Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Finance and the Financial Manager

Topics Covered

- What Is A Corporation?
- The Role of The Financial Manager
- Who Is The Financial Manager?
- Separation of Ownership and Management
- Financial Markets

Corporate Structure

Role of The Financial Manager

Who is The Financial Manager?

Ownership vs. Management

Difference in Information

- Stock prices and returns
- Issues of shares and other securities
- Dividends
- Financing

Different Objectives

- Managers vs. stockholders
- Top mgmt vs. operating mgmt
- Stockholders vs. banks and lenders

Financial Markets

Primary
 Markets

OTC

Markets

Secondary

Markets

Financial Institutions

Company

Intermediaries

Banks
Insurance Cos.
Brokerage Firms

Financial Institutions

Intermediaries

Investors

Depositors

Policyholders

Investors

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Present Value and The Opportunity Cost of Capital

Chapter 2

Topics Covered

- Present Value
- Net Present Value
- NPV Rule
- ROR Rule
- Opportunity Cost of Capital
- Managers and the Interests of Shareholders

Present Value

Present Value
 Value today of a future cash flow.

Discount Rate

Interest rate used to compute present values of future cash flows.

Present Value

Present Value $=$ PV

$\mathrm{PV}=$ discount factor $\times C_{1}$

Present Value

Discount Factor $=\mathrm{DF}=\mathrm{PV}$ of $\$ 1$

$$
D F=\frac{1}{(1+r)^{t}}
$$

Discount Factors can be used to compute the present value of any cash flow.

Valuing an Office Building

Step 1: Forecast cash flows
Cost of building $=C_{0}=350$
Sale price in Year $1=C_{1}=400$

Step 2: Estimate opportunity cost of capital
If equally risky investments in the capital market offer a return of 7%, then

$$
\text { Cost of capital }=r=7 \%
$$

Valuing an Office Building

Step 3: Discount future cash flows

$$
P V=\frac{C_{1}}{(1+r)}=\frac{400}{(1+.07)}=374
$$

Step 4: Go ahead if PV of payoff exceeds investment
$N P V=-350+374=24$

Net Present Value

NPV $=$ PV - required investment

$$
\mathrm{NPV}=\mathrm{C}_{0}+\frac{C_{1}}{1+r}
$$

Risk and Present Value

- Higher risk projects require a higher rate of return.
- Higher required rates of return cause lower PVs.

$$
\begin{aligned}
& \text { PV of } C_{1}=\$ 400 \text { at } 7 \% \\
& \mathrm{PV}=\frac{400}{1+.07}=374
\end{aligned}
$$

Risk and Present Value

PV of $\mathrm{C}_{1}=\$ 400$ at 12% $\mathrm{PV}=\frac{400}{1+.12}=357$

$$
\begin{aligned}
& \mathrm{PV} \text { of } \mathrm{C}_{1}=\$ 400 \text { at } 7 \% \\
& \mathrm{PV}=\frac{400}{1+.07}=374
\end{aligned}
$$

Rate of Return Rule

- Accept investments that offer rates of return in excess of their opportunity cost of capital.

Example

In the project listed below, the foregone investment opportunity is 12%. Should we do the project?

$$
\text { Return }=\frac{\text { profit }}{\text { investment }}=\frac{400,000-350,000}{350,000}=.14 \text { or } 14 \%
$$

Net Present Value Rule

- Accept investments that have positive net present value.

Example
Suppose we can invest $\$ 50$ today and receive $\$ 60$ in one year. Should we accept the project given a 10% expected return?

$$
\mathrm{NPV}=-50+\frac{60}{1.10}=\$ 4.55
$$

Opportunity Cost of Capital

Example

You may invest $\$ 100,000$ today. Depending on the state of the economy, you may get one of three possible cash payoffs:

Economy Slump Normal Boom Payoff $: \$ 80,000 \quad 110,000 \quad 140,000$

Expected payoff $=\mathrm{C}_{1}=\frac{80,000+100,000+140,000}{3}=\$ 110,000$

Opportunity Cost of Capital

Example - continued

The stock is trading for \$95.65. Depending on the state of the economy, the value of the stock at the end of the year is one of three possibilities:

Economy	Slump	Normal	Boom
Stock Price	$\$ 80$	110	140

Opportunity Cost of Capital

Example - continued

The stocks expected payoff leads to an expected return.

Expected payoff $=C_{1}=\frac{80+100+140}{3}=\$ 110$

Expected return $=\frac{\text { expected profit }}{\text { investment }}=\frac{110-95.65}{95.65}=.15$ or 15%

Opportunity Cost of Capital

Example - continued

Discounting the expected payoff at the expected return leads to the PV of the project.

$$
\mathrm{PV}=\frac{110,000}{1.15}=\$ 95,650
$$

Investment vs. Consumption

- Some people prefer to consume now. Some prefer to invest now and consume later. Borrowing and lending allows us to reconcile these opposing desires which may exist within the firm's shareholders.

Investment vs. Consumption

income in period 1

Investment vs. Consumption

The grasshopper (G) wants to consume now. The ant (A) wants to wait. But each is happy to invest. A prefers to invest 14%, moving up the red arrow, rather than at the 7% interest rate. G invests and then borrows at 7\%, thereby transforming $\$ 100$ into $\$ 106.54$ of immediate consumption. Because of the investment, G has \$114 next year to pay off the loan. The investment's NPV is $\$ 106.54-100=+6.54$

Investment vs. Consumption

Dollars Later	A invests \$100 now and consumes \$114 next year

- The grasshopper (G) wants to consume now.

G invests $\$ 100$ now, borrows $\$ 106.54$ and consumes now.

Dollars

Now

Managers and Shareholder Interests

- Tools to Ensure Management Responsiveness
\rightarrow Subject managers to oversight and review by specialists.
\rightarrow Internal competition for top level jobs that are appointed by the board of directors.
\rightarrow Financial incentives such as stock options.

