Then, as simple manipulations show, these factorizations together with the fac-
torizations forG also satisfy a double Bezout equation (4.12), so thatK (Q) sta-
bilizes G for all Q ∈ RH∞. Equation (5.2) is referred to as a right stable linear
fractional representation, while (5.4) is referred to as a left stable linear fractional
representation.

We now show the more complete result that withQ spanning the entire class
of RH∞, the entire class of stabilizing controllers for the plantG is generated.
Equivalently, any stabilizing controller for the plant can be generated by a partic-
ular stabilizing controller and aQ ∈ RH∞.

Let us consider the closed-loop system with the controller of (5.2) or (5.4).
This closed-loop system can be written in terms of the closed-loop system with

42 Chapter 2. Stabilizing Controllers

the nominal controller and the stable transfer functionQ as follows.[
I −K (Q)

−G I

]−1

=

[
I −Ṽ(Q)−1Ũ (Q)

−M̃−1Ñ I

]−1

=

{[
Ṽ(Q)−1 0

0 M̃−1

][
Ṽ(Q) −Ũ (Q)

−Ñ M̃

]}−1

=

[
M U (Q)

N V(Q)

][
Ṽ(Q) 0

0 M̃

]

=

{[
M U

N V

]
+

[
0 M Q

0 N Q

]}{[
Ṽ 0

0 M̃

]
+

[
QÑ 0

0 0

]}

=

[
M U

N V

][
Ṽ 0

0 M̃

]
+

[
M QÑ 0

N QÑ 0

]
+

[
0 M QM̃

0 N QM̃

]

=

[
Ṽ −Ũ

−Ñ M̃

]−1[
Ṽ−1 0

0 M̃−1

]−1

+

[
M QÑ M QM̃

N QÑ N QM̃

]
.

(5.5)

Notice that we have:[
I −K (Q)

−G I

]−1

=

[
(I − K (Q)G)−1 K (I − K (Q)G)−1

G (I − K (Q)G)−1 (
I − GK(Q)−1

)]

=

[
M U

N V

][
Ṽ 0

0 M̃

]
+

[
M

N

]
Q
[
Ñ M̃

]
.

(5.6)

Note that the third and last equalities are obtained by applying the double Bezout
equation. We conclude that[

I −K (Q)

−G I

]−1

=

[
I −K

−G I

]−1

+

[
M

N

]
Q
[
Ñ M̃

]
. (5.7)

From (5.7), it is again clear that any controllerK (Q) parameterized byQ ∈ RH∞
as in (5.2) stabilizes the plantG. To see the converse, we note thatQ is given as
follows.

Q =
[
Ṽ −Ũ

]
[

I −K (Q)

−G I

]−1

−

[
I −K

−G I

]−1

[
−U

V

]
. (5.8)

From (5.8), we note that if bothK andK (Q) stabilizeG, thatQ as given by (5.8)
satisfiesQ ∈ RH∞.

2.5. All Stabilizing Feedback Controllers 43

Consider now an arbitrary stabilizing controller forG, denotedK1. Replacing
K (Q) in (5.8) byK1 allows a calculation of aK1 dependentQ, denotedQ1, and
associatedU1 = U+M Q1, V1 = V+N Q1, Ũ1 = Ũ+Q1M̃ , Ṽ1 = Ṽ+Q1Ñ.
Now reversing the derivations for (5.5)–(5.8) in the caseK (Q) = K1 leads to the
first equality in (5.5) holding withK (Q), Ṽ(Q), Ũ (Q) replaced byK1, Ṽ1, Ũ1, or
equivalently,K1 = Ṽ−1

1 Ũ1 (andG = M̃−1Ñ), which allows a construction of an
arbitrary stabilizing controllerK1 using our controller structure withQ replaced
by Q1. Consequently, we have established the following theorem.

Theorem 5.1. Given a plantG ∈ Rp with coprime factorizations(4.1), (4.2), and
the controller classK (Q) given from(5.2), (5.4), then(5.7), (5.8)hold. Moreover,
K (Q) stabilizesG if and only ifQ ∈ RH∞. Furthermore, asQ varies overRH∞
all possible proper stabilizing controllers forG are generated byK (Q).

Proof. See above.

Realizations

We will next look at the realization of the controllerK (Q) parameterized in terms
of Q ∈ RH∞. From (5.2) and the Bezout equation (4.12), we have

K (Q) = (U + M Q)(V + N Q)−1

= (U + Ṽ−1(I + Ũ N)Q)(V + N Q)−1

= (U + Ṽ−1Q+ Ṽ−1Ũ N Q)(V + N Q)−1

= (U V−1(V + N Q)+ Ṽ−1Q)(V + N Q)−1

= K + Ṽ−1Q(I + V−1N Q)−1V−1.

(5.9)

The controllerK (Q) as given by (5.9) can be organized into a compact form
depicted in Figure 5.1 withJ given as

J =

[
U V−1 Ṽ−1

V−1
−V−1N

]
=

[
Ṽ−1Ũ Ṽ−1

V−1
−V−1N

]
, (5.10)

and [
u

r

]
= [J]

[
y

s

]
, s= Qr. (5.11)

With the internal structure of the controllerK (Q) shown in Figure 5.2, it is
interesting to note that effectively, the control signal generated byK (Q) consists
of the signal generated by the nominal controllerK and another second control
loop involving the stable transfer functionQ. WhenQ ≡ 0, thenK (Q) = K .

For implementation purposes, the Bezout equation of (4.12) can be used to
obtain a variant of the blockJ in Figure 5.2. The reorganized structure is shown

44 Chapter 2. Stabilizing Controllers

u

r s

y

Plant
G

J

Q � RH �

K
�
Q

FIGURE 5.1. Class of all stabilizing controllers

u

r

y

s

Plant
G

K

N

�

�

�

�

�

�

Q � RH�

K Q

V � 1

�
V � 1

FIGURE 5.2. Class of all stabilizing controllers in terms of factors

in Figure 5.3. With this structure, and as shown below, the signalr is generated
by r = M̃ y − Ñu, whereM̃ and Ñ are stable filters. Compare to the structure
in Figure 5.2, where the signalr is generated using a feedback loop involving
N, V−1 andQ, with V−1 possibly unstable. The structure of Figure 5.3 is more
desirable.

From (5.11), we have immediately

s= Ṽ u− Ũ y. (5.12)

2.5. All Stabilizing Feedback Controllers 45

u

r

y

s

G

�

�

�

�

�

�

Q � RH � K � Q

�
M

�
N

�
U

�
V � 1

FIGURE 5.3. Reorganization of class of all stabilizing controllers

Using the second equation from (5.11), and (5.12) we have

r = V−1y− V−1N
(

Ṽ u− Ũ y
)

= V−1
(

I + NŨ
)

y− V−1NṼ u

= V−1
(

V M̃
)

y− V−1V Ñu

= M̃ y− Ñu

(5.13)

It may appear at this stage that to implement the controllerK (Q) requires aug-
mentations toK for the generation of filtered signalsr for driving the Q filter.
This is not the case for the state estimate feedback controller structure, as we now
show.

In the state space notation of (4.17)–(4.19), as the reader can check (see prob-
lems),

J :


A+ BF + HC + H DF −H B+ H D

F 0 I

−(C + DF) I −D

 . (5.14)

The implementation of the class of all stabilizing controllers in conjunction with
a state estimate feedback nominal controller is shown in Figure 5.4. The input to
theQ block is the estimation residualr , and the outputs is summed with the state
estimate feedback signal to give the final control signal. Clearly in this case, there
is no additional computational requirement except for the implementation of the
Q filter.

46 Chapter 2. Stabilizing Controllers

u

yPlant
G

s

r

A

B

F

D

C

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

���

Q � RH�

z � 1

�
1

�
2

� H

FIGURE 5.4. Class of all stabilizing controllers with state estimates feedback nominal
controller

Closed Loop Properties

Let us consider again the plant modelP of (2.1) depicted in Figure 2.1 with

P22 = G. (5.15)

We will next look at the closed-loop (matrix) transfer function of the plant model
with K (Q) as the feedback controller, implemented as the pair(J, Q) depicted
in Figure 5.5. This is a generalization of the arrangement of Figure 5.1. The (ma-
trix) transfer function of interest is that from the disturbancew to the disturbance
responsee. Referring to Figure 5.5, we will first derive the (matrix) transfer func-
tion T , which consists of the plantP block (with P22 = G) and theJ block. The

�

u

r

�

�

e e

e

s

y s r

P

J

T

Q � RH �

Q � RH � FQ

FIGURE 5.5. Closed-loop transfer functions for the class of all stabilizing controllers

2.5. All Stabilizing Feedback Controllers 47

various equations are listed as follows, see also (5.10), (5.15).[
e

y

]
=

[
P11 P12

P21 P22

][
w

u

]
=

[
P11 P12

P21 G

][
w

u

]
,[

u

r

]
=

[
J11 J12

J21 J22

][
y

s

]
=

[
K Ṽ−1

V−1
−V−1N

][
y

s

]
,

s= Qr.

(5.16)

We proceed by eliminating the variablesy andu usingG = M̃−1Ñ and K =
Ṽ−1Ũ . We have, after a number of manipulations involving the double Bezout
equation (4.12), noting a key intermediate result

(I − J11P22)
−1
= (I − Ṽ−1Ũ N M−1)−1

= MṼ,

that[
e

r

]
= T

[
w

s

]
; T =

[
T11 T12

T21 T22

]
=

[
P11+ P12U M̃ P21 P12M

M̃ P21 0

]
.

(5.17)

It is interesting to note thatT22 = 0 regardless of the plant or the nominal con-
troller used. A direct result of this property is that the closed-loop (matrix) transfer
function fromw to e is given by

e= FQw; FQ = T11+ T12QT21, (5.18)

which isaffinein the (matrix) transfer functionQ. Of course, withT, Q ∈ RH∞,
then FQ ∈ RH∞. Actually, because of the linearity inQ of the disturbance re-
sponse (matrix) transfer functionFQ, it is possible to construct convenient op-
timization procedures to select stableQ to minimize the disturbance response
according to reasonable measures. In this way, optimum disturbance rejection
controllers are achieved with the search restricted to the class of all stabilizing
controllers. This affine nature is also useful for numerical optimization, see Boyd
and Barratt (1991). An adaptive version of this observation is presented in Chap-
ter 6.

It is interesting and useful for work in later chapters to examine the state space
description forT in the case

P :


A B1 B2

C1 D11 D12

C2 D21 D22

 , (5.19)

with state estimate feedback controller (4.17). Again we work withP22 = G,
so that connecting with earlier notationG = N M−1

= M̃−1Ñ and B2 = B,

48 Chapter 2. Stabilizing Controllers

C2 = C, simple manipulations give, under (4.18), (4.19)

T12 = P12M :

 A+ B2F B2

C1+ D12F D12

 , (5.20)

T21 = M̃ P21 :

 A+ HC2 B1+ H D21

C2 D21

 . (5.21)

Further manipulations which the reader can check (see problems) give an expres-
sion forT11 = P11+ P12U M̃ P21, and sinceT22 = 0, there follows

T :


A+ B2F −HC2 −H D21 B2

0 A+ HC2 B1+ H D21 0

C1+ D12F C1 D11 D12

0 C2 D21 0

 . (5.22)

An interesting special case is when the disturbance and disturbance response
enter as in Figure 3.2, so that

P =


[
G I

]
G[

G I
]

G

 .
Then simple manipulations give

T =


[
V Ñ UÑ

]
N[

Ñ M̃
]

0

 .
We now consider other input/output relationships and stability properties. In

the first instance, let us look directly at the possible input/output (matrix) transfer
functions for the scheme of Figure 5.2, denoted(G, J, Q). Simple manipulations
give internal stability conditions as

[
I −K (Q)

−G I

]−1 [
M

N

] [
I Q

]
[

I

Q

] [
Ñ M̃

] [
I 0

Q I

]
 ∈ RH∞.

Equivalently,Q ∈ RH∞. This result tells us thatK (Q), when stabilizing forG,
can be implemented as the(J, Q) control loop without loss of stability.

It is straightforward to generalize the above stability results, including the re-
sults of Theorems 3.1 and 5.1 to cope with the nested controller arrangements of

2.5. All Stabilizing Feedback Controllers 49

Figure 5.5, denoted(P, J, Q). Necessary and sufficient conditions for stability
are that the pairs(

P,

[
0 0

0 K (Q)

])
,

(
T,

[
0 0

0 Q

])
are stabilizing. (5.23)

All Stabilizing Feedforward/Feedback Controllers

We have earlier introduced the feedforward/feedback controller as a feedback
controller for an augmented plant. We will show in this section that applying the
results of the above subsection in this case allows us to generate the class of all
stabilizing feedforward/feedback controllers.

Let us recall the augmented plant model of (3.9) and the corresponding nominal
feedforward/feedback controller as

G =

[
0

G

]
, K =

[
K f K

]
. (5.24)

Consider coprime factorizations for the plantG as in (4.1) and nominal feedback
controller K as in (4.2) such that the double Bezout identity (4.12) is satisfied.
Then coprime factorizations for the augmented plantG and nominal controllerK
are given by

G = M̃−1Ñ = NM−1, K = Ṽ−1Ũ = UV−1, (5.25)

with rational proper stable factorizations:

N =

[
0

N

]
, Ñ =

[
0

Ñ

]
,

M = M, M̃ =

[
I 0

0 M̃

]
,

U =
[
MŨ f U

]
, Ũ =

[
Ũ f Ũ

]
,

V =

[
I 0

NŨ f V

]
, Ṽ = Ṽ,

Ũ f = Ṽ K f .

(5.26)

It is readily checked that these factorizations satisfy the corresponding double
Bezout equation[

Ṽ −Ũ

−Ñ M̃

][
M U

N V

]
=

[
M U

N V

][
Ṽ −Ũ

−Ñ M̃

]
=

[
I 0

0 I

]
. (5.27)

50 Chapter 2. Stabilizing Controllers

d
tV1 G

PL

PL

tUf

tU

SUM

FIGURE 5.6. A stabilizing feedforward/feedback controller

Note that a coprime factorization forK f is K f = Ṽ−1Ũ f so that any unstable
modes ofK f are necessarily that of unstable modes ofK . The relevant block
diagram is depicted in Figure 5.6 where the feedforward blockŨ f is seen to be a
stable system.

The class of all stabilizing feedforward/feedback controllers parameterized in
terms ofQ is then given by

K(Q) =
[
K f (Q) K (Q)

]
= Ṽ(Q)−1

[
Ũ f (Q) Ũ (Q)

]
. (5.28)

The arrangement is depicted in Figure 5.7(a) with an augmentedJ given by

J =

[
K f K Ṽ−1

−V−1NŨ f V−1
−V−1N

]
. (5.29)

This arrangement can be reorganized to the scheme depicted of Figure 5.7(b)
whereJ is that of (5.10) for the feedback case. The class of all stabilizing feedfor-
ward/feedback controllers then consists of the corresponding feedback controllers
and another stable blockQ f in parallel with the nominal stable feedforward filter,
also termed aprecompensator, U f .

d

yu

d

u y

d

(a) (b)

G

Q

G

J

��

�

�

�
U f

Q f
�

�

FIGURE 5.7. Class of all stabilizing feedforward/feedback controllers

2.6. All Stabilizing Regulators 51

2.6 All Stabilizing Regulators

A subset of the class of all stabilizing controllers is those that can regulate a distur-
bance response to a particular class of disturbances to zero asymptotically. Distur-
bance classes of interest could be, for example, the class of constant disturbances,
the class of sinusoidal disturbances of known period, or the class of periodic dis-
turbances of known period with harmonics up to a known order. Of course, the
class of stabilizing regulators for certain disturbance classes and responses may
be an empty set. Let us proceed assuming that this class is nonempty.

To conveniently characterize the class of all stabilizing regulators for a class of
disturbances, it makes sense to exploit the knowledge we have gained so far as we
illustrate now by way of example.

Consider the class of constant disturbances. In this case, for models as in Fig-
ure 2.1, the disturbancewk is a constant of unknown value, and our desire is that
the disturbance responsee approach zero asymptotically for allw in this class.
In order to proceed, let us modify the first step in our objective to requiring that
the summed responseēk =

∑k
i=1 ei be bounded (iǹ2) for bounded input distur-

bancesw (in `2).
Now this BIBO stability for linear systems is equivalent to requiring that con-

stant inputsw give rise to asymptotically constant responsesē, and in turn asymp-
totically zero responsese, as desired.

We conclude that the class of all regulators, regulating a disturbance response
ek to zero asymptotically forconstant input disturbancesis the class of all sta-
bilizing controllers for the system augmented with a model of the deterministic
disturbance itself, namely a summing subsystem, such that the augmented system
disturbance response isēk =

∑k
i=1 ei .

It is not difficult to check that the class of stabilizing regulators includes an
internal modelof the constant disturbances, namely a summing subsystem.

Sinusoidal disturbances and periodic disturbances can be handled in the same
way, save that the augmentation and consequent internal model now consists of a
discrete-time oscillator at the disturbance frequency, which is of course a model
of the deterministic disturbance.

More generally, any deterministic disturbance derived from the initial condition
response of linear system model, can be appended to the disturbance responsee in
the design approach described above to achieve regulation of such disturbances.
The consequence is that in achieving a stabilizing controller design of the aug-
mented system, there will be an internal model of the disturbances in the con-
troller. For further details for characterizing the class of all stabilizing regulators,
see Moore and Tomizuka (1989).

Of course, if regulation of only a component of the disturbance responsee is
required, then the augmentations of the deterministic disturbance model need be
only to this component. This observation then leads us back again to the selec-
tion of the appropriate component ofe so that regulation can be achieved. This
component is frequently the plant output or a tracking error or filtered versions of
these since, in general, it is not possible to have both the controlu and the plant

52 Chapter 2. Stabilizing Controllers

outputy (or tracking error) regulated to zero in the presence of deterministic dis-
turbances.

Main Points of Section

In this section, we examine the use of fractional representations of transfer func-
tions to parameterize the class of all stabilizing controllers for a plant in terms of
any stabilizing controller for the plant and a stable filterQ. The (matrix) trans-
fer function of the closed-loop system is affine in the stable filterQ. The class
of stabilizing controllers has convenient realizations in the feedforward/feedback
(two-degrees-of-freedom) situation as well as in just the feedback (one-degree-
of-freedom) situation. In particular, an interesting special case is where the filter
Q augments a stabilizing state estimate feedback controller.

2.7 Notes and References

In this chapter, we have set the stage for the rest of the book by defining the plant
representations with which we are working. We have introduced the concept of a
nominal stabilizing feedback controller, and feedforward/feedback controller, for
such plant models. The entire class of stabilizing controllers for the plant mod-
els is then parameterized in terms of a stable filterQ using a stable, coprime
fractional representation approach. It turns out that this approach gives rise to
closed-loop transfer functions that are affine in the stable filterQ. This result
underpins the controller design methods to be explained in the rest of the book.
In effect, our focus is on techniques that search within this class of stabilizing
controllers for a controller that meets the performance objectives defined for the
controller.

More information on definitions and manipulations of the plant model can
be found in Ogata (1987), Åstrom and Wittenmark (1984), Franklin and Pow-
ell (1980), Boyd and Barratt (1991) and Doyle et al. (1992). A detailed exposition
on linear system theory can be found in Kailath (1980) and Chen (1984).

Algebraic aspects of linear control system stability can be found in Kučera
(1979), Nett (1986), Francis (1987), Vidyasagar (1985), McFarlane and Glover
(1989) and Doyle et al. (1992). For the factorization approach to controller syn-
thesis, the readers are referred to Youla, Bongiorno and Jabr (1976b), Kučera
(1979), Nett, Jacobson and Balas (1984), Tay and Moore (1991), Francis (1987),
and Vidyasagar (1985). For a general optimization approach exploiting this frame-
work we refer the reader to Boyd and Barratt (1991).

Some of the third author’s early works (with colleagues and students) in the
topic of this chapter are briefly mentioned. Coprime factorizations based onLu-
enberger observerswhich could be of interest when seeking low order controllers
are given in Telford and Moore (1989). Versions involving frequency shaped (dy-
namic) feedback “gains”F and H are studied in Moore, Glover and Telford

2.7. Notes and References 53

(1990). The difficulty of coping with decentralized controller structure constraints
is studied in Moore and Xia (1989). Issues ofsimultaneous stabilizationof mul-
tiple plants are studied in Obinata and Moore (1988).

Generalizations of the work of this chapter to generate the class of all stabiliz-
ing two-degree-of-freedom controllersare readily derived from the one-degree-of
freedom controller class theory, see Vidyasagar (1985), Tay and Moore (1990)
and Hara and Sugie (1988). Two-degree-of-freedom controllers incorporate both
a feedforward control from an external input as well as feedback control as
in this chapter. The most general form has a control block with output driv-
ing the plant and two sets of inputs, with dynamics coupling these. The con-
trollers are parameterized in terms of a feedforwardQ1 ∈ RH∞ and the feed-
back Q2 ∈ RH∞. IndeedQ = [Q1 Q2] ∈ RH∞ can be viewed as the pa-
rameterization for the class of all stabilizing one-degree-of-freedom controllers
for an augmented plant[0 G′]′. An application and more details are given in
Chapter 8.

Generalizations of the work of this chapter to the class of allmodel matching
controllersis studied in Moore, Xia and Glover (1986). For this it is required that
the closed-loop system match a model. Further details are not given here save that
again there is a parameterizationQ ∈ RH∞.

Other generalizations to the class of allstabilizing regulatorscan be achieved,
see Moore and Tomizuka (1989). These regulators suppress asymptotically ex-
ternal deterministic disturbances such as step function inputs and sinusoidal dis-
turbances. These can arise as discussed in the next chapter. Again the parame-
terization is aQ ∈ RH∞. Here however, the regulators/controllers must have an
internal modelof the disturbance source.

Then too there are generalizations of all these various stabilizing controller
classes fortime-varying systems, being still linear, see for example Moore and
Tay (1989a). In fact, the theory of this chapter goes through line by line replacing
transfer functions by linear system operators and working with BIBO stability,
or equivalently now exponential asymptotic stability. Indeed, our

[A | B
C | D

]
notation

really refers to a linear system with matricesA, B,C, D which as it turns out
can be time varying. Such results are used in Chapter 8, where also nonlinear
generalizations are discussed.

Problems

1. Derivation of plant model.
Consider the plant model of Figure 2.1 withP22 = G and P21 = I . Con-
struct the blocksP12 and P11 in terms ofG so thate =

[y
λu

]
whereλ is a

constant.

Notice that withe interpreted as a disturbance response andG restricted to
a linear plant model, a control objective that minimizes the 2-norm ofewill
lead to the linear quadratic design problem.

54 Chapter 2. Stabilizing Controllers

2. Transfer function to state-space transformation.
Consider a plantG with polynomial description given as follows.

A(z−1)yk = B(z−1)uk,

A(z−1) = 1+ a1z−1
+ a2z−2, B(z−1) = b1z−1

+ b2z−2.

By considering a related system given byA(z−1)ζk = uk−1, show that
yk = B(z−1)uk. Show further that the plantG has a state-space description
given by

xk+1 =

[
−a1 −a2

1 0

]
xk +

[
1

0

]
uk, yk =

[
b1 b2

]
xk.

This particular state-space realization for the transfer functionG is some-
times referred to as the controller canonical realization, although there is
no universal agreement to the name. Note that this is just one of the many
possible state-space realizations for the the transfer functionG. The inter-
ested readers are referred to texts on linear systems such as Kailath (1980)
and Chen (1984) for a detailed exposition.

3. Elimination of uncontrollable and unobservable modes.
Consider the systemsW1 andW2 of (2.9) with A1 = A2, B1 = B2 and
their sum in (2.10). Show that after elimination of uncontrollable and un-
observable modes, the sum of the systems can be represented as

(W1+W2) :

 A1 B1

C1+ C2 D1+ D2

 . (7.1)

With W1, as in (2.9) withD invertible, verify thatW1W−1
1 = W−1

1 W1 has
a minimal representation

[
0 0
0 I

]
. Discuss internal stability.

4. Internal stability.
In the series connection of two scalar systemsW1,W2, with minimal repre-
sentation given by (2.9), show that the series connectionW1W2 is minimal
if and only if the transfer functions ofW1 andW2 do not have any zeros
common with poles of the transfer function ofW2 andW1, respectively.

Show that the single-input, single-output plant-controller pair(G, K) given
by

G =
0.4z−1

− 0.44z−2

1− 2z−1+ 0.96z−2
, K =

−5+ 2.4z−1

1− 1.1z−1
,

is not internally stable in a feedback loop. Explain your findings in term
of classical pole/zero cancellations. Does the following multi-input, multi-

2.7. Notes and References 55

output plant and controller form a stabilizing pair in a feedback loop?

G =

 0.1z−1

1−0.6z−1
0.2z−1

1−0.6z−1

0.2z−1

1−0.6z−1
0.1z−1

1−1.1z−1

 , K =

 −0.3z−1

1−0.1z−1 1.65
−4(1−0.08z−1)

1−0.1z−1
−6(1−1.1z−1)

1−0.1z−1

 .
Are there any pole/zero cancellations between the plant and controller?
How are transmission zeros of a multi-input, multioutput transfer function
defined?

5. Implementation of feedforward/feedback controllers.
A two degrees-of-freedom controller given as

K =
[
K f K

]
=

[
0.5z−1

(1−1.2z−1)(1−0.5z−1)

0.2z−1(1−0.7z−1)

(1−1.2z−1)(1−0.6z−1)

]
is implemented as in Figure 7.1. Explain why the structure used in the figure
is not suitable for implementingK . Suggest a more suitable structure.

d u y

K

G

�

���
K f

FIGURE 7.1. Signal model for Problem 5

6. Coprime factorizations.
Verify that the representations (4.18) and (4.19) indeed are factorizations
for G andK . Establish that in the case that the plant of (4.16) has no direct
feedthrough, that isD = 0, then we can select a gain matrixL whereAL
is a stabilizing output injection such that the feedback controllerK is now
given by

K :

 A+ BF + ALC+ BF LC −(AL + BF L)

F + F LC −F L

 . (7.2)

Note that this controller has a direct feedthrough term−(F L), although the
overall control loop transfer functionGK is still strictly proper.

Also, for the plantG with the controller (7.2), stable coprime factorizations
are given by

[
M U

N V

]
:


A+ BF B −(A+ BF)L

F I −F L

C 0 I

 ,

56 Chapter 2. Stabilizing Controllers

and

[
Ṽ −Ũ

−Ñ M̃

]
:


A+ ALC −B AL

F + F LC I F L

C 0 I

 . (7.3)

7. Coprime factorizations.
For the multi-input, multioutput plant and controller given in Problem 4,
suggest stable, coprime factorizations in|z| < 1.

8. Coprime factorizations.
Verify that the coprime factorizations given in (4.22) and (4.23) satisfy the
double Bezout equation.

9. Implementation of the class of all stabilizing controllers.
Starting from the expression forJ given in (5.10), verify that the structure
of Figure 5.3 implements the class of all stabilizing controllersK (Q) for
the plantG, given in (5.9). Verify the state space representation ofJ given
in (5.14) andT given in (5.22). Hints: In deriving (5.14), recall thatK is
given from (4.17), and note that from (4.18), (4.19)

V =

 A+ BF −H

C + DF I

 ,
N =

 A+ BF B

C + DF D

 ,
Ṽ =

 A+ HC −(B+ H D)

F I

 .
Apply the manipulations of (2.11)–(2.21) to obtain (5.14) from (5.10). In
verifying (5.22), check that indeedT22 = 0, and thatT12 andT21 are given
by (5.20), (5.21), and thatT11 = P11+ P12U M̃ P21 = P11+ P12UT21 is
given by

T11 =


A+ B2F −HC −H D21

0 A+ HC B1+ H D21

C1+ D12F C1 D11

 .

2.7. Notes and References 57

Key intermediate steps in the derivation are spelled out below.

T11 =


A B2F 0

0 A+ B2F −H

C1 D12F 0




A+ HC HC2 H D21

0 A B1

C2 C2F D21


+

 A B1

C1 D11



=



A 0 0 0 0 B1

0 A B2F 0 0 0

0 0 A+ B2F −HC2 −HC2 −H D21

0 0 0 A+ HC2 HC2 H D21

0 0 0 0 A B1

C1 C1 D12F 0 0 D11


.

Now add block row 5 to block row 4 and subtract block column 4 from
block column 5, then delete block row 5, and block column 5 (representing
unobservable modes). Next subtract block column 2 from block column 1
and add block row 1 to block row 2, then delete the block first row and
column (again representing unobservable modes). Next add block column
1 to block column 2 and subtract block row 2 from block row 1, then add
block column 1 to block column 3 and subtract block row 3 from block row
1, and finally delete block row 1 and column 1 (representing uncontrollable
modes) to give the required form forT11.

CHAPTER 3

Design Environment

3.1 Introduction

In this chapter, we focus on the environment in which our controller designs are
carried out. We begin with a discussion of the various types of disturbances in
the design environment. We introduce models for disturbances, both predictable
and nonpredictable, and the concept of norms to measure the size of disturbances.
We then go on to discuss plant uncertainties in the modeling process. General
frequency domain and time domain model uncertainties are discussed.

Next, we introduce a special form of frequency-shaped uncertainty motivated
by the characterization of the class of all stabilizing controllers. We examine the
class of all plants stabilizable by a nominal controller. This is dual to the case
of the class of all stabilizing controllers for a plant, and is characterized in terms
of a (matrix) transfer function, denotedS. It turns out that there is an interesting
relationship between an actual plant in the class of plants stabilized by a nominal
controller, the nominal plant description and the parameterS. The parameterS is
a frequency-shaped deviation of the actual plant from the nominal plant with the
frequency-shaping emphasizing the operating frequencies in the nominal closed
loop and the actual closed-loop systems.

3.2 Signals and Disturbances

In this section, we first suggest models for some commonly encountered pre-
dictable or deterministic disturbances. This is followed by a discussion on nonde-
terministic or stochastic disturbances. The concept of norms to measure the size
of such noise is introduced. Much of this material may be familiar to readers, but
is included for completeness and reference.

60 Chapter 3. Design Environment

Deterministic Disturbance Model

A deterministic disturbance is one where its future can be perfectly predicted
based on past observations. A number of useful disturbance models can be con-
structed and the most appropriate one depends on the nature of the disturbance
environment and control design objectives. Here we discuss a few of the more
commonly encountered disturbances in applications and provide a general for-
mulation for these. The disturbances of interest can be modeled by homogeneous
(time-invariant) state space or input/output models. In turn these models can com-
bine with the plant models to give composite models of the plants in conjunction
with the disturbance environment. The inclusion of disturbance models is essen-
tial in most control applications. The ubiquity of integral action in control arises
from the need to have accurate set point regulation, or equivalently, the rejection
of a constant disturbance.

Deterministic disturbances characterized by a finite, discrete frequency spec-
trum can easily be modeled using autonomous state space models. Typical exam-
ples follow.

DC offset

A constant disturbance can be modeled as:

(1− q−1)dk = 0, d0 = constant, k = 1, 2, . . . (2.1)

whereq−1 is the unit delay operator (i.e.q−1dk = dk−1).

Drift at Constant Rate

A ramp like disturbance has a discrete-time model given by

(1− 2q−1
+ q−2)dk = 0, d0 = β, d−1 = β − αT, k = 1, 2, . . .

(2.2)

whereT is the sampling interval. Heredk = αT k+ β.

Sinusoidal Disturbance

A single frequency sinusoidal disturbance can be modeled as the solution of the
difference operation.

(1− (2 cosωT)q−1
+ q−2)dk = 0, d0 = α, d−1 = α cosωT. (2.3)

The solution of (2.3), namelydk = α cos(ωT k), corresponds to sampling a
continuous-time disturbanced(t) = α cos(ωt) with sampling periodT .

More General Disturbances

Any finite combination of sinusoidal, exponential or polynomial functions of time
can be represented as the solution of an appropriate difference equation. Such

3.2. Signals and Disturbances 61

disturbances may be modeled as:

0(q−1)dk = 0, (2.4)

suitably initialized where

0(z−1) = 1+ γ1z−1
+ · · · + γnz−n. (2.5)

The zeros of the polynomial0 determine the discrete frequency spectrum con-
tained in the disturbance. Alternatively, a state space model can be used:

xk+1 =



−γ1 1 0 . . . 0
... 0

. . .
. . .

...

...
...

. . .
. . . 0

... 0 . . . 0 1

−γn 0 0


xk; x0,

dk =

[
1 0 . . . 0

]
xk.

(2.6)

The model for a periodic disturbance with known period but unknown harmonic
content is in general infinite dimensional. In practice, such a model is approxi-
mated by a finite-dimensional model as above.

Stochastic Disturbance Models

In a control environment, deterministic disturbances can be dealt with adequately
by appropriate control action. Many disturbances however are not predictable.
A controller solely determined on the basis of models without allowing for any
uncertainty could fail to achieve acceptable performance in an environment that
differs from its design environment. In order to determine a practical controller,
it is helpful to include unpredictable disturbances in the signal environment. Sto-
chastic disturbances can be modeled using stochastic processes. In the context of
linear system design, simple stochastic processes whose statistical characteriza-
tion can be expressed in terms of first and second order means suffice. Most of the
design methods in linear system theory, linear quadratic methods,`1 optimization
and H∞ can all be motivated and obtained in a purely deterministic setting as
well as in a stochastic setting. This is because first and second order means can be
defined via time averages rather than expected values over some underlying prob-
ability space defining the stochastic variable. This has been explored in depth in
Ljung and Söderström (1983). In our setting, it suffices to consider disturbances
like wk, k = 1,2, . . . that can be characterized in the following way:

Definition. Bounded, zero mean, white noise processwk. For some constantsb,
b1, b2 ≥ 0 and 0≤ γ < 1 and all sufficiently largeN:

62 Chapter 3. Design Environment

1. |wk| ≤ b,

(Bounded).

2.
∣∣∣∣ N∑
k=1

wk

∣∣∣∣ ≤ b1Nγ , (2.7)

(Zero mean).

3.
∣∣∣∣ N∑
k=m+1

wkw
′

k−m−Wδm

∣∣∣∣ ≤ b2Nγ , m= 1, 2, . . .

(Uncorrelated and with varianceW).

Hereδk = 1 if k = 0 andδk = 0 for k 6= 0.

The frequency spectrum of this noise is flat, hence the term white noise.

Definition. The bounded sequenceswk, vk, k = 1,2, . . . are said to be uncorre-
lated if for all sufficiently largeN,∣∣∣∣ N∑

k=m+1

wkv
′

k−m

∣∣∣∣ ≤ b3Nγ
+ b4, m= 1, 2, . . .

for some positive constantsb3,b4 ≥ 0 and 0≤ γ < 1.

If it is important to limit the frequency content of the noise, a filtered or col-
ored noise sequence can be derived fromwk via an appropriate linear filter that
accentuates the frequency spectrum of interest as follows:

xk+1 = A f xk + B fwk,

yk = C f xk + D fwk.
(2.8)

If wk in (2.8) satisfies the white noise condition (2.7) andA f is a stable matrix,
thenyk is bounded, has zero mean, but is correlated over time. Also,yk has a well
definedautocorrelation. Its frequency spectrumis given by:

8yy(θ) =
(
C f
(
I e− j θ

− A f
)−1

B f + D f

)′(
C f
(
I e j θ
− A f

)−1
B f + D f

)
,

whereθ ∈ [0, 2π).

Norms as Performance Measures

The performance of a controller can only be expressed via characteristics of the
signals arising from the controlled loop. An important characteristic of a signal is
its size. Norm functions are one way to determine the size of a signal.

3.2. Signals and Disturbances 63

Consider sequencesd := {dk, k = 1, 2, . . . }mappingN to R
n. This constitutes

a linear space of signals̀(N,R
n), where addition of signals and multiplication

with a scalar are defined in the obvious way:d + e = {dk + ek, k = 1, 2, . . . };
αd = {αdk, k = 1, 2, . . . } for d, e∈ `(N,R

n) andα ∈ R. A norm‖·‖ for signals
has to satisfy the following properties. It maps from the signal space to the positive
reals‖d‖ ≥ 0. It measures zero only for the zero signal, that is‖d‖ = 0 if and only
if d = 0 or dk = 0 for all k = 1,2, It scales appropriately‖αd‖ = |α| ‖d‖,
α ∈ R and satisfies the triangle inequality‖d + e‖ ≤ ‖d‖+‖e‖. Typical examples
are thè p norms. Thè p norm is defined as follows:

‖d‖p = lim
N→∞

(N∑
k=1

n∑
i=1

dp
i,k

)1/p

, dk =
(
d1,k . . . dn,k

)′
; p > 0.

Commonly used̀ p norms are thè∞ norm, which measures the maximum value
attained by the sequence; the`1 norm which measures the sum of absolute values
and thè 2 norm which is often referred to as an energy measure:

‖d‖∞ = sup
k∈N

max
i=1,...,n

∣∣di,k
∣∣ ,

‖d‖1 = lim
N→∞

N∑
k=1

n∑
i=1

∣∣di,k
∣∣ ,

‖d‖2 = lim
N→∞

(N∑
k=1

n∑
i=1

(
di,k

)2)1/2

.

(2.9)

In discrete time, signals with finitè1 or `2 norm converge to zero as time pro-
gresses; such signals are of a transient nature.

A less common norm is:

‖d‖ = sup
k∈N

max
i=1,2,...,n

(∣∣di,k+1− di,k
∣∣)+ sup

k∈N

max
i=1,2,...,n

∣∣di,k
∣∣. (2.10)

It measures not only the magnitude of the signal but also the rate of change of the
signal. A signal bounded in this norm is not only of finite magnitude but also rate
limited.

Sometimes norms are not informative enough to measure the quality of a signal,
for example any white noise signal with Gaussian distribution has infinite`∞ and
`2 norms. A more appropriate measure for such signals would be:

‖d‖rms= lim
N→∞

(
1

N

N∑
k=1

d′kdk

)1/2

. (2.11)

This is not a norm however. Indeed any signal of finite duration, that isdk = 0
for all k ≥ k0 > 0, or more generally that converges to zero has zeroroot mean
square(rms) measure. The rms value measures the average power content of a

64 Chapter 3. Design Environment

signal. It is an excellent indicator for differentiating between persistent signals
and nonpersistent ones.

For vector valued signals the different components in the vector may have dif-
ferent significance. This can be made explicit in measuring the size of the signal
by weighting the different components in the signal differently, for example

‖d‖ = ‖Pd‖∞ , (2.12)

is a norm for any symmetric positive definite matrixP of appropriate dimension.
In particular,P = diag(p1, p2, . . . , pn) with pi > 0, i = 1 . . . n allows for
individual scaling of each component of the signald. Proper scaling of the signals
is extremely important in practical application.

In concluding this section, we remark that similar norms can be defined for
continuous-time signals in very much the same fashion. We refer the reader to
Boyd and Barratt (1991) or Sontag (1990).

Main Points of Section

In the context of discrete-time signals, we see that the concept of a norm is a
useful measure of the size of a signal. Commonly used norms are introduced.

3.3 Plant Uncertainties

Models are only approximate representations for physical plants. Approximations
are due to a number of simplifications made in the modeling process, for example
we use linear, time-invariant models to represent systems which are really time
varying and nonlinear. As an illustration, consider a simple linear, time-invariant
model for the yaw control of an airplane. Complete description of the airplane’s
dynamics are nonlinear in that they depend on speed, altitude, and mass distri-
bution; factors that vary over the flight envelope of the airplane. A simple linear
time-invariant model can at best capture only the essential behavior in the neigh-
borhood of the one flight condition.

Model-plant mismatch can be represented or characterized in a number of dif-
ferent ways. The mismatch measure must capture the different behaviors of the
model and the plant for a range of signals that can be applied to the model and
the plant. This model-plant mismatch, also termed uncertainty, is therefore best
measured via signals. Both time domain and frequency domain characterizations
are important and play a role in control design.

Model-plant mismatch is also an important factor in determining controller
properties. A controller designed for the model must at least retain stable be-
havior when applied to the plant, that isrobustnessto plant model uncertainty.
In expressing robustness it becomes important to quantify the neighborhood of
plants near the model that can be stabilized/controlled by the particular controller
of interest. In this context, norms for models/transfer functions become important.

3.3. Plant Uncertainties 65

In this section we discuss concisely different model-plant mismatch character-
izations and introduce some frequently used norms for models/transfer functions.

Norms for Models

When discussing differences between a plant and a model, it is important to be
able to quantify this difference. A norm function is a suitable way of achieving
this, at least for stable plants. Consider the class of stable rational transfer function
matrices, with a realization:

G :

 A B

C D

 ∈ RH∞. (3.1)

Induced̀ p Norms

One way of defining a norm for a plant modelG is via the signals it links. Suppose
that Gu is the output produced by applying the signalu to the modelG, setting
all initial conditions to zero as follows:

xk+1 = Axk + Buk; x0 = 0, (3.2)

(Gu)k = Cxk + Duk. (3.3)

The`p gain ofG is defined by

‖G‖p−gn := sup
‖u‖p=1

‖Gu‖p . (3.4)

It measures the gain between the input to the plantG and the output produced by
the plant acting on its input.

The`∞ gain of the systemG is equal to thè 1 norm of the response ofG to
an impulse inputuk = δk whereδk = 1 for k = 1 andδk 6= 0 otherwise. This so-
calledimpulse responseis denotedg or g1, g2, . . . with g0 = 0, g1 = C B+ D,
g2 = C AB, gi = C Ai−1B for i = 2, 3, Indeed, we have:

‖G‖∞−gn =

∞∑
i=1

‖gi ‖∞ := ‖g‖1 .

Here‖gi ‖∞ is the induced∞-norm for the matrixgi . (See Appendix A).
The`2 gain of the systemG is also referred to as theH∞ norm or as the rms

gain.

‖G‖2−gn = ‖G‖rms= sup
‖u‖rms=1

‖Gu‖rms .

Observe that unlike for signals,‖G‖rms is a true norm for the systemG. It can be
computed as:

‖G‖2−gn = sup
0≤θ≤2π

σmax

(
G
(
ej θ
))
,

66 Chapter 3. Design Environment

whereσmax(A) stands for the maximum singular value of the matrixA. In reluc-
tant compliance with the literature, we at times denote‖G‖2−gn = ‖G‖∞, and
refer to it as theH∞ normof the systemG, see also Appendix B.

The frequency domain interpretation of the`2 gain (orH∞ norm) for a system
is very natural in many applications. Unfortunately it puts the whole frequency
spectrum on an equal footing. Often the gains in specific frequency ranges are
more important than outside these ranges. A frequency weighted`2 gain can then
be used:

‖G‖W = ‖WoGWi ‖2−gn

= sup
0≤θ≤2π

σmax

(
WoGWi

(
ej θ
))
.

HereWo andWi are frequency weighting systems;

Wo :

 Ao Bo

B′o Do

 , Wi :

 Ai Bi

B′i Di

 ,
respectively, at the output and input of the plantG. Without loss of generality, the
realizations are symmetric:Ao = A′o, Do = D′o, Ai = A′i and Di = D′i . Also
Wo

(
ej θ
)
≥ 0, Wi

(
ej θ
)
≥ 0 for all 0≤ θ ≤ 2π . The main motivation for having

W0, W1 with symmetric realizations is to interpret the frequency weighted norm
as a proper norm, see Boyd and Barratt (1991).

Computing thè 2 Gain

The `2 gain can be approximated using state space methods. For the systemG,
we have that for stableG with a realization as given in (3.1) there exists an upper
boundγ such that

‖G‖2−gn = sup
0≤θ<2π

r>1

σmax

(
G
(
re j θ

))
≤ γ,

if and only if there exists a symmetric positive definiteP and matricesL ,W
satisfying [

A′ C′ L ′

B′ D′ W′

]P 0 0

0 I 0

0 0 I


A B

C D

L W

 = [P 0

0 γ 2I

]
.

This can be used as the basis for a numerical procedure to compute the`2 gain
(H∞ norm) of a stable rational transfer function matrix. Starting with a suitably
high value ofγ for which a positive semi-definite solutionP of the above linear
equation exists, thenγ is progressively reduced until semi-definiteness of the so-
lution P fails. This procedure yields a least upper boundγ , or equivalently, thè2
gain, see Green and Limebeer (1994).

3.3. Plant Uncertainties 67

H2 norm of a system

The`2 norm of the response to an impulse input is also often used as a measure
of a system; this is the so-calledH2 norm.

‖G‖2 = ‖Gδ‖2 =
1

2π

∫ 2π

0
G
(
e− j θ

)′
G
(
ej θ
)

dθ. (3.5)

Here as before,δk = 1 for k = 0 andδk = 0 for k 6= 0.
Parseval’s Theoremwhich equates energy in the time and frequency domains,

is used here to establish the second equality in (3.5). It allows us to interpret theH2
norm as the energy content of the output of the system subject to white noise—
recall that white noise has a unit frequency spectrum. This simple equivalence
allows one to interpret many design optimization schemes in an either purely
time-domain deterministic, or frequency-domain stochastic context.

As a final interpretation of theH2 norm, it is possible to show that

‖G‖2 = sup
‖w‖2=1

‖Gw‖∞ .

This establishes a link between the`∞ norm of the time response to an`2 signal
and a frequency defined 2-norm.

Frequency Domain Uncertainty

Expressing uncertainty in the frequency domain is appealing as it provides phys-
ical insight. Thè 2 gain, especially the weighted̀2 gain, is the preferred tool for
this.

We illustrate the ideas using stable single-input, single-output (SISO) stable
plants. Consider:

G :

 A B

C D

 ∈ RH∞.

The`2 gain (H∞ norm) ofG is then simply the maximal amplitude in the Bode
plot of G’s transfer function:

‖G‖2−gn = max
0≤θ≤2π

∣∣∣∣C (ej θ I − A
)−1

B+ D

∣∣∣∣ .
WhenG is a model for a real plant̄G, the uncertainty associated withG can be
expressed in terms of a weighting systemW as:

1W =

{
Ḡ :

∥∥(G− Ḡ
)

W
∥∥

2−gn ≤ 1
}
.

In frequency terms the above inequality corresponds to:∣∣∣G (
ej θ
)
− Ḡ

(
ej θ
)∣∣∣ · ∣∣∣W (

ej θ
)∣∣∣ < 1.

68 Chapter 3. Design Environment

It simply states that the plant’s transfer function response at any one frequency can
be found in a ball centered at the model’s response and with radius

∣∣W (
ej θ
)∣∣−1

. A
large weight indicates small uncertainty, while a small weight indicates large un-
certainty. This uncertainty description allows for both amplitude and phase errors
in the transfer functions.

Time Domain Uncertainty

Besides having a nonexact model for the system’s transfer function from con-
trol inputs to controlled variables, the response may be perturbed by other signals
from other systems affecting the output variables. Such uncertainties are best cap-
tured by a combination of signal norms and system norms. Our standard two port
model for the plant allows for such uncertainties, see Figures 2.2.1 and 2.2.2∗.
With reference to Figure 2.2.2,w1, w2 can be interpreted as disturbances,G as an
approximation for the true system linking control inputu and controlled output
y. Interpreting the uncertainty associated withG in `2 gain terms, it then makes
sense to interpret the use ofw1 andw2 in terms of rms measures. The uncertainty
environment associated with the control loop could then be expressed as:∥∥(G− Ḡ

)
W
∥∥

rms≤ 1, ‖w2‖rms≤ W̄2, ‖w1‖rms≤ W̄1.

The effect of additive disturbances in a linear system is to deteriorate the control
performance. Such signals can not effect stability. In the context ofH∞ optimiza-
tion, discussed in Chapter 4, we introduce the concept of a worst case disturbance,
which results in a worst case performance.

Main Points of Section

Norms for linear systems such as the induced`p norm andH2 norm, and other
measures such as rms measures, are useful for representing uncertainty in plant
models. Frequency domain or time domain representations of this uncertainty are
useful to achieve robust controller design.

3.4 Plants Stabilized by a Controller

In this section we apply the characterization of the class of all stabilizing con-
trollers for a nominal plant to the dual situation of characterizing the class of all
plants stabilizable by a given controller. In particular, we begin with the inter-
nally stable closed-loop system of Figure 2.3.2 formed by the nominal plantG
and a stabilizing controllerK . We then classify the entire class of plantsG(S)
parameterized by a (matrix) transfer function, referred to asS ∈ RH∞, that can
be stabilized by the controllerK .

∗In referencing figures from another chapter, the first of the three numbers indicates the chapter.

3.4. Plants Stabilized by a Controller 69

Class of All Plants Stabilizable by a Controller

Let us consider the plantG ∈ Rp of (2.2.4)† and its corresponding stabilizing
controller K . Let the stable, coprime factorizations for bothG and K that sat-
isfy the double Bezout identity of (2.4.12) be given by (2.4.1) and (2.4.2) of the
previous chapter, and repeated here for convenience as

G = N M−1
= M̃−1Ñ; N,M, Ñ, M̃ ∈ RH∞,

K = U V−1
= Ṽ−1Ũ ; U,V, Ũ , Ṽ ∈ RH∞,

(4.1)[
Ṽ −Ũ

−Ñ M̃

][
M U

N V

]
=

[
M U

N V

][
Ṽ −Ũ

−Ñ M̃

]
=

[
I 0

0 I

]
. (4.2)

The class of all proper plants stabilized by the controllerK can then be character-
ized as in the following theorem.

Theorem 4.1. For the factorizations of(4.1) the class of all proper linear plants
stabilized by the controllerK can be parameterized by an arbitraryS∈ RH∞ as

{G(S) | S∈ RH∞} (4.3)

where

G(S) = N(S)M(S)−1
; N(S) = N + V S, M(S) = M +U S, or

G(S) = M̃(S)−1Ñ(S); Ñ(S) = Ñ + SṼ, M̃(S) = M̃ + SŨ .

Proof. The proof of the theorem follows closely the development of the class of
all stabilizing controllers for a proper plant in the previous chapter. Interchanging
the role ofG andK , (2.5.7) of the previous chapter is written as[

I −G(S)

−K I

]−1

=

[
I −G

−K I

]−1

+

[
V

U

]
S
[
Ũ Ṽ

]
. (4.4)

From (4.4), it is clear that any plant parameterized byS ∈ RH∞ is stabilized by
the controllerK . Conversely, from (4.4) and the double Bezout identity (4.2), the
(matrix) transfer functionS is given as

S=
[
M̃ −Ñ

]
[

I −G(S)

−K I

]−1

−

[
I −G

−K I

]−1

[
−N

M

]
. (4.5)

If both G andG(S) are stabilized by the controllerK , then the closed-loop (ma-
trix) transfer functions of(G(S), K) are stable. In this case,S as given in (4.5)
satisfiesS∈ RH∞

†In referencing equations from another chapter, the first of the three numbers indicates the chapter.

70 Chapter 3. Design Environment

y

K

u

S � RH�

JG

G
�
S

FIGURE 4.1. Class of all proper plants stabilized byK

As in (2.5.9),G(S) can be re-expressed via the double Bezout identity of (4.2)
as

G(S) = G+ M̃−1S(I + M−1U S)−1M−1. (4.6)

which can then be reorganized as in Figure 4.1 with

JG =

[
G M̃−1

M−1
−M−1U

]
. (4.7)

From (4.6), note thatG(S) consists of the sum ofG, the nominal plant and a term
involving the parameterS ∈ RH∞. In the next subsection we actually interpret
the parameterSas a frequency-shaped mismatch between the actual plant and the
nominal plant model.

Interpretation ofS

From (4.6),Scan be written as

S= M̃(G(S)− G)M(I + M−1U S)

= M̃(G(S)− G)(M +U S)

= M̃(G(S)− G)M(S),

(4.8)

or alternatively, as

S= M̃(S)(G(S)− G)M. (4.9)

We see that anyS ∈ RH∞ will generate a uniqueG(S) that forms a stabiliz-
ing pair(G(S), K), and conversely, for each stabilizing pair(G1, K) there exists
a uniqueS ∈ RH∞ which generatesG1 = G(S). It is immediate from (4.8)
and (4.9) thatS can be interpreted as the difference in the (matrix) transfer func-
tions between the actual plantG(S) and the plantG, frequency-shaped by either

3.4. Plants Stabilized by a Controller 71

M̃(S),M or M̃,M(S). It is important to realize that since the factorizations are
not unique, the frequency-shaping is not unique. Let us explore the nature of the
frequency shaping.

From the Bezout identity, we have

Ṽ M(S)− Ũ N(S) = I ,

Ṽ(I − K G(S))M(S) = I ,

M(S) = (I − K G(S))−1Ṽ−1. (4.10)

Similarly

M̃(S) = V−1(I − G(S)K)−1. (4.11)

It is immediate thatM(S) or M̃(S) provides frequency shaping of(G(S)−G) to
emphasize the actual operating frequencies in the closed loop. Of course, taking
S = 0 in (4.10), (4.11), we see thatM or M̃ provides frequency shaping for
(G(S) − G) to emphasize the operating frequencies in the nominal closed loop.
Note thatM̃ andM(S), M andM̃(S) are determined by the plantG(S), the model
G and the nominal controllerK .

Example. Let us now demonstrate some of the results above for the case where
the underlying actual process has a scalarauto-regressive, moving average, exoge-
nous input model(ARMAX model) description, in operator (transform) notation

y = Ḡu+ Ḡww, (4.12)

where

Ḡ =
B̄(z−1)

Ā(z−1)
, Ḡw =

C̄(z−1)

Ā(z−1)
, (4.13)

Ā(z−1) = 1+ ā1z−1
+ · · · + ām̄z−m̄,

B̄(z−1) = b̄0+ b̄1z−1
+ · · · + b̄n̄z−n̄,

C̄(z−1) = 1+ c̄1z−1
+ · · · + c̄p̄z− p̄.

Assume that the nominal plantG is available and is given by

G =
B(z−1)

A(z−1)
, (4.14)

A(z−1) = 1+ a1z−1
+ · · · + amz−m,

B(z−1) = b0+ b1z−1
+ · · · + bnz−n.

72 Chapter 3. Design Environment

Let the factorizations for̄G andG be given by

M = M̃ =
A(z−1)

D(z−1)
,

N = Ñ =
B(z−1)

D(z−1)
,

M(S) = M̃(S) =
Ā(z−1)

D̄(z−1)
,

N(S) = Ñ(S) =
B̄(z−1)

D̄(z−1)
,

(4.15)

whereD̄(z−1) andD(z−1) are stable polynomials derived from the factorizations
of (2.4.18), (2.4.19), (2.4.22) and (2.4.23). These reflect the nominal closed-loop
poles and can be appropriately designed through the design of some nominal con-
troller K .

Now let us assume thatS is parameterized by polynomialsAS(z−1), BS(z−1)

as

S= f racBS(z
−1)AS(z

−1). (4.16)

Then from (4.8), we have

AS(z
−1) = D̄(z−1)D(z−1),

BS(z
−1) = B̄(z−1)A(z−1)− Ā(z−1)B(z−1),

M̃(S)Ḡw =
C̄(z−1)

D̄(z−1)
,

CS(z
−1) = C̄(z−1)D(z−1).

(4.17)

When designing controllers for an actual plant where ana priori modelG is
known, there is advantage in specifying dynamic uncertainty in terms ofS and
thus working with a plant descriptionG(S). Note that for an actual plant̄G =
G(S), the order ofSmay be higher than the order of the plantḠ or its actual model
G. However through proper frequency-shaping, or equivalently through a good
initial robust design for a stabilizing controller on the nominal plant, we may well
have anS that can be fairly accurately described by a low order approximation, or
perhaps a low gainS where its complexity is not of any real consequence. These
ideas are best illustrated by an example.

Example. In this example we consider an eighth-order nominal plantG. The
magnitude and phase plots are shown in Figure 4.2. This nominal plant has the
characteristics of a band pass filter, more precisely anelliptic filter. The actual
G(S) is a perturbed version ofG and the magnitude/phase plots are shown along
side the nominal plantG.

An LQG nominal controllerK (see details in Chapter 4) is designed for the
nominal plant. This nominal controller stabilizes both the nominal plant and the

3.4. Plants Stabilized by a Controller 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

0
Ph

as
e

(d
eg

re
es

)
M

ag
ni

tu
de

 r
es

po
ns

e
(d

B
)

100

200

300

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

G

S

G

S

� 20

� 40

� 60

� 80

� 100

� 100

� 200

� 300

G
�
S �

G
�
S �

FIGURE 4.2. Magnitude/phase plots forG, S, andG(S)

actual plantG(S). Using the techniques described in this section, we compute the
correspondingS. The magnitude/phase plot forS is also shown alongside the plot
for G andG(S) in Figure 4.2.

At first glance, it may appear thatS is too complex to work with, being perhaps
more complex than eitherG or G(S). From our derivation in this section, the
complexity ofS given any arbitraryG or G(S) would be twice that of eitherG
or G(S). Intuitively, consider the adverse situation where the nominal plantG
is a poor approximation to the actual plant. In this case, theS which together
with G give the actual plant will have to first “cancel” the dynamics ofG before
“constructing” the dynamics of the actual plant. In such a case, we would expect
the complexity ofS to be the complexity of the nominal plant plus that of the
actual plant, and with no possibility to even approximateSby a lower complexity
object.

However, in the event that the nominal plant is a good approximation of the
actual plant in a certain frequency band, the situation could be rather less daunting
since some of the complexity inS could be of negligible significance since its
magnitude would be relatively small. Take the present case. On close examination
of the plot, one quickly realizes that the overall magnitude response ofS is very
small compared to either the nominal plant or actual plant. In this case, we see
a dip of about 25 dB. In fact, as long as the nominal plant is a reasonably good
estimate of the actual plant, the resultantS is going to be small in gain.

In fact, it turns out that a good gauge ofS, as to its significant complexity, is

74 Chapter 3. Design Environment
Ph

as
e

(d
eg

re
es

)

100

200

300

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)

S

S

� 20

� 30

� 40

� 50

� 60

� 70

� 80

� 100

� 200

� 300

�

S

�

S

FIGURE 4.3. Magnitude/phase plots forSand a second order approximation forŜ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

-40

0

-60

-80

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)
Ph

as
e

(d
eg

re
es

)

100

200

300

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

M

M

10

� 20

30 � 100

� 100

� 200

� 300

M
�
S �

M
�
S �

FIGURE 4.4. Magnitude/phase plots forM andM(S)

3.4. Plants Stabilized by a Controller 75

whether the nominal controller can robustly stabilize bothG and G(S). In the
event thatK can stabilizeG andG(S) simultaneously, thenS is likely to be a
small gain object which can then be approximated without significant loss by a
low complexity object, denoted̂S. Figure 4.3 showsS, and its approximation̂Sby
a second order transfer function. The magnitude/phase response ofM andM(S)
of (4.9) is shown in Figure 4.4. Recall thatM and M̃(S) are frequency-shaping
transfer functions for(G(S)− G), which gives usS.

To give a better feel of what may arise in practice, let us consider another per-
turbation of the nominal plantG, giving rise to a new plantG(S), parameterized
by S. The magnitude/phase plot for the newG(S) is given in Figure 4.5 alongside
G and the correspondingS. Notice that for this case, there is a poor approxima-
tion of G(S) by G, so that the nominal controllerK no longer stabilizesG(S).
Note that the newS is no longer a small gain object. It is no longer possible to
ignore the dips in the frequency response and use a low order transfer function to
approximateS.

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)
Ph

as
e

(d
eg

re
es

)

400

600

800

200

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

SG

S

G

� 20

� 40

� 60

� 80

� 100

� 200

� 400

G
�
S �

G
�
S �

FIGURE 4.5. Magnitude/phase plots for the newG(S), SandG

Robust Stabilization

In this subsection, we consider the class of plantsG(S), S ∈ RH∞ stabilizable
by a controllerK . Let us also consider the class of controllersK (Q), Q ∈ RH∞,

76 Chapter 3. Design Environment

parameterized as in (2.5.2) of the previous chapter, such that(K (Q),G) is a stabi-
lizing pair. We investigate the stability of the closed-loop system formed byG(S)
andK (Q). We have the following result:

Theorem 4.2. Let (G, K) be a stabilizing plant controller pair. Let(G, K) have
coprime factor representations as in(4.1)and (4.2). Consider

G(S) = (N + V S)(M +U S)−1
= (M̃ + SŨ)−1(Ñ + SṼ),

and

K (Q) = (U + M Q)(V + N Q)−1
= (Ṽ + QÑ)−1(Ũ + QM̃).

with Q, S ∈ Rp. The pair (G(S), K (Q)) is stabilizing if and only if the pair
(Q, S) is stabilizing as depicted in Figure 4.6. In particular:[

I −K (Q)

−G(S) I

]−1

=

[
I −K

−G I

]−1

+

[
M U

N V

]
[

I −Q

−S I

]−1

− I


[

Ṽ Ũ

Ñ M̃

]
. (4.18)

Proof. Equation (4.18) is derived as follows.[
I −K (Q)

−G(S) I

]−1

=

[
I −Ṽ(Q)−1Ũ (Q)

−M̃(S)−1Ñ(S) I

]−1

=

{[
Ṽ(Q)−1 0

0 M̃(S)−1

][
Ṽ(Q) −Ũ (Q)

−Ñ(S) M̃(S)

]}−1

=

{[
I −Q

−S I

][
Ṽ −Ũ

−Ñ M̃

]}−1[
Ṽ(Q) 0

0 M̃(S)

]

=

[
Ṽ −Ũ

−Ñ M̃

]−1[
I −Q

−S I

]−1

×

{[
I −Q

−S I

][
Ṽ 0

0 M̃

]
+

[
QÑ QM̃

SṼ SŨ

]}
.

Finally using the double Bezout identity:[
I −K (Q)

−G(S) I

]−1

=

[
M U

N V

][
Ṽ 0

0 M̃

]
+

[
M U

N V

][
I −Q

−S I

]−1[
0 Q

S 0

][
Ṽ Ũ

Ñ M̃

]
,

(4.19)

3.4. Plants Stabilized by a Controller 77

y

S

Q

s ru

G S K Q -stabilizing Q S -stabilizing

G
�
S �

K
�
Q �

e2
FIGURE 4.6. Robust stability property

which yields the desired result (4.18) since[
M U

N V

][
Ṽ 0

0 M̃

]
=

[
I −K

−G I

]−1

, (4.20)

and trivially [
I −Q

−S I

]−1[
0 Q

S 0

]
=

[
I −Q

−S I

]−1

− I . (4.21)

From this expression it is readily concluded using arguments as in deriving
Theorem 2.5.1, that under the assumption that(G, K) is a stabilizing pair,

S

Q

J

r s

S

Q
r s

G S K Q -stabilizing Q S -stabilizing

G
�
S �

K Q �

JG

FIGURE 4.7. Cancellations in theJ, JG connections

78 Chapter 3. Design Environment

(G(S), K (Q)) is stabilizing if and only if(Q, S) is stabilizing. This establishes
the result.

Actually, the situation of the above Theorem 4.2 can be viewed by combining
Figures 4.1 and 2.5.1. A little effort shows that the block consisting ofJ and JG

has a transform
[

0 I
I 0

]
.

This Theorem 4.2 is at the heart of the iterated designs to be discussed in later
chapters. It leads to the following idea. An initial controllerK = K (0) stabilizing
both modelG(0) and plantG(S) can be refined by identifying a new modelG(S1)

and selecting an appropriateQ1 stabilizingS1 to yield K (Q1). In order to exploit
the idea it is important to be able to identifyS.

Closed-loopS Interpretation

We consider the closed-loop systemG(S), K (Q) and show howS can be inter-
preted in terms of signals that can be obtained from the closed loop. This is an
essential step in presenting an identification scheme forS, which is postponed
until Chapter 5, where iterated designs are discussed.

The following result is crucial. Refer to Figure 4.8.

Lemma 4.3. With reference to Figure 4.8, let(G, K) be a stabilizing pair. Let
G(S) represent any plant stabilizable byK ; (see(4.1), (4.2) and (4.3) for a pa-
rameterization). The transfer function blockJ is given by(2.5.10)repeated as

J =

[
K Ṽ−1

V−1
−V−1N

]
.

The systemW with inputs(w1, w2, s) and outputs(e1, e2, r) has a stable transfer

rs

W

Q
r s

(a) (b)

J

Q

y

��
�

� � �
G � S �

�
1

�
2e1

e2

���
1�
2 �

� e1
e2 �

FIGURE 4.8. Closed-loop transfer function

3.4. Plants Stabilized by a Controller 79

function:

W =


[

I −K

−G(S) I

]−1 [
M(S)

N(S)

]
[
Ñ(S) M̃(S)

]
S

 ∈ RH∞. (4.22)

In particular, the transfer function from signals to signalr is S. Moreover, the
systems(G(S), J, Q) and(W, Q) of Figure 4.8 are internally stable.

Proof. From Figure 4.8, simple manipulations show thatW is given by

W =


[

11 11K

12G(S) 12

] [
11Ṽ−1

12G(S)Ṽ−1

]
[
V−112G(S) V−112

]
V−112G(S)Ṽ−1

− V−1N

 .
11 = (I − K G(S))−1 and12 = (I − G(S)K)−1. Now utilizing the double
Bezout identity (4.2) and (4.1) we have

V−1(I − G(S)K)−1G(S)Ṽ−1
− V−1N = Ñ(S)Ṽ−1

− V−1N

= (Ñ + SṼ)Ṽ−1
− V−1N

= S,

(4.23)

and the other identifications to yield the desired result (4.22). The stability results
follow from the definition of closed-loop stability, and closed-loop stability results
of Chapter 2. (The reader can check the details).

An immediate implication of the lemma is that the (matrix) transfer function
from the inputs to the outputr is S. In fact information aboutS can be deduced
by observing the signalsr ands. This leads naturally to an identification problem
where the uncertaintyScan be directly identified through observations ofr ands.
This is developed in Chapter 5, but suffice it to say here, for the earlier ARMAX
example (4.12)–(4.17), that we have

AS(z
−1)r = BS(z

−1)s+ CS(z
−1)w. (4.24)

Generalizations of the above results for the case of the situation depicted in Fig-
ure 4.9 and denoted(P(S), J, Q) are straightforward. They are also a natural
generalization of the results developed for the scheme(P, J, Q) of Figure 2.5.5.
Indeed, as expected,

T(S) =

[
T11(S) T12(S)

T21(S) T22(S)

]

=

[
P11(S)+ P12(S)U M̃(S)P21(S) P12(S)M(S)

M̃(S)P21(S) S

]
.

(4.25)

80 Chapter 3. Design Environment

u

r

e e

e

s

y r

J

s

Q

Q

P
�
S � T

�
S �

FQ
�
S ��

��

FIGURE 4.9. Plant/noise model

We see that the arrangements of Figure 4.9 can be viewed asT(S) in feedback
with a controller

[0 0
0 Q

]
, since there is zero feedback frome to w. Thus closed-

loop internal stability of the systems of Figure 4.9 requires the stability of the pair([0 0
0 Q

]
, T(S)

)
. This is a stronger condition than merely requiring that(Q, S) is

stabilizing.
That stability of the pair

([0 0
0 Q

]
, T(S)

)
is also a sufficient condition for inter-

nal stability of the systems of Figure 4.9 and follows by exploiting the necessary
condition that(Q, S) is stabilizing and thus(K (Q),G(S)) is stabilizing. First ob-
serve that the responsesr, s, e to bounded inputw are bounded under the assump-
tion, which means thaty = Vr +V Nsis also bounded. Now with(K (Q),G(S))
stabilizing, bounded disturbances aty give rise to bounded response tou, so that
the disturbancew gives rise to bounded responsesr, s, y, u, e. It is not difficult
to see that bounded disturbances inr, s, y,u, w give bounded responses ine, and
stability of each of the systems of Figure 4.8 imply the stability of the other.

Plants Regulated by a Controller

As we have seen already in the previous chapter, regulators are essentially sta-
bilizing controllers for plants augmented by the deterministic disturbance class
model, see (2.1) - (2.6). The augmentations can be absorbed inP, and indeed
P(S). This allows us to apply the theory for the class of all plants stabilized by a
controller, and thereby deduce for the unaugmentedP, or P(S), the appropriate
results for the class of plants regulated by a controller. We do not proceed further
to spell out details here. However, we should stress that if the class of distur-
bances is itself uncertain, and thereforeSdependent, then the augmentations will
be alsoS dependent. This in turn will raise concerns about the existence of any
finite dimensional controller to achieve the regulation. For certain nongenericS,
say belonging to a discrete set, it may be possible for the pair

([0 0
0 Q

]
, T(S)

)
to

be stabilizing for someQ. HereT(S) in (4.25) is now the plant augmented with
the disturbance model.

In dealing with the question ofrobust regulatorsit is usual to assume that

3.5. State Space Representation 81

the class of disturbances is precisely known and thus notS dependent. Adaptive
schemes, as developed in Chapter 6, overcome this problem to some extent.

Main Points of Section

In this section a special class of frequency-shaped uncertainty is introduced. The
uncertainty is characterized by a (matrix) transfer functionS which, when re-
stricted toRH∞, also parameterizes the class of all plants stabilizable by a con-
troller. The (matrix) transfer functionS turns out to be the deviation of the actual
plant from a nominal plant in the class, frequency-shaped to emphasize the op-
erating frequency band of interest. Robust stabilization results arising from the
parameterization in term ofS are also presented. It is demonstrated that the (ma-
trix) transfer functionScan be accessed via signals measurable in the closed-loop
system. Finally, we point out the relevance of the results to characterize the class
of plants with deterministic disturbances regulated by a controller. Stabilization
theory is applied to plants augmented by the disturbance models.

3.5 State Space Representation‡

In this section, we consider again all plants stabilized by a given controllerK ,
denotedG(S), whereS is an arbitrary stable proper rational transfer function. The
results presented are at a more advanced level than most of the book. They are of
interest in their own right but the casual reader need only see that deeper results
do exist in these waters. In particular, we are interested in providing convenient
state space representations for any plantḠ expressed asG(S) whereG = G(0)
is a nominal model andS is a parameterization. The question of minimizing the
order of realizations is addressed. A constructive approach for any plantḠ and a
nominal modelG to achieve a minimal degree parameterizationS is presented.

The material in this section is used in the analysis of the adaptive controller
based on theQ-parameterization in Chapter 6.

Consider a controllerK = U V−1
= Ṽ−1Ũ with U,V, Ũ , Ṽ ∈ RH∞ and a

nominal plantG = N M−1
= M̃−1Ñ with M, N, M̃, Ñ ∈ RH∞. Let the Bezout

identity (4.2) be satisfied. We consider first how a state space realization can be
devised forḠ in the formG(S) in terms of the realizations:

Z :=

[
M U

N V

]
:


A B1 B2

C1 D11 D12

C2 D21 D22

 , (5.1)

‡This section may be omitted on first reading, or at least the proofs which are relatively technical.

82 Chapter 3. Design Environment

and

S :

 AS BS

CS DS

 . (5.2)

Here Z is referred to as astable linear fractional representationof G. Assume
that1 := (D11+ D12DS)

−1 exists. We can then representḠ = G(S) asG(S) =
(N + V S)(M +U S)−1, where:

[
M +U S

N + V S

]
=

[
M U

N V

][
I

S

]
:


A B2CS B1+ B2DS

0 AS BS

C1 D12CS D11+ D12DS

C2 D22CS D21+ D22DS

 .

Manipulations using the techniques of Chapter 2 tell us thatḠ, hereG(S), has a
realization

Ḡ :


A−�11C1 B2CS−�11D12CS �11

−BS1C1 AS− BS1D12CS BS1

−�21C1+ C2 −�21D12CS+ D22CS �21

 , (5.3)

where�1 = B1 + B2DS and�2 = D21 + D22DS. Given this realization of
Ḡ = G(S), we have the following lemma.

Lemma 5.1. Consider the state space realization forZ, S and Ḡ = G(S) in
(5.1)–(5.3). Let

[D11 D12
D21 D22

]
and D11 + D12DS be invertible. LetS of (5.2) be a

minimal realization. Then any uncontrollable modes ofḠ as realized in(5.3)are
also poles ofZ, and any unobservable modes ofḠ of (5.3)are also poles ofZ−1.

Proof. Let λ0 be an uncontrollable mode of̄G. Then noting (5.3), there exists a
nonzero vectorx′ = [x′1 x′2] such that[

x′1 x′2

] [λ0I − A+�11C1 −B2CS+�11D12CS �11

BS1C1 λ0I − AS+ BS1D12CS BS1

]
= 0.

Post multiplying with the invertible matrix: I 0 0

0 I 0

−C1 −D12CS 1−1

 ,
yields the equivalent expression:[

x′1 x′2

] [λ0I − A −B2CS B1+ B2DS

0 λ0I − AS BS

]
= 0. (5.4)

3.5. State Space Representation 83

This implies thatx′1(λ0I − A) = 0. Sincex 6= 0, we can claim thatx1 6= 0 be-
cause, otherwise, (5.4) would result inx′2 [λ0 I−AS BS] = 0, which is contradictory
to the assumption that(AS, BS) is controllable. In this way, it follows thatλ0 is an
eigenvalue ofA. Also, if λ0 is an uncontrollable mode of multiplicityk, then there
existk linearly independent vectorsx′i = [x′i 1 x′i 2], i = 1, . . . , k, satisfying (5.4),
which in turn tells us thatxi 1, . . . , xk1 are linearly independent eigenvectors ofA
associated withλ0. Hence, uncontrollable modes ofḠ are poles ofZ as claimed.