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

How to Calculate Present Values

Chapter 3

Topics Covered

- Valuing Long-Lived Assets
- PV Calculation Short Cuts
- Compound Interest
- Interest Rates and Inflation
- Example: Present Values and Bonds

Present Values

Discount Factor = DF = PV of \$1

$$
D F=\frac{1}{(1+r)^{t}}
$$

- Discount Factors can be used to compute the present value of any cash flow.

Present Values

$$
P V=D F \times C_{1}=\frac{C_{1}}{1+r_{1}}
$$

$$
D F=\frac{1}{(1+r)^{i}}
$$

- Discount Factors can be used to compute the present value of any cash flow.

Present Values

$$
P V=D F \times C_{t}=\frac{C_{t}}{1+r_{t}}
$$

- Replacing " 1 " with " t " allows the formula to be used for cash flows that exist at any point in time.

Present Values

Example

You just bought a new computer for $\$ 3,000$. The payment terms are 2 years same as cash. If you can earn 8% on your money, how much money should you set aside today in order to make the payment when due in two years?

Present Values

- PVs can be added together to evaluate multiple cash flows.

$$
P V=\frac{C_{1}}{(1+r)^{1}}+\frac{C_{2}}{(1+r)^{2}}+\ldots
$$

Present Values

- Given two dollars, one received a year from now and the other two years from now, the value of each is commonly called the
Discount Factor. Assume $\mathrm{r}_{1}=20 \%$ and $\mathrm{r}_{2}=$ 7%.

$$
\begin{aligned}
& D F_{1}=\frac{1.00}{(1+.20)^{1}}=.83 \\
& D F_{2}=\frac{1.00}{(1+.07)^{2}}=.87
\end{aligned}
$$

Present Values

Example

Assume that the cash flows from the construction and sale of an office building is as follows. Given a 7% required rate of return, create a present value worksheet and show the net present value.

$$
\begin{array}{ccc}
\text { Year 0 } & \text { Year 1 } & \text { Year 2 } \\
---------------------------0000 ~ & -100,000
\end{array}
$$

Present Values

Example - continued

Assume that the cash flows from the construction and sale of an office building is as follows. Given a 7% required rate of return, create a present value worksheet and show the net present value.

Period	Discount Factor	Cash Flow	Present Value
0	1.0	$-150,000$	$-150,000$
1	$\frac{1}{1.07}=.935$	$-100,000$	$-93,500$
2	$\frac{1}{(1.07)^{2}}=.873$	$+300,000$	$+261,900$
		$N P V=$ Total $=$	$\$ 18,400$

Short Cuts

- Sometimes there are shortcuts that make it very easy to calculate the present value of an asset that pays off in different periods. These tolls allow us to cut through the calculations quickly.

Short Cuts

Perpetuity - Financial concept in which a cash flow is theoretically received forever.

$$
\begin{aligned}
\text { Return } & =\frac{\text { cash flow }}{\text { present value }} \\
r & =\frac{C}{P V}
\end{aligned}
$$

Short Cuts

Perpetuity - Financial concept in which a cash flow is theoretically received forever.

PV of Cash Flow
 discount rate
 $$
P V=\frac{C_{1}}{r}
$$

Short Cuts

Annuity - An asset that pays a fixed sum each year for a specified number of years.

$$
\text { PV of annuity }=C \times\left[\frac{1}{r}-\frac{1}{r(1+r)^{t}}\right]
$$

Annuity Short Cut

Example

You agree to lease a car for 4 years at $\$ 300$ per month. You are not required to pay any money up front or at the end of your agreement. If your opportunity cost of capital is 0.5% per month, what is the cost of the lease?

Annuity Short Cut

Example - continued

You agree to lease a car for 4 years at $\$ 300$ per month. You are not required to pay any money up front or at the end of your agreement. If your opportunity cost of capital is 0.5% per month, what is the cost of the lease?

$$
\begin{aligned}
\text { Lease Cost } & =300 \times\left[\frac{1}{.005}-\frac{1}{.005(1+.005)^{48}}\right] \\
\text { Cost } & =\$ 12,774.10
\end{aligned}
$$

Compound Interest

i Periods per Interest	iii per period	APR (ix ii)	iv Value after one year	v Annually compounded interest rate
1	6%	6%	1.06	6.000%
2	3	6	$1.03^{2}=1.0609$	6.090
4	1.5	6	$1.015^{4}=1.06136$	6.136
12	.5	6	$1.005^{12}=1.06168$	6.168
52	.1154	6	$1.001155^{52}=1.06180$	6.180
365	.0164	6	$1.000164^{365}=1.06183$	6.183

Compound Interest

Inflation

Inflation - Rate at which prices as a whole are increasing.

Nominal Interest Rate - Rate at which money invested grows.

Real Interest Rate - Rate at which the purchasing power of an investment increases.

Inflation

$$
1+\text { real interest rate }=\frac{1+\text { nominal interest rate }}{1+\text { inflation rate }}
$$

Inflation

$$
1+\text { real interest rate }=\frac{1+\text { nominal interest rate }}{1+\text { inflation rate }}
$$

approximation formula
Real int. rate \approx nominal int. rate - inflation rate

Inflation

Example

If the interest rate on one year govt. bonds is 5.9% and the inflation rate is 3.3%, what is the real interest rate?

Savings

Bond

Inflation

Example
If the interest rate on one year govt. bonds is 5.9% and the inflation rate is 3.3%, what is the real interest rate?
$1+$ real interest rate $=\frac{1+.059}{1+.033}$ Savings
$1+$ real interest rate $=1.025$
Bond

real interest rate $=.025$ or 2.5%

Inflation

Example

If the interest rate on one year govt. bonds is 5.9% and the inflation rate is 3.3%, what is the real interest rate?
$1+$ real interest rate $=\frac{1+.059}{1+.033}$ Savings
$1+$ real interest rate $=1.025$ Bond
real interest rate $=.025$ or 2.5%

Approximation $=.059-.033=.026$ or 2.6%

Valuing a Bond

Example

If today is October 2000, what is the value of the following bond?

- An IBM Bond pays $\$ 115$ every Sept for 5 years. In Sept 2005 it pays an additional $\$ 1000$ and retires the bond.
- The bond is rated AAA (WSJ AAA YTM is 7.5\%).

Cash Flows

$$
\begin{array}{lllll}
\underline{\text { Sept } 01} & \frac{02}{115} & \frac{03}{115} & \underline{03} & \underline{04} \\
115 & \underline{05} \\
1115
\end{array}
$$

Valuing a Bond

Example continued

If today is October 2000, what is the value of the following bond?

- An IBM Bond pays $\$ 115$ every Sept for 5 years. In Sept 2005 it pays an additional $\$ 1000$ and retires the bond.
- The bond is rated AAA (WSJ AAA YTM is 7.5\%).

$$
\begin{aligned}
P V & =\frac{115}{1.075}+\frac{115}{(1.075)^{2}}+\frac{115}{(1.075)^{3}}+\frac{115}{(1.075)^{4}}+\frac{1,115}{(1.075)^{5}} \\
& =\$ 1,161.84
\end{aligned}
$$

Bond Prices and Yields

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

The Value of Common Stocks

Chapter 4

Topics Covered

- How To Value Common Stock
- Capitalization Rates
- Stock Prices and EPS
- Cash Flows and the Value of a Business

Stocks \& Stock Market

Common Stock - Ownership shares in a publicly held corporation.
Secondary Market - market in which already issued securities are traded by investors.
Dividend - Periodic cash distribution from the firm to the shareholders.
P/E Ratio - Price per share divided by earnings per share.

Stocks \& Stock Market

Book Value - Net worth of the firm according to the balance sheet.
Liquidation Value - Net proceeds that would be realized by selling the firm's assets and paying off its creditors.
Market Value Balance Sheet - Financial statement that uses market value of assets and liabilities.

Valuing Common Stocks

Expected Return - The percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes called the market capitalization rate.

Valuing Common Stocks

Expected Return - The percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes called the market capitalization rate.

Expected Return $=r=\frac{D i v_{1}+P_{1}-P_{0}}{P_{0}}$

Valuing Common Stocks

The formula can be broken into two parts.

Dividend Yield + Capital Appreciation

Valuing Common Stocks

The formula can be broken into two parts.

Dividend Yield + Capital Appreciation

Expected Return $=r=\frac{D i v_{1}}{P_{0}}+\frac{P_{1}-P_{0}}{P_{0}}$

Valuing Common Stocks

Capitalization Rate can be estimated using the perpetuity formula, given minor algebraic manipulation.

Valuing Common Stocks

Capitalization Rate can be estimated using the perpetuity formula, given minor algebraic manipulation.

$$
\begin{aligned}
\text { Capitaliza tion Rate } & =P_{0}=\frac{D i v_{1}}{r-g} \\
& =r=\frac{D i v_{1}}{P_{0}}+g
\end{aligned}
$$

Valuing Common Stocks

Return Measurements

$$
\text { Dividend Yield }=\frac{\text { Div }_{1}}{\mathrm{P}_{0}}
$$

Return on Equity $=R O E$

$$
R O E=\frac{\text { EPS }}{\text { Book Equity Per Share }}
$$

Valuing Common Stocks

Dividend Discount Model - Computation of today's stock price which states that share value equals the present value of all expected future dividends.

Valuing Common Stocks

Dividend Discount Model - Computation of today's stock price which states that share value equals the present value of all expected future dividends.

$$
P_{0}=\frac{D i v_{1}}{(1+r)^{1}}+\frac{D i v_{2}}{(1+r)^{2}}+\ldots+\frac{D i v_{H}+P_{H}}{(1+r)^{H}}
$$

H- Time horizon for your investment.

Valuing Common Stocks

Example

Current forecasts are for XYZ Company to pay dividends of $\$ 3, \$ 3.24$, and $\$ 3.50$ over the next three years, respectively. At the end of three years you anticipate selling your stock at a market price of \$94.48. What is the price of the stock given a 12% expected return?

Valuing Common Stocks

Example

Current forecasts are for XYZ Company to pay dividends of \$3, \$3.24, and $\$ 3.50$ over the next three years, respectively. At the end of three years you anticipate selling your stock at a market price of \$94.48. What is the price of the stock given a 12% expected return?
$P V=\frac{3.00}{(1+.12)^{1}}+\frac{3.24}{(1+.12)^{2}}+\frac{3.50+94.48}{(1+.12)^{3}}$ $P V=\$ 75.00$

Valuing Common Stocks

If we forecast no growth, and plan to hold out stock indefinitely, we will then value the stock as a PERPETUITY.

Valuing Common Stocks

If we forecast no growth, and plan to hold out stock indefinitely, we will then value the stock as a PERPETUITY.

$$
\begin{aligned}
& \text { Perpetuity }=P_{0}=\frac{\operatorname{Div}_{1}}{r} \text { or } \frac{E P S_{1}}{{ }^{r}} \\
& \begin{array}{c}
\text { Assumes all earnings are } \\
\text { paid to shareholders. }
\end{array}
\end{aligned}
$$

Valuing Common Stocks

Constant Growth DDM - A version of the dividend growth model in which dividends grow at a constant rate (Gordon Growth Model).

Valuing Common Stocks

Example- continued

If the same stock is selling for $\$ 100$ in the stock market, what might the market be assuming about the growth in dividends?

$$
\begin{aligned}
& \$ 100=\frac{\$ 3.00}{.12-g} \quad \begin{array}{l}
\text { Answer } \\
g=.09
\end{array} \begin{array}{l}
\text { The market is } \\
\text { assuming the dividend } \\
\text { will grow at } 9 \% \text { per } \\
\text { year, indefinitely. }
\end{array}
\end{aligned}
$$

Valuing Common Stocks

- If a firm elects to pay a lower dividend, and reinvest the funds, the stock price may increase because future dividends may be higher.

Payout Ratio - Fraction of earnings paid out as dividends

Plowback Ratio - Fraction of earnings retained by the firm.

Valuing Common Stocks

Growth can be derived from applying the return on equity to the percentage of earnings plowed back into operations.