Now observe that the inverse ofT := D22− (D21+ D22DS)1D12 exists as
the(2, 2)-block element of the block matrix[

D11+ D12DS D12

D21+ D22DS D22

]−1

.

Thus, denotingÃS = AS− BS1D12CS, and again working with (5.3), the matrixλI − A+ (B1+ B2DS)1C1 (B1+ B2DS)1D12CS− B2CS

BS1C1 λI − ÃS

C2− (D21+ D22DS)1C1 D22CS− (D21+ D22DS)1D12CS

 (5.5)

is equivalent toλI − A+�11C1+ [B2−�11D12]T−1[C2−�21C1] 0

BS1C1 λI − ÃS

T−1[C2−�21C1] CS

 ,
which in turn can be reorganized as

λI − A+
[
B1 B2

] [D11 D12

D21 D22

]−1[
C1

C2

]
0

BS1C1 λI − ÃS

T−1 [C2−�21C1] CS

 . (5.6)

In view of the equivalence between (5.5) and (5.6), and the fact that the poles of
Z−1 consist of eigenvalues of the matrix

A−
[
B1 B2

] [D11 D12

D21 D22

]−1[
C1

C2

]
,

one can show that the unobservable poles ofḠ are poles ofZ−1, using the same
argument concerning uncontrollable modes ofḠ being poles ofZ.

We can now prove the following lemma which is of interest in relating the
orders of a given plantG(s) to the order ofSandZ.

84 Chapter 3. Design Environment

Lemma 5.2. With the same notation and hypotheses as in Lemma 5.1, and letCs

be full row rank:

1. The state-space realization(5.3)of Ḡ = G(S) is stabilizable and detectable
(with no unobservable or uncontrollable unstable modes).

2. Letδ(·) denote theMcMillan degree(the degree of a minimal state realiza-
tion), andm the number of rows ofC. Assume that(A,C1) is observable
and that

rank

[
λI − A B1 B2 0

C1 D11 0 D12

]
= δ(Z)+m, for all λ ∈ C. (5.7)

Then there holds

δ(Ḡ) = δ(Z)+ δ(S), (5.8)

Proof. Item 1 is a direct consequence of Lemma 5.1 since bothZ and Z−1 are
stable.

To prove Item 2, observe from Lemma 5.1 that (5.8) holds if the realization
(5.3) does not contain unobservable or uncontrollable modes. Write the state ma-
trix of the realization (5.3) in the form[

A− (B1+ B2DS)1C1 B2CS− (B1+ B2DS)1D12CS

−BS1C1 AS− BS1D12CS

]

=

[
A− B11C1 −B11D12CS

0 0

]

+

[
−B2 0

0 I

][
DS CS

BS AS

][
1C1 −1D12CS

0 I

]
.

(5.9)

It is easy to see that the observability of(A,C1) implies that of([
A− B11C1 −B11D12CS

0 0

]
,

[
1C1 −1D12CS

0 I

])
.

It will be shown that the pair([
A− B11C1 −B11D12CS

0 0

]
,

[
−B2 0

0 I

])
(5.10)

is controllable for generic(CS, DS). In fact, the pair (5.10) is controllable if and
only if

rank
[
λI − A+ B11C1 B11D12CS B2

]
= δ(G), for all λ ∈ C, (5.11)

3.5. State Space Representation 85

which is equivalent to

rank

[
λI − A −B2 0 −B1

C1 0 D12CS D11+ D12DS

]
= δ(G)+m, for all λ ∈ C,

(5.12)

under the constraint thatD11+ D12DS is invertible. Becauseδ(G) = δ(Z) and
the fact thatCS has full rank, (5.12) follows (5.7). Thus from Davison and Wang
(1989), the left hand side in (5.9), regarded as a closed-loop state matrix under a
static output feedback, has in the generic case no uncontrollable or unobservable
modes.

Item 2 of Lemma 5.2 tells us that given aZ satisfying certain properties, the
order of a plantḠ = G(S) generated via thisZ generically equals the sum of the
orders ofS and Z. For a high order plant, here denotedḠ = G(S), it is often
convenient to work first with its model, here denotedG(0) and then with the
frequency-shaped modeling errorS. This method can divide a complex design
problem into two or more simpler problems. Needless to say, the choice of model
is important for success of the method in terms of efficiency and computational
reduction. The acceptable choice should be one resulting inS which has a lower
order or can be approximated by someŜ of low order. Obviously, the most ideal
case is where the complexity ofS is the plant’s complexity minus the model’s
complexity. This motivates a question as to whether there exists a model for a
given plant such that the order of the plant is the sum of the orders of the model
G and ofS and how suchG can be constructed if it exists. To address this issue,
we need to consider aminimal stable linear fractional representationfor a plant,
whose definition is given as follows.

Definition. In the notation above, a plantḠ is said to have a minimal stable linear
fractional representation if there exists a stable linear fractional representationZ
belonging to the set of all such representations for a nominal plantG, and an
associated systemS∈ Rp such thatḠ = G(S) and

δ(Z), δ(S) > 0 and δ(Ḡ) = δ(Z)+ δ(S). (5.13)

It turns out that the problem of existence of such minimal representations for
a given plant is closely related to the problem of the existence of a minimal
factorization of a transfer function. The latter problem has been addressed and
solved, see Bart, Gohberg, Kaashoek and Dooren (1980), Dooren and Dewilde
(1981). Recall that the factorizationR = R1R2 is said to be minimal ifδ(R) =
δ(R1)+ δ(R2) whereR, R1, R2 are square rational matrices. We proceed through
this deeper theory as follows.

From Wonham (1985) we recall the following definition:

Definition. Consider
[A | B

C | D

]
. Denote the state space byX. Also,8 ⊂ X is called

a stable invariant subspace for the pair(A, B) provided(A+BF)8 ⊂ 8 for some
F such that(A+ BF) is stable.

86 Chapter 3. Design Environment

The following two lemmas are needed in the proof of the main result in this
section.

Lemma 5.3. Given a nominal plantG ∈ Rp. ThenZ =
[

M U
N V

]
with Z, Z−1

∈

RH∞ satisfies

G = N M−1

δ(G) = δ(Z)
(5.14)

if and only if there exists a minimal realization
[A | B

C | D

]
of G together with a sta-

bilizing state feedback gainF and a stabilizing output injectionH such that

Z :


A+ BF B −H

F I 0

C + DF D I

 . (5.15)

Proof. The if part was established in Section 2.4. In particular compare with
(2.4.18). Now it is assumed that the block matrixZ satisfies the conditions (5.14)
and has the following minimal realization

Z :


Ā B̄1 B̄2

C̄1 I 0

C̄2 D̄ I

 . (5.16)

By definition of the coprime factorization,Z andZ−1
∈ RH∞, then Ā and Ā−

B̄1C̄1− B̄2C̄2+ B̄2D̄C̄1 are stable. Setting

A = Ā− B̄1C̄1, B = B̄1, C = C̄2− DC̄1,

F = C̄1, H = −B̄2,
(5.17)

one can check that
[A | B

C | D

]
is a minimal realization ofG, that F is a stabilizing

state feedback gain andH a stabilizing output injection, and that (5.15) holds.

Note that forZ given in (5.15), the conditions for (5.8) to hold generically
amounts to the minimality of the system(F, A, H).

The following lemma is proved in Bart et al. (1980) or Dooren and Dewilde
(1981) and the interested reader is referred to the papers for the proof.

Lemma 5.4. Consider ann× n invertible matrix transfer function̄G with mini-
mal realization:

Ḡ :

 Ā B̄

C̄ D̄

 . (5.18)

3.5. State Space Representation 87

Then there exists a minimal factorization forḠ if there exist independent sub-
spacesX̄1 and X̄2 such that

ĀX̄1 ⊂ X̄1,

(Ā− B̄D̄−1C̄)X̄2 ⊂ X̄2,

X̄1⊕ X̄2 = X̄,

(5.19)

whereX̄ denotes the state space, and⊕ denotes the direct sum.

Theorem 5.5. A given plantḠ ∈ Rp with a minimal realization(5.18)has a min-
imal stable linear fractional representationZ if and only if there exist two stable
invariant subspacesX1 andX2 associated with(Ā, B̄) and(Ā′, C̄′), respectively,
such that

X1⊕ X⊥2 = X. (5.20)

where X denotes the state space of the realization(5.18) and Y⊥ denotes the
orthogonal space ofY.

Proof.

1. Necessity.
Assume that there exists a nontrivialZ0 =

[M0 U0
N0 V0

]
∈ RH∞ with Z−1

0 ∈

RH∞ and a systemS∈ Rp such that

Ḡ = (N0+ V0S)(M0+U0S)−1 and δ(Ḡ) = δ(Z0)+ δ(S). (5.21)

Since one can associateSwith a unit§ ZS =
[MS US

NS VS

]
whereNSM−1

S being
an right coprime factorization ofSandδ(ZS) = δ(S), it is seen thatḠ has
the following right coprime factorization

Ḡ = (N0MS+ V0NS)(M0MS+U0NS)
−1. (5.22)

Define

Z =

[
M U

N V

]
:=

[
M0 U0

N0 V0

][
MS US

NS VS

]
. (5.23)

Sinceδ(Z) ≤ δ(Z0) + δ(ZS) = δ(Ḡ) andδ(Z) ≥ δ(Ḡ), it follows that Z
satisfies (5.14) and

δ(Z) = δ(Z0)+ δ(ZS). (5.24)

§We say thatZ ∈ RH∞ is a unit if alsoZ−1
∈ RH∞.

88 Chapter 3. Design Environment

Therefore,Z = Z0ZS is a minimal factorization ofZ. By Lemma 5.3, there
exists a minimal realization

[
Ā | B̄|
C̄ | D̄

]
of Ḡ, a stabilizing state feedback gain

F and a stabilizing output injectionH such that


Ā+ B̄F B̄ −H

F I 0

C̄+ D̄F D̄ I

 (5.25)

is a minimal realization ofZ. By Lemma 5.4, there exist subspacesY1 and
Y2 such that

(a) (Ā+ B̄F)Y1 ⊂ Y1

(b) (Ā+ H C̄)Y2 ⊂ Y2

(c) Y1⊕ Y2 = X

(5.26)

Evidently, (a) above implies thatY1 is a stable invariant subspace of(Ā, B̄)
while (b) implies thatY⊥2 is that of (Ā′, C̄′). Since (Ā, B̄, C̄, D̄) and
(Ā, B̄, C̄, D̄) are minimal realizations ofG, there exists a similarity trans-
formationT such that

Ā = T−1 ĀT, B̄ = T−1B̄, C̄ = C̄T.

Let X1 = T Y1 andX2 = (T−1)′Y⊥2 . Then it is not hard to see thatX1 and
X2 are two stable invariant subspacesX1 and X2 associated with(Ā, B̄)
and(Ā′, C̄′), respectively, and satisfy (5.20).

2. Sufficiency.
ChooseF andH such thatĀ+ B̄F and Ā+ HC̄ are stable, and that

(Ā+ B̄F)X1 ⊂ X1, (Ā′ + C̄′H ′)X2 ⊂ X2, (5.27)

whereX1⊕ X⊥2 = X. By Lemma 5.4 this implies that theZ with the min-
imal realization (5.15) has a minimal factorization, sayZ = Z1Z2 where
Zi ∈ Rp. SinceZ is a unit in RH∞ and there is no pole/zero cancellation
between its two factorsZ1 and Z2, Z1 and Z2 are units inRH∞. Fur-
thermore, there is no loss of generality in assuming thatZi , i = 1, 2 are
representations of̄G. Letting S := N2M−1

2 leads toḠ = G(S) derived
using a modelG1 with factorization matrixZ1, which implies

δ(Ḡ) ≤ δ(Z1)+ δ(S) ≤ δ(Z1)+ δ(Z2).

From the minimality of the factorizationZ = Z1Z2 and the above inequal-
ities, it follows thatδ(Ḡ) = δ(Z1) + δ(S). In this way, the proof of the
theorem is completed.

3.6. Notes and References 89

Corollary 5.6. With the same assumption and notation as in Theorem 5.5. If
(Ā, B̄) and(Ā′, C̄′) have a common stable invariant subspace, thenḠ has a min-
imal stable linear fractional representationZ.

Construction of minimalZ

The proof of Theorem 5.5 apparently provides a two-step procedure to construct
a minimal Z. The first step is to find a pair of stable invariant subspacesX1 and
X2 of (Ā, B̄) and(Ā′, C̄′), respectively, which satisfy (5.20). In the single-input,
single-output case, this reduces to finding a nontrivial stable invariant subspace
of (Ā, B̄) since(Ā, B̄) and (Ā′, C̄′) have the same set of stable invariant sub-
spaces. An iterative algorithm to compute the supremal(Ā, B̄)-stable invariant
subspace contained in a subspace is given in Wonham (1985). The second step in-
volves constructing a minimal factorization of a representationZ. For algorithms
to perform a minimal factorization of a rational matrix, see Dooren and Dewilde
(1981).

Main Points of Section

In this section, we begin with a state-space representation of a stable linear frac-
tional representationZ and show where pole/zero cancellations may occur for
the state-space realization of the matrix transfer functionG(S) given Z. We then
move on to derive a generic McMillan degree relation between the matrix trans-
fer function of the plantG(S) and the stable linear fractional representationZ
derived based on the nominal representationG andS.

Finally, we consider the problem of minimal representation of any plant as
a stable linear fractional representation of another plant. In particular, given an
actual plantḠ, we derive a nominal modelG and anS such that the order of̄G
equals the sum of the order ofZ =

[
M U
N V

]
, derived fromG, and that ofS. We

also show that the necessary and sufficient conditions for solution to this problem
can be derived in terms of(A, B)-stable invariant subspaces.

3.6 Notes and References

The material on signals, disturbances, disturbance responses, and their norms as
performance measures is now quite standard in the optimal control literature.
Likewise, the use of norms in both the time domain and the frequency domain
to express plant performance and plant uncertainty is now standard in books fo-
cusing on robust control issues. For a parallel treatment see for example Boyd and
Barratt (1991) and Green and Limebeer (1994).

90 Chapter 3. Design Environment

The characterization of the class of plantsG(S) stabilized by a controller, pa-
rameterized in terms of an arbitraryS ∈ RH∞ is merely the dual of the stabi-
lizing controller classK (Q) parameterized in terms of arbitraryQ ∈ RH∞, see
Chapter 2. The robust stabilization theory for the pair(K (Q),G(S)) was first
developed in Tay, Moore and Horowitz (1989). Its generalization to plantsP(S)
incorporating a disturbance response, that is to pair(K (Q), P(S)), is straightfor-
ward, as is the application of the results to robust regulation.

The main lemmas and theorems concerning state space representations for
plants, and their nominal representations and uncertaintiesS are taken from Yan
and Moore (1992).

Problems

1. Computing norms is not a trivial exercise. For the scalar signaldk =

sin(ωk), compute the following norms:‖ ‖1 , ‖ ‖∞ , ‖ ‖p, rms value. How
do the different norms compare?

2. Show that‖u‖rms≤
√

n ‖u‖∞ for a vector valued signal

u =
{
uk; k = 1, 2, . . . , uk ∈ R

n} . (6.1)

3. For scalar sequences{uk, k = 1, 2, . . . uk ∈ R} consider:

‖u‖aa = lim
N→∞

1

N

N∑
k=1

|uk| . (6.2)

Compare‖u‖aa with ‖u‖rms. Is ‖u‖aa a norm?

4. Show that the rms value of a signalu, such that limk→∞ uk = 0, is zero.

5. Given

G :

 1 1

1 0

 and Ḡ =


1− α 1 0

0 1 1

1 0 0

 ,
find a stabilizing controllerK for the modelG that also stabilizes̄G. Ex-
pressK as a function ofα. ExpressḠ = G(S) with respect to this con-
troller. Discuss(Q, S) and(G(S), K (Q)) in terms ofα.

6. From Lemma 4.3 verify that the relationship betweenr, s andw1, w2 of
Figure 4.8 is given from

r = Ss+ M̃(S)w2+ Ñ(S)w1. (6.3)

CHAPTER 4

Off-line Controller Design

4.1 Introduction

In Chapter 2, the parameterization of a stabilizing controllerK (Q) for a lin-
ear plant in terms of a stable (matrix) transfer functionQ is discussed. It is
shown that if Q spans the class of all stable proper (matrix) transfer func-
tions, the entire class of stabilizing controllers for the plant is spanned. It can
make sense in a controller design to optimize engineering objectives over this
class, rather than over the class of all possible controllers, which of course in-
cludes the undesirable subclass of destabilizing controllers. In this chapter, we
present various off-line optimal controller designs that, in addition to stabi-
lization of the nominal plant will also allow the controller to track some ref-
erence signals and/or reject various classes of disturbances in some optimal
fashion.

Before going into design methodologies, it is necessary to discuss performance
criteria for optimization. Different applications have different control require-
ments. High performance control demanded for some feedback loops may not be
important in other loops. As an example, in an oil refinery, typically less than 20%
of the loops are critical and require well-tuned controllers. Many of the control
loops are applied to buffer tanks where there is a less demanding control objec-
tive; simply to ensure that the tanks do not overflow or become empty. Of course,
there is possibly scope to reduce the size of the tanks and thus refinery costs by
improving control strategies.

For control loops where performance is relatively important, the control ob-
jective is usually to keep some or all the states close to desired references in
the presence of disturbances. In regulation problems the references are constants,
whereas in tracking problems the references may vary with time. The desire to
keep the states close to the references is obviously justified. However what is not
yet precise is the meaning of ‘close’. We caution that such is frequently debatable

92 Chapter 4. Off-line Controller Design

and is problem dependent.
There are many ways to specify the objective to be achieved by a controller.

For less critical loops, this may be a visual inspection of how closely the states of
the process follow the references. For more critical loops, specification becomes
more precise. Performance requirements can be prescribed in the time domain,
the frequency domain or both.

In this chapter we will first discuss some useful performance indices and the
sort of situations where each of these indices is commonly used. We will then
present some off-line controller design techniques that allow us to select a con-
troller which minimizes these performance indices.

4.2 Selection of Performance Index

One of the first tasks in the design of a controller is to specify the performance to
be achieved by the control system. Specifications can be in the frequency domain
or the time domain. For the frequency domain approach, there are specifications
on the gain and phase over the pass- and stop-band of the desired closed-loop
system. For the time domain approach, there are specifications on the output be-
havior of the closed-loop system for given input sequences. The input sequences
can have many forms. They can be deterministic signals such as constants, steps,
ramps, sinusoids of known frequency or other known signals. Alternatively, they
can be stochastic signals where only certain signal statistics are known. Exam-
ples of stochastic signal statistics are mean energy level, signal level variance and
spectrum.

In classical controller design, the reference input is usually a known determin-
istic signal, such as the unit step function. In this case, the performance of the
controller is specified in terms of the closed-loop process output response to the
unit step, commonly just known as the step response.

In modern controller design where a linear dynamical model based approach is
adopted, any known deterministic input signal is usually modeled as the output of
an autonomous dynamical system with appropriate initial conditions. The resul-
tant model of the plant in this case is then an augmented model which includes
dynamics to generate the deterministic input signal from appropriate initial condi-
tions. The composite model is constructed so that the tracking error is an output of
this model. A significant area for modern controller design is for tracking or reg-
ulation performance when the inputs are stochastic in nature and therefore cannot
be modeled in this way. One can use a stochastic model such as a linear dynam-
ical system driven by noise, as for example white noise. In this case, a controller
is designed to minimize the norm of the error signal between some desired tra-
jectory and the process output. Let us first recall for the sake of completeness a
typical step response specification in classical controller design before moving on
to examine error signal specification.

4.2. Selection of Performance Index 93

Step Response Specification

Reference signals that remain constant for a long period of time and change to a
new value in a relatively short period of time are usually represented for control
design purposes as a unit step.

The steady-state closed-loop unit step response of the process output is usually
specified by an asymptotic tracking requirement written as follows

lim
k→∞

yk = 1. (2.1)

This condition requires that in steady state there be no offset of the process output
yk from the reference signal. That is, the difference betweenyk and the constant
reference must eventually reach zero.

The transient responseon the other hand is commonly specified by some or
all of six attributes; namelydelay time, rise time, peak time, maximum overshoot,
maximum undershootandsettling time. These six attributes are defined as follows.

1. Delay timetd: This is the time required for the response to first reach 50%
of the final value.

2. Rise timetr : This is the time required for the response to rise from (say)
10% to 90%, or 5% to 95%, or 0% to 100% of the final value. For under-
damped second order systems, the time from 0% to 100% is used. For over-
damped systems, the time taken from 10% to 90% is used.

3. Peak timetp: This is the time taken for the response to reach the first peak
of the overshoot.

4. Maximum overshootyover : This is the maximum value of the response
curve measured from unity defined as follows:

yover
= max

k>0
(yk − 1). (2.2)

5. Maximum undershootyunder: This is the maximum negative value of the
response curve defined as follows:

yunder
= max

k>0
(−yk). (2.3)

6. Settling timets: This is the time required for the response curve to reach
and stay within a range of certain percentage (usually 5% or 2%) of the
final value.

The various attributes are illustrated in Figure 2.1. It is noted here that some of
the above specifications may conflict with one another.

Another requirement that is specified alongside the above step response specifi-
cation are constraints on the actuator. In any practical control system, the size and
frequency of the actuator signal or the output signal of the controller is effectively
limited by saturation or mechanical limitations of the actuator.

94 Chapter 4. Off-line Controller Design

2% error

0.1

0.5

0.9
1.0

Time

St
ep

 r
es

po
ns

e

tp

td

ts

tr

yover

yunder

FIGURE 2.1. Transient specifications of the step response

Error Signal Specifications

Let us consider the system of Figure 2.3.1, with (2.3.2) reproduced here for con-
venience:

e= P11w + P12u,

y = P21w + P22u,

u = K y.

(2.4)

Let wk andek denote the value of the vectorsw ande at thekth sample time.
Here the input vector sequencew includes both disturbances into the system of
Figure 2.3.1, and reference signals for the system outputs to track. We will exclude
here known deterministic reference signals which can be modeled and included
into the plant model. The vector sequencee is the system response to control sig-
nalsu, and to disturbances and reference signalsw. The vectore is constructed by
selecting appropriateP11 andP12 to form components consisting of appropriately
scaled functions or filtered values of the states ofP22 and the inputw. The two
vectors can be written into their component form as

wk =

[
w1,k w2,k . . . wp,k

]′
, ek =

[
e1,k e2,k . . . em,k

]′
. (2.5)

We do not explore in much more detail here the process of theP11, P12 selection.
Sometimes this is obvious given the design objectives, but at other times, the se-
lection may be the most important part of the control design and require a number
of trials. There is no ‘optimal’ method for theP11, P12 selection. This is where
it can be an advantage to think in classical frequency domain terms as we now
briefly discuss.

4.2. Selection of Performance Index 95

We know that (first or second order) minimum phase systems are the easiest
to control and allow robust, good performance designs. The frequency shaping in
P11, P12 is often selected so thate looks like the output of such a system.

Also in classical control design, we are aware that in closing a control loop
and increasing the loop gain, the closed-loop poles move to the open-loop zeros
where these exist and to infinite asymptotes otherwise. There is difficulty in clas-
sical design to achieve a robust high loop gain design when the open-loop zeros
are ‘unstable’ or nearly so, since these attract the closed-loop poles as the loop
gain increases. The classicalproportional, plus integral plus differential(PID)
controller design technique effectively introduces open-loop zeros in appropriate
locations so that in closed loop, as the loop gain increases, the poles approach
these assigned locations and a desired system bandwidth determined by these is
achieved. Here the selection ofP12 can be such as to introduce zeros in desired
closed-loop pole locations. That is, the insights of PID design can be brought to
bear in designingP12. Closing the loop with the appropriate (frequency shaped)
gains is then the province of the optimal disturbance rejection method. The op-
timization is such as to achieve stability, desired (approximate) closed-loop pole
locations, and thereby desired bandwidth, as well as disturbance rejection.

With the sequencee appropriately constructed, as just discussed, the next step
is to formulate a measure ofe so that we can design a controller to minimizee
according to this measure. The commonly used measures ofe are norms such as
the one-, two- and infinity- norm. Which norm to use will depend on the problem
to be solved.

The question to be asked is: If the error vectore deviates from its ideal value,
what is the consequence to the overall objective of the control problem? To answer
this question, we will have to examine the relationship between the controlled
variables defined withine and the physics of the process concerned. For example,
in chemical processes, the variables to be controlled in an operation should be
at some particular levels prescribed by physical, chemical and thermodynamical
laws. A deviation of any controlled variable from the stipulated level will upset
the chemical reaction which may lead to undesirable effects.

Specification using 2-norms

This specification is popularized by the so-called linear quadratic (LQ) design
method. Here we define the performance indexJ as

J = ‖e‖22 . (2.6)

With the definitions expressed in (2.5),J can be written as (see Appendix B for
2-norm definitions)

J =
∞∑

k=1

(
e2

1,k + e2
2,k + · · · + e2

m,k

)
. (2.7)

In an LQ regulation design, the error componentsei represent the plant states and
controls or a linear combination of these. In the LQ tracking case, the errors are

96 Chapter 4. Off-line Controller Design

the difference between some reference signals and certain linear combinations of
the states. Of course, without any penalty on the control energy, high performance
can be achieved for the model, but practical designs require some trade between
tracking (regulation) performance and control energy to achieve this performance.

If we assume that the weights are built into the components ofe, then it is
obvious that this formulation is a weighted sum approach which combines the
various components of thee vector into a single performance index. The weights
need not necessarily be constants, but can be time varying.

There is also the concept offrequency shapedweights to give more penalty
to certain components ofe in some frequency bands in relation to other bands.
Frequency shaping filters can be actually built into the dynamics ofP11, P12 just
as can constant weights on the components ofei . A commonly used frequency
shaped filter is the integrator given as

F(z−1) =
1

1− z−1
. (2.8)

Now F(z−1) has an infinite magnitude at zero frequency(z = 1). This gives
rise to an infinite penalty for an error of zero frequency. This infinite penalty at
zero frequency ensures that the optimal controller achieves zero steady-state error.
Other frequency shaping filters may penalize control energy at high frequencies to
ensure that high frequency lightly damped unmodeled dynamics are not excited.
The concept of frequency shaping is important because it allows us to incorporate
frequency domain specifications into an otherwise time domain performance in-
dex. It should be emphasized that in an engineering design, an engineer may well
spend a large portion of the project time on selecting and adjusting frequency
shaped filters.

With the performance indexJ, as given in (2.6), the design task is then to select
a stabilizing controllerK , or equivalently using theQ parameterization approach,
a stable matrix transfer functionQ that will minimize the indexJ, as

min
Q∈RH∞

‖e‖22 = min
Q∈RH∞

∞∑
k=1

(
e2

1,k + e2
2,k + · · · + e2

m,k

)
. (2.9)

To perform this minimization, we will have to write the errorsei in term of the
matrix transfer functionQ and the input disturbances and referencesw. With FQ

denoting the transfer function matrix fromw to e, in terms ofQ, the key relevant
equation is (2.5.18), repeated here as

e= FQw; FQ = (P11+ P12U M̃ P21)+ P12M QM̃ P21 ∈ RH∞. (2.10)

Recall thatFQ is affine inQ. For the frequently considered special case wherew

is white noise, the minimization of (2.9) is then equivalent to

min
Q∈RH∞

∥∥FQ
∥∥2

2 . (2.11)

4.2. Selection of Performance Index 97

Worst Case Design using 2-norms

Let us consider a 2-norm cousin of the index (2.6)

J = max
w∈`2,‖w‖2≤1

‖e‖22 , (2.12)

where thè 2 space is defined in Appendix B. Here, the performance index is the
worst case 2-norm ofe over all 2-norm bounded input disturbancesw. Thusw
has bounded energy. The controller design task is then given as

min
Q∈RH∞

max
w∈`2,‖w‖2≤1

∞∑
k=1

(
e2

1,k + e2
2,k + · · · + e2

m,k

)
. (2.13)

If the matrix transfer function fromw to e is FQ of (2.10), then it turns out
that (see Vidyasagar (1985), and Chapter 3) this minimization can be rewritten
in terms of an∞-norm as

min
Q∈RH∞

∥∥FQ
∥∥2
∞
, (2.14)

which is the so-calledH∞ minimization problem. Here
∥∥FQ

∥∥
∞

is defined as∥∥FQ
∥∥
∞
= sup
‖w‖2=1

∥∥FQw
∥∥

2

= sup
θ∈(−π,π]

σmax

(
FQ(e

j θ)
)
,

(2.15)

whereσmax denotes the maximal singular value. Hence, the optimization problem
(2.13) can be restated in frequency domain terms as:

min
Q∈RH∞

sup
θ∈(−π,π]

σmax

(
FQ(e

j θ)
)
.

The H∞ optimal controller attempts to minimize the worst possible adverse im-
pact of a whole class of disturbance as opposed to just working with disturbances
and responses in an average sense as in the linear quadratic design case. In fact the
resulting controller rejects disturbances uniformly in all frequency bands. With-
out frequency shaping, this is not the desired outcome in most practical cases.
The controller, though robust to the various input disturbances, generally lacks
performance. Thus in practice, the success of anH∞ optimal design depends
very much on the frequency shaping filters incorporated into the performance in-
dex. The frequency shaping filters seek to emphasize certain frequency bands.
Those frequency bands that contain more uncertainties are given more emphasis
in relation to those that have less uncertainties or are outside the plant’s operating
bandwidth. The result of incorporating these frequency shaping filters, in effect,
is to reduce the size of the class of disturbances rejected uniformly by theH∞
optimal controller.

98 Chapter 4. Off-line Controller Design

Specification in∞-norm

We have already noted a connection between 2-norms in the time domain and
∞-norms in the frequency domain. The∞-norm specification in the time do-
main is appropriate when we are looking at minimizing the peak of the sys-
tem output, as it is precisely the infinity norm of the output sequence. In the
case when the error is a vector of sequences such ase of (2.5), then its infinity
norm is

‖e‖∞ = max
i
‖ei ‖∞ (2.16)

where, withZ
+ denoting{0,1,2, . . . },

‖ei ‖∞ = max
k∈Z+

{∣∣ei,k
∣∣} . (2.17)

So that we can specify the nature of the optimization problem, it is neces-
sary to be precise about which class of disturbance signalsw we want to con-
sider. If the input signalw is the class of̀ 2 bounded sequences (finite energy
signals) such that‖w‖2 ≤ 1, then (see Vidyasagar (1985) and Section 3.3)
we have

J = max
w∈`2,‖w‖2≤1

‖e‖∞ =
∥∥FQ

∥∥
2 , (2.18)

whereFQ is the matrix transfer function fromw to e. Moreover, it can be shown
that the controller that minimizes this performance index is the same as the con-
troller that minimizes (2.9) when the inputw is a zero mean white noise signal of
unit variance.

Let us next examine input sequences that are not necessarily 2-norm bounded.
In particular let us consider the case where the magnitudes of the inputs are
bounded. Without loss of generality, due to linearity we write‖w‖∞ ≤ 1. We
can then write the following performance index:

J = max
‖w‖∞≤1

‖e‖∞ = max
‖w‖∞≤1,i

‖ei ‖∞ . (2.19)

Again let FQ be the matrix transfer function fromw to e and denote byfQ ={
fQ,k, k ∈ Z

+
}

its impulse response sequence. Then

FQ(z
−1) =

∞∑
k=0

fQ,kz−k. (2.20)

4.2. Selection of Performance Index 99

The induced norm onFQ is then given as

∥∥FQ
∥∥

1 = max
(‖w‖∞=1,i)

p∑
j=1

k∑
`=0

∥∥∥ f i j
Q,k−`w j,`

∥∥∥
∞

= max
i

p∑
j=1

∞∑
`=0

∣∣∣ f i j
Q,`

∣∣∣
= max

i

p∑
j=1

∥∥∥ f i j
Q

∥∥∥
1

=
∥∥ fQ

∥∥
1 ,

(2.21)

with f i j
Q thei j th element offQ (f i j

Q =
{

f i j
Q,k, k ∈ N

}
is the impulse response se-

quence). Thus minimizing the performance index of (2.19) turns out to be equiv-
alent to minimizing the 1 norm offQ, or the 1-norm ofFQ, the matrix transfer
function fromw to e.

J =
∥∥ fQ

∥∥
1 =

∥∥FQ
∥∥

1 . (2.22)

We shall next examine other variations of specifying an∞ norm type perfor-
mance index. The above specification uses a weighted maximum method to com-
bine the various components of the vectore. There are other ways to combine the
various components of the vectore. One possibility is to use the weighted sum
method, reminiscent of the LQ approach, as follows.

J =
m∑

i=1

λi ‖ei ‖∞ , (2.23)

whereλi > 0 are constant weights. However it turns out that such an approach
does not achieve a unique controller for each weight selection. Moreover, each
optimal controller corresponds to a range of weighting selections, so that the ob-
jective of relative penalty of the various components ofe is not necessarily real-
ized.

Another possibility is to write the performance index as follows:

J =
m∑

i=1

λi |ei | , (2.24)

where againλi > 0 are constant weights andei are the components ofe. This
differs from the previous index in that the focus is on the weighted sum of the
magnitude of the various components at each instant. This is in contrast to the
weighted sum of the infinity norm of each component ofe. Such a performance
index is applicable in cases where the instantaneous value of the sum of the vari-
ous|ei | is important. An example is the case where the maximum current drawn
from a power supply at every instant of time be kept below the absolute maximum.

100 Chapter 4. Off-line Controller Design

Main Points of Section

In this section, we have discussed the formulation of performance measures.
There are two main approaches to specify performance of a control system. The
first, used commonly in classical controller design, is specified in terms of the
closed-loop, steady-state and transient response to a step input. The second, used
commonly in optimal control design, incorporates error signals into a perfor-
mance index. The strategy to be developed here is to optimize performance over
the class of all the stabilizing controllers for the process.

4.3 An LQG/LTR Design

In this section, we present the design of the very successful linear quadratic Gaus-
sian (LQG) controller withloop transfer recovery(LTR). For further details, see
Anderson and Moore (1989) or Kwakernaak and Sivan (1972). First, linear qua-
dratic (LQ) controller design is based on the minimization of a quadratic perfor-
mance index under the assumption that the plant for which it is designed is linear.
The resultant control law is a linear feedback of the states of the plant. This con-
troller is optimal with respect to the defined performance index and is appealing
because irrespective of the weight selections, the closed loop is robust to certain
plant variations. (In classical terms, continuous-time LQ designs guarantee 60◦

phase margins and [−6,∞) dB gain margins. In discrete-time no such margins
are guaranteed!)

In the event that the states of the plant are not accessible, then the next step is to
replace the states by estimated states using an optimal state estimator. This gives
rise to the LQG design. The strategy is optimal if the actual plant to be controlled
is the nominal model used in the design of the controller. Otherwise it may be a
poor strategy. An LQG design may have closed-loop properties indicating poor
stability margins at the plant input and/or output, see Doyle (1974).

A final step in the LQG based design strategy is to modify the LQG controller
design in such a way as to achieve full or partial loop transfer recovery of the origi-
nal state feedback design, see Doyle and Stein (1979) and Moore and Tay (1989c).
There is usually a scalar design parameter that can be adjusted to achieve a trade-
off between performance for the nominal design and robustness via recovery of
the state feedback design loop gain properties.

There are a number of concerns regarding the LQG/LTR design approach. For
minimum phase plants, loop recovery is obtained by increasing the loop gains.
The resulting high gain systems may not be attractive for implementation due to
their high sensitivity to certain external disturbances, plant parameter changes and
unmodeled dynamics. For nonminimum phase plants, full loop recovery of LQG
designs can only take place when there is an unstable pole/zero cancellation in the
control loop matrix transfer function and consequent instability. This suggests that
only partial loop recovery be attempted, or that the state estimate feedback control
laws should be constrained as discussed by Zhang and Freudenberg (1987).

4.3. An LQG/LTR Design 101

In this section, we present an approach to loop recovery, termed sensitivity
recovery, which is in essence a frequency-shaped loop recovery emphasizing the
frequency region of unity gain (the cross-over frequency). Sensitivity recovery is
achieved by augmenting the original LQG controller with an additional filter with
matrix transfer functionQ, and optimizing theQ for sensitivity recovery using
the Q-parameterization technique introduced in Chapter 2.

LQG Design

Let us consider the following state space description of a discrete, linear, time-
invariant plant as follows.

xk+1 = Axk + B
(
uk + w1,k

)
; x0 given,

yk = Cxk + Duk + w2,k.
(3.1)

Let

G :

 A B

C D

 , (3.2)

wherexk ∈ R
n is the state vector,uk ∈ R

p the input vector,yk ∈ R
m the output

vector andw1,k ∈ R
p, w2,k ∈ R

m are independent white noise disturbances with
covariance matrices given as

lim
N→∞

1

N

N∑
k=1

w1,kw
′

1,k =: Qe, lim
N→∞

1

N

N∑
k=1

w2,kw
′

2,k =: Re. (3.3)

We assume thatQe = Q′e ≥ 0 andRe = R′e > 0.
Let us also assume that(A, B) is stabilizable and(A,C) is detectable. Consider

also a quadratic performance index given as follows.

J = lim
N→∞

1

N

N∑
k=1

(
x′k Qcxk + u′k Rcuk

)
, (3.4)

whereQc and Rc are weighting matricesQc = Q′c ≥ 0 andRc = R′c > 0. In
terms of the error signal introduced in (2.5), we have

ek =

[
Q1/2

c xk

R1/2
c uk

]
. (3.5)

and the performance index of (3.4) is the squaredroot mean square(rms) value of
this error signal. This performance index is only concerned with the steady state
performance of the controlled loop. Indeed, any decaying transient is averaged
out of the index (3.4). The optimal controller for the plant of (3.1) minimizing

102 Chapter 4. Off-line Controller Design

the performance index of (3.4) is given as follows, see for example Anderson and
Moore (1989):

uk = Fx̂k, (3.6)

x̂k+1 = Ax̂k + Buk + H(Cx̂k + Duk − yk); x̂0 given, (3.7)

where

Sc,k = A′Sc,k+1A− A′Sc,k+1B(Rc + B′Sc,k+1B)−1B′Sc,k+1A+ Qc,

S̄c = lim
k→−∞

Sc,k, Sc,N = Qc,

F = −(Rc + B′ S̄cB)−1B′ S̄cA,

(3.8)

and

Se,k+1 = ASe,k A′ − ASe,kC′(Re+ C Se,kC′)−1CSe,k A′ + BQeB′,

S̄e = lim
k→∞

Se,k, Se,0 = 0,

H = −AS̄eC
′(Re+ CS̄eC

′)−1.

(3.9)

Existence ofS̄c, S̄e are guaranteed by stabilizability of the pair(A, B) and de-
tectability of the pair(A,C), respectively. Closed-loop asymptotic stability fol-
lows also from both these condition.

The output feedback LQG controller constructed from the regulator state feed-
back gainF and the estimator gain (output injection)H is realized as (see also
(2.4.17))

K :

 A+ BF + HC + H DF −H

F 0

 . (3.10)

Actually in much of the theory to follow,F and H can represent any stabilizing
gains for the derived plants, not necessarily obtained from an LQG design.

Let us also define stable coprime factorizations for the plant (3.2) and LQG
controller (3.10). In the notation of (2.4.1), (2.4.2) and (2.4.18), (2.4.19), this is
given as

[
M U

N V

]
:


A+ BF B −H

F I 0

C + DF D I

 , (3.11)

[
Ṽ −Ũ

−Ñ M̃

]
:


A+ HC −(B+ H D) H

F I 0

C −D I

 . (3.12)

4.3. An LQG/LTR Design 103

See Section 3.5 for a discussion of the minimality of these realizations.
The class of all stabilizing controllers for the plant (3.1) is then given by (2.5.2),

repeated here as

K (Q) = U (Q)V(Q)−1
= Ṽ(Q)−1Ũ (Q), (3.13)

U (Q) = U + M Q, V(Q) = V + N Q,

Ũ (Q) = Ũ + QM̃, Ṽ(Q) = Ṽ + QÑ,

and depicted in Figure 2.5.4 for the case where the nominal controller is a state
estimate feedback controller, as for example, derived via the LQ control problem
discussed above.

We observe that a state space realization fornormalizedcoprime factorizations
for the plantG and controllerK are obtained in the form (3.11), (3.12), but with
F andH calculated from an LQG design by setting

e=

[
Cx+ Du

u

]
. (3.14)

A normalizedright coprime factor follows from the following control Riccati
equation leading to a state feedback gainF :

Sc,k =

(
A− BTcR−1

c C
)′ (

Sc,k+1− Sc,k+1B
(
Rc + B′Sc,k+1B

)−1
B′Sc,k+1

)
,

×

(
A− BTcR−1

c C
)
+

(
Qc − T ′c R−1

c Tc

)
,

S̄c = lim
k→−∞

Sc,k, Sc,N = Qc,

Qc = C′C, Rc = D′D + I , Tc = 2C′D,

F = −
(
Rc + B′ S̄cB

)−1
B′ S̄cA,

while the left coprime factor’s state space realization follows from the filter Ric-
cati equation leading to an output injectionH :

Sc,k+1 =

(
A− BTeR−1

e C
) (

Se,k − Se,kC′
(
Re+ CSe,kC′

)−1
CSe,k

)
×

(
A− BTeR−1

e C
)′
+ B

(
Qe− TeR−1

e T ′e
)

B′,

S̄e = lim
k→∞

Se,k, Se,0 = 0, Te = lim
N→∞

1

N

N∑
k=1

w1,kw
′

2,k,

H = −AS̄eC
′
(
Re+ CS̄eC

′
)−1

.

Formulation of Sensitivity Recovery

In this subsection, we consider sensitivity functions of the full state feedback
design and the full state estimator feedback design. We formulate an error function

104 Chapter 4. Off-line Controller Design

through which we achieve recovery of loop robustness of the full state feedback
system. As a point of notation, recall the following realizations definitions:

GF :

 A B

I 0

 , GH :

 A I

C 0

 . (3.15)

Input Sensitivity Recovery

Consider the full state feedback control system design of Figure 3.1. The closed-
loop matrix transfer function fromw to z is the input sensitivity function matrix
given by

Si
SF = (I − FGF)

−1
= M :

 A+ BF B

F I

 . (3.16)

For the state estimate feedback design, the input sensitivity function matrix is
given by

Si
SE F= (I − K G)−1

= MṼ . (3.17)

whereK is given by (3.10). Let us now consider the the class of all stabilizing
controllersK (Q) parameterized byQ ∈ RH∞ as given in (3.11) - (3.13). For a
stabilizing controllerK (Q), Q ∈ RH∞, the associated input sensitivity function
matrix is

Si
Q = (I − K (Q)G)−1

= M(Ṽ + QÑ). (3.18)

(Refer to (2.5.6).)

B

A

F

z
C

��
z � 1

G F

�

FIGURE 3.1. Target state feedback design

4.3. An LQG/LTR Design 105

Let us now define an error matrix transfer function

εi
Q = Si

SF− Si
Q. (3.19)

When plant disturbances or uncertainties occur at the plant inputs, the minimizing
of εi

Q gives robustness to a controller design.
Using (3.16), (3.17) and (3.18) we observe that this error matrix transfer func-

tion is affine inQ

εi
Q = M − M(Ṽ + QÑ) = M(I − Ṽ)− M QÑ. (3.20)

It can equally be rewritten as

εi
Q = (I − FGF)

−1(FGF − K (Q)G)(I − K (Q)G)−1. (3.21)

This allows us to interpretεi
Q as a frequency-shaped version of the loop-gain

transfer function error(FGF − K (Q)G). The frequency shaping is provided by
M = (I − FGF)

−1, the target sensitivity function and(I − K (Q)G)−1, which is
the actual closed-loop sensitivity function (parameterized byQ ∈ RH∞). These
weightings together serve to emphasize the unity loop gain frequencies, that is,
the crossover frequencies.

Output Sensitivity Recovery

Consider the full state estimator feedback loop of Figure 3.2. The closed-loop
matrix transfer function from̃w to z̃ is the output sensitivity function matrix given
in terms of the output injectionH as

So
O I = (I − GH H)−1

= M̃ :

 A+ HC H

C I

 . (3.22)

A

H C
��

z � 1

G H

�� �
z

FIGURE 3.2. Target estimator feedback loop design

106 Chapter 4. Off-line Controller Design

For the state estimate feedback design, the output sensitivity function matrix is
given by

So
SE F= (I − GK)−1

= V M̃, (3.23)

whereK is given by (3.10). Let us now consider a stabilizing controllerK (Q) pa-
rameterized byQ ∈ RH∞ as given in (2.5.2). For a stabilizing controllerK (Q),
Q ∈ RH∞, the associated output sensitivity function matrix is

So
Q = (I − GK(Q))−1

= (V + N Q)M̃, (3.24)

(where we used the identity (2.5.6)).
Introduce an error matrix transfer function as:

εo
Q = So

O I − So
Q. (3.25)

By duality with the input sensitivity case, when disturbances or uncertainties oc-
cur at the plant outputs, the minimization ofε0

Q gives robustness to a controller
design.

From (3.23) and (3.24) we observe thatεo
Q is affine inQ as follows:

εo
Q = (I − V)M̃ − N QM̃ . (3.26)

It may equally be interpreted as a frequency weighted loop gain error by rewriting
εo

Q as follows:

εo
Q = (I − GH H)−1 (GH H − GK(Q)) (I − GK(Q))−1 . (3.27)

Loop Recovery via Sensitivity Recovery

Asymptotic loop recovery of a suitably parameterized LQG design is said to occur
when, with design parameter adjustments, the loop matrix transfer function of the
LQG design, namelyK G (or GK), approaches the loop transfer matrix transfer
function of the target LQ (or estimator) design, namelyFGF (or GH H), for all
z = ejωT , 0 ≤ ωT < π . Now sinceF and H are stabilizing controllers for
GF andGH , respectively, andK is a stabilizing controller forG, then Si

O I =

(I − FGF)
−1, So

O I (I −GH H)−1, Si
SE F= (I − K G)−1 andSo

SE F(I −GK)−1

are well defined for allz = ejωT , 0 ≤ ωT < π . In view of these properties,
we see that loop recovery occurs, that is,K G → FGF (GK → GH H), if
and only if (I − K G)−1

→ (I − FGF) ((I − GK)−1
→ (I − GH H)−1), or

equivalently, when the loop sensitivity function matrix of the LQG design, namely
Si

SE F (or So
SE F), when suitably parameterized, approaches the loop sensitivity

function matrix of the LQ (or estimator) designSi
SF (or So

SF) for all z= ejωT , 0≤
ωT < π . Of course, these equivalent loop recovery definitions also apply to the
LQG design augmented with arbitraryQ ∈ RH∞, with Si

SE F andSo
SE F replaced

by Si
Q andSo

Q. More specifically, sinceK (Q) stabilizesG so that(I −K (Q)G)−1

4.3. An LQG/LTR Design 107

and(I − GK(Q))−1 exists for allz= ejωT , 0 ≤ ωT < π , then from (3.21) and
(3.27) we see that loop recovery occurs, equivalently, whenεi

Q tends to zero (or
εo

Q tends to zero), that is we have asymptotic sensitivity recovery. We conclude
the following equivalent asymptotic loop and sensitivity recovery conditions.

Lemma 3.1. Asymptotic loop recovery at the plant input (or output) occurs if
and only if, for suitable parameterizations, there is asymptotic sensitivity recovery
given by

εi
Q→ 0 (or εo

Q→ 0) for z= ejωT , 0≤ ωT < π. (3.28)

A partial sensitivity recovery is said to occur whenεi
Q (or εo

Q) are made small
in some sense. This also corresponds to a partial loop recovery, albeit frequency
shaped by virtue of (3.21) and (3.27). Reasonable measures are the 2-norm or
∞-norm with tasks defined as

min
Q∈RH∞

∥∥∥εi
Q

∥∥∥
2
, min

Q∈RH∞

∥∥∥εi
Q

∥∥∥
∞
,(

or min
Q∈RH∞

∥∥∥εo
Q

∥∥∥
2
, min

Q∈RH∞

∥∥∥εo
Q

∥∥∥
∞

)
.

(3.29)

These are standardH2, H∞ optimization tasks (see also the next section) since
εi

Q, ε
o
Q ∈ RH∞ are affine inQ ∈ RH∞. When∥∥∥εi

Q

∥∥∥
2
= 0,

∥∥∥εi
Q

∥∥∥
∞
= 0,(

or
∥∥∥εo

Q

∥∥∥
2
= 0,

∥∥∥εo
Q

∥∥∥
∞

= 0
)
,

(3.30)

there is full sensitivity recovery, and by virtue of (3.21) and (3.27) there is full
loop recovery. We have the following lemma.

Lemma 3.2. The state estimate and residue feedback controllersK (Q), with F
and H fixed andQ ∈ RH∞ variable, achieve full loop recovery, equivalently
input (or output) sensitivity recovery, if and only ifQ is selected asQi ∈ RH∞
(or Qo ∈ RH∞) with

(I − Ṽ) = Qi Ñ, (I − V) = N Qo. (3.31)

We will next examine the existence of suchQi andQo.

Full Loop Recovery Cases

In this subsection we will examine cases where full loop recovery can be achieved.

Minimum Phase Plants

We present full loop recovery results for the case of plants whose finite zeros are
stable, that is plants with full rank properties as follows:

rank

[
z I − A B

C D

]
is constant for|z| ≥ 1, (3.32)

108 Chapter 4. Off-line Controller Design

or equivalently,G is minimum phase. Moreover, we require the plants to satisfy
the following invertibility condition:

G−L (left inverse) or (zG)−L
∈ Rp exists, (3.33)

or

G−R (right inverse) or (zG)−R
∈ Rp exists. (3.34)

We have the following result:

Theorem 3.3. Consider a plant(3.2) and a state estimate feedback controller
(3.10)constructed from a state feedback gainF and a state estimate gainH and
with Q ∈ RH∞. Consider also associated factorizations(3.11), (3.12). Let the
plant G be minimum phase, in that condition(3.32) holds. Full input sensitiv-
ity (output sensitivity) recovery is possible provided the plant has a left (right)
inverse, that is condition(3.33) (or condition (3.34)) is satisfied. The recovery
εi

Q = 0, see(3.19), (or εo
Q = 0, see(3.25)), is achieved whenQ is selected asQi

(Qo) given by:

Qi = (I − Ṽ)Ñ−L
∈ RH∞ (or Qo = N−R(I − V) ∈ RH∞), (3.35)

or equivalently,

Qi = z(I − Ṽ)(zÑ)−L
∈ RH∞ (or Qo = (zN)−Rz(I − V) ∈ RH∞).

(3.36)

Proof. Condition (3.32), together withG = M̃−1Ñ implies thatÑ is minimum
phase. Moreover, ifG−L

∈ Rp exists, we have that̃N−L exists, and is stable. It
follows that condition (3.31) can be realized by selectingQ = (I − Ṽ)Ñ−L . This
selection satisfiesQ ∈ RH∞ by virtue of Ñ being minimum phase. The other
conditions can be explored in a similar manner.

We remark that if the plant has the same number of inputs as outputs, the modes
of Qi (or Qo) are identical to the set or subset of the zeros of the plant (values of
z for which the plantG loses rank in (3.32)), and the McMillan degree is upper
bounded byn.

Nonminimum Phase Plants:

As discussed earlier for nonminimum phase plants, it is in general not feasible to
achieve full loop (sensitivity) recovery. However, for certain partial state feedback
designs, full or partial (sensitivity) recovery can in fact be achieved.

Qualitatively, this is done as follows. First write the plantG as a product of two
factors where one isall-pass(possibly unstable) and the other a squareminimum
phasestable factor. Recall that all-pass systems have a flat spectrum: Poleszp

and zeroszz occur in pairs satisfyingzp = z−1
z . Let us assume then that for the

4.3. An LQG/LTR Design 109

factored plant there exists a state estimator gain and dynamic state feedback gain
such that only the states associated with the minimum phase factor are fed back.

For the partial state feedback, we can write down the the input sensitivity func-
tion, and the output sensitivity function, and the corresponding sensitivity differ-
ence functions as in (3.20) and (3.26).

Once the sensitivity difference functions are defined, being affine inQi (or
Qo), full or partial loop sensitivity recovery is achieved by appropriate selection
of Qi andQo, see Moore and Tay (1989c).

Example. Consider the continuous-time, unstable, minimum phase plant with
transfer functions

Gc =
s+ 1

s2− 3s+ 3
.

Note that this plant has two unstable poles. DiscretizingGc with a time sampling
period ofts = 0.7, (see Chapter 9) we have for the equivalentZ-domain repre-
sentation:

G :


4.696 9 −8.166 2 1

1 0 0

2.370 6 −0.880 9 0

 ,
with a minimum phase zero at 0.371 6 and unstable poles at 2.348 4± j 1.628 2.

We design LQ and LQG controllers assumingQe = I , Re = 1 ande′k =
[yk uk]. The state feedback gain and state estimator gains are given by

F =
[
−4.137 5 8.053 6

]
, H ′ =

[
−2.094 9 −0.413 6

]
.

The Z-domain Nyquist plots for the LQ and LQG controllers are shown in Fig-
ure 3.3. The open loop in the LQ case has two unstable (plant) poles and so en-
circles the Nyquist point(−1, 0) twice, whereas, for the LQG case, the open loop
has four unstable poles (two plant and two controller) an so encircles the Nyquist
point four times. Obviously, the robustness of the LQG controller is inferior com-
pared to the LQ controller, at least in terms of gain margins and phase margins.
Using the loop transfer recovery described in this section, we obtainQi as

Qi =

[
0.371 6 1

0.053 6 −1.745 3

]
∈ RH∞.

This gives rise toK (Qi) which achieves full loop transfer recovery. For partial
loop recovery, we useK (αQi),0≤ α ≤ 1. Figure 3.4 shows the extent of recov-
ery forα = 0.5, α = 0.95. Clearly whenα = 0.5 there is a significant recovery
and whenα = 0.95 there is near recovery. (Full recovery occurs whenα = 1.)

110 Chapter 4. Off-line Controller Design

0

0.05

0.1

0.15

Real Axis

Im
ag

in
ar

y
A

xi
s

LQ

LQG

� 0 � 05

� 0 � 1

� 0 � 15
� 1 � 15 � 1 � 1 � 1 � 05 � 1 � 0 � 95 � 0 � 9 � 0 � 85 � 0 � 8

FIGURE 3.3. Nyquist plots—LQ, LQG

0

0.05

0.1

0.15

Real Axis

Im
ag

in
ar

y
A

xi
s

� 0 � 05

� 0 � 1

� 0 � 15
� 1 � 15 � 1 � 1 � 1 � 05 � 1 � 0 � 95 � 0 � 9 � 0 � 85 � 0 � 8

LTR (��� 0 � 5)

LTR (��� 0 � 95)

FIGURE 3.4. Nyquist plots—LQG/LTR:α = 0.5, 0.95

4.4. H∞ Optimal Design 111

Main Points of Section

In this section the design of an LQG controller with loop transfer recovery or
more precisely sensitivity recovery has been discussed. Sensitivity recovery is
achieved by augmenting the original LQG controller with an additional matrix
transfer functionQ, feeding back the estimation residuals. We show that for min-
imum phase plants and some nonminimum phase plants where a particular partial
state estimate feedback controller is used, full loop recovery may be achieved.
Otherwise only partial recovery is achieved and this can be done in an optimal
manner through the sensitivity recovery approach using theQ parameterization.

4.4 H∞ Optimal Design

In this section, we present the formulas for solving theH∞ optimization task of
(2.14). Most of the formulas are quoted from Green and Limebeer (1994).

Problem Formulation

Let us consider the plant model of (2.2.1) with realizations written as follows.

[
e

y

]
= P

[
w

u

]
, P =

[
P11 P12

P21 P22

]
:


A B1 B2

C1 D11 D12

C2 D21 0

 . (4.1)

In this realization∗, (A, B2) is stabilizable and(A,C2) is detectable. We assume
thatw is any bounded sequence with‖w‖2 ≤ 1 andP11, P21 contain stable fre-
quency shaping filters that determine the influence ofw in the various frequency
bands one andy. The selection of the frequency shaping filters will depend ona
priori knowledge of the disturbance to the plant in the various frequency bands.
Similarly we assume thatP11, P12 contain stable frequency shaping filters that
penalize the elements ofe appropriately in the various frequency bands.

Let us consider a stabilizing controllerK for (4.1)(u = K y) and corresponding
stable coprime factorizations of (3.13) forK and (4.1). Realizations in terms of
the parameters in (4.1) are given in (3.10), (3.11) and (3.12) withB = B2, C =
C2 andD = D22. We can now write down the class of all stabilizing controllers
for (4.1) in term of a stable matrix transfer functionQ ∈ RH∞. The closed-loop

∗Without (great) loss of generality, one can assume that there is no direct feedthrough term from
input u to the control outputy. It is always possible to replace an output with feedthrough term by an
equivalent output without it, by simple subtraction. This simplifies some of the algebraic expressions.

112 Chapter 4. Off-line Controller Design

matrix transfer function is then given by (2.5.18), repeated here as

e= FQw, (4.2)

FQ = (P11+ P12U M̃ P21)+ P12M QM̃ P21 ∈ RH∞
= T11+ T12QT21.

(4.3)

The realization forT is repeated from (2.5.22) as follows.

T :


A+ B2F −HC2 −H D21 B2

0 A+ HC2 B1+ H D21 0

C1+ D12F C1 D11 D12

0 C2 D21 0

 . (4.4)

Now consider the performance index

J = max
‖w‖2≤2

‖e‖2 =
∥∥FQ

∥∥
∞
= ‖T11+ T12QT21‖∞ . (4.5)

The optimization task is

min
Q∈RH∞

‖T11+ T12QT21‖∞ . (4.6)

In order to be able to solve this so-calledH∞ control problem, the following
sufficiency assumptions are made:

1. (A, B2) is stabilizable and(A,C2) is detectable,

2. D′12D12 > 0 andD′21D21 > 0,

3. rank
[

A−ej θ I B2
C1 D12

]
= n+m, for all θ ∈ [0, 2π],

4. rank
[

A−ej θ I B2
C1 D21

]
= n+m, for all θ ∈ [0, 2π].

Assumption 1 is obviously necessary from a control point of view; without As-
sumption 1 no stabilizing output feedback controller can be constructed. Assump-
tion 2 provides sufficient conditions under which the control strategy can be im-
plemented, often≥ 0 will suffice. Assumptions 3 and 4 are conditions that amount
to T12 andT21 having no zeros on the unit circle. These conditions are crucial as
we need to invertT12 andT21 in some sense to find the optimal controls.

Before presenting a solution to the optimalH∞ control problem (4.6), we
present a state space formulated solution for the characterization of all controllers
that achieve the less stringent performance objective∥∥FQ

∥∥
∞
< γ, (4.7)

4.4. H∞ Optimal Design 113

or equivalently,

‖e‖2 < γ ‖w‖2 . (4.8)

The solution to this problem requires one to solve a set of coupled algebraic Ric-
cati equations. If for a certainγ we fail to find a solution then this indicates that
it is impossible to decrease the gain between disturbance and performance sig-
nals any further. This observation can be used to construct a crude method for
iteratively finding a controller that approaches theH∞ optimal controller that
minimizes the criterion (4.6).

Consider the algebraic Riccati equation:

X = C′JC+ A′X A−M′S−1M, (4.9)

where

C =

[
C1

0

]
, J =

[
I1 0

0 −γ 2I2

]
,

D =

[
D11 D12

I2 0

]
, B =

[
B1 B2

]
,

are defined from the plant realization matrices (see (4.1)) and

M =

[
M1

M2

]
= D′JC+ B′X A,

S =

[
S1 S2

S2 S3

]
= D′J D+ B′X B.

Here I1 is an identity matrix with dimension of the performance variablee, I2
is an identity matrix whose dimension corresponds with that of the disturbance
variablew. The matrixM1 has row dimension equal to that ofw, andM2 has row
dimension equal to that of the inputu. Similarly for S.

Assume that the control Riccati equation (4.9) has a solution such that

X ≥ 0 and A− BS−1M is stable,

S3 > 0, S1− S′2S−1
3 S2 < 0.

(4.10)

Introduce the square root factors forS3 and−S1+ S′2S−1
3 S2

R′R= S3, −γ 2T ′T = S1− S′2S−1
3 S2, (4.11)

and define

W =

[
RS−1

3 S′2 R

T 0

]
=

[
W11 W12

W21 0

]
, (4.12)

L =

[
L1

L2

]
= J−1 (W′)−1

M. (4.13)

114 Chapter 4. Off-line Controller Design

Also introduce the “bar” variables as Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 0

 =
 A− B1W−1

21 L2 B1W−1
21 B2

L1−W11W−1
21 L2 W11W−1

21 W12

C2− D21W−1
21 L2 D21W−1

21 0

 . (4.14)

Finally introduce

D̄ =

[
D̄11 I

D̄21 0

]
, C̄ =

[
C̄1

C̄2

]
, B̄ =

[
B̄1 0

]
.

Consider now the Riccati equation

Z = B̄ JB̄′ + AZ A′ − M̄S̄−1M̄′, (4.15)

where

M̄ = ĀZC̄′ + B̄ JD̄′, S̄ =

[
S̄1 S̄2

S̄′2 S̄3

]
= D̄ J D̄′ + C̄ ZC̄′. (4.16)

Assume furthermore that the filter Riccati equation (4.15) has a solution such that

Z ≥ 0 and Ā− M̄S̄−1C̄ is stable,

S̄3 > 0, S̄1− S̄2S̄′3S̄−1
2 < 0.

(4.17)

Under the conditions in (4.10) and (4.17) there exists an output feedback con-
troller that achieves the performance measure (4.7) or (4.8). All such controllers
are generated fromx̂k+1

uk

rk

 =
 AC BC1 BC2

CC1 DC11 DC12

CC2 DC21 0


x̂k

yk

sk

 , (4.18)

where(rk, sk) are any signals that satisfy a relationship

s= Qr,

whereQ(z) is a stable rational transfer function such that‖Q‖∞ < γ . The ma-
trices in (4.18) are defined via the solution of the coupled Riccati equations (4.9)
and (4.15) as follows:

AC = Ā− B̄2W−1
12 C̄1+

[
B̄2W−1

12 W̄11− L̄
]

W̄−1
21 C̄2,[

BC1 BC2

]
=

[(
B̄2W−1

12 W̄11− L̄1

)
W̄−1

21

(
L̄2− B̄2W−1

12 W̄12

)]
,[

CC1

CC2

]
=

W−1
12

(
C̄1− W̄11W̄−1

21 C̄2

)
W̄−1

21 C̄2

 ,
[

DC11 DC12

DC21 0

]
=

[
−W−1

12 W̄11W̄−1
21 W−1

12 W̄12

W̄−1
21 0

]
,

4.5. An`1 Design Approach 115

where

W̄ =

[
W̄11 W̄12

W̄21 0

]
,

is such thatW̄ JW̄′ = S̄ and

L̄ =
[
L̄ L̄2

]
=
(
B̄ JD̄′ + ĀZC̄′

) (
JW̄′

)−1
.

The class of controllers (4.18) can be interpreted in terms of an observer/linear
feedback structure just as in the LQG design problem. The main difference with
the LQG design is that here no separation principle applies. The observer and
controller designs are linked. In the above expressions this is seen from the link
between the controller Riccati equation (4.9) and the filter Riccati equation (4.15)
via the equations (4.11) – (4.14).

4.5 An`1 Design Approach

Often in applications the control objective is to keep the tracking error within a
certain tolerance. An example of this is the regulation of the read/write head of
a hard disk drive onto a particular track. Here the control objective is to keep
the magnitude of the tracking error to within the width of the track. This type of
control objective leads naturally to an`∞ type performance index

J = ‖e‖∞ ,

being the infinity norm of the error vector. When the input disturbancesw are
known to be infinity-norm bounded, thenJ can be reformulated as an`1 index

J =
∥∥FQ

∥∥
1 ,

whereFQ is the closed-loop transfer function between the inputw to the output
e.

Often in the design of controllers, a compromise has to be taken to balance
objectives for the plant output and the controller output. As discussed in Chapter 3
and popularized in LQ type controller design, a weighted index is appropriate.
In the context of̀ 1 design, this becomes either a weighted sum or a weighted
maximum index given, respectively, as follows

J1 = ‖(|y| + λ |u|)‖∞ ,

J2 = ‖y‖∞ + λ ‖u‖∞ .

However, this double penalty approach in an`1 design context does not actually
achieve the type of effect one would expect it to do, based on experience in the

116 Chapter 4. Off-line Controller Design

1

2

3

1 2 3

y
���

�
u
�

FIGURE 5.1. Limits of performance curve for an infinity norm index for a general system

LQ design context. To see this, let us consider the solution space of the`1 opti-
mization problem. The set of all feasible solutions for the control effort amplitude
and the output amplitude for some particular system forms a convex polygon as
illustrated in Figure 5.1.

The boundary of the polygon, termed thelimit-of-performance curve, is a plot
of the best achievable performance for the particular control configuration and is
constructed using all possible positive weightsλ in the weighted index function.
It turns out that this curve consists of only a finite number of linear equations and
its gradient is monotonically nondecreasing.

Using a weighted function index results in the solutions of the optimization
problem remaining unchanged for some range of weights, that is for some val-
ues of λ there are an infinite number of solutions of the optimization prob-
lem.

Consider, for example, if the weight is chosen to be any value between the
gradients of Line 1 and 2 in Figure 5.1, the solution of the`1 optimization problem
remains unchanged since the optimal solutions are at the same vertex. In other
cases such as when the weight is chosen to be the gradient of Line 3, then the
resultant̀ 1 optimization problem has an infinite number of solutions along the
edge of the line.

In any weighted index approach, the weights are usually chosen, or at least
fine tuned, by trial and error. Without knowledge of the shape of the solution
set, a trial and error approach will almost certainly lead to a selection that will
give a unique solution at a vertex of the solution set. In the event that the weight
chosen leads to an infinite number of optimal solutions, there is no mechanism
to select any one of these infinite controllers to practically fulfill the objective of
compromising between the magnitude of the output signal and magnitude of the
controller effort.

4.5. An`1 Design Approach 117

Mathematical Preliminaries

Fact 5.1. Given a linear functionf : R
n
→ R

1. If f has the same value at two distinct points,Y ∈ R
n and Z ∈ R

n, then f
remains constant along the lineY Z.

2. If f has different values atY and Z, then at each point on the open line
segmentY Z, f has a value strictly between its values atY and Z.

Fact 5.2. The maximum and minimum values of a linear functionf : R
n
→ R,

restricted to a bounded convex polytopeA ∈ R
n, exist and are to be found on the

boundary ofA.

Fact 5.3. The intersection of any number of convex regions inR
n is convex.

Problem Formulation

Let us consider a single-input, single-output, discrete-time, linear, time-invariant,
proper system expressed as follows

A(q−1)yk = B(q−1)uk + C(q−1)wk, (5.1)

whereyk, uk andwk are the system output, the system input, and the input dis-
turbance to the system at thekth sample, respectively. The input disturbancewk

is assumed to belong tò∞ with a maximum bound normalized to unity. Here
A(q−1), B(q−1), andC(q−1) are polynominals inq−1 given as follows

A(q−1) = 1+ a1q−1
+ · · · + anpq−np, (5.2)

B(q−1) = b0+ b1q−1
+ · · · + bnpq−np, (5.3)

C(q−1) = c0+ c1q−1
+ · · · + cncq

−nc, (5.4)

with A(q−1) andB(q−1) assumed to be coprime. Let us consider a stabilizing
control law for system (5.1) as

R(q−1)uk = −S(q−1)yk, (5.5)

where

R(q−1) = 1+ r1q−1
+ · · · + rnr q−nr , (5.6)

S(q−1) = s0+ s1q−1
+ · · · + snr q

−nr , (5.7)

with nr ≥ np − 1. Note that when the plant has direct feed through,s0 is con-
strained to be zero to avoid an algebraic loop. The system with its controller is

118 Chapter 4. Off-line Controller Design

�1� 1�

�
k

uk

yk

�

�

���

FIGURE 5.2. Plant with controller configuration

shown in Figure 5.2. The closed-loop transfer operators fromwk to yk andwk to
uk are then given as

yk =
C(q−1)R(q−1)

A(q−1)R(q−1)+B(q−1)S(q−1)
wk =: Gy(q

−1)wk, (5.8)

uk =
−C(q−1)S(q−1)

A(q−1)R(q−1)+B(q−1)S(q−1)
wk =: Gu(q

−1)wk. (5.9)

Let

U0 = {ui }; ui ∈ R, |ui | ≤ 1, i ∈ N, lim
i→∞

ui = 0. (5.10)

We can then write∥∥∥Gy(q
−1)

∥∥∥
1

:= sup
w∈U0
‖wk‖∞=1

∣∣∣Gy(q
−1)wk

∣∣∣ = sup
w∈U0
‖wk‖∞=1

|yk| =: ‖yk‖∞ , (5.11)

∥∥∥Gu(q
−1)

∥∥∥
1

:= sup
w∈U0
‖wk‖∞=1

∣∣∣Gu(q
−1)wk

∣∣∣ = sup
w∈U0
‖wk‖∞=1

|uk| =: ‖uk‖∞ , (5.12)

and the following minimization tasks can be defined:

min
R,S
‖yk‖∞ ≡ min

R,S

∥∥∥C(q−1)R(q−1)

∥∥∥
1
, (5.13)

min
R,S
‖uk‖∞ ≡ min

R,S

∥∥∥C(q−1)S(q−1)

∥∥∥
1
, (5.14)

subject to the constraint

A(q−1)R(q−1)+B(q−1)S(q−1) = 1. (5.15)

A composite minimization task can be defined from the above two tasks.

4.5. An`1 Design Approach 119

We can, without loss of generality, assign the closed-loop poles to the origin
with the consequence that the optimal numerator is an infinite impulse response.
This in turn can be interpreted as a series expansion of the closed-loop operator
about the origin.

Alternatively, we can also assign the closed-loop poles to be the stable zeros
of the polynomialC(q−1) so that the denominator of the closed loop remains as
unity.

Equation (5.15) can be written into a matrix equation as

Mθ = Y, (5.16)

where

θ =
(
r1, . . . , rnr , s0, . . . , snr

)′
∈ R

2nr+1,

Y =
(
−a1, . . . ,−anp, 0, . . . , 0

)′
∈ R

nr+np,

and the matrixM is given as

M =



1 0 0 . . . 0 b1 b0 0 . . . 0

a1 1 0 . . . 0 b2 b1 b0
. . .

...

a2
. . .

. . .
. . .

... b3
. . .

. . .
. . . 0

...
. . . a1 1 0

...
. . . b2 b1 b0

anp . . . a2 a1 1 bnp . . . b3 b2 b1


∈ R

(nr+np)×(2nr+1). (5.17)

Note that fornr = np − 1 the polynomialsR(q−1) and S(q−1) are unique,
Goodwin and Sin (1984). Ifnr > np − 1, however, the polynomialsR(q−1) and
S(q−1) are no longer unique. In this case write (5.15) in partitioned form as

[
M̄ M

] [θ̄
θ

]
= Y, (5.18)

where M̄ is an invertible square matrix of dimension(nr + np), M ∈

R
(nr+np)×(nr+1−np), θ̄ ∈ R

nr+np and θ ∈ R
nr+1−np . Note that this is always

possible under the controllability assumption on (5.1). We can then writeθ̄ as

θ̄ = M̄−1(Y − Mθ). (5.19)

The objective is now to findθ that will minimize in some weighted fashion the

120 Chapter 4. Off-line Controller Design

values of (5.11) and (5.12). Let us rewrite (5.13) and (5.14) as matrix equations

‖y‖∞ =

∥∥∥∥∥∥∥Wy

 1

M̄−1(Y − Mθ)

θ


∥∥∥∥∥∥∥

1

=

m∑
i=1

∣∣ fi (θ)
∣∣ =: Fy(θ), (5.20)

‖u‖∞ =

∥∥∥∥∥Wu

[
M̄−1(Y − Mθ),

θ

]∥∥∥∥∥
1

=

2m∑
i=m+1

∣∣ fi (θ)
∣∣ =: Fu(θ) (5.21)

where m = nc + 1 + nr and fi (θ) is affine in θ ∈ R
nr+1−np and Wy ∈

R
(nc+1+nr)×2(np+1) andWu ∈ R

(nc+nr)×(2np+1) are as follows;

Wy =



c0 0 0 . . . 0
...

. . .
. . .

...
...

cnc . . . c0
. . .

...
...

0 cnc . . . c0
. . .

...
...

...
. . .

. . .
. . .

. . .
...

...

...
. . . cnc . . . c0 0

...

...
. . .

. . .
...

...
. . .

...

0 0 cnc 0 . . . 0



, (5.22)

Wu =



0 . . . 0 c0 0 0
...

. . .
...

...
. . .

. . .
...

... 0 cnc . . . c0
. . .

...

...
...

. . .
. . .

. . .
. . .

...

...
...

. . . cnc . . . c0 0
...

...
. . . cnc . . . c0

...
...

. . .
. . .

...