$\mathrm{g}=$ return on equity X plowback ratio

Valuing Common Stocks

Example

Our company forecasts to pay a $\$ 5.00$ dividend next year, which represents 100% of its earnings. This will provide investors with a 12% expected return. Instead, we decide to plow back 40% of the earnings at the firm's current return on equity of 20%. What is the value of the stock before and after the plowback decision?

Valuing Common Stocks

Example

Our company forecasts to pay a $\$ 5.00$ dividend next year, which represents 100% of its earnings. This will provide investors with a 12% expected return. Instead, we decide to blow back 40% of the earnings at the firm's current return on equity of 20%. What is the value of the stock before and after the plowback decision?

No Growth

With Growth

$P_{0}=\frac{5}{.12}=\$ 41.67$

Valuing Common Stocks

Example

Our company forecasts to pay a $\$ 5.00$ dividend next year, which represents 100% of its earnings. This will provide investors with a 12% expected return. Instead, we decide to blow back 40% of the earnings at the firm's current return on equity of 20%. What is the value of the stock before and after the plowback decision?

No Growth

$$
P_{0}=\frac{5}{.12}=\$ 41.67
$$

$$
\begin{aligned}
& g=.20 \times .40=.08 \\
& P_{0}=\frac{3}{.12-.08}=\$ 75.00
\end{aligned}
$$

Valuing Common Stocks

Example - continued

If the company did not plowback some earnings, the stock price would remain at $\$ 41.67$. With the plowback, the price rose to $\$ 75.00$.

The difference between these two numbers (75.00$41.67=33.33$) is called the Present Value of Growth Opportunities (PVGO).

Valuing Common Stocks

Present Value of Growth Opportunities (PVGO)

 - Net present value of a firm's future investments.Sustainable Growth Rate - Steady rate at which a firm can grow: plowback ratio X return on equity.

- Free Cash Flows (FCF) should be the theoretical basis for all PV calculations.
- FCF is a more accurate measurement of PV than either Div or EPS.
- The market price does not always reflect the PV of FCF.
- When valuing a business for purchase, always use FCF.

FCF and PV

Valuing a Business

The value of a business is usually computed as the discounted value of FCF out to a valuation horizon (H).

- The valuation horizon is sometimes called the terminal value and is calculated like PVGO.

$$
P V=\frac{F C F_{1}}{(1+r)^{1}}+\frac{F C F_{2}}{(1+r)^{2}}+\ldots+\frac{F C F_{H}}{(1+r)^{H}}+\frac{P V_{H}}{(1+r)^{H}}
$$

FCF and PV

Valuing a Business

$$
P V=\underbrace{\frac{F C F_{1}}{(1+r)^{1}}+\frac{F C F_{2}}{(1+r)^{2}}+\ldots+\frac{F C F_{H}}{(1+r)^{H}}}+\underbrace{\frac{P V_{H}}{(1+r)^{H}}}
$$

$$
\underbrace{}_{P V \text { (free cash flows) }}
$$

PV (horizon value)

FCF and PV

Example

> Given the cash flows for Concatenator Manufacturing Division, calculate the PV of near term cash flows, $P V$ (horizon value), and the total value of the firm. $r=10 \%$ and $g=6 \%$

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AssetValue | 10.00 | 12.00 | 14.40 | 17.28 | 20.74 | 23.43 | 26.47 | 28.05 | 29.73 | 31.51 |
| Earnings | 1.20 | 1.44 | 1.73 | 2.07 | 2.49 | 2.81 | 3.18 | 3.36 | 3.57 | 3.78 |
| Investment | 2.00 | 2.40 | 2.88 | 3.46 | 2.69 | 3.04 | 1.59 | 1.68 | 1.78 | 1.89 |
| FreeCashFlow | -.80 | -.96 | -1.15 | -1.39 | -.20 | -.23 | 1.59 | 1.68 | 1.79 | 1.89 |
| EPSgrowth (\%) | 20 | 20 | 20 | 20 | 20 | 13 | 13 | 6 | 6 | 6 |

FCF and PV

Example - continued

Given the cash flows for Concatenator Manufacturing Division, calculate the PV of near term cash flows, PV (horizon value), and the total value of the firm. $r=10 \%$ and $g=6 \%$
$\mathrm{PV}($ horizon value $)=\frac{1}{(1.1)^{6}}\left(\frac{1.59}{.10-.06}\right)=22.4$

$$
\begin{aligned}
\mathrm{PV}(\mathrm{FCF}) & =-\frac{.80}{1.1}-\frac{.96}{(1.1)^{2}}-\frac{1.15}{(1.1)^{3}}-\frac{1.39}{(1.1)^{4}}-\frac{.20}{(1.1)^{5}}-\frac{.23}{(1.1)^{6}} \\
& =-3.6
\end{aligned}
$$

FCF and PV

Example - continued

Given the cash flows for Concatenator Manufacturing Division, calculate the PV of near term cash flows, PV (horizon value), and the total value of the firm. $r=10 \%$ and $g=6 \%$

$\mathrm{PV}($ business $)=\mathrm{PV}(\mathrm{FCF})+\mathrm{PV}($ horizon value $)$

$$
\begin{aligned}
& =-3.6+22.4 \\
& =\$ 18.8
\end{aligned}
$$

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Why Net Present Value Leads to Better Investment Decisions than Other Criteria

Chapter 5

Topics Covered

- NPV and its Competitors
- The Payback Period
- The Book Rate of Return
- Internal Rate of Return
- Capital Rationing

NPV and Cash Transfers

- Every possible method for evaluating projects impacts the flow of cash about the company as follows.

Payback

- The payback period of a project is the number of years it takes before the cumulative forecasted cash flow equals the initial outlay.
- The payback rule says only accept projects that "payback" in the desired time frame.
- This method is very flawed, primarily because it ignores later year cash flows and the the present value of future cash flows.

Payback

Example

Examine the three projects and note the mistake we would make if we insisted on only taking projects with a payback period of 2 years or less.