0 . . . 0 0 cnc



. (5.23)

Expressions (5.20) and (5.21) represent the maximum output signal and max-
imum control signal in terms of the free regulator parameters. Here there is no
constraint on the values ofθ . As long as (5.19) is maintained, the resulting con-
troller stabilizes system (5.1). With these expressions, we can now seek ways to
selectθ such that‖y‖∞ is minimized in some compromised manner. To do this,

4.5. An`1 Design Approach 121

first observe that (5.20) and (5.21) can be written in the general affine form for
fi (θ) as

fi (θ) =
n∑

j=1

αi j θ j + βi ; i = 1, . . . , 2m; m ≥ n. (5.24)

Now, it makes sense to use the principles oflinear programming(LP) to show
that the limits of performance curve is defined by finitely many linear equations
and that its gradient is monotonically nondecreasing.

Limits-of-Performance Curve

In the context of thè∞ index used here, the limits-of-performance curve is a
graphical plot of‖y‖∞ verses‖u‖∞. In this subsection, we show that this curve
is described by a finite number of linear equations with gradients monotonically
nondecreasing, and we propose a systematic method to construct this curve.

Let us now define pointsP ∈ R
2 with coordinates(pu, py), wherepu = Fu(θ)

and py = Fy(θ). Let the collection of all feasible coordinate pairs ofP be repre-
sented by the regionR as shown in Figure 5.3.

P
�

P#

py

pu

�

FIGURE 5.3. The regionR and the required contour line shown in solid line

Lemma 5.4. Refering to Figure 5.3, consider the regionR and in particular the
curve that defines that part of the boundary joining the pointP∗, where the value
of pu is minimum, to the pointP#, where the value forpy is minimum. (This is
the solid line shown in Figure 5.3). Then this section of the boundary is described
by a finite number of linear equations. The vertices of this curve occur at those
points whenn of the2m equations in(5.24)have intersecting solutions.

122 Chapter 4. Off-line Controller Design

Proof. The contour concerned can be determined by minimizing a cost function
of the form

min
θ
(Fy(θ)+ λFu(θ)), 0≤ λ <∞; λ ∈ R. (5.25)

For a givenλ, the solution to this minimization problem will produce a set of
points(Fu(θ), Fy(θ)) on the required curve, and thus solving (5.25) for 0≤ λ <
∞ will achieve all points on this curve. To solve (5.25) for a fixedλ, we can
reformulate the task as 22m sets of LP problems. The required solution is the
minimum value of all the solutions to the 22m sets of LP problems. First let us
define a matrixK of dimension 22m

× 22m with all rows distinct and the value of
each of its elements either zero or one. In simpler terms, the rows of the matrixK
generate all possible 2m-bit binary numbers

K =



0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 1

0 0 0 . . . 0 1 0

0 0 0 . . . 0 1 1
...

...

1 1 1 . . . 1 1 0

1 1 1 . . . 1 1 1


. (5.26)

Note that the minimization of (5.25) can be written as

min
`

{
min
θ

(m∑
i=1

(−1)K`i fi (θ)+ λ
2m∑

i=m+1

(−1)K`i fi (θ)

)
subject to

(−1)K`i fi (θ) ≥ 0; i = 1, . . . , 2m; ` = 1, . . . , 22m
}
. (5.27)

Applying Fact 5.3, the region defined in (5.27) for each of the LP problems
forms a convex region. Applying Facts 5.1 and 5.2, the minimum value of (5.27)
is at one of the extreme points, which occurs whenn of the constraints in (5.27)
hold with equality. Note that the inequalities do not change the locations of the
possible extreme points. Hence all the LP problems for 0≤ λ < ∞ share
some of these extreme points, and in total there are not more than2mCn =

(n(n− 1) . . . (n− 2m))/((2m)(2m− 1) . . .1) number of extreme points.
Since the solution of (5.25), for 0≤ λ < ∞, is the minimum value of all the

LP problems defined implicitly in (5.27), the solution of (5.25) has to occur at
one of the2mCn intersection points. Hence we can conclude that the limits of the
performance curve is formed by a finite number of straight lines, and the vertices
occur at those points whenn numbers of the equations in (5.25) intersect.

Note that it is not required to solve all the 22m LP problems as mentioned above
to obtain the solution of (5.25). The solution of (5.25) can be solved by evaluating
the cost at all the2mCn possible extreme points.

4.5. An`1 Design Approach 123

Lemma 5.5. The gradients of the curve of the part of the boundary regionR, as
described in Lemma 5.4, are monotonically nondecreasing.

Proof. As mentioned in the previous lemma, this curve is determined by solving
the minimization problem given in (5.25) forλ between zero and infinity. To prove
that the gradients of the curve are monotonically nondecreasing, we redefine the
minimization problem (5.25) for a particularλ as described below. But first, let us
introduce a new variableθn+1. The minimization of (5.25) is equivalent to

min
θ,θn+1

θn+1, (5.28)

subject to

θn+1 ≥ (−1)k`1 f1(θ)+ · · · + (−1)K`m fm(θ)+ · · · + (−1)k
`(2m)

f2m(θ),

` = 1 . . . 22m. (5.29)

Note that each of the inequalities defined in (5.29) is a semiplane that bounds
a convex region. From Fact 5.3 the region defined by the inequalities forms a
convex set and its edges are formed by the solution of linear equations. Again
using Facts 5.1 and 5.2 we see that the solution space of (5.28) is a convex region.
Consequently, the solutions of (5.25) for a givenλ lie in a convex region.

In Lemma 5.4, we have shown that the limits-of-performance curve is formed
by the solution of a finite number of linear equations. Therefore, minimization
of (5.25) has either a single solution or an infinite number of solutions. Here we
have shown that in the case where there are an infinite number of solutions, the
solutions lie in a convex region. We conclude that the gradients of the limits-of-
performance curve are strictly monotonically nondecreasing.

From the above two lemmas, we conclude that the limits-of-performance curve
are formed by the solution of a set of linear equations with gradients monotoni-
cally nondecreasing. Let us now present a systematic method for constructing this
curve. The steps are given as follows:

Algorithm.

Step 0. Find all the intersection points of the 2m equations(−1)K`i fi (θ) ≥ 0;
i = 1, . . . , 2m; ` = 1, . . . ,22m and calculate the coordinates
(‖y‖∞ , ‖u‖∞) at all the points. This involves solving2mCn sets ofn
simultaneous equations and substituting the solution back to (5.20) and
(5.21) to determine the coordinates of(‖y‖∞ , ‖u‖∞). Determine the
point P∗ where‖y‖∞ is minimum. Label these two pairs of points as
P0 andP1 respectively. Leti = 0 and j = 1. Go to Step 1.

Step 1. If j ≤ i , go to Step 4, otherwise determine the line that joinsPi to Pi+1.
Find from among the rest of the intersection points the one that has the
smallest displacement from this line. Label this point asPmin. If the min-
imum displacement is smaller than zero, go to Step 2, otherwise go to
Step 3.

124 Chapter 4. Off-line Controller Design

Step 2. Fork = j to i + 1 in decrements of 1, setPk+1 = Pk andPi+1 = Pmin.
Set j = j + 1. Go to Step 1.

Step 3. i = i + 1. Go to Step 1.

Step 4. The contour of the limits-of-performance linking the minimum achiev-
able ‖u‖∞ to the minimum achievable‖y‖∞ is now defined by the
straight lines joining pointsP0 to P1, P1 to P2, . . . , Pj−1 to Pj .

Remark. Due to the nature of the problem, one is required to solve2mCn sets
of n simultaneous equations. Therefore this method may not be computationally
feasible for plants of very high orders(np > 20) or plants that use a relatively
high order regulator. Table 5.1 shows the regulator order for a plant of varying
order. HereF is the number of flops required to solve a set ofn simultaneous
equations, andT_F is the total number of MFLOPS required to solve2mCn sets
of n simultaneous equations.

We have not explored the possibility of using efficient combinatorial algorithms
such as the so-calledbranch and bound methodto solve this problem. Such tech-
niques could prove useful, especially for large-scale problems, and the interested
reader could consult Nemhauser and Wolsey (1988).

np n1 m n 2mCn F/Flops T_F /MFLOPS

2 11 12 10 1.96× 106 2 500 4.9× 103

4 12 13 9 3.12× 106 1 840 5.8× 103

5 13 14 9 6.9 × 106 1 840 13 × 103

8 15 16 8 10.5 × 106 1 350 14 × 103

10 16 17 7 5.3 × 106 950 5.2× 103

15 20 21 6 5.25× 106 620 3.2× 103

20 25 26 6 20.3 × 106 620 13 × 103

TABLE 5.1. System and regulator order and estimated computation effort

Example. In this section, we will present the limits-of-performance curve for
a second-order single-input, single-output, linear, time-invariant system. It has a
pure unit delay, a nonminimum phase zero atz = 2.0 and two poles atz = 1.2,
andz= 0.7. The system is given as(

1− 1.2q−1
) (

1− 0.5q−1
)

yk = q−1
(
1− 2q−1

)
uk + wk. (5.30)

Let us consider regulators with a fifth- and eighth-order structure, respectively.
The limits-of-performance curve for the eighth-order structure is shown in Fig-
ure 5.4. For the fifth-order regulator, the lines that make up the limits of perfor-
mance curve are in effect the lowest three segments having gradients of−1.997,

4.5. An`1 Design Approach 125

−1.189 and−0.476 respectively. Ifλ happens to belong to this set, then the solu-
tions that satisfy the optimization problem will be infinite in number. If, however,
λ happens to be between these values, then the solution for the optimal control
will remain unchanged.

From this example, it is clear that the weighted-sum method is not a suitable
method for solving the optimization problem. For most of the weights chosen, the
solutions remain the same. In the unlikely event where some particular weights are
chosen, there are an infinite number of solutions. Given the limits-of-performance
curve, one can now decide the compromise one has to make and select the appro-
priate operating point. For example, assuming the bound of the noise is normal-
ized to unity and if the control effort is constrained to 3.5 units, the worst output
signal will then be 6.1 units (shown as point A in Figure 5.4). In the case when the
constraint on the output signal can be relaxed a little, we can choose to operate at
a point such that the maximum output signal is less than 6.65 units with maximum
control effort less than 2.5 units (shown as point B in Figure 5.4). In the case of
unconstrained control effort, the best we can achieve for the output signal will be
5.7 units and the worst control effort is 4.4 units.

8.0

5.5

7.5

7.0

6.5

6.0

1.5 4.52.0 2.5 3.0 3.5 4.0

B

A

y
���

�
u
�

FIGURE 5.4. Limits-of-performance curve

Main Points of Section

In this section, the limitations of using the weighted-sum method or the weighted-
maximum method for solving̀1 optimization problems are illustrated. A limits-
of-performance method to overcome this problem is described and the procedure
to obtain this curve is illustrated. The advantage of this approach is that now
we can do away with the trial and error method of selecting an appropriate cost
function. Also the performance of the regulator structure can be observed and

126 Chapter 4. Off-line Controller Design

altered if necessary. Another advantage of this method is that with the knowledge
of the maximum bound of the input disturbance, one can select the operating point
so as to minimize one or more of the signals while keeping the other within its
constraints.

4.6 Notes and References

This chapter aims to collect together in one place some contemporary controller
design techniques. The stress is not on proving theorems, but rather on presenting
the practical techniques to allow practicing engineers to quickly implement such
controllers for their plants.

We begin with a discussion on performance specifications. These specifications
can be found in almost every controller design based paper. However a good start
would be books such as Boyd and Barratt (1991) and Vidyasagar (1985).

Linear quadratic control has been well explored. Good references are Ander-
son and Moore (1989) and Kwakernaak and Sivan (1972). The need for LQG/LTR
was first raised in Doyle (1974) indicating a poor stability margin as a result of
using state estimate feedback rather than state feedback. Subsequently stability
margin recovery (LTR) methods were developed by researchers such as Doyle
and Stein (1979), Zhang and Freudenberg (1987), Moore and Xia (1987), Moore,
Gangsaas and Blight (1982), Lehtomaki, Sandell and Athans (1981), Stein and
Athans (1987). The material of Section 4.3 is obtained from Moore and Tay
(1989c), which is in many ways an advance on the previous works. It introduces
the concept of sensitivity recovery, and this is done via a properly selectedQ.

For `1 optimal design, the problem was first formulated by Vidyasagar (1986).
Subsequently the work to solve the optimization problem for various situations
were undertaken by Dahleh and Pearson (1987), Dahleh and Pearson (1988),
Vidyasagar (1991) and their coworkers. The key approach in all these works is
to formulate the desired closed-loop transfer function in terms ofQ and then
subsequently to convert the optimization into a linear programming problem by
means of a dual formulation. The technique described in this chapter is based
on the work by Teo and Tay (1995) and takes a polynomial setting. It takes the
`1 solution a step further towards a practical design by proposing a technique to
construct the entire limits-of-performance curve for all possible control energy
penalties in a weighted sum performance index.

CHAPTER 5

Iterated and Nested(Q, S)
Design

5.1 Introduction

In Chapter 4, we have presented controller design strategies to achieve various
control performance objectives. For some of these methods theQ parameteriza-
tion of Chapter 2 proved helpful. The assumption behind all the strategies is that
the plant model is known. The controller is designed to reject in some optimal
fashion certain classes of disturbances applied to this nominal model. There is
no explicit provision to cope with plant perturbations or plant uncertainties in the
designs. Of course it turns out that some of the designs are also robust to cer-
tain classes of plant perturbation or uncertainty. There can be a trade off between
performance and robustness, but robustness to prescribed plant variations or un-
certainties is not included explicitly in the optimization criteria, so that this trade
off may not be straight forward.

In this chapter, we take a different approach to controller design from that of us-
ing the standard optimization techniques presented in Chapter 4. We will examine
a controller design strategy that will take account of unmodeled dynamics in the
nominal model of the plant. Here we view the controllerK (Q) as a nested two
controller structure, consisting of the nominal controllerK and an augmented
controller Q, in the notation of Chapter 2, withK = K (Q)|Q=0 = K (0). In
the same vein, we also view a plantG(S) as consisting of two parts; a nom-
inal part G and an augmentation we callS in the notation of Chapter 3, with
G = G(S)|S=0 = G(0). The augmentationS is deemed to contain dynam-
ics that are not modeled in the nominal partG of the actual plant. In fact,
we have shown in Chapter 3 that the nominal model can be viewed as a sim-
plified model of the actual plant obtained from, say, an initial identification
procedure. The augmentationS then turns out to be a frequency-shaped de-
viation of the nominal model from the actual plant, with the frequency shap-

128 Chapter 5. Iterated and Nested(Q, S) Design

ing emphasizing the cross-over frequencies of the nominal system and of the
actual system.

The strategy adopted here is to first design the nominal controllerK to opti-
mally control the nominal plantG. The initially unmodeled dynamics represented
by S is then identified leading to an estimate ofS. This process can be carried
out either on-line or off-line from measurements, as discussed in Chapter 3 and
elaborated subsequently. Once anS is identified, the next stage is to design an
augmented controllerQ to optimally controlS according to some performance
measure, related to, but not necessarily identical to that of the initial controller
design. This approach exploits the robust stabilization results in Chapter 3 where
it is shown that whenK stabilizesG, thenK (Q) stabilizesG(S) if and only if Q
stabilizesS.

In this chapter, we also take the work of Chapter 3 a step further by show-
ing that from a performance point of view, the approach to design the nom-
inal controller K for the nominal plantG, and the augmented controllerQ
for the derived plantS can be complementary. In fact there need be little
danger of the augmented controllerQ interacting with the nominal controller
K in an adverse manner so that the original control object is compromised.
In particular, we demonstrate how to achieve the complementary behavior for
the familiar design methods of pole-placement, linear quadratic control and
H∞ control. We show that for these three techniques, designing theQ to
control S, using the same criterion as that used in the design of the nomi-
nal controller K for G, ultimately assists in the achievement of the original
design goal.

We then move on to extend the results of Chapter 3 in another direction. We
show that in general, there need not be a limit to a nested two-controller struc-
ture. In fact, any plant can be represented in anm recursive fractional form via a
continued fraction expansion. The results in Chapter 3 correspond to the spe-
cial case wherem = 2. Similarly, instead of the two-controller nested struc-
ture consisting ofK and Q, we can generalize the two-controller structure to
an m-controller nested structure for a plant represented in anm recursive frac-
tional form. The stability results for the two-controller structure are then gen-
eralized to this multiple controller structure. With this generalization, we pro-
pose a multistage or an iterative controller design approach as a natural ex-
tension to the two-stage controller design approach. In some cases, a high or-
der original plant may be decomposed to form a sequence of relatively sim-
ple plant models which allow successive approximation of the plant. The task
of designing a complex controller for the high order plant can then be broken
down into a sequence of lower order controller designs for a sequence of lower
order models.

The iterated or multistage design methods of this chapter are focussed on a
sequence of off-line controller improvements based on on-line identification, but
the results lead naturally to on-line adaptive control as developed in the following
two chapters.

5.2. Iterated(Q, S) Design 129

5.2 Iterated(Q, S) Design

The results of Chapters 2 and 3 allow us to proceed with a controller design as a
two-stage process.

The first stage is the design of a stabilizing nominal controllerK for a nominal
plantG, but also stabilizing the actual plantG(S). In this section, we will think of
this stage as an off-line design where we will do our best to obtain a controller for
the plant based on thea priori knowledge of the actual plant, represented by the
nominal model of the plant. Thus if there are no unmodeled dynamics, then this
off-line designed controller should be the optimal controller for the actual plant,
but if there are plant uncertainties the controller should be robust to these; maybe
not achieving good performance, but at least ensuring stability.

We will view the second stage as an enhancement stage. Here we will utilize
on-line measurements to identify the unmodeled dynamics in the original plant,
represented byS. The matrix transfer functionS is a frequency-shaped deviation
of the nominal plant model from the actual plant. The augmented controllerQ is
then designed based on the identifiedS. The design method forQ is appropriately
selected to ensure that there is no conflict of the original controller design goal.
This can be interpreted as stating that after the implementation ofQ, the imple-
mented controllerK (Q) actually solves the design problem for the plantG(S).
Figure 2.1 illustrates the iterative-Q design process.

It is clear that the overallQ-enhancement procedure can be iterated. Indeed the
identification ofS may have been incomplete, or due to the new updated design
deficiencies in the model may have been accentuated. Both may necessitate a
repeating of the procedure.

Identification of Unmodeled Dynamics

Let us consider the problem of identifyingS given that a particular controller
with a Q augmentation has been implemented, as given in Figure 2.1. The matrix
transfer functionJ and the operatorQ form the feedback controllerK (Q) for
the plantG(S). For the purpose of the iterative scheme, the plantG(S) and the
matrix transfer functionJ are viewed as a single blockW, such as is depicted in
Figure 2.1. The signalsr , s,w1, u, v, andy are assumed to be measurable. The re-
lationship betweenr, s, andw1, w2 can be written from the key operator equation
(3.4.22) derived in Lemma 3.4.3 specialized to the representation of Figure 2.1
(see also (3.6.3)), and is given by

r = Ss+ M̃(S)w2+ Ñ(S)w1. (2.1)

This is a linear equation inS and can be reformulated into a linear regression
equation for a standard identification algorithm.

Besides the relationship expressed in (2.1) we also have the control relation-

130 Chapter 5. Iterated and Nested(Q, S) Design

J

y

Unmodelled dynamics

Q

r s

Controller
design

algorithm

Parameter
identification

algorithm

Output disturbance

Input
reference

Q

u

W

��
�

1

�
2

�

�
S

G � S �

FIGURE 2.1. An iterative-Q design

ship:

s= Qr. (2.2)

Recall also from (2.12) and (2.13) that, in the absence ofw,

r = M̃ y− Ñu, s= Ṽ u− Ũ y. (2.3)

Notice that in the first stage of the redesign processQ = 0 applies, as the only
controller implemented isK = K (0). In this situation (2.1) suffices for identi-
fication purposes. Unfortunately, due to the obvious feedback interconnection of
(2.1), (2.2) it is unclear how to obtain an unbiased estimate forS, at least without
adding excitation signals tos. Moreover, even without the feedback interconnec-
tion, due to the fact that in (2.1) the transfer functions betweens, w1, w2 andr
are not independently parameterized, it might be thought difficult to obtain an un-
biased estimate ofS. The problem is overcome without adding extra signals as
follows.

Intuitively, in view of the closed loop (2.1), (2.2) it is clear that we can express
bothr ands in an affine manner in terms of the closed-loop transfer function of the
feedback system(Q, S), and the external signalsw1 andw2. If Q is known, we
could then deduceS from knowledge of(Q, S). This is achieved in the following
development, see also Figure 2.2.

In order to fix ideas, we assume here that the signalw2 is an unmeasurable
disturbance whilew1 is measurable. Any other combination can be treated in a
similar fashion. Moreover, let us assume thatw1 andw2 are uncorrelated signals,
as defined in Section 3.2.

5.2. Iterated(Q, S) Design 131

identification
Q redesign

Q

S

s

Q

r

�

� �

�

�

�

�� �

�
S

�
S

�

M � 2 UQ � 2

�
VQ � 1 �

FIGURE 2.2. Closed-loop identification

Let us clarify the assumptions onG(S), K (Q) for the following. We assume
that(G = G(0), K = K (0)) form a stabilizing pair, and that(G(0), K (Q)) and
(G(S), K (Q)) are stabilizing. Thus we have assumed both thatQ is stable and
that Q stabilizesS.

With the above stability assumptions in mind, let us introduce coprime factor-
izations,

G = G(0) = M̃−1Ñ = N M−1,

K = K (0) = Ṽ−1Ũ = VU−1,
(2.4)

and

K (Q) = UQV−1
Q = Ṽ−1

Q ŨQ, (2.5)

where

UQ = U + M Q, VQ = V + N Q,

ŨQ = Ũ + QM̃, ṼQ = Ṽ + QÑ.
(2.6)

Also,

G(S) = (M̃ + SŨ)−1(Ñ + SṼ) = (N +U S)(M + V S)−1, (2.7)

and we introduce coprime factorizations forG(S) parameterized in terms ofSor
Šas

G(S) = GQ(Š) = M̃Q(Š)
−1ÑQ(Š) = NQ(Š)MQ(Š)

−1, (2.8)

where

MQ(Š) = M +UQ Š, NQ(Š) = N + VQ Š,

M̃Q(Š) = M̃ + ŠŨQ, ÑQ(Š) = Ñ + ŠṼQ,
(2.9)

132 Chapter 5. Iterated and Nested(Q, S) Design

(see also equation (3.4.3)). Also we have the double Bezout identity[
ṼQ −ŨQ

−Ñ M̃

][
M UQ

N VQ

]
=

[
M UQ

N VQ

][
ṼQ −ŨQ

−Ñ M̃

]
=

[
I 0

0 I

]
. (2.10)

Let us introduce the auxiliary variablesα, β given from[
β

α

]
=

[
−Ñ M̃

ṼQ −ŨQ

][
v

y

]
. (2.11)

The importance of the signalsα, β for identification purposes can be inferred by
expressingα, β in terms of the external signals driving the system in Figure 2.1.
With reference to Figure 2.1 it is clear that, sinceG(S) = GQ(Š),[

v

y

]
=

[
I −K (Q)

−GQ(Š) I

]−1[
w1

w2

]
,

where simple manipulations show[
I −K (Q)

−GQ(Š) I

]−1

=

[
MQ(Š) UQ

NQ(Š) VQ

][
ṼQ 0

0 M̃Q(Š)

]

=

[
MQ(Š)

NQ(Š)

] [
ṼQ ŨQ

]
+

[
0 −MQ(Š)ŨQ +UQM̃Q(Š)

0 −NQ(Š)ŨQ + VQM̃Q(Š)

]

=

[
MQ(Š)

NQ(Š)

] [
ṼQ ŨQ

]
+

[
0 0

0 I

]
.

The last equality follows from the double Bezout equation (2.10) and the defini-
tion of MQ(Š) andNQ(Š). It follows then that using the definitions in (2.11), and
the Bezout identity, we get[

β

α

]
=

[
−Ñ M̃

ṼQ −ŨQ

]([
M +UQ(Š)

N + VQ(Š)

] [
ṼQ ŨQ

]
+

[
0 0

0 I

])[
w1

w2

]

=

([
Š

I

] [
ṼQ ŨQ

]
+

[
0 M̃

0 −ŨQ

])[
w1

w2

]

=

[
ŠṼQ M̃Q(Š)

ṼQ 0

][
w1

w2

]
,

from which we deduce thatα is independent ofw2, and

β = Šα + M̃Q(Š)w2. (2.12)

5.2. Iterated(Q, S) Design 133

This has the interpretation that we can obtain an unbiased estimate ofŠ from
measurements ofβ andα via, for example, output error identification schemes.
For a treatment of open-loop identification methods, we refer the reader to
Ljung (1987). An in depth treatise of the ideas presented above on closed-
loop identification can be found in Lee (1994), Schrama (1992b) and Hansen
(1989).

The above results are summarized as the following lemma.

Lemma 2.1 (Unbiased closed-loop identification).Refer to the Figure 2.1. As-
sume that the controllerK (Q) stabilizes both the plantG(S) and the nomi-
nal plant G(0). Let K (0) = U V−1

= Ṽ−1Ũ , G(0) = M̃−1Ñ = N M−1,
K (Q) = UQV−1

Q = ṼQŨ−1
Q , as in(2.4). Define the measurable signalsα, β via

(2.11). Then as depicted in Figure 2.2

β = Šα + (M̃ + ŠŨQ)w2, α = ṼQw1. (2.13)

Provided the external signalsw1 andw2 are uncorrelated, it follows thaťS can
be identified in an unbiased manner via correlation analysis ofβ andα.

Now ŠandSare related by (2.8), in that

(N + V S)(M +U S)−1
= (M̃ + ŠŨQ)

−1(Ñ + ŠṼQ),

whereŨQ = U + QM̃ , ṼQ = Ṽ + QÑ. Hence we can deduce that

S= (I + ŠQ)−1Š= Š(I + QŠ)−1, (2.14)

or

Š= S(I − QS)−1
= (I − SQ)−1S. (2.15)

These expressions allow us to inferS from Š and vice versa. Reinterpreting the
result of Lemma 2.1 in the light of the expressions (2.14) and (2.15) we come to
the rather obvious statement that we are able to identify the closed-loop system
(Q, S) from the data in an unbiased manner. This is depicted in Figure 2.2.

Iterated Control-identification Principle

Since we start with the assumption thatK (Q) stabilizesG(S), once we obtain
an estimate fořS, we are guaranteed that the present controllerK (Q) will also
stabilizeGQ(Š) sinceGQ(Š) = G(S) under (2.14), (2.15)). We are now in a
position to update the controllerQ so as to obtain an improved closed loop. Indeed
having identifiedŠwe can find an associated estimatedSvia equation (2.14). For
this estimatedS we can now design a newQ and the whole procedure can be
repeated if desired.

134 Chapter 5. Iterated and Nested(Q, S) Design

Q

S

r s

S

One step iteration

Multistage iterated design

��

��

�

�

�

� �

�

���

� �

�
S

�
S1

�
S2

�
Sn

�
Q

�
Q1

�
Q2

�
Qn

����������

���

FIGURE 2.3. Iterated-Q design

We stress that it is important to base the identification on theŠ representation
rather that theS representation. This is because unbiasedŠ estimates can be ob-
tained from standard identification algorithms. This is not the case forSestimates,
at least without the addition of excitation signals in theQ, S loop.

Because we now want to redesignQ so as to stabilize the newly foundSwhile
achieving some design goal, and because of the relationship betweenŠ, S and
Q, we have that the stabilizing pair(Q1, S), whereQ1 denotes the newQ, is
identical to the stabilizing pair(Š, Q̌) where Q̌ = Q1 − Q. We may therefore
proceed with designing a stabilizing controller forŠ andaugmentthe existingQ
by this new controller to find the actual controller to be implemented.

The process is summarized in Figure 2.3 and detailed in the next algorithm.

5.2. Iterated(Q, S) Design 135

Algorithm.

Step 0. • Initialize G0 = N M−1
= M̃−1Ñ,

K0 = U V−1
= Ṽ−1Ũ ,

Q0 = Q̌0 = 0, S0 = Š0 = 0,

` = 0.

Step 1. • Ṽ` = Ṽ + Q` Ñ, Ũ` = Ũ + Q`M̃,

M̃` = M̃ + Š̀ Ũ`, Ñ` = Ñ + Š̀ Ṽ`,

K` = Ṽ−1
` Ũ`, G` = M̃−1

` Ñ`,

α` = Ṽ`v − Ũ`y = Ṽ`w1, β` = −Ñv + M̃ y.

• Identify Š from β` = Šα` + (M̃ + ŠŨ`)w2 using an output error
identification method.

• Update control by designing(Š, Q̌).

Step 2. • Output Š̀+1 = Š,

Q`+1 = Q` + Q̌.

Step 3. • Either let`+ 1 be`, go to Step 1.

• Or stop if control objective is achieved.

The key idea in an iterated control design is thus to first stabilize the plant
with some nominal robust controller, presumably not achieving high performance.
Consequently, with the stabilizing controller in the loop we reidentify the system,
or better theS-factor representation. Then we redesign the controller, or better the
Q parameter, to obtain improved performance. This may be iterated. The reason
why iterations are necessary stems from the fact that no one iterate is capable of
representing the plant accurately. The success of this method hinges on our ability
to use low order approximations forŠ as is exemplified in Chapter 3. Even then,
for practical implementation, controller order reduction may be required, as each
iteration augments the controller order.

We now discuss how the control design for some specific control objectives can
proceed in this iterated framework.

Iterated Pole-placement Strategy

We now present a result to show the rationale behind designingQ using a pole-
placement algorithm. Let us examine the relationship among the closed-loop sys-
tems formed by the pair(G(S), K (Q)) representing the actual closed loop, the
pair (G, K) representing the nominal or design control loop and the pair(Q, S).
We show that the eigenvalues of the closed-loop system formed by(G(S), K (Q))

136 Chapter 5. Iterated and Nested(Q, S) Design

consists of the set of eigenvalues of the actual closed-loop system represented by
(G, K) together with the set of eigenvalues of the closed-loop system(Q, S). We
summarize the result in the following theorem.

Theorem 2.2. Let (G, K) be a stabilizing nominal plant-controller pair in that
(2.3.5), (2.3.6)holds. LetG(S) be the class of plants parameterized byS as in
(2.7)with G = G(0), and letK (Q) be the class of controllers parameterized by
Q as in(2.4)with K = K (0). Under these conditions, the set of closed-loop poles
of the pair(G(S), K (Q)) is generically the union of the set of poles of the pairs
(G, K) and(Q, S).

Proof. First recall equation (3.4.18) from Chapter 3,

[
I −K (Q)

−G(S) I

]−1

=

[
I −K

−G I

]−1

+

[
M U

N V

]
[

I −Q

−S I

]−1

− I


[

Ṽ Ũ

Ñ M̃

]
,

from which the result follows, since it turns out that the coefficient matrices in
the second term introduce no additional dynamics to the dynamics of the first
term. Notice that any pole/zero cancellations necessarily involve stable pole/zero
cancellation by construction, asM , U , N, V , M̃ , Ũ , Ñ, Ṽ all represent stable
rational transfer functions, as well as(Q, S).

This theorem indicates that if the nominal controllerK for the nominal plantG
is designed based on a pole-placement technique, then the additional poles arising
in the case of unmodeled dynamics can be assigned to appropriate locations using
the ‘controller’ Q. There is no conflict with design objectives in each stage of the
design.

Other important interpretations are obtained by considering the closed-loop ar-
rangement(G(S), K (0)) as the plant to be controlled byQ. The closed-loop be-
havior, according to Theorem 2.2, is characterized by the actual desired design
behavior(G, K) together with that of(S, 0). In other words,S models the dif-
ference between the desired and the actual closed loop. Therefore, Theorem 2.2
implies that in order to achieve a desired control objective such as a certain con-
trol bandwidth, one should design the nominal controllerK so as to achieve this
design goal on the nominal plant modelG and iterate the same design goal for the
control loop(Q, S).

The limitation with the above methodology is that in the presence of significant
model errors, our control objective must be a cautious one. Otherwise, achiev-
ing high performance on a nominal design could lead to an unstable closed-loop
response for(G(S), K (0)), or equivalently, an unstableS. Indeed, the above the-
ory allows for this since an unstableS can be stabilized by an appropriateQ.
Nominally however, it makes sense to proceed with a cautious design objective,

5.2. Iterated(Q, S) Design 137

and iterate to an improved model for the plant keeping the same control objec-
tive. When the nominal model response and the actual closed-loop response are
in close agreement, we can then envisage changing the control objective, that is,
changing the desired closed-loop poles. The whole process can then be started
over, until such time that we are satisfied with the closed-loop response.

From the previous discussion on iterated design and Theorem 2.2, it follows
that at any stage of an iterated pole placement design, the closed-loop poles of
the system are the poles of(G, K) and(Šn, Q̌n) = (S, Q̌1 + Q̌2 + · · · + Q̌n).
Therefore, at no stage in the iterative design process is there a conflict in the
design process, even when we work withŠ, Q̌ variables.

Example. Let G be a second order plant with poles at 2.348 4± j 1.628 2 andK
be a pole placement controller that assigns the closed-loop poles to the locations
(0.8,0.8,0.7,0.7). The parameters of the various transfer functions are given in
Table 2.1. Let us work with a first orderSand letQ be the controller that assigns
the closed-loop poles of(Q, S) to (0.75, 0.75).

We now constructG(S) andK (Q). Notice that the closed-loop transfer func-
tion G(S)(1− K (Q)G(S))−1 as given in Table 2.1 has identical poles to those
G(1− K G)−1 andS(1− QS)−1, as predicted by Theorem 2.2.

Iterated Linear Quadratic Design Strategy

We first present a result which explains the rationale behind the design of con-
troller K (Q) using the linear quadratic technique. We refer to Figure 2.1. All
external disturbances are assumed to be zero, i.e.w1 ≡ w2 ≡ 0. (In this case,
u = v in Figure 2.1).

Theorem 2.3. With (G, K) a stabilizing plant-controller pair, consider a plant
G(S) with a controller K (Q) applied for someQ, as in Figure 2.1, see also
factorizations(2.4), (2.7). Consider also a linear quadratic index, penalizing the
controller internal signalsr and s (being the inputs and outputs ofQ, respec-
tively), as

JL Q = lim
k→∞

k∑
i=1

(r ′i r i + s′i Rsi). (2.16)

whereR is a symmetric positive definite weighting matrix. Then this index can be
expressed in terms of a frequency-shaped penalty on the plant outputs and inputs,
y, u as

JL Q = lim
k→∞

k∑
i=1

[
y′i u′i

] [(M̃∗M̃ + Ũ∗RŨ) −(M̃∗ Ñ + Ũ∗RṼ)

−(Ñ∗M̃ + Ṽ∗RŨ) (Ñ∗ Ñ + Ṽ∗RṼ)

][
yi

ui

]
,

(2.17)

where∗ denotes conjugate transpose.

138 Chapter 5. Iterated and Nested(Q, S) Design

Transfer functions Poles

G = 1.389 5z−1
−2.879 3z−2

1−4.696 9z−1+8.166 2z−2 2.348 4± j 1.628 2

K = −7.100 8z−1+19.090 9z−2

1+1.696 9z−1−6.692 8z−2 −3.571 1, 1.874 2

G(1− K G)−1

=
1.389 5z−1

−0.521 4z−2
−14.185 5z−3

+19.270 3z−4

1−3z−1+3.37z−2−1.68z−3+0.313 63z−4 0.8, 0.8, 0.7, 0.7

S= z−1

1−0.9z−1 0.9

Q = −0.022 5z−1

1−0.6z−1 0.6

S(1− QS)−1
=

z−1−0.6z−2

1−1.5z−1+0.562 5z−2 0.75, 0.75

G(S) = 2.389 5z−1
−2.433z−2

−4.101 4z−3

1−5.596 9z−1+5.292 6z−2+11.741 3z−3
3.294 6± j 0.988 4,
−0.992 4

K (Q) = −7.123 3z−1
+23.457z−2

−11.638 3z−3

1−1.096 9z−1−7.742 2z−2+4.804z−3
−3.578 8, 1.873 3,

0.608 7

G(S)(1− K (Q)G(S))−1

=

2.389 5z−1
+0.188 1z−2

−25.087 8z−3

+24.087 8z−4
+21.826 3z−5

−16.735 63z−6

1−4.5z−1
+8.432 5z−2

−8.422 5z−3

+4.729 2z−4
−1.415 4z−5

+0.176 4z−6

0.8, 0.8, 0.75,
0.75, 0.7, 0.7

TABLE 2.1. Transfer functions

Proof. We have that withw1 = w2 = 0:[
s

r

]
=

[
Ṽ −Ũ

−Ñ M̃

][
u

y

]
. (2.18)

Substituting this expression into (2.16), the result follows.

Example. We use the nominal plantG given in Table 2.1. An LQG controller
penalizing the index

J1 = lim
k→∞

k∑
i=1

(y2
i + λu2

i), λ = 0.1,

is used to design the nominal controllerK . Similarly, the transfer functionS of
Table 2.1 is used to designQ using the index

J2 = lim
k→∞

k∑
i=1

(r 2
i + λs2

i), λ = 0.1.

5.2. Iterated(Q, S) Design 139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

38

38.5

39

37.5

36.5

36

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)
Ph

as
e

(d
eg

re
es

)

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

37

� 200

� 400

� 600

� 800

FIGURE 2.4. Frequency shaping fory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

19.2

19

18.8

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)
Ph

as
e

(d
eg

re
es

)

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

� 200

� 400

� 600

� 800

FIGURE 2.5. Frequency shaping foru

140 Chapter 5. Iterated and Nested(Q, S) Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

20

40

60

0

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)
Ph

as
e

(d
eg

re
es

)

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

� 20

� 200

� 400

� 600

� 800

� 1 000
G I K G 1

G
�
I � K G ��� 1

G
�
I � K G ��� 1

G
�
I � K G � � 1

G
�
I � K G � � 1

S
�
I � QS � � 1

S
�
I � QS � � 1

FIGURE 2.6. Closed-loop frequency responses

Figure 2.4 and Figure 2.5 show the magnitude/phase plots of(M̃∗M̃ + Ũ∗λ2Ũ)
and(Ñ∗ Ñ + Ṽ∗λ2Ṽ) which are, respectively, the frequency shaped penalties for
y andu as a result of using the indexJ2. The frequency shapings exhibit a higher
penalty at the low frequency range fory, and conversely foru. Figure 2.6 shows
the frequency responses for the closed-loop transfer functions.

Theorem 2.3 tells us that performing an LQ design based on the penalty ofr and
s is equivalent to performing an LQ design based on a frequency shaped penalty
of y andu as in (2.17). We recall that̃M , Ñ, Ũ , Ṽ reflect the closed-loop poles of
the pair(G, K). Thus in this case, we can interpret the frequency shaping given
in (2.17) as an emphasis ony, u in the pass band of the nominal design, hence in
the frequency bands of interest. It is therefore a meaningful index to minimize.

IteratedH∞ Design Strategy

In order to fix ideas, we discuss here an iterativeH∞ design in the case where the
performance variable is simplye =

[u
y
]
. The generalized plant description then

5.2. Iterated(Q, S) Design 141

takes the form, referring to Figure 2.1, with̄G = G(S),
[

u

y

]
y

 =

[

0 0

Ḡ I

] [
I

Ḡ

]
[
Ḡ I

]
Ḡ



[
w1

w2

]
u

 = P̄


[
w1

w2

]
u

 . (2.19)

The standardH∞ problem for (2.19) is one of designing a controllerK̄ as to
minimize theH∞ norm of the transfer function matrix from the disturbancesw =[
w1
w2

]
to the performance variablee=

[u
y
]
.

Here we would like to approach theH∞ optimization problem in an iterated
fashion. Let us first solve theH∞ problem for the nominal plant, and next perform
the H∞ optimization problem for the unmodeled dynamics. The first subproblem
is solved in terms ofK andG, and the second is solved in terms ofSandQ.

It remains to be seen how this suboptimalH∞ control design method for the
actual plantG(S) is related to the completeH∞ control design problem. Working
with our standard notation, let̄G = G(S), K̄ = K (Q). Assume thatK solves
the H∞ problem for the nominal plant modelP, in that K minimizes theH∞
norm of the transfer function matrixF(P, K) from the disturbancesw =

[
w1
w2

]
to the performance variablee =

[u
y
]

in the nominal system model. This transfer
function is given by:

F(P, K) =

[
0 0

G I

]
+

[
I

G

]
K
[
I − GK

]−1 [
G I

]

=

[
I −K

−G I

]−1

−

[
I 0

0 0

]
.

(2.20)

HereP is given by

P =


[

0 0

G I

] [
I

G

]
[
G I

]
G

 .
The difference between the actual transfer function linking disturbances and per-
formance variable and its nominal version is given by

F(P̄, K̄)− F(P, K) =

[
I −K̄

−Ḡ I

]−1

−

[
I −K

−G I

]−1

.

Using the expression derived in Chapter 3, see (3.4.18) Theorem 3.4.2, this may
be re-expressed as

F(P̄, K̄)− F(P, K) =

[
M U

N V

]
[

I −Q

−S I

]−1

− I


[

Ṽ Ũ

Ñ M̃

]
.

142 Chapter 5. Iterated and Nested(Q, S) Design

Clearly, this can be reinterpreted as a frequency weighted left fractional represen-
tation for the system:

S̄=


[

0 0

S 0

] [
I

S

]
[
S I

]
S

 (2.21)

as indeed

F(S̄, Q) =

[
0 0

S 0

]
+

[
I

S

]
Q (I − SQ)−1

[
S I

]

=

[
I −Q

−S I

]−1

−

[
I 0

0 I

]
.

(2.22)

The above expressions lead to the following theorem.

Theorem 2.4. Consider the block diagram of Figure 2.1. Let the model be as
defined in(2.19) and let the controller beK̄ = K (Q) of (2.5). Under these
conditions we have

F(P̄, K̄)− F(P, K) =

[
M U

N V

]
F
(
S̄, Q

) [Ṽ Ũ

Ñ M̃

]
.

It follows that theH∞ design ofK̄ for the plantP̄ can be approximated by
solving twoH∞ design problems. The firstH∞ design is to find an optimal con-
troller K for the nominal plantP, the nextH∞ design is a frequency weighted
H∞ design of theQ-factor on the plant̄S. Clearly, this leads to a suboptimalH∞
design for the plant, as indeed:

min
K̄

∥∥F
(
P̄, K̄

)∥∥
∞

≤ min
K
‖F (P, K)‖∞ +min

Q

∥∥∥∥∥
[

M U

N V

]
F
(
S̄, Q

) [Ṽ Ũ

Ñ M̃

]∥∥∥∥∥
∞

.

Even so, the additional cost may well be acceptable since the iterated design pro-
cess may at every stage be much less complex than solving the overall problem at
once. The following example illustrates the principle.

Example. Consider a true plant̄G as

Ḡ :



0.997 6 0.046 4 −0.000 2 0.006 6 0.000 7 −0.000 2 −0.001 2

−0.093 8 0.857 5 −0.016 2 0.217 4 0.037 6 −0.010 6 −0.044 1

−0.003 6 −0.003 6 0.813 8 −0.373 1 0.063 9 −0.008 6 0.008 3

−0.008 8 −0.008 8 −0.160 0 0.359 8 0.196 4 −0.039 5 0.020 2

−0.124 2 −0.124 2 0.102 4 −1.425 5 0.734 7 0.098 8 0.293 7

−0.035 1 −0.035 1 −0.077 4 0.707 1 −0.884 4 0.329 0 0.088 3

−1.500 0 −5.000 0 −3.000 0 2.500 0 −2.000 0 0 0


(2.23)

5.2. Iterated(Q, S) Design 143

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

0

10

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)
Ph

as
e

(d
eg

re
es

) 0

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

� 10

� 20

� 30

� 100

� 200

� 300

� 400

FIGURE 2.7. Modeling error
∥∥Ḡ− G

∥∥

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

0

20

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)
Ph

as
e

(d
eg

re
es

) 100

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

0

� 20

� 40

� 60

� 80

� 100

� 100

� 200

� 300

� 400

�����
P � K � �

�� ���
	P � K �
��

�����
P � K � �

�� ��� 	P � K �
��

FIGURE 2.8. Magnitude and phase plots ofF(P, K), F(P̄, K)

144 Chapter 5. Iterated and Nested(Q, S) Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency

M
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)
Ph

as
e

(d
eg

re
es

)

140

160

180

120

100

80
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency

� 20

� 40

� 60

� 80

� 100

FIGURE 2.9. Magnitude and phase plots ofF
(
P̄, K (Q)

)
and a nominal generalized plantP =

[
P11 P12
P21 P22

]
with P22 = G as

P :



0.858 4 −0.092 8 0 0 0.046 4 0

0.046 4 0.997 6 0 0 0.001 2 0

0 0 0.858 4 −0.092 8 0 0.046 4

0 0 0.046 4 0.997 6 0 0.001 2

−1 3 −12 −20 0 1

1 −1 −5 −2 1 0


. (2.24)

The resulting modeling error̄G − G is depicted in Figure 2.7. An optimalH∞
controller is found to be

K :



0.952 4 −0.053 8 −0.010 5 0.014 1 −0.023 2

0.006 1 0.653 9 −0.188 9 −0.058 7 −0.147 6

0 0.190 0 1.056 1 0.097 8 0.110 1

0 0 0.154 9 0.722 2 0.049 5

0 0 0 0.203 5 −0.015 0

. (2.25)

It turns out thatK stabilizes bothḠ and G. The magnitude plots ofF(P, K),
F(P̄, K) are depicted in Figure 2.8. TheH∞-norm of the closed-loop transfer
function F(P̄, K) is well above that forF(P, K), although in most of the fre-
quency spectrum

∥∥F(P̄, K)
∥∥ is virtually identical to‖F(P, K)‖, see Figure 2.8.

The difference at low frequencies is due to unmodeled dynamics.

5.3. Nested(Q, S) Design 145

To design the additional controllerQ, we chooseṼ , Ũ , Ñ andM̃ based onG
and K . Thereby the frequency-shaped modeling errorS can be generated. But,
we only use its second order balanced-truncation model to form the generalized
error modelS̄via (2.21). Then an optimalH∞ controllerQ for S̄ is designed.

The controllerK (Q) = (U + M Q)(V + N Q)−1 evidently stabilizesḠ. Not
unexpectedly,

∥∥F(P̄, K (Q))
∥∥ is dramatically reduced at low frequencies relative

to
∥∥F(P̄, K)

∥∥, see Figure 2.9.

Main Points of Section

Off-line controller design using any of the available methods may not lead to
controllers that perform well on an actual plant. Reidentification can be used to
achieve improved controllers. The methods proposed here do not reidentify the
plant itself, but rather identify a version of the difference between the plant and
its model used for an initial design, denotedS. A controller Q is now designed
for S, working with performance objectives which do not conflict with those of
the initial design, but rather support these objectives. The controllerQ is then a
‘plug-in’ controller for augmentation of the initial feedback control closed-loop.

We observe that, in general, it is not possible to identifyS accurately from
closed-loop data. Rather, we identify̌S = (I − SQ)−1S, which is in one-to-
one correspondence withS, given Q. In the case of pole placement design, we
could proceed with an iterated control-identification design usingŠ, Q̌. However,
for H∞ and LQ control design, it is important to recoverS and then designQ
accordingly.

5.3 Nested(Q, S) Design

In this section, we redevelop the ideas of the previous section. The central idea
is to realize that given a plant-controller pair(G(S), K (Q)), the design of a con-
troller may be viewed as a design involving the pair(Q, S). Clearly it is then
possible to view this as a problem of the form(Q(Q1), S(S1)), etc. This heuristic
is made more precise in the sequel. The presentation here builds on the results
established in Section 5.2.

First we justify the nested(Q, S) identification-control cycle in a heuristic
manner. Then we develop a number of representation results to establish that the
nested(Q, S) procedure is capable of achieving arbitrary control objectives.

Heuristics

To fix the ideas, letḠ represent the plant and denoteG = G0 as an initial
model. LetK0 denote an initial stabilizing controller, stabilizing both the nominal
plant modelG0 as well as the plant̄G. Consider factorizationsG0 = N0M−1

0 =

146 Chapter 5. Iterated and Nested(Q, S) Design

yu

�
�

� � ��

K0

�
1

�
2�

s0r0

G0 � S0 �

J0 � �
U0 V � 1

0 	V � 1
0

V � 1
0
 V � 1

0 N0 �
FIGURE 3.1. Step 1 in nested design

M̃−1
0 Ñ0 andK0 = U0V−1

0 = Ṽ−1
0 Ũ0 satisfying the double Bezout equation

[
M0 U0

N0 V0

][
Ṽ0 −Ũ0

−Ñ0 M̃0

]
=

[
Ṽ0 −Ũ0

−Ñ0 M̃0

][
M0 U0

N0 V0

]

=

[
I 0

0 I

]
.

(3.1)

We have for someS0:

Ḡ = G0(S0) = (M̃0+ S0Ũ0)
−1(Ñ0+ S0Ṽ0)

= (N0+ V0S0)(M0+U0S0)
−1.

In order to identifyS0, we will now inject a signals0 into the control loop (see
Figure 3.1), which we assume to be uncorrelated to the input reference signalw1
and output disturbancew2. This yields, according to equation (2.1)

r0 = S0s0+ M̃(S0)w2+ Ñ(S0)w1. (3.2)

Assuming thats0 is measurable and not correlated tow1 andw2, it follows that we
can obtain an unbiased estimate forS0. Denote this estimate aŝS1 = N1M−1

1 =

M̃−1
1 Ñ1. Our new model for the plant now becomes

G1 = (M̃0+ Ŝ1Ũ0)
−1(Ñ0+ Ŝ1Ṽ0)

= (M̃1M̃0+ Ñ1Ũ0)
−1(M̃1Ñ0+ Ñ1Ṽ0)

= (N0M1+ V0N1)(M0M1+U0N1)
−1.

As in the previous section, it makes sense to update the controllerK by design-
ing a controllerQ1 for Ŝ1 such that the closed loop(Q1, Ŝ1) achieves some
desired objective. In particular, we require that(Q1, S0) is also stable. Given

5.3. Nested(Q, S) Design 147

Q1 = U1V−1
1 = Ṽ−1

1 Ũ1 and the double Bezout equation[
M1 U1

N1 V1

][
Ṽ1 −Ũ1

−Ñ1 M̃1

]
=

[
Ṽ1 −Ũ1

−Ñ1 M̃1

][
M1 U1

N1 V1

]

=

[
I 0

0 I

]
,

we have that for someS1

S0 = Ŝ1(S1) = (M̃1+ S1Ũ1)
−1(Ñ1+ S1Ṽ1)

= (N1+ V1S1)(M1+U1S1)
−1.

(3.3)

Our new controller becomes

K1(Q1) = (U0+ M0Q1)(V0+ N0Q1)
−1

= (U0V1+ M0U1)(V0V1+ N0U1)
−1.

(3.4)

Also the plant model is now

Ḡ = G1(S1) = [(N0M1+ V0N1)+ (N0U1+ V0V1)S1]

× [(M0M1+U0N1)+ (U0V1+ M0U1)S1]−1 .
(3.5)

If the actual closed loop does not respond as hoped for, we can repeat the above
procedure starting from the system modelG1 and controllerK1.

In order to identifyS1, we inject a signals1 in the control loop, see Figure 3.2.
Again,s1 is generated independently fromw1 andw2. We now have

r1 = S1s1+ M̃(S1)w2+ Ñ(S1)w1.

This allows us to find an estimate forS1. Denote this estimate aŝS2 = N2M−1
2 =

M̃−1
2 Ñ2 etc.
In this manner we proceed with the identification step ofŜi , i = 1, 2, . . . fol-

lowed by the control design stepQi . In the control, we are only concerned with
the control loop(Ŝi , Qi). The crucial assumption in order to keep nesting the de-
sign step is that at any one step,(Ŝi−1, Qi) is stable. This amounts to stating that
we always stabilize the original system. (See Figure 3.3). Clearly, the advantage of
this nesting approach over the iteration approach in the previous section is that at
any one step in the design, we have a much easier identification task. What is not
immediately clear in the present procedure is whether or not we have a potential to
lose out by a poor design, say at thei th nested loop. Using the iterated scheme, we
can always recover from a poori th iteration design. The following more formal
derivations serve to clarify the situation, and in particular demonstrate that in us-
ing nesting, no freedom of design is lost, as long as overall stability is maintained,
regardless of intermediate identification and/or control mishaps.

148 Chapter 5. Iterated and Nested(Q, S) Design

yu

�
�

� �
�
�

� ���
��

K1

�
1

�
1

�
2

�
2

�

s0r0

s1

s1

r1

r1

G0 � S0 �
G1 � S1 �

J0

J1 � �
U1 V � 1

1 	V � 1
1

V � 1
1
 V � 1

1 N1 �
FIGURE 3.2. Step 2 in nested design

Equivalent Representation∗

Consider a sequence of modelsGi ∈ Rp for i = 0, . . . ,m− 1. Let K i ∈ Rp

represent a sequence of associated stabilizing controllers, so that
(
Gi , K i

)
are

stabilizing pairs. LetGi = Ni M−1
i and K i = Ui V

−1
i , as usual, with all the

transfer functionsNi ,Mi ,Ui ,Vi ∈ RH∞ for all i = 0, . . . ,m− 1, satisfying the
double Bezout equation[

Mi Ui

Ni Vi

][
Ṽi −Ũi

−Ñi M̃i

]
=

[
Ṽi −Ũi

−Ñi M̃i

][
Mi Ui

Ni Vi

]

=

[
I 0

0 I

]
.

(3.6)

For eachḠ ∈ Rp there exists a uniqueS∈ Rp such that

Gi (S) =
(

M̃i + Gi+1(S)Ũi

)−1 (
Ñi + Gi+1(S)Ṽi

)
= (Ni + Vi Gi+1(S)) (Mi +Ui Gi+1(S))

−1 ,

(3.7)

for i = 0, . . . ,m− 1 with extremes

G0(S) = Ḡ, Gm(S) = S. (3.8)

Conversely, eachS ∈ Rp defines via the backward iterations (3.7) a uniqueḠ ∈
Rp.

It is important to observe that the modelsGi may be completely arbitrary. Also
neitherSnor Ḡ needs to be stable. This is captured in the following two results.

∗This material is more technical than that of Chapters 2 and 3. It is not required for subsequent
developments. On first reading one need but seek to grasp the key insights without being convinced of
the detailed formulations.

5.3. Nested(Q, S) Design 149

yu

�

�

�
�

��

Jm

Km � Q

Sm

K1

Km 1

�
1

�
2

�

s0r0

s1 r1

smrm

G0 � S0 �

J0

J1

���
���

���

FIGURE 3.3. Stepm in nested design

Lemma 3.1. Suppose we are given a sequence of modelsGi ∈ Rp and strictly
proper stabilizing controllersK i ∈ Rp for Gi , with (Ni ,Mi) and (Ui ,Vi) right
coprime factorizations ofGi andK i , respectively,i = 0,1, . . . ,m− 1. Then any
transfer matrixḠ ∈ Rp can be expressed in the following recursive manner in
terms of a uniqueGm(S) = S∈ Rp:

Ḡ = G0(S), Gi (S) = (Ni + Vi Gi+1(S))(Mi +Ui Gi+1(S))
−1, (3.9)

for i = 0, 1, . . . ,m− 1. Moreover, eachGi (S) belongs toRp. Conversely, any
givenGm = S ∈ Rp can recursively yieldGm−1(S), . . . ,G0 = G(S) in Rp via
(3.9).

Proof. See problems.

Notice that for any given plant, there always exists a strictly proper stabilizing
controller, see Vidyasagar (1985). Hence without loss of generality we can assume
thatUi is strictly proper.

For a matrix transfer function̄G = G(S) ∈ Rp in the recursive form of (3.9),
a parameterization of all rational proper controllers forḠ is summarized by the
following lemma.

Lemma 3.2. Given a matrix transfer function̄G = G(S) ∈ Rp with the recursive
representation(3.9), assume thatNi ,Mi ,Ui ,Vi ∈ RH∞ satisfy the double Be-

150 Chapter 5. Iterated and Nested(Q, S) Design

zout identity of(3.6) with Ni , Ui being strictly proper. Then any rational proper
controller for Ḡ can be recursively parameterized by

K (Q) = K0(Q), K i (Q) = (Ui + Mi K i+1(Q))(Vi + Ni K i+1(Q))
−1,

(3.10)

for i = 0, 1, . . . ,m− 1, in terms of a uniqueKm = Q ∈ Rp.

The practical importance of these lemmas (Lemma 3.1 and Lemma 3.2) is
twofold. First, there is no loss of information or control design freedom in the iter-
ative procedure, since Lemma 3.1 holds for arbitraryGi , K i . This provides strong
justification for the nested(Q, S) design method. Second, we may expect that
the iterative design/identification method explained in the previous subsection,
see also Figure 3.2, leads to stepwise improved models and control performance.
Each step provides diminishing returns, hence leading to a natural termination of
the iterative process, which in principle could indeed be continuedad infinitum.

Stability Results†

In this subsection, we extend the robust stabilization results for the nested two-
controller case in Chapter 3 to the nested multicontroller case as depicted in
Figure 3.3. We present conditions for the multicontroller closed-loop system of
Figure 3.4 to be stable. Figure 3.4 is a further generalization of Figure 3.3, al-
lowing us to discuss internal stability more precisely. First, let us consider what
well-posedness and internal stability means for the multicontroller case. The mul-
ticontroller scheme of Figure 3.4 iswell-posedand internally stableif and only
if each matrix transfer function fromui to ej exists and belongs toRH∞ for
i, j = 1, . . . ,2m+ 3. We proceed to find the necessary and sufficient conditions
for this.

Let us begin with the known case whenn = 1. Consider first the arrangements
of Figures 3.5 and 3.6. We then have the following mild generalization (to cope
with the additional external signals) of the stability results of Section 2.2 and
Section 3.4, see also Francis (1987).

Lemma 3.3. Given a2× 2-block matrix transfer functionP of the form(2.2.1),
assume thatP is stabilizable with respect to the controller arrangement of Fig-
ure 3.5. Then the matrix transfer function fromu1, u2, u3 to e1, e2, e3 is in RH∞
if and only if K stabilizesP22.

Proof. Directly from the definitions of stability.

Theorem 3.4. Consider Figure 3.6 withP being stabilizable with respect to the
controller arrangement of Figure 3.5. Then the system in Figure 3.6 is stable if
and only ifQ stabilizesS.

5.3. Nested(Q, S) Design 151

Jm

Q

P

�

�

�

� �

�

J0

Jn

e1

e2

e3

e4

e2m � 2

e2m � 4

e2m � 5

u1

u2u3

u2m � 2u2m � 3

u2m � 4u2m � 5

���
���

���

FIGURE 3.4. The class of all stabilizing controllers forP

P

K
��

e1

e2

e3

u1

u2u3

FIGURE 3.5. The class of all stabilizing controllers forP, m= 1

J

Q
�

�

�

�

e1

e2

e3

e4

e5

u1

u2u3

u4u5

P � S �

FIGURE 3.6. Robust stabilization ofP, m= 1

152 Chapter 5. Iterated and Nested(Q, S) Design

Proof. Mild generalizations of results in Section 3.4. The key step is to show
that the subblock of Figure 3.6 with inputs[u1 u2 u3 (e4−u4)]′ and outputs
[e1 e2 e3 (e5−u5)]′ has the form

P1(S) =


P11(S)+ P12(S)M(S)Ũ P21(S) P12(S)M(S)Ũ P12(S)M(S)Ṽ P1(S)M(S)

V M̃(S)P21 V M̃(S) N(S)Ṽ N(S)

U M̃(S)P21 U M̃(S) M(S)Ṽ M(S)

M̃(S)P21 M̃ Ñ S


where

P(S) =

[
P11(S) P12(S)

P21(S) P22(S)

]
, P22(S) = G(S),

G(S) = N(S)M(S)−1, N(S) = N + V S, M(S) = M +U S.

With these results as the background, let us now move to the multicontroller
case, with first the following lemma, which can be proved by an induction argu-
ment.

Lemma 3.5. The stability properties of the control scheme in Figure 3.4 withP
replaced byP(S) are equivalent to those of the control scheme in Figure 3.7
for i = 1, . . . ,m. In addition, if P is stabilizable with respect to the controller
arrangement of Figure 3.5, thenPi , i = 2, . . . ,m are also stabilizable.

Proof. See problems for an inductive proof. Start with proof results of Theo-
rem 3.4.

From this lemma, we can immediately see the following result.

Corollary 3.6. Consider the diagram in Figure 3.4. Then the following relations
hold:

e2i+2 = Pi,22(S)e2i+3+ Pi,21


u1
...

u2i+1

+ u2i+2, i = 1, (3.11)

An important identification implication of the relations (3.11) is thatPi,22(S) =
Ŝi (S), i = 0, 1, . . . ,m, can be identified successively from measurements. More
specifically, once the estimatêSi = Ni M−1

i of Ŝi (S) has been obtained through
identification and a corresponding augmented controllerJi together withQ has
been constructed, then̂Si+1(S), which is a frequency-shaped difference between

†This material is more technical than that of Chapters 2 and 3. It is not required for subsequent
developments. On first reading one need but seek to grasp the key insights without being convinced of
the detailed formulations.

5.3. Nested(Q, S) Design 153

Q
��

� �

��

�� e1��
e2i � 1

��

e2i � 2

e2i � 3

e2i � 4

e2m � 2

e2m � 3

e2m � 4

e2m � 5

�� u1��
u2i � 1

��

u2i � 2u2i � 3

u2m � 2u2m � 3

u2m � 4u2m � 5

Ji

Jm

Pi � S 	

������ ���

FIGURE 3.7. The(m− i + 2)-loop control diagram

Ŝi (S) and Ŝi , can be further identified on line from measurement. Notice that at
every stage of the nested design an “open-loop” identification problem has to be
solved. This is a clear advantage of the nested design over the iterated design of
the previous section.

Theorem 3.7. Assume thatP is stabilizable with respect to the controller ar-
rangement of Figure 3.5. Then the multiple control system shown in Figure 3.4
with P replaced byP(S), see also Figure 3.7, is internally stable if and only ifQ
stabilizesS.

Proof. By Lemma 3.5, the multiple control diagram is equivalent to the two-loop
control diagram depicted in Figure 3.7 specialized to the casei = m, Pm,22 =

Ŝm−1(S) andPm is stabilizable with respect to the controller arrangement of Fig-
ure 3.5. Thus, applying Theorem 3.4 to this two-loop diagram immediately yields
Theorem 3.7.

In the special case wherêSm(S) = S= 0, Theorem 3.7 tells us that the nested
multiple control system of Figure 3.4 is stable providedQ ∈ RH∞. This implies
that the multiple control system is always stable with any givenQ ∈ RH∞ when-
ever themth frequency-shaped plant model errorS is sufficiently ‘small’. It is
also obvious that ifQ is both stable and stabilizesS, that isQ strongly stabilizes
S, then the multiple control system is simultaneously stable forŜm(S) = 0 and
Ŝm(S) = S.

154 Chapter 5. Iterated and Nested(Q, S) Design

Lemma 3.8. Consider the(m + 1)-controller strategy of Figure 3.4, see also
Figure 3.7 withui = 0, i = 1, . . . ,2m+3. Assume that̂Si (0), i = 0, . . . ,m−1,
are strictly proper. Then the matrix transfer function frome2 to e3 equalsK (Q)
given as in(3.10)with Km = Q.

Proof. First, the following relations are immediate from the controller strategy of
Figure 3.4. [

e2i+3

e2i+5

]
=

[
Ui V

−1
i Ṽ−1

i

V−1
i −Ñi Ṽ

−1
i

][
e2i+2

e2i+4

]
, (3.12)

e2m+2 = Qe2m+5, i = 1, . . . ,m. (3.13)

Let Ti denote the matrix transfer function frome2i+4 to e2i+5. Then it is straight-
forward to check that (3.12) implies

e2i+3 = (Ui + Mi Ti)(Vi + Ni Ti)
−1e2i+2. (3.14)

Consequently,

Ti−1 = (Ui + Mi Ti)(Vi + Ni Ti)
−1. (3.15)

Noting that (3.13) givesTm = Q, one can conclude thatT0 = K0 with Km = Q.
This proves the lemma.

Corollary 3.9. SupposeNi is strictly proper fori = 0, 1, . . . ,m− 1. Then the
(m + 1)-controller scheme of Figure 3.4 is internally stable if and only if the
matrix transfer function fromu1, u2, u3 to e1, e2, e3 belongs toRH∞.

Proof. We only need to prove sufficiency. Assume that the matrix transfer func-
tion fromu1, u2, u3 to e1, e2, e3 belongs toRH∞. Quite evidently, this assumption
implies the stabilizability ofP(S) with respect to the controller arrangement of
Figure 3.5. From Lemmas 3.8 and 3.3, it follows thatK stabilizesG whereK is
defined as in (3.10) withKn = Q. But this is equivalent toQ stabilizing S by
Lemma 3.2; hence the internal stability of the(m+ 1)-controller strategy follows
directly from Theorem 3.7.

Main Points of Section

This section presents a nested controller structure and a dual nested plant repre-
sentation. The nested plant representation can be viewed as successive approxima-
tions to the plant model, and the nested controller as a successive approximation
to the ‘optimal’ controller for the actual plant.

The key stability result is a generalization of the results of Chapter 3 for the two
controller/plant nested representations. Namely the stability of the nested scheme
depends on the stability of that of the successive designs, based on the successive
approximations to the plant.

The nested approach to controller design appears to be a very natural way to
improve on previous designs.

5.4. Notes and References 155

5.4 Notes and References

The material for this chapter has arisen from the authors earlier works recorded
in Tay et al. (1989), Yan and Moore (1992), and Yan and Moore (1994). It makes
connection with the concepts of iterated design as developed in Zang et al. (1991).
The identification method proposed in Section 5.2 is due to Hansen (1989). It
is often referred to as identification in dual-Youla parameterization format. The
method has been extensively used in the context of identification for control (Lee,
1994; Partanen, 1995; Schrama, 1992b).

Problems

1. Verify Theorem 2.2 using the factorizations (2.4.18), (2.4.19) and also for
(2.4.22), (2.4.23).

2. Verify the lemmas and theorems of the chapter.

CHAPTER 6

Direct Adaptive-Q Control

6.1 Introduction

It should by now be evident that the parameterization of all stabilizing controllers
via a stable matrix transfer functionQ is an interesting and powerful control de-
sign vehicle. In the previous two chapters we indicated how one could optimize
Q over a number of different control performance objectives, either in a purely
off-line or iterative identification and control design approach.

In the off-line method, we start from a given plant model, and our attention is
focussed on rejecting disturbances or maximizing robustness with respect to un-
modeled dynamics. In the iterative method, our premise at the outset is that the
plant model is inadequate and may prevent us from obtaining the desired perfor-
mance. In this situation, model identification via the dualS parameterization of
all plants stabilized by a given controller, and control via a ‘plug-in’ controllerQ
is the natural way to proceed.

In the previous chapter we have considered iterative or nested methods, alter-
nating identification and control design steps. We demonstrated that, when care
is exercised, these iterative methods are capable of achieving any desired control
objective.

In this chapter, we introduce the first of two adaptive methods. Here, we dis-
cuss direct adaptive-Q control. In this approach,Q is adjusted without identifi-
cation of S. This method is suited for the situation where the signal model un-
certainty is limited. For example, the plant model itself could be adequate but
the model for the external signals is not, as would be the case when the control
objective is to track an unknown signal or a signal with uncertain time-varying
spectral content. Another application of direct adaptive-Q control is for retuning
an existing controller, either because the original (stabilizing) controller is ineffi-
cient to obtain good performance or because the design criterion is altered. In this
chapter we limit ourselves to optimization criteria based on rms signal measures,
but in principle, the methodology is applicable to any optimization based control

158 Chapter 6. Direct Adaptive-Q Control

design. Whenever control performance is inadequate due to severe model-plant
mismatch, direct adaptive-Q design is unlikely to be sufficiently powerful, as is
demonstrated. The analysis of the adaptive-Q method uses averaging ideas. The
main concepts of averaging as they are required in the analysis are collected in
Appendix C.

Unlike traditional adaptive control methods, we start here always from the
premise that we know how to stabilize the plant, but may not know how to achieve
the desired control performance. Adaptation is seen here as a mechanism to im-
prove performance on-line. The analysis we present is aimed at this objective. The
fact that we use slow adaptation is not a real restriction for our purposes. Indeed,
adaptive performance enhancement requires adaptation to be slow, at least slow
as compared to the normal control dynamics of the closed loop.

The chapter is organized as follows. First we introduce the direct adaptive-Q
control algorithm. The algorithm is completely developed in state space notation.
This facilitates the analysis. Indeed, the adaptive-Q control leads to a nonlinear
and time-varying control system. Despite this observation, and due to the time
scale separation properties, frequency domain ideas play an important role in un-
derstanding the behavior of the adaptive system. The direct adaptive-Q method
is first analyzed under the premise of a perfect plant model. It is then established
that optimal control is achieved. Next we analyze how the adaptive mechanism
breaks down under (severe) model-plant mismatch, but with a graceful degrada-
tion. The generic scheme is discussed. The chapter ends with the discussion of a
scalar example.

6.2 Q-Augmented Controller Structure: Ideal Model
Case

The plant signal model is represented as:

xk+1 = Axk + Buk + Bw1,k; x0,

yk = Cxk + Duk + w2,k,
(2.1)

wherexk ∈ R
n is the state vector,uk ∈ R

p is the input,yk ∈ R
m is the output,w1,k

is an input disturbance andw2,k is an output reference signal. The only signals
available for control purposes are the inputuk and the outputyk. Neither the input
disturbancew1,k nor the reference signalw2,k are available. The control objective
is to obtain an internally stable closed-loop system with output regulation, that is
regulatingyk to zero. Otherwise interpreted, we want to have the actual system
response(Cxk + Duk) track the negative of the reference signalw2,k as closely
as possible.

Let us work with a controller structure based on a state estimate feedback ar-
rangement as depicted in Figure 2.5.4. The controller structure is based on a full

6.2. Q-Augmented Controller Structure: Ideal Model Case 159

state observer. (See Chapter 2 for the development of the state space realization):

x̂k+1 = Ax̂k + Buk − Hrk; x̂0,

rk = (yk − Duk)− Cx̂k,

uk = Fx̂k + sk.

(2.2)

Here x̂k is the estimate for the statexk, the estimation residual isrk andsk is the
extra input to be generated via theQ filter. The nominal controller (withQ = 0)
provides stability but may not necessarily attain satisfactory disturbance rejection.
A nominal controller based solely on the plant model, not taking into account the
disturbances, could hardly be expected to achieve optimum disturbance rejection.
The Q filter is introduced to enhance disturbance rejection. In order to obtain an
implementable adaptively updatedQ, we restrict the dynamic complexity ofQ as
follows:

zk+1 = Aqzk + Bqrk; z0,

sk = 2kzk.
(2.3)

Here zk ∈ R
nq is the state of the adaptiveQ filter and Aq is a stable matrix,

chosen by the designer. Typically, one would select the eigenvalues of the matrix
Aq to be comparable in magnitude with the eigenvalues of the matrixA+ HC,
which determines the observer dynamics. The output equation is to be adaptively
adjusted. In this equation,2k is the adaptation parameter being ap× nq matrix
of adjustable parameters.

In order to focus the development, we restrict the desired signal used to formu-
late the control objectives asek =

[yk
uk

]
. Our control objective is to achieve fast

regulation with disturbance rejection, while containing the control effort.
As pointed out in (2.5.18), the transfer functionT2 from the disturbance signal

wk :=
[w1,k
w2,k

]
to ek is affine in the transfer functionQ. It follows that for2k = 2

(no adaptation), this transfer function is affine in2. This can also be directly
observed from the following state space realization for the mapping fromwk to
ek =

[yk
uk

]
:

xk+1

zk+1

x̃k+1

yk

uk


=



A+ BF B2k −BF B 0

0 Aq −BqC 0 −Bq

0 0 A+ HC B H

C + DF D2k −DF 0 I

F 2k −F 0 0





xk

zk

x̃k

w1,k

w2,k


. (2.4)

HereXk = [x′k z′k x̃′k]′ is a closed-loop system state variable and the state estima-
tion error for the plant is̃xk = xk − x̂k. It follows from the state space represen-
tation (2.4) that the closed-loop dynamics are in essence determined by the block
designed elementsA+ BF, Aq, A+ HC, so that the adaptation parameter2k

can not seriously affect the stability of the closed loop. Indeed, BIBO stability of

160 Chapter 6. Direct Adaptive-Q Control

the nominal control design, that is (2.4) with2k ≡ 0, informs us that for any
bounded sequence2k and any bounded disturbance signalwk, the stateXk of the
closed-loop equation (2.4) is bounded. More formally, we can state:

Lemma 2.1. Consider the system(2.4). Let |wk| ≤ W and |2k| ≤ θ for all k.
Assume that the matricesA+ BF, A+ HC and Aq are stable in that:

max|eig(A+ BF)| < λ1 < 1, (2.5)

max(|eig(A+ HC)| , |eig(Aq)|) < λ0 < λ1 < 1. (2.6)

Then there exist positive constantsC0,C1 ≥ 1 such that:

(|x̃k| , |zk|) ≤ C0λ
k
0(|x̃0| , |z0|)+ C0(1− λ

k
0)W, (2.7)

and

|xk| ≤ C1λ
k
1(|x0| + |x̃0| + θ |z0|)+ C1(1+ θ)(1− λ

k
1)W. (2.8)

Proof. Follows directly from thevariation of constants formulaapplied to (2.4).

Before continuing with the introduction of the adaptive algorithm, it is instructive
to see how the plug in controller achieves tracking. Let us consider the case in
which all signalsy, u, w1 andw2 are scalar valued. From the system equation
(2.4), it is clear that we obtain a transfer function fromw1, w2 to y of the form:

y =
L1(z)+ L2(z)L2(z)

PC(z)
w1+

B1(z)+ B2(z)B2(z)

PC(z)
w2. (2.9)

HereL1, L2, L2, PC, B1, B2, B2 are polynomials. The polynomialPC(z) has as
its roots the eigenvalues of the matricesA+BF, Aq andA+HC. The polynomi-
alsL2(z) andB2(z) have coefficients which are linear functions of the2 param-
eters. From (2.9), but also from (2.4), we observe that the poles of the system are
completely unaffected by the plug in controller2. However, by appropriate selec-
tion of2, we can minimize‖e‖rms. In particular, ifw1,w2 have a finite spectrum
containing saynw different frequency lines (counting negative frequency lines!)
then exact disturbance rejection and tracking can be achieved if2 contains at
leastnw free parameters which place appropriate zeros in the transfer function.
Hence we are discussing a notch filter structure, which leads us to an adaptive
notch filter.

6.3 Adaptive-Q Algorithm

In order to highlight the principle underlyingQ filter adaptation, we restrict our-
selves to the simplest of algorithms. Lemma 2.1 in Section 6.2 greatly simplifies

6.3. Adaptive-Q Algorithm 161

our analysis. Here we are in the pleasant situation where stability is guaranteeda
priori and so our focus can be on performance issues within an adaptive context,
rather than on closed-loop stability normally of foremost concern in the analysis
of adaptive systems. After all, performance enhancement is exactly the main mo-
tivation for using an adaptive algorithm and the less concern there is on stability
issues the better.

Let us adjust2k as to minimize the criterion:

J(2) = lim
N→∞

1

N

N∑
k=1

e′k Rek; R= R′ ≥ 0. (3.1)

An approximatesteepest descentalgorithm may be used to update2k in a recur-
sive manner as follows:

2i j ,k+1 = 2i j ,k − µ
∂e′k
∂2i j

∣∣∣∣
2k

Rek,

or in short hand:

2i j ,k+1 = 2i j ,k − µγ
′

i j ,k Rek; i = 1 . . . p, j = 1 . . . nq. (3.2)

Here2i j ,k is thei j th entry in the matrix2k, andγi j ,k is anm+ p column vector
of sensitivity functions, obtained from:

 0i j ,k+1

γi j ,k

 =


A+ BF BEi j

C + DF DEi j

F Ei j


 0i j ,k

zk

 ; 0i j ,0 = 0, (3.3)

whereEi j is a matrix of zero elements except for a unity at thei j th position. No-
tice that the gradient vectorγi j ,k is indeed independent of2i j ,k, thus confirming
the earlier observation that the transfer function fromwk to ek is affine in2.

In the update algorithm (3.2), the design parameterµ is a small positive con-
stant which scales the adaptation speed. The equations (3.2) and (3.3) describe the
“adaptive” mechanism.A priori, (3.2) does not guarantee that2k will be bounded.
Although, it turns out that in the ideal case, the algorithm does have this property.
Boundedness may be guaranteed by either projecting2k back into a bounded set
or by introducing someleakagein the update equation (3.2).Projectiononto a
ball (with center 0 and radiusθ denoted asB(0, θ)) leads to an algorithm of the
form:

2∗i j ,k+1 = 2i j ,k − µγ
′

i j ,k Rek,

2k+1 = 2
∗

k+1 if 2∗k+1 ∈ B(0, θ),

= 2∗k+1
θ∥∥2∗k+1

∥∥ otherwise.

(3.4)

162 Chapter 6. Direct Adaptive-Q Control

Leakage may be implemented as:

2i j ,k+1 = (1− µλ)2i j ,k − µγ
′

i j ,k Rek, (3.5)

whereλ ∈ (0, 1) is the leakage factor. Leakage contracts2k towards zero, that is,
it prefers an unmodified controller design. It will be shown that in the presence of
sufficiently rich signalsneither of these modifications is required, at least in the
ideal case. In general it is good practice to implement either one.

6.4 Analysis of the Adaptive-Q Algorithm: Ideal Case

In order to obtain some insight into the behavior of the adaptive algorithm, we
analyze the closed-loop system described by (2.4), (3.2) and (3.3), not considering
the projection or the leakage modification.

Also, in order that the “criterion minimization” task attempted by the adaptive
algorithm be well posed we assume that the disturbance signalwk is stationary.
More precisely, we assume that:

Assumption 4.1. Stationary signals:wk is a bounded signal such that there exist
constant matricesEw, Cw(`), ` = 0, 1, . . . such that for all integersN ≥ 1∣∣∣∣k0+N−1∑

k=k0

(wk − Ew)

∣∣∣∣ ≤ C2Nγ ,

∣∣∣∣k0+N−1∑
k=k0

(wkw
′

k−` − Cw(`))

∣∣∣∣ ≤ C3Nγ , ` = 0, 1, . . . ,

(4.1)

for some positive constantsC2,C3 independent ofk0 andγ ∈ (0, 1).

From the condition (4.1) it follows that the criterion (3.1) is well defined for any
fixed2. In particular asN goes to infinity theCesáro meanin (3.1) converges to
J(2) at the same rate asN−1+γ converges to 0.

We also assume that the disturbance is sufficiently rich. In particular we assume
that:

Assumption 4.2. Exciting signals:wk is such that for any stable, rational, matrix
transfer functionH ∈ RH(m+p)

∞ the signalw f = Hw satisfies:∣∣∣∣k0+N−1∑
k=k0

(w f,kw
′

f,k − Cw f)

∣∣∣∣ ≤ C4Nγ , (4.2)

for someC4 > 0, and some symmetric positive definiteCw f , andγ ∈ (0, 1).

Under Assumption 4.2, there exists a unique2∗ such thatJ(2∗) ≤ J(2) for
all 2, indeedJ(2) is quadratic in2 with positive definite Hessian.

6.4. Analysis of the Adaptive-Q Algorithm: Ideal Case 163

Remark. Assumption 4.2 not only guarantees the existence of a unique2∗ min-
imizer of J(2) but unfortunately, also excludes the possibility of exact tracking.
Indeed, Assumption 4.2 impliesinter alia that the spectral content ofw is not
finite.

Under Assumption 4.1 and providedµ is sufficiently small we can use averag-
ing results to analyze the behavior of the adaptive system. For an overview of the
required results from averaging theory, see Appendix C. The following result is
established.

Theorem 4.3. Consider the adaptive system described by(2.4), (3.2) and (3.3).
Let A+ BF, A+ HC, Aq be stable matrices in that(2.5)and (2.6)are satisfied.
Let the disturbance signalwk =

[
w1k
w2k

]
satisfy Assumptions 4.1 and 4.2, and

‖wk‖ ≤ W. Then there exists a positiveµ∗ such that for allµ ∈ (0, µ∗) the
adaptive system has the properties:

1. The system state is bounded; for all initial conditionsx0, x̃0, z0,20:

‖2k‖ ≤ θ for someθ > 0,

(|x̃k| , |zk|) ≤ C0λ
k
0(|x̃0| , |z0|)+ C0(1− λ

k
0)W,

|xk| ≤ C1λ
k
1(|x0| + |x̃0| + |z0| θ)+ C1(1+ θ)(1− λ

k
1)W,

for all k = 0, 1, . . . for some constantsC1, C0 independent ofµ, W, θ . See
also(2.7)and (2.8).

2. Near optimality:

lim sup
k→∞

∥∥2k −2
∗
∥∥ ≤ C5µ

(1−γ)/2, (4.3)

where2∗ is the unique minimizer of the criterion(3.1). The constantC5 is
independent ofµ.

3. Convergence is exponential:∥∥2k −2
∗
∥∥ ≤ C6(1− Lµ)k

∥∥20−2
∗
∥∥ for all k = 0, 1, . . . , (4.4)

for someC6 > 1 andL > 0 independent ofµ.

Proof∗. DefineXk(2) as the state solution of the system (2.4), denotedXk(2k),
with 2k ≡ 2. In a similar manner defineek(2) as its output. Such correspond
to the so-called frozen system state and output. These are zero adaptation approx-
imations for the case when2k ≈ 2. Because2k is slowly time varying and
because of the stability of the matricesA+ BF, Aq and A+ HC it follows that
for sufficiently smallµ, provided|2k| ≤ θ ,

|Xk − Xk(2k)| ≤ C7µ; someC7 > 0, for all k : |2k| ≤ θ,

|ek − ek(2k)| ≤ C7µ; someC7 > 0, for all k : |2k| ≤ θ.

∗This proof may be omitted on first reading.

164 Chapter 6. Direct Adaptive-Q Control

Now, (3.2) may be written as:

2i j ,k+1 = 2i j ,k − µγ
′

i j ,k Rek(2k)+ O(µ2),

which is at least valid on a time intervalk ∈ (0,M/µ), for someM > 0.
The averaged equation becomes:

2av
i j ,k+1 = 2

av
i j ,k − µ

∂ J(2)

∂2i j

∣∣∣∣
2=2av

k

.

Here we observe that for all finite2:

lim
N→∞

1

N

k0+N−1∑
k=k0

γ ′i j ,k Rek(2) =
∂ J(2)

∂2i j
.

This follows from Assumption 4.1. Providedµ is sufficiently small, it follows that
2av

k is bounded and converges to2∗. Indeed, the averaged equation is a steepest
descent algorithm for the cost functionJ(2). In view of Assumption 4.2,J(2)
has a unique minimum, which is therefore a stable and attractive equilibrium, see
Hirsch and Smale (1974).

The result then follows from the standard averaging theorems presented in Ap-
pendix C, in particular, Theorem C.4.2.

Remarks.

1. The same result can be derived under the weaker signal assumption:

Assumption 4.4. The external signalw is such that there exists a unique
minimizer2∗ for the criterion(3.1).

Assumption 4.4 allows for situations where exact output tracking can be
achieved.

2. Generally, the adaptive algorithm achieves near optimal performance in an
exponential manner. Of course, the convergence is according to a large time
constant, asµ is small.

3. The real advantage of the adaptive algorithm is its ability to track near opti-
mal performance in the casewk is not stationary. Indeed, we can infer from
Theorem 4.3 that provided the signalwk is well approximated by a station-
ary signal over a time horizon of the order of 1/µ, the adaptive algorithm
will maintain near optimal performance regardless of the time-varying char-
acteristics of the signal.

If we consider the adaptive algorithm with leakage, we may establish a result
which no longer requires sufficiently rich external signals. In this situation, there
is not necessarily a unique minimizer for the criterion (3.1). The following result
holds:

6.4. Analysis of the Adaptive-Q Algorithm: Ideal Case 165

Theorem 4.5. Consider the adaptive system described by(2.4), (3.3) and (3.5).
Let A+ BF, A+ HC and Aq be stable matrices satisfying the conditions(2.5)
and (2.6). Let the external signal be stationary, satisfying Assumption 4.1, and
‖wk‖ ≤ W. Then there exists a positiveµ∗ such that for allµ ∈ (0, µ∗) the
adaptive system has the properties

1. The system state is bounded for all possible initial conditionsx0, x̃0, z0,
20:

‖2k‖ ≤ θ, for someθ > 0,

(|x̃k| , |zk|) ≤ C0λ
k
0(|x̃0| , |z0|)+ C0(1− λ

k
0)W,

|xk| ≤ C1λ
k
1(|x0| + |x̃0| + |z0| θ)+ C1(1+ θ)(1− λ

k
1)W,

for all k = 0, 1, . . . and constantsC0, C1 > 0 independent ofµ, W andθ .

2. Writing∂ J/∂2 = 0 in the form0 vec2− E = 0†; then there exists a2∗,
vec2∗ = (0 + λI)−1E such that for someC2 independent ofµ

lim sup
k→∞

∥∥2k −2
∗
∥∥ ≤ C2µ

(1−γ)/2.

3. Convergence is exponential (for someC3 > 0, L > 0):∥∥2k −2
∗
∥∥ ≤ C3(1− Lµ)k

∥∥20−2
∗
∥∥ ; k = 0, 1,

Proof. The proof follows along the same lines as the proof of Theorem 4.3. It suf-
fices to observe that the averaged version of equation (3.4) governing the update
for the estimate2k becomes:

2av
i j ,k+1 = 2

av
i j ,k − µ

(
∂ J(2)

∂2i j

∣∣∣∣
2=2av

k

+ λ2av
i j ,k

)
. (4.5)

The existence of the averages is guaranteed by Assumption 4.1. It follows that
there exists a unique equilibrium for (4.5) given by2∗. Because0 = 0′ ≥ 0, and
0 + λI > 0 for all λ > 0, then2∗ is a locally exponentially stable solution of
(4.5), that is for sufficiently smallµ, such that|eig(I − µ(0 + λI))| < 1. This
establishes the result upon invoking Theorem C.4.2.

Remarks.

1. The result of Theorem 4.5 establishes the rationale for having the exponen-
tial forgetting factor(1− µλ) in (3.5) satisfying 0< 1− µλ < 1. The
exponential forgettingof past observations should not dominate the adap-
tive mechanism, otherwise the only benefit which can be derived from the
adaptation will be due to the most recent measurements.

†vec2 denotes the column vector obtained by collecting all columns of the matrix2 from left to
right and stacking them under one another.

166 Chapter 6. Direct Adaptive-Q Control

2. The minimizers of the criterion (3.1) are of course the solutions of0vec2−
E = 0. In the case of0 being only positive semi-definite and not positive
definite, there is a stable linear subspace of2 parameter space, achieving
optimal performance. In this case the exponential forgetting is essential to
maintain bounded2. Without it, the adaptation mechanism will force2k

towards this linear subspace of minimizers, and subsequently2k will wan-
der aimlessly in this subspace. Under such circumstances, there are com-
binations ofw signals that will cause‖2k‖ to become unbounded. The
forgetting factorλ prohibits this.

3. The forgetting factor guarantees boundedness, but with the cost of not
achieving optimality. Indeed,2∗ (as established in Theorem 4.5 Item 2)
solves (0 + λI) vec2 = E, not 0 vec2 = E. The penalty for
this is however a small one. If0 were invertible, then for sufficiently
smallλ,

vec2∗ = 0−1E − λ0−2E + λ20−3E + · · ·

Hence there is but an orderλ error between the obtained2∗ and the optimal
one,0−1E. More generally,0 and E may be expressed as0 =

∑k
i 0i0

′

i
and E =

∑k
i 0i ai , with 0′i0i = 1, i = 1, . . . , k and 0′i0 j = 0

for i 6= j , i, j = 1, . . . , k. The0i may be interpreted as those direc-
tions in parameter space in which information is obtained from the ex-
ternal signalw. If k < dim(vec2), that is0 is singular, then we have
that

3 j vec2∗ = 0; j = k+ 1, . . . ,dim(vec2),

0′i vec2∗ =
ai

1+ λ
; i = 1, . . . , k,

where the3 j , j = k + 1, . . . ,dim(vec2) complement the0i , i =
1, . . . , k to form an orthonormal basis for the parameter space. Again we
see that near optimal performance is obtained.

6.5 Q-augmented Controller Structure: Plant-model
Mismatch

In Sections 6.2, 6.3 and 6.4, the ideal situation where the plant is precisely mod-
eled has been discussed. Normally, we expect the model to be an approximation.
Let the controller be as defined in (2.2) and (2.3). The nominal controller corre-
sponds to2 = 0. As usual, we assume that the nominal controller stabilizes the
actual plant. Using the representations developed in Chapters 2 and 3 the plant is

6.5. Q-augmented Controller Structure: Plant-model Mismatch 167

here represented by:


xk+1

vk+1

yk

 =


A −HCs B B 0

−BsF As Bs Bs 0

C Cs D 0 I




xk

vk

uk

w1k

w2k


, (5.1)

where

G :

 A B

C D


is the realization for the model (see also (2.1)), and

S :

 As Bs

Cs 0

 (5.2)

represents a stable system characterizing the plant model mismatch. The vector
vk ∈ R

s is the state associated with the unmodeled dynamics. The matricesH
and F are respectively the gain matrices used to stabilize the observer and the
nominal system model. The representation (5.1) is derived from the earlier result
(3.5.1), with the assumptionDs = 0 and using a nominal stabilizing controller in
observer form, that is, with theZ of (3.5.4) having the form

Z :=

[
M U

N V

]
:=


A+ BF B −H

F I 0

C + DF D I

 . (5.3)

From the results of Chapter 3, we recall that the controller (2.2) withsk ≡ 0, that
is, the nominal controller stabilizes any system of the form (5.1) as long asAs is
a stable matrix. It is also clear that any system of the form (5.1) withAs stable
andCs = 0 is stabilized by the controller (2.2) with the stableQ-filter (2.3). More
importantly it is established in Theorem 3.4.2 that the controlled system described
by equation (5.1), (2.2) and (2.3) with2k ≡ 2 is stable if and only if the matrix[

As Bs2

BqCs Aq

]
(5.4)

is a stable matrix. It has all its eigenvalues in the open unit disk, since this con-
dition is equivalent to requiring that the pair(Q, S) is stabilizing. It is clear that
some prior knowledge about the ‘unmodeled dynamics’S is required in order to

168 Chapter 6. Direct Adaptive-Q Control

be able to guarantee that(Q, S) is a stabilizing pair. (Also recall that this result
does not requireAs to be stable!)

The closed loop, apart from the adaptation algorithm, may be represented in
state space format as follows:

xk+1

vk+1

zk+1

x̃k+1

yk

uk


=



A+ BF −HCs B2k −BF B 0

0 As Bs2k −BsF Bs 0

0 −BqCs Aq −BqC 0 −Bq

0 0 0 A+ HC B H

C + DF Cs D2k −DF 0 I

F 0 2k F 0 0





xk

vk

zk

x̃k

w1,k

w2,k


.

(5.5)

The state variable is nowxk = (x′k v
′
k z′k x̃′k)

′, where agaiñxk is the state estimation
error x̃k = xk − x̂k.

Obviously the stability of the above closed loop (5.5) system hinges on the
stability of the matrix [

As Bs2k

−BqCs Aq

]
.

Due to the presence of the unmodeled dynamics, it is also obvious that the inter-
connection between the disturbance signalwk and our performance signalek =[yk

uk

]
is no longer affine in2k. Cs 6= 0 is the offending matrix.

In order to present the equivalent of Lemma 2.1 for the system (5.5) we make
the following assumption concerning the effect of the unmodeled dynamics:

Assumption 5.1. There exists a positive constant2s such that for all‖2‖ ≤ 2s∣∣∣∣∣eig

[
As Bs2

−BqCs Aq

]∣∣∣∣∣ < λs < λ0 < 1 (5.6)

for someλs > 0. (λ0 is defined in(2.6)).

In essence we are requiring that the unmodeled dynamics are well outside the
bandwidth of the nominal controller, to the extent that for any2 modification of
the controller with “gain” bounded by2s the dominant dynamics are determined
by the nominal model and nominal controller system. The bound2s can be con-
servatively estimated from a small gain argument. In order to obtain a reasonable
margin for adaptive control, with2s not too small, it is important that the nominal
controller has small gain in the frequency band where the unmodeled dynamics
are significant.

The small gain argument is obtained as follows. DenoteS(z) = CS(z I −
AS)
−1BS and H2(z) = (z I − Aq)

−1Bq. Then, the interconnection of(Q, S)

6.6. Adaptive Algorithm 169

will be stable provided that

‖2H2(z)S(z)‖ < 1 on |z| = 1,

or

‖2‖ <
1

‖H2(z)S(z)‖
on |z| = 1. (5.7)

From these inequalities we deduce that in order to have an effective plug in con-
troller Q, the controller transfer functionH2(z) should be negligible in the fre-
quency band where significant model-plant mismatch is expected. As explained
before, due to the frequency weighting,S(z) is only significant outside the pass-
band of the nominal controller.

With the above assumption (5.6) we are now in a position to state the equivalent
of Lemma 2.1 for the system (5.5).

Lemma 5.2. Consider the system(5.5). Let Assumption 5.1 hold. Let‖wk‖ ≤ W
and let condition(2.5)and(2.6) from Lemma 2.1 hold. There exists a1 > 0 such
that for all sequences2k such that‖2k‖ ≤ 2s and‖2k+1−2k‖ ≤ 1, the state
of the system(5.5) is bounded. In particular, there exists positive constantsC0,C1
such that:

(|zk| , |vk| , |x̃k|) ≤ C0λ
k
0(|z0| , |v0| , |x̃0|)+ C0(1− λ

k
0)W,

|xk| ≤ C1λ
k
1(|x0| + |x̃0| + |v0| +2s |z0|)

+ C1(1+2s)(1− λ
k
1)W.

Lemma 5.2 is considerably weaker than Lemma 2.1. Due to the presence of
the unmodeled dynamics we not only need to restrict the amount of adaptation of
2s, but also need to restrict the adaptation speed; at least if we want to guarantee
that adaptation isnot going to alter the stability properties of the closed loop. We
argue that the requirement that adaptation improves the performance of a nom-
inal control design is essential in practical applications. From this perspective,
Lemma 5.2 established the minimal (be it conservative) requirements that need to
be imposed on any adaptation algorithm we wish to implement. It provides yet
another pointer for why slow adaptation is essential.

6.6 Adaptive Algorithm

Let us adjust2k so as to minimize the criterion (3.1) within the limitation imposed
by Lemma 5.2. An approximate steepest descent algorithm for updating2k looks
like:

2i j ,k+1 = 2i j ,k − µγ
′

i j ,k Rek; i = 1 . . . p, j = 1 . . . nq. (6.1)

170 Chapter 6. Direct Adaptive-Q Control

Hereγi j ,k is a column vector of approximate sensitivity functions given by equa-
tion (3.3). When used in conjunction with system (2.4) theγi j ,k are asymptoti-
cally exact estimates for the sensitivity functions, whereas in the presence of the
unmodeled dynamicsvk, they are only approximate estimates.

As indicated in Lemma 5.2 the basic algorithm (6.1) needs to be modified us-
ing projection to guarantee that‖2‖ ≤ 2s andµ needs to be sufficiently small
so as to guarantee that‖2k+1−2k‖ < 1. Notice that in essence the adaptive
algorithm is identical to the algorithm proposed in Section 6.3.

Before proceeding with the analysis, we provide here the state space realization
for the exact sensitivity functions with respect to a change in2i j , denotedgi j ,k.
Directly from (5.5) we obtain:

 Gi j ,k+1

gi j ,k

 =


A+ BF −HCs B2 BEi j

0 As Bs2 BsEi j

0 −BqCs Aq 0

C + DF Cs D2 DEi j

F 0 2 Ei j


 Gi j ,k

zk

 ;

Gi j ,0 = 0.

(6.2)

Clearly withCs = 0 we recover up to exponentially decaying terms the expression
for the sensitivity functions as given in equation (3.3). The difference between
the true nonimplementable sensitivitiesgi j ,k and the approximate implementable
sensitivitiesγi j ,k is governed by:

 G̃i j ,k

gi j ,k − γi j ,k

 =


A+ BF −HCs B2 0

0 As Bs2 BsEi j

0 −BqCs Aq 0

C + DF Cs D2 0

F 0 2 0


 G̃i j ,k

zk

 ;

G̃i j ,0 = 0. (6.3)

From the above expression it follows that the implemented sensitivity function
γi j ,k is a good approximation for the exact sensitivity functiongi j ,k under the
now familiar conditions: unmodeled dynamics are effective only outside the pass-
band of the nominal controller, and the disturbanceswk to be rejected are limited
in frequency content to the passband of the nominal controller. Notice also that
the linear gain fromzk to gi j ,k−γi j ,k may be over-estimated by a constant propor-
tional to |Cs|, which again confirms that forCs = 0 the approximate sensitivity
function is asymptotically exact.

6.7. Analysis of the Adaptive-Q Algorithm: Unmodeled Dynamics Situation 171

6.7 Analysis of the Adaptive-Q Algorithm:
Unmodeled Dynamics Situation

In this section, in studying the unmodeled dynamics situation, we proceed along
the same lines used for the analysis of the adaptive algorithm under ideal model-
ing, see Section 6.4. In particular we assume that the external signalswk are both
stationary and sufficiently rich.

Unfortunately, due to the presence of the unmodeled dynamics we can no
longer conclude thatJ(2) is quadratic in2. Indeed, we have for2 constant,
using Parseval’s Theorem:

J(2) = lim
N→∞

1

N

N∑
k=1

e′k Rek

=
1

2π

∫ 2π

0
W∗(ei θ)T∗2(e

i θ)RT2(e
i θ)W(ei θ)dθ.

(7.1)

Here the transfer function from the disturbancewk =
[
w1,k
w2,k

]
to ek =

[yk
uk

]
, de-

notedT2, has a state space realization as indicated in (5.5) andW(z) is the z-
transform corresponding to the external signalw. ObviouslyT2 is not affine in
2, henceJ(2) is not quadratic in2.

Under these circumstances, we can establish the following result:

Theorem 7.1. Consider the adaptive system described by(3.1), (3.2) and (5.5).
Let θ ≤ 2S. Assume that the conditions(2.5), (2.6) and (5.6) are met. Let the
external signalw satisfy the Assumptions 4.1 and 4.2. Then there exists aµ∗ >

0 such that for allµ ∈ (0, µ∗) and ‖20‖ < θ and all x̃0, x0, z0 and v0, the
system state is bounded in that‖2k‖ < 2S and Lemma 5.2 holds. Consider the
difference equation

2av
i j ,k+1 = 2

av
i j ,k − µ

∂ J(2)

∂2i j

∣∣∣∣
2=2av

k

+ µεbi j (2
av
k), (7.2)

with ε = ‖CS‖ and

bi j (2) = lim
N→∞

1

Nε

N∑
k=1

(gi j ,k(2)− γi j ,k(2))
′Rek(2), (7.3)

wheregi j ,k(2)− γi j ,k(2) is described in(6.3)and

ek(2) =

[
yk(2)

uk(2)

]
(7.4)

follows from (5.5) with 2k = 2. Provided (7.2) has locally stable equilibria
2∗ ∈ B(0,2S), then2k converges for almost all initial conditions‖20‖ < θ to
aµ(1−γ)/2 neighborhood of such an equilibrium.

172 Chapter 6. Direct Adaptive-Q Control

Proof. Follows along the lines of Theorem 4.3.

Equation (7.2) is crucial in understanding the limiting behavior of2k. If no lo-
cally stable equilibria exists inside the ballB(0,2S), a variety of dynamical be-
haviors may result, all characterized by bad performance. The offending term in
(7.2) is the bias termbi j (2). Providedεbi j (2) is small in some sense, good per-
formance will be achieved asymptotically.

As explained, the biasbi j (2) will be minimal when the disturbance signal has
little energy in the frequency band of the unmodeled dynamics. One conclusion
is that the adaptive algorithm provides good performance enhancement under the
reasonable condition that the model is a good approximation in the frequency
band of the disturbances.

Notice that these highly desirable properties can be directly attributed to the
exploitation of theQ-parameterization of the stabilizing controllers. Standard im-
plementations of direct adaptive control algorithms are not necessarily robust with
respect to unmodeled dynamics! (See for example Rohrs, Valavani, Athans and
Stein (1985) and Anderson et al. (1986).)

The above result indicates that the performance of the adaptive algorithm may
be considerably weaker than the performance obtained under ideal modeling,
embodied in Theorem 4.3. Alternatively, Theorem 7.1 explores the robustness
margins of the basic adaptive algorithm. Indeed, in the presence of model mis-
match, the algorithm fails gracefully. Small model-plant mismatch (smallε) im-
plies small deviations from optimality. Notice that the result in Theorem 7.1 re-
covers Theorem 4.3, by settingε = 0! However, for significant model-plant mis-
match we may expect significantly different behavior. The departure from the de-
sired optimal performance is governed by thebi j (2) term in (7.3). It is instructive
to consider how this bias term comes about. A frequency domain interpretation is
most appropriate:

bi j (2) =
1

2πε

∫ 2π

0
W∗(ei θ)T∗z(g−γ)i j (e

i θ)T∗wz(e
i θ)RTwe(e

i θ)W(ei θ)dθ,

whereTz(g−γ)i j has a state space realization as given in (6.3) andTwz, Twe have
state space realizations given in (5.5), and are respectively the transfer functions
from r to (g− γ)i j , w to z andw to e.

In Wang (1991) a more complete analysis of how the adaptive algorithm fails
under model plant mismatch conditions is presented. It is clear however that under
severe model mismatch the direct adaptiveQ mechanism is bound to fail. Under
such conditions reidentification of a model has to be incorporated in the adaptive
algorithm. This is the subject of the next chapter.

Example. Having presented the general theory for direct adaptive-Q control, we
develop now a simple special case were the external signal,w1 = 0, w2k =

cosω1k and the adaptive-Q filter contains a single free parameter. Whereas the
development of the general theory by necessity proceeded in the state space do-
main, due to the slow adaptation the main insight could be obtained via transfer

6.7. Analysis of the Adaptive-Q Algorithm: Unmodeled Dynamics Situation 173

J

yu

r

Adjustment
law

s

�

�
�

G � S �

�
H ��� z �

� cos � 1k

FIGURE 7.1. Example

functions and frequency domain calculations. For the example we proceed by
working with transfer functions.

Consider the control loop as in Figure 7.1. All signalsu, y, r ands are scalar
valued. Let the control performance variable be simplye= y. We are thus inter-
ested in minimizing the rms value ofy:

J(θ) = lim
N→∞

1

N

N∑
k=1

y2
k(θ).

The plant is given by

G(z) =
N(z)+ S(z)V(z)

M(z)+ S(z)U (z)
.

The controller is given by

K (z) =
U (z)+ θH(z)M(z)

V(z)+ θH(z)N(z)
.

with M(z)V(z)− N(z)U (z) = 1; N, S,V,M,U, H ∈ RH∞.
For constantθ we have

yk(θ) = −
(M(z)+ S(z)U (z))(V(z)+ θH(z)N(z))

1− S(z)θH(z)
cosω1k,

uk(θ) = −
M(z)+ S(z)U (z))(U (z)+ θH(z)M(z))

1− S(z)θH(z)
cosω1k,

γk(θ) = H(z)N(z)(M(z)yk(θ)− N(z)uk(θ)).

(7.5)

174 Chapter 6. Direct Adaptive-Q Control

The update algorithm forθ (with exponential forgettingλ ∈ (0,1)) is thus given
by (compare with (3.5))

θk+1 = (1− µλ)θk − µγkyk. (7.6)

Following the result of Theorem 7.1 the asymptotic behavior of (7.6) is governed
by the equation

θav
k+1 = (1− µλ)θ

av
k − µg(θav

k), (7.7)

whereg(θ) is given by

g(θ) = lim
N→∞

1

N

N∑
k=1

γk(θ)yk(θ).

WhenS(z) = 0, that is the ideal model case,g(θ) can be evaluated using (7.5) as

gi (θ) =

∣∣∣M(ejω1)

∣∣∣2(ReV(e− jω1)H(ejω1)N(ejω1)+ θ

∣∣∣H(ejω1)N(ejω1)

∣∣∣2),
(7.8)

where the indexi reflects the situation thatS(z) = 0.
In general we obtain the rather more messy expression:

g(θ) =

∣∣∣∣M(ejω1)+ S(ejω1)U (ejω1)

1− S(ejω1)H(ejω1)θ

∣∣∣∣ (7.9)

·

(
Re
{

H(e− jω1)N(e− jω1)V(ejω1)
}
+ θ

∣∣∣H(e− jω1)N(e− jω1)

∣∣∣2) .
Let us discuss the various scenarios described in, respectively, Theorems 4.3, 4.5
and 7.1 using the above expressions (7.8) or (7.9).

1. Ideal case:λ = 0 (Theorem 4.3), expression(7.8).
There is a unique, locally stable equilibrium;g(θ∗) = 0, or

θ∗ = −
Re
{
H(e− jω1)N(e− jω1)V(ejω1)

}∣∣H(e− jω1)N(e− jω1)
∣∣2 . (7.10)

This equilibrium achieves the best possible control. The adaptation approx-
imates this performance. Indeed, it is easily verified that

J(θ∗) ≤ J(θ) for all θ.

In this case the performance criterion‖y‖2 = J(θ) is given by

‖y‖2rms=

∣∣∣M(ejω1)

∣∣∣2 ∣∣∣V(ejω1)+ θHθ (e
jω1)N(ejω1)

∣∣∣2 .
In general, we can not expect to zero the output, unless the actual signal
happened to be a constantω1 = 0, in which case we indeed obtainθ∗ =
−V(1)/(H(1)N(1)) andJ(θ∗) = 0.

6.7. Analysis of the Adaptive-Q Algorithm: Unmodeled Dynamics Situation 175

2. Ideal case:λ 6= 0 (Theorem 4.5).
Again there is a unique, locally stable equilibrium, now given by

θ∗λ = −
Re{H(e− jω1)H(ejω1)N(ejω1)}

∣∣M(ejω1)
∣∣2

λ+
∣∣M(ejω1)

∣∣2 ∣∣Hθ (ejω1)N(ejω1)
∣∣2 . (7.11)

In this case, the performance ofθ∗λ is no longer the best possible, but clearly
for smallλ, we have that

∣∣θ∗λ − θ∗∣∣ = O(λ), see (7.10) and (7.11).

3. Plant-model mismatch:λ = 0 (Theorem 7.1).
Remarkably, there is again a locally stable equilibriumθ∗, but also there
may exist an equilibrium at∞ asg(θ) → 0 for θ → ±∞. Clearly in the
presence of unmodeled dynamics, the adaptive algorithm loses the property
of global stability.

Despite the fact thatθ∗ is always a locally stable equilibrium of (2.2), it may
not be an attractive solution for the adaptive system. Indeed Theorem 7.1
requires that the closed-loop system(S(z), Hθ (z)θ) be stable, a A property
that may be violated forθ = θ∗ if S(z) is not small. Theorem 7.1 requires
at least that

∣∣S(ejω1)H(ejω1)θ∗
∣∣ < 1. If this is not the case, the adaptive

system will undergo a phenomenon known as bursting. See Anderson et al.
(1986) or Mareels and Polderman (1996) for a more in-depth discussion of
this phenomenon. Let it suffice here to state that wheneverθ∗, the equilib-
rium of (2.2), is such that(S(z), H(z)θ∗) is unstable, the adaptive system
performance will be undesirable.

The performance ofθ∗ is also not optimal with respect to our control crite-
rion. WhenS(z) 6= 0, the criterion becomes:

‖y‖2rms=

∣∣V(ejω1)+ θH(ejω1)N(ejω1)
∣∣2 ∣∣M(ejω1)+ S(ejω1)U (ejω1)

∣∣2∣∣1− S(ejω1)H(ejω1)θ
∣∣2 .

It can be verified that the performance at the equilibriumθ∗ will be better
than the performance of the initial controllerθ = 0 if and only if

Re
{

N(e− jω1)V(ejω1)H(ejω1)
}

Re
{

S(ejω1)H(ejω1)
}

≥ −
1

2

(
Re
{

N(e− jω1)V(ejω1)H(ejω1)
})2

·

(
1∣∣V(ejω1)

∣∣ +
∣∣∣∣ S(ejω1)

N(ejω1)

∣∣∣∣2
)
.

This condition is always satisfied for sufficiently small
∣∣S(ejω1)

∣∣. The above
expression for this example is the precise interpretation of our earlier ob-
servation that the direct adaptiveQ filter can achieve good performance
providedS, the plant-model mismatch, is small in the passband of the con-
troller and provided the external signals are inside the passband of the nom-
inal control loop.

176 Chapter 6. Direct Adaptive-Q Control

4. Plant-model mismatch:λ 6= 0.
Due to the presence ofλ as well as model-plant mismatch, we now end up
with the possibility of either 3 or 1 equilibria. Indeed the equilibria are the
solutions ofλθ + g(θ) = 0 which leads to a third order polynomial inθ .
For small values ofλ > 0, there is a locally stable equilibriumθ∗λ close
to θ∗. Global stability is of course lost, and the same stability difficulties
encountered in the previous subsection persist here.

6.8 Notes and References

Direct adaptive-Q control has been studied in some detail in Wang (1991), build-
ing on the earlier work of Tay and Moore (1991) and Tay and Moore (1990). The
paper Wang and Mareels (1991) contains the basic ideas on which the present
theory is built. Most of the material in this chapter has not been published before.

For a more complete presentation of averaging techniques in continuous-time
setting, we refer the reader to Sanders and Verhulst (1985). Averaging ideas have
been used extremely successfully in the analysis of adaptive systems. We refer
the reader to Anderson et al. (1986), Mareels and Polderman (1996) and Solo and
Kong (1995) for more in depth treatises. Much of the presentation here could have
been presented using a stochastic framework. The book of Benveniste, Metivier
and Priouret (1991) is a good starting point. The treatment of the actual dynam-
ical behavior of adaptive systems has, by necessity, been superficial. One should
not lose sight of the fact that in general, an adaptive scheme leads to a nonlin-
ear and time-varying control loop, the behavior of which is all but simple. We
have identified conditions under which the adaptive system response can be un-
derstood from the point of view of frequency domain ideas using the premise that
the adaptation proceeds slowly compared to the actual dynamics of the controlled
loop. Whenever this condition is violated, adaptive system dynamics become dif-
ficult to comprehend. The interested reader is referred to Mareels and Polderman
(1996, Chapter 9).

Problems

Problems 1, 2 and 3 are intended to give the reader some insight into averaging.

1. Consider

xk+1 = (1− aµ)xk + µ(1+ cosk). (8.1)

Herexk a, µ are scalar variables,µ > 0 and small,a ∈ R. Also, consider
the ‘averaged’ difference equation

xa
k+1 = (1− aµ)xa

k + µ. (8.2)

6.8. Notes and References 177

(a) Compare the solution of (8.1) and (8.2), both initialized with the same
initial condition x0. Show in particular that

∣∣xk − xa
k

∣∣ ≤ Cµ, k =
0, 1, . . . , L/µ for any L > 0 and some constantC independent ofµ,
but dependent onL.

(b) If a < 0, show that the error
∣∣xk − xa

k

∣∣ ≤ Cµ for all k.

In a sense, averaging is a technique that formalizes the ‘low pass’ charac-
teristics of a difference equation of the formxk+1 = xk + µ fk(xk).

2. Show that any signal of the form6M
`=1 cosωl k has a uniform zero average.

3. Show that any signalwk that converges to zero has zero mean. (Averaging
eliminates transients!)

The following problem illustrates the theory of direct adaptive-Q design
and allows the reader to venture beyond the theory through simulation.

4. Refer to Figure 7.1. Let

G(z) =
2−
√

2

2

z+ 1

z2−
√

2z+ 1
,

K (z) =
−

1
2+
√

2
z+ 1+

√
2

2+
√

2

z2+
√

2z+ 1+
√

2
2+
√

2

2

2−
√

2
.

Let the signal to be tracked be cos((π/4)k), cos 1.75k or cos((π/4)k) +
cos 1.75k. Explain for each of these reference signals the performance that
the adaptive algorithm achieves; use a single scalar adaptiveθ . Let µ =
0.01, Hθ (z) = z−1. (One could also utilizeHθ (z) = 1 in this case). Con-
sider the following questions:

(a) Show that the original controller achieves dead beat response.

(b) Show that the original controller has perfect plant output tracking for
any signal of the formAcos((π/4)k+ ϕ).

(c) Show that the adaptive-Q filter will not deteriorate the performance
of the loop (ifµ is small).

(d) Despite the fact that a singleθ can not achieve sinusoidal tracking,
show that significant improvement is obtained for eitherwk =

cos 1.75k orwk = cos((π/4)k)+ cos 1.75k.

(e) Using averaging ideas, find the optimal performance that can be
achieved forwk = cosωk. (That is, plotJ(θ∗) as a function ofω ∈
(0, π)). What do you learn from this plot?

(f) Using the adaptiveQ(z) = θ1 + θ2z−1, show that exact tracking can
be achieved forwk = cos((π/4)k)+ cosωk, anyω.

178 Chapter 6. Direct Adaptive-Q Control

(g) IntroduceS(z) = τz−1. show that this amounts to a significant per-
turbation in the low frequency response; that is, this is a significant
perturbation, and in particular, the plant’s resonance disappears.

(h) Continuing with the scenario ending Problem 4g, introduce forgetting
and use a scalar adaptiveQ(z) = θ . Find the equilibria as a function
of λ, andτ for wk = cos 1.75k.

(i) When does the closed-loop adaptive system lose stability? This last
part should not be attempted unless you have a few spare hours. A
complete analysis comprising (a complete range of)λ, τ has never
been completed, let alone an analysis considering ranges of the pa-
rametersµ, λ, τ andω.

CHAPTER 7

Indirect (Q, S) Adaptive
Control

7.1 Introduction

Direct adaptive-Q design is applicable in those situations that a reasonably good
model for the plant dynamics is available. It is geared towards tuning of con-
trollers, and in particular for tuning controllers for new design criteria without
sacrificing stability, and also towards disturbance rejection. In some situations,
our limited knowledge of the plant dynamics may be the greatest obstacle on the
route to better control performance. In such situations, the iterative and nested
(Q, S) designs are needed.

In this chapter, we will present an adaptive version of the nested(Q, S)method-
ology in that identification and control are both adjusted on-line as new data be-
comes available. Adaptive methods where the controller design is based on an
on-line identified model are often referred to asindirect adaptive controlmeth-
ods. Hence the title, indirect adaptive(Q, S) design.

In the present case, where the lack of a sufficiently accurate model of the plant
is the major issue in obtaining satisfactory control performance, we need to gather
information about the plant. In the spirit of the book, this is achieved by identifica-
tion of anSmodel. As before, we assume that a stabilizing controller is available,
and hence we can parameterize a class of systems which contains the plant. In or-
der to identify theS parameter and thus the actual plant on-line, in a closed-loop
control context, we inject an external signal into the closed loop at the output of
the plug-in controllerQ. This probing signal is required to gain information about
S and as a consequence, will necessarily frustrate to some extent any control ac-
tion for as long as it is present. This is the penalty we must be prepared to pay for
our lack of knowledge ofS and our desire to obtain better control performance.
As pointed out before in Chapter 5, identification ofS in closed-loop operation
is nontrivial. The methods proposed in Chapter 5 to circumvent the problem in

180 Chapter 7. Indirect(Q, S) Adaptive Control

iterated-Q design are not particularly well suited for an adaptive-Q approach. In-
deed, these methods invariably rely on the time invariance ofQ, a property which
is lost by the very nature of an adaptive design. One solution could be to use two
time scales in the adaptive algorithm; one, the fast learning time scale, for the
adaptation of a model forS and a second much slower time scale for the adap-
tation of Q. This way, we would recover more or less the same behavior as in
the nested design. If desired, one could alternate time scales betweenS identi-
fication andQ design at preset intervals to recover a full adaptive version of a
multiple nested(Q, S) design method. The idea has been worked out in detail,
and analyzed using averaging techniques in the PhD thesis of Wang (1991).

Here we explore a different method for the case where plant-model mismatch
S is significant only in the frequency range above the passband of the nominal
control loop. Probing signals are thus best utilized if their frequency content is
located around and past the cut off frequency of the closed loop. The probing
signals will only marginally affect the control performance. In order forQ to be
effective, it has to shape the response in the same frequency range whereS is
important. The presence ofQ frustrates the identification ofS in so far as the
probing signals affectQ. The idea is to augmentQ with a filter at its input that
filters out the probing signals. Of course, this limits our control ability, but ensures
good identification, and thereby control response improvement. These ideas are
worked out in this chapter, making use of`2-optimization design criteria, as these
fit most naturally with the averaging techniques for the system analysis.

The chapter is organized as follows. First we discuss the basic framework. As
in the previous chapter to facilitate our analysis techniques, the development pro-
ceeds in the state space framework. Next we discuss the adaptive mechanisms
and present some results exploring the time scale separation between the adaptive
mechanism and the control dynamics. The chapter is concluded with a discussion
of an example.

7.2 System Description and Control Problem
Formulation

Our starting point is a stable plant-controller configuration which is characterized
by unacceptable performance due to an inaccurate nominal plant model for the
controller design. AgainG represents the nominal plant,K the nominal controller,
Ḡ the actual plant,S embodies the plant-nominal plant mismatch andQ is the
plug-in controller to be designed.

Since the nominal controllerK stabilizesḠ, the mismatch systemS is stable.
For estimation purposes, we introduce the following parameterized class of stable
rational transfer functions:

N∑
i=1

4i Bi (z) = 4B(z). (2.1)

7.2. System Description and Control Problem Formulation 181

TheBi (z) form a collection of basis functions, being stable rational transfer func-
tions. The precise choice ofBi (z) should reflect any prior knowledge of the plant
uncertaintyS(z). The matrices4i , collected into the coefficient matrix4, have to
be estimated from on-line data.

We refer to the situation whereS(z) is indeed of the form (2.1) as the ideal
case. In this situation there exists a unique coefficient matrix4∗ such thatS(z) =
4∗B(z). When no such representation exists we speak of the nonideal case. For
future reference, letB(z) possess a state space realization:

B(z) :

 As Bs

Cs 0

 , (2.2)

with As a stable matrix. As indicated before, the dominant eigenvalues ofAs must
be compatible with the closed-loop bandwidth of the system(Ḡ, K).

In the ideal case we have forS(z)

S(z) :

 As Bs

4∗Cs 0

 . (2.3)

In the nonideal case we representS(z) as

S :


A1 0 B1
0 As Bs

C1 4∗Cs 0

 . (2.4)

HereA1 is a stable matrix, and‖C1‖ can be considered as a measure of nonide-
alness, being zero in the ideal case.

Remark. A linear parameterization forS(z) such as4∗B(z)may not be the most
economical way to parameterize the unmodeled dynamics. A rational fraction
parameterization may require quite fewer parameters, but has the difficulty that
somehow the parameters must be restricted to represent a stableS(z). This is
nontrivial, as the set of stable rational transfer functions does not have a simple
representation in parameter space. The present approach avoids this complication
and gives transparency to the associated performance analysis.

Let the nominal plantG be represented as:

xk+1 = Axk + Buk + Bw1,k; x0,

yk = Cxk + Duk + w2,k,

wherew1,k is an input disturbance,w2,k is an output disturbance. Also,xk ∈ R
n,

uk ∈ R
p, yk ∈ R

m. The nominal controllerK is represented as:

x̂k+1 = Ax̂k + Buk − Hrk; x̂0,

rk = yk − (Cx̂k + Duk),

uk = Fx̂k + sk,

182 Chapter 7. Indirect(Q, S) Adaptive Control

whererk is the observer innovation andsk is the auxiliary control signal.
The plug-in controllerQ takes the special form:

z f,k+1 = A f z f,k + B f rk; z f,0,

r f,k = C f z f,k,

zk+1 = Aqzk +3kzk + Bqr f,k; z0,

sk = 2kzk + dk.

The signaldk is an external signal added to aid identification of4. The parameter
matrices3k and2k are to be updated adaptively on the basis of4k, the present
estimate of4∗. As earlier, the remainingQ parameters are chosena priori. The
matricesA f , Aq are stable. The system(A f , B f ,C f) is designed to have the
specific property that the steady state response of the filter subject to the inputdk

as input is zero. Thus for the system

z f,k+1 = A f z f,k + B f dk,

d f,k = C f z f,k,
(2.5)

limk→∞ d f,k = 0. As far as the probing signal goes, the controlled system looks
like an open-loop system.

Finally, the actual plant̄G, can now be represented as:


xk+1

v1,k+1

vk+1

yk

 =


A −HC1 −H4∗Cs B B 0

−BF A1 0 B1 B1 0

−BsF 0 As Bs Bs 0

C C1 4∗Cs D 0 I





xk

v1,k

vk

uk

w1,k

w2,k


.

(2.6)

The complete closed-loop equations are:



xk+1

v1,k+1

vk+1

z f,k+1

zk+1

x̃k+1

yk

uk


=



A+ BF −HC1 −H4∗Cs 0 B4k BF B 0 B

0 A1 0 0 B12k B1F B 0 B

0 0 As 0 Bs2k BsF B1 0 B1
0 −B f C1 −B f 4

∗Cs A f 0 B f C 0 −B f 0

0 0 0 BqC f Aq +3k 0 0 0 0

0 0 0 0 0 A+ HC B H0

C + DF C1 4∗Cs 0 D2k DF 0 I D

F 0 0 0 2k F0 0 I





xk

v1,k

vk

z f,k

zk

x̃k

w1,k

w2,k

dk


.

(2.7)

In order to be able to develop a meaningful adaptively controlled closed loop
we impose the following assumption.

7.2. System Description and Control Problem Formulation 183

Assumption 2.1. The plug-in controller structure is such that for almost any4
the eigenvalues of the matrix

Ac(4,2,3) =

 As 0 Bs2

−B f4Cs A f 0

0 BqC f Aq +3

 , (2.8)

can be assigned arbitrarily by the appropriate selection of the matrices2 and
3. (Arbitrary eigenvalue assignment under the restriction that for any complex
eigenvalue its complex conjugate is also to be assigned.)

Remark. Assumption 2.1 implies generically that we have enough freedom in
the controller structure for pole assignment. That is the best we can hope for.

The system matrix (2.8) corresponds to the interconnection of(Q, S), assuming
thatSbelongs to the model class defined by (2.1).

A sufficient condition for arbitrary pole assignment ofAc is that the matrix pair[
As 0

−B f4Cs A f

]
,

[
Bs

0

]
(2.9)

be controllable, the matrix pair[
As 0

−B f4Cs A f

]
,
[
0 BqC f

]
(2.10)

be observable and that the dimension ofAq be at least as large as dimAs+dim A f .
In this case, we could use the following special choices:

Aq =

[
As 0

0 A f

]

3 =

[
0 312BqC f

−B f4Cs 322BqC f

]
.

(2.11)

Hence312,322 are chosen such as to arbitrarily assign the eigenvalues ofAq+3,
and2 chosen to place the eigenvalues of[

As 0

−B f4Cs A f

]
+

[
B f

0

]
2. (2.12)

Clearly the above observability and controllability conditions are generically sat-
isfied.

To complete this section, we now formulate the particular indirect adaptive
control problems we discuss.

184 Chapter 7. Indirect(Q, S) Adaptive Control

Problems

1. Adaptive pole assignment.
Consider the system (2.7). LetC1 = 0. Assume that all matrices are known
except for4∗. The matricesA+ BF, A1, As, A f , A+ HC and Aq are
stable. Assume that for4 = 4∗ the eigenvalues ofAc in (2.8) can be
arbitrarily assigned by appropriate selection of2 and3. Assume that the
external signalsw1,k, w2,k anddk are stationary and mutually uncorrelated.
The indirect adaptive control objective is to design a controller using the
information available in closed loop, being the signalsyk, uk, zk, rk, sk and
dk such that asymptotically the eigenvalues ofAc(4

∗,2,3) are placed at
preassigned stable locations.

2. Adaptive LQ control.
Consider the system (2.7). LetC1 = 0, being the idealS model case.
Assume that all system matrices are known except for4∗ and that the
matricesA + BF, A + HC, A1, As, A f , and Aq are stable. Assume
that for the plantḠ, with 4 = 4∗, the eigenvalues of (2.8) can be
arbitrarily assigned by appropriate selection of2 and3. Assume that
the external signalsw1,k, w2,k and dk are stationary and mutually un-
correlated. Design an adaptive controller such that the performance in-
dex

J(2,3) = lim
N↑∞

1

N

N∑
k=1

(
r ′krk + s′ksk

)
is minimized.

Remark.

Both problems have received a lot of attention in the adaptive control literature.
The important distinction with the classical literature on these topics is the starting
assumption of an initial stabilizing controller. This brings a lot of structure to the
problem. This structure has been exploited to the maximal extent possible in our
system description (2.7).

In setting up the adaptive control problem the designer has much freedom to ex-
ploit prior knowledge about the system dynamics. The most important instances
of this are the appropriate selection ofB(z), the spectrum of the probing signaldk

together with the associated filter(A f , B f ,C f).

Main Points of Section

Starting from the assumption that a stabilizing controller is available for the
plant to be controlled, we provided a complete description of the closed-loop

7.3. Adaptive Algorithms 185

system, suitable for adaptation (2.7). The mismatchS between the particu-
lar nominal plantG and the actual plant̄G has been represented via a pa-
rameterized class of stable transfer functions with parameter4. The corre-
sponding parameterized class of plug-in controllersQ, with parameters(2,3),
has special structure to ensure a stable(Q, S) and to filter out the prob-
ing signal d used for identification ofS, or 4. The control objective is to
either obtain pole placement for the loop(Q, S) or achieve an LQ control
goal.

In the next few sections we introduce the adaptive algorithms, which will be
based on the identification of4∗, and then continue with their analysis.

7.3 Adaptive Algorithms

As indicated, we proceed with the introduction of an indirect adaptive control
algorithm. First an estimate for4∗ is constructed, denoted4k. This estimate is
then used in a typical certainty equivalence manner to determine the control pa-
rameter2k and3k. Given an estimate4k, there exists a mappingF(4k) that
determines2k, 3k. The mappingF reflects the particular control objective of
interest. The problem is thatF is not continuous on all of the parameter space.
In the event that the estimate4k leads to a system description for which either
the pair (2.9) fails to be controllable, or the pair (2.10) fails to be observable,
F may not be well defined. This is a manifestation of the so-called pole/zero
cancellation problem in adaptive control. Either event is rather unlikely, but not
excluded by the identification algorithm we are about to propose. Here, as is tra-
ditional in adaptive control, we simply make the assumption that the above event
will not occur along the sequence of estimates4k that the adaptive algorithm
produces.

Assumption 3.1. Along the sequence of estimates4k, k = 0, 1, . . . , the matrix
pair (2.9) is controllable and the matrix pair(2.10) is observable, in that the
smallest singular value of the controllability matrix, respectively observability
matrix, is larger than some constantσ > 0.

We propose the following adaptive control algorithms:

1. Filtered Excitation Algorithm.

v̂k+1 = ASv̂k + BS2kzk + BSdk; v̂0,

ẑ f,k+1 = A f ẑ f,k − B f4kCSv̂k; ẑ f,0,

gk+1 = ASgk + BSdk; g0 = 0,

γi j ,k+1 = A f γi j ,k − B f Ei j Csgk; γi j ,0 = 0,

4i j ,k+1 = 4i j ,k − µ(ẑ f,k − z f,k)
′γi j ,k; 40,

(2k,3k) = F(4k).

(3.1)

186 Chapter 7. Indirect(Q, S) Adaptive Control

2. Classic Adaptation Algorithm.

v̂k+1 = Asv̂k + Bs2kzk + Bsdk; v̂0,

ẑ f,k+1 = A f ẑ f,k − B f4kCsv̂k; ẑ f,0,

γi j ,k+1 = A f γi j ,k − B f Ei j Csv̂k; γi j ,0 = 0,

4i j ,k+1 = 4i j ,k − µ
(ẑ f,k − z f,k)

′γi j ,k

1+
√
(ẑ f,k − z f,k)′(ẑ f,k − z f,k)+

√
γ ′i j ,kγi j ,k

;

4i j ,0,

(2k,3k) = F(4k).

(3.2)

Remarks.

1. In the filtered excitation algorithm, the presence of the probing signaldk

is essential. Ifdk = 0 then there is simply no adaptation. This provides
an interesting mechanism to switch on or off the adaptation. By simply
removing the probing signal the controller becomes frozen.

2. In the filtered excitation algorithm the gradient vectorγi j ,k is only affected
by the probing signal itself. The intention is that the other signals will be
orthogonal to it, hence on average not affect the identification at all. Due to
the particular set up involving a probing signal with an associated filter in
the Q loop, the identification process is on average unbiased and similar to
an open-loop identification process. This will be demonstrated.

3. It is not a good idea to start with40 = 0. In this case Assumption 3.1 is
automatically violated. An alternative is to have(2k,3k) = 0 until such
time that4k satisfies Assumption 3.1. This is a good method to start the
adaptive algorithm since for(2k,3k) = 0 the closed loop is stable by
construction.

4. The update algorithm for4k is a typical least squares algorithm. The step
sizeµ > 0. In the literature one often finds a normalized update algorithm:

4i j ,k+1 = 4i j ,k − µ

(
ẑ′f,k − z f,k

)′
γi j ,k

1+ γ ′i j ,kγi j ,k
.

In the filtered excitation algorithm this normalization is superfluous because
γi j ,k is bounded by construction, regardless of the state of the system. In-
deed the normalization is only necessary when it is not clear whether the
gradientγi j ,k is bounded or not, which is the case whenγi j ,k is determined
by

γi j ,k+1 = A f γi j ,k − B f Ei j Csv̂k. (3.3)

7.4. Adaptive Algorithm Analysis: Ideal case 187

This is the classical update algorithm. It has the advantage of not requiring
a probing signal. In the ideal case one can even demonstrate that it will
suffice to solve a weak version of Problem 2. Nevertheless, (3.3) introduces
some nontrivial nonlinearities in the identification and control loop, which
lead to biased estimates for4∗. The algorithm in (3.1) circumvents this
problem altogether. The classical algorithm allows for 0< µ < 1. Here we
restrict ourselves, as before, to small values ofµ, that is slow adaptation.

5. A poor selection of40, with associated(20,30) = F(40) may well lead
to an initially destabilizing control loop. Our analysis will not deal with
this situation explicitly, although we provide evidence, short of a complete
proof, to show that in general the adaptive algorithm may recover from this
situation.

6. The functionF mapping the identification parameter4 to the control pa-
rameter2,3, will be specified later in the discussion of the results we are
about to present. For the time being, the main property of importance is that
F leads to a stable closed-loop system, either via pole placement or via LQ
design. In order to be able to apply the averaging result we also need the
mappingF to be Lipschitz continuous in a neighborhood of the estimates
produced by the adaptive algorithm which follows from Assumption 3.1.

Main Points of Section

We have described more completely adaptive-Q methods by introducing two
adaptation algorithms, the classical adaptive algorithm and the filtered excitation
algorithm. The control system we are about to analyze consists of (2.7) together
with either (3.1) or (3.2).

7.4 Adaptive Algorithm Analysis: Ideal case

Let us consider the adaptive algorithm consisting of (2.7) and (3.1) or (3.2) under
the condition thatC1 = 0. To fix the ideas we focus on the pole placement prob-
lem, but it will transpire that the analysis and main results apply to any reasonable
design rule. First we study the possible steady state behavior of the closed-loop
system under the condition that the external disturbances are zero(wk = 0) and
that the probingdk signal is stationary and sufficiently rich. The steady state anal-
ysis indicates that the algorithm may be successful in an adaptive context. Next
we consider an averaging analysis, first without signal perturbation, next with sig-
nal perturbation. The results provide a fairly complete picture of the cases where
the algorithm can be used with success and provide pointers to how it may fail.
This topic is taken up in the next section, where we study the influence of plants
not belonging to the assumed model class.

188 Chapter 7. Indirect(Q, S) Adaptive Control

Steady State Analysis

Let us consider the situationw1,k ≡ 0, w2,k ≡ 0 andẑ f,k − z f,k ≡ 0. The latter
condition implies for either algorithm (3.1) or (3.2) that4k ≡ 4 and(2k,3k) =

F(4) = (2,3). There is no adaptation. Obviously, we want the closed-loop
system to behave well under this condition for as there is no adaptation, there is
no way the control algorithm can improve the performance. It can be argued that
this property is almost necessary for any adaptive algorithm. In the literature it is
often referred to astunability or thetuning property, see Mareels and Polderman
(1996). We show that either algorithm, the classic adaptive algorithm (3.2) as well
as the filtered excitation (3.1), possesses the tuning property.

Indeed, given̂z f,k − z f,k ≡ 0, we describe the adaptive closed-loop system
via the following time-invariant system, making use of the fact thatw1,k ≡ 0 and
w2,k ≡ 0. 

vk+1

z f,k+1

zk+1

v̂k+1

ẑ f,k+1

 =


As 0 Bs2 0 0

−B f 4
∗Cs A f 0 0 0

0 BqC f Aq +3 0 0

0 0 Bs2 As 0

0 0 0 −B f 4Cs A f




vk

z f,k

zk

v̂k

ẑ f,k

+


Bs

0

0

Bs

0

 dk. (4.1)

Because of the stability ofA+ HC we have that̃xk converges to zero exponen-
tially, and therefore, this state is omitted from (4.1). Moreover,xk is also omitted,
as its stability is determined by the stability of the system (4.1). If the above sys-
tem is stable, so is the complete system. We now exploit the factẑ f,k ≡ z f,k to
rewrite (4.1) as:



vk+1

z f,k+1

zk+1

v̂k+1

ẑ f,k+1

 =


As 0 Bs2 0 0

−B f 4
∗Cs A f 0 0 0

0 0 Aq +3 0 BqC f

0 0 Bs2 As 0

0 0 0 −B f 4Cs A f





vk

z f,k

zk

v̂k

ẑ f,k

+


Bs

0

0

Bs

0

 dk. (4.2)

Observe now that the block diagonal matrix[
As 0

−B f4
∗Cs A f

]
(4.3)

is stable by construction. Moreover, the matrixAq +3 0 BqC f

Bs2 As 0

0 −B f4Cs A f

 (4.4)

is stable by virtue of the design with(2,3) = F(4). It follows thus from equa-
tion (4.2) thatzk, v̂k, ẑ f,k, vk andz f,k are all bounded. More importantly, from
the observable signals point of view, it appears that the control objective has been
achieved for the closed-loop system (2.7) with (3.1) or (3.2). Indeed, the closed-
loop stability and performance hinges on the eigenvalues of the matrices:

7.4. Adaptive Algorithm Analysis: Ideal case 189

• As, the unmodeled dynamics, which are outside the control bandwidth

• A f , the filter, free for the designer to choose, as long as it is stable

• A+ HC, the observer eigenvalues for the nominal control design

• A+ BF, the controlled nominal plant, and

• (4.4), the controlled model for the plant-model mismatch system, which are
the poles of the closed loop(Q, S).

The above observation is independent of the nature ofdk, and would even be
true fordk ≡ 0. However, ifdk is sufficiently rich in that it satisfies a condition
like Assumption 6.4.2, then we have the additional result that the only steady
state parameters are the true system parameters, that is,4 = 4∗ and(2,3) =
F(4∗) = (2∗,3∗). Actually, we desire that the spectrum ofdk contains at least as
many distinct frequency lines as there are parameters in4 to identify. This follows
from the following construction. Introducẽvk = vk − ṽk andz̃ f,k = z f,k − ẑ f,k.
Then from (4.1) we have:

ṽk+1 = Asṽk

z̃ f,k+1 = A f z̃ f,k − Bt (4
∗
−4)Csv̂k − B f4

∗ṽk.

Also,

Csv̂k =

(
0 Cs 0

)z I −

Aq +3 0 BqC f

Bs2 As 0

0 −Bq4Cs A f



−1 0

Bs

0

dk

from which it follows thatz̃ f,k ≡ 0 can only occur when4∗ = 4.
We summarize our observations as follows:

Theorem 4.1 (Tuning Property). Consider the adaptive systems described by
either (2.7)with the algorithm(3.1)or adaptive algorithm(3.2). Let the external
disturbances be zero(wk ≡ 0). When the tuning error̂z f,k − z f,k is identically
zero, the algorithm’s stationary points(4k ≡ 4, (2k,3k) ≡ F(4)) are such that
the closed-loop system is stable and the desired control objective is realized.

Theorem 4.2 (Tuning property with excitation). Consider the adaptive sys-
tems described by either(2.7)with algorithm(3.1)or (3.2). Let the external dis-
turbances be zero(wk ≡ 0). Let the probing signal be sufficiently rich in that the
spectrum ofdk contains as many distinct frequency lines as there are elements in
4. The algorithm’s stationary point is unique.4k ≡ 4

∗ and the desired control
objective is realized.

Remark. The difference between Theorem 4.1 and Theorem 4.2 is significant.
Polderman (1989) shows that only in the case of pole placement one can conclu-
sively infer from Theorem 4.1 that the control achieved in the adaptive algorithm

190 Chapter 7. Indirect(Q, S) Adaptive Control

equals the control one would have implemented if the system were completely
known. In the case of LQ control, the achieved LQ performance is only optimal
for the model, that is optimal for4, not for the plant4∗. Due to lack of excita-
tion we are unable to observe this in the adaptively controlled loop. However, in
the presence of excitation, due to the correct identification of4∗ asymptotically
optimal performance is obtained, for any control design. This goes a long way in
convincing us why excitation, via the probing signaldk, is indeed important in an
adaptive context. It is one of the main motivations for preferring the filtered exci-
tation algorithm above the classical algorithm. Further motivation will emerge in
the subsequent analysis.

Transient Analysis: Ideal Case

Exploiting standard results in adaptive control one can show that the classical
algorithm (Algorithm 2), under the assumptions

• the plant belongs to the model class(C1 = 0)

• the external disturbances are zero(wk ≡ 0)

• along the solutions of the adaptive algorithmF is well defined

indeed realizes the desired control objective in the limit. Moreover, if the prob-
ing signal is sufficiently rich, the actual plant will be correctly identified. The
interested reader is referred to Mareels and Polderman (1996), Chapter 4, for a
complete proof.

From a control performance perspective, which is the topic of this book of
course, this result is however not very informative. Indeed the classical adaptive
control results do not make any statements about important questions such as:

• How long do the transients take?

• How large is a bounded signal?

Indeed, a moment of reflection indicates that a general result can not make any
statements about problems of the above nature. A result valid for (almost) all pos-
sible initial conditions must allow for completely destabilizing controllers. For
such cases it is not possible to limit either the size of the signals encountered in
a transient nor the time it takes to reach the asymptotic performance. In general
this situation is aggravated by imposing the condition of slow adaptation. How-
ever, in the present situation, we can avoid the above disappointments, because
we start from the premise that the nominal controller, however unsatisfactory its
performance, is capable of stabilizing the actual plant. We proceed therefore with
Algorithm 1 (Filtered excitation), exploiting explicitly the fact that our initial in-
formation suffices to stabilize the system. By injecting a sufficiently rich prob-
ing signal, which is conveniently filtered, we show that the adaptation improves
(slowly) our information about the actual plant to be controlled, hence improving

7.4. Adaptive Algorithm Analysis: Ideal case 191

our ability to control it. We regard this control strategy as one where we exploit
the robustness margin of a robust stabilizing controller to such an extent that we
learn the plant to be controlled in such a way as to improve the control perfor-
mance. The existence of a robustness margin is crucial throughout the adaptation
process. The more robust the controller, it turns out, the easier the adaptation pro-
cess becomes. The algorithm is clearly achieving a successful symbiosis of robust
control and adaptive control. Averaging techniques are exploited to establish the
above results.

Let us be explicit about our stabilization premise:

Hypothesis 4.3.Along the sequence of estimates4k, k = 0, 1, . . . , the design
rule F is such that(2k,3k) = F(4k) is a stabilizing controller for the actual
plant to be controlled.

In the ideal scenario, the validity of this hypothesis is based on the following
observations.

Introduceṽk = vk − v̂k, z̃ f,k = z f,k − ẑ f,k and4̃k = 4k − 4
∗. Along the

solutions of the adaptive algorithms we have then, up to terms inwk:



ṽk+1

z̃ f,k+1

zk+1

v̂k+1

ẑ f,k+1

 =


As 0 0 0 0

−B f 4
∗ A f 0 B f 4̃kCs 0

0 BqC f Aq +3k 0 BqC f

0 0 Bs2k As 0

0 0 0 −B f 4kCs A f




ṽk

z̃ f,k

zk

v̂k

ẑ f,k

+


0

0

0

Bs

0

 dk. (4.5)

By construction we have that the matrices[
As 0

−B f4
∗ As

]
(4.6)

and Aq +3k 0 BqC f

Bs2k As 0

0 −B f4kCs As

 (4.7)

are stable (in that the eigenvalues for each instantk are less than 1 in modulus).
Hence, provided4k is slowly time varying in that‖4k+1−4k‖ is sufficiently
small and4̃k is sufficiently small the overall system will be stable. As we will
show

∥∥4̃k
∥∥ is monotonically nonincreasing, and‖4k+1−4k‖ is governed byµ.

Hence, assuming
∥∥4̃k

∥∥ is sufficiently small, andµ is sufficiently small, we
have that Hypothesis 4.3 is satisfied along the solutions of the adaptive system.

In order to see that
∥∥4̃k

∥∥ is decreasing, we proceed as follows. Introduce,

λi j ,k+1 = A f λi j ,k − B f Ei j Cshk, (4.8)

hk+1 = Ashk + Bs2kzk. (4.9)

192 Chapter 7. Indirect(Q, S) Adaptive Control

We have then, comparing (2.7) with (4.9) under the condition thatC1 = 0, that

z f,k =
∑
i j

γi j ,k4
∗

i j +
∑
i j

λi j ,k4
∗

i j , (4.10)

and also

ẑ f,k =
∑
i j

γi j ,k4i j ,k +
∑
i j

λi j ,k4i j ,k + O(µ). (4.11)

Here O(µ) stands for a termfk that can be over bounded as| fk| ≤ K1µ for
someK1 > 0 (see also Appendix C). Moreover, because the filter(A f , B f ,C f)

is designed such that it eliminates the spectrum ofdk, and because we assume that
the driving signalswk are orthogonal todk, it follows that, for constant2:

lim
N→∞

1

N

N+m∑
k=m+1

γi j ,kλi j ,k−m = 0 for all m= 0, 1, 2, . . . and alli, j .

The above expression embodies the most important design difficulty, on the one
sidedk must be sufficiently rich to lead to the identification of4∗, but we also
need to filter it out of theQ loop via (A f , B f ,C f), complicating the controller
design.

For the adaptive update equation, see (3.1), we find thus after substituting (4.10)
and (4.11):

4i j ,k+1 = 4i j ,k − µγi j ,k

∑
`,t

(
γ`t,k + λ`t,k

) (
4∗`t −4`t,k

)
+ O(µ2)

for all i, j ; k. (4.12)

This equation (4.12) is in the standard form to apply averaging theory, see Ap-
pendix C. Using the results from Appendix C we find for the averaged equation

vec
(
4av

k+1

)
= vec

(
4av

k

)
− µ0 vec

(
4av

k −4
∗
)

(4.13)

where the matrix0 contains as elements

lim
N→∞

1

N

N∑
k=1

γ ′i j ,kγ`t,k

in appropriate order. For sufficiently richdk, the matrix0 is positive definite,
0 = 0′ > 0. It follows that4av

k converges exponentially to4∗, for sufficiently
smallµ and for sufficiently richdk. Theorem C.4.2 informs us that,

lim
µ→0

∥∥4k −4
av
k

∥∥ = 0.

Becausedk has a finite spectrum, we are able to obtain the stronger result∥∥4k −4
av
k

∥∥ = O(µ), for all k.
Hence for sufficiently smallµ, optimal control is achieved up to small errors

of the order of the adaptation step size, without losing the stability property of the
initial stabilizing controller. We summarize:

7.4. Adaptive Algorithm Analysis: Ideal case 193

Theorem 4.4 (Ideal case, filtered excitation).Consider the adaptive system
(2.7) with (3.1) under the condition that the plant belongs to the model class
C1 = 0. Let Assumption 3.1 be satisfied. Letd have a finite spectrum, but suf-
ficiently rich as to enforce unique identifiability of4∗ (d’s spectrum contains as
many distinct frequency lines as there are elements in4∗). Let (A f , B f ,C f) be
chosen as to null the spectrum ofd (2.5). Letwk be uncorrelated withdk. Then
there exists aµ∗ > 0, such that for allµ ∈ (0, µ∗) and for all initial conditions
such that40 leads to a stable closed loop, we have that:

1. The adaptive system state is bounded, more precisely there exists constants
C1 > C2, C3 > 0 and0< λ < 1 such that

‖Xk‖ ≤ C1λ
k
‖X0‖ + C2 ‖d‖ + C3 ‖w‖ ,

Xk =

(
v′k, v̂

′

k, ẑ
′

f,k, z
′

k, x̂′k, x′k

)′
,

and ∥∥4k −4
∗
∥∥ ≤ ∥∥40−4

∗
∥∥+ O(µ).

2. Exponentially fast optimal control performance is achieved, in that there
exists positive constantsC4,C5,C6 > 0 independent ofµ, with 0 < 1−
µ∗C4 < 1, such that:∥∥4k −4

∗
∥∥ ≤ C6(1− C4µ)

k
∥∥40−4

∗
∥∥+ C5µ.

Remark.

The above result is applicable to Problems 1 and 2 of Section 7.2. We stress that it
is important thatF(4) is Lipschitz continuous in4, otherwise the averaging result
is not valid. (See Theorem C.2.2). This Lipschitz continuity may be guaranteed
via Assumption 3.1. Indeed, under Assumption 3.1,F defined via either pole-
placement or LQ control can be constructed to be Lipschitz continuous along the
estimates generated by the adaptive algorithm.