Project	C_{0}	C_{1}	C_{2}	C_{3}	Payback Period	NPV@ 10\%
A	-2000	500	500	5000		
B	-2000	500	1800	0		
C	-2000	1800	500	0		

Payback

Example

Examine the three projects and note the mistake we would make if we insisted on only taking projects with a payback period of 2 years or less.

Project	C_{0}	C_{1}	C_{2}	C_{3}	Payback Period	NPV@ 10\%
A	-2000	500	500	5000	3	$+2,624$
B	-2000	500	1800	0	2	-58
C	-2000	1800	500	0	2	+50

Book Rate of Return

Book Rate of Return - Average income divided by average book value over project life. Also called accounting rate of return.

book income Book rate of return $=\frac{\text { book income }}{\text { book assets }}$

Managers rarely use this measurement to make decisions. The components reflect tax and accounting figures, not market values or cash flows.

Internal Rate of Return

Example

You can purchase a turbo powered machine tool gadget for $\$ 4,000$. The investment will generate $\$ 2,000$ and $\$ 4,000$ in cash flows for two years, respectively. What is the IRR on this investment?

Internal Rate of Return

Example

You can purchase a turbo powered machine tool gadget for $\$ 4,000$. The investment will generate $\$ 2,000$ and $\$ 4,000$ in cash flows for two years, respectively. What is the IRR on this investment?

$$
N P V=-4,000+\frac{2,000}{(1+I R R)^{1}}+\frac{4,000}{(1+I R R)^{2}}=0
$$

Internal Rate of Return

Example

You can purchase a turbo powered machine tool gadget for $\$ 4,000$. The investment will generate $\$ 2,000$ and $\$ 4,000$ in cash flows for two years, respectively. What is the IRR on this investment?

$$
\begin{aligned}
& N P V=-4,000+\frac{2,000}{(1+I R R)^{1}}+\frac{4,000}{(1+I R R)^{2}}=0 \\
& I R R=28.08 \%
\end{aligned}
$$

Internal Rate of Return

Internal Rate of Return

Pitfall 1 - Lending or Borrowing?

- With some cash flows (as noted below) the NPV of the project increases s the discount rate increases.
- This is contrary to the normal relationship between NPV and discount rates.

C_{0}	C_{1}	C_{2}	C_{3}	$I R R$	$N P V @ 10 \%$
$+1,000$	$-3,600$	$-4,320$	$-1,728$	$+20 \%$	-.75

Internal Rate of Return

Pitfall 1 - Lending or Borrowing?

- With some cash flows (as noted below) the NPV of the project increases s the discount rate increases.
- This is contrary to the normal relationship between NPV and discount rates.

NPV

Discount Rate

Internal Rate of Return

Pitfall 2 - Multiple Rates of Return

- Certain cash flows can generate NPV=0 at two different discount rates.
- The following cash flow generates NPV=0 at both (-50\%) and 15.2%.

C_{0}	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
$-1,000$	+800	+150	+150	+150	+150	-150

Internal Rate of Return

Pitfall 2 - Multiple Rates of Return

- Certain cash flows can generate NPV=0 at two different discount rates.
- The following cash flow generates $\mathrm{NPV}=0$ at both (-50%) and 15.2%.

Internal Rate of Return

Pitfall 3 - Mutually Exclusive Projects

- IRR sometimes ignores the magnitude of the project.
- The following two projects illustrate that problem.

Project	C_{0}	C_{t}	IRR	NPV @ 10%
E	$-10,000$	$+20,000$	100	+8.182
F	$-20,000$	$+35,000$	75	$+11,818$

Internal Rate of Return

Pitfall 4 - Term Structure Assumption

- We assume that discount rates are stable during the term of the project.
- This assumption implies that all funds are reinvested at the IRR.
- This is a false assumption.

Internal Rate of Return

Calculating the IRR can be a laborious task. Fortunately, financial calculators can perform this function easily. Note the previous example.

Internal Rate of Return

Calculating the IRR can be a laborious task. Fortunately, financial calculators can perform this function easily. Note the previous example.

HP-10B		EL-733A
-350,000	CFj	-350,000
16,000	CFj	16,000
16,000	CFj	16,000
466,000	CFj	466,000
		IRR

All produce $\operatorname{IRR}=12.96$

BAII Plus

CF
2nd \{CLR Work \}
-350,000 ENTER \downarrow
16,000 ENTER \downarrow
16,000 ENTER \downarrow 466,000 ENTER \downarrow

IRR CPT

Profitability Index

- When resources are limited, the profitability index (PI) provides a tool for selecting among various project combinations and alternatives.
- A set of limited resources and projects can yield various combinations.
- The highest weighted average PI can indicate which projects to select.

Profitability Index

Profitability Index $=\frac{\mathrm{NPV}}{\text { Investment }}$

Example
We only have \$300,000 to invest. Which do we select?

Proj	NPV		Investment	
A PI				
A	230,000	200,000		1.15
B	141,250		125,000	
C	194,250	175,000		1.11
D	162,000	150,000	1.08	

Profitability Index

Example - continued

Proj	NPV	Investment	PI
A	230,000	200,000	1.15
B	141,250	125,000	1.13
C	194,250	175,000	1.11
D	162,000	150,000	1.08

Select projects with highest Weighted Avg PI WAPI $(\mathrm{BD})=\frac{1.13(125)}{(300)}+\frac{1.08(150)}{(300)}+\frac{1.0(25)}{(300)}$
$=1.09$

Profitability Index

Example - continued

Proj	NPV	Investment	PI
A	230,000	200,000	1.15
B	141,250	125,000	1.13
C	194,250	175,000	1.11
D	162,000	150,000	1.08

Select projects with highest Weighted Avg PI
WAPI (BD) $=1.09$
WAPI (A) $=1.10$

Linear Programming

- Maximize Cash flows or NPV
- Minimize costs

Example
Max NPV $=21 \mathrm{Xn}+16 \mathrm{Xb}+12 \mathrm{Xc}+13 \mathrm{Xd}$
subject to
$10 \mathrm{Xa}+5 \mathrm{Xb}+5 \mathrm{Xc}+0 \mathrm{Xd}<=10$
$-30 \mathrm{Xa}-5 \mathrm{Xb}-5 \mathrm{Xc}+40 \mathrm{Xd}<=12$

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Making Investment Decisions with the Net Present Value Rule

Chapter 6

Topics Covered

- What To Discount
- IM\&C Project
- Project Interaction
\rightarrow Timing
\rightarrow Equivalent Annual Cost
\rightarrow Replacement
\rightarrow Cost of Excess Capacity
\rightarrow Fluctuating Load Factors

What To Discount

Only Cash Flow is Relevant

What To Discount

Only Cash Flow is Relevant

What To Discount

Points to "Watch Out For"

DDo not confuse average with incremental payoff.
OInclude all incidental effects.
DDo not forget working capital requirements.
FForget sunk costs.
IInclude opportunity costs.
-Beware of allocated overhead costs.