More importantly, the same result would also apply to the whole class of adaptive
algorithms(2k,3k) = Fk (4k), such that Hypothesis 4.3 is satisfied. For pole
placement and LQ control, this has been verified, but a range of alternatives is
conceivable. Most noteworthy is the earlier suggestion to haveF(4k) = 0 for
all k = 0, 1, . . . , k0, that is, wait to update the controller until4k0 is such that
controller design via LQ or pole placement does not destroy the robustness mar-
gin of the initial controllerK . Also, Fk could reflect our desire to improve the
closed-loop control performance as time progresses by, for example, increasing
the bandwidth of the controlled loop.

Finally, we point out howF in the case of LQ control may be constructed. We
consider the LQ index (see Problem 2 of Section 7.2):

J (S) = lim
N→∞

1

N

N∑
k=1

(
s′kSsk + r ′krk

)
; S = S′ > 0 (4.14)

194 Chapter 7. Indirect(Q, S) Adaptive Control

To constructF let us assume that the matrix pair (2.9) is stabilizable and the
matrix pair (2.10) is detectable. Denote

A =

(
As 0

−B f4Cs A f

)
, (4.15)

B =

(
Bs

0

)
, (4.16)

C =
(
0 BqC f

)
. (4.17)

Under the stated conditions, (A,B) stabilizable and (A,C) detectable, we can
solve the following Riccati equations for unique positive definiteR andP:

R = ARA′ + I −
(
ARC′

) (
CRC′ + I

)−1
CRA′ (4.18)

and

P = A′PA+ S −
(
A′PB

) (
B′PB+ S

)−1
B′PA. (4.19)

Here I andS are the weighting matrices from the LQ index (4.14).
GivenR andP we construct

H =
(
ARC′

) (
CRC′ + R

)−1 (4.20)

and

K =
(
B′PB+ S

)−1 (
B′PA

)
, (4.21)

which have, respectively, the property thatA−HC andA−BK are stable matri-
ces. The controller that solves the optimization of the indexJ of (4.14) can then
be implemented in the standard way (see Chapter 2), with observer gainH and
feedback gainK. In particular, we have

3 =

(
0 0

−B f4Cs 0

)
−HC (4.22)

and

2 = −K. (4.23)

BecauseA is an affine function of4 it follows thatR, P and hence alsoH, K, and
3, 2 depend on4. Moreover it can be demonstrated that on any open subset of
detectable matrix pairs(C,A (4)) and on any open subset of stabilizable matrix
pairs(A (4) ,B) this dependency on4 is analytic. (See Mareels and Polderman
(1996) for a proof of the analyticity property.)

7.5. Adaptive Algorithm Analysis: Nonideal Case 195

Main Points of Section

The behavior of the adaptive closed-loop system is studied in the situation that
the parameterized class of models contains the particular plant, the so-called ideal
situation. First attention is paid to the possible no-adaptation behaviors. The in-
direct adaptive algorithms introduced involving either filtered excitation or using
classical adaptation, both enjoy the tuning property. The tuning property indicates
that under conditions that the identification error is zero, the adaptively controlled
closed loop appears to be controlled as if the true system is known. This estab-
lishes that the steady state behavior of the controlled loop is as good as we can
hope for. Next we consider the transient behavior. We establish that the filtered
excitation adaptive algorithm in conjunction with a sufficiently rich probing sig-
nal is capable of identifying the plant and hence achieves near optimal control
performance. The result holds under the condition of sufficiently slow adapta-
tion. The key idea in the filtered excitation algorithm is that as far as the probing
signal is concerned the loop is essentially open. This achieves unbiased identifi-
cation and allows one to exploit the robustness margin of the stabilizing controller
without compromising the performance. Robust control and adaptation are truly
complementary.

7.5 Adaptive Algorithm Analysis: Nonideal Case

The most important realization is that in our set up the tuning property remains
valid in the presence of unmodeled dynamics for either the classical or the filtered
excitation adaptive algorithm. This is a consequence of the fact that we start from
the premise that our initial controller is stabilizing. It is in sharp contrast with
the classical position in adaptive control, where arbitrarily small perturbations
may lead to instability, destroying the tuning property. Moreover, if we restrict
ourselves to the filtered excitation algorithm, we will deduce that in spite of mod-
eling errors, we do identify the best possible model in our model class to represent
S. This property does not hold for the classic adaptive algorithm due to the highly
nonlinear interaction between identification and control. As a consequence the
filtered excitation algorithm has a much larger robustness margin for inadequate
modeling of theS parameter than the classic algorithm. The main result is there-
fore restricted to the filtered excitation algorithm.

Tuning Property

Although we argue that the tuning property is close to necessary for an adaptive
algorithm, it is clear that in the nonideal case this property plays a less important
role. This is because the conditionẑ f,k − z f,k ≡ 0 can hardly be expected to be
satisfied along the solutions of the adaptive system. Following the same arguments
as in the ideal case we find nevertheless that the tuning property also holds in the
nonideal case. Indeed, the stability of the closed-loop adaptive system hinges on

196 Chapter 7. Indirect(Q, S) Adaptive Control

the stability of the system (neglecting the driving signalswk):


v1,k+1

vk+1

z f,k+1

zk+1

v̂k+1

ẑ f,k+1


=



A1 0 0 B12 0 0

0 As 0 Bs2 0 0

−B f C1 −B f 4
∗Cs A f 0 0 0

0 0 BqC f Aq +3 0 0

0 0 0 Bs2 As 0

0 0 0 0 −B f 4Cs A f





v1,k

vk

z f,k

zk

v̂k

ẑ f,k


+



B1
Bs

0

0

Bs

0


dk. (5.1)

Again usingẑ f,k ≡ z f,k, it follows that the stability of the loop depends only on
the stability of the matrix A1 0 0

0 As 0

−B f C1 −B f4
∗Cs A f


and the design matrixAq +3 0 BqC f

Bs2 As 0

0 −Bq4Cs A f

 .
The former is stable by assumption, the latter by construction. This establishes
the tuning property.

Expression (5.1), however makes it very clear that due to the presence ofv1,k,
and certainly in the case of a sufficiently richdk, we can not expect to havez f,k ≡

ẑ f,k. In the absence of any probing signaldk and with no external disturbances
wk ≡ 0, it is possible to havez f,k ≡ ẑ f,k.

Identification Behavior

Let us now focus on what model will be identified in closed loop via the filtered
excitation adaptive algorithm. Again, we rely on slow adaptation and the stabil-
ity Hypothesis 4.3. Whereas in the ideal case, it is clear that Hypothesis 4.3 is
fulfilled under very reasonable assumptions, this is no longer guaranteed in the
nonideal model case. We postpone a discussion of this crucial hypothesis until we
have a clearer picture of what the possible stationary points for the identification
algorithm are.

Clearly, as before we have (see (4.11))

ẑ f,k =
∑
i j

γi j ,k4i j ,k +
∑
i j

λi j ,k4i j ,k + O(µ).

However

z f,k =
∑
i j

(
γi j ,k4

∗

i j + λi j ,k4
∗

i j

)
+ ν1,k + ν2,k,

7.5. Adaptive Algorithm Analysis: Nonideal Case 197

where

ν1,k+1 = A f ν1,k − B f C1v1,k,

v1,k+1 = A1v1,k + B1dk,

ν2,k+1 = A f ν2,k − B f C1v2,k,

v2,k+1 = A1v2,k + B12kzk.

The adaptive update equation can thus be written as:

4i j ,k+1

= 4i j ,k − µγ
′

i j ,k

(∑
t,`

(
γt`,k + λt`,k

) (
4t`,k −4

∗

t`

)
+
(
ν1,k + ν2,k

))
+ O(µ2).

(5.2)

In the above expressionsλt`,k andν2,k are functions of4k, but as observed before,
for fixed4 we clearly have

lim
N→∞

1

N

N∑
k=1

γi j ,kν
′

2,k (4) = 0,

lim
N→∞

1

N

N∑
k=1

γi j ,kλ
′

t`,k (4) = 0,

because bothν2 andλt` are filtered versions of the signalz which does not contain
the spectrum ofd, as this is eliminated by the filter(A f , B f ,C f). Computing the
averaged equation for (5.2), we have thus:

vec
(
4av

k+1

)
= vec

(
4av

k

)
k − µ0 vec

(
4av

k −4
∗
)
+ µM,

whereM consists of the elements

lim
N→∞

1

N

N∑
k=1

γ ′i j ,kν1,k,

in appropriate order. If follows that the averaged equation, under persistency of
excitation such that0 = 0′ > 0, has a unique equilibrium:

vec
(
4av
∞

)
= vec

(
4∗
)
+ 0−1M.

Reinterpreting the above averages in the frequency domain, we see that the iden-
tification process is equivalent to finding the best4 parameter in aǹ2 approxi-
mation sense, that is

4av
∞ = arg min‖(S(z)−4B (z)) d‖2 ,

198 Chapter 7. Indirect(Q, S) Adaptive Control

where

S(z) = C1 (z I − A1)
−1 B1 +4

∗B (z) .

This is clearly the best we can achieve in the present setting, but unfortunately it
is not directly helpful in a control setting. We discuss this in the next subsection.
Let us now summarize our main result thus far:

Theorem 5.1. Consider the adaptive system(2.7) together with(3.1). Let As-
sumption 3.1 and Hypothesis 4.3 hold. Assume that the external probing signald
is sufficiently exciting in that‖S(z)−4B (z) d‖2 has a unique minimizer. More-
over the filter(A f , B f ,C f) nulls the signald. Assume that the external signalw
is stationary and has a spectrum which does not overlap with that ofd in that:

lim
k→∞

1

N

N∑
k=1

wkdk = 0.

Then for all initial conditions satisfying Hypothesis 4.3 in a compact domain there
exists aµ∗ > 0 such that for allµ ∈ (0, µ∗) the adaptively controlled loop is
stable, in that all signals remain bounded. Moreover,

1.
∥∥4k −4

av
k

∥∥ = δ(µ),
2. lim sup

k→∞

∥∥4k −4
av
∞

∥∥ = δ(µ),
for some order functionδ(µ) such thatlimµ→0 δ(µ) = 0.

The main difficulty is of course Hypothesis 4.3 which we discuss now.

Identification for Control

As indicated earlier, the asymptotic performance of the adaptive algorithm is gov-
erned by:

4∞ = arg min‖(S(z)−4B(z))d‖2 .

The corresponding closed-loop stability depends on

(2∞,3∞) = F (4∞) ,

where by constructionF ensures that the matrix As 0 Bs2∞

−B f4∞Cs A f 0

0 BqC f Aq +3∞

 (5.3)

7.5. Adaptive Algorithm Analysis: Nonideal Case 199

is a stable matrix. The closed-loop stability of the system is however determined
by the stability properties of the matrix

A1 0 0 B12∞
0 As 0 Bs2∞

−B f C1 −B f4
∗Cs A f 0

0 0 BqC f Aq +3∞

 . (5.4)

Let us interpret these in terms of transfer functions. Introduce

S∞(z) = 4∞B(z),

S(z) = C1 (z I − A1)
−1 B1 +4B(z),

Q(z) = 2∞
(
z I − Aq −3∞

)−1
BqC f

(
z I − A f

)−1
B f ,

1(z) = S(z)− S∞(z).

Thus (5.3) being a stable matrix states that(S∞(z), Q(z)) is a stable loop, and
(5.4) stable expresses that(S(z), Q(z)) is a stabilizing pair. A sufficient condition
for the latter is that: ∥∥∥(I − Q(z)S∞(z))

−11(z)
∥∥∥
∞
< 1. (5.5)

Via the adaptive algorithm we have ensured that

‖1(z)d‖22 < 1, (5.6)

which does go a long way in establishing (5.5) but is not quite enough. It is in-
deed possible that the minimization of (5.6) does not yield (5.5), and may even
lead to instability in the closed-loop adaptive system. This indicates that the adap-
tive algorithm leads to unacceptable behavior. A finite-time averaging result (see
Appendix C), allows us to conclude that the adaptive algorithm will indeed try
to identify S∞(z). This leads to a temporarily unstable closed loop, characterized
by exploding signals. At this point averaging would no longer be valid, Hypothe-
sis 4.3 being violated. But it does indicate that large signals in the loop are to be
expected. Invariably the performance of such a controlled system is bad, even if
the adaptive loop may recover from this explosive situation. Understanding what
type of behavior ensues from this is nontrivial. For a discussion of the difficul-
ties one may encounter we refer to Mareels and Polderman (1996, Chapter 9).
Suffice it to say that chaotic dynamics and instability phenomena belong to the
possibilities.

In order to have that the minimization of (5.6) leads to (5.5) being satisfied, we
should have either

1. a sufficiently general model to ensure thatC1 will be small, or

2. ensure that outside the frequency spectrum ofd the controlled loop
(S∞(z), Q(z)) has small gain.

200 Chapter 7. Indirect(Q, S) Adaptive Control

The link between identification and control is obvious in the equations (5.5)
and (5.6) and has been the focus of much research. See, for example Partanen
(1995), Lee (1994), Gevers (1993).

Main Points of Section

In the nonideal case, the model class is insufficient to describe the mismatch be-
tween the plant and the nominal plant; the filtered excitation adaptive algorithm
attempts to identify the best possible model in an`2 sense. Unfortunately, this may
not be enough to guarantee stability let alone performance. Indeed despite the fact
that the initial model and controller is stable it may be that the best possible model
in the model class leads to instability. The interdependency of identification and
control is clearly identified. The key design variables are the choice of model
class, the probing signal and the control objective, as exhibited in equations (5.6)
and (5.5).

Example. First we demonstrate the idea behind the filtered excitation adaptive al-
gorithm, without using the(Q, S) framework. The example will deviate slightly
from the theory developed in this chapter in order to illustrate the flexibility of-
fered by the averaging analysis. The example is an abstraction of a problem en-
countered in the control of the profile of rolled steel products.

Consider the plant represented in Figure 5.1. The inputu and outputeare mea-
surable. The control objective is to regulatee to zero as fast as possible. The
signalw is an unknown constant. The plant outputy is not measurable. The gain
g ∈ (0, ḡ), is unknown but̄g is a known constant.

The proposed solution, in the light of the filtered excitation adaptive algorithm,
is to use a probing signaldk = (−1)kd, whered is a small constant, leading to
an acceptable error in the regulation objective. The controlled plant becomes as
presented in Figure 5.2.

Whenĝ = g, then we have dead beat response ande is regulated in three time
steps. More precisely, withq−1 the unit delay operator

q3e= (q − 1)(q − 1
2)(q +

1
3)w + g(q − 1

2)(q +
1
3)(−1)kd.

The probing signal leads thus to a steady state error of|gd/2| in magnitude. Of
course, due to the integral in the plant, there is no steady state error for any con-
stantw.

gz1
e

w

u
SUM

PL

MI

y

FIGURE 5.1. Plant

7.5. Adaptive Algorithm Analysis: Nonideal Case 201

eu y
�

�

�

�
� �

�� � 1 � k d

g
z� 1

z� 1
z � 1

2

1�
g

� 5
6 z � 1

3
z� 2

3

FIGURE 5.2. Controlled loop

It is easily verified that the above system is stable for allg/ĝ ∈ (0, 2). It is thus
advantageous to over estimateg. The filtered excitation adaptive algorithm can be
implemented as follows:

ĝk+1 = ĝk − µ(−1)k
(

ek +
ĝkd

2
(−1)k

)
; ĝ0 = ḡ.

The complete control loop is illustrated in Figure 5.3.
Indeed because of the filter we expect the steady state behavior ofek due to

the probing signal to be−(gd/2)(−1)k, our estimate for this is−(ĝkd/2)(−1)k,
which leads to the above update law. Now providedg/ĝk ∈ (0, 2) and for suf-
ficiently smallµ, we can look at the averaged update equation to see how the
adaptive system is going to respond. According to our development this leads to

ĝav
k+1 = ĝav

k − µ

(
−

gd

2
+

ĝav
k d

2

)
, ĝav

0 = ĝ0 = ḡ,

or

ĝav
k+1 = ĝav

k −
µd

2

(
ĝav

k − g
)
.

eu y

Adaptation

�

�

�

�

�

�

�

� �

�

�
gk

� � 1 � k d

� � 1 � k d

e fg
z� 1

z� 1
z � 1

2

� 5
6 z � 1

3
z� 2

3

FIGURE 5.3. Adaptive control loop

202 Chapter 7. Indirect(Q, S) Adaptive Control

0 50 100 150 200 250 300 350 400
Time index

1.6

1.2

0.8

1.4

1

�

g

FIGURE 5.4. Response ofĝ

0 5 10 15 20 25 30 35 40
Time index

10

0

C
on

tr
ol

 e
rr

or

5

� 5

� 10

(

� 10

� 3
)

FIGURE 5.5. Response ofe

Hence, as expected̂gav
k converges monotonically tog whenever 0< µd < 2.

Now from Theorem 4.4 we conclude that for allg/ĝ0 ∈ (0, 2)∣∣ĝk − ĝav
k

∣∣ = O(µ) for all k.

This leads to asymptotically near optimal performance for allg ∈ (0, ḡ), actually
for all g ∈ (0,2ḡ− ε), whereε is any small constant 1� ε > µ > 0.

A response of the algorithm is illustrated in Figures 5.4 and 5.5. Figure 5.4
illustrates the response of theĝ variable, while Figure 5.5 displays the response
of the regulated variable. For the simulation we chooseµd = 0.2, and all other
initial conditions set to 1. Notice that the averaging approximation predicts the
closed-loop behavior extremely well.

As can be seen from this example, stability of the plant to be controlled is not
essential for the filtered excitation algorithm to be applied. The stability of the
closed loop is, of course, important.

Simulation Results

In this subsection, we present simulations for the case where an explicit adaptive
LQG algorithm is used to design an adaptiveQ filter, denotedQk. The actual
plantG(S), and the nominal controllerK used are designed based on the nominal

7.5. Adaptive Algorithm Analysis: Nonideal Case 203

plantG of the example in Section 5.2. The following LQ index penalizingr and
s is used in the design of the adaptive LQG augmentationQk.

JL Q = lim
k→∞

k∑
i=1

(r 2
i + s2

i). (5.7)

Table 5.1 shows a performance index comparison for the following various
cases. The first is where the actual plantG(S) is controlled by the LQG controller
K for the nominal plantG with no adaptive augmentation. The second case is
when the LQG controller forG is augmented with an indirect LQG adaptive-Q
algorithm. A third order modelS is assumed in this case, and the estimate ofS
‘converges’ to

S=
0.381z−1

− 0.092 5z−2
− 0.358 8z−3

1− 0.423 9z−1− 0.439 2z−2− 0.018 1z−3
. (5.8)

A marked improvement over that of the nonadaptive case is recorded. Note that
the average is taken after the identification algorithm ‘converges’. The third case
is for the actual plant,G(S), controlled by the corresponding LQG controller,
designed based on knowledge ofG(S) rather than on that of a nominal modelG.
Clearly, the performance of the adaptive scheme (Case 2) is drastically better than
for the nonadaptive case, and approaches that of the optimal scheme (Case 3),
confirming the performance enhancement ability of the technique.

Case
1

k

k∑
i=1

(y2
i + 0.005u2

i)

1. Actual plant G(S) with LQG
controller for nominal plantG.

0.423 0

2. Actual plantG(S)with nominal
LQG controller and adaptiveQk.

0.186 0

3. Actual plant G(S) with op-
timal LQG controller for G(S).

0.175 6

TABLE 5.1. Comparison of performance

In a second simulation run, we work with a plantG which is not stabilized by
the nominal controllerK . Again S is identified on line using a third order model
and there is employed an adaptive LQG algorithm, as in the run above, to design a
Qk to augmentK . Figure 5.6 shows the plant output and input. In this instance, the
adaptive augmentation,Qk together withK stabilizes the plant. The results show
that the technique not only enhances performance but also can achieve robustness
enhancement.

204 Chapter 7. Indirect(Q, S) Adaptive Control

0

0 50 100 150 200 250 300 350 400 450 500
Time Samples

y

0

0 50 100 150 200 250 300 350 400 450 500
Time Samples

u

3 000

3 000

2 000

2 000

1 000

1 000

� 1 000

� 1 000

� 2 000

� 2 000

� 3 000

� 3 000

FIGURE 5.6. Plant outputy and plant inputu

Main Points of Section

The first example serves to illustrate the powerful nature of the averaging tech-
niques. Clearly the analysis can be used for design purposes. The filtered exci-
tation algorithm provides a suitable way of injecting an external signal such as
to identify the plant characteristics in a particular frequency range, without com-
promising the control performance too much. The trade off between desired con-
trol objective and the identification requirements can easily be analyzed in the
frequency domain. The second example clearly demonstrates the strength of the
(Q, S) framework.

7.6 Notes and References

Indirect adaptive control has a played an important role in the development of
control theory. It has been treated extensively in books such as Goodwin and Sin
(1984), Sastry and Bodson (1989), Narendra and Annaswamy (1989), Mareels
and Polderman (1996). Our premise here is of course the availability of a sta-
bilizing, not necessarily well performing controller. This leads to a significant
departure of the usual approach to the design of adaptive systems. It imposes a
lot of structure on the adaptive problem which can be exploited to advantage. The

7.6. Notes and References 205

developments of these ideas can be traced to Tay (1989) and Wang (1991). In or-
der to achieve identification in closed loop without compromising the control too
much, we introduced the filtered excitation adaptive scheme. This has not been
treated before in the literature and much of the presentation here is new. The aver-
aging ideas which are crucial to the analysis have been developed in, e.g. Mareels
and Polderman (1996) and Solo and Kong (1995). Averaging has a long history in
adaptive control and signal processing analysis, see for example Anderson et al.
(1986).

Problems

1. Reconsider the example in the text in the(Q, S) framework. LetG =
1/(z− 1) with N = 1/z andM = (z− 1)/z. Let K = 1 with U = V =
1. Show thatS = (z− 1)(g− 1)/[z(z+ (g− 1))]. Use as parameterized
function classB(z, 4) = ((z− 1)/z)(4/(z+4)) with 4 ∈ (−1, 1). Use
the same probing signal as in the textd(k) = (−1)kd. Consider the plug
in controller to take the formQ(z) = q1(z+ 1)(z+ q2)/(z2

+ q3z+ q4).
Achieve dead beat control for the(Q, S) loop, that is, computeF. Show
that F is Lipschitz continuous on the domain4 ∈ (0, 2). Show that for
correctly tuned4 this strategy achieves dead beat control for the complete
closed loop. Now implement the filtered excitation algorithm.

Remark. Observe that this control strategy is more complicated than the
direct implementation discussed in the text. The advantage of the(Q, S)
framework is that it leads to a more robust control loop with respect to
other disturbances.

2. Using the example in Section 7.5, explore the effect of using other probing
signals of the formd(k) = d cos(ωk) with appropriate filter in theQ-loop.
Show that asω becomes smaller it becomes increasingly difficult to achieve
good regulation behavior. Why is this?

3. The adaptive control algorithm, like all indirect adaptive control algorithms
has no global stability property. In particular, as indicated, the filtered ex-
citation algorithm may fail when the Hypothesis 4.3 fails. This may be il-
lustrated using the example in Section 7.5 by taking initial conditions as,
for example,ĝ0 = 0, y = 10. The stability hypothesis fails and limit cycle
behavior is observed. What happens whenĝ0� ḡ?

CHAPTER 8

Adaptive-Q Application to
Nonlinear Systems

8.1 Introduction

For nonlinear plants there has evolved both open-loop and closed-loop optimal
control theory. Optimal feedback control for very general plants and indices is
very new and appealing, see Elliott et al. (1994), but requires infinite dimen-
sional controllers designed using off-line infinite dimensional calculations. Op-
timal open-loop nonlinear control methods are considered very elegant in theory,
but lack robustness in practice, see Sage and White (1977). Can adaptive-Q meth-
ods somehow bridge the gap between these elegant theories and result in practical
feedback controllers that have most of the benefits of both approaches without the
disadvantages of each? We proceed as in the work of Imae, Irlicht, Obinata and
Moore (1992) and Irlicht and Moore (1991).

In the optimal open-loop control approach to nonlinear control, a nonlinear
mathematical model of the process is first formulated based on the fundamental
laws in operation or via identification techniques. Next, a performance index is
derived which reflects the various cost factors associated with the implementation
of any control signal. Then, off-line calculations lead to an optimal control lawu∗

via one of the various methods of optimal control, see for example Teo, Goh and
Wong (1991). In theory then, applying such a control law to the physical process
should result in optimal performance. However, the process is rarely modeled
accurately, and frequently is subject to stochastic disturbances. Consequently, the
application of the “optimal” control signalu∗ results in poor performance, in that
the process outputy differs from y∗, the output of the idealized process model.

A standard approach to enhance open-loop optimal control performance, see
for example Anderson and Moore (1989), is to work with the difference between
the ideal optimal process output trajectoryy∗ and the actual process outputy,
denotedδy, and the differenceδu, between the optimal controlu∗ for the nom-

208 Chapter 8. Adaptive-Q Application to Nonlinear Systems

inal model and any actual control signalu applied. For nominal plants and per-
formance indices with suitably smooth nonlinearities, a linearization of the pro-
cess allows an approximate linear time-varying dynamic model for relatingδy
to δu. With this model, and an associated quadratic index also derived from the
Taylor series expansion function, optimal linear quadratic feedback regulator the-
ory can be applied to calculateδu in terms ofδy which is measurable, so as
to regulateδy to zero, or equivalently to force the actual plant to track closely
the optimal trajectory for the nominal plant. Robust regulator designs based on
optimal theory, perhaps viaH∞ or LQG/LTR, could be expected to lead to per-
formance improvement over a wider range of perturbations on the nominal plant
model.

Even with the application of linearization and feedback regulation to enhance
optimal control strategies, there can still be problems with external disturbances
and modeling errors. The linearization itself may be a poor approximation when
there are large perturbations from the optimal trajectory.

In this chapter, it is proposed to apply the adaptive-Q techniques developed
for linear systems so as to achieve high performance in the face of nonlineari-
ties and uncertainties, that is to assist in regulation of the actual plant so that it
behaves as closely as possible to the nominal (idealized) model under optimal
control. Some analysis results are presented giving stability properties of the opti-
mal/adaptive scheme, and certain relevant nonlinear coprime factorization results
are summarized. Simulation results demonstrate the effectiveness of the various
control strategies, and the possibility of further performance enhancement based
on functional learning is developed.

8.2 Adaptive-Q Method for Nonlinear Control

In this section, we first introduce a nonlinear plant model and associated non-
linear performance index. Next, we perform a linearization, then apply feedback
regulation to the linearized model to achieve a robust controller. Finally we apply
the adaptive-Q algorithms to this robust controller. There is a mild generalization
for dependence of the linear blocks (operators) on the desired trajectory. Since
these operators are inherently time varying, the notion of time-varying coprime
factorizations is developed.

Signal Model, Optimal Index and Linearization

Consider some nonlinear plant, denotedḠ, and a generalized nonlinear nominal
plant modelG, an approximation for̄G:

G : xk+1 = f (xk, uk), yk = h(xk, uk), (2.1)

8.2. Adaptive-Q Method for Nonlinear Control 209

with f (·, ·) andh(·, ·) ∈ C1, the class of continuously differentiable functions.
Consider also some performance index over the time interval [0, T]

I
(
x0, u[0,T]

)
=

1

T

T∑
k=0

` (xk, uk) , (2.2)

Assume that (2.2) can be minimized subject to (2.1), and that the associated op-
timal control is given byu∗, the optimal state trajectory isx∗, and the optimal
output trajectory isy∗ so that in an operator notationy∗ = Gu∗, whereG is
initial condition dependent. For details on such calculations see Teo et al. (1991).

Consider now a linearized version of the above plant model driven byu∗ and
with statesx∗, denoted1G∗:

1G∗ : δxk+1 = Aδxk + Bδuk; δx0 = 0,

δyk = Cδxk + Dδuk.
(2.3)

In obvious notation,

(A, B,C, D) =

(
∂ f

∂x
,
∂ f

∂u
,
∂h

∂x
,
∂h

∂u

)∣∣∣∣
(x=x∗,u=u∗)

are time-varying matrices sincex∗ andu∗ are time dependent. We take the liberty
here to use the operator notation

δyk = 1G∗δuk. (2.4)

The following shorthand notation is a natural extension of the block notation of
earlier chapters for time-invariant systems to time-varying systems. The asterisk
highlights the optimal state and control dependence,

1G∗ :

 A B

C D

∗ . (2.5)

Let us denote1Ḡ as the operator of the system with input1u = u − u∗ and
output1y = y − y∗. Of course, the ‘linearization’ can only be a good one and
the following design approach effective if the actual plant is not too different in
behavior from that of the modelG.

Let us associate with the linearized model a quadratic performance index pe-
nalizing departures1y and1u away from the optimal trajectory:

1I ∗ =
1

T

T∑
k=0

e′kek, (2.6)

where,

e= L∗
[
1y

1u

]
, L∗L∗′ =

[
Q∗c S∗c
S∗c
′ R∗c

]
,

Q∗c = Q∗c
′
≥ 0, Q∗c − S∗c (R

∗
c)
−1S∗c ≥ 0, R∗c = R∗c

′
> 0.

(2.7)

210 Chapter 8. Adaptive-Q Application to Nonlinear Systems

Heree is interpreted as a disturbance response which we seek to minimize in an
rms sense. Of course,1I ∗ and thusL∗, can be generated from a Taylor series
expansion forI about I ∗ = (1/T)

∑T
k=0 `(x

∗

k , u
∗

k) up to the second order term.
In fact the first two terms are zero due to optimality and the second term can be
selected as1I ∗ with L∗L∗′ the Hessian matrix ofI ∗. Other selections for1I ∗

could be simpler and even more appropriate.
As already noted, we assume thatu∗, x∗, y∗ are knowna priori from an open-

loop off-line design such as found in books on nonlinear optimal control, see for
example Teo et al. (1991). However whenu∗ is applied to an actual plantG, which
includes unmodeled disturbances and/or dynamics, there are departures from the
optimal trajectories. With departures1y = y − y∗ measured on-line, a standard
approach is to apply control adjustments1u = u − u∗ to the optimal control
by means of output feedback control to minimize (2.6). Thus for the augmented
plant arrangement, denotedPA, and depicted in Figure 2.1, let us consider a linear
feedback regulator. We base such a design on the linearized situation depicted in
Figure 2.2 where the linearized nominal plant, denotedP, is given from

P =

[
∗ P12

∗ P22

]
, P12 = L

[
1G∗

I

]
, P22 = 1G∗. (2.8)

The star termsP11, P21 are not of interest for the subsequent analysis. Of course
in Figure 2.2 the outputse and1y are not identical to those of Figure 2.1, but
they approximate these.

Nominal
plant

G

Plant

Optimal trajectories

Disturbance
response

u y

e

e

��

�
u

�
u

�
u

x

�
y

�
y�

G

PA

u �

u �

x �

y �

[L1 L2]

FIGURE 2.1. The augmented plant arrangement

us

Du

e

DyP

FIGURE 2.2. The linearized augmented plant

8.2. Adaptive-Q Method for Nonlinear Control 211

Feedback Regulator for Linearized Model

Let the regulator of the linearized modelP above, based on the nominal model
1G∗ (equation (2.3)), be given by

K ∗ : δx̂k+1 = Aδx̂k + Bδuk − Hrk, δx̂0 = 0, (2.9)

rk = δyk − Cδx̂k − Dδuk, δuk = Fδx̂k = K ∗δyk.

Herer is the estimator residual,δx̂ is the estimate ofδx and H andF are time-
varying matrices formed, perhaps via standard LQG/LTR theory of Chapter 4,
see also Anderson and Moore (1989), so that under uniform stability ofA, B and
uniform detectability ofA, C the following systems are exponentially stable:

ξk+1 = (A+ BF)ξk, ζk+1 = (A+ HC)ζk. (2.10)

Actually, the important aspect of the LQG design for our purposes is that un-
der the relevant uniform stabilizability and uniform detectability assumptions, the
(time-varying) gainsH , F exist, and are given from the solution of two Riccati
equations with no finite escape time. Moreover, for the limiting case when the
time horizonT becomes infinite, the controllerK ∗ stabilizes1G∗.

It is well known that the LQG controller (2.9) for the linearized plants (2.3),
although optimal for the nominal linear time-varying plant for the assumed noise
environment, may be far from optimal in other than the nominal noise environ-
ments, or in the presence of structured or unstructured perturbations on (2.3).
Stability may be lost even for small variations from the nominal plant.

Methods to enhance LQG regulator robustness exist, such as modifyingQc,
Sc, Rc (usuallySc ≡ 0) selections, or assumed noise environments, as when loop
recovery is used. Such techniques could well serve to strengthen the robustness
properties of the optimal/adaptive schemes studied subsequently.

In order to proceed, we here merely assume the existence of a controller (2.9)
stabilizing1G∗, although our objective is to achieve a controller which also sta-
bilizes1Ḡ, and achieves a low value of the index1I ∗ when applied to1Ḡ.

Coprime Factorizations

Now it turns out that most of the coprime factorization results of Chapter 2 de-
veloped in a time-invariant linear systems context have a natural generalization to
time-varying systems. The essential requirement for these to hold is linearity, not
time invariance. Thus many of the equations of Chapter 2 still hold with appro-
priate interpretation of the notation. Notions of system stability, system inverse,
series and parallel connection of systems all carry over to this time-varying sys-
tem context in a natural way. We proceed on this basis, and leave the reader to
check such details by working through a problem at the end of the chapter. Let
it suffice here to state that the developments proceed most naturally in the state
space framework developed in Sections 2.4 and 2.5.

Here, it is convenient to introduce normalizedx∗-dependent andu∗-dependent

212 Chapter 8. Adaptive-Q Application to Nonlinear Systems

coprime factorizations for1G∗ andK ∗, such that

1G∗ = N M−1
= M̃−1Ñ, (2.11)

K ∗ = U V−1
= Ṽ−1Ũ , (2.12)

satisfy the double Bezout identity,[
Ṽ −Ũ

−Ñ M̃

][
M U

N V

]
=

[
M U

N V

][
Ṽ −Ũ

−Ñ M̃

]

=

[
I 0

0 I

]
.

(2.13)

Here the factorsN,M, N,V, M̃, Ñ, Ũ , Ṽ are stable and causal operators. Since
they arex∗-, u∗-dependent, and thus time-varying system linear operators, they
are natural generalizations of the linear time-invariant operators (transfer func-
tions) of earlier chapters. Here the product notation is that of the concatenation of
systems (i.e. of linear system operators).

Now using the notation of (2.5), suitable factorizations are readily verified un-
der (2.10) as, see also Moore and Tay (1989b),

[
M U

N V

]
=


A+ BF B −H

F I 0

C + DF −D I


∗

,

[
Ṽ −Ũ

Ñ M̃

]
=


A+ HC −(B+ H D) H

F I 0

C −D I


∗

.

(2.14)

The Class of all Stabilizing Controllers

The theory of the class of stabilizing linear controllers for linear plants, spelled
out in Chapter 2 for the time-variant case, is readily generalized to cope with
time-varying systems. Again, the strength of the results depends on linearity, not
the time-invariance. The details are left for the reader to verify in a problem at
the end of the chapter, (see also Imae et al. (1992), Moore and Tay (1989b), Tay
and Moore (1990)). Thus, the class of all linear, causal stabilizing controllers for
1G∗ (the linearized plant model) under (2.10) can be generated, not surprisingly,
as depicted in Figure 2.3 using aJk subsystem defined below, and a so-called
Q parameterization. Here the blocks1G, H, A, B,C, F andQ are time-varying
linear system operators. Referring also to Figure 2.4, the subsystemJK is readily
extracted.

JK : δx̂k+1 = (A+ BF)δx̂k + Bsk − Hrk,

δuk = Fδx̂k + sk, rk = δyk − Cδx̂k − Dδuk,
(2.15)

8.2. Adaptive-Q Method for Nonlinear Control 213

D

C

Q

B

A

r

s

F

�

�

�

�
�

�

�

�

�

��
� H z � 1

���
x

y

C
�
x

�
u

�
y�

G �

FIGURE 2.3. Class of all stabilizing controllers—the linear time-varying case

Q

r s

�
u

�
y�

G �

J �

K � Q

FIGURE 2.4. Class of all stabilizing time-varying linear controllers

or equivalently,

JK =

[
K Ṽ−1

V−1
−V−1N

]
. (2.16)

In the Figure 2.4,Q is arbitrary within the class of all linear, time varying,
causal bounded-input, bounded-output (BIBO) stable operators. Thus:

K ∗(Q) = U (Q)V−1(Q) = Ṽ−1(Q)Ũ (Q), (2.17)

U (Q) = U + M Q, V(Q) = V + N Q,

Ũ (Q) = Ũ + QM̃, Ṽ(Q) = Ṽ + QÑ,

214 Chapter 8. Adaptive-Q Application to Nonlinear Systems

or equivalently, after some manipulations involving (2.12) and (2.13),

K ∗(Q) = K + Ṽ−1Q(I + V−1N Q)−1V−1. (2.18)

Simple manipulations also give an alternative expression forr , as

r = M̃δy− Ñδu. (2.19)

It is known that the closed-loop transfer functions (operators) of Figure 2.4 are
affine in Q, which facilitates either off-line or on-line optimization of suchQ
dependent transfer operators. We proceed with a class of on-line optimizations.

Adaptive-Q Control

Our proposal is to implement a controllerK ∗(Q) for some adaptiveQ-scheme
applied to1Ḡ. The intention is forQ to be chosen to ensure thatK ∗(Q) stabilizes
the feedback loop and thereby the original plantG, and moreover, achieves good
performance in terms of the index1I ∗ of (2.6). Thus consider the arrangement
of Figure 2.5 where the blockP is characterized by1Ḡ andL

A refinement on this proposal is to consider a two-degree-of-freedom con-
troller scheme. This is depicted in Figure 2.6. As discussed in Chapter 2, it can be
derived from a one-degree-of-freedom controller arrangement for an augmented
plantG =

[
0
G′
]
, reorganized as a two-degree-of-freedom arrangement forG. The

objective is to selectQ = [Q f Q] causal, bounded-input, bounded-output opera-
tors on line so that the responsee is minimized in aǹ 2 sense, see also the work
of Tay and Moore (1990).

In order to present a least squares algorithm for selection ofQ, generalizing the
schemes of Chapter 6 to the time-varying case as in the schemes of Moore and
Tay (1989b), some preprocessing of the signalse, δu, δy is required.

Prefiltering

Using operator notation, we define filtered variables

ξ =

[
ξ1

ξ2

]
=

[
P12M u∗

P12M r

]
, ζ = e− P12Ms. (2.20)

Least SquaresQ Selection

To fix the ideas, and to simplify notation, we assumer ands to be scalar sig-
nals in the subsequent developments. Let us define a (possibly time-varying)

8.2. Adaptive-Q Method for Nonlinear Control 215

L

e

y

Q

r s

p

�

�
u

�
y

���
Gu �

JK

FIGURE 2.5. AdaptiveQ for disturbance response minimization

L

Model
G

Plant

r s

y

eP

y

Q

�
�

�

�

�

�

�

�

�

�

�
u

�
y

�
G

u �

y �

JK

Q f

FIGURE 2.6. Two degree-of-freedom adaptive-Q scheme

216 Chapter 8. Adaptive-Q Application to Nonlinear Systems

Hold
Least

Squares
r

s

e

�

u �

�
1

�
1

�

�
P12M

P12M

� P12M

��
k

FIGURE 2.7. The least squares adaptive-Q arrangement

single-input, single-output, discrete-time version ofQ in terms of a unit delay
operatorq−1,

Q f (q
−1) =

γ + γ1q−1
+ · · · + γpq−p

1+ α1q−1+ · · · + αnq−n
,

Q(q−1) =
β + β1q−1

+ · · · + βmq−m

1+ α1q−1+ · · · + αnq−n
,

Q(q−1) =
[
Q f (q−1) Q(q−1)

]
,

θ ′ =
[
α1 . . . αn β1 . . . βm γ . . . γp

]
,

(2.21)

with (possibly time-varying) parametersαi , βi , γi . The following state (regres-
sion) vector in discrete time is

φ′k =
[
−sk−1 . . . −sk−n rk . . . rk−m ωk . . . ωk−p

]
. (2.22)

The dimensionsn,m, p are set from an implementation convenience/performance
trade-off. In the adaptive-Q case, the parameters are time-varying result-
ing from least squares calculations given below. We assume a unit delay
in calculations. Thusθ is replaced byθ̂k−1 and the filter with operator
Qk = [Q f k Qk] is implemented with parameters (time-varying in general)
as

sk = θ̂
′

k−1φk, θ̂ ′k =
[
α̂1k . . . α̂nk β̂0k . . . β̂mk γ̂0k . . . γ̂pk

]
. (2.23)

We seek selections of̂θk so that the adaptive controller minimizes the`2 norm of
the responseek. With suitable initializing we have the adaptive-Q arrangement of

8.2. Adaptive-Q Method for Nonlinear Control 217

Least Squares Update

e

sr

��

�

�

x �

u �

�
u

y

PA

� P12M[P12M P12M]

��
k

��
k

J 	 x ��

FIGURE 2.8. Two degree-of-freedom adaptive-Q scheme

Figure 2.6 with equations

θ̂k = θ̂k−1+ P̂kφ̂kêk/k−1,

êk/k−1 = ζk − φ̂
′

kθ̂k−1,

ek/k = ζk − φ̂
′

kθ̂k,

P̂k =

(k∑
i=1

φ̂i φ̂
′

i

)−1

= P̂k−1− P̂k−1φ̂k(I + φ̂
′

k P̂k−1φ̂k)
−1φ̂k P̂k−1,

φ̂′k =
[
(êk−1/k−1− ζk−1) . . . (êk−n/k−n − ζk−n)

−ξ2,k . . . −ξ2,k−m −ξ1,k . . . −ξ1,k−m
]
.

(2.24)

The complete adaptive-Q scheme is a combination of Figures 2.6 and 2.7 with key
equations (2.14) and (2.24), see also Figure 2.8. A number of remarks concerning
the algorithm are now in order.

The algorithms (2.24) should be modified to ensure thatθ̂k is projected into
a restricted domain, such as‖Qk‖ < ε, for some norm and some fixedε. Such
projections can be guided by the theory discussed in the next section.

To achieve convergence ofθ̂k, thenP̂k must approach zero, or equivalently,φ̂k

must be persistently exciting in some sense. However, parameter convergence is
not strictly necessary to achieve performance enhancement. With more general

218 Chapter 8. Adaptive-Q Application to Nonlinear Systems

Q

G

L
e

��
�

�

� �

���u �

y �

�
y

Q f �G

FIGURE 2.9. Model reference adaptive control special case

algorithms which involve resetting or forgetting, then care must be taken to avoid
ill-conditioning of P̂k, as can occur when there is instability.

It turns out that appropriate scaling can be crucial to achieve the best possible
performance enhancement. Scaling gains can be included to scaler and/ore with
no effect on the supporting theory, other than when defining projection domains
as above. Likewise, the “scaling” can be generalized to stable dynamic filters for
r and/ore with no effect on the supporting theory. In this way frequency shaped
designs can be effected.

The scheme described above can be specialized to the cases whenQ f , Q are
finite impulse response filters by settingn = 0. TheQ, so defined, are stable for
all boundedθ̂k. Also, eitherQ f or Q can be set to zero to simplify the processing,
although possibly at the expense of performance.

In the case thatQ f is a moving average andQ is zero, then our scheme be-
comes very simple, being a moving average filterQ f in series with the closed-
loop system(1Ḡ, K). In this case then, ifQ f is stable, guaranteed when the
gainsθ̂k are bounded, and(1Ḡ, K) is stable, then there is obvious stability of the
adaptive scheme.

When the linearized plant model1G∗ is stable, and one selects trivial values
F, H = 0 so thatK = 0, then the arrangement of Figure 2.6 simplifies to a
familiar model-reference adaptive control arrangement depicted in Figure 2.9.

In the case thatQ f is set to zero there is no adaptive feedforward control action.
The operators1G∗, JK are in fact functions of the optimal trajectoriesx∗.

It makes sense then to have the operatorQ also as a function ofx∗. Then the
adaptive-Q approach generalizes naturally to a learning-Q approach as studied in
a later section.

Main Points of Section

In the case of “smooth” nonlinear systems, linearizations yield trajectory de-
pendent time-varying models. Straightforward generalizations of the adaptive-Q
methods of Chapter 6 to the time-varying case allow application of the ideas to

8.3. Stability Properties 219

enhance the performance and robustness of “optimal” nonlinear controllers.

8.3 Stability Properties

In this section we focus on stability results as a basis to achieve convergence
results for our system. We first analyze a parameterization of thenonlinearplant
1Ḡ with input1u and output1y in terms of the coprime factorizations of the
linearized version1G∗, and stabilizinglinear controller K ∗, and establish that
this parameterization covers the class of well-posed closed-loop systems under
study. Next, stability of the scheme is studied in terms of such parameterizations
and then expected convergence properties are noted based on this characterization
and known convergence theories in the linear time invariant case.

Nonlinear System Fractional Maps∗

Let us consider the right and left coprime factorizations for the nominal linearized
plant and controller, paralleling the approach used in Chapter 2 for linear systems,
but here with time varying and at times nonlinear systems. The operators are ex-
pressed as functions of the desired optimal trajectoryx∗, and optimal controlu∗,
but sincex∗, u∗ are time dependent, then for any specificx∗(·), u∗(·) the oper-
ators are merely linear time-varying operators, and can be treated as such. We
denote1Ḡ as the (nonlinear) system with input1u and output1y, and1G∗ is a
linearization of the nominal plantG. Also, a unity gain feedback loop with open
loop operatorWol is said to be well-posed when(I +Wol)

−1 exists. Recall that
for a nonlinear operatorS, then, in generalS(A + B) 6= S A+ SB, or equiva-
lently superposition does not hold, and care must be taken in the composition of
nonlinear operators.

Theorem 3.1 (Right fractional map forms). Consider that the time-varying lin-
ear feedback system pair(1G∗, K ∗) is well posed and stabilizing with left and
right coprime factorizations for1G∗, K ∗, as in(2.11)and(2.12), and the double
Bezout(2.13)holds. Then anynonlinearplant with1Ḡ such that(1Ḡ, K ∗) is a
well-posed closed-loop system can be expressed in terms of a (nonlinear) operator
S in right fractional map forms:

1Ḡ(S) = N(S)M−1(S) (3.1)

= 1Ḡ+ M̃−1S(I + M−1U S)−1M−1, (3.2)

where

N(S) = (N + V S), M(S) = (M +U S). (3.3)

∗The remainder of this section can be omitted on first reading, or at least the proof details which
perhaps require technical skill, albeit paralleling developments for the linear case.

220 Chapter 8. Adaptive-Q Application to Nonlinear Systems

Also, closed-loop system (nonlinear) operators are given from[
I −K ∗

−1Ḡ I

]−1

=

[
I −K ∗

−1G∗ I

]−1

+

[
U M

V N

][
S 0

0 0

][
Ṽ Ũ

Ñ M̃

]
.

(3.4)

Moreover, the maps(3.1), (3.2) have the block diagram representations of Fig-
ure 3.1(a) and (b) where

JG =

[
−M−1U M−1

M̃−1 1G∗

]
. (3.5)

The solutions of(3.1), (3.2) are unique , given from the right fractional maps in
terms of1Ḡ, or (1G∗ −1Ḡ) as the (nonlinear) operator

S= (−Ñ + M̃1Ḡ)(Ṽ − Ũ1Ḡ)−1 (3.6)

= M̃(1Ḡ−1G∗)M [I − Ũ (1Ḡ−1G∗)M]−1, (3.7)

or in terms of the closed-loop system operators as

S=
[
−Ñ M̃

][I −K ∗

−1Ḡ I

]−1

−

[
I −K ∗

−1G∗ I

]−1
[M

N

]
. (3.8)

Moreover,(N(S),M(S)) are coprime and obey a Bezout identity

Ṽ M(S)− Ũ N(S) = I . (3.9)

Proof. Care must be taken in our proof to permit only operations valid for non-
linear operators when these are involved. Now simple manipulations allow (3.6)
to be reorganized under the well-posedness assumption as[

I

S

]
=

[
Ṽ −Ũ

−Ñ M̃

][
I

1Ḡ

]
(I − K ∗1Ḡ)−1Ṽ−1,

and via the Bezout identity, as[
M(S)

N(S)

]
=

[
M +U S

N + V S

]
=

[
M U

N V

][
I

S

]
=

[
I

1Ḡ

]
(I − K ∗1Ḡ)−1Ṽ−1.

(3.10)

Thus under (3.6) thenM−1(S) exists and, (3.1) holds as follows

N(S)M−1(S) = 1Ḡ(I − K ∗1Ḡ)−1Ṽ−1
[
(I − K ∗1Ḡ)−1Ṽ−1

]−1
= 1Ḡ.

8.3. Stability Properties 221

To prove the equivalence of (3.1) and (3.2), simple manipulations give

1Ḡ = 1G∗ + (N + V S)(I + M−1U S)−1M−1
− N M−1

= 1G∗ + (V − N M−1U)S(I + M−1U S)−1M−1

= 1G∗ + (V − M̃−1ÑU)S(I + M−1U S)−1M−1

= 1G∗ + M̃−1(M̃V − ÑU)S(I + M−1U S)−1M−1

= 1G∗ + M̃−1S(I + M−1U S)−1M−1,

so that under (2.13), we have that (3.2) holds. Likewise (3.6) is equivalent to (3.7)
as follows

S= M̃(1Ḡ−1G∗)(Ṽ − Ũ1Ḡ)−1

= M̃(1Ḡ−1G∗)M(Ṽ M − Ũ1ḠM)−1

= M̃(1Ḡ−1G∗)M(I + Ũ N M−1M − Ũ1ḠM)−1

= M̃(1Ḡ−1G∗)M [I − Ũ (1Ḡ−1G∗)M]−1.

To see that the operator of (3.1) is equivalent to that depicted in Figure 3.1(a),
observe from Figure 3.1(a) that` = M−1(e1 − U S̀) , or equivalently,̀ =
(M + U S)−1e. Also, (e2 − w2) = (N + V S)` = (N + V S)(M + U S)−1e1,
which is equivalent to (3.1).

Now suppose there is some other(S+1S) which also satisfies (3.1). Then[
I

1Ḡ

]
=

[
M U

N V

][
I

S

]
(M +U S)−1

=

[
M U

N V

][
I

S+1S

]
(M +U S+U1S)−1.

Then, using (2.13),[
Ṽ −Ũ

−Ñ M̃

][
I

1Ḡ

]
=

[
I

S

]
(M +U S)−1

=

[
I

S+1S

]
(M +U S+U1S)−1.

(3.11)

Premultiplication by[I 0] givesM + U S= M + U S+ U1S, and premultipli-
cation by[0 I] gives in turn that1S= 0.

To verify (3.8), first observe that[
I −K ∗

−1Ḡ I

]
=

[
M −U

−N V

][
I 0

−S I

][
M +U S 0

0 V

]−1

. (3.12)

222 Chapter 8. Adaptive-Q Application to Nonlinear Systems

VU

M

U

N

N

m

s

r

Q

S

(a)

(b)
S

Q

Q

(c)

� �

�

�
�

�

�
�

�

�

� ��

��

�

�
1

�
2

e1

e2

�

M � 1

V � 1

�
G �	� S

�
G ��� S

K � � Q

K � � Q

JG

JK

JK

�
�
G

T � S

FIGURE 3.1. The feedback system(1G∗(S), K ∗(Q))

8.3. Stability Properties 223

Thus[
I −K ∗

−1Ḡ I

]−1

−

[
I −K ∗

−1G∗ I

]−1

=

[M +U S 0

0 V

][
I 0

−S I

]−1

−

[
M 0

0 V

][M −U

−N V

]−1

=

[
M U

N V

][
0 0

S 0

][
M −U

−N V

]−1

,

and applying the double Bezout (2.13) gives[
Ṽ −Ũ

−Ñ M̃

][I −K ∗

−1Ḡ I

]−1[
I −K ∗

−1G∗ I

]−1
[M −U

−N V

]

=

[
0 0

S 0

]
,

or equivalently (3.4) holds, and (3.8). (This result is generalized in Theorem 3.2.)
Simple manipulations from Figure 3.1(b) give the operator representation of

theG block to beJ21S(1− J11S)−1J12+ J22, and substitution of (3.5) gives1Ḡ
by (3.2).

To establish coprimeness ofN(S),M(S) observe that under the double bezout
(2.13)

Ṽ M(S)− Ũ N(S) = Ṽ M − Ũ N + (ṼU − Ũ V)S= I .

Since I is unimodular, then from Paice and Moore (1990b, Lemma 2.1),
N(S)M(S)−1 is a right coprime factorization.

A number of remarks are in order. When1Ḡ is linear and time invariant, the
above results specialize to the results in Chapter 2, although the details of the
theorem proof appears quite different so as to avoid using superposition when
nonlinear operators1Ḡ, Sare involved.

The fact thatM̃, Ñ,M, N, Ũ , Ṽ,U,V are linear has allowed derivations to
take place without differential boundedness or other such assumptions as in a
full nonlinear theory as developed in Paice and Moore (1990a), Paice and Moore
(1990b) using left coprime factorizations.

Dual results apply for fractional mappings ofK ∗(Q), as in (3.13) and (3.14)
along with duals of the other results. ThusK ∗(Q) can be expressed as a linear
controllerK ∗ augmented with a nonlinearQ. Also, by duality, Figure 3.1(a) de-
picts a block diagram arrangement for

K ∗(Q) = U (Q)V−1(Q); U (Q) = (U + M Q), V(Q) = (V + N Q),
(3.13)

224 Chapter 8. Adaptive-Q Application to Nonlinear Systems

where

Q = (−Ũ + Ṽ K∗(Q))(M̃ − Ñ K∗(Q))−1. (3.14)

Stabilization Results

We define a system(G, K ∗) with G possibly nonlinear to beinternally stableif
for all bounded inputs, the outputs are bounded.

Theorem 3.2. Consider the well-posed feedback system(1Ḡ, K ∗) under the
conditions of Theorem 3.1, with1Ḡ and K ∗ parameterized byQ, S as in (3.1),
(3.13)and as depicted in Figure 3.1(a) and (b). Then the pair(1G∗(S), K ∗(Q))
is well posed and internally stable if and only if the feedback system(Q, S) de-
picted in Figure 3.2 is well posed and internally stable. Moreover, referring to
Figure 3.1(c), theJK ,1Ḡ block with input/output operatorT satisfies

T = S. (3.15)

Q

S

FIGURE 3.2. The feedback system(Q, S)

Proof. Observe that from (3.1),(3.13)[
I −K ∗(Q)

−1G∗(S) I

]

=

[
M −U

−N V

][
I −Q

−S I

][
M +U S 0

0 V + N Q

]−1

. (3.16)

Clearly, under the double Bezout identity (2.13), or equivalently under
(1G∗, K ∗) well posed and internally stable,[

I −K ∗(Q)

−1G∗(S) I

]−1

exists ⇐⇒

[
I −Q

−S I

]−1

exists.

Equivalently,(1G∗(S), K ∗(Q)) is well posed if and only if(Q, S) is well
posed. Thus under well-posedness assumptions, taking inverses in, and exploiting

8.3. Stability Properties 225

(3.16), simple manipulations yield[
I −K ∗(Q)

−1G∗(S) I

]−1

=

[[
M 0

0 V

]
+

[
U 0

0 N

][
S 0

0 Q

]][
I −Q

−S I

]−1[
Ṽ Ũ

Ñ M̃

]

=

[
I −K ∗

−1G∗ I

]−1

+

[
U M

V N

][
S 0

0 Q

][
I −Q

−S I

]−1[
Ṽ Ũ

Ñ M̃

]
.

(3.17)

Now internal stability of(1G∗, K ∗) , (Q, S), and stability ofN, Ñ, etcetera
leads to internal stability of the right hand side and thus of(1G∗(S), K ∗(Q))
as claimed. Moreover from (3.17), (2.13)[

S 0

0 Q

][
I −Q

−S I

]−1

=

[
−Ñ M̃

Ṽ −Ũ

][I −K ∗(Q)

−1G∗(S) I

]−1

−

[
I −K ∗

−1Ḡ I

]−1


×

[
M −U

−N V

]
.

Thus well-posedness and internal stability of(1G∗(S), K ∗(Q)) and(1G∗, K ∗)
gives well-posedness and internal stability of(Q, S) to complete the first part of
the proof.

Now with JK defined as in (2.16), the operatorT in Figure 3.1(c) can be rep-
resented as

T = V−11Ḡ(I − Ṽ−1Ũ1Ḡ)−1Ṽ−1
− ÑṼ−1

= V−11Ḡ(Ṽ − Ũ1Ḡ)−1
− ÑṼ−1

= [V−11Ḡ− Ñ + ÑṼ−1Ũ1Ḡ](Ṽ − Ũ1Ḡ)−1

= M̃ [M̃−1(V−1
+ ÑṼ−1Ũ)1Ḡ−1Ḡ](Ṽ − Ũ1Ḡ)−1

= M̃ [1Ḡ−1G](Ṽ − Ũ1Ḡ)−1

= S.

(3.18)

A number of remarks are in order. This proof does not use superposition asso-
ciated with operatorsQ, S, but does in regard toM, N, etc. The results following

226 Chapter 8. Adaptive-Q Application to Nonlinear Systems

Theorem 3.1 also apply for Theorem 3.2. Thus the proof approach differs (of ne-
cessity) from the proof approach for the linearQ, S case based on work with the
left factorizations , since when working with left factorizations, superposition is
used associated with the operatorsQ, S.

If ‖S‖ < ε then by the small gain theorem for closed feedback loops, if‖Q‖ <
1/ε then Q stabilizes the loop. From this, and Theorem 3.2 with(1Ḡ − 1G∗)
suitably small in norm, there exists someQ which will guarantee stability.

In the case where1Ḡ = 1G∗, we trivially haveS = 0 , and anyQ se-
lection based on identification ofS will be trivially Q = 0. This contrasts the
awkwardness of one alternative design approach which would seek to identify the
closed-loop system as a basis for a controller augmentation design.

Observations on examples in the linear1Ḡ case have shown that ifK ∗ is robust
for G, thenS can be approximated by a low order system, thus making anyQ
selection more straightforward than might be otherwise expected.

Averaging analysis could lead to robust convergence results as in the case of
linear plants, but such is clearly beyond the scope of this work.

Main Points of Section

The closed-loop stability theory that is the foundation of the adaptive-Q schemes
in the time-invariant linear model case is generalized in a natural way to the time-
varying linear system context, and at least partially to the nonlinear setting.

Example. Here we demonstrate the efficacy of the adaptive-Q approach through
simulation studies. Consider an optimal control problem based on the Van der Pol
equation. This equation is considered interesting because it is a simple yet funda-
mentally nonlinear equation which has a rich oscillatory behavior, not in general
sinusoidal.

ẋ1 = (1− x2
2)x1− x2+ u; ẋ2 = x1, y = x1, (3.19)

with x1(0) = 0, x2(0) = 1 and the performance index defined by

I =
1

2

∫ 5

0
(x2

1 + x2
2 + u2)dt. (3.20)

A second-order algorithm of Imae and Hakomori (1987), using 400 integration
steps, was adopted for the numerical solution of the open-loop optimal control
signalu∗. An arbitrary initial nominal controlu ≡ 0, t ∈ [0, 5], was chosen. The
value of the performance index was reduced to the optimal one in 4 iterations in
updatingu(·) over the range [0,5].

Four situations have been studied in simulations. For each case we add a sto-
chastic or a deterministic disturbance which disturbs the optimal input signal.
Also, in some of the simulations we apply a plant with unmodeled dynamics.
The objective is to regulate perturbations from the optimal by means of the in-
dex1I =

∫ 5
0 (δx

2
1 + δx

2
2 + δu

2)dt which is expressed in terms of perturbations
δx, δu. For each of the disturbances added, and for the unmodeled dynamics case,

8.3. Stability Properties 227

we compare five controller strategies, and demonstrate the robustness and perfor-
mance properties of the adaptive-Q methodology.

1. Open-loop design.
Here we adopt the optimal control signalu∗ as an input signal of the non-
linear system with added disturbance. Figure 3.3 shows that the open-loop
design is quite sensitive to such disturbances in thatx1, x2 differ signifi-
cantly fromx∗1, x∗2.

V
al

ue

0.5

1

1.5

0

0 50 100 150 200 250 300 350 400 450

Iterations

u
�

x1

x
�

1

x2

x
�

2

� 0 � 5

� 1

� 1 � 5

FIGURE 3.3. Open Loop Trajectories

2. LQG design.
In order to construct feedback controllers, we adopt the standard LQG the-
ory based on a discretized model obtained by fast sampling. This model
is then linearized about the optimal trajectories and the performance index
(3.20). Of course, the input signalsu∗ + δu are no longer ‘optimal’ for the
nominal plant. The LQG controller’s design yields better performance than
the open-loop case in that the errorsx1 − x∗1, x2 − x∗2 are mildly smaller
than in the previous figure for the open-loop cases, see Table 3.1. It is well
known, however, that the LQG controller, although optimal for the nominal
plant model under the assumed noise environment, may lose performance
and perhaps its stability even for small variations from the nominal plant
model.

3. LQG/LTR design.
In order to enhance the robustness properties of LQG controllers, we
adopt well known loop transfer recovery (LTR) techniques Doyle and Stein
(1979). Thus the system noise covarianceQ∗f in a state estimator design is
parameterized by a scalerq > 0, and a loop recovery property is achieved

228 Chapter 8. Adaptive-Q Application to Nonlinear Systems

asq becomes large. In our scheme the state estimator ‘design system and
measurement noise covariances’,Q∗f (q) andR∗f , are given by

Q∗f (q) = I + q2

[
1

0

] [
1 0

]
; R∗f = I , q = 50.

There is a more dramatic reduction of errorsx1− x∗1, x2− x∗2 over that for
the LQG design of the previous case as indicated in Table 3.1. Of course,
the LQG/LTR design is identical to that for the case whenq = 0. Also,
simulations not reported here show that the LQG/LTR design performs vir-
tually identically to an LQ design where statesδx are assumed available for
feedback.

4. Adaptive-Q design.

V
al

ue

0.5

1

1.5

0

0 50 100 150 200 250 300 350 400 450

Iterations

u

u
�

x1

x
�

1

x2

x
�

2

� 0 � 5

� 1

� 1 � 5

FIGURE 3.4. LQG/LTR/Adaptive-Q Trajectories

Disturbance d = 0.2 d ∈ U (0.1, 0.3) d ∈ U (0, 1)

Open loop 3.071 3.056 6.259

LQG 0.749 0.744 3.256

LQG/LTR 0.230 0.228 1.348

LQG/Ad-Q 0.348 0.345 1.993

LQG/LTR/Ad-Q 0.160 0.160 1.001

TABLE 3.1.1I for Trajectory 1,x(0) = [0 1]

8.3. Stability Properties 229

The adaptive-Q, two-degree-of-freedom controller design for optimal con-
trol problem is studied, with the LQG or LQG/LTR controllerK and the
adaptiveQ = [Q f Q] using least square techniques. Third-order FIR mod-
els are chosen for the forwardQ f (z) and the backwardQ(z). Simulations,
summarized in Table 3.1, show that adaptive-Q controller design strength-
ens the robustness/performance properties of both the LQG and LQG/LTR
design without the need for any high gains in the controller. See also Fig-
ures 3.3 and 3.4. The intention in this first design example has not been
to demonstrate that an adaptive-Q approach works dramatically better than
all others, although one example is shown where such is the case. Rather,
we have sought to stress that the adaptive-Q method is perhaps best used
only after a careful robust fixed controller design, and then only to achieve
fine tuning. Actually, for the design study here, the robust LQG/LTR de-
sign performed better than the LQG adaptive-Q design. The values of1I
for all five cases are summarized in Table 3.1 for a deterministic distur-
banced = 0.2, and then two stochastic disturbances, in the first instance
with d uniformly distributed between 0.1 and 0.3, and in the second withd
uniformly distributed between 0 and 1.

To demonstrate the robustness of the adaptive-Q control strategy, the sim-
ulations were repeated with unmodeled dynamics in the actual plant, see
Table 3.2. The state equations of the actual plant in this case are

ẋ1 = (1− x2
2)x1− x2+ x3+ u,

ẋ2 = x1,

ẍ3 = −ẋ3− 4x3+ u,

y = x1,

with initial state vector[0 1 0].

The simulations in Tables 3.1 and 3.2 are repeated for different initial con-
ditions, and thus a different optimal trajectory. The results are included in
Tables 3.3 and 3.4. This trajectory also has the same unmodeled dynamics
added to demonstrate robustness.

Disturbance d = 0.2

Open loop 5.907 7

LQG 1.943 8

LQG/LTR 0.662 3

LQG/Ad-Q 0.984

LQG/LTR/Ad-Q 0.425 1

TABLE 3.2.1I for Trajectory 1 with unmodeled dynamics,x(0) = [0 1 0]

230 Chapter 8. Adaptive-Q Application to Nonlinear Systems

Disturbance d = 0.2 d ∈ U (0.1, 0.3) d ∈ U (0, 1)

Open loop 3.664 6 3.647 8 7.450 2

LQG 0.752 4 0.747 6 3.381 7

LQG/LTR 0.216 5 0.214 8 1.276 6

LQG/Ad-Q 0.344 7 0.341 5 1.973 4

LQG/LTR/Ad-Q 0.150 5 0.149 5 0.927 8

TABLE 3.3.1I for Trajectory 2,x(0) = [1 0.5]

Disturbance d = 0.2

Open loop 4.730 1

LQG 1.280 5

LQG/LTR 0.516 2

LQG/Ad-Q 0.631 3

LQG/LTR/Ad-Q 0.298 1

TABLE 3.4.1I for Trajectory 2 with unmodeled dynamics,x(0) = [1 0.5 0]

In our simulation for the adaptive-Q controller, two passes are needed for
“warming up” of the controller. Subsequently, the coefficients inQ f and
Q, in the notation of (2.21), “converge” to slowly varying values in the
vicinity of γ = 0.097 6,γ1 = −0.000 2,γ2 = −0.101 6,β = −11.18,
β1 = −9.247,β2 = −7.891, with αi ≡ 0.

The prefiltersP12M used in our study are as follows:

ẋps = (A+ BF)xps+ Bu∗, ξ1 =

(
F

I

)
xps+

(
I

0

)
u∗,

with inputu∗ and outputξ1. Likewise for the prefilters driven byδr ands.

Our simulations not reported here show significant improvements when
scaling adjustments are made tor ande. Also, other simulations not re-
ported here show that there is insignificant benefit with increasing the di-
mensionsp = 3, m = 3, n = 0 in Q, although the cost of reducingp or
m is significant.

The message from this simple example is clear. Open-loop optimal control of
nonlinear systems is nonrobust. Linearization and application of linear optimal
feedback methods improves the situation. Working with robust linear methods is
even better, and adding an adaptive-Q loop enhances performance and robustness
even further.

8.4. Learning-Q Schemes 231

8.4 Learning-Q Schemes

For robust nonlinear optimal control, it makes sense to explore the adaptive-Q
enhancement approach modified such thatQ is state (or state estimate) dependent.
Such an approach is termed here learning-Q control.

In generalizing the least squares based adaptive-Q filter coefficients update
scheme, applied for the nonlinear control tasks of the previous sections, the es-
sence of our task is to replace a parameter least squares algorithm by one in-
volving functional learning. To optimize theQ-filter when its parameters are
state dependent, the key strategy we propose here is to apply functional learn-
ing algorithms as in Perkins, Mareels and Moore (1992). The least squares
based functional learning of Perkins et al. (1992) suggests bisigmoid sum rep-
resentations of the parameters over the state space, or for practical reasons,
over only the significant components of the state space. The parameters of this
representation are tuned on line by a least squares scheme. Bisigmoids, such
as Gaussians or truncated Gaussians, B-splines, or radial basis functions have
the dual roles of interpolating between parameter estimates at grid points in
the state space, and of spreading learning on either side of a trajectory in the
state space.

In adaptive control, the controller for the plant adapts to optimize some per-
formance specification. Should the plant be time-varying, then the adaptive con-
troller tracks in some sense an optimal controller. There is built into the con-
troller a forgetting factorso that distant past experiences are totally forgotten.
If the plant dynamics are nonlinear being a function of a slowly changing vari-
able , such as the slow states of the plant, then it makes sense to remember the
past in such a way that the controller can recall appropriately from past experi-
ence and give better performance than it would with built-in forgetting. To facil-
itate such control action, enhanced with memory, functional learning algorithms
appear attractive.

Functional learning here refers to a method by which the values of a function
y = f (x) can be estimated at all points in the input variable space0x from data
pairs(xi , yi), or noisy measurements of these. Given an estimatef (·) at timek,
denoted f̂ , then with a new measurementxk, a prediction ofyk is ŷk = f̂ (xk).
The error(y− ŷk) can then be used to updatef̂ (·) for timek+1 based on assumed
smoothness properties off (·). The function is here represented as a sum of simply
parameterized functions which could be basis functions such as polynomials or
Gaussians. We define the error between a representation of a given functionf̂ (·)
and the actual functionf (·) in terms of some error norm. Thus, here, the learning
involves adapting the parameters of the basis functions to achieve lower error
norms. We look to approximate arbitrary continuous functions within a class of
such.

A key representation theorem for our approach is in Cybenko (1989). This the-
orem tells us that sums of sigmoids, or more general bisigmoids such as Gaussians
or truncated Gaussians, suitably parameterized, are dense and can represent func-
tionals over finite domains with arbitrary precision.

232 Chapter 8. Adaptive-Q Application to Nonlinear Systems

Function Representation

Given a function, f (·), an approximation to that function could be represented
by a superposition of a finite number of the simply parameterized functionsfi (·),
such as sigmoids or bisigmoids, each centered at different pointsγi ,within the in-
put variable0x space. The representation must be chosen with regard to required
accuracy, convergence properties and computability. For example, to approximate
a two input variable scalar function with a bounded first derivative by a grid of
simply parameterized functions being piecewise constant functions on a grid, the
following result is easily established.

Lemma 4.1. Suppose there is given a two input variable scalar functionf (x, y)
with a first derivative bounded byC, and a square regionR= {(x, y) : |x| , |y| <
r } over which it is to be approximated. Furthermore, suppose there is an approx-
imation to the function by a piecewise constant function on a rectangularN × N
grid covering the regionR. Then thè 2 error bound betweenf (x, y) and the
approximation f̂ (x, y) is

b = O(
C2

N2
). (4.1)

Proof.

b =
∑
N2

∫ y0+r/N

y0

∫ x0+r/N

x0

(f̂ (x, y)− f (x, y))2dx dy. (4.2)

The worst case approximation tof (x, y) of a level function will be whenf (x, y)
is at its maximum gradient within a grid square. Also, the worst error will be
the same for each grid square. To calculate a worst case error then, consider the
“worst case” functionsf (x, y) = f0± Cx± Cy. In this case,

b = N2
∫ y0+r/N

y0

∫ x0+r/N

x0

(f̂ (x, y)− f (x0, y0)± Cx± Cy)2dx dy. (4.3)

Now, the region of that square is{x, y : x0 < x < x0+r/N, y0 < y < y0+r/N}.
Set f̂ = f (x0, y0). Then a substitution of variables gives

b =
7

6
N2C2(

R

N
)4 = O(

C2

N2
). (4.4)

In selecting the simply parameterized functionsfi (·) for learning in the control
environment of interest, we take into account the need for ‘fast’ learning, reason-
able interpolation and extrapolation approximation properties, and the ability to
spread learning in the0x space. For ‘fast’ learning, we require here that the mea-
surements are linear in the parameters offi (·) so that the least squares techniques

8.4. Learning-Q Schemes 233

can apply. This contrasts the case of neural networks where backward propagation
gradient algorithms are inevitably ‘slow’ in convergence.

For reasonable interpolation capabilities, any of a number of selections such
as polynomials, splines, sigmoids, or bisigmoids can be used, but to avoid poor
extrapolation outside the domains of most excitation ofxk in 0x, we select bisig-
moids. Likewise, only the bisigmoids allow learning along the trajectories in0x

to be spread acceptably to neighborhoods of such trajectories. This approach is
taken in Perkins et al. (1992) for an open loop identification task, which we now
adapt for our control task. First let us review the least squares learning taken in
Perkins et al. (1992), and related results.