Inflation

INFLATION RULE

- Be consistent in how you handle inflation!!
- Use nominal interest rates to discount nominal cash flows.
- Use real interest rates to discount real cash flows.
- You will get the same results, whether you use nominal or real figures.

Inflation

Example

You own a lease that will cost you $\$ 8,000$ next year, increasing at 3% a year (the forecasted inflation rate) for 3 additional years (4 years total). If discount rates are 10% what is the present value cost of the lease?

Inflation

Example

You own a lease that will cost you $\$ 8,000$ next year, increasing at 3% a year (the forecasted inflation rate) for 3 additional years (4 years total). If discount rates are 10% what is the present value cost of the lease?
$1+$ real interest rate $=\frac{1+\text { nominal interest rate }}{1+\text { inflation rate }}$

Inflation

Example - nominal figures

$\begin{array}{ll}\frac{\text { Year }}{1} & \\ 1 & 8000 \\ 2 & \\ 3 & 8000 \times 1.03=8240 \\ 4 & \\ & 8000 \times 1.03^{2}=8240 \\ & 8000 \times 1.03^{3}=8487.20\end{array}$

$$
\begin{aligned}
& \frac{\text { PV @ } 10 \%}{\frac{8000}{1.10}=7272.73} \\
& \frac{8240}{1.10^{2}}=6809.92 \\
& \frac{8487.20}{1.10^{3}}=6376.56 \\
& \frac{874.182}{1.10^{4}}=5970.78 \\
& \frac{\$ 26,429.99}{}
\end{aligned}
$$

Inflation

Example - real figures

Year	Cash Flow	PV @ 6.7961\%
1	$\frac{8000}{1.03}=7766.99$	$\frac{7766.99}{1.068}=7272.73$
2	$\frac{8240}{1.03^{2}}=7766.99$	$\frac{7766.99}{1.068^{2}}=6809.92$
3	$\frac{8487.20}{1.0^{3}}=7766.99$	$\frac{7766.99}{1.068^{3}}=6376.56$
4	$\frac{8741.82}{1.03^{4}}=7766.99$	$\frac{7766.99}{1.068^{4}}=5970.78$

IM\&C's Guano Project

Revised projections (\$1000s) reflecting inflation

	PERIOD							
	0	1	2	3	4	5	6	7
1. Capital investment	10,000							-1,949
2. Accumulated depreciation		1,583	3,167	4,750	6,333	7,917	9,500	0
3. Year-end book value	10,000	8,417	6,833	5,250	3,667	2,083	500	0
4. Working capital		550	1,289	3,261	4,890	3,583	2,002	0
5. Total book value $(3+4)$	10,000	8,967	8,122	8,511	8,557	5,666	2,502	0
6. Sales		523	12,887	32,610	48,901	35,834	19,717	
7. Cost of goods sold		837	7,729	19,552	29,345	21,492	11,830	
8. Other costs	4,000	2,200	1,210	1,331	1,464	1,611	1,772	
9. Depreciation		1,583	1,583	1,583	1,583	1,583	1,583	
10. Pretax profit $(6-7-8-9)$	-4,000	-4,097	2,365	10,144	16,509	11,148	4,532	1,449
11. Tax at 35%	-1,400	-1,434	828	3,550	5,778	3,902	1,586	507
12. Profit after tax $(10-11)$	-2,600	-2,663	1,537	6,594	10,731	7,246	2,946	942

IM\&C's Guano Project

- NPV using nominal cash flows

$$
\begin{aligned}
N P V= & -12,000-\frac{1,630}{1.20}+\frac{2,381}{(1.20)^{2}}+\frac{6,205}{(1.20)^{3}}+\frac{10,685}{(1.20)^{4}}+\frac{10,136}{(1.20)^{5}} \\
& +\frac{6,110}{(1.20)^{6}}+\frac{3,444}{(1.20)^{7}}=3,519 \text { or } \$ 3,519,000
\end{aligned}
$$

IM\&C's Guano Project

Cash flow analysis (\$1000s)

	PERIOD							
	0	1	2	3	4	5	6	7
1. Sales		523	12,887	32,610	48,901	35,834	19,717	
2. Cost of goods sold		837	7,729	19,552	29,345	21,492	11,830	
3. Other costs	4,000	2,200	1,210	1,331	1,464	1,611	1,772	
4. Tax on operations	-1,400	-1,434	828	3,550	5,778	3,902	1,586	
5. Cash flow from operations ($1-2-3-4$)	-2,600	$-1,080$	3,120	8,177	12,314	8,829	4,529	
6. Change in working capital		-550	-739	-1,972	-1,629	1,307	1,581	2,002
7. Capital investment and disposal	-10,000							1,442
8. Net cash flow $(5+6+7)$	-12,600	-1,630	2,381	6,205	10,685	10,136	6,110	3,444
9. Present value at 20% Net present value $=$ $+3,519$	-12,600	-1,358	1,654	3,591	5,153	4,074	2,046	961

IM\&C's Guano Project

Details of cash flow forecast in year 3 (\$1000s)

IM\&C's Guano Project

Tax depreciation allowed under the modified accelerated cost recovery system (MACRS) - (Figures in percent of depreciable investment).