Least Squares Learning

Consider the signal model usually derived from an ARMAX representation,

yk = 8
′

k2(xk)+ ωk, (4.5)

whereyk are the measurements,8k is a known regression vector of the model
inputs and outputs, and2(·) are the unknown functionals with input variablesxk,
representing the perhaps nonlinear ’parameters’ of an ARMAX model. Hereωk

is taken to the zero mean white noise.
Let us investigate finite representations estimating2(x) of the form

2̂(x) =
n∑

i=1

K ′I (x, γi)θ̂(γi) = K ′I (x)2̂(0I), (4.6)

with 2̂′(0I) = [θ̂ ′(γ1) . . . θ̂
′(γn)], and K ′I (x) = [K ′I (x, γ1) . . . K ′I (x, γn)]. Here

θ(γi) are the parameters andK I (x, γi) the interpolation function representation
(4.6). For simplicity we work withK I (x, γi) which acts as both a scalar inter-
polating function and learning spread function between the pointsx ∈ 0x and
x ∈ 0I with a preselected set of points0I = {γ1, γ2, . . . , γn} in 0x. In our simu-
lations, we use Gaussians or truncated Gaussians for the vectors indicated above.
Now (4.5) can be represented as

yk = 8(xk)
′2(0I)+ ω̂k, (4.7)

where

8(xk) = K I (xk)8k, 2(xk) = K I (xk)2(0I), (4.8)

andω̂k approximatesωk.
Consider an error measure for the representation:

d(r)2 (2̂) =
1

r

[r∑
k=1

∥∥∥2(xk)− 2̂(xk)

∥∥∥2
]1/2

. (4.9)

234 Chapter 8. Adaptive-Q Application to Nonlinear Systems

As shown in Perkins et al. (1992), under strong persistence of excitation condi-
tions onxk minimization of this index is equivalent to minimization of thed2
index :

d2(2̂) =

[∫
0x

∥∥∥2(x)− 2̂(x)∥∥∥2
dx

]1/2

. (4.10)

A key result associated with this latter minimization task is as follows:

Theorem 4.2. The minimization task has a unique critical point, denoted2̂∗if
and only if the elements ofK I (x) are allowable, in that

∞ >

[∫
0x

K I (x)K
′

I (x)dx

]
> 0. (4.11)

This optimal2̂ is given from

2̂∗ =

(∫
0x

K I (x)K
′

I (x)dx

)−1 ∫
0x

y(x)K ′I (x)dx. (4.12)

Moreover, when2(x) is reconstructible with respect to the class of functions2̂(x)
of (4.6), then2(x) is uniquely parameterized as in(4.6) with2 = 2̂∗ given in
(4.12).

Proof. The proof of this can be found in Perkins et al. (1992).

In order to minimized(r)2 of (4.9) for r = 1, 2, . . . , given a sequence{xk, yk},
standard least squares derivations applied to (4.9) and (4.10) lead to a recursive
estimate of2(xk), denoted2̂k(xk), as

2̂k(xk) = K ′I (xk)2̂k(0I) (4.13)

2̂k(0I) = 2̂k−1(0I)+ Pk(0I)8I (xk)[yk −8
′

I (xk)2̂k−1(0I)], (4.14)

where

P−1
k (0I) = P−1

k−1(0I)+8I (xk)8
′

I (xk), 8(xk) = K I (xk)8k, (4.15)

with suitable initial conditionŝ2, P. Under appropriate conditions (Perkins et al.
(1992)),P−1

k approaches a diagonal matrix. With truncatedK I we have thatP−1
k

is block diagonal with only one block updated at each iteration and only one
corresponding segment of2̂k updated. In selecting a truncation, there is clearly a
trade off between function estimation accuracy and computational effort.

Least Squares (Scalar variable case)

Now with the definitions of (2.20), and as shown in Tay and Moore (1991) for the
case of scalar variablesδuk, δyk, rk,bk (for simplicity), with sk = Q f u∗k + Qrk,

8.4. Learning-Q Schemes 235

following the derivations leading to (2.24) we see thatζk is linear in2, as

ξk = 8
′

k2+ ek, (4.16)

8′k =
[
(êk−1/k−1− ζk−1) . . . (êk−n/k−n − ζk−n) −ξk . . . −ξk−m

]
.

(4.17)

These equations allow a least squares recursive update for2, denoted2̂k, to
minimize the index6k

i=1

∥∥ei |2
∥∥2 as spelled out earlier for the adaptive-Q scheme.

Hereei |2 denotesei |2̂1...2̂k−12
in obvious notation. In fact the details are a special

case of those now derived for the proposed learning-Q scheme of Figure 4.1. Note
that the adaptive-Q scheme is that of Figure 4.1 specialized to the case when
2̂k(x∗) is independent ofx∗, so thatQ̂k(x∗k) is replaced bŷQk.

Least Squares Functional Learning

e

sr

��

�x �

x �

u �

�
u

y

PA

� P12M[P12M P12M]

��
k � x �
	

��
k � x � 	

J � x � 	

FIGURE 4.1. Two degree-of-freedom learning-Q scheme

Learning-Q Scheme based onx∗

We build upon the earlier work of Chapter 6 and this chapter by extending the
adaptive-Q scheme to what could be viewed as an adaptive-Q(x∗) scheme, but
which we call a learning-Q scheme. TheQ filter with which we work has co-
efficients which are functions of the state space. DenotingQ̂k(x), α̂ik(x), β̂ik(x),

236 Chapter 8. Adaptive-Q Application to Nonlinear Systems

the key idea of the learning-Q algorithm is to update estimatesQ̂k(·), for all x
in some domain0x in which x∗k lies. TheQ filter is implemented aŝQk(x∗k). The
arrangement is depicted in Figure 4.1. The least squares functional learning block
yields estimateŝ2(x∗k) for implementation of the filter̂Qk(x∗k), being driven from
ζk, ξk, ek andx∗k . The parameter estimateŝ2k(x∗k) are derived via the approach
above. Thus , corresponding to (4.7) , we have the formulation (4.16) , and corre-
sponding to (4.13)–(4.15) we have

2̂k(x
∗

k) = K ′I (x
∗

k)2̂k(0I), (4.18)

2̂k(0I) = 2̂k−1(0I)+ Pk(0I)8I (x
∗

k)
[
ξk(x

∗)−8′k2̂(0I)
]
, (4.19)

P−1
k = P−1

k−1(0I)+8I (x
∗

k)8
′

I (x
∗

k). (4.20)

The Q filter can be implemented aŝQk(x̂k), wherex̂k = x∗k + δx̂k, as an al-

ternative to implementinĝQk(x∗k). This suggests also that the nominal plant1G,
controllerK and indeedJ be functions ofx̂t , rather thanx∗t . For this case then,
any1Ḡ(x̂t), K (x̂t), J(x̂t) are inevitably nonlinear and a nonlinear factorization
theory is required. Care should be taken because there is in essence an extra feed-
back loop in the system which can cause instability, so this approach is not rec-
ommended.

Of course whenδx is small, one expects thatx∗t could be just as good an es-
timate ofxt as x̂t . In this case, there would be an advantage in working in a full
nonlinear context. However, we would expectδx to be small only when the plant
is nearly linear, and to avoid dealing with a full nonlinear context is really to avoid
tackling systems that are in essence nonlinear.

Learning-Q Simulation Results

The Signal Model and Performance Index

Consider again the specific nominal plant model (Van der Pol equation):

G0 : ẋ1 = (1− x2
2)x1− x2+ u+ d; ẋ2 = x1, y = x1, (4.21)

with scalar inputu, scalar outputy, and state vectorx = [x1 x2]′. Consider also a
regulator performance index defined by

I (x0, u) =
1

2

∫ 5

0
(x2

1 + x2
2 + u2)dt. (4.22)

Of course for such a simple example, one could use a trivial linearization, by tak-
ing u = x̂1x̂2

2+u1 and then optimizingu1 = K x̂ via LQG control, thereby achiev-
ing an attractive nonlinear controller. Also, for more general nonlinear systems
one could similarly exploit the linearization approach of Isidori (1989). However,
here we wish to illustrate the design approach of the previous sections and use
this plant as an example. Here, for each initial condition investigated, an opti-
mal trajectory is calculated. Next, the closed-loop feedback controller schemes of

8.4. Learning-Q Schemes 237

the previous section are studied in the presence of constant and stochastic distur-
bances added to the plant input, and some of the simulations include unmodeled
dynamics. The actual plant with unmodeled dynamics is

ẋ1 = (1− x2)x1− x2+ x3+ u+ d,

ẋ2 = x1,

ẍ3 = −ẋ3− 4x3+ u,

y = x1,

(4.23)

wherex3 is the state of the unmodeled dynamics andd is the disturbance.
The major objective of the learning-Q method is to learn from one trajectory,

or set of trajectories information which will enhance the control performance for
a new trajectory.

For the simulations, functions2(x) = 2(x1, x2) are represented as the sum of
equal covariance Gaussians centered on a sparse two-dimensional grid in0x1,x2

space. In the learning-Q scheme, the weighting of the Gaussians is updated to
best fit the given data via least squares functional learning. The tailing off of the
Gaussians will ensure that trajectory information effectively spreads only to the
neighboring grid points with more weighting on the near neighbors.

Selection of Algorithm Parameters

The algorithm requires a priori selections of the interpolating functions and their
parameters including location on grid points in state space. It then learns the rel-
ative weightings.

Selection of Grid Points

The state space of interest is selected to include the space spanned by the optimal
trajectories. The Gaussians are fixed initially at a 4× 4 grid of γi over a unit
“box” region covering well the trajectory region to avoid distortions due to edge
effects. A scaling method facilitates quick changes of the apparent denseness and
compactness of the grid. Optimal placing of the grid points for one particular
trajectory is not usually optimal for other trajectories, and the chosen grid points
can be seen in Figure 4.2.

The Spread of the Interpolating Function

The interpolating function is of the formWe−n2d2
i k, wheren is the number of

Gaussians in each dimension,di is ‖x − γi ‖
2, W is the initial weighting, andk is

a constant used to tune the learning (in our simulationsW = 10−10, k = 4). The
“optimal” spread of the Gaussian is a function of the shape of the function being
learned, and the denseness of the Gaussians in the grid.

Trajectory Selection

The data must be “persistently” spanning the grid space in order to learn all the
Gaussian weights. As the estimates are functions of stochastic outputs, greater

238 Chapter 8. Adaptive-Q Application to Nonlinear Systems

0 0.5 1 1.5

0.5

1

1.5

0

x1

x2

� 0 � 5

� 0 � 5
� 1

� 1

FIGURE 4.2. Five optimal regulation trajectories in0x1,x2 space

excitation of a mode allows for a more accurate estimate of the weighting of that
mode. Five initial conditions have been chosen to illustrate performance enhance-
ment due to the learning-Q approach. The initial conditions ofx are: (0.5, 1),
(0.5,0.5), (1, 0.5), (0, 0.5), (0, 1). The optimal regulation state trajectories cal-
culated from these initial conditions are shown in Figure 4.2, to indicate the extent
to which the state space0x is covered in the learning process.

Results

For the trajectories and algorithm parameters of the previous subsection, robust-
ness and performance properties are examined.

Persistence of Excitation

In order to test the learning, two simulations were compared. In the first, de-
noted Global Learning, Trajectories 1 through 5 were executed and then re-
peated, each time enhancing the learning with the knowledge previously learned.
In the second, denotedLocal Learning, Trajectory 5 was repeated 10 times, to
achieve enhanced learning. In the example of Table 4.1 below, the disturbance
wasd = 0.2.

Run Number Global Learning Local Learning

5 0.337 3 0.342 2

10 0.329 6 0.335 5

TABLE 4.1. Error index for global and local learning

As can be seen in Table 4.1, the global learning actually gives marginally better

8.4. Learning-Q Schemes 239

results than the specialized local learning by virtue of its satisfying persistence
of excitation requirements. These are typical of other simulations not reported
here.

Deterministic Disturbances

There are three types of disturbances simulated. First a zero disturbance is used,
and since the plant then follows the optimal trajectory, as expected the values ofδx
andδu are zero. The other disturbances used are: a constantω = 0.2, stochastic
disturbances uniformly distributed, and disturbances where the disturbance is a
function of position in state space.

Since the error index is a function of the total level of input disturbances, the
constant disturbance is the one used to compare various parameters and methods,
with the stochastic and functional disturbances being then used to test the selected
parameters under more realistic conditions.

Stochastic Disturbance

The simulation is run for each trajectory withd = RAND(−0.5, 0.5), that is
the disturbance is uniformly distributed with an upper bound of 0.5, and a lower
bound of−0.5. In the case of ‘global learning’, where Trajectories 1 through 5
were run, then repeated for all of the trajectories, the algorithm gives an improve-
ment in the error index, except Trajectory 5. Details are summarized in Table 4.2.

Trajectory Run 1 Run 2 Improvement

1 0.015 7 0.008 6 45%

2 0.016 0 0.007 0 56%

3 0.063 7 0.021 3 66%

4 0.070 8 0.012 3 83%

5 0.011 3 0.019 9 −5%

TABLE 4.2. Improvement after learning

Unmodeled Dynamics

The simulations were run with the disturbances as before, as well as with the
inclusion of the unmodeled dynamics as in (4.23). The system achieved good
control, with for example the error indices of Trajectories 1 through 5, then re-
peated in a stochastic disturbance case being 2.8,0.9,1.5, 1.1, 1.6 and the second
run giving 1.7,1.0, 1.5, 1.1, 1.7.

240 Chapter 8. Adaptive-Q Application to Nonlinear Systems

Nearest Neighbor Approximation and Grid Size

The standard algorithm requiresO(n2) iterations for calculation of the values of
ann×n grid. An approximation can be made where only the weights of the clos-
est Gaussians are updated at each step. This approximation significantly speeds
the algorithm, but loses accuracy. As is shown in Table 4.3, for the case with a
stochastic disturbanced = RAND(−0.5, 0.5) as above, and with no unmodeled
dynamics, however going to a finer grid of 5×5 Gaussians, with the nearest neigh-
bor approximation/truncation improves upon the 4×4 full calculation/untruncated
case.

Average 4× 4 truncated 4× 4 5× 5 truncated

Run 1 0.397 0 0.384 4 0.382 8

Run 2 0.345 8 0.345 1 0.330 4

TABLE 4.3. Comparison of grid sizes and approximations

As expected, the finer grid improves in comparison to the others during the
second run, as it is better able to fit to the information given. The2 f surfaces
generated in this simulation for the 2× 2, 3× 3, 4× 4 and 5× 5 cases for the
constant disturbanced = 0.2 are shown in Figure 4.3. The error index averaged
over the second run for these cases are respectively, 0.320 4, 0.325 2, 0.346 5,
0.323 0. The 4× 4 case gave the worst result, possibly due to the artifact on the
surface not displayed by the others. These results show that a finer grid spacing
may not always improve the control.

Comparison with Adaptive case

Let us compare the results of our learning controller with those of the adaptive-Q
controller . In the first instance, when running a trajectory for the first time, the
adaptive algorithm gives better results than the learning algorithm. Allowing the
learning algorithm previous experience on other trajectories however, lets it in
most cases “beat” the adaptive one. For instance, in the nonzero mean stochastic
disturbance case{ω ∈ 0.2± 0.1}, with no unmodeled dynamics, for Trajectory 1,
the adaptive case gave 0.490 7, with the learning case giving 0.367 1 after learning
on some trajectories.

However, the adaptive case can also be enhanced to give better performance
than the learning scheme by exploiting previous information from a learning-Q
scheme. Simulations are performed comparing the extended adaptive to the learn-
ing scheme with a variety of disturbances and with/without unmodeled dynamics.
The constant, stochastic, and nonconstant deterministic disturbances ared = 0.2,
dε0.2± 0.05, d = x2

1 + x2
2. The results are summarized in Tables 4.4 and 4.5.

8.4. Learning-Q Schemes 241

2 � 2 grid 3 � 3 grid

4 � 4 grid 5 � 5 grid

FIGURE 4.3. Comparison of error surfaces learned for various grid cases

Disturbance Learn Adapt Improvement

constant 0.365 1 0.288 5 21%

stochastic 0.368 4 0.283 9 28%

deterministic 1.884 6 1.124 8 40%

TABLE 4.4. Error index averages without unmodeled dynamics

Disturbance Learn Adapt Improvement

constant 1.504 4 0.989 1 34%

stochastic 1.492 5 0.982 5 34%

deterministic 2.460 8 2.029 3 18%

TABLE 4.5. Error index averages with unmodeled dynamics

242 Chapter 8. Adaptive-Q Application to Nonlinear Systems

Main Points of Section

Learning-Q schemes are really adaptive-Q schemes withQ being a parameter-
ized nonlinear function of the state. Adapting its parameters on line achieves
functional learning. In our example, the benefit of a learning-Q scheme over an
adaptive-Q scheme would be worth the computational cost only in performance
critical applications.

8.5 Notes and References

The application of the direct adaptive-Q techniques to nonlinear systems was first
studied in Imae et al. (1992) The generalization to learning-Q schemes was first
studied in Irlicht and Moore (1991). At the heart of this work is some form of
functional learning. The application of parameter update techniques to functional
learning theory is of course the meat ofneural networktheory. In these, the pa-
rameterizations are fundamentally nonlinear. Here in contrast and for simplicity
our focus has been on nonlinear functions which arelinear in their parameters,
such as in a Gaussian sum representation, as explored by us in Perkins et al.
(1992). Thus here our learning-Q filter, based on Irlicht and Moore (1991), uses
such representations.

This work on adaptive-Q and learning-Q techniques provided motivation for
us to understand further the theory of nonlinear fractional maps and nonlinear
versions of the Youla-Kǔcera parameterizations, see Paice, Moore and Horowitz
(1992), Perkins et al. (1992) and Moore and Irlicht (1992).

One key insight to cope with nonlinear systems is that in the nonlinear case
where the operators are initial-condition dependent, the mismatch between those
of estimators/controllers and those of the plant can be viewed as unmodeled dy-
namics, namely as a nonlinear operatorS.

Another observation which helps explain much of the scope of the nonlinear
theory is that the class of all stabilizing controllers for nonlinear plants is more
easily characterized in terms of left coprime factorizations, yet these factorizations
are much harder to obtain than right coprime factorizations.

CHAPTER 9

Real-time Implementation

9.1 Introduction

We have until this point, developed the theory and algorithms to achieve high
performance control systems. How then do we put the theory into practice? In
this chapter, we will examine real-time implementation and issues in the in-
dustrial context. In particular we will discuss using discrete-time methods in a
continuous-time setting, the hardware requirement for various applications, the
software development environment and issues such as sensor saturation and finite
word length effects. Of course, just as control algorithms and theory develop,
so does implementations technology. Here we focus on the principles behind
current trends, and illustrate with examples which are contemporary at the time
of writing.

We begin with the hardware requirements. The hardware for a modern con-
trol system is microprocessor-based. Analog-based control systems are still
used in some speed critical applications, and where reliability is already estab-
lished and is critical. However the cost in implementing complex algorithms
using analog circuits with present day technology is not competitive with the
new digital technology available. With modern fast microprocessors anddigi-
tal signal processors(DSPs), there is the possibility of connecting many pro-
cessors to work in a parallel fashion, and it is now possible to implement
fairly complex algorithms for sampling intervals of microseconds. The speed
consideration is therefore becoming less important and digital implementation
dominates.

We begin the chapter with a discussion on using discrete-time methods for
continuous-time plants. The key theorem is theNyquist Sampling Theorem.

Our next task is the design of a stand-alone microprocessor-based control sys-
tem. Design and implementation of such a system can be time consuming in prac-
tice. This is because there is very little scope for incremental testing and verifica-
tion in the initial stage of the design. The engineer has to get both the hardware

244 Chapter 9. Real-time Implementation

and software working at the same time in order to verify that the design is success-
ful. Often when the system fails to work, the engineer is left wondering whether
the bug is in the hardware or the software. In response to this difficulty, many
microprocessor manufacturers are now marketing emulator sets that essentially
provide a software development and debugging environment. However such sets
tend to be very expensive and are available for popular microprocessor series only.
Also, there may be advantages in choosing certain specific processors to exploit
their on-chip facilities for a particular application. In such cases, we may be left
developing the controller system without the aid of emulator sets. We will outline
in this chapter a systematic procedure that will greatly simplify the task of devel-
oping a stand-alone system without the aid of an emulator set. Design examples
are also provided.

To cope with the rather complex algorithms introduced in this book, there
is a need to look into high performance hardware platforms. We will describe
in this chapter a two-processor design involving a number crunching oriented
DSP and an input/output orientedmicrocontroller. We will highlight the mod-
ular approach adopted to facilitate easy development of both the hardware and
the software.

It is well understood that the cheapest systems are ones which use the least
number of components and at the same time use components that are commonly
available. Take for example, a personal computer mother board which implements
a feature-rich complex computing environment. This can be purchased for a rel-
atively low price because the personal computer mother boards are produced by
the millions and great effort is made to reduce component cost. Also with highly
automated assembly lines, possible only with high volume production, the per
unit manufacturing cost of such a board is very low. A comparable customized
system with production volume of only a few thousands would be many times
more costly.

The plunging cost of mass-produced electronic boards gives rise to some new
thoughts on designing the hardware of a control system. The trend is the design
and manufacture of modules that are feature-rich so that they can be mixed and
matched into systems for use in many applications. This allows the production
volume of each module to be high and therefore drives the per unit cost down.
An immediate implication is therefore to design a universal input/output interface
card that has many features to cater to all kinds of controller needs. The specific
control system is then assembled from ready-made personal computer mother
boards and the input/output interface card. We will describe the design of one
such card in this chapter.

Development of the software for control algorithms is a parallel area for at-
tention alongside hardware development. For simple controllers, this is not an
issue. However, the high performance controllers studied in this text are complex
enough for software aspects to be important. In this chapter we will look at the
various platforms for which such software can be developed easily. The intention
is to aid the designer to take steps towards realization, or at least to be able to talk
to the implementation specialist.

9.2. Algorithms for Continuous-time Plant 245

9.2 Algorithms for Continuous-time Plant

For the majority of controller designs introduced in this book, plant mod-
els which are discrete-time, linear, time-invariant models are used, and con-
sequently, the resulting controllers are discrete-time, linear, and time-invariant
controllers. The discrete-time setting is desirable since we believe that in vir-
tually all future controller realizations, digital computers and discrete-time cal-
culations will be used. The discrete-time model of (2.2.3) can be directly de-
rived from the underlying process in some plants, or indirectly by an identifi-
cation scheme. Of course, for most plants, the underlying process is analog in
nature, and indeed corresponding results to those spelled out in this book can
be derived for continuous-time models, with little difficulty. How then do we
deal with continuous-time plants when our approach is via discrete-time theory
and algorithms?

For continuous-time plants and digital computer controller implementation,
there are two approaches. In the first approach, a continuous-time controller de-
sign is based on the continuous-time plant model. The continuous-time controller
is then replaced by an approximated discrete-time controller for implementation
on a digital computer with appropriate analog-to-digital, and digital-to-analog
converters. However in general, a relatively fast sampling rate has to be used in
practice in order to achieve a good discrete time approximation. For recent work
in this direction, see Blackmore (1995).

An alternative approach is to first derive a discrete-time plant model from
the continuous-time plant with its analog-to-digital and digital-to-analog con-
verters,anti-aliasing filters, and post sampling filters attached, and then per-
form a discrete-time controller design based on the discrete-time model of
the plant, see Figure 2.1. This approach can lead to a possible reduction in
the sampling rate compared to the former approach, see Åstrom and Witten-
mark (1984). We will adopt this approach in the treatment of continuous-time
plants.

Continuous-time
plantD/A A/D

Discrete-time
controller

Clock
sampling time T

u
�
t � y

�
t �ukT ykT

FIGURE 2.1. Implementation of a discrete-time controller for a continuous-time plant

246 Chapter 9. Real-time Implementation

Let’s consider the following linear, time-invariant continuous-time plant model.

ẋ(t) = Acx(t)+ Bcu(t),

y(t) = Ccx(t)+ Dcu(t).
(2.1)

The pairs(Ac, Bc) and(Cc, Ac) are assumed stabilizable and detectable, respec-
tively.

This continuous-time plant model (2.1) can be discretized in time by an appro-
priate sampling process. For the moment, assume that the same sampling inter-
val is used for both the inputs and outputs of the plant andzero order holdsare
inserted at each input to the plant to achieve digital-to-analog conversion. This
arrangement is depicted in Figure 2.1.

For the continuous-time plant (2.1) embedded in the scheme of Figure 2.1, with
sampling timeT , the discrete-time model (2.2.8) then has state space matrices as
follows.

A = eAcT , B =
∫ T

0
eAcsdsBc, C = Cc, D = Dc. (2.2)

With this discrete-time model, discrete-time controller design techniques can be
applied and the control scheme implemented as in Figure 2.1. In this arrange-
ment, the control signal derived from the controller accesses the plant through the
digital-to-analog converters.

It is also possible to design discrete-time controllers directly for continuous-
time plants. These methods are based on a lifting idea that exploits the periodic
nature of the sampled data controller when applied to a continuous-time sys-
tem, Feuer and Goodwin (1996). Alternatively one can work with fast sampling
model representations of the plant while performing the design at lower sampling
periods, Keller and Anderson (1992), Madievski, Anderson and Gevers (1993),
Blackmore (1995), Gevers and Li (1993), Williamson (1991). We do not explore
these approaches here.

9.3 Hardware Platform

In this section we explore a microcontroller-based solution, a dual processor so-
lution for fast processes, and a personal computer based solution for achieving
controller hardware platforms.

A Microcontroller-based Solution

The block diagram of a typical real-time controller system is shown in Figure 3.1.
The system can be divided into three subsystems. They are the computing section,
the input/output interface subsystem and the host computer interface subsystem.

The main subsystem of the controller is for computing. It consists of the target
microprocessor, nonvolatile memory such asErasable Programmable Read-Only

9.3. Hardware Platform 247

Timer Input
interface

Serial
portEPROM

Output
interface

Address/data bus

RAM Microprocessor

FIGURE 3.1. The internals of a stand-alone controller system

Memory(EPROM), volatile memory such asRandom Access Memory(RAM) and
a timer circuit. This subsystem is responsible for executing the software codes of
the control algorithm as well as controlling all the other devices connected to the
system. The software codes that implement the control algorithm are stored in the
EPROM. The size of the EPROM will depend on the complexity of the algorithm
implemented. The RAM is required to store all temporary variables in the exe-
cution of the control algorithms. For the implementation of a simple controller
scheme such as the ubiquitousproportional plus integral plus differential(PID)
controller, a RAM size of about 20 bytes is sufficient. For more complex algo-
rithms, the size increases correspondingly. The timer circuit is included to allow
implementation of the sampling time interval.

The input/output subsystem consists of interface circuits to allow the micropro-
cessor to communicate with sensors and actuators of the plant. The exact circuit
will depend on the sensors and actuators used. In the case of industrial processes,
where the sensor instruments usually deliver sensor readings in the form of ana-
log signals in the range of 4 mA to 20 mA, the input interface circuits then con-
sist of analog-to-digital converters and current-to-voltage converters. In the case
of robotic applications, where the sensor instruments are optical encoders that
deliver quadrature phase pulses, the input interface circuits consist ofup/down
counters.

As for actuators, industrial processes usually have actuators that accept ana-
log signals in the range of 4 mA to 20 mA. The output interface circuit are then
digital-to-analog converters together with voltage-to-current converters. On the
other hand, in servo-mechanism type processes where DC motors are used, the
interface circuits are required to generatepulse-width-modulated(PWM) signals.

The third subsystem is the host computer interface section. This subsystem
implements a communication link to a host computer. As discussed later, this
communication link which can be serial or parallel will allow us to implement a
program development environment as well as providing adata loggingfacility.

248 Chapter 9. Real-time Implementation

Component Selection

For low volume production, the percentage of the development cost attributed to
each unit is high. It is therefore important that a suitable platform be chosen such
that the development cost is minimal. On the other hand, for high volume produc-
tion, the percentage of the development cost attributed to each unit is very low. It
is then advisable to use cheap components at the expense of greater development
effort and cost. In such cases, multiple components are often integrated into a sin-
gle chip, and firmware programs are hand optimized to achieve short code length
and high speed of operation. Balancing the various trade-offs for a good design is
an art as well as a science.

The key component in the hardware design is the microprocessor. There are at
least three considerations; namely the computational requirement, the complexity
of the software to be developed and the type of peripherals required to interface
to the sensors and actuators of the plant.

To begin with, the microprocessor selected must be powerful enough to com-
plete all the control algorithm computations required within the sampling inter-
val. It might be thought that a good gauge of how much computational effort
is required can be obtained by taking time needed to execute programs of simi-
lar complexity on a general purpose computer of known power, and to take into
account differences in the average efficiency of compiled code on the general pur-
pose computer and that of the targeted processor.

The second consideration is the complexity of the program to be developed.
If the program to be developed is very complex, then it is advisable to select a
commonly used microprocessor. This is because commonly used microproces-
sors usually have many supporting tools, either from the manufacturer or other
third parties. These tools greatly simplify the task of developing the program. Be
aware that a highly optimized compiler can produce object code that runs an order
of magnitude faster on the same hardware platform than that of a nonoptimized

Belt

Rail

Load

Motor

Trolley

FIGURE 3.2. Schematic of overhead crane

9.3. Hardware Platform 249

compiler.
The third consideration is the type of peripherals required for the microproces-

sor. There is a class of integrated circuits, commonly known as microcontrollers
or single chip microcomputers, which not only contain the basic microprocessor
but also many other peripherals integrated onto the chip. Using one of these chips
will reduce the chip count on the controller board. It will also reduce the possi-
bility of hardware bugs as well as increase the reliability of the final board. These
three considerations should be carefully weighed in selecting the microprocessor
for the controller board.

The amount of EPROM and RAM to provide for the controller system will
very much depend on the program it is executing. Checking the memory needed
when a similar program is compiled on a general purpose computer will generally
give a good gauge of the memory required by the target system, qualified by
possibly different compiler efficiencies. Typically, controller systems do not have
huge memory requirements. Otherwise there may be a need to look into using the
cheaper dynamic RAM in controller systems instead of static RAM. Of course
dynamic RAM is more complex to interface to the microprocessor, and is slower
than static RAM.

The input/output interfaces required will very much depend on the application
at hand. The interface requirement may tie in closely with the selection of the mi-
croprocessor for the system. If there is a microprocessor that meets the application
requirements, and in addition, has all the peripheral interfaces needed integrated
on chip, then it is only natural to select that particular processor for the applica-
tion. Otherwise it may be necessary to use separate interface components, or seek
a solution using two or more processors.

V

Pulleys

Attachment

Potentiometer

FIGURE 3.3. Measurement of swing angle

250 Chapter 9. Real-time Implementation

Controller for an Overhead Crane

Figure 3.2 shows the schematic of a laboratory size overhead crane. The crane is
designed to pick up a load from one location and move it to another location. The
bigger cousins of such cranes are used at many harbors to move containers from
ships onto trucks and vice versa. The crane has a movable platform running on a
pair of parallel suspended tracks. The load in turn is suspended from the platform.
The height of the load from the ground is controllable by a motorized hoist which
is mounted on the structural frame. The platform’s position is controlled by an-
other motor driving a geared belt attached to the platform. The DC motors have
quadrature phase optical encoders attached to their shafts, which allow precise
calculation of relative positions. The swing of the load is also measured using a
potentiometer as depicted in Figure 3.3.

From a control point of view, there are three sensors and two actuators. The
three sensors are the two optical encoders that produce two sets of quadrature
phase signals and a potentiometer setup that produces a varying voltage output.
The two actuators are the two DC motors with their speed and torque controlled
by pulse-width modulated(PWM) input signals.

Based on the sensor and actuator requirements, the control system must have a
target microprocessor, two up/down counters for the two sets of quadrature phase
signals, an analog-to-digital converter for the output of the potentiometer and two
bidirectional PWM driving channels.

In view of the requirements, it turns out to be possible with current technology

P0

P7

To Overhead Crane
Control Panel

To LED Status
Indicators

Analog Input AN0

PWM0
TO0

CI0

Motor 1 Control

Motor 1 Encoder CTRL0

PWM1
TO1

CI1

Motor 2 Control

Motor 2 Encoder CTRL1

NEC

Microcontroller

Latch

TxRx

Serial Communication
Interface to Host

RAM

� PD78312

A8–A15

AD0–AD7

�
�
�

�
�
�

FIGURE 3.4. Design of controller for overhead crane

9.3. Hardware Platform 251

to select a microcontroller with all the required peripherals and a built-in serial
port on-chip as the target processor for the controller board. The hardware design
is shown in Figure 3.4.

Note that the number of components used in this application is minimal. The
processor has a built-in 8 KB of EPROM and 256 bytes of RAM. These are suffi-
cient for implementing simple control algorithms. However for program develop-
ment purposes as well as possibly implementation of more complex algorithm, a
32 KB RAM chip is included.

Controller for a Heat Exchanger

Figure 3.5 shows the schematic diagram of a scaled down version of a heat ex-
changer. The control objective is to maintain the level and temperature of the tank
at some preset references. The two valves can be electronically opened or closed

boiler

water
inlet

water
outlet
(drain)

MV1

MV2

FT2 EV2 PI2 TI1

TT2 TT1 PI1 EV1

heat
exchanger

LT1

EV3

FT1pump P2

MV4

pump P1

MV3

hot tank

stirrer LT2

cold tank

Legend

EV Electronic valve
MV Manual valve
FT Flow transmitter
TT Temperature transmitter
LT Level transmitter
PI Pressure indicator
TI Temperature indicator

TT3

FIGURE 3.5. Schematic of heat exchanger

252 Chapter 9. Real-time Implementation

to control the amount of steam and water through the heat exchanger.
For this plant, there are two sensors, namely the temperature and level sensors

and two electronic valves acting as the actuators. (The pressure indicators are not
used in this control loop.) All the sensors and actuators are of industrial grade,
and deliver and receive 4 mA to 20 mA signals, respectively. To interface to these
sensors and actuators, two analog-to-digital and two digital-to-analog converters
are required.

In view of the requirements, we select a microcontroller target processor with
two channels consisting of analog-to-digital and digital-to-analog converters. The
hardware design of the controller system for the heat exchange is shown in Fig-
ure 3.6.

Heat exchanger
instumentation panel

ANO0Valve actuator 1

Temperature sensor

NEC

microcontroller
with 32K

OTP ROM

Voltage to
current

converter

TxRx

Serial communication
interface to host

Current to
voltage

converter

Voltage to
current

converter

Current to
voltage

converter

ANO1

ANI1

ANI0

Valve actuator 2

Level sensor

� PD78312

FIGURE 3.6. Design of controller for heat exchanger

Software Development Environment

For commonly used microcontrollers, processor emulators are provided by the
manufacturer or some third party vendors. A processor emulator emulates all the
functionalities of the specific microcontroller in real-time. It usually consists of an
electronic board connected to a personal computer or workstation. The electronic
board has a plug to be inserted into the microcontroller socket of the target con-
troller hardware. This plug has the same pin-outs as the specific microcontroller.
The emulator then provides a software development and debugging environment
for the stand-alone system using the resources of the PC or workstation.

Processor emulators are ideal for software development. However they are ei-
ther very expensive, or only made available to developers of high volume prod-
ucts. Low volume controller based designers often have difficulty getting such an

9.3. Hardware Platform 253

emulator. In the absence of an emulator, what then is the procedure for develop-
ment of the control software? Traditionally, it is done as follows.

The software that implements the control algorithm is coded on a workstation
using a native editor of the workstation. It is then compiled using a cross-compiler
into binary object code for the target stand-alone system. The EPROM of the
target system is then unplugged from the stand-alone board and “erased”. This
involves subjecting the EPROM to about 15 minutes of ultra-violet radiation, but
recent CMOS RAM technology with a switch can simplify this process. Once the
EPROM is “erased”, the binary object code can be programmed into the EPROM
using an EPROM programmer. Once this is done, the EPROM can be plugged
back onto the target board. Power to the board can then be applied to verify the
software code. If there are bugs in the program, the whole cycle will have to be
repeated.

Even for a simple program, it is not unusual for the procedure to be repeated
a number of times before all the bugs are removed. If the program to be im-
plemented is complex, as would be the case for the algorithms proposed in this
book, the development using this approach could be very inefficient. Note also
that the success of this procedure is on condition that the hardware is already de-
bugged and verified to be working properly. In the event that this is not the case,
the procedure could be quite frustrating for the inexperienced, and even for the
experienced.

In this section, we present a procedure that will greatly simplify the devel-
opment procedure. Consider the setup of Figure 3.7. The host computer is any
workstation or personal computer where a cross-compiler for the target micropro-
cessor of the stand-alone controller system exists. The host computer is linked to
the controller system through either a serial link or a parallel link.

Programs for the target microprocessor can be developed and cross-compiled
to an object code on the host computer. Once this is done, the program can be
sent or downloaded to the target system through the communication link. This is
easily accomplished using a serial port driver program available with most gen-
eral purpose host computers. To complete the loop, a program residing on the
target computer has to be written to accept the object code when it is downloaded
through the communication link, load it into memory and execute it when the
entire file is received.

Serial
link

Output signal

Host computer Stand-alone system
Input signal

Plant

FIGURE 3.7. Setup for software development environment

254 Chapter 9. Real-time Implementation

The procedure is conceptually simple. The question is: How easily can this
be achieved in practice? The key difficulty in the procedure described appears
to be the writing of the program which resides on the target system referred to
as the bootstrap loader. This program has to be developed in the traditional way
as described above, that is through the programming of the EPROM. Clearly, if
this program is more complex than the controller algorithm that we are going to
develop, then there is no advantage in adopting this procedure. Let us examine the
complexity of writing the bootstrap loader.

The format of the object code which the cross-compiler produces varies. Be-
side the program data in binary format, the object code also contains information
to load the program data. This is the address information that tells a loader where
in the memory space the program is to be loaded. The format of the object code
should be given in the manual of the cross-compiler. If the object code is sent
down to the target microprocessor through the communication link, then it is the

Sync
character
received?

Get C data and
place at address B

Get starting
address of down-

load program

Check type

Go to start of
program

Get count, address
and type

Yes

00

No

Initialize
peripheral devices

01 10

FIGURE 3.8. Flowchart for bootstrap loader

9.3. Hardware Platform 255

task of the bootstrap loader to interpret these codes; essentially to extract the ad-
dress information and load the program data at the appropriate memory locations
according to the address information extracted.

Currently popular microprocessors are those from Intel∗ or Motorola†. For the
microprocessors from these two manufacturers, the cross-compilers usually com-
pile to the Intel Hex format and the Motorola S format, respectively. A bootstrap
loader is but a few lines of code.

A C-program that implements a bootstrap loader to receive a downloaded ob-
ject code in the Intel Hex format can be written to implement the flowchart of
Figure 3.8. In the event that the cross-compiler does not output the object code
in the Intel Hex format, it is probably easier to write a converter program on the
host computer to convert the foreign format to the Intel Hex format. In this case,
all the programming support resources are available to the user.

With this setup, the environment of the stand-alone system is virtually extended
to include that of the host computer. All the resources of the host computer such
as the keyboard, monitor, disk drives, editor, compiler, etc. are now accessible to
the stand-alone system and can be used in the development of its software. Prac-
tically, the stand-alone system is loaded with anoperating system, and aSerial
Port Operating System, (SPOS) as compared to merely theDisk Operating Sys-
tem(DOS) of a PC. Moreover, once the program is developed and verified to be
working correctly, it can then be recompiled and programmed into the EPROM
so that the eventual controller system can operate as a stand-alone unit with the
serial link removed.

Software Debugging Environment

In the last section, a serial link and a bootstrap loader is used to virtually extend the
hardware and software capability of the stand-alone system. The logical next step
is to provide a debugging facility on the stand-alone system for the development
of its software. Of course the necessity of providing this facility will depend on
the complexity of the software to be developed. In the case where the software
is relatively simple, it may not be cost effective to invest time in the provision
of the debugging facility. In the other case where the software to be developed is
complex, the investment will save considerable time in the subsequent debugging
of the software.

There are at least three levels of debugging to be provided for effective devel-
opment of a program. The first is to provide a programmer with a single stepping
facility. This facility allows the programmer to execute one instruction at a time.
After each instruction, the programmer is allowed to view the values of variables
to ascertain the correctness of the program. This facility is normally used to debug
short segments of a program which contain complex logical flows. It is usually not
used to debug the entire program, with possibly thousands of lines, as it is too time
consuming.

∗Intel is a registered trademark of the Intel Corporation.
†Motorola is a registered trademark of the Motorola Corporation.

256 Chapter 9. Real-time Implementation

The second allows the programmer to set a breakpoint somewhere in the pro-
gram. In this case, the program is run from the beginning until the breakpoint.
After the breakpoint, control is transferred to a monitor routine which allows the
programmer to view the values of the variables in the program and then engage
the stepping facility. This facility is used to debug larger segments of a program
which are suspected to contain logical errors.

The third level is to provide a facility for the programmer to monitor the values
of variables in the program as the program is executed. On a general purpose
computer, this level is equivalent to printing the variables on the monitor screen
as the program is executed or to a file for later reference. This level allows the
programmer a general view into the program, being especially useful when the
exact error in the program cannot be isolated.

Single Stepping

Single stepping cannot be provided entirely through software means. The mi-
croprocessor must either have hardware features that support this operation, oth-
erwise certain external hardware logic has to be included. To provide a single
stepping facility, the microprocessor or external hardware logic should have the
capability to generate an exception or interrupt after executing each instruction.
Many processors provide such a facility and the facility is usually activated by
setting a bit in the status register of the microprocessor. In the Intel 80x86 series
of microprocessor, this bit is known as the trap flag whereas in the Motorola 68K
series microprocessor, it is known as the trace flag.

Figure 3.9 shows the mechanism that implements the single-stepping facility
in microprocessors. To invoke single stepping, the user sets the relevant bit at the
point where the microprocessor is required to go into the single stepping mode.
Once this bit is set, the microprocessor will on completing the current instruction
generate an internal interrupt. This interrupt will cause the microprocessor to do
an indirect branch to an interrupt service routine through a fixed memory location
in the interrupt vector table.

The user has to write the interrupt service routine to perform the tasks desired.
The task is usually to display or store the values of the microprocessor’s internal
register as well as certain relevant memory locations so that the user can ascertain
their validity. The starting address of the service routine is then inserted at the
predetermined fixed memory location in the interrupt vector table.

As part of the indirect interrupt call, the return address and the program status
word are saved on the stack and the single-stepping bit in the status register is
cleared. Once the single-stepping bit is cleared, the microprocessor will no longer
generate an interrupt after completing each instruction. The interrupt service rou-
tine is therefore executed without interrupt after every instruction.

At the end of the interrupt service routine is an “interrupt return” instruction.
When this instruction is executed, the previously saved return address and pro-
gram status word is restored into the microprocessor. Control is thus returned to
the main program, where the next instruction will then be executed. Of course,

9.3. Hardware Platform 257

Execute
current

instruction.

Trap
interrupt?

Save
program

status word.

Clear
trap flag.

At this point the Trap
flag is not set so a trap
interrupt will not occur
after every instruction.

Execute single-
stepping service

routine.

Restore
program

status word.

Yes

No

FIGURE 3.9. Mechanism of single-stepping

when the program status word is restored, the single-stepping bit which is part of
the program status word is again set. The microprocessor will therefore generate
an interrupt after executing the next instruction in the main program. The whole
procedure is thus repeated until an instruction to clear the single-stepping bit is
encountered in the main program.

From the above explanation, a single-stepping facility is achieved by writing an
interrupt service routine and inserting the start address of the routine at a prede-
termined fixed address location. The facility can then be invoked by set a relevant
bit in the program status word.

Breakpoints

Technically, breakpoints can be generated entirely using software means. The eas-
ier way is to insert calls to a breakpoint service routine at the places where break-
points in the main routine are desired. Once the execution of the main program
reaches the place where the breakpoint routine is inserted, control will be trans-

258 Chapter 9. Real-time Implementation

ferred to the breakpoint service routine. In this routine, users can examine the
various internal values of the microprocessor. Once this is completed, control can
be returned to the main program and execution of the main program can continued
to the next breakpoint.

In fact breakpoints and single-stepping can be alternatively invoked in the same
main program. This allows a localized as well as global debugging of the main
program.

Continuous Monitoring

To monitor certain variables, calls to a subroutine which puts the variables con-
cerned into temporary memory locations are inserted at the relevant places in the
main program. The saved values of the variables can then be transmitted to the
host PC via the serial link after execution of the main program is completed. Al-
ternatively, the values of the variables can be saved into a first-in, first-out queue.
The serial port can then be placed in an interrupt mode, which will transmit in
real-time any saved variables in the queue to the host PC. The implementation of
the software queue is depicted in Figure 3.10.

The subroutineputchar() is called whenever certain variables are to be
saved. This subroutine saves these variable in the first-in, first-out queue imple-
mented in RAM. The serial port is connected in the interrupt mode. Thus when-
ever the transmit buffer in the serial port is empty, it will generate an interrupt.
An interrupt service routine will then be called to retrieve a value from the queue
and write it into the serial transmit buffer for onward transmission to the the host

main()

putchar()

putchar()

getchar()

serial_out()

Queue in RAM

In

Out

Characters
put into
queue.

Characters
taken from

queue.

Serial port
in

interrupt
mode

Calls routine
when

transmitter
is empty.

Character sent
out through
serial line.

Main program

Interrupt service
routine for serial port

Character sent
to serial port.

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

FIGURE 3.10. Implementation of a software queue for the serial port

9.3. Hardware Platform 259

PC. This additional task for the microprocessor does not normally take up too
much resources from the microprocessor. Of course, in real-time data processing
where the main task of the microprocessor takes up all the processing time of the
microprocessor, then this procedure is not feasible. However in many cases, the
microprocessor is selected to have an additional 10% to 15% processing power
than the requirement. This additional processing power is to allow for unforeseen
additional tasks within the main task. This additional processing power if not uti-
lized can be used to implement the debugging facilities.

A Dual-Processor Solution for Fast Processes

For relatively fast processes and relatively complex control algorithms, such as
those encountered in the aerospace industry, the sampling interval and computa-
tions required tends to be beyond the limits of simple processor technology. There
is motivation to move to more powerful processors. However beside requiring a
powerful processor, the controller system will also require all the interfaces to the
sensors and actuators of the plant to have rapid data flows.

Powerful processors optimized for number crunching such as DSPs are the
processors needed in such applications. It is ideal if the DSPs also come
with many peripheral functions integrated on-chip. However currently this is
not the case. Firstly, the demand for such chips is not high enough for in-
tegrated circuit (IC) manufacturers to invest in the design and manufacturing.
Secondly the die size for such highly integrated chips would be large, and
consequently the production yields of the chips low and therefore the costs
are higher.

To provide a hardware platform with a powerful number crunching capabil-
ity as well as numerous interface functions, it seems appropriate to exploit the
strength of both the DSPs and microcontrollers in what we call a dual chip
design. We present one such design which we call the Fast Universal Con-
troller (FUC). The high computation speed of the FUC is derived from the
DSP and it can go up to tens or hundreds of MFLOPS (millions of floating
point operations per seconds), depending on the particular DSP selected. It is
universal in that it contains numerous input/output interfaces to satisfy most
controller needs.

The design of the FUC is shown in Figure 3.11. It can either function as a
stand-alone unit or maintain a serial communication link to a host computer. In-
ternally, the FUC consists of two distinct processing modules which perform dif-
ferent tasks. The first module (DSP module) contains a DSP and associated resi-
dent RAM. This module is assigned to perform number crunching in the overall
strategy of the FUC. Typically, it is programmed to execute all tasks of the FUC
unit except servicing of external devices. The DSP does not maintain any hard-
ware link to external devices except to the second module through a DMA (direct
memory access) channel.

The heart of the second module (microcontroller module) is a microcontroller
which provides interaction with all external processes or devices through its built-

260 Chapter 9. Real-time Implementation

External
panel

Analog current

Digital inputs

Position measure

PWM signal

Serial lines
to PC

Voltage to
current

converter

Current to
voltage

converter
Analog voltage

Velocity measure

Analog current

 Digital output
Analog voltage

Fast
interprocessor

communication
through

DMA channel

RAM

AT&T
DSP32C
dedicated
to number
crunching

NEC

dedicated
to I/O

processing

Internal
ROM/RAM

� PD78312

FIGURE 3.11. Design of a fast universal controller

in I/O interfaces as well as other specialized chips such as analog-to-digital con-
verters (ADC), digital-to-analog converter (DAC) and programmable digital I/O
chip. Any information to be passed to the DSP section is done through the DMA
channel.

DSP Module

This module consists of the DSP, in our application an AT&T‡ DSP32C, 128 K
32-bit words of RAM and the necessary logic circuits to interface the RAM to the
DSP. There is no nonvolatile memories or interfaces to external devices. The only
link to the external world is a DMA channel to the NEC§ microcontroller. The
DMA controller is a built-in feature of the DSP. This DMA controller is accessible

‡AT&T  is a registered trademark of the AT&T Corporation—formerly the American Telephone
and Telegraph Company.

§NEC is a registered trademark of the NEC Corporation—formerly the Nippon Electric Com-
pany, Limited.

9.3. Hardware Platform 261

by the microcontroller through a 16-bit control/data bus. Through this control/data
bus, the microcontroller is able to control the read/write of any memory location
within the DSP memory address space. This bus also allows the microcontroller
to do a soft reset of the DSP.

The program to be executed on the DSP is loaded onto the DSP’s memory
by the microcontroller through the DMA channel. Once the entire program is
loaded into the DSP’s memory, the microcontroller will initiate a software reset
of the DSP. This causes the DSP to branch to the first executable instruction of
the downloaded program and commences execution of the application.

In real-time execution of the application program, the DSP will monitor sensor
readings and send control signals to actuators. Since there is no hardware link
between the DSP and the external devices, interaction is done using a software
approach as follows. Within the memories of the DSP, certain fixed memory lo-
cations are reserved as mailboxes for each of the hardware ports. That is, there is
a memory location that serves as a mailbox for each of the peripherals; analog-to-
digital converters (ADC), digital-to-analog converters (DAC), pulse width modu-
lator (PWM) ports, etc. For input devices such as the ADC, the microcontroller is
responsible for obtaining the readings from the hardware device and then trans-
mitting this information to its corresponding mailbox (in the DSP memory ad-
dress space) using the DMA channel. The DSP then picks up the data from the
mailbox (memory location). Similarly, for any data that the DSP needs to write
to an output device (such as a DAC), it places the data into the corresponding
mailbox for the output device. The microcontroller next retrieves the data from
the mailbox using the DMA channel and then appropriately transmits the data to
the actual hardware device. In this way, the DSP interfaces to external devices are
implemented by simply accessing memory locations. Furthermore the hardware
devices have “perceived” hardware characteristics for the DSP that are exactly the
same as those of RAM.

Microcontroller Module

This module consists of the microcontroller and all the peripheral chips that are
needed to service all the various hardware processes. The microcontroller is not
involved in the execution of the control algorithm. However it has to perform a
number of supporting tasks.

The first task is to ensure that application programs for both the DSP and itself
are properly loaded. In the stand-alone mode of the FUC unit, the program for
the DSP is burned into the EPROM of the module. Once the unit is powered
up, a bootstrap loader is executed to transmit the DSP program through the DMA
channel to the proper location within the DSP memories, reset the DSP and branch
to the beginning of the NEC microcontroller program. In the mode where the
programs are to be downloaded from the host computer, the bootstrap monitors
the serial link for the downloaded program. Once the program is downloaded from
the host computer, the bootstrap loader receives the programs and loads them into
the appropriate memory locations of the DSP or microcontroller accordingly.

262 Chapter 9. Real-time Implementation

The second task is to maintain synchronous timing for the entire FUC unit. The
built-in timer of the microcontroller is tasked to maintain the precise time required
to implement sampling intervals.

The third task is to service all the peripheral devices. For input devices, the mi-
crocontroller will have to ensure that proper timing and procedures corresponding
to each device be adhered to so that a reliable reading is obtained. The obtained
reading is then transmitted to the device’s mailbox within the DSP module at the
appropriate instant. For output devices, the microcontroller will obtain the data
value from the appropriate mailbox and then drive the corresponding hardware
output device. All device characteristics are to be taken care of at the microcon-
troller’s end.

Finally should there be a need to send any data to the host computer for data
logging, the microcontroller will appropriately condition the data and then send
them via the serial line to the host computer.

As as concluding remark to our discussion of a dual processor solution, it is
interesting to note the modular approach adopted in the design. This approach
allows an easy development of the control algorithms. There is no need for the
control engineer to worry about servicing the peripheral devices. This is an ad-
vantage since having to service peripheral devices in real-time always makes pro-
gramming complicated because different devices have different operating require-
ments. As an example of this increased complication, an ADC requires some finite
time interval from the command to start converting to delivery of the converted
data. This finite time interval may take many processor working cycles. In this
case, it may not be feasible for the processor to just wait for the ADC to complete
the conversion, because of other commitments. It is then necessary to set up an
interrupt routine so that when the ADC is ready to deliver the data, the processor
is interrupted to read in the data. In our case the control engineer can assume that
all these operating requirements are taken care of by the microcontroller module
and the data will be available in the mailbox for the peripheral when and as it is
required. There is no need for background and foreground differentiation of vari-
ous parts of the program, which then allows straightforward programming of the
control algorithm. The program on the microcontroller will be servicing all the
peripherals and takes care of all the operating requirements. This program may
be a little more complicated but since there is one task less, the overall design is
somewhat simplified.

A Personal Computer-based Solution

In this section we describe the design of a universal input/output (UIO) board that
plugs into the I/O bus of a personal computer (PC). The board is similar to the
microcontroller module of the FUC except that it does not have a DMA link to
the DSP module. Instead it has a parallel interface to the I/O bus of the PC mother
board. This board plugs directly into the expansion slot of the PC mother board
and the peripherals on board are then accessible by the microprocessor residing
on the PC mother board. The design of the UIO is shown in Figure 3.12.

9.3. Hardware Platform 263

Analog input AN0

CI0
CTRL0

INTE0

AN0

NEC

Microcontroller

P5P4

Digital Port 0

Digital Port 1

AT data bus

AT bus
control lines

P0

P1

Analog
voltages

External
interrupts

Motion/velocity
Measurement 0

Motion/velocity
Measurement 1

CI1
CTRL1

INTE1
INTE2

AN1
AN2
AN3 TO1 IRQ10

PWM0

PWM1
P24

P25

PWM0-
FORWARD

PWM0-
REVERSE

PWM1-
REVERSE

PWM1-
FORWARD

Motor control

Intel
i8255

programmable
parallel
interface

PBPA

� PD78312

FIGURE 3.12. Design of universal input/output card

The program for the control algorithm is now developed and executed on the
PC. All the resources of the PC are available to the programmer for develop-
ment of the software. There is no need to write a bootstrap loader. There is also
the advantage of having a cheap and well written optimized compiler for the de-
velopment. Although we call this solution a personal computer based solution,
there is really no need for the PC once the program for the control algorithm
is developed. We can transform it into a stand-alone system. We only need to
purchase a PC mother board at low cost. The object code of the program can be
programmed into a EPROM and this replaces the EPROM that comes with the PC
mother board. The UIO will also have to be plugged into the PC mother board.
Once done, power can be applied and the three components consisting of the PC
mother board, UIO and the control software (on EPROM) are transformed into

264 Chapter 9. Real-time Implementation

a stand-alone controller system. What is further required is a properly designed
casing.

As mentioned before, this approach is ideal for low volume production of con-
troller systems. Because of the high volume turnover for PC mother boards, the
price is relatively low. Also because of the high integration used in the design of
the mother boards, they tend to be reliable. It also has the advantage of allowing
the control engineer to develop the software on the PC. A limitation for compu-
tationally intensive controllers is the limited bandwidth of a PC bus. However,
there are PC/DSP arrangements which are available now which only use the PC
for development and not for controller implementation, and in this way overcome
the bandwidth limitations of the PC.

Main Points of Section

In this section, we have described the hardware platform to implement control al-
gorithms. A methodology to simplify the development of a microprocessor based
controller system is presented. A dual-processor design approach for plants which
require more computational resources and a personal computer based approach
are also described.

9.4 Software Platform

The software for the control algorithm can be developed on a number of platforms.
The platform will depend on the complexity of the algorithm as well as the degree
of optimality of the code desired. To obtain an object module that is short as well
as executes in the shortest possible time, it is necessary in some cases to program
in assembly language and do hand optimization of the code. This however is very
time consuming and difficult unless the problem is relatively simple. Of course for
the development of products that will be mass produced, this may be a worthwhile
investment. However for most situations this is to be avoided.

The other alternative is to code in the C language, which is frequently the soft-
ware platform of choice. The object code produced is not as optimized as that
produced by a hand optimized assembly language source, but it is a good com-
promise between development efficiency and code optimality.

Control via Coding in MATLAB¶

With more powerful computers and more complex problems to be solved, the as-
sociated software is correspondingly more complex. Just as the trend in hardware
is towards higher integration, so there is a trend for software to move in this direc-
tion. There is now a greater dependency on prewritten software modules. In the

¶MATLAB  is a registered trademark of the MathWorks, Inc.

9.4. Software Platform 265

past, it would takes an experienced programmer many days or weeks to write a
graphical based user interface, but today this can be accomplished in a few min-
utes by any programmer using one of the many application packages. Software
libraries are not new, however the functions offered by today’s software library
are no longer basic. They now come in more integrated forms and each function
accomplishes a more complex task. The question that arises is: How does this
trend affect the coding of control algorithms?

MATLAB was originally a public domain software package developed to pro-
vide easy access to matrix and linear algebra manipulation tools developed by
the LINPACK andEISPACKprojects. Since then it has been further developed
by the MathWorks into a commercial version. Rewritten public domain versions
are also available and users are advised to check theUsenetarchive sites for an-
nouncement of the latest release. MATLAB comes with a programming language
command set as well as many built-in functions that are commonly used in design
and simulation of control systems. The command language allows users to write
their own functions or script files, referred to as m-files. These m-files which are
in plain text format can be called from within the MATLAB environment to per-
form the functions they are written to perform. The m-file functions have been
grouped together to form toolboxes for application to tasks such as system identi-
fication, signal processing, optimization, and control law design. There are many
such toolboxes in both the commercial and public domain.

The thousands of m-file functions implement all kinds of control system design
and simulation functions. In fact many algorithms are already available as m-files.
With the aid of these m-files, often there is no necessity to code algorithms from
scratch. The main program to perform the task defined is merely a series of calls
to each of these m-file functions. For illustration, rather than for application by
the reader, the design and simulation of an LQG controller is given in Figure 4.1.
Note thatdlqr anddlqe are m-file functions that compute the controller and
estimator gains of the LQG controller respectively.

The question we now ask is: How can the above design and simulation program
be used to control a real plant? Consider the personal computer based solution
described in the last section. We mentioned that the program for the control algo-
rithm is to reside on the PC and the input and output linkage to the plant is done
through the universal input/output (UIO) card. In order for us to use the above
MATLAB program to control the plant, we need to do three things. First, we need
to install MATLAB on the PC. Second, we need some routines which allow us
to access the UIO peripherals from within the MATLAB environment. Third, we
need to modify the above program so that instead of simulating the plant dynamics
to get the plant output, we can directly call a routine to read output measurement
data from the actual plant. Similarly the controller output will have to be sent to
the plant through the UIO.

Two C-language programs ADC.c and DAC.c can be written. ADC.c, when
called, accesses the analog-to-digital converter of the UIO and returns the digital
values of the analog signal. DAC.c on the other hand accepts the parameter passed
to it by the MATLAB program and sends it to the digital-to-analog converter of

266 Chapter 9. Real-time Implementation

% State space definition of nominal plant
A = [0.7 0 ; 0 0.8];
B = [0.5 ; 0.8];
C = [1 1.5];
D = [0];

% Definition of design parameter for LQG controller
Q_control = C’*C;
R_control = 1;
Q_estimator = 1;
R_estimator = 1;

% Design of LQG controller
K_control = dlqr(A,B,Q_control,R_control);
K_estimator = A*dlqe(A,B,C,Q_estimator,R_estimator);

% Initialization of variables
xk = [0;0];
uk = 0;
xhat = [0;0];

while (1),
yk = C*xk + D*uk + rand(1,1);
xk = A*xk + B*uk + B*rand(1,1);
uk = K_control*xhat;
xhat= A*xhat + B*uk + K_estimator*(yk - C*xhat);

end

FIGURE 4.1. Program to design and simulate LQG control

the UIO for conversion. The two programs can be linked with MATLAB which
then allows them to be called from within MATLAB.

With the routines just described, the simulation program in Figure 4.1, modified
as illustrated in Figure 4.2 (again not necessarily for use by the reader), becomes
a real-time control program.

There are three places where modification is necessary. First, the two
lines that simulate the plant is removed and replaced byyk = ADC(1) .
This is really a call to ADC.c to obtain in digital form the analog output
value of the plant. Second, an additional lineDAC(uk) is added. As the
reader would have guessed, this is to send the controluk to the actuator
of the plant via the UIO. The third modification is the introduction of the
statementsstart_time = clock which assigns the current time to the
variable start_time and etime(clock,start_time) <= sam-
ple_interval which gives the difference between the current time and the
time recorded in the variablestart_time . These statements ensure that the
while loop is executed once everysample_interval seconds.

Implementing the controller algorithms using m-files has another advantage.

9.4. Software Platform 267

% State space definition of nominal plant
A = [0.7 0 ; 0 0.8];
B = [0.5 ; 0.8];
C = [1 1.5];
D = [0];

% Definition of design parameter for LQG controller
Q_control = C’*C;
R_control = 1;
Q_estimator = 1;
R_estimator = 1;

% Design of LQG controller
K_control = dlqr(A,B,Q_control,R_control);
K_estimator = A*dlqe(A,B,C,Q_estimator,R_estimator);

% Initialization of variables
xhat = [0;0];

% Initialization for real-time control
sample_interval = 1;
start_time = clock;

while (etime(clock,start_time) >= sample_interval),
start_time = clock;
DAC(uk);
yk = ADC(1);

uk = K_control*xhat;
xhat= A*xhat + B*uk + K_estimator*(yk - C*xhat);

end

FIGURE 4.2. Program to implement real-time LQG control

For most purposes, before an algorithm is implemented, it is designed and
simulated to check that it is performing to expectation. This part is usually
performed using a high level design and simulation package such as MAT-
LAB. Often only after the simulation shows promising results does one de-
cide to apply the algorithm to the real plant. The practice is then to re-
code the algorithm in some programming language such as C for implemen-
tation on the real plant. This step is usually done by another group of sys-
tem programmers. However program bugs and communication between the de-
sign group and the implementation group may lead to problems and delays in
the project. Our proposed approach, working with m-files makes implemen-
tation straightforward for the control designers. There are only three places
where modifications are made. If the real-time control does not match the
simulated results, the focus can then be on the control issues rather than the
implementation issues.

268 Chapter 9. Real-time Implementation

A MATLAB M-file Compiler

The approach, working with m-files described in the last section, has at least four
drawbacks. First, MATLAB is available only on general purpose computer sys-
tems. The approach is not possible on a computer platform not supported by MAT-
LAB. As an example, the FUC described in the previous section is not supported
by MATLAB and therefore the approach is not applicable. Second, the approach
requires MATLAB to be running in order to execute the m-file program that im-
plements the control algorithm. MATLAB is a huge program and requires con-
siderable computer resources to run. This is wasteful since the m-file program
may not require all the MATLAB resources. Third, the approach allows the m-
file program to be easily altered. This is an advantage during development as it
allows the designer to fine tune the control algorithm quickly. However once the
system is in operation and is maintained by operators who are not familiar with
the design of the control algorithms, easy alteration of the m-file is strongly dis-
couraged. Fourth, MATLAB is an interpreter and has high execution overhead. To
enhance execution speed, the obvious step is to generate compiled object code for
the control algorithms using a MATLAB-to-C converter such as is now commer-
cially available. Such a converter converts any m-file into its equivalence ANSI-
compliant C source. The equivalent C source can then be compiled using a C
cross compiler to an object code for any target processor. The object code can
then be programmed into an EPROM to give a turnkey controller system. With
the MATLAB-to-C converter, the four drawbacks described above are overcome.

Main Points of Section

In this section, we describe various ways to implement the control algorithms in
software. The traditional way is to code in assembly language or C. We suggested
an alternative way, to program in m-files format. This allows the use of high level
m-file functions available in MATLAB toolboxes to be used in the development
of the control algorithms. To facilitate the development of stand-alone systems,
the role of a MATLAB-to-C converter that converts m-files into C sources is de-
scribed. The C source can then be compiled using a C cross compiler into object
code for any hardware platform.

9.5 Other Issues

There are a few other issues which the readers will probably encounter in the
implementation of a control system. We will briefly highlight them here.

Implementation of Direct Feedthrough

Strictly speaking, a direct feedthrough is not realizable in the discrete-time imple-
mentation of controllers on a computer. This is because the processor will have

9.5. Other Issues 269

to take some finite time to process any data that is read in through the input inter-
face before it can be written back to the output interface. Thus it appears that there
should be at least one sample delay in the controller. In other words, the controller
must be strictly causal. However in the event that the computational time of the
controller is small in comparison to the sampling period, a direct feedthrough can
be approximated. In this case the control signal is sent to the actuator as soon
as it become available. Of course, if the hardware constraints preclude a direct
feedthrough, or an approximation to this, then the controller design should yield
a strictly causal controller.

Integer Representation

With floating point microprocessors, users do not have to be concerned with over-
flow or underflow of arithmetic operations. However, in general, it is also true that
floating point processors are significantly more expensive than integer based pro-
cessors. In fact in many designs, preliminary implementation is made on floating
point based processors. Once the algorithm is shown to be working, the design is
then converted to run on an integer based processor for mass production.

The process to convert a floating point based program to an integer based pro-
gram can be rather tedious. In essence, one has to examine all intermediate results
of the program to determine the range of values they can take. If the range is be-
yond that offered by ann-bit integer representation, then either the number of bits
used to represent the number has to be increased or that value has to be scaled
back accordingly. Often this is achieved by shifting the binary point to the right
by m-bits or equivalently by dividing by a 2m operation. Correspondingly, if the
range is too small, then we may not be getting sufficient resolution and there is a
need to expand the resolution by shifting the binary pointm-bits to the left.

There is also often a need to change the order in which certain computations are
performed to avoid overflow or underflow. An example is to compute the equation

z=
n∑

i=1

ai −

n∑
i=1

bi ,

whereai , bi are positive numbers as

z=
n∑

i=1

(ai − bi).

Finite Word Length

In the development of the algorithms in the book, infinite precision representation
of numbers is assumed. This assumption is not valid in real-time implementation
in digital computers. The numbers used in the calculations have finite word length.
We will not do any analysis on the effects of finite word length implementations

270 Chapter 9. Real-time Implementation

of the algorithms in the book. The reader is referred to Williamson (1991) and
Gevers and Li (1993) and also to Middleton and Goodwin (1990) for in-depth
treatments of the various issues. However we stress that there are different sources
of truncations which can adversely affect the performance of the algorithms.

Main Points of Section

In this section, three issues are flagged. The first is the implementation of direct
feedthrough in discrete-time systems. The second is the effect of integer represen-
tation in control algorithm implementation. The third is the effect of finite word
length in microcomputer systems.

9.6 Notes and References

This chapter sets the stage for real-time implementation of the algorithms pre-
sented in the book. The chapter begins with an introduction to discretizing of
continuous-time plants for computer implementation. It then moves on to hard-
ware/software platforms. Most of these techniques are known in industries or
in laboratories, or presented in restricted publications. The material presented is
based on our experience in implementing these systems both in universities as
well as in industry.

CHAPTER 10

Laboratory Case Studies

10.1 Introduction

The aim in this chapter is to present some student laboratory case studies of the
application of high performance control theory and its real time implementation.
Also, some simulation feasibility studies are included. The case studies are of
necessity limited and perhaps contrived to some degree since they do not arise
from fully funded engineering research and development programs for real world
applications. Each study is presented somewhat qualitatively in order to illustrate
aspects of engineering design rather than to allow for complete reproducibility of
the results or to represent a triumph of the approach. The way is opened for the
reader to achieve any triumphs.

10.2 Control of Hard-disk Drives

Hard-disk drives are an important data-storage medium for computers and data-
processing systems. In the hard-disk drive, rotating disks coated with a thin mag-
netic layer or recording medium are written with data in concentric circles or
tracks. Data is read or written with a read/write head which consists of a small
horseshoe shaped electromagnet. This read/write head is usually driven by a ser-
vomechanism system. Within the servomechanism, two different controllers are
used. The task of the first controller is track seeking, that is to move the read/write
head from track to track. Usually an optimal controller that minimizes the time
taken to do this is used. The task of the second controller is track following, that
is to maintain the head above a particular track while data is being read or written.
This is a regulation problem. Currently a combination of classical control tech-
niques, such as lead-lag compensators, PI compensators and notch filters are used
in the track following algorithm.

272 Chapter 10. Laboratory Case Studies

The objective in hard-disk drive development is towards smaller drives with
high data storage capacity and faster seek and read/write times. Track to track
seek time is governed by the maximum deliverable power of the motor driving
the read/write head and the mass of the read/write head. The rate of read/write
operations is governed by the speed of the spindle motor that rotates the magnetic
disks of the drive.

There are two ways to achieve a smaller disk drive with higher capacity. The
first is to reduce the size of the footprint for each bit of data. The second is to
reduce the width of the tracks where the data is stored. The first has to do with
magnetic storage technology, the second has to do with the quality of control of
the read/write head above the tracks while data is read or written. At the time
of writing, the width of each track in a disk drive is still large compared to the
footprint of each piece of data. It appears that high rewards can be achieved by
improving the control aspects of the drive.

There are two primary sources of disturbance in the hard disk servo system.
The first is arepeatable run-out(RRO). As the name implies, RRO is a periodic
disturbance that stays locked to the disk rotation (both frequency and phase). This
disturbance is due to imperfect or eccentric tracks. See Hara, Yamamoto, Omata
and Nakano (1988), Chew and Tomizuka (1990) for work in this one aspect. The
second is anonrepeatable run-out(NRRO). NRRO is the cumulative result of
disk drive vibrations, electrical noise in the electronic circuits and the measure-
ment channels. Vibrations come from many sources. These sources include the
spindle motor, spindle bearings, air movement between the head and the disk,
the actuator and also force disturbances such as closing of covers. Unlike RRO,
NRRO disturbances are not periodic or predictable. Hence, they are more difficult
to reject than RRO disturbances. In this section we will present designs to reduce
this NRRO form of disturbances.

System Model

Two hard disk drives are used in this case study. The first drive (Drive 1) is a com-
mercially available 5.25 inch Winchester 2.4 GB drive with a dedicated servo sys-
tem providing information on the relative position for the servo read/write head.
The drive has a digital signal processor (DSP) to compute the necessary control.
The spindle motor is rotating at 5 400 rpm and control is done at an interval of ap-
proximately 42µs. The existing track following regulator for the servo system is
a combination of PI compensator, notch filter and lead-lag compensator. A block
diagram of the servo system and its own internal controller is shown in Figure 2.1.

The position error signal ‘pes’ is derived from the servo head representing the
deviation of the read/write head from the required track center. Here ‘return’ is
the output from the existing controller and ‘err_out’ is the input signal injection
into the servo system. This servo system contains an input point, ‘stimin’, which
is used for injecting test signals into the servo system for obtaining frequency
response. Under normal operation of the system, this signal is set to zero, hence
‘return’ equals ‘err_out’.

10.2. Control of Hard-disk Drives 273

err_out Servo
system

ADCDAC

ADCPCDAC

External controller

stimin Power
amp

Sensing
device

Existing controller

Timing

DSP
return

SUM

FIGURE 2.1. Block diagram of servo system

There are two possible ways to access the servo system. The first is to detach
the existing controller and replace it with the new control algorithm. This would
involve recoding all the functions, including hardware initialization routines cur-
rently performed by the DSP. This is not possible without a detailed description
of the hardware and the addresses and functionalities of all peripherals. The other
way, which is an easy way out is to treat the servo system together with its in-
ternal controller as the plant. An external controller is then designed to control
this ‘plant’. However with this approach, the external controller may not be able
to “see” the entire spectrum of the servo system. This is because the internal
controller may have filtered out parts of the spectrum. Nevertheless this is the ap-
proach adopted in this case study. We will in the rest of the section consider the
internal controller as part of the plant, termed here servo system.

Let us model the servo system as

A(q−1)yk = B(q−1)uk + wk (2.1)

whereyk = ‘pes’, uk = ‘stimin’, A(q−1) = 1+ a1q−1
+ · · · + anq−n and

B(q−1) = b1q−1
+ · · · + bnq−n. This can be written as a linear-in-the-parameter

model as follows.

yk = φ
′

kθ + wk (2.2)

whereφ = [−yk−1 ... −yk−n]′ andθ = [a1 ... an b1 ... bn]′.
Excitation signals applied to the inputs and the outputs are logged. A least

squares algorithm is then used to estimate the parameters of the model (2.1) of
the servo system. The magnitude of the frequency response of an estimated 18th,
19th and 20th order model is shown in Figure 2.2, which can be compared to a
plot using a spectrum analyzer as shown in Figure 2.3. The two figures show close
correlation.

274 Chapter 10. Laboratory Case Studies

Order 18

Order 19

Order 20

Frequency (Hz)

dB

� 10
� 20

� 30
� 40

� 50
� 60
� 70

� 80
101 102 103 104

FIGURE 2.2. Magnitude response of three system models

Frequency (Hz)

dB

� 10
� 20
� 30

� 40
� 50

� 60
� 70
� 80

101 102 103 104

FIGURE 2.3. Measured magnitude response of the system

The second hard disk drive (Drive 2) is an IBM∗ Winchester 3.5 inch disk. It
has a rotating speed of 4 316 rpm and control is performed at the rate of 6.9 kHz.
The magnitude of the frequency response of an estimated third order model for
this drive is shown in Figure 2.4.

An Optimal Disk Controller for Drive 1

A second order model is used in the design of the controller for the servo system of
Drive 1. This model is obtained by approximating the high order models obtained
in the previous section and is given as follows.

yk − 1.83yk−1+ 0.86yk−2 = 0.001uk−1− 0.007uk−2+ wk. (2.3)

Qualitatively, the objective of the controller is to ensure that the deviation of the
read/write head position from the center of each track ‘pes’, is small at all instants
of time without saturating the actuator. This will then allow the track width to
be set to twice the worst deviation (or slightly larger) of ‘pes’. It is clear such
a qualitative specification translates quantitatively into an optimal controller that
minimizes the infinity norm of ‘pes’.

∗IBM is a registered trademark of the International Business Machines Corporation.

10.2. Control of Hard-disk Drives 275
G

ai
n

(d
B

)
Ph

as
e

(d
eg

re
es

)

Frequency (Hz)

200

0

Frequency (Hz)

40

0

20

Identified

Normal

Identified

Normal

� 20

� 40

� 200

� 400

101

101

102

102

103

103

104

104

FIGURE 2.4. Drive 2 measured and model response

Let us select an error signal asek = [yk λuk]′ whereλ is a constant and set up
a performance index as

J = ‖e‖∞ = max(‖yk‖∞ , ‖λuk‖∞). (2.4)

Using theQ parameterization approach of Chapter 2, we have a closed-loop
system given in terms ofQ asFQ. Using the notation of Chapter 4, we have the
following optimization task.

min
Q∈RH∞

∥∥FQw
∥∥
∞
. (2.5)

Now the solution to this optimization task depends on the characteristic of the dis-
turbancew into the system. In our case,w is certainly bounded. We could further
assumew to be 2-norm bounded or infinity-norm bounded. Either assumption as
shown in Chapter 4 leads to different optimization tasks.

min
Q∈RH∞

∥∥FQ
∥∥

2 if ‖w‖ ∈ `2, ‖w‖2 ≤ 1, (2.6)

min
Q∈RH∞

∥∥FQ
∥∥

1 if ‖w‖ ∈ `∞, ‖w‖∞ ≤ 1. (2.7)

In this application, as mentioned, the targeted disturbances to be rejected by the
controller are the NRRO and they can be attributed to disk drive vibrations and
electrical noise in the electronic circuits and the measurement channels. Therefore

276 Chapter 10. Laboratory Case Studies

either the 2-norm or infinity-norm bounds can be considered to be good approxi-
mations. We thus present the results of controllers designed for both optimization
tasks (2.6) and (2.7).

Table 2.1 shows the amplitude and energy of ‘pes’ when aH2 and a`1 op-
timal controller are used to control the system. This is compared against the
case where no external controller is used. Each run consists of 200 000 sam-
ples. In general thè1 optimal controller reduces the maximum magnitude of
‘pes’ compared to when no external controller is used. TheH2 optimal con-
troller on the other hand does little to reduce the maximum magnitude of ‘pes’.
We have also computed the power of ‘pes’ in the three cases. As expected,
for this criterion theH2 controller turns in the best performance, reducing the
power of ‘pes’ by about 20% compared to when no external controller is used.
The power of ‘pes’ is also reduced by 10–15% when an`1 optimal controller
is used.

0

N

0 10 20 30
‘pes’ value

LQ

No regulation

40

80

20

0

60

18 20 22 24 26 28

40

80

20

0

60

N N

‘pes’ value‘pes’ value

�

1

� 10

� 18� 20

� 20

� 22� 24� 26� 28

� 30

1000

2000

3000

4000

5000

6000

7000

8000

9000

FIGURE 2.5. Histogram of ‘pes’ for a typical run

10.2. Control of Hard-disk Drives 277

1st Run 2nd Run 3rd Run 4th Run

`1 −22/22 −25/23 −23/24 −22/23
Amplitude
(Min/Max)

H2 −27/26 −27/26 −25/26 −26/25

NR −24/26 −27/26 −25/26 −26/25

`1 29.2 33.1 32.4 33.2

Energy H2 28.0 30.7 29.3 31.0

NR 33.9 39.1 35.1 36.3

TABLE 2.1. Comparison of performance of`1 andH2 controller

To understand the results better, a histogram of a typical run is shown in Fig-
ure 2.5. The axis shows the magnitude of ‘pes’ while they-axis represents the
number of occurrencesN. Attention is drawn to the two extreme ends of the his-
togram shown enlarged. Here, we observe that the`1 optimal controller not only
reduces the maximum amplitude of ‘pes’, but also reduces the number of occur-
rences at higher values of ‘pes’.

An Adaptive Controller for Drive 2

This part of the case study is extracted from Li (1995) and Horowitz and Li (1995).
The adaptive controller used to control Drive 2 is depicted in Figure 2.6.

The adaptive scheme is a specialization of the adaptive techniques presented in
Chapter 5 and Chapter 6. Assuming both the nominal plantG0 and the nominal
controller K0 to be the zero operators, then the stable coprime factorizations of
the nominal plant and controller are trivially given by

N = 0, M = 1, U = 0, V = 1.

Q
u

G

�
�

� �

�

�
�

� �

�
1

�
2

�
G ���B
�A

y � ‘pes’

FIGURE 2.6. Adaptive controller for Drive 2

278 Chapter 10. Laboratory Case Studies

Frequency (Hz)

Nominal

Adaptive

10

20

30

� 40
� 50

� 60
� 70

� 80
� 90

� 100
� 110

� 120
101 102 103 104

rm
s

(V
2

H
z)

FIGURE 2.7. Power spectrum density of the ‘pes’—nominal and adaptive

With these factorizations, the class of all plants parameterized byS (which is here
the servo systemG), is then given by

G(S) = G =
N + SV

M + SV
= S,

and thusS= G.
The parameters ofS are identified on-line aŝB/Â and the minimum variance

controller is given by

Q

1+ QB̂
Â

.

An input disturbance centered at about 60 Hz is injected into the system viaw1 of
Figure 2.6.

Figure 2.7 shows the power spectrum density of the ‘pes’ obtained in the above
experiment. With the adaptive augmentation, an improvement of about 43% over
the nominal internal controller is recorded. Figure 2.8 shows the error rejection as
a function of frequency.

Frequency (Hz)

0
10

G
ai

n
(d

B
)

Nominal

Adaptive

� 10
� 20
� 30
� 40

� 50
� 60
� 70

80

90

100

110

120

101 102 103 104

rms (V2 Hz)

FIGURE 2.8. Error rejection function—nominal and adaptive

10.3. Control of a Heat Exchanger 279

Main Points of Section

In this section, a case study on the control of two hard disk drives is described.
Two optimal schemes are implemented, namely an`1 and anH2 optimal scheme
as described in Chapter 4 . The results show an improvement in performance over
the case where these controllers are not present. For the second drive, an adaptive
controller based on the scheme described in Chapter 5 is implemented. A further
significant improvement in performance is recorded.

10.3 Control of a Heat Exchanger

Heat exchangers are extensively used in many industrial process installations such
as power plants, chemical processing plants and oil refineries. In this study we use
a laboratory scale heat exchanger as shown in Figure 3.1. Although many times
smaller than its industrial counterparts, it is a good representation for studying the
types of problems associated with such plants. A schematic of the heat exchanger
is shown in Figure 9.3.5 which is redepicted here as Figure 3.2. The objective of
the control is to maintain the temperature and fluid level of the hot tank at some
preset value. These two variables can be manipulated by controlling the rate of
flow of steam and cold fluid into the tank through appropriately placed electronic
valves.

In this study, we will take the reader through the engineering cycle of commis-
sioning a controller for such plants. We will first look at physical and structural

FIGURE 3.1. Laboratory scale heat exchanger

280 Chapter 10. Laboratory Case Studies

boiler

water
inlet

water
outlet
(drain)

MV1

MV2

FT2 EV2 PI2 TI1

TT2 TT1 PI1 EV1

heat
exchanger

LT1

EV3

FT1pump P2

MV4

pump P1

MV3

hot tank

stirrer LT2

cold tank

Legend

EV Electronic valve
MV Manual valve
FT Flow transmitter
TT Temperature transmitter
LT Level transmitter
PI Pressure indicator
TI Temperature indicator

TT3

FIGURE 3.2. Schematic of heat exchanger

modeling to determine an approximate suitable representation of the plant. Once
such a model structure is determined, parameter identification is then performed
from data obtained through experimental trial runs. Based on the model obtained
we design a simple LQG controller to control the plant. The results obtained from
real-time control of the plant is then compared with simulation runs based on the
model. In our study, simulation studies tally closely with that of the run on the
actual plant, giving us good confidence in the accuracy of the plant model. We
have also included a numerical plant model such that the interested reader may
experiment with the high performance controllers described in the book.

Structural Modeling

The plant contains two 0.5 meter cubic steel tanks. One of the tanks serves as a
buffer tank where cold water is pumped via the heat exchanger into the hot tank.

10.3. Control of a Heat Exchanger 281

The flow of cold water into the heat exchanger is controlled by the pneumatic
valve EV1. The hot tank is equipped with an outlet pump P1, a differential pres-
sure level transducer (LT2) and a platinum resistance thermometer (TT3). The
shell and tube heat exchanger consist of many round tubes mounted in a cylindri-
cal shell with their axes parallel to that of the shell. The heat exchanger is designed
as a steam heated system where water from the buffer tank flows through the in-
side of the tubes and is heated by steam flowing through the shell to supply the
required heat. Steam required for the process is generated by a boiler. The flow of
steam into the heat exchanger is controlled by the pneumatic valve EV2.

To perform an accurate physical modeling of the underlying process is com-
plex. We have therefore simplified the derivation so that a good understanding of
the process is obtained without being burdened with unnecessary complexities.

To obtain an understanding of the fluid level loop, we first maintain the steam
input valve EV2 at a constant flow rate. Then the inflow rateq(t) is related to
level h(t) in the hot tank by the equation

q(t) = A
dh(t)

dt
, (3.1)

whereA is the cross sectional area of the hot tank.
As designed and also observed, the dynamics of the pneumatic valves and level

sensors are very much faster than the process. These dynamics are therefore ig-
nored and the transfer characteristics are represented by the DC gains, respec-
tively, Gdc1, Gdcv. The resultant transfer function from the valve EV1 to the level
sensor LT2 is then given as

V1(s)

V(s)
=

Gdc1Gdcv

As
. (3.2)

A simplified representation of the shell and tube heat exchanger is shown in Fig-
ure 3.3. The fluid that flows through the inner pipe at velocityv is heated by steam
condensing outside the pipe. For simplicity let us ignore any spatial distribution
of the steam temperature. The differential energy balance for the fluid inside the
pipe over the volume element of lengthδx is given by

Rate of accumulation of internal energy

= Enthalpy in− Enthalpy out + Heat transferred, (3.3)

or symbolically,

δ
[
Ai pδxC(T − Tr)

]
δt

= vAi pC(T − Tr)− vAi pC

[
(T +

δT

δx
δx)− Tr

]
+ πDi hi δx(Tw − T),

(3.4)

282 Chapter 10. Laboratory Case Studies

condensate

steam

x

Symbols

fluid temperature
wall temperature
steam temperature
reference temperature for evaluating enthalpy
density of fluid
heat capacity of fluid
density of metal in wall
cross-sectional area inside pipe
cross-sectional area of metal wall
inside diameter of inner pipe
outside diameter of pipe
convective heat transfer coefficient inside pipe
heat-transfer coefficient for condensing steam
fluid velocity

T
�
x � t �

T� �
x � t �

T� �
x � t �

T� �
t �

T� �
t �

Tr
p
C
p �

�

�

Ai
A�
Di
Do
hi
ho

x � dx

T
�
0 � t � T

�
L � t �

FIGURE 3.3. Shell-tube heat exchanger

and therefore
δT

δt
= −v

δT

δx
+

Tw − T

τ1
,

1

τ1
=
πDi hi

Ai pC
. (3.5)

Now, the energy balance equation for the metallic wall over the volume of length
δx is stated as follows:

Accumulation of energy in wall

= Heat transfer in through steam− Heat transfer out through fluid film, (3.6)

that is,

AwδxpwCw
δTw
δt
= πD0h0δx(TV − Tw)− πDi hi δx(Tw − T), (3.7)

10.3. Control of a Heat Exchanger 283

giving rise to

δTw
δt
=

1

τ22
(TV − Tw)−

1

τ12
(Tw − T), (3.8)

where

1

τ12
=

πDi hi

Aw pwCw
,

1

τ22
=

πD0h0

Aw pwCw
. (3.9)

Taking the Laplace transform of (3.8) and (3.5) and solving them simultaneously,
we have

δT(x, s)

δx
+

a(s)

v
T(x, s) =

b(s)

v
Tv(s), (3.10)

where

a(s) = s+
1

τ1
−

τ22

τ1(τ12τ22s+ τ12+ τ22)
,

b(s) =
τ12

τ1(τ12τ22s+ τ12+ τ22)
,

which is an ordinary first order differential equation with boundary condition
T(x, s) = T(0, s) at x = 0. Solving this equation gives

T(x, s) = T(0, s)+
(
1− e−

a(s)
v

x
)(b(s)

a(s)
Tv(s)− T(0, s)

)
, (3.11)

whereT(0, s) is the transform of the fluid temperature at the entrance to the heat
exchanger andTv(s) is the transform of the steam temperature. If the tempera-
ture of the fluid entering the pipe does not vary significantly, which holds true if
the buffer tank is kept fairly constant, the transfer function relating the exit fluid
temperature to the steam temperature is

T(L , s)

Tv(s)
=

b(s)

a(s)

(
1− e−(

a(s)
v
)L
)
. (3.12)

The transfer function relating the temperature of the inflow water from the outlet
of the heat exchanger to the temperature of water in the hot tank can be derived
from the energy balance equation

Accumulation of total energy inδt

= input energy− output energy− energy lost to the environment, (3.13)

giving

p f A f h f C f
δ(T(t)− Tr)

δt
= p f q0C f (T(L , t)− Tr)− p f q0C f (T − Tr)− 0.

(3.14)

284 Chapter 10. Laboratory Case Studies

Since the flow rate of fluid through the heat exchanger is assumed constant asq0,
thenh f is a constant. Taking the Laplace transform of (3.14) and then solving
with (3.12), we get

T(s)

Tv(s)
=

b(s)
(
1− e−(

a(s)
v
)L
)

a(s)(
A f h f

q0
s+ 1)

. (3.15)

Again assuming that the dynamics of EV2 is very much faster than the change in
temperature of the tank, so that it can be ignored and be replaced by its DC gain
Kdc, the relationship between the input voltage to EV2 and the temperature of
fluid in the hot tank is given by

T(s)

V(s)
=

Kdcb(s)
(
1− e−(

a(s)
v
)L
)

a(s)
(

A f h f
q0

s+ 1
) . (3.16)

Parameter Identification

To determine the sampling rate, step inputs are applied separately to both the
pneumatic valves, EV1 and EV2, and the corresponding effects on the tempera-
ture and level of the hot tank are determined. It is found that the temperature and
level processes have time constants of approximately 46 and 13 minutes, respec-
tively. A sampling period of one minute is therefore chosen to reflect a sampling
rate about 13 times that of the faster process.

Next, pseudo random binary sequences (PRBS) of amplitude±1 are applied
simultaneously to the two pneumatic valves. The corresponding temperature and
level readings are then logged at one minute intervals. These are shown in Fig-
ures 3.4 and 3.5. An off-line least square algorithm is then used to estimate the
parameters of a linearized autoregressive exogenous (ARX) input model of the
form

A(q−1)yk = B(q−1)uk−n + ek,

wheren is number of delay samples.
Parameters are estimated for various model orders and sample delays. The fol-

lowing estimated transfer functions yield the smallest residual errors.

G11 =
−0.086 2z−1

1− 0.995 5z−1
,

G12 =
−0.007 6z−1

1− 0.995 5z−1
,

G21 =
−0.001 1z−1

+ 0.012 2z−2
+ 0.012 5z−3

+ 0.003 2z−4

1− 1.262 9z−1+ 0.361 4z−2− 0.107 8z−3+ 0.058z−4
,

G22 =
−0.005 5z−1

+ 0.013 0z−2
+ 0.020z−3

+ 0.002z−4

1− 1.262 9z−1+ 0.361 4z−2− 0.107 8z−3+ 0.058z−4
.

10.3. Control of a Heat Exchanger 285

0 20 40 60 80 100 120 140 160 180 200
Minutes

0.5

1

1.5

PR
B

S
In

pu
t

0

0 20 40 60 80 100 120 140 160 180 200
Minutes

0.1

0.3
0.4

T
em

pe
ra

tu
re

 c
ha

ng
e

0.2

0

� 1 � 5

� 1

� 0 � 5

� 0 � 4

� 0 � 3

� 0 � 2

� 0 � 1

FIGURE 3.4. Temperature output and PRBS input signal

0 20 40 60 80 100 120 140 160 180 200
Minutes

0.5

1

1.5

PR
B

S
In

pu
t

0

0 20 40 60 80 100 120 140 160 180 200
Minutes

0.5

1

1.5

L
ev

el
 c

ha
ng

e

0

� 1 � 5

� 1 � 5

� 1

� 1

� 0 � 5

� 0 � 5
0 4

0 3

0 2

0 1

FIGURE 3.5. Level output and PRBS input signal

286 Chapter 10. Laboratory Case Studies

In state space form,G is given as follows.

A =


−0.144 1 −0.359 7 0.339 2 −0.264 6 0

0.085 9 −0.033 9 0.091 2 1.772 0

0 1.350 5 0.811 1 −0.230 0.339 2

0 0 0.845 0.629 8 0

0 0 0 0 0.995 5

 , (3.17)

B =


0.411 6 0.255 3

0.294 6 −0.529 8

0.448 8 −0.643 0

−0.036 3 −0.181 4

−0.996 1 −0.087 8

 , (3.18)

C =

[
0 0 0 0 0 0 0.086 5

0 0 0 0 0 0.030 3 0

]
, (3.19)

D =

[
0 0

0 0

]
. (3.20)

Feedback Control

The model obtained is used to design an LQG controller. To achieve zero steady
state offset in the closed-loop system, integral action is included into the system
by defining two more states as follows.

xI L (k+ 1) = xI L (k)+ Ylevel(k)− Rlevelref(k), (3.21)

xT L(k+ 1) = xT L(k)+ Ytemp(k)− Rtempref(k), (3.22)

whereRlevelref, RtemprefandYlevel, Ytempare temperature and level reference inputs
and outputs signals respectively.

0 10 20 30 40 50 60 70 80
Minutes

Temperature output

Control Effort

Simulated

Simulated
Experimental

Experimental

4.5

6

7

4
3.5

3

V
ol

ts

5.5

6.5

5

FIGURE 3.6. Temperature response and control effort of steam valve due to step change
in both level and temperature reference signals

10.3. Control of a Heat Exchanger 287

The resultant augmented state equation is then given as

A =



1 0 0 0 0 0 0.086 5

0 1 0 0 0 0.030 3 0

0 0 −0.144 1 −0.359 7 0.339 2 −0.264 6 0

0 0 0.085 9 −0.033 9 0.091 2 1.772 0

0 0 0 1.350 5 0.811 1 −0.230 0

0 0 0 0 0.845 0.629 8 0

0 0 0 0 0 0 0.995 5


, (3.23)

B =



0 0

0 0

0.411 6 0.255 3

0.294 6 −0.529 8

0.448 8 −0.643 0

−0.036 3 −0.181 4

−0.996 1 −0.087 8


, (3.24)

C =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0.086 5

0 0 0 0 0 0.030 3 0

 . (3.25)

The performance index is defined as

J =
1

2

N∑
k=1

(
x′(k)Qcx(k)+ u′(k)Rcu(k)

)
, (3.26)

where

Simulated

Experimental

0 10 20 30 40 50 60 70 80
Minutes

Level output

Control Effort

Simulated

4.5

6

7

4
3.5

3

V
ol

ts

5.5

6.5

5

FIGURE 3.7. Level response and control effort of flow valve due to step change in both
level and temperature reference signals

288 Chapter 10. Laboratory Case Studies

0 10 20 30 40 50 60 70 80
Minutes

Temperature output Simulated

Simulated

Experimental

Level output
4.5

6

7

4
3.5

3

V
ol

ts

5.5

6.5

5

FIGURE 3.8. Temperature and level response due to step change in temperature reference
signal

Qc =


1.1 0 0 0

0 1.8 0 0

0 0 9 0

0 0 0 24

 , Rc =

[
0.8 0

0 1

]
. (3.27)

The estimator gain is designed using a process noise covarianceRv and mea-
surement noise covarianceRw with

Rv =

[
0.024 42 0

0 0.0032

]
, Rw =

[
1 0

0 1

]
. (3.28)

The resultant controller is then implemented in real-time using MATLAB. The
results are benchmarked against the ideal case, which is a simulation with the
designed controller controlling the earlier model obtained.

Figures 3.6 and 3.7 show the plots when simultaneous 0.5 V step changes are
applied to both the level and the temperature reference signal whereas Figures 3.8
and 3.9 show the responses to just a temperature reference signal step of 0.5 V.

0 10 20 30 40 50 60 70 80
Minutes

4.5

6

7

4
3.5

3

V
ol

ts

5.5

6.5

5

Flow valve

Simulated

Experimental

Steam valve
Experimental

FIGURE 3.9. Control effort of steam and flow valves due to step change in temperature
reference signal

10.4. Aerospace Resonance Suppression289

10.4 Aerospace Resonance Suppression

This study is not strictly a case study in that the controllers have not been im-
plemented on aircraft to our knowledge. Rather, it is a feasibility study using the
best available linear aircraft models. Simulation results are presented for wing tip
accelerometer control of high order models of a supersonic airplane. Of particu-
lar interest is the suppression of resonances in certain frequency bands. Similar
results have been achieved for high speed civil transport aircraft models. We do
not give the model or design details here, but simply show performance spectral
plots and discuss the various design issues.

Introduction

Aircraft high frequency structural resonance modes can be excited in certain re-
gions of the flight envelope. At the extremes of this envelope, such resonances
lead to wing flutter and catastrophic failure. Because of a degree of uncertainty
in aircraft models, such resonances are known to be extraordinarily difficult to
suppress by active means.

In this study, a combination of a robust controller and an adaptive scheme is
used to control high frequency structural modes for aircraft models of 100th order
or so. The objective is to suppress wing flexure or body bending resonances in the
vicinity of 20 to 80 rad/s by means of aileron, or rudder control. Certainly, it is
imperative that these modes not be excited by naive control actions. The sensors
could be accelerometers on the wing tips or body extremities. Robust controllers
by themselves may not achieve adequate performance over the entire range of
situations of interest, so that there would be a role for adaptive augmentations to
such robust controllers, at least at the extremes such as in emergency dive situa-
tions. This study is a step to explore such a role using realistic high order aircraft
models.

Technical Approach

There are three high order aircraft flying models which correspond to an aircraft
flying at altitudes of 2 000, 10 000, and 30 000 ft flight conditions, respectively.
Spectral analysis indicates that the models exhibit two excessive wing flexure
resonances which are to be suppressed.

We select the aircraft model which corresponds to a flight condition at an alti-
tude of 2 000 ft as the basis for the nominal plant. For this model, there are two
high resonance peaks in its power spectral density function at frequencies 27.5
and 56.4 rad/s respectively. It makes sense then to limit interest to the frequency
band below 60 rad/s.

Since the model is very high in order (107th order) and high frequency distur-
bance responses above 60 rad/s are beyond our interest, it is reasonable to reduce
the plant model order as low as possible consistent with obtaining a good con-

290 Chapter 10. Laboratory Case Studies

troller design. A benefit is to reduce the complexity for the nominal plant con-
troller.

Next we design an LQG controllerK for the reduced order plant, namely the
nominal plantG. Of course, there is a quadratic performance index penalizing the
disturbance responsese.

Now applying the rationale of the direct adaptive-Q schemes of Chapter 6, we
consider further an augmentation of the stabilizing controllerK for G to achieve
an augmented controller, denotedK (Q), which parameterizes all the stabilizing
controllers forG in terms of an arbitrary proper stable transfer functionQ. For
different Q, the controllerK (Q) will have different robustness and performance
properties when applied to the nominal plant. Here we takeQ to be an adaptive
filter.

The adaptive filterQ is included so that in any on-line adaptation to plants
other than the nominal plantG, denotedḠ, the filter Q can be selected so as to
minimize some disturbance response, perhaps a frequency shaped version ofek,
the response penalized in the LQG design.

In this latter case, the adaptive scheme and fixed controller work towards the
same objective in the appropriate frequency bands.

Model Reduction

For a first cut model reduction, we consider the eigenvalue distribution, and re-
move all the modes which are above the frequency 155 rad/s, being far beyond the
frequency band of interest. This reduces the plant to 85th order. Then we discretize
this model at the sampling time 0.03 s, and further reduce the model to 46th order
by deleting those states which correspond to (stable) near pole/zero cancellations
and also remove those states which are outside of the frequency band of interest.
We select this reduced order discrete-time aircraft model as the nominal plantG.
Other methods based on balanced realizations, see Anderson and Moore (1989),
are not used at this stage because of possible numerical problems.

Design of Nominal ControllerK

In order to design a nominal controllerK , we proceed here with a straightforward
LQG controller design for the nominal plantG. Since we aim at reducing the
peaks of the power spectral density function, an LQ index is employed which
weights states associated with the resonance peaks. We define the disturbance
response to bee = [e1 e2 e3]′ wheree1 is the contribution of the states towards
the first resonance mode, namely at 27.5 rad/s,e2 is the contribution towards the
second mode at 56.4 rad/s ande3 is e3 = e1 + e2. By having different weighting
factors on those responses, we design an LQ controller for the nominal plant. Our
selection of the kernel of the cost index chosen is

(
4.5e2

1 + e2
2 + 10e2

3 + 5 500u2
)
.

These are selected by a trial and error approach.
For the Kalman filter design, we select a stochastic disturbance input to the

plant model which excites the resonances, details are omitted.

10.4. Aerospace Resonance Suppression291

Frequency Shaping for the Disturbance Response

Since the disturbance responsee for the LQ design has significant energy over
a wide frequency range, and yet our concern is only with its energy in a narrow
frequency range, it may appear natural to pass it through a frequency shaping
filter so as to focus mainly on the responses within the frequency band of inter-
est. However, with a negligible weighting outside the frequency band of interest,
adaptation to minimize the energy of the frequency shapede may excite reso-
nances outside this frequency band and sacrifice performance. Here we exploit
the Kalman filter in the controller design to achieve a filtered disturbance response
achieved by replacing states by their state estimates.

Of course, anH∞ design approach forK is also possible, and in our experience
is more direct, but it obscures to some extent the useful engineering insight as to
how the controller is achieving its objectives.

Frequency Shaping for the Residuals

The Kalman filter residualsr and adaptiveQ filter outputs are filtered in an adap-
tive Q scheme as discussed in Chapter 6. It may seem that these filters are as high
order as the nominal plant. However, for our specific LQG design, there results a
filter which can be reduced to as low as 4th order by just deleting unobservable
states.

Order of Q Selection

The order of the adaptive controllerQ directly affects the complexity of the adap-
tive scheme. The number of the coefficients inQ determine the order of the on-
line least squares parameter updating scheme. Another consideration to be kept
in mind is the stability ofQ, because the closed-loop system is stable in the case
of the nominal plantG only whenQ is stable. With finite impulse response (FIR)
Q, the stability ofQ is trivially satisfied with bounded gains, and there is a con-
sequent simplification of the adaptive scheme. In our simulations, a 4th order FIR
model ofQ is employed, there being diminishing returns from increasing the or-
der. With different sampling times, a different order could be more appropriate.

It is also possible and in practice reasonable to include a fixedprefilter Pr

in the adaptive-Q loop to limit the frequency band of adaptive feedback signals
and avoid exciting those frequency modes which may destabilize the closed-loop
system. This is particularly important when there are high frequency unmodeled
dynamics. It is clear that the inclusion of any stable prefilter in the adaptive-Q
loop will not alter the optimization task, but only change the space of adaptive-Q
action. It could well make sense to incorporate the prefilterPr into the state esti-
mator, so that its output corresponds to a subset of the states. For example, in the
case of a resonance or flutter suppression, the resonance or flutter state estimate
could well be appropriate as an input to the adaptive-Q filter.

292 Chapter 10. Laboratory Case Studies

Three Flight Conditions

As mentioned above, we have defined a nominal plantG and designed a direct
adaptive-Q scheme along the lines described in Chapter 6. The performance of in-
terest is chosen as the peak of the power spectral density function. The simulation
results when applied in a number of situations are reported to see its robustness
and performance over a range of uncertainties and disturbances.

Nominal Condition

First, we apply to the nominal (reduced order) plant modelG the adaptive-Q
scheme based on the LQG controllerK . The power spectral density function of
the output versus noise is shown in Figure 4.1. The response indicated by (a) is
that of the closed-loop scheme with the off-line designed robust linear controller,
and the response indicated by (b) is that of the direct adaptive-Q scheme. From
the figure it is clear that the adaptive scheme improves the performance, namely
reduces the peaks of the power spectral density function of the output from the
noise by approximately 30%, at the expense of boosting higher frequency modes.
This improvement is achieved after the nominal controller has reduced the peaks
by an order of magnitude.

Flight at 2 000 ft

As mentioned before, the nominal plant is a reduced order plant based on the
aircraft model 2 000, namely the model corresponding to the flight condition at
altitude of 2 000 ft. When we directly employ the adaptive scheme for the nom-
inal plant to the full order model, all the high frequency resonances are acti-
vated and appear in the adaptive-Q loop. Recall that we can insert a prefilter in
the adaptive-Q loop to limit the feedback of the residuals in only the frequency
bands of interest and avoid exciting high frequency unmodeled dynamics. With a
prefilter included, the comparison between the adaptive scheme and the closed-
loop responses for the model 2 000, not shown here, tells us that performance is
marginally improved by the adaptive scheme at the first resonance peak, and kept
the same as that of the nonadaptive but robust scheme at high frequencies above

(a) Robust controller

(b)

0 20 40 60 100 120
Frequency (Rads/sec)

20

60

10

0

Po
w

er
 S

pe
ct

ra
l D

en
si

ty

80

50

40

30
Adaptive-Q scheme

FIGURE 4.1. Comparative performance at 2 000 ft

10.4. Aerospace Resonance Suppression293

60 rad/s. The prefilter employed in the adaptive scheme is a 16th order low pass
filter.

Flight at 10 000 ft

The nominal plant is now replaced by a different plant, viz. model 10 000, which
corresponds to the flight condition at an altitude of 10 000 ft. The nominal con-
troller K , and the adaptive-Q scheme with prefilter are here taken to be the same
as for the model 2 000. The performance of the adaptive control scheme is shown
in Figure 4.2 as compared to that for the nonadaptive case. The adaptive scheme
improves the performance of the closed-loop systems in this case but the improve-
ment is very limited.

(a) Robust controller

(b)

0 20 40 60 100 120
Frequency (Rads/sec)

20

60

10

0

Po
w

er
 S

pe
ct

ra
l D

en
si

ty

80

50

40

30
Adaptive-Q scheme

FIGURE 4.2. Comparative performance at 10 000 ft

Flight at 30 000 ft

The nominal plant is here replaced by a different plant again, viz. model 30 000,
which corresponds to the flight condition at altitude of 30 000 ft. Again the nom-
inal controllerK and the adaptive scheme setup are unchanged. In this case the
adaptive scheme does not deliver improvement which assures us of the quality of
the robust design.

Remarks.

1. The off-line LQG controller for the nominal plantG is to us unexpectedly
robust for the three plants: model 2 000, model 10 000 and 30 000. In fact
the robustness-performance trade off is such that the potential for improve-
ment via added adaptive loops can not be dramatic. On the other hand,
should the controller not be suitably robust, performance enhancement by
adaptive techniques could be futile. Furthermore, should there be a dra-
matic improvement due to the adaptive-Q loop, it would be important to
question whether there should be an improved robust design so as to reduce
this improvement to a more appropriate level.

294 Chapter 10. Laboratory Case Studies

2. The simulation results for the adaptive scheme are encouraging in that they
demonstrate that resonance suppression can occur based on on-line process-
ing. The adaptive results do not represent a dramatic improvement over an
off-line robust LQG design, although a more dramatic improvement is not
precluded for other flight conditions, or variations on the adaptive scheme.
Our first objective has been a conservative one, rather than to achieve spec-
tacular results which may be constructed as “lucky”, as in earlier flutter
suppression studies Moore, Hotz and Gangsaas (1982). It appears that our
conservative objectives have been achieved.

3. With increases to the gain on the filtered disturbance response, or without a
prefilter in the adaptive-Q loop to limit the frequency band of residuals fed
back through theQ loop, the adaptive scheme can be made to destabilize.
This is expected since there can only be local stability results in the presence
of significant unmodeled dynamics, especially at high frequency.

4. The algorithm as studied in the simulation is impractical to implement be-
cause of the high order. Essentially the same results are achieved working
with reduced order filters so as to achieve a more practical design.

5. In performing the simulations, the first 1 000 iterations are run with the only
controller beingK . During this period the least squares covariance matrix
Pk is being updated. Then the loop is closed with zero initial condition on
theQ(z−1). After a further 100 iterations the adaptiveQ(z−1) has virtually
“converged”. For 10 000 iterations, a power spectral density measurement is
taken. No attempt has been made at this stage to track time-varying plants.

6. Our approach has been applied to models of completely different aircraft
with different resonance suppression problems, namely, body bending res-
onances rather than wing flexure resonances. Similar results seem to be
achieved. To illustrate, results for two flight conditions of a transport air-
craft model are presented in Figure 4.3, Figure 4.4. Here the open-loop
resonances are shown since they are merely a factor of three above those
under active control.

Flutter Suppression

In order to illustrate that dramatic performance improvement can be achieved in
an adaptive-Q approach, we present simulation results from Moore, Hotz and
Gangsaas (1982). The unstable flutter results from a wing bending mode and tor-
sion mode coming together at the flutter frequency and one mode becoming un-
stable. This will happen to any wing at sufficiently high speed, termed the flutter
speed.

In this study of a 65th order flexible wing aircraft model, the adaptive-Q filter is
driven from the flutter state estimate. Indirect adaptive-Q techniques are applied.

10.4. Aerospace Resonance Suppression295

0 10 20 30 60 70
Frequency (Rads/sec)

2

7

1

0

Po
w

er
 S

pe
ct

ra
l D

en
si

ty

50

5

4

3

6

40

Open-loop

Robust Controller

Adaptive-Q scheme

(

� 10
� 5

)

FIGURE 4.3. Comparisons for nominal model

0 10 20 30 60 70
Frequency (Rads/sec)

4

16

2
0

Po
w

er
 S

pe
ct

ra
l D

en
si

ty

50

10
8
6

14

40

Open-loop
Robust Controller

12

Adaptive-Q scheme

(

� 10

� 5
)

FIGURE 4.4. Comparisons for a different flight condition than for the nominal case

In particular, a second order model uncertainty is identified looking at the control
input (wing tip aileron) prior to its entry to the estimator and the flutter state
estimate (from wing tip accelerometers). An adaptive-Q filter is applied to assign
the closed-loop poles to stable locations at the flutter frequency. The degree of
assigned stability is not set to be “too” large so as to avoid excessive control
actions which could excite lightly damped modes. Figure 4.5 shows that a flutter
instability is controlled effectively in a few cycles, before the wing “falls off”.
Indeed there is demonstrated in the simulations “180◦ phase margin” in a region
of loop gain greater than unity!

Main Points of Section

The simulation results for resonance suppression at this stage are encouraging in
that the off-line designed fixed LQG controller gives robust performance, and the
adaptive-Q scheme is seen to only improve the performance further. Of course
some engineering is required to achieve robust LQG designs, associated pre-
filters, and adjustment law gains to achieve such success. In some situations the
adaptive-Q methodology can achieve dramatic results by achieving “180◦ phase
margins”, as in the case of flutter suppression.

296 Chapter 10. Laboratory Case Studies

0 0.5 1.5 2 3 3.5
Time (seconds)

6

Fl
ut

te
r

m
od

e
di

sp
la

ce
m

en
t

2.5

4

2

0

1

Nominal LQG controller

� 2

� 4

� 6

Adaptive-Q controller

FIGURE 4.5. Flutter suppression via indirect adaptive-Q pole assignment

10.5 Notes and References

Resonance Suppression

Our first studies in this topic are reported in Moore, Hotz and Gangsaas (1982)
where an indirect adaptive-Q approach is used to suppress catastrophic wing flut-
ter. Indeed, this study provided many of the insights used subsequently for devel-
oping the theory of the adaptive-Q approach. TheQ filter in this study achieved
a weakened form of minimum variance control. Later studies sought to achieve
adaptive-Q filters based on LQG and pole assignment indices(Chakravarty and
Moore, 1985; Chakravarty and Moore, 1986). Subsequently, less ambitious stud-
ies in resonance suppression of lightly damped modes using direct adaptive-Q
techniques were employed, thereby checking the validity of this approach, see
also Moore, Xia and Xia (1989). Other resonance suppression studies have helped
develop our understanding, namely Irlicht, Mareels and Moore (1993) and Telford
and Moore (1990).

APPENDIX A

Linear Algebra

This appendix summarizes the key results of matrix theory and linear algebra
results used in this text. For more complete treatments, see Barnett (1971) and
Bellman (1970).

A.1 Matrices and Vectors

Let R andC denote the fields of real numbers and complex numbers, respectively.
The set of integers is denotedN = {1, 2, . . . }.

An n × m matrix is an array ofn rows andm columns of elementsxi j for
i = 1, . . . , n, j = 1, . . . ,m as

X =


x11 x12 . . . x1m

x12 x22 . . . x2m

...
...

. . .
...

xn1 xn2 . . . xnm

 = (xi j), x =


x1

x2
...

xn

 = (xi).

The matrix is termedsquarewhenn = m. A columnn-vectorx is ann×1 matrix.
The set of alln-vectors (row or column) with real arbitrary entries, denotedR

n, is
calledn-space. With complex entries, the set is denotedC

n and is called complex
n-space. The termscalar denotes the elements ofR, or C. The set of real or
complexn×m matrices is denoted byRn×m or C

n×m, respectively. Thetranspose
of ann × m matrix X, denotedX′, is them× n matrix X′ = (x j i). WhenX =
X′, the square matrix is termedsymmetric. When X = −X′, then the matrix is
skew symmetric. Let us denote the complex conjugate transpose of a matrixX
as X∗ = X̄′. Then matricesX with X = X∗ are termedHermitian and with
X = −X∗ are termedskew Hermitian. Thedirect sum, of two square matrices
X,Y, denotedX

.
+ Y, is

[
X 0
0 Y

]
where 0 denotes a zero matrix of appropriate

dimensions consisting of zero elements.

298 Appendix A. Linear Algebra

A.2 Addition and Multiplication of Matrices

Consider matricesX,Y ∈ R
n×m or C

n×m, and scalarsk, ` ∈ R or C. ThenZ =
kX + `Y is defined byzi j = kxi j + `yi j . Thus X + Y = Y + X and addition
is commutative. Also,Z = XY is defined forX an n × p matrix andY an
p× m matrix by Z = (zi j), zi j =

∑p
k=1 xik yk j , and is ann × m matrix. Thus

W = XY Z = (XY)Z = X(Y Z) and multiplication is associative. Note that
whenXY = Y X, which is not always the case, we say thatX,Y are commuting
matrices.

When X′X = I and X is real thenX is termed anorthogonalmatrix and
whenX∗X = I with X complex it is termed aunitary matrix. Note real vectors
x, y areorthogonalif x′y = 0 and complex vectors are orthogonal ifx∗y = 0.
A permutation matrixπ has exactly one unity element in each row and column
and zeros elsewhere. Every permutation matrixπ is orthogonal. Ann× n square
matrix X with only diagonal elements and all other elements zero is termed a
diagonalmatrix and is writtenX = diag(x11, x22 . . . , xnn). Whenxi i = 1 for
all i andxi j = 0 for i 6= j , thenX is termed anidentitymatrix, and is denoted
In, or just I . Thus for ann ×m matrix Y, thenY Im = Y = InY. A signmatrix
S is a diagonal matrix with diagonal elements+1 or −1. Every sign matrix is
orthogonal.

For X ∈ R
m×n and Y ∈ R

p×r denote byX ⊗ Y the matrix of dimension
mp× rn, a block matrix having asi j th block the matrixxi j Y.

A.3 Determinant and Rank of a Matrix

A recursive definition of the determinant of a squaren × n matrix X, denoted
det(X), is

det(X) =
n∑

j=1

(−1)i+ j xi j det(Xi j),

where det(Xi j) denotes the determinant of the submatrix ofX constructed by
deleting thei th row and thej th column. The determinant of a scalarx is the scalar
x itself. The element(−1)i+ j det(Xi j) is termed thecofactorof xi j . The square
matrix X is said to be asingularmatrix if det(X) = 0, and anonsingularmatrix
otherwise. It can be proved that for square matrices det(XY) = det(X)det(Y).

For X ∈ R
n×p, Y ∈ R

p×n we have det(In+XY) = det(I p+Y X). In particular
with p = 1, for x, y ∈ R

n det(In + XY′) = 1+ Y′X.
Therank of ann×m matrix X, denoted by rk(X) or rank(X), is the maximum

positive integerr such that somer × r submatrix ofX, obtained by deleting rows
and columns is nonsingular. Equivalently, the rank is the maximum number of
linearly independent rows and columns ofX. If r is eitherm or n then X is full
rank. It is readily seen that

rank(X)+ rank(Y)−m ≤ rank(XY) ≤ min(rank(X), rank(Y)).

A.4. Range Space, Kernel and Inverses 299

A.4 Range Space, Kernel and Inverses

For ann×m matrix X, therange spaceor theimage spaceR(X), also denoted
by Im(X), is the set of vectorsXy wherey ranges over the set of allm vectors. Its
dimension is equal to the rank ofX. Thekernelker(X) of X is the set of vectors
z for which Xz= 0. It can be seen that for real matrices,R(X′) is orthogonal to
ker(X), or equivalently, withy1 = X′y for somey and if Xy2 = 0, theny′1y2 = 0.

For a squarenonsingular matrixX, there exists a uniqueinverseof X, denoted
X−1, such thatX−1X = X X−1

= I . The i j th element ofX−1 is given from
det(X)−1

× cofactor ofx j i . Thus (X−1)′ = (X′)−1 and (XY)−1
= Y−1X−1

where the inverses exist. More generally, a unique (Moore-Penrose)pseudo-in-
verseof X, denotedX#, is defined by the characterizing propertiesX#Xy = y
for all y ∈ R(X′) and X#y = 0 for all y ∈ ker(X′). Thus if det(X) 6= 0 then
X#
= X−1, if X = 0, X#

= 0, (X#)# = X, X#X X#
= X#, X X#X = X.

For a nonsingularn× n matrix X, a nonsingularp× p matrix A and ann× p
matrix B, then provided inverses exist, theMatrix Inversion Lemmastates

(I + X B A−1B′)−1X = (X−1
+ B A−1B′)−1

= X − X B(B′X B+ A)−1B′X,

and

(I + X B A−1B′)−1X B A−1
= (X−1

+ B A−1B′)−1B A−1

= X B(B′X B+ A)−1.

A.5 Eigenvalues, Eigenvectors and Trace

For a squaren× n matrix X, thecharacteristic polynomialof X is det(z I − X)
and itsreal or complexzeros are theeigenvaluesof X, denotedλi . The spectrum
spec(X) of X is the set of its eigenvalues. TheCayley-Hamilton Theoremtells
us thatX satisfies its owncharacteristic equationwith det(z I − X) = p(z),
j (X) = 0. For eigenvaluesλi , thenXvi = λi vi for some nonzero real or complex
vectorvi , termed aneigenvector. The real or complex vector space of such vectors
is termed theeigenspace. If λi is not a repeated eigenvalue, thenvi is unique to
within a scalar factor. WhenX is diagonal thenX = diag(λ1, λ2, . . . , λn). Also,
det(X) = 5n

i=1λi so that det(X) = 0, if and only if at least one eigenvalue is
zero. As det(z I − XY) = det(z I − Y X), XY has the same nonzero eigenvalues
asY X.

A symmetric, or Hermitian, matrix has only real eigenvalues, a skew symmet-
ric, or skew-Hermitian, matrix has only imaginary eigenvalues, and an orthogonal,
or unitary matrix has unity magnitude eigenvalues.

The trace of X, denoted tr(X), is the sum
∑n

i=1 xi i =
∑n

i=1 λi . Notice that
tr(X + Y) = tr(X) + tr(Y), and withXY square, then tr(XY) = tr(Y X). Also,

300 Appendix A. Linear Algebra

tr(X′X) =
∑n

i=1
∑n

j=1 x2
i j and tr2(XY) ≤ tr(X′X) tr(Y′Y). A useful identity is

det(eX) = etr(X).

A.6 Similar Matrices

Two n × n matricesX,Y are calledsimilar if there exists a nonsingularT such
that Y = T−1XT. Thus X is similar to X. Also, if X is similar toY, thenY
is similar to X. Moreover, if X is similar toY and if Y is similar to Z, then X
is similar to Z. Indeed, similarity of matrices is anequivalence relation. Similar
matrices have the same eigenvalues.

If for a given X, there exists asimilarity transformation T such that
3 = T−1XT is diagonal, thenX is termed diagonalizable and 3 =

diag(λ1, λ2, . . . , λn) whereλi are the eigenvalues ofX. The columns ofT are
then the eigenvectors ofX. All matrices with distinct eigenvalues are diagonal-
izable, as are orthogonal, symmetric, skew symmetric, unitary, Hermitian, and
skew Hermitian matrices. In fact, ifX is symmetric, it can be diagonalized by
a real orthogonal matrix and when unitary, Hermitian, or skew-Hermitian, it can
be diagonalized by a unitary matrix. IfX is Hermitian andT is any invertible
transformation, then Sylvester’sInertia Theoremasserts thatT∗XT has the same
numberP of positive eigenvalues and the same numberN of negative eigenvalues
asX. The differenceS= P − N is called thesignatureof X, denoted sig(X).

A.7 Positive Definite Matrices and Matrix
Decompositions

With X = X′ and real, thenX is positive definite (positive semidefinite or non-
negative definite)if and only if the scalarx′Xx > 0 (x′Xx ≥ 0) for all nonzero
vectorsx. The notationX > 0 (X ≥ 0) is used. In factX > 0 (X ≥ 0) if and
only if all eigenvalues are positive (nonnegative). IfX = Y Y′ then X ≥ 0 and
Y Y′ > 0 if and only ifY is anm×n matrix withm ≤ n and rkY = m. If Y = Y′,
so thatX = Y2, thenY is unique and is termed the symmetric square root ofX,
denotedX1/2. If X ≥ 0, thenX1/2 exists.

If Y is lower triangular with positive diagonal entries, andY Y′ = X, thenY is
termed aCholesky factorof X. A successive row by row generation of the nonzero
entries ofY is termed aCholesky decomposition. A subsequent step is to form
Y3Y′ = X where3 is diagonal positive definite, andY is lower triangular with
1s on the diagonal. The above decomposition also applies to Hermitian matrices
with the obvious generalizations.

For X a realn × n matrix, then there exists apolar decompositionX = 2P
whereP is positive semidefinite symmetric and2 is orthogonal satisfying2′2 =
22′ = In. While P = (X′X)1/2 is uniquely determined,2 is uniquely deter-
mined only if X is nonsingular.

A.8. Norms of Vectors and Matrices 301

The singular valuesof possibly complex rectangular matricesX, denoted
σi (X), are the positive square roots of the eigenvalues ofX∗X. There exist unitary
matricesU,V such that

V ′XU =



σ1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 σn

.

0 0
...

. . .
...

...
. . .

...

0 0



=: 6.

If unitary U,V yield V ′XU, a diagonal matrix with nonnegative entries, then
the diagonal entries are the singular values ofX. Also, X = V6U ′ is termed a
singular value decomposition(SVD) of X.

Every realm × n matrix A of rank r has a factorizationA = XY by real
m × r and r × n matricesX andY with rk X = rk Y = r . With X ∈ R

m×r

andY ∈ R
r×n, then the pair(X,Y) belong to the product spaceR

m×r
× R

r×n.
If (X,Y), (X1,Y1) ∈ R

m×r
× R

r×n are two full rank factorizations ofA, i.e.
A = XY = X1Y1, then there exists a unique invertibler × r matrix T with
(X,Y) = (X1T−1, T Y1).

For X a realn × n matrix, theQR decompositionis X = 2R where2 is
orthogonal andR is upper triangular (zero elements below the diagonal) with
nonnegative entries on the diagonal. IfX is invertible then2, R are uniquely
determined.

A.8 Norms of Vectors and Matrices

The norm of a vectorx, written ‖x‖, is any positive valued function satisfying
‖x‖ ≥ 0 for all x, with equality if and only ifx = 0, ‖sx‖ = |s| ‖x‖ for any scalar
s, and‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y. TheEuclidean normor the 2-norm is
‖x‖ = (

∑n
i=1 x2

i)
1/2, and satisfies theSchwartz inequality

∣∣x′y∣∣ ≤ ‖x‖ ‖y‖, with
equality if and only ify = sx for some scalars. Other norms are‖x‖∞ = max|xi |

and‖x‖1 =
∑n

i=1 |xi |.
The induced norm of a matrixX with respect to a given vector norm is de-

fined as‖X‖ = max‖x‖=1 ‖Xx‖. Corresponding to the Euclidean norm is the

2-norm‖X‖2 = λ
1/2
max(X′X), being the largest singular value ofX. Correspond-

ing to the vector norms‖x‖∞ , ‖x‖1 there are induced matrix norms‖X‖∞ =

302 Appendix A. Linear Algebra

maxi
∑n

j=1

∣∣xi j
∣∣ and‖X‖1 = maxj

∑n
i=1

∣∣xi j
∣∣. TheFrobenius normis ‖X‖F =

tr1/2(X′X). The subscriptF is deleted when it is clear that the Frobenius norm
is intended. For all induced norms and also for the Frobenius norm‖Xx‖ ≤
‖X‖ ‖x‖. Also, ‖X + Y‖ ≤ ‖X‖ + ‖Y‖ and ‖XY‖ ≤ ‖X‖ ‖Y‖. Note that
tr(XY) ≤ ‖X‖F ‖Y‖F . The condition numberof a nonsingular matrixX rela-
tive to a norm‖ · ‖ is ‖X‖ ‖X−1‖.

A.9 Differentiation and Integration

SupposeX is a matrix valued function of the scalar variablet . ThenX(t) is called
differentiable if each entryxi j (t) is differentiable. Also,

d X

dt
=

(
dxi j

dt

)
,

d

dt
(XY) =

d X

dt
Y + X

dY

dt
,

d

dt
et X
= Xet X

= et X X.

Also,
∫

Xdt = (
∫

xi j dt). Now withφ a scalar function of a matrixX, then

∂φ

∂X
= the matrix withi j th entry

∂φ

∂xi j
.

If 8 is a matrix function of a matrixX, then

∂8

∂X
= a block matrix withi j th block

∂φi j

∂X
.

The case whenX,8 are vectors is just a specialization of the above definitions. If
X is square(n× n) and nonsingular,(∂/∂X)(tr(W X−1)) = −X−1W X−1. Also
log det(X) ≤ tr X − n and with equality if and only ifX = In. Furthermore, ifX
is a function of time, then(d/dt)X−1(t) = −X−1(d X/dt)X−1, which follows
from differentiatingX X−1

= I .
If P = P′, (∂/∂x)(x′Px) = 2Px.

A.10 Lemma of Lyapunov

If A, B,C are knownn× n,m×m andn×m matrices, then the linear equation
AX+ X B+ C = 0, has a unique solution for ann×m matrix X if and only if
λi (A)+ λ j (B) 6= 0 for anyi and j . In fact [I ⊗ A+ B′⊗ I] vec(X) = − vec(C)
and the eigenvalues of [I ⊗ A+ B′ ⊗ I] are precisely given byλi (A) + λ j (B).
Here vec(X) stands for the column vector obtained from the matrixX by stacking
the columns ofX from left to right under one another in the vector vec(X). If
C > 0 andA = B′, theLemma of Lyapunovfor AX + X B+ C = 0 states that
X = X′ > 0 if and only if all eigenvalues ofB have negative real parts.

The linear equationX − AX B= C, or equivalently, [In2 − B′ ⊗ A] vec(X) =
vec(C) has a unique solution if and only ifλi (A)λ j (B) 6= 1 for anyi, j . If A = B′

A.11. Vector Spaces and Subspaces303

and|λi (A)| < 1 for all i , then forX − AX B= C, theLemma of Lyapunovstates
that X = X′ > 0 for all C = C′ > 0.

Actually, the conditionC > 0 in the lemma can be relaxed to requiring for
any D such thatDD′ = C that(A, D) be completely controllable, or(D, A) be
completely detectable, see definitions Appendix B.

A.11 Vector Spaces and Subspaces

Let us restrict to the real fieldR (or complex fieldC), and recall the spacesRn

(or C
n). These are in fact special cases of vector spaces overR (or C) with the

vector additions and scalar multiplications properties for its elements spelled out
in Section A.2. They are denotedreal (or complex) vector spaces. Any space over
an arbitrary fieldK which has the same properties is in fact avectorspaceV . For
example, the set of allm× n matrices with entries in the field asR (or C), is a
vector space. This space is denoted byR

m×n (or C
m×n).

A subspaceW of V is a vector space which is a subset of the vector spaceV .
The set of all linear combinations of vectors from a nonempty subsetSof V , de-
notedL(S), is a subspace (the smallest such) ofV containingS. The spaceL(S)
is termed the subspacespannedor generatedby S. With the empty set denotedφ,
thenL(φ) = {0}. The rows (columns) of a matrixX viewed as row (column) vec-
tors span what is termed the row (column) space ofX denoted here by [X]r ([X]c).
Of course,R(X′) = [X]r andR(X) = [X]c.

The orthogonal complement of a subspaceW of V is denoted asW⊥. It is a
subspace ofV , consisting of all vectorsv ∈ V such thatv′w = 0 for allw ∈ W.
For a matrixX we haveR(X′)⊥ = ker(X). For two subspacesW,U ∈ V we
denote byW ⊕ U the space spanned by any combination ofW andU , i.e. z ∈
W ⊕U implies thatz= w + u for somew ∈ W andu ∈ U . For a square matrix
X, dimensionn× n we have that ker(X)⊥ ⊕R(X) = R

n.

A.12 Basis and Dimension

A vector spaceV is n-dimensional(dim V = n) if there exists linearly indepen-
dent vectors, thebasis vectors, {e1, e2, . . . ,en}which spanV . A basis for a vector
space is nonunique, yet every basis ofV has the same numbern of elements. A
subspaceW of V has the property dimW ≤ n, and if dimW = n, thenW = V .
The dimension of the row (column) space of a matrixX is therow (column) rank
of X. The row and column ranks are equal and are in fact the rank ofX. The
coordinates of a vectorx in V with respect to a basis are the (unique) tuple of co-
efficients of a linear combination of the basis vectors that generatex. Thus with
x =

∑
i ai ei , thena1,a2, . . . ,an are the coordinates.

For a squaren×n matrix X overR we have that dim ker(X)+dimR(X) = n.

304 Appendix A. Linear Algebra

A.13 Mappings and Linear Mappings

For A, B arbitrary sets, suppose that for eacha ∈ A there is assigned a single
element f (a) of B. The collection f of such is called afunction, or mapand is
denotedf : A → B. Thedomainof the mapping isA, thecodomainis B. For
subsetsAs, Bs, of A, B then f (As) = { f (a) : a ∈ As} is the imageof As, and
f −1(Bs) = {a ∈ A : f (a) ∈ Bs} is thepreimage or fiberof Bs. If Bs = {b} is a
singleton set we also writef −1(b) instead of f −1({b}). Also, f (A) is theimage
or rangeof f . The notationx 7→ f (x) is used to denote the imagef (x) of an
arbitrary elementx ∈ A.

The composition of mappingsf : A → B andg : B → C, denotedgof , is
an associative operation. The identity map idA : A → A is the map defined by
a 7→ a for all a ∈ A.

A mapping f : A → B is one-to-oneor injective if different elements ofA
have distinct images, i.e. ifa1 6= a2 ⇒ f (a1) 6= f (a2). The mapping isontoor
surjectiveif every b ∈ B is the image of at least onea ∈ A. A bijectivemapping
is one-to-one and onto (surjective and injective). Iff : A→ B andg : B → A
are maps withg ◦ f = idA, then f is injective andg is surjective.

For vector spacesV,W overR or C (denotedK) a mappingF : V → W is a
linear mappingif F(v + w) = F(v)+ F(w) for anyv,w ∈ V , and asF(kv) =
kF(v) for anyk ∈ K and anyv ∈ V . Of courseF(0) = 0. A linear mapping is
called anisomorphismif it is bijective. The vector spacesV,W areisomorphicif
there is an isomorphism ofV onto W. A linear mappingF : V → U is called
singular if it is not an isomorphism.

For F : V → U , a linear mapping, theimageof F is the set Im(F) = {u ∈ U |
F(v) = u for somev ∈ V}. Thekernelof F is ker(F) = {u ∈ V | F(u) = 0}. In
fact for finite dimensional spaces dimV = dim ker(F)+ dim Im(F).

Linear operators or transformationsare linear mappingsT : V → V , i.e. from
V to itself.

The dual vector spaceV∗ of a K-vector spaceV is defined as theK-vector
space of allK-linear mapsλ : V → K. It is denoted byV∗ = Hom(V,K).

APPENDIX B

Dynamical Systems

This appendix summarizes the key results of both linear and nonlinear dynamical
systems theory required as a background in this text. For more complete treat-
ments, see Irwin (1980), Isidori (1989), Kailath (1980) and Sontag (1990).

B.1 Linear Dynamical Systems

State equations

Discrete-time linear, finite-dimensional, dynamical systems fork = k0, k0+1, . . .
with initial statexk0 ∈ R

n are described by

xk+1 = Akxk + Bkuk, yk = Ckxk + Dkuk, (1.1)

wherexk ∈ R
n, uk ∈ R

m, yk ∈ R
p andAk, Bk,Ck, Dk are matrices of appropri-

ate dimension, possibly time varying. The solution fork > k0 is,

xk = 8k,k0xk0 +

k−1∑
i=k0

8k−1,i Bi ui .

where8k0,k0 = I ; 8k+1,k0 = Ak8k,k0 or 8k,k0 = Ak−1 . . . Ak0 for k > k0. In
the time invariant case8k,k0 = Ak−k0, k ≥ k0.

A discrete-time, time-invariant system (1.1) is calledstable, if the eigenval-
ues of A are all located in the open unit disc{z ∈ C | |z| < 1}. This implies
limk→∞ Ak

= 0.

Transfer functions

The Z-transformof a sequence{hk | k ∈ N0} is the formal power series inz−1

H(z) =
∞∑

k=0

hkz−k.

306 Appendix B. Dynamical Systems

In discrete-time, theZ-transformyields thetransfer functionfor the system (1.1)

H(z) = C(z I − A)−1B+ D,

in terms of theZ-transform variablez. Forx0 = 0, thenY(z) = (C(z I−A)−1B+
D)U (z) expresses the relation between theZ-transforms of the sequences{uk}

and{yk}. The transfer functionz−1 corresponds to a unit delay.
A (matrix) transfer function for the system (1.1) with a state space realization

given via the matrices(A, B,C, D) is represented as

H :

 A B

C D

 .
Continuous-time linear systems

In continuous time we have

ẋ :=
dx

dt
= A(t)x + B(t)u,

y = C(t)x + D(t)u.
(1.2)

The transition matrix8(t, t0) satisfies8(t0, t0) = I and8̇(t, t0) = A(t)8(t, t0).
It has the semigroup property that8(t2, t1)8(t1, t0) = 8(t2, t0). The solution of
(1.2) starting at timet0 in x0 is given by:

x(t) = 8(t, t0)x0+

∫ t

t0
8(t, τ)B(τ)u(τ)dτ.

In the time invariant caseA(t) = A, we have8(t, t0) = eA(t−t0). A time invariant
linear system (1.2) is called stable if the real part of the eigenvalues ofA are
negative. This implies limt→∞ eAt

= 0.

Controllability and Stabilizability

In the time-invariant, continuous-time, case, the pair(A, B) with A ∈ R
n×n and

B ∈ R
n×m is termedcompletely controllable(or more simplycontrollable) if one

of the following equivalent conditions holds:

• There exists a controlu taking ẋ = Ax + Bu from arbitrary statex0 to
another arbitrary statex1, in finite time.

• rank(B, AB, . . . , An−1B) = n.

• (λI − A, B) has full rank for all (complex)λ.

• Wc(T) =
∫ T

0 et AB B′et A′dt > 0 for all T > 0.

B.1. Linear Dynamical Systems 307

• AX = X A andX B= 0 impliesX = 0.

• w′et AB = 0 for all t impliesw = 0.

• w′Ai B = 0 for all i impliesw = 0.

• There exists aK of appropriate dimension such thatA+ BK has arbitrary
eigenvalues.

• There exists no coordinate basis change such that

A =

[
A11 A12

0 A22

]
, B =

[
B1

0

]
.

The symmetric matrixWc(T) =
∫ T

0 et AB B′et A′dt > 0 is thecontrollability
Gramian, associated witḣx = Ax+ Bu. It can be found as the solution at time
T of Ẇc(t) = AWc(t) + Wc(t)A′ + B B′ initialized by Wc(0) = 0. If A has
only eigenvalues with negative real part, in short Reλ(A) < 0, thenWc(∞) =

limt→∞Wc(t) exists.
In the time-varying case, only the first definition of controllability applies. It is

equivalent to requiring that the Gramian

Wc(t, T) =
∫ t+T

t
8(t + T, τ)B(τ)B′(τ)8′(t + T, τ)dτ

be positive definite for allt and someT . The concept ofuniform complete control-
lability requires thatWc(t, T) be uniformly bounded above and below from zero
for all t and someT > 0. This condition ensures that a bounded energy control
can take an arbitrary state vectorx to zero in an interval [t, t + T] for arbitraryt .
A uniformly controllable system has the property that a boundedK (t) exists such
that ẋ = (A(t)+ B(t)K (t))x has an arbitrary degree of (exponential) stability.

The discrete-time controllability conditions, Gramians, etcetera are analogous
to the continuous-time definitions and results. In particular, theN-controllability
Gramian of a discrete-time system is defined by

W(N)
c :=

N∑
k=0

Ak B B′(A′)k,

for N ∈ N. The pair(A, B) is controllable if and only ifW(N)
c is positive definite

for all N ≥ n−1. If A has all its eigenvalues in the open unit disc{z ∈ C | |z|<1},
in short|λ(A)| < 1, then

Wc :=
∞∑

k=0

Ak B B′(A′)k

exists and is positive definite if and only if(A, B) is controllable.

308 Appendix B. Dynamical Systems

Observability and Detectability

The pair(A,C) has observability/detectability properties according to the con-
trollability/stabilizability properties of the pair(A′,C′); likewise for the time-
varying and uniform observability cases. The observability Gramians are known
as duals of the controllability Gramians, e.g. in the continuous-time case

Wo(T) :=
∫ T

o
et A′C′Cet Adt, Wo :=

∫
∞

0
et A′C′Cet Adt,

and in the discrete-time case,

W(N)
o :=

N∑
k=0

(A′)kC′C Ak, Wo :=
∞∑

k=0

(A′)kC′C Ak.

Minimality

The state space systems of (1.1) and (1.2) denoted by the triple(A, B,C) are
termedminimal realizations, in the time-invariant case, when(A, B) is com-
pletely controllable and(A,C) is completely observable. TheMcMillan degree
of the transfer functionsH(s) = C(s I − A)−1B or H(z) = C(z I − A)−1B is
the state space dimension of a minimal realization.Kalman’s Realization The-
orem asserts that anyp × m rational matrix functionH(s) with H(∞) = 0
(that is H(s) is strictly proper) has a minimal realization(A, B,C) such that
H(s) = C (s I − A)−1 B holds. Moreover, given two minimal realizations de-
noted(A1, B1,C1) and(A2, B2,C2). then there always exists a unique nonsingu-
lar transformation matrixT such thatT A1T−1

= A2, T B1 = B2, C1T−1
= C2.

All minimal realizations of a transfer function have the same dimension.

Balanced Realizations

For a stable system(A, B,C), a realization in which the Gramians are equal and
diagonal as

Wc = Wo = diag(σ1, . . . , σn)

is termed adiagonally balancedrealization. For a minimal realization(A, B,C),
thesingular valuesσi are all positive. For a nonminimal realization of McMillan
degreem < n, thenσm+i = 0 for i > 0. Corresponding definitions and results
apply for Gramians defined on finite intervalsT . Also, when the controllability
and observability Gramians are equal but not necessarily diagonal, the realizations
are termedbalanced. Such realizations are unique only to within orthogonal basis
transformations.

Balanced truncationis where a system(A, B,C) with A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n is approximated by anr th order system withr < n as follows: As-
suming an orderingσi > σi+1, for all i the last(n − r) rows of (A, B) and last

B.2. Norms, Spaces and Stability Concepts309

(n− r) columns of
[

A
C

]
of a balanced realization are set to zero to form a reduced

r th order realization(Ar , Br ,Cr) ∈ R
r×r
×R

r×m
×R

p×r . A theorem of Pernebo
and Silverman states that if(A, B,C) is balanced and minimal, andσr > σr+1,
then the reducedr th order realization(Ar , Br ,Cr) is also balanced and minimal.

B.2 Norms, Spaces and Stability Concepts

The key stability concept for our purposes is that of bounded-input stability(BIBO
stability). In the case of linear systems this is equivalent toasymptotic stabilityof
the state space descriptions.

To be precise, and focusing on discrete-time signals and systems, we work first
with signalswhich are simply functions which map the integersZ to R

n. The set
of signals isS= { f : Z→ R

n}. The size of a signal is measured by some norm.
Let us consider a 2-norm over an infinite horizon as

‖ f ‖2 =

(∞∑
−∞

‖ fk‖
2
)1/2

,

where‖x‖ =
√

x′x is the Euclidean norm.
TheLebesque 2-spaceis defined by

`2 (−∞,∞) =
{

f ∈ S : ‖ f ‖2 <∞
}
.

Variations`2 (0,∞), `2 (−∞, 0) are defined similarly. When the time interval is
understood, then the space is referred to as the`2 space.

The spacè2 is aHilbert spacewith inner product

〈 f, g〉 =
∞∑
−∞

g′k fk,

satisfying|〈 f, g〉| ≤ ‖ f ‖2 ‖h‖2 and‖ f ‖22 = 〈 f, f 〉.
In the Z-domain, the 2-norm is, which follows from Parseval’s Theorem

‖ f (z)‖2 =

{
sup
ε>0

1

2π

∮
|z|=1+ε

f −(z) f (z)
dz

z

}1/2

,

where f −(z) = f ′(z−1). TheHardy 2-spaceH2 is defined as

H2 =
{

f (z) is analytic in |z| > 1 and ‖ f ‖2 <∞
}
.

For any f ∈ H2, the boundary function

fb(z)|z|=1 = lim
ε→0

f (z)||z|=1+ε

310 Appendix B. Dynamical Systems

exists for almost all|z| = 1 (Fatou’s theorem) and‖ fb‖2 = ‖ f ‖2 so that

‖ f ‖2 =

{
1

2π

∮
|z|=1

f −b (z) fb(z)
dz

z

}1/2

.

The mappingf ∈ H2 to fb ∈ `2 is linear, injective and norm preserving.
Consider now linear time-invariant systems in discrete-time with matrix trans-

fer functionH(z) : `2 7→ `2.
The spacè∞ is defined from

`∞ = {H : ‖H‖∞ <∞} ,

where thè ∞ norm is defined from

‖H‖∞ = sup
|z|=1

σmax(H(z)) .

Hereσmax(·) denotes the maximum singular value.

Stable Systems

Stable systemsH(z) are such thatH(z)w(z) ∈ H2 wheneverw(z) ∈ H2. A
necessary condition is thatH(z) is analytic in|z| > 1.

The H∞ space is defined from

H∞ =
{
H(z) : H(z) is analytic in |z| > 1 and ‖H‖2−gn <∞

}
,

where the norm is anH∞ norm

‖H‖2−gn = sup
ε>0

sup
|z|=1+ε

σmax(H(z)) ,

being but a mild version of thè∞ norm, frequently termed anH∞ norm and
written‖H‖∞.

Now H(z) defines a stable system if and only ifH(z) ∈ H∞.
In the case thatH(z) ∈ H∞ is rational then we use the notationH(z) ∈ RH∞.

H(z) ∈ RH∞ if and only if H(z) has no pole in|z| ≥ 1.
Corresponding definitions and results apply as before for continuous-time sig-

nals and systems with
∑
∞

−∞
and

∮
|z|=1 is replaced by

∫
∞

−∞
and

∫
s= jω. Also f −

replaced byf ∗ where f ∗(s) = f ′(s∗) wheres∗ is the conjugate ofs. There are
additional technical issues concerning signals which differ only on (Lebesque)
measure zero. Just to state explicitly one result, we have thatH(s) ∈ RH∞ if and
only if H(s) has no pole inRe(s) ≥ 0.

B.3 Nonlinear Systems Stability

We first summarize the basic results from stability theory for ordinary differential
equations onRn, and subsequently consider corresponding results for difference
equations.

B.3. Nonlinear Systems Stability 311

Consider

ẋ = f (x), x ∈ R
n. (3.1)

Let f be a smooth vector field onRn. We assume thatf (0) = 0, so thatx = 0 is
an equilibrium point of (3.1). LetD ⊂ R

n be a compact neighborhood of 0 inR
n.

A Lyapunov functionof (3.1) onD is a smooth functionV : D → R having
the properties

1. V(0) = 0, V(x) > 0 for all x 6= 0 in D.

2. For any solutionx(t) of (3.1) withx(0) ∈ D,

V̇(x(t)) =
d

dt
V(x(t)) ≤ 0. (3.2)

Also, V : D→ R is called astrict Lyapunov functionif the strict inequality holds

V̇(x(t)) =
d

dt
V(x(t)) < 0 for x(t) ∈ D − {0}. (3.3)

Theorem 3.1 (Stability). If there exists a Lyapunov functionV : D→ R defined
on some compact neighborhood of0 ∈ R

n, thenx = 0 is a stable equilibrium
point.

Theorem 3.2 (Asymptotic Stability). If there exists a strict Lyapunov function
V : D → R defined on some compact neighborhood of0 ∈ R

n, thenx = 0 is an
asymptotically stable equilibrium point.

Theorem 3.3 (Global Asymptotic Stability). If there exists a proper mapV :
R

n
→ R which is a strict Lyapunov function withD = R

n, thenx = 0 is globally
asymptotically stable.

Here properness ofV : R
n
→ R is equivalent toV(x)→∞ for ‖x‖ → ∞.

Theorem 3.4 (Exponential Asymptotic Stability). If in Theorem 3.2 one has
α1 ‖x‖2 ≤ V(x) ≤ α2 ‖x‖2 and−α3 ‖x‖2 ≤ V̇(x) ≤ −α4 ‖x‖2 for some posi-
tiveαi , i = 1, . . . ,4, thenx = 0 is exponentially asymptotically stable.

Consider nonlinear systems with external inputsu as

ẋ = f (x, u),

then BIBO stability is as for linear systems namely, that bounded inputs lead to
bounded signals. We refer to this stability as`∞ BIBO stability.

Similarly for discrete time systems

xk+1 = f (xk); x ∈ R
n. (3.4)

Here f is a continuous map ofRn to R
n. Assume thatf (0) = 0, so thatx = 0 is

a trivial solution of (3.4). A solution of (3.4) starting inx0 is denoted byxk(x0).
Let D be a compact neighborhood off (0) in R

n. A Lyapunov functionV :
D→ R

+ is a continuous map such that

312 Appendix B. Dynamical Systems

1. V(0) = 0, V(x) > 0 for x 6= 0.

2. for any solutionxk(x0) of (3.4) withx0 ∈ D

V (xk+1(x0)) ≤ V (xk(x0)) .

V is a strict Lyapunov function if

3. for any solutionxk(x0) of (3.4) withxo ∈ D

V (xk+1(x0)) < V (xk(x0)) ; if xk(x0) 6= 0.

The above Theorems 3.1, 3.2 and 3.3, for stability, asymptotic stability and
global asymptotic stability, then also hold for the system (3.4).

The trivial solution of (3.4) is called exponentially stable provided its lineariza-
tion is stable. The linearization of (3.4) is given by

zk+1 = D f (0)zk,

whereD f (0) is the Jacobian off evaluated at 0. The Jacobian is defined as the
matrix of partial derivatives:

D f (z) =:
(
D fi j (z)

)
=

(
∂ fi
∂z j

(z)

)
.

APPENDIX C

Averaging Analysis For
Adaptive Systems

C.1 Introduction

We present here in a nutshell some ideas fromaveraging analysiswhich is a
powerful technique to study systems whose dynamics split naturally over differ-
ent time scales. No proofs are provided, we refer the reader to, e.g. Mareels and
Polderman (1996).