Tax Depreciation Schedules by Recovery-Period Class						
Year(s)	3-Year	5-Year	7-Year	10-Year	15-Year	20-Year
1	33.33	20.00	14.29	10.00	5.00	3.75
2	44.45	32.00	24.49	18.00	9.50	7.22
3	14.81	19.20	17.49	14.40	8.55	6.68
4	7.41	11.52	12.49	11.52	7.70	6.18
5		11.52	8.93	9.22	6.93	5.71
6		5.76	8.93	7.37	6.23	5.28
7			8.93	6.55	5.90	4.89
8			4.45	6.55	5.90	4.52
9				6.55	5.90	4.46
10				6.55	5.90	4.46
11				3.29	5.90	4.46
12					5.90	4.46
13					5.90	4.46
14				5.90	4.46	
15					2.99	4.46
16					4.46	
$17-20$						2.25
1						

IM\&C's Guano Project

Tax Payments (\$1000s)

	PERIOD								
	0	1	2	3	4	5	6	7	
1. Sales		523	12,887	32,610	48,901	35,834	19,717		
2. Cost of goods sold *		837	7,729	19,552	29,345	21,492	11,830		
3. Other costs*	4,000	2,200	1,210	1,331	1,464	1,611	1,772		
4. Tax depreciation		$\underline{2,000}$	3,200	1,920	1,152	1,152	$\frac{576}{}$		
5. Pretax profit $\quad(1-2-3-4)$	$-4,000$	$-4,514$	748	9,807	16,940	11,579	5,539	$1,949^{+}$	
6. Taxes at $35 \%^{\ddagger}$	$-1,400$	$-1,580$	262	3,432	5,929	4,053	1,939	682	

Revised cash flow analysis (\$1000s)

PERIOD

0	1	2	3	4	5	6	7

1. Sales* $\quad 523$ 12,887 $\quad 32,610$ 48,901 $\quad 35,834 \begin{array}{lllll}19,717\end{array}$
2. Cost of goods sold*
3. Other costs*
$837 \quad 7,729 \quad 19,552 \quad 29,345 \quad 21,492 \quad 11,830$
$\begin{array}{lllllllll}\text { 4. } \mathrm{Tax}^{\dagger} & -1,400 & -1,580 & 262 & 3,432 & 5,929 & 4,053 & 1,939 & 682\end{array}$
4. Cash flow from operations
$(1-2-3-4)$
hange in working capital
$\begin{array}{llllllll}-2,600 & -934 & 3,686 & 8,295 & 12,163 & 8,678 & 4,176 & -682\end{array}$
5. Change in working capital $\quad \begin{array}{lllllll}-550 & -739 & -1,972 & -1,629 & 1,307 & 1,581 & 2,002\end{array}$
6. Capital investment and disposal $\quad-10,000$

1,949*
8. Net cash flow $(5+6+7) \quad-12,600 \quad-1,484 \quad 2,947 \quad 6,323 \quad 10,534 \quad 9,985 \quad 5,757 \quad 3,269$
9. Present value at $20 \% \quad \begin{array}{lllllllll} & -12,600 & -1,237 & 2,047 & 3,659 & 5,080 & 4,013 & 1,928 & 912\end{array}$ Net present value $=$ $+3,802$

Timing

- Even projects with positive NPV may be more valuable if deferred.
- The actual NPV is then the current value of some future value of the deferred project.

$$
\text { Current NPV }=\frac{\text { Net future value as of date } t}{(1+r)^{t}}
$$

Timing

Example

You may harvest a set of trees at anytime over the next 5 years. Given the FV of delaying the harvest, which harvest date maximizes current NPV?

	Harvest	Year				
	0	1	2	3	4	5
Net FV (\$1000s)	50	64.4	77.5	89.4	100	109.4
\% change in value		28.8	20.3	15.4	11.9	9.4

Timing

Example - continued

You may harvest a set of trees at anytime over the next 5 years. Given the FV of delaying the harvest, which harvest date maximizes current NPV?

$$
N P V \text { if harvested in year } 1=\frac{64.4}{1.10}=58.5
$$

Timing

Example - continued

You may harvest a set of trees at anytime over the next 5 years. Given the FV of delaying the harvest, which harvest date maximizes current NPV?

$$
N P V \text { if harvested in year } 1=\frac{64.4}{1.10}=58.5
$$

| | Harvest Year | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 2 | 3 | 4 | 5 |
| NPV (\$1000s) | 50 | 58.5 | 64.0 | 67.2 | 68.3 | 67.9 |

Equivalent Annual Cost

Equivalent Annual Cost - The cost per period with the same present value as the cost of buying and operating a machine.

Equivalent Annual Cost

Equivalent Annual Cost - The cost per period with the same present value as the cost of buying and operating a machine.

Equivalent annual cost $=\frac{\text { present value of costs }}{\text { annuity factor }}$

Equivalent Annual Cost

Example
Given the following costs of operating two machines and a 6% cost of capital, select the lower cost machine using equivalent annual cost method.

Equivalent Annual Cost

Example
Given the following costs of operating two machines and a 6% cost of capital, select the lower cost machine using equivalent annual cost method.

Year

Machine	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\mathbf{4}$	$\underline{\text { PV@ } 6 \%}$	EAC
A	15	5	5	5	28.37	
B	10	6	6		21.00	

Equivalent Annual Cost

Example
Given the following costs of operating two machines and a 6% cost of capital, select the lower cost machine using equivalent annual cost method.

Year

Machine	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{\text { PV @ 6\% }}$	EAC
A	15	5	5	5	28.37	10.61
B	10	6	6		21.00	11.45

Machinery Replacement

Annual operating cost of old machine $=8$
Cost of new machine
$\begin{array}{cccccc}\text { Year: } & \underline{0} & \underline{1} & \underline{2} & \underline{3} & \frac{\text { NPV @ } 10 \%}{27.4}\end{array}$

Equivalent annual cost of new machine $=$
$27.4 /(3$-year annuity factor $)=27.4 / 2.5=11$
MORAL: Do not replace until operating cost of old machine exceeds 11.