C.2 Averaging

Averaging in its basic form is concerned with systems of the form:

xk+1 = xk + µ fk(xk); x0; k = 0,1, (2.1)

The parameterµ is a small positive constant that characterizes thetime scale sep-
arationbetween the variation of the state variablex over time and the time varia-
tions in the driving termfk(·). With time scale separation we mean the following.
Assume for the moment that‖ fk(x)‖ ≤ F . On a time interval of lengthN, a
solution of (2.1), sayx, can at most change by an amount‖xk − x`‖ ≤ µN F,
for |k− `| ≤ N. On the same time interval‖ fk(xk)− fl (x`)‖ ≤ 2F . The ratio
of change betweenx and fk(·) is therefore of magnitudeµ; the time variations
of the statex being (potentially)µ times slower than the time variations inf . It
is this time scale separation that hints at replacing the time-varyingfk(·) by the
time invariantaverageddriving term

lim
N→∞

1

N

N∑
k=1

fk(z) = f a(z), (2.2)

314 Appendix C. Averaging Analysis For Adaptive Systems

provided of course that the latter exists.
In adaptive systemsthe time scale separation is less explicit than portrayed by

(2.1). Part of the analysis will be precisely concerned with transforming an adap-
tive system into the above format (2.1), at least approximately, such that standard
averaging results can be applied.

More precisely, we consider adaptive systems of the general form:

xk+1 = A(θk)xk + Bk(θk), x0,

θk+1 = θk + µgk(θk, xk), θ0.
(2.3)

The adapted parameter vector isθk. The positive parameterµ scales the adap-
tation gain. We assumeµ to be small, it expresses explicitly that the adaptation
mechanism progresses slowly. The rest of the state vectorxk contains mixed time
scale behavior. Partly it contains the fast time variations due to the driving func-
tions Bk(·), partly it contains the effect of the slowly varyingθk via the functions
A(θ) and B(θ). The time variations inB are typically due to external signals,
such as reference signals, disturbances and or plant variations. It will be shown
that under very mild assumptions thezero adaptationsituation can be used as
an approximation for theslow adaptationcase. This in turn will enable standard
averaging techniques to be used to analyze the behavior of the adaptive system.

The methodology we are about to discuss, consisting of a zero adaptation ap-
proximation followed by an averaging analysis, is applicable to a large class of
adaptive systems operating under a wide variety of assumptions, not necessarily
requiring that the model class encompasses the actual plant dynamics.

We now introduce and discuss the basic averaging technique.

Some Notation and Preliminaries

In order not to overload the expressions we introduce some notation and defini-
tions. We often need to estimate functional dependence onµ. This is done via
so-calledorder functions(Sanders and Verhulst, 1985):

Definition. A scalar valued functionδ(µ) is called anorder function if it is
positive valued and continuous on an interval(0, µ∗) for someµ∗ > 0 and
limµ→0 δ(µ) exists, perhaps∞.

Order functions can be defined in a more general sense. However, as we mainly
need to compare functions in terms of orders ofµ and are only interested in small
µ, the above, more restrictive definition suffices.

Example. The termsµ, sin(µ),
√
µ and 1/µ are order functions. The function

sin(1/µ)+ 1 is not an order function.

Thesize or orderof order functions can be compared as follows:

Definition. Let δ1(µ) andδ2(µ) be two order functions. Thenδ1(µ) is said to be
of orderof δ2(µ), denoted asδ1(µ) = O(δ2(µ)), if there exists positive constants

C.2. Averaging 315

µ∗ andC such that

δ1(µ) ≤ Cδ2(µ) for all µ ∈ [0, µ∗). (2.4)

If δ1(µ) = O(δ2(µ)) and δ2(µ) = O(δ1(µ)) then we say thatδ1 and δ2 are
equivalent order functions.

Definition. Let δ1(µ) andδ2(µ) be two order functions.δ1(µ) is said to be of
small orderof δ2(µ), denoted asδ1(µ) = o(δ2(µ)) if

lim
µ→0

δ1(µ)

δ2(µ)
= 0. (2.5)

Example. Now µ is o(1), as indeed limµ→0µ = 0, and obviouslyµ ≤ 1 for
all µ ∈ [0, 1]. However, sin(µ) is O(µ) onµ ∈ [0, π). Alsoµ is O(sin(µ)) on
µ ∈ [0, π/2). Henceµ and sin(µ) are equivalent order functions.

Functions that do not only depend onµ can also be compared with order func-
tions, using the following conventions:

Definition. Let f : R
+
× N → R

n, (µ, k) → fk(µ) be continuous inµ. Let
δ(µ) be an order function. We say thatf is of orderδ, denotedfk(µ) = O(δ(µ)),
if there exist positive constantsµ∗ andC such that

‖ fk(µ)‖ ≤ Cδ(µ) for all k and µ ∈ [0, µ∗). (2.6)

Definition. Let f : R
+
× N× R

n
→ R

n, (µ, k, x)→ f (µ, k, x) be uniformly
(in k) continuous inµ, x on a set [0, µc) × D ∗. We say thatf is orderδ for
some order functionδ(µ) if there exist a compact domainD′ ⊂ D and positive
constantsµ∗ ≤ µc andC such that

‖ f (µ, k, x)‖ < Cδ(µ) for all k, µ ∈ [0, µ∗), x ∈ D′. (2.7)

Example. Nowµ sin(k) = O(µ) and
√

1+ µx − 1 is alsoO(µ). Indeed for all
|x| ≤ 1 andµ ∈ [0, 1], one has

√
1+ µx − 1≤ 0.5µ.

We will want to estimate approximation errors over a particular time interval
that increases asµ becomes smaller. In this respect the following convention is
useful:

Definition. Let f : R
+
× N× R

n
→ R

n, (µ, k, x)→ f (µ, k, x) be uniformly
(in k) continuous inµ, x on a domain [0, µc) × D. Let δ1(µ) andδ2(µ) be two
order functions. We say thatf (µ, k, x) is of orderδ1(µ) ona time scaleδ2(µ) on
the setD ⊂ R

n provided that for any integerL there exist positive constantsµ∗

andC such that for allµ ∈ [0, µ∗) and for allx ∈ D

‖ f (µ, k, x)‖ < Cδ1(µ) for all k ∈ [0, Lδ2(µ)]. (2.8)

∗g(x, k) is uniformly (in k) continuous inx on a domainD if for all ε > 0 there is aδ > 0 such
that for allk and allx, y ∈ D, we have that|x − y| < δ implies that|g(x, k)− g(y, k)| < ε.

316 Appendix C. Averaging Analysis For Adaptive Systems

Example. Let k ∈ N, |x| < 1 andµ ∈ [0, 1).

x3 sin(µk) = O(µ) on time scaleO(1),

x3 sin(µk) = O(1) on time scaleO

(
1

µ

)
,

µk = O(
√
µ) on time scaleO

(
1
√
µ

)
,

(1+ µx)k = O(1) on time scaleO

(
1

µ

)
.

(2.9)

The last statement can be derived under the given restrictions forµ andx from
the following inequalities: 0< 1+ µx < 1+ µ < eµ and thus(1+ µ)k ≤ eµk;
considering the time intervalk ∈ [0, 1/µ) we get(1+ µx)k ≤ e.

When discussing solutions of a difference equation such asxk+1 = xk +

µ fk(xk) a solution is denoted byx(k, x0, k0, µ) to indicate a solution that at time
k0 equalsx0. The parameterµ is included in the argument to make explicit the
dependence on this parameter. Where no confusion can arise the shorthandxk will
be used, and if the functionf is time invariant the notationx(k, x0, µ) or xk used.

Finite Horizon Averaging Result

We are now in a position to formulate an approximation result valid on a timescale
1/µ. The result is stated under weak regularity conditions and in a format to
facilitate its application to adaptive systems.

Consider the following nonlinear and time dependent difference equation in
standardform:

xk+1 = xk + µ fk(xk); k ∈ N, x(0) = x0. (2.10)

The parameterµ is to be thought of as a small positive constant.
We want to approximate the solutionxk(x0, k0, µ) of (2.10) by somexa

k (x0, µ)

solution of xa
k+1 = xa

k + µ f a(xa
k), where f a is a suitable average off . The

approximation error,x − xa, should beo(1) on a time scale 1/µ.
The following regularity properties are assumed:

Assumption 2.1. Consider the difference equation(2.10), f : N × R
n
→ R

n is
locally bounded andlocally Lipschitz continuousin x uniformly ink. That is, for
each compact subsetD ⊂ R

n, there exist positive constantsFD andλD possibly
dependent onD, but independent ofk, leading to the following three properties;

1. f is locally uniformly bounded

FD > 0 : for all x ∈ D, for all k : ‖ fk(x)‖ ≤ FD. (2.11)

2. f is locally uniformly Lipschitz continuous

λD : for all x, y ∈ D, for all k : ‖ fk(x)− fk(y)‖ ≤ λD ‖x − y‖ .
(2.12)

C.2. Averaging 317

3. f has awell defined average, denotedf a, in that for all x ∈ D the follow-
ing limit exists:

f a(x) = lim
N→∞

1

N

N∑
k=1

fk(x). (2.13)

Before continuing with our main result we offer the following observations on
the notion of average.

Remarks.

1. The averagef a is also Lipschitz continuous with the same Lipschitz con-
stantλD and locally bounded with constantFD in the domainD as f .

Often the averagef a will have better continuity properties than thef from
which it is derived. This may be illustrated withfk(x) = sign(sin(k)+ x);
f is not continuous butf a(x) is Lipschitz continuous inx ∈ (−1, 1).

f a(x) =


1 x ≥ 1,
2
π

arcsin(x) 1≥ x ≥ −1,

−1 −1≥ x.

(2.14)

It is a nontrivial exercise to demonstrate that the limit

lim
N→∞

1

N

N∑
k=1

sign(sin(k)+ x)

indeed equals the above expression (2.14). It relies on the fact that the
points k (mod 2)π are in some sense uniformly distributed over the in-
terval [0, 2π).

2. In the literature see, e.g. Sanders and Verhulst (1985), one sometimes
speaks of f satisfying Assumption 2.1, Property 3 as aKBM function,
because of the contributions to averaging theory made by the researchers
Krylov, Boguliobov and Mitropolski.

3. In the following situations the existence of an average is guaranteed :

• Any function fk(x) that converges to a function independent ofk,
i.e. limk→∞ fk(x) = g(x) has an average given by this limit, i.e.
f a(x) = g(x).

• Any k-periodic function fk(x) = fk+K (x) (with period K) has an
average given byf a(x) = (1/K)

∑K
k=1 fk(x).

• fk(x) is ak-almost periodic functionuniformly in x if for all ε > 0
there exists aK (ε) > 0 such that for allk, x ‖ fk(x)− fk+K (x)‖ ≤ ε.
HereK (ε) is called anε-almost period. Any finite sum of sinusoidal
functions is an almost periodic function, e.g. sin(k) is an almost peri-
odic function and so is sin(k)+cos(πk). Any almost periodic function
has an average.

318 Appendix C. Averaging Analysis For Adaptive Systems

The above particular cases do not exhaustively describe all functions for
which there exists an average, e.g. sin(

√
k) has an average, but does not

belong to any of the above categories.

The following result is the basic averaging result we are going to exploit.

Theorem 2.2. Consider(2.10). Let D ⊂ R
n be compact,L ∈ N and ε > 0.

Defineδ(µ) as:

δ(µ) = sup
x∈D

sup
k∈[0,L/µ]

µ

∥∥∥∥ k∑
i=0

[
fi (x)− f a(x)

]∥∥∥∥. (2.15)

Suppose that Assumption 2.1 holds. Thenδ(µ) = o(1). Moreover, the solution
xk(x0, 0, µ) of (2.10):

xk+1 = xk + µ fk(xk); k ∈ N, x(0) = x0, (2.16)

can be approximated byxa
k (x0, µ) the solution of

xa
k+1 = xa

k + µ f a(xa
k); k ∈ N, xa(0) = x0. (2.17)

Furthermore, for anyx0 ∈ D such thatinfx∈∂(D) ‖x0− x‖ ≥ ε (∂(D) denotes
the boundary of the domainD), there exists a positive constantµ∗(D, ε, L) such
that for allµ ∈ [0, µ∗) and allk ∈ [0, L/µ] the approximation error is∥∥xk(x0, 0, µ)− xa

k (x0, µ)
∥∥ = O(

√
δ(µ)). (2.18)

Remark. Under a strengthened continuity assumption, assuming thatfk(x) (and
hence alsof a(x)) has a uniformly ink Lipschitz continuous partial derivative
with respect tox, it is possible to show that the approximation error isO(δ(µ))
rather thanO(

√
δ(µ)).

Infinite Horizon Result

Again we consider a system of the form

xk+1 = xk + µ fk(xk); k ∈ Z, (2.19)

the solutions of which we want to approximate by solutions of

xa
k+1 = xa

k + µ f a
k (x

a
k); k ∈ Z. (2.20)

In the previous subsection a finite horizonO(1/µ) averaging approximation result
was introduced.

In this section we pursue an averaging approximation result valid on the whole
time axis under the additional condition that the averaged difference equation
has a stable and uniformly attracting solution within the domain of interest. We
discuss one such result.

First we need to strengthen the notion of an average. As infinite horizon results
are envisaged, it is natural to expect that the averagef a(·) is in some sense a
uniform over time good approximation for the time-varying functionfk(·):

C.2. Averaging 319

Definition. The functionf : R
n
×N→ R

n has auniform averagef a : R
n
→ R

n

on a compact domainD ⊂ R
n if, for all x ∈ D, k0, ε > 0 there exists anN > 0

independent ofk0 such that for allM ≥ N

1

M

∥∥∥∥M+k0−1∑
i=k0

(fi (x)− f a(x))

∥∥∥∥ < ε. (2.21)

Remarks.

1. It follows from the above definition that for all integersL > 0 the averaging
error

δ∗(µ) := sup
k0>0

sup
x∈D

sup
k∈[0,L/µ]

µ

∥∥∥∥k+k0∑
i=k0

(fi (x)− f a(x))

∥∥∥∥ (2.22)

is ano(1) order function, i.e. limµ→0 δ
∗(µ) = 0.

2. The existence of an average is not sufficient to guarantee the existence of
a uniform average. In the important situation that

∑k
i=0(fi (x) − g(x)) is

a bounded function ofk theng is a uniform average. Notice that there can
be at most one such functiong. The k-periodic functions belong to this
class. Alsok-almost periodic functions possess a uniform average, yet do
not necessarily satisfy the condition that

∑k
i=0(fi (x)− f a(x)) is a bounded

function ofk.

Without loss of generality we assume the equilibrium to be the origin. More
precisely we assume:

Assumption 2.3. Consider the difference equation(2.20). Let f a(0) = 0. As-
sume that there exist a neighborhood of0, 0 ⊂ R

n, on which a positive def-
inite, Lipschitz continuousV : 0 → R

+ and a positive definite continuous
W : 0 → R

+ are defined; furthermore there exist constantsµs > 0 andc > 0
such that for allx ∈ U := {x | V(x) ≤ c}, and allµ ∈ [0, µs] there holds:
V(x + µ f a(x))− V(x) ≤ −µW(x).

Remark. In Assumption 2.3, the setU is a compact subset of thedomain of
attractionof the equilibrium. The domain of attraction of an equilibrium is the set
of all initials conditions for which the trajectories converge to this equilibrium.

In order to establish the infinite horizon result we require besides the existence
of a uniform average, that the averaged difference equation possesses a uniformly
asymptotically stable equilibrium. For definitions of the stability concepts and
some related results, we refer to Appendix B.

We have the following result:

Theorem 2.4. Consider(2.19) and the averaged equation(2.20). Let f satisfy
Assumption 2.1 and have a uniform averagef a. Let the origin be a uniformly

320 Appendix C. Averaging Analysis For Adaptive Systems

asymptotically stable equilibrium for the averaged equation(2.20)in the sense of
Assumption 2.3.

Let D be a compact subset of the domain of attraction. LetE be an interior†

subset ofD such that trajectories of(2.20)starting inE reach the setU , specified
in Assumption 2.3, in at mostO(1/µ) time.

There exists a positive constantµ∗ such that for allµ ∈ [0, µ∗) the solutions
xk(x0, k0, µ) of the difference equation(2.19)for anyk0 ≥ 0 and for anyx0 ∈ E
can be uniformly approximated byxa

k (x0, µ), the solution of the averaged differ-
ence equation(2.20)onk ≥ k0. That is,∥∥xk(x0, k0, µ)− xa

k (x0, µ)
∥∥ = o(1), for all k ≥ k0. (2.23)

Moreover, if the equilibrium is locally exponentially stable (in that the matrix
D f a(0) has only eigenvalues with negative real part), then the approximation
error can be estimated asO

(√
δ∗(µ)

)
, ano(1) order function.

Essentially the theorem states that provided the averaged equation has a uni-
formly stable equilibrium then the approximation error between the original and
the approximate solution remains small over the complete trajectory for all those
trajectories inside a substantial subset of the domain of attraction.

Remark. As observed in a remark following Theorem 2.2, providedf has a
Lipschitz continuous partial derivative with respect tox, and provided the origin is
locally exponentially stable, the approximation error estimate can be strengthened
to ∥∥xk(x0, k0)− xa

k (x0)
∥∥ = O(δ∗(µ)). (2.24)

C.3 Transforming an adaptive system into standard
form

Recall the adaptive system (2.3)

xk+1 = A(θk)xk + Bk(θk), x0,

θk+1 = θk + µgk(θk, xk), θ0.
(3.1)

The system (3.1) is not in a format directly suited for averaging. Obviouslyθ

is a slow variable and it is on this equation we would like to use the averaging
ideas. However, a direct application of averaging is not possible asxk depends on
θk. In order to be able to apply averaging it is essential that we can express the
dependence ofx on θ . This is the main aim of this section.

First we introduce some hypotheses concerning the smoothness of the adaptive
system (3.1):

†E is called an interior subset ofD if E ⊂ D and∂D ∩ ∂E = ∅

C.3. Transforming an adaptive system into standard form321

Assumption 3.1. Let 2 ⊂ R
m be compact. Consider the difference equation

(3.1):

1. A : R
m
→ R

p×p is continuously differentiable with respect toθ ∈ 2.

2. B : R
m
× N→ R

p is continuously differentiable with respect toθ ∈ 2.

3. B is bounded ink.

4. Dθ Bk(θ) is bounded ink.

5. g : R
m
×R

p
×N→ R

m is locally bounded and locally Lipschitz continuous
in (θ, x) ∈ 2× X ⊂ R

m
× R

p uniformly ink.

We also require that there exist parameter valuesθ such that the transition ma-
trix A is stable. This is not an unreasonable request. If there were no suchθ , then
it is highly likely that due to the slow adaptation thex component would become
extremely large. Also without such an assumption we have no hope that the adap-
tation could ever stop, ifθ would converge andA(θ) were unstable thenx would
diverge.

We make this more precise:

Assumption 3.2. There existsr > 1 such that

S := {θ ∈ 2 | A′(θ)P(θ)A(θ)+ I = P(θ) with I ≤ P(θ) < r I } (3.2)

is nonempty.

Assumption 3.2 states that there is a nonempty subsetS of 2 such that for
θ ∈ S the matrix A(θ) is a stability matrix whose eigenvalues remain bounded
away from the unit circle. (See also Section A.10.)

In order to describe how the slow time scale effects ofθ are observed inx we
introducethe frozen system:

x0
k+1(ν) = A(ν)x0

k(ν)+ Bk(ν), x0(0, ν) = x0, k = 0, 1, (3.3)

Herex0 equals the initial condition of thex state in the adaptive system descrip-
tion (3.1).ν ∈ 2 is a fixed parameter.

It is not difficult to demonstrate that the solutions of the difference equation
(3.3) are for allν ∈ Sbounded and differentiable with respect toν. The following
lemma makes this precise.

Lemma 3.3. Consider the frozen system equation(3.3). Under Assumptions 3.1
and 3.2 it follows that for allν ∈ S:

1. x0
k(ν) is bounded uniformly inν ∈ S; for someC0 > 0:∥∥∥x0

k(ν)

∥∥∥ ≤ √r (σ k
‖x0‖ +

1− σ k

1− σ
C0), (3.4)

with σ =
√

1− 1/r .

322 Appendix C. Averaging Analysis For Adaptive Systems

2. x0
k(ν) is continuously differentiable with respect toν ∈ S.

3. Dνx0
k(ν) is bounded uniformly inν ∈ S; for someC1,C2 > 0:∥∥∥Dνx0

k(ν)

∥∥∥ ≤ C1C2
1− σ k

σ
+ C1

kσ k

1− σ
‖x0‖ . (3.5)

Remark. The relevance of (3.3) can be appreciated by viewing it as the descrip-
tion of the adaptive system (3.1) where the adaptation has been switched off, i.e.
µ = 0. It has been associated with the names asfrozen systemor no adaptation
approximation.

The following result establishes howx in (3.1) depends on the slow variableθ
up to terms of order ofµ.

Theorem 3.4. Consider the difference equation(3.1) under Assumptions 3.1
and 3.2. Consider also the frozen system(3.3).

Let (xk, θk) denote the solution of the difference equation(3.1) starting in
(x0, θ0) at timek0. Considerθ0 ∈ S. Let x0

k(ν) denote the solution of the frozen
system(3.3)starting inx0 at the same initial timek0.

There exists a positive constantµ0 > 0 such that for allµ ∈ [0, µ0) on the
time interval{k : k ≥ k0 andθk ∈ S} we have that

1. x0
k(θk) is an O(µ) approximation ofxk:∥∥∥xk − x0

k(θk)

∥∥∥ ≤ Cxµ; someCx > 0. (3.6)

2. θk can be approximated byθ0
k up to O(µ) on a time scaleO(1/µ) where

θ0
k is the solution of the difference equation:

θ0
k+1 = θ

0
k + µgk(θ

0
k , x0

k(θ
0
k)); θ0

k0
= θk0, (3.7)

with ∥∥∥θk − θ0
k

∥∥∥ ≤ Cθµ; someCθ > 0. (3.8)

3. xk − x0
k(θ

0
k) = O(µ) on a time scaleO(1/µ).

Remarks.

1. Theorem 3.4 essentially allows us to decouple thex equation from theθ
equation in the adaptive system (3.1). It allows us to study separately a fam-
ily of linear systems (3.3) and a nonlinear time-varying equation (3.7) in or-
der to find an approximate solution to the complete adaptive system. More-
over the nonlinear time-varying equation governing theθ0 update, equation
(3.7), is in standard form for the application of the averaging results. This
implies that we can further simplify the equations. This will be pursued in
the next section.

C.4. Averaging Approximation 323

2. Theorem 3.4 establishes approximations on a time scaleO(1/µ) and for as
long asθ wanders in a domainS whereA(θ) is a stability matrix. Whenever
θ(0) is such thatA(θ(0)) is a stability matrix, this will be the case on at
least a time scale ofO(1/µ) becauseθk+1 − θk is of O(µ). In the special
circumstance that some stability property can be established, e.g. an average
based approximation forθ0 has some kind of attractor, strictly contained in
the stability domainS, then all approximations established in Theorem 3.4
hold on the whole time axis.

3. Summarizing loosely the content of Theorem 3.4 we have that the solutions
xk, θk of the adaptive system (3.1)

xk+1 = A(θk)xk + Bk(θk), x0,

θk+1 = θk + µgk(θk, xk), θ0,
(3.9)

areO(µ) approximated on a time intervalO(1/µ) by x0
k(θ

0
k), θ

0
k wherex0

is defined via the difference equation (3.3) (the so-called frozen system)
andθ0 is defined in (3.7).

x0
k+1(ν) = A(ν)x0

k(ν)+ Bk(ν), x0
0(ν)= x0,

θ0
k+1 = θ

0
k + µgk(θ

0
k , x0

k(θ
0
k)), θ0

k0
= θk0.

(3.10)

C.4 Averaging Approximation

Theorem 3.4 establishes a finite time decoupling of thex andθ equations in the
adaptive system (2.3), whereby theθ variable is approximated byθ0 governed
by the difference equation (3.7). This is in standard form for the application of
the averaging results discussed in Section C.2. Using the results of Theorems
2.2 and 2.4 we can obtain the following characterization of the solutions of the
adaptive system (2.3).

Theorem 4.1. Consider the adaptive system(2.3), the frozen system(3.3) and
the approximate update(3.7)under the Assumptions 3.1 and 3.2. Letθ0 ∈ S. Let
δθ := infν∈∂(S) ‖θ0− ν‖.

Let4 = max
(
‖x0‖ , supν∈S supk ‖Bk(ν)‖

)
.

Assume that the functiongk(ν, x0
k(ν)) has a well defined averagega(ν) for any

ν ∈ S with associated order functionδg(µ):

δg(µ) = sup
ν∈S(r)

sup
k∈[0,L/µ]

µ

∥∥∥∥ k∑
i=0

[
gi (ν, x0

i (ν))− ga(ν)
]∥∥∥∥. (4.1)

There exists a positive constantµa(δθ , 4) such that for allµ ∈ [0, µa) the solu-
tion xk, θk of the adaptive system(2.3) is approximated on a time scale ofO(1/µ)
by x0

k(θ
a
k), θ

a
k up to orderO(δg(µ)) whereθa is defined via:

θa
k+1 = θ

a
k + µga(θa

k), θa
0 = θ0, k = 0,1, (4.2)

324 Appendix C. Averaging Analysis For Adaptive Systems

The above result can be extended to an infinite time result provided the aver-
aged equation has some extra stability property.

Theorem 4.2. Consider the adaptive system(2.3), the frozen system(3.3) and
the approximate update(3.7) under Assumptions 3.1 and 3.2. Letθ0 ∈ S. Let
δθ := infν∈∂(S) ‖θ0− ν‖.

Let4 = max
(
‖x0‖ , supν∈S supk ‖Bk(ν)‖

)
.

Assume that the functiongk(ν, x0(k, ν)) has a well defined uniform average
ga(ν) for anyν ∈ S with associated order functionδu

g(µ):

δu
g(µ) = sup

ν∈S
sup
k0

sup
k∈[0,L/µ]

µ

∥∥∥∥k0+k∑
i=k0

[
gi (ν, x0

i (ν))− ga(ν)
]∥∥∥∥. (4.3)

Let θ∞ ∈ S be a uniformly asymptotically stable equilibrium for the averaged
equation(4.2)such that Assumption 2.3 holds. Denote by2∞ the largest domain
of attraction ofθ∞ fully contained inS‡. Letθ0 ∈ 2∞.

There exists a positive constantµa(2∞, 4) such that for allµ ∈ [0, µa) the
solution xk, θk of the adaptive system(2.3) is approximated uniformly ink by
x0

k(θ
a
k), θ

a
k up to ordero(1) whereθa is defined by equation(4.2).

Moreover, if the equilibriumθ∞ is locally exponentially stable (i.e. all the
eigenvalues ofDga(θ∞) have a negative real part) then the approximation er-
ror is O(δu

g(µ)).

Remark. The statements of Theorems 4.1 and 4.2 lead to the following impor-
tant conclusion. If the averaged equation (4.2) which captures the essence of the
adaptation mechanism has no attractor in the domainS where the frozen system is
well defined, that is the adaptive mechanism forces the adapted variableθ outside
S, then unacceptable behavior is to be expected. In this situation averaging can
only be applied on a finite time basis and predicts that the adaptive system will
have poor performance. Indeed asθ leaves the stability domainS the x variable
will grow exponentially. Whenever there is an attractor in the domainS where
the frozen system behaves well, averaging can be used for the whole trajectory,
hence may be used to analyze the asymptotic performance of the overall adaptive
system (2.3). In this case good performance may be achieved.

It transpires that adaptive algorithm design may concentrate on providing the
averagega, see (4.2), with the right properties, namely an attractor close to the
points for which the frozen system has the behavior we would like to see.

‡This is the set of all initial conditions for which the trajectories start inS, remain inS and
converge toθ∞.

References

Anderson, B. D. O., Bitmead, R. R., Johnson, C. R., Kokotovic, P. V., Kosut, R. L.,
Mareels, I. M. Y., Praly, L. and Riedle, B. D. (1986).Stability of Adaptive
Systems: Passivity and Averaging Analysis, MIT Press, Cambridge, MA.

Anderson, B. D. O. and Kosut, R. L. (1991). Adaptive robust control: Online
learning,Proc. IEEE Conf. on Decision and Control, Brighton, pp. 297–8.

Anderson, B. D. O. and Moore, J. B. (1979).Optimal Filtering, Prentice-Hall,
Englewood Cliffs, N.J.

Anderson, B. D. O. and Moore, J. B. (1989).Optimal Control: Linear Quadratic
Methods, Prentice-Hall, Englewood Cliffs, N.J.

Åstrom, K. J. and Wittenmark, B. (1984).Computer Controlled Systems: Theory
and Design, Prentice-Hall, Englewood Cliffs, N.J.

Barnett, S. (1971).Matrices in Control Theory, Van Nostrand Reinhold Company
Inc., New York.

Bart, H., Gohberg, I., Kaashoek, M. A. and Dooren, P. V. (1980). Factorizations
of transfer functions,SIAM J. Control Optim.18: 675–96.

Bellman, R. E. (1970).Introduction to Matrices, McGraw-Hill, New York.

Benveniste, A., Metivier, M. and Priouret, P. (1991).Adaptive Algoritms and Sto-
chastic Approximations, Vol. 22 of Applications of Mathematics, Springer-
Verlag, Berlin.

Blackmore, P. (1995).Discretization Methods for Control Systems Design, PhD
thesis, Australian National University.

Boyd, S. P. and Barratt, C. H. (1991).Linear Controller Design: Limit Of perfor-
mance, Prentice-Hall, Englewood Cliffs, N.J.

326 References

Chakravarty, A. and Moore, J. B. (1985). Aircraft flutter suppression via adaptive
LQG control,Proc. American Control Conf., Boston, pp. 488–93.

Chakravarty, A. and Moore, J. B. (1986). Flutter suppression using central ten-
dency adaptive pole assignment,Proc. Control Engineering Conf., Sydney,
pp. 78–80.

Chen, C. T. (1984).Linear Systems Theory and Design, Holt, Rinehart and Win-
ston, New York.

Chen, C. T. (1987).Linear Control System Design and Analysis, Holt, Rinehart
and Winston, New York.

Chew, K. K. and Tomizuka, M. (1990). Digital control of repetitive errors in a
disk drive system,IEEE Control System Mag.pp. 16–19.

Cybenko, G. (1989). Approximation by superposition of a sigmoidal function,J.
Math. Control, Signal and Systems2: 302–4.

Dahleh, M. A. and Pearson, J. B. (1987).̀1 optimal controllers for MIMO
discrete-time systems,IEEE Trans. on Automatic Control32.

Dahleh, M. A. and Pearson, J. B. (1988). Optimal rejection of persistent distur-
bances, robust stability and mixed sensitivity minimization,IEEE Trans. on
Automatic Control33.

Davison, E. J. and Wang, S. H. (1989). Properties of linear time-invariant multi-
variable systems subject to arbitrary output and state feedback,IEEE Trans.
on Automatic Control18: 24–32.

DeSilva, C. (1989).Control Sensors and Actuators, Prentice-Hall, Englewood
Cliffs, N.J.

Desoer, C. A., Liu, R. W., Murray, J. and Saeks, R. (1980). Feedback system de-
sign: The fractional representation approach to analysis and synthesis,IEEE
Trans. on Automatic Control25(6): 399–412.

Dooren, P. V. and Dewilde, P. (1981). Minimal cascade factorization of real
and complex rational transfer matrices,IEEE Trans. on Circuits Systems
28: 390–400.

Doyle, J. C. (1974). Guaranteed margins in LQG regulators,IEEE Trans. on
Automatic Control23(4): 664–5.

Doyle, J. C., Francis, B. A. and Tannenbaum, A. (1992).Feedback Control The-
ory, MacMillan, New York.

Doyle, J. C. and Stein, J. G. (1979). Robustness with observers,IEEE Trans. on
Automatic Control24(4): 607–11.

References 327

Elliott, R. E., Aggoun, L. and Moore, J. B. (1994).Hidden Markov models: Esti-
mation and control, Springer-Verlag, Berlin.

Feuer, A. and Goodwin, G. (1996).Sampling in Digital Signal Processing and
Control, Birkhäuser Verlag, Basel.

Francis, B. A. (1987).A Course inH∞ Control Theory, Springer-Verlag, Berlin.

Franklin, G. F. and Powell, J. D. (1980).Digital Control of Dynamic Systems,
Addison-Wesley, Reading, MA, USA.

Gevers, M. R. (1993). Towards a joint design of identification and control. Pre-
sented at a semi-plenary session of Proc. European Control Conf., Gronin-
gen, The Netherlands.

Gevers, M. R. and Li, G. (1993).Parametrizations in Control, Estimation and
Filtering Problems, Springer-Verlag, Berlin.

Goodwin, G. and Sin, K. (1984).Adaptive Filtering, Prediction, and Control,
Prentice-Hall, Englewood Cliffs, N.J.

Green, M. and Limebeer, D. J. N. (1994).Linear Robust Control, Prentice-Hall,
Englewood Cliffs, N.J.

Hansen, F. R. (1989).Fractional Representation Approach to Closed Loop System
Indentifcation and Experiment Design, PhD thesis, Stanford University.

Hara, S. and Sugie, T. (1988). Independent parametrization of two-degrees-of-
freedom compensators in general robust tracking,IEEE Trans. on Automatic
Control33(1): 59–68.

Hara, S., Yamamoto, Y., Omata, T. and Nakano, M. (1988). Repetitive control
systems: A new type servo system for periodic exogenous systems,IEEE
Trans. on Automatic Control33: 659–68.

Helmke, U. and Moore, J. B. (1994).Optimization and Dynamical Systems,
Springer-Verlag, Berlin.

Hirsch, M. W. and Smale, S. (1974).Differential Equations, Dynamical Systems,
and Linear Algebra, Academic Press, New York.

Horowitz, R. and Li, B. (1995). Adaptive control for disk file actuators,Proc.
IEEE Conf. on Decision and Control, New Orleans, pp. 655–60.

Imae, J. and Hakomori, K. (1987). A second order algorithm for optimal control
assuring the existence of Riccati solutions,J. Society for Instrument and
Control Engineers23(4): 410–12.

Imae, J., Irlicht, L. S., Obinata, G. and Moore, J. B. (1992). Enhancing optimal
controllers via techniques from robust and adaptive control,International J.
Adaptive Control and Signal Proc.6: 413–29.

328 References

Irlicht, L. S., Mareels, I. M. Y. and Moore, J. B. (1993). Switched controller
design for resonances suppression,Proc. IFAC World Congress, Sydney,
pp. 79–82.

Irlicht, L. S. and Moore, J. B. (1991). Functional learning in optimal non-linear
control,Proc. American Control Conf., Chicago, pp. 2137–42.

Irwin, M. C. (1980).Smooth Dynamical Systems, Academic Press, New York.

Isidori, A. (1989).Nonlinear Control Systems, Springer-Verlag, Berlin.

Kailath, T. (1980).Linear Systems, Prentice-Hall, Englewood Cliffs, N.J.

Keller, J. P. and Anderson, B. D. O. (1992). A new approach to the dis-
cretization of continuous-time controller,IEEE Trans. on Automatic Control
37(2): 214–23.

Kučera, V. (1979).Discrete Linear Control: The Polynomial Equation Approach,
John Wiley & Sons, New York, London, Sydney.

Kwakernaak and Sivan (1972).Linear Optimal Control Systems, John Wiley &
Sons, New York, London, Sydney.

Lee, W. S. (1994).Iterative Identification and Control Design for Robust Perfor-
mance, PhD thesis, Australian National University.

Lee, W. S., Anderson, B. D. O., Kosut, R. L. and Mareels, I. M. Y. (1993). A new
approach to adaptive robust control,International J. Adaptive Control and
Signal Proc.7: 183–211.

Lehtomaki, N. A., Sandell, Jr., N. R. and Athans, M. (1981). Robustness results
in linear quadratic Gaussian based multivariable control design,IEEE Trans.
on Automatic Control26: 75–92.

Li, B. (1995). Wiener Filter Based Adaptive Control with Applications to the
Design of Disk File Servers, PhD thesis, University of Berkeley.

Ljung, L. (1987). System Identification: Theory for the User, Prentice-Hall, En-
glewood Cliffs, N.J.

Ljung, L. and Söderström, T. (1983).Theory and Practice of Recursive Identifi-
cation, MIT Press, Cambridge, MA.

McFarlane, D. C. and Glover, K. (1989).Robust Controller Design using Nor-
malized Coprime Factor Plant Descriptions, Lecture Notes in Control and
Information Sciences, Springer-Verlag, Berlin.

Madievski, A., Anderson, B. D. O. and Gevers, M. R. (1993). Optimum real-
ization of sampled-data controllers for FWL sensitivity minimization,Auto-
matica31: 367–79.

References 329

Mareels, I. M. Y. and Polderman, J. W. (1996).Adaptive control systems: An
introduction, Birkhäuser Verlag, Basel.

Middleton, R. H. and Goodwin, G. (1990).Digital Control and Estimation,
Prentice-Hall, Englewood Cliffs, N.J.

Moore, J. B., Gangsaas, D. and Blight, J. D. (1982). Adaptive flutter suppres-
sion as a complement to LQG based aircraft control,Proc. IEEE Conf. on
Decision and Control, San Diego, pp. 1191–200.

Moore, J. B., Glover, K. and Telford, A. J. (1990). All stabilizing controllers as
frequency shaped state estimate feedback,IEEE Trans. on Automatic Con-
trol 35: 203–8.

Moore, J. B., Hotz, A. F. and Gangsaas, D. (1982). Adaptive flutter suppression
as a complement to LQG based aircraft control,Proc. IFAC Identification
Conf., Boston.

Moore, J. B. and Irlicht, L. S. (1992). Coprime factorization over a class of non-
linear systems,International J. Robust and Nonlinear Control2: 261–90.

Moore, J. B. and Tay, T. T. (1989a). Adaptive control within the class of stabiliz-
ing controllers for a time-varying nominal plant,IEEE Trans. on Automatic
Control34: 367–71.

Moore, J. B. and Tay, T. T. (1989b). Adaptive control within the class of stabiliz-
ing controllers for a time-varying nominal plant,International J. on Control
50(1): 33–53.

Moore, J. B. and Tay, T. T. (1989c). Loop recover viaH2/H∞ sensitivity recovery,
International J. on Control49(4): 1249–71.

Moore, J. B. and Tomizuka, M. (1989). On the class of all stabilizing regulators,
IEEE Trans. on Automatic Control34: 1115–20.

Moore, J. B. and Xia, L. (1987). Loop recovery and robust state estimate feedback
designs,IEEE Trans. on Automatic Control32(6): 512–17.

Moore, J. B. and Xia, L. (1989). On a class of all stabilizing partially decentral-
ized controllers,Automatica25: 1941–60.

Moore, J. B., Xia, L. and Glover, K. (1986). On improving control loop robust-
ness subject to model matching controllers,System Control Letters7: 83–7.

Moore, J. B., Xia, Y. and Xia, L. (1989). On active resonance and flutter suppres-
sion techniques,Proc. Australian Aero. Conf., Melbourne, pp. 181–5.

Morari, M. and Zafiriou, E. (1989).Robust Process Control, Prentice-Hall, En-
glewood Cliffs, N.J.

330 References

Narendra, K. and Annaswamy, A. (1989).Stable adaptive systems, Prentice-Hall,
Englewood Cliffs, N.J.

Nemhauser, G. L. and Wolsey, L. A. (1988).Integer and Cominatorial Optimiza-
tion, John Wiley & Sons, New York, London, Sydney.

Nett, C. N. (1986). Algebraic aspects of linear control system stability,IEEE
Trans. on Automatic Control31(10): 941–9.

Nett, C. N., Jacobson, C. A. and Balas, M. J. (1984). A connection between
state-space and doubly coprime fractional representation,IEEE Trans. on
Automatic Control29(9): 831–2.

Obinata, G. and Moore, J. B. (1988). Characterization of controller in simultane-
ous stabilization,System Control Letters10: 333–40.

Ogata, K. (1987). Discrete Time Control Systems, Prentice-Hall, Englewood
Cliffs, N.J.

Ogata, K. (1990).Modern Control Engineering, 2nd edn, Prentice-Hall, Engle-
wood Cliffs, N.J.

Paice, A. D. B. and Moore, J. B. (1990a). On the Youla-Kučera parameterization
for nonlinear systems,System Control Letters14: 121–9.

Paice, A. D. B. and Moore, J. B. (1990b). Robust stabilization of nonlinear plants
via left coprime factorizations,System Control Letters15: 125–35.

Paice, A. D. B., Moore, J. B. and Horowitz, R. (1992). Nonlinear feedback system
stability via coprime factorization analysis,J. Math. Systems, Estimation and
Control2: 293–321.

Partanen, A. (1995).Controller Refinement with Application to a Sugar Cane
Crushing Mill, PhD thesis, Australian National University.

Perkins, J. E., Mareels, I. M. Y. and Moore, J. B. (1992). Functional learning in
signal processing via least squares,International J. Adaptive Control and
Signal Proc.6: 481–98.

Polderman, J. W. (1989).Adaptive Control and Identification: Conflict or Con-
flux, CWI tract 67, Centrum voor Wiskunde en Informatica, Amsterdam.

Rohrs, R., Valavani, L. S., Athans, M. and Stein, G. (1985). Robustness of con-
tinuous time adaptive control algorithms in the presence of unmodeled dy-
namcis,IEEE Trans. on Automatic Control30: 881–9.

Sage, A. P. and White, C. C. (1977).Optimum Systems Control, Prentice-Hall,
Englewood Cliffs, N.J.

References 331

Sanders, J. A. and Verhulst, F. (1985).Averaging Methods in Nonlinear Dynami-
cal Systems, Springer-Verlag, Berlin.

Sastry, S. and Bodson, M. (1989).Adaptive Control, Prentice-Hall, Englewood
Cliffs, N.J.

Schrama, R. J. P. (1992a). Accurate models for control design: The necessity of
an iterative scheme,IEEE Trans. on Automatic Control.

Schrama, R. J. P. (1992b).Approximate Identification and Control Design, PhD
thesis, Delft University of Technology.

Solo, V. and Kong, X. (1995).Adaptive signal processing algorithms: stability
and performance, Prentice-Hall, Englewood Cliffs, N.J.

Sontag, E. D. (1990).Mathematical Control Theory, Springer-Verlag, Berlin.

Stein, G. and Athans, M. (1987). The LQG/LTR procedure for multivariable
feedback control,IEEE Trans. on Automatic Control32(2): 105–14.

Tay, T. T. (1989). Enhancing robust controllers with adaptive techniques, PhD
thesis, Australian National University.

Tay, T. T. and Moore, J. B. (1990). Performance enhancement of two-degree-of-
freedom controllers via adaptive techniques,International J. Adaptive Con-
trol and Signal Proc.4: 69–84.

Tay, T. T. and Moore, J. B. (1991). Enhancement of fixed controller via adaptive-
Q disturbance estimate feedback,Automatica27(1): 39–53.

Tay, T. T., Moore, J. B. and Horowitz, R. (1989). Indirect adaptive techniques
for fixed controller performance enhancement,International J. on Control
50(5): 1941–59.

Telford, A. J. and Moore, J. B. (1989). Doubly coprime factorization reduced
order observers, and dynamic state estimate feedback,International J. on
Control50: 2583–97.

Telford, A. J. and Moore, J. B. (1990). Adaptive stabilization and resonance
suppression,International J. on Control52: 725–36.

Teo, K. L., Goh, C. J. and Wong, K. H. (1991).A Unified Computational Ap-
proach to Optimal Control Problems, Longman Scientific and Technical,
Harlow, Essex.

Teo, Y. T. and Tay, T. T. (1995). Design of an`1 optimal regulator: The limits-of-
performance approach,IEEE Trans. on Automatic Control40(12).

Vidyasagar, M. (1985).Control System Synthesis: A Factorization Approach,
MIT Press, Cambridge, MA.

332 References

Vidyasagar, M. (1986). Optimal rejection of persistent bounded disturbances,
IEEE Trans. on Automatic Control31(6): 527–34.

Vidyasagar, M. (1991). Further results on the optimal rejection of persistent
bounded disturbances,IEEE Trans. on Automatic Control36(6): 642–52.

Wang, L. and Mareels, I. M. Y. (1991). Adaptive disturbance rejection,Proc.
IEEE Conf. on Decision and Control, Brighton.

Wang, Z. (1991).Performance Issues in Adaptive Control, PhD thesis, University
of Newcastle.

Williamson, D. (1991).Digital Control and Implementation, Finite Wordlength
Consideration, Prentice-Hall, Englewood Cliffs, N.J.

Wolovich, W. A. (1977).Linear Multivariable Systems, Springer-Verlag, Berlin.

Wonham, W. M. (1985).Linear Multivariable Control: A Geometric Approach,
Springer-Verlag, Berlin.

Yan, W. Y. and Moore, J. B. (1992). A multiple controller structure and design
strategy with stability analysis,Automatica28: 1239–44.

Yan, W. Y. and Moore, J. B. (1994). Stable linear matrix fractional transforma-
tions with applications to stabilization and multistageH∞ control design,
International J. Robust and Nonlinear Control65.

Youla, D. C., Bongiorno, Jr., J. J. and Jabr, H. A. (1976a). A modern Wiener-
Hopf design of optimal controllers. Part I,IEEE Trans. on Automatic Control
21(1): 3–14.

Youla, D. C., Bongiorno, Jr., J. J. and Jabr, H. A. (1976b). A modern Wiener-Hopf
design of optimal controllers. Part II,IEEE Trans. on Automatic Control
21(6): 319–30.

Zang, Z., Bitmead, R. R. and Gevers, M. R. (1991).H2 iterative model refine-
ment and control rebustness enhancement,Proc. IEEE Conf. on Decision
and Control, Brighton, pp. 279–84.

Zhang, Z. and Freudenberg, J. S. (1987). Loop transfer recovery with non-
minimum phase zeros,Proc. IEEE Conf. on Decision and Control, Los An-
geles, pp. 956–7.

Author Index

Aggoun, L.,v, 207, 327
Anderson, B. D. O.,v, vi, 4, 10, 12,

13, 17, 37, 100, 102, 126,
172, 175, 176, 205, 207,
211, 246, 290, 325, 328

Annaswamy, A.,204, 330
Åstrom, K. J.,20, 52, 245, 325
Athans, M.,126, 172, 328, 330, 331

Balas, M. J.,52, 330
Barnett, S.,297, 325
Barratt, C. H.,10, 17, 47, 52, 64, 66,

89, 126, 325
Bart, H.,85, 86, 325
Bellman, R. E.,297, 325
Benveniste, A.,176, 325
Bitmead, R. R., vi,12, 13, 17, 155,

172, 175, 176, 205, 325,
332

Blackmore, P.,245, 246, 325
Blight, J. D.,126, 329
Bodson, M.,204, 331
Bongiorno, Jr., J. J.,10, 52, 332
Boyd, S. P.,10, 17, 47, 52, 64, 66,

89, 126, 325

Chakravarty, A.,326
Chen, C. T.,23, 52, 54, 326
Chew, K. K.,272, 326
Cybenko, G.,231, 326

Dahleh, M. A.,126, 326

Davison, E. J.,85, 326
DeSilva, C.,326
Desoer, C. A.,326
Dewilde, P.,85, 86, 89, 326
Dooren, P. V.,85, 86, 89, 325, 326
Doyle, J. C., vi,17, 52, 100, 126,

227, 326

Elliott, R. E.,v, 207, 327

Feuer, A.,246, 327
Francis, B. A.,10, 17, 52, 150, 326,

327
Franklin, G. F.,52, 327
Freudenberg, J. S.,100, 126, 332

Gangsaas, D., v,126, 294, 296, 329
Gevers, M. R., vi,13, 155, 200, 246,

270, 327, 328, 332
Glover, K., vi,37, 52, 53, 328, 329
Goh, C. J.,207, 209, 210, 331
Gohberg, I.,85, 86, 325
Goodwin, G.,6, 17, 119, 204, 246,

270, 327, 329
Green, M.,5, 10, 17, 66, 89, 111,

327

Hakomori, K.,226, 327
Hansen, F. R.,133, 155, 327
Hara, S.,53, 272, 327
Helmke, U.,v, 327
Hirsch, M. W.,164, 327

334 Author Index

Horowitz, R., vi,90, 155, 242, 277,
327, 330, 331

Hotz, A. F.,294, 296, 329

Imae, J.,207, 212, 226, 242, 327
Irlicht, L. S., vi, 207, 212, 242, 296,

327–329
Irwin, M. C., 305, 328
Isidori, A., 236, 305, 328

Jabr, H. A.,10, 52, 332
Jacobson, C. A.,52, 330
Johnson, C. R.,12, 17, 172, 175,

176, 205, 325

Kaashoek, M. A.,85, 86, 325
Kailath, T.,23, 52, 54, 305, 328
Keller, J. P.,246, 328
Kokotovic, P. V.,12, 17, 172, 175,

176, 205, 325
Kong, X.,12, 176, 205, 331
Kosut, R. L., vi,12, 13, 17, 172, 175,

176, 205, 325, 328
Kučera, V.,10, 52, 328
Kwakernaak,4, 17, 37, 100, 126,

328

Lee, W. S.,13, 133, 200, 328
Lehtomaki, N. A.,126, 328
Li, B., 277, 327, 328
Li, G., 246, 270, 327
Limebeer, D. J. N.,5, 10, 17, 66, 89,

111, 327
Liu, R. W.,326
Ljung, L., 20, 61, 133, 328

McCormick, J., vi
McFarlane, D. C.,37, 52, 328
Madievski, A.,246, 328
Mareels, I. M. Y.,v, vi, 6, 12, 13, 17,

172, 175, 176, 188, 190,
194, 199, 204, 205, 231,
233, 234, 242, 296, 313,
325, 328–330, 332

Metivier, M., 176, 325
Middleton, R. H.,270, 329

Moore, J. B., v,v, 4, 10, 17, 37,
51–53, 90, 100, 102, 109,
126, 155, 176, 207, 211,
212, 214, 223, 231, 233,
234, 242, 290, 294, 296,
325–332

Morari, M., 5, 17, 329
Murray, J.,326

Nakano, M.,272, 327
Narendra, K.,204, 330
Nemhauser, G. L.,124, 330
Nett, C. N.,52, 330

Obinata, G.,53, 207, 212, 242, 327,
330

Ogata, K.,4, 17, 20, 37, 52, 330
Omata, T.,272, 327

Paice, A. D. B., vi,223, 242, 330
Partanen, A.,200, 330
Pearson, J. B.,126, 326
Perkins, J. E.,231, 233, 234, 242,

330
Polderman, J. W.,v, 6, 12, 17, 175,

176, 188–190, 194, 199,
204, 205, 313, 329, 330

Powell, J. D.,52, 327
Praly, L.,12, 17, 172, 175, 176, 205,

325
Priouret, P.,176, 325

Riedle, B. D.,12, 17, 172, 175, 176,
205, 325

Rohrs, R.,172, 330

Saeks, R.,326
Sage, A. P.,207, 330
Sandell, Jr., N. R.,126, 328
Sanders, J. A.,12, 176, 314, 317,

331
Sastry, S.,204, 331
Schrama, R. J. P.,13, 133, 331
Sin, K.,6, 17, 119, 204, 327
Sivan,4, 17, 37, 100, 126, 328
Smale, S.,164, 327

Author Index 335

Söderström, T.,61, 328
Solo, V.,12, 176, 205, 331
Sontag, E. D.,64, 305, 331
Stein, G.,126, 172, 330, 331
Stein, J. G.,100, 126, 227, 326
Sugie, T.,53, 327

Tannenbaum, A.,17, 52, 326
Tay, T. T., vi, 52, 53, 90, 100, 109,

126, 155, 176, 205, 212,
214, 234, 329, 331

Telford, A. J.,52, 53, 296, 329, 331
Teo, K. L.,207, 209, 210, 331
Teo, Y. T.,126, 331
Tomizuka, M.,51, 53, 272, 326, 329

Valavani, L. S.,172, 330
Verhulst, F.,12, 176, 314, 317, 331
Vidyasagar, M.,10, 17, 33, 52, 53,

97, 98, 126, 149, 331, 332

Wang, L.,176, 332
Wang, S. H.,85, 326
Wang, Z., vi, 172, 176, 180, 205,

332
White, C. C.,207, 330
Williamson, D.,246, 270, 332
Wittenmark, B.,20, 52, 245, 325
Wolovich, W. A.,23, 332
Wolsey, L. A.,124, 330
Wong, K. H.,207, 209, 210, 331
Wonham, W. M.,85, 89, 332

Xia, L., 53, 126, 296, 329
Xia, Y., 296, 329

Yamamoto, Y.,272, 327
Yan, W., vi
Yan, W. Y.,90, 155, 332
Youla, D. C.,10, 52, 332

Zafiriou, E.,5, 17, 329
Zang, Z.,13, 155, 332
Zhang, Z.,100, 126, 332

Subject Index

actuator, 1
adaptive

control, 5
indirect, 179, 184

controller, 277
LQ control, 184
pole assignment, 184
-Q

algorithm, 160, 169
application to nonlinear sys-

tems, 207
control, 214
design, 228

ADC, 245, 247, 260
addition of matrices, 298
affine, 47
aircraft model, 289
algebra, linear, 16, 297
algebraic loop, 117
algorithms for continuous-time plant,

245
all stabilizing controllers

feedback, 41
feedforward/feedback, 49

all-pass, 108
almost

period, 317
periodic function, 317

analog model, 7
analog-to-digital converter,seeADC
anti-aliasing, 245

approximation, nearest neighbor, 240
ARMAX model, 71, 233
asymptotic stability, 23, 30, 309, 311
attraction, domain of, 319
auto-regressive, moving average, ex-

ogenous input model, 71
autocorrelation, 62
auxiliary input, 21
average

notation, 317
uniform, 319
well defined, 317

averaging
analysis, 12
standard form, 316
theory, 16, 163

B-splines, 231
balanced, 308

realization, 308
truncation, 308

basis, 303
vector, 303

Bezout
equation, double, 36, 49
identity, 20, 34
identity, double, 212

BIBO, 30, 31, 213
stability, 309

in an`2 sense, 30
bijective, 304

338 Subject Index

bisigmoid, 231
block partition notation, 20, 23
bounded, locally, 316
bounded-input bounded-output,see

BIBO

C language, 264
case studies, 14
Cayley-Hamilton theorem, 299
certainty equivalence, 185

principle, 4
Cesáro mean, 162
Cholesky

decomposition, 300
factor, 300

class of all plants stabilizable by a
controller, 69

class of all stabilizing controllers, 212
class of stabilizing controllers, 10
classic adaptation algorithm, 186
classical control, 3
closed-loop interpretation ofS, 78
codomain, 304
cofactor, 298
commuting matrix, 298
completely detectable, 303
complex zero, 299
condition number, 302
constant

disturbance, 51
rate drift, 60

constraints, 2, 9
continuous, Lipschitz, 316
continuous-time plant, algorithms for,

245
control input, 21
controllability, 1, 23, 303, 306

Gramian, 307
uniform complete, 307

controllable, 22
controller, feedback, 2
coordinate basis transformation, 23,

26
coprime

factorization, 14, 20, 34

fraction description, 20
normalized factor, 36, 39, 103

critical point, 234
current-to-voltage converter, 247

DAC, 245, 260
data logging, 247
DC offset, 60
decomposition

Cholesky, 300
polar, 300
singular value, 301

delay time, 93
derived variable, 8, 9
design environment, 15, 59
detectability, 22, 37, 102, 211, 308
determinant, 298
deterministic, 4

disturbance, 239
model, 60

diagonal matrix, 298
diagonalizable, 300
diagonally balanced realization, 308
differentiation, 302
digital model, 7
digital signal processor,seeDSP
digital-to-analog converter,seeDAC
dimension, 303
Diophantine equations, 35
direct

adaptive
control, 12
-Q control, 157

feedthrough, 268
sum, 297

direct memory access,seeDMA
discrete frequency spectrum, 61
discrete-time, 305

linear model, 22
model, 7

disk drive control system, 16
disk operating system,seeDOS
disturbance, 21

constant, 51
deterministic, 239

Subject Index 339

input, 51
periodic, 272
response, 29, 291
signal, 2, 59
sinusoidal, 60
stochastic, 239
unmodeled, 210
white noise, 10
worst case, 10

DMA, 259
domain of attraction, 319
DOS, 255
double Bezout

equation, 36, 49
identity, 212

drift, constant rate, 60
DSP, 243, 272

chip, 16
module, 260

dual control, 6
dual vector space, 304
dual-processor solution, 259
dynamical system, 2, 305
dynamics

unmodeled, 2, 8, 167, 210, 239
identification of, 129

eigenspace, 299
eigenvalue, 299
eigenvector, 299
EISPACK, 265
elementary operation, 20
elliptic filter, 72
EPROM, 247
equation

linear, 302
state, 305

equivalence
certainty, 185
relation, 300

equivalent order functions, 315
erasable programmable read-only mem-

ory, seeEPROM
error signal specifications, 94
Euclidean norm, 301

excitation, 12
stochastic, 12

exciting signals, 162
exogenous input, 21

auto-regressive, moving average
model, 71

exponential
asymptotic stability, 311
forgetting, 165

factor
Cholesky, 300
normalized coprime, 36

factor, normalized coprime, 39, 103
factorization

coprime, 14, 20, 34
minimal, 87
spectral, 37

fast universal controller,seeFUC
Fatou’s theorem, 310
feedback

controller, 2
stabilizing, 30

state
estimate, 104
stabilizing, 37

feedforward/feedback controller, 32
feedthrough, direct, 268
fiber, 304
fictitious noise disturbance, 8
filter

elliptic, 72
frequency shaping, 4, 5, 8

filtered excitation algorithm, 185
finite word length, 269
finite-dimensional system, 7
flight control, 16
flutter, wing, 289
forgetting factor, 231
frequency

-shaped
modeling error, 85
weights, 96

shaping, 291
filter, 4, 5, 8

340 Subject Index

spectrum, 62
discrete, 61

Frobenius norm, 302
frozen system, 321, 322
FUC, 259
full loop recovery, 107
full rank, 298
function, 304

representation, 232
transfer, 305

functional learning, 231

gain
`∞, 65
`p, 65
`2, 65
rms, 65

Gaussian truncated, 231
global

asymptotic stability, 311
learning, 238

gradient search, 5
Gramian

controllability, 307
observability, 308

grid points, 237
grid size, 240

H∞
control, 10
design strategy, 140
minimization, 97
norm, 65
optimal

control, 5, 97
design, 111

optimization, 68
H2

norm, 67
hard-disk drive, 271
Hardy 2-space, 309
heat exchanger, 16, 251, 279
Hermitian, 297

skew, 297
hierarchical design, 3, 13

high performance, 2
control, 3

Hilbert space, 309

identification
of unmodeled dynamics, 129
technique, 207

identity matrix, 298
image, 304

space, 299
implementation aspects, 14
impulse response, 65
indirect adaptive control, 12, 179, 184
induced
∞-norm, 65
`p norm, 65

inequality, Schwartz, 301
infinite dimensional controller, 207
∞-norm, induced, 65
∞-norm, specification in, 98
information state, 5
injective, 304
input disturbance, 51
input sensitivity recovery, 104
input/output representation, 6
integer representation, 269
integration, 302
interior subset, 320
internal model, 51, 53
internally stable, 31, 150, 224
interpolating function

spread of, 237
interpolation function, 233
inverse, 25, 299
isomorphism, 304
iterated

control-identification principle,
133

design, 3
(Q, S), 129

Kalman’s realization theorem, 308
KBM function, 317
kernel, 299, 304

Subject Index 341

Krylov Boguliobov Mitropolski func-
tion, seeKBM function

`∞ gain, 65
`1

control, 10
norm, 65
optimal control, 5

`p

gain, 65
norm, 63

induced, 65
`2

gain, 65
sense, BIBO stability in an, 30

leakage, 161
learning

functional, 231
global, 238
least squares, 233
-Q, 16, 218, 231

least squares, 214
algorithm, 186
learning, 233

Lebesque 2-space, 309
limit-of-performance, 115

curve, 116, 121
linear

algebra, 16, 297
dynamical system, 7, 305
equation, 302
mapping, 304
model, discrete-time, 22
operator, 304
programming, 121
quadratic,seeLQ

Gaussian,seeLQG
system operator, 212
transformation, 304

linearization, 208
techniques, 16

LINPACK, 265
Lipschitz, continuous, 316
locally bounded, 316
locally Lipschitz continuous, 316

loop recovery, 5, 106
loop transfer recovery,seeLTR
LQ

control, adaptive, 184
design, 95, 137
regulation, 95
tracking, 95

LQG
control, 4, 10, 100
design, 101, 227
method, 4, 37

LQG/LTR, 208, 211
design, 100, 227

LTR, 100
Luenberger observers, 52
Lyapunov

function, 311
strict, 311

lemma of, 302

McMillan degree, 84, 108, 308
map, 304
mapping, 304

linear, 304
MATLAB

-to-C converter, 268
environment, 265
M-file compiler, 268

matrices
addition of, 298
multiplication of, 298
similar, 300

matrix, 297
commuting, 298
determinant, 298
diagonal, 298
identity, 298
inversion lemma, 299
nonsingular, 298
norm, 301
orthogonal, 298
permutation, 298
positive definite, 300
rank, 298
sign, 298

342 Subject Index

singular, 298
transfer function, 19
unitary, 298

maximum
overshoot, 93
singular value, 310
undershoot, 93

microcontroller, 14, 244
module, 261

minimal
factorization, 87
realization, 87, 308
representation, 23

stable linear fractional, 85
minimality, 308
minimization,H∞, 97
minimum phase, 108

plants, 107
model

internal, 51
matching controllers, 53
plant, 2
reduction, 290

moving average, auto-regressive, ex-
ogenous input model, 71

multiplication of matrices, 298
multirate sampling, 14

nearest neighbor approximation, 240
nested

controller, 14
design, 3

(Q, S) design, 145
neural network, 242
no adaptation approximation, 322
noise, white, 62
nominal

controller, 19
plant model, 7

nonlinear
control, 207
plant, 207
system

adaptive-Q application to, 207
fractional map, 219

stability, 310
nonminimum phase plant, 108
nonrepeatable run-out,seeNRRO
nonsingular matrix, 298
norm, 62, 63

Euclidean, 301
Frobenius, 302
H∞, 65
H2, 67
induced∞-, 65
induced̀ p, 65
∞-, 98
`1, 65
`p, 63
matrix, 301
vector, 301

normalized coprime factor, 36, 39,
103

NRRO, 272
Nyquist sampling theorem, 243

O, order symbol, 314
o, order symbol, 315
observability, 1, 23, 308

Gramian, 308
observable, 22
offset, DC, 60
on-line identification, 6
one-degree-of-freedom controller, 29
one-to-one, 304
onto, 304
operating system, 255
operator, linear, 304
optical encoder, 247
optimal

control, 4, 187
controller

disk, 274
H∞, 97

design,H∞, 111
optimization, 2

H∞, 68
optimizing a stabilizing controller, 15
order, 314

function, 314

Subject Index 343

equivalent, 315
small, 315
symbol

O, 314
o, 315

orthogonal, 298
matrix, 298

output, 21
injection, 37
sensitivity recovery, 105

overhead crane, 250
overshoot, maximum, 93

parallel connection, 24
parameter adjustment, 6
Parseval’s theorem, 67, 171
PC, 262
peak

spectral response, 15
time, 93

performance, 6
enhancement, 218
index, selection, 92
measure, 2, 9

period, almost, 317
periodic disturbance, 272
permutation matrix, 298
Pernebo and Silverman theorem, 309
persistence of excitation, 6, 238
personal computer-based solution, 262
PID, 95

controller, 247
plant, 1

-model mismatch, 166
controller stabilized, 68
model, 2, 20
parameter variation, 2
uncertainty, 64

plug-in controller, 13
design, 3

polar decomposition, 300
pole assignment, adaptive, 184
pole-placement strategy, 135
pole/zero cancellation, 31, 100
polynomial, 299

positive definite matrix, 300
precompensator, 50
prefilter, 214, 291
preimage, 304
probability theory, 16
projection, 161
proper transfer function, 22
proper, strictly, 308
proportional integral differential,see

PID
pseudo-inverse, 299
pulse-width-modulated, 247

(Q, S) design, iterated, 129
Q-parameterization, 15, 41
QR-decomposition, 301
quadrature phase pulse, 247

Rp, 22
Rsp, 22
radical basis function, 231
RAM, 247
random access memory,seeRAM
range, 304

space, 299
rank, 298

full, 298
row, 303

rational proper transfer function, 22
real zero, 299
realization

balanced, 308
diagonally, 308

minimal, 87, 308
theorem, Kalman’s, 308

reconstructible, 234
recovery

full loop, 107
loop, 5, 106
loop transfer,seeLTR
sensitivity, 103, 106

input, 104
output, 105

recursive
controller, 14

344 Subject Index

design, 13
regulation

LQ, 95
robust, 90

regulators, stabilizing, 15, 51, 53
relation, equivalence, 300
repeatable run-out,seeRRO
representation

minimal stable linear fractional,
85

theorem, 231
residuals, 291
resonance suppression, 289
response

disturbance, 29
impulse, 65
peak spectral, 15
transient, 93

Riccati equation, 3, 103, 113, 211
rise time, 93
rms, 101

gain, 65
robust

control, 3
regulation, 90
stability, 19
stabilization, 75, 90

robustness, 2, 6, 64
root mean square, 101
row

rank, 303
space, 303

RRO, 272
run-out

nonrepeatable,seeNRRO
repeatable,seeRRO

S-parameterization, 15
sampling, multirate, 14
scalar, 297
scaling, 218
Schwartz inequality, 301
selection of performance index, 92
self-tuning, 6
sensitivity recovery, 103, 106

sensor, 1
separation

principle, 115
theorem, 4
time scale, 313

serial port operating system,seeSPOS
series connection, 25
servo system, 273
settling time, 93
sign matrix, 298
signal disturbance, 2, 59
signature, 300
similar matrices, 300
similarity transformation, 300
simulation languages, 16
simultaneous stabilization, 53
single stepping, 256
singular

matrix, 298
value, 301, 308

decomposition, 301
maximum, 310

sinusoidal disturbance, 60
skew

Hermitian, 297
symmetric, 297

small gain stability, 30
small order, 315
software

environment
debugging, 255
development, 252

platform, 264
space

Hardy 2-, 309
Hilbert, 309
image, 299
Lebesque 2-, 309
range, 299
row, 303
vector, 303

dual, 304
specification

in∞-norm, 98
using 2-norms, 95

Subject Index 345

spectral factorization, 37
spectrum, frequency, 62

discrete, 61
SPOS, 255
spread of the interpolating function,

237
stability, 311

asymptotic, 23, 30, 309, 311
exponential, 311
global, 311

BIBO, 309
of nonlinear systems, 310
properties, 219
robust, 19
small gain, 30

stabilizability, 37, 102, 211, 306
stabilizable, 22
stabilization

result, 224
robust, 75, 90
simultaneous, 53

stabilizing
controller, 14, 28

feedback, 30
feedforward/feedback, 32
optimizing, 15

regulator, 15
regulators, 51, 53
state feedback, 37

stable, 305
internally, 31, 150, 224
invariant subspace, 85, 87
linear fractional representation,

82
modes

uncontrollable, 26
unobservable, 26

strongly, 153
standard form, 316
state, 4, 10

equation, 305
estimate feedback, 104

controller, 37
space

equation, 19

representation, 81
steepest descent, 161, 164, 169
step response specification, 93
stochastic, 4

disturbance, 239
model, 61

excitation, 12
system, 7

strictly proper, 308
transfer function, 22

strongly stable, 153
structural resonance mode, 289
structured uncertainties, 15
subparitioning, 23
subset, interior, 320
subspace, 303

stable invariant, 85, 87
vector, 303

sufficiently
exciting, 6
rich signals, 162

sum, direct, 297
surjective, 304
Sylvester’s Inertia Theorem, 300
symmetric, 297

skew, 297
system

dynamical, 2, 305
linear, 7, 305

finite-dimensional, 7
frozen, 321, 322
stochastic, 7
time-invariant, 7
time-varying, 53, 212

Taylor series expansion, 208
three-term-controller, 3
time

-invariant system, 7
-varying system, 53, 212
domain uncertainty, 68
scale

approach, 12
separation, 313

trace, 299

346 Subject Index

tracking, 10
LQ, 95

trajectory selection, 237
transfer function, 19, 305

proper, 22
rational, 22
strictly, 22

transformation
coordinate basis, 23, 26
linear, 304
similarity, 300

transient response, 93
transpose, 25, 297
truncated Gaussian, 231
truncation, balanced, 308
tunability, 188
tuning property, 188, 189

with excitation, 189
two-degree-of-freedom controller, 20,

33, 53
2-norm, 301

specification using, 95
worst case design using, 97

2-space
Hardy, 309
Lebesque, 309

UIO, 265
undershoot, maximum, 93
uniform

average, 319
complete controllability, 307

unit step, 93
unitary matrix, 298
universal input-output,seeUIO
unmodeled

disturbance, 210
dynamics, 2, 8, 167, 210, 239

unstructured uncertainties, 15
up/down counter, 247
Usenet, 265

variation of constants formula, 160
vector, 297

basis, 303

norm, 301
space, 303
subspace, 303

voltage to current converter, 247

well-posed, 150, 224
white noise, 62, 101

disturbance, 10
wing flutter, 289
worst case

design using 2-norms, 97
disturbance, 10

Z-transform, 305
zero

complex, 299
real, 299

	Title Page
	Preface
	Contents
	List of Figures
	List of Tables
	1 Performance Enhancement
	1.1 Introduction
	1.2 Beyond Classical Control
	1.3 Robustness and Performance
	1.4 Implementation Aspects and Case Studies
	1.5 Book Outline
	1.6 Study Guide
	1.7 Main Points of Chapter
	1.8 Notes and References

	2 Stabilizing Controllers
	2.1 Introduction
	2.2 The Nominal Plant Model
	2.3 The Stabilizing Controller
	2.4 Coprime Factorization
	2.5 All Stabilizing Feedback Controllers
	2.6 All Stabilizing Regulators
	2.7 Notes and References

	3 Design Environment
	3.1 Introduction
	3.2 Signals and Disturbances
	3.3 Plant Uncertainties
	3.4 Plants Stabilized by a Controller
	3.5 State Space Representation
	3.6 Notes and References

	4 Off-line Controller Design
	4.1 Introduction
	4.2 Selection of Performance Index
	4.3 An LQG/LTR Design
	4.4 H-infinity Optimal Design
	4.5 An l1 Design Approach
	4.6 Notes and References

	5 Iterated and Nested (Q,S) Design
	5.1 Introduction
	5.2 Iterated (Q,S) Design
	5.3 Nested (Q,S) Design
	5.4 Notes and References

	6 Direct Adaptive-Q Control
	6.1 Introduction
	6.2 Q-Augmented Controller Structure: Ideal Model
 Case
	6.3 Adaptive-Q Algorithm
	6.4 Analysis of the Adaptive-Q Algorithm: Ideal Case
	6.5 Q-augmented Controller Structure: Plant-model Mismatch
	6.6 Adaptive Algorithm
	6.7 Analysis of the Adaptive-Q Algorithm:
Unmodeled Dynamics Situation
	6.8 Notes and References

	7 Indirect (Q,S) Adaptive Control
	7.1 Introduction
	7.2 System Description and Control Problem Formulation
	7.3 Adaptive Algorithms
	7.4 Adaptive Algorithm Analysis: Ideal case
	7.5 Adaptive Algorithm Analysis: Nonideal Case
	7.6 Notes and References

	8 Adaptive-Q Application to Nonlinear Systems
	8.1 Introduction
	8.2 Adaptive-Q Method for Nonlinear Control
	8.3 Stability Properties
	8.4 Learning-Q Schemes
	8.5 Notes and References

	9 Real-time Implementation
	9.1 Introduction
	9.2 Algorithms for Continuous-time Plant
	9.3 Hardware Platform
	9.4 Software Platform
	9.5 Other Issues
	9.6 Notes and References

	10 Laboratory Case Studies
	10.1 Introduction
	10.2 Control of Hard-disk Drives
	10.3 Control of a Heat Exchanger
	10.4 Aerospace Resonance Suppression

	A Linear Algebra
	A.1 Matrices and Vectors
	A.2 Addition and Multiplication of Matrices
	A.3 Determinant and Rank of a Matrix
	A.4 Range Space, Kernel and Inverses
	A.5 Eigenvalues, Eigenvectors and Trace
	A.6 Similar Matrices
	A.7 Positive Definite Matrices and Matrix Decompositions
	A.8 Norms of Vectors and Matrices
	A.9 Differentiation and Integration
	A.10 Lemma of Lyapunov
	A.11 Vector Spaces and Subspaces
	A.12 Basis and Dimension
	A.13 Mappings and Linear Mappings

	B Dynamical Systems
	B.1 Linear Dynamical Systems
	B.2 Norms, Spaces and Stability Concepts
	B.3 Nonlinear Systems Stability

	C Averaging Analysis For Adaptive Systems
	C.1 Introduction
	C.2 Averaging
	C.3 Transforming an adaptive system into standard form
	C.4 Averaging Approximation

	References
	Author Index
	Subject Index