Cost of Excess Capacity

A project uses existing warehouse and requires a new one to be built in Year 5 rather than Year 10. A warehouse costs 100 \& lasts 20 years.

Equivalent annual cost @ $10 \%=100 / 8.5=11.7$

$$
\underline{0} \ldots \underline{5} \quad \underline{6} \ldots \underline{10} \quad \underline{11} \ldots
$$

With project
$0 \quad 0 \quad 11.7$
11.7
11.7

Without project
Difference
$\underline{0}$
$\underline{0} \quad \underline{0}$
0
11.7

0
0
11.7
11.7

0

PV extra cost $=\frac{11.7}{(1.1)^{6}}+\frac{11.7}{(1.1)^{7}}+\ldots+\frac{11.7}{(1.1)^{10}}=27.6$

Fluctuating Load Factors

Two Old Machines

Annual output per machine
Operating cost per machine PV operating cost per pachine PV operating cost of two machines $2 \times 15,000=\$ 30,000$

Fluctuating Load Factors

Two New Machines

Annual output per machine
Capital cost pe machine
Operating cost per machine
PV operating cost per pachine PV operating cost of two machines

750 units
\$6,000
$1 \times 750=\$ 750$
$6,000+750 / .10=\$ 13,500$
$2 \times 13,500=\$ 27,000$

Fluctuating Load Factors

	One Old Machine	One New Machine
Annual output per machine	500 units	1,000 units
Capital cost pe machine	0	$\$ 6,000$
Operating cost per machine	$2 \times 500=\$ 1,000$	$1 \times 1,000=\$ 1,000$
PV operating cost per pachine	$1,000 / .10=\$ 10,000$	$6,000+1,000 / .10=\$ 16,000$
PV operating cost of two machines	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots26,000$	

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Introduction to Risk, Return, and the Opportunity Cost of Capital

Chapter 7

Topics Covered

- 72 Years of Capital Market History
- Measuring Risk
- Portfolio Risk
- Beta and Unique Risk
- Diversification

The Value of an Investment of \$1 in 1926

хәриІ

The Value of an Investment of \$1 in 1926

Rates of Return 1926-1997

Year

Measuring Risk

Variance - Average value of squared deviations from mean. A measure of volatility.

Standard Deviation - Average value of squared deviations from mean. A measure of volatility.

Measuring Risk

Coin Toss Game-calculating variance and standard deviation

(1)
(2)

Percent Rate of Return Deviation from Mean Squared Deviation

+40	+30	900
+10	0	0
+10	0	0
-20	-30	900

Variance $=$ average of squared deviations $=1800 / 4=450$
Standard deviation $=$ square of root variance $=\sqrt{450}=21.2 \%$

Measuring Risk

Histogram of Annual Stock Market Returns

\# of Years

Measuring Risk

Diversification - Strategy designed to reduce risk by spreading the portfolio across many investments.
Unique Risk - Risk factors affecting only that firm. Also called "diversifiable risk."
Market Risk - Economy-wide sources of risk that affect the overall stock market. Also called "systematic risk."

Measuring Risk

Measuring Risk

Measuring Risk

Portfolio Risk

The variance of a two stock portfolio is the sum of these four boxes:

	Stock 1	Stock 2
Stock 1	$\mathrm{x}_{1}^{2} \mathrm{O}_{1}^{2}$	$\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{O}_{12}=$
Stock 2	$\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{Ó}_{12}=$ $\mathrm{x}_{1} \mathrm{X}_{2} \tilde{\mathrm{n}}_{12} \tilde{\mathrm{n}}_{12} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{2}$	
	$\mathrm{x}_{2}^{2} \mathrm{O}_{2}^{2}$	

Portfolio Risk

Example

Suppose you invest $\$ 55$ in Bristol-Myers and \$45 in McDonald's. The expected dollar return on your BM is $.10 \times 55=5.50$ and on McDonald's it is $.20 \times 45=9.90$. The expected dollar return on your portfolio is $5.50+9300=14.50$. The portfolio rate of return is $14.50 / 100=.145$ or 14.5%. Assume a correlation coefficient of 1 .

Portfolio Risk

Example

Suppose you invest \$55 in Bristol-Myers and \$45 in McDonald's. The expected dollar return on your BM is $.10 \times 55=5.50$ and on
McDonald's it is $.20 \times 45=9.90$. The expected dollar return on your portfolio is $5.50+9300=14.50$. The portfolio rate of return is $14.50 / 100=.145$ or 14.5%. Assume a correlation coefficient of 1 .

	Bristol - Myers	McDonald' s
Bristol - Myers	$\mathrm{x}_{1}^{2} \mathrm{o}_{1}^{2}=(.55)^{2} \times(17.1)^{2}$	$\mathrm{x}_{1} \mathrm{x}_{2} \tilde{\mathrm{n}}_{12} \mathrm{O}_{1} \mathrm{O}_{2}=.55 \times .45$ $\times 1 \times 17.1 \times 20.8$
McDonald' s	$\mathrm{x}_{1} \mathrm{x}_{2} \tilde{\mathrm{n}}_{12} \mathrm{O}_{1} \mathrm{O}_{2}=.55 \times .45$ $\times 1 \times 17.1 \times 20.8$	$\mathrm{x}_{2}^{2} \dot{\mathrm{O}}_{2}^{2}=(.45)^{2} \times(20.8)^{2}$

Portfolio Risk

Example

Suppose you invest $\$ 55$ in Bristol-Myers and $\$ 45$ in McDonald's. The expected dollar return on your BM is $.10 \times 55=5.50$ and on McDonald's it is $.20 \times 45=9.90$. The expected dollar return on your portfolio is $5.50+9300=14.50$. The portfolio rate of return is $14.50 / 100=.145$ or 14.5%. Assume a correlation coefficient of 1 .

Portfolio Valriance $=\left[(.55)^{2} \mathrm{x}(17.1)^{2}\right]$

$$
\begin{aligned}
& +\left[(.45)^{2} \times(20.8)^{2}\right] \\
& +2(.55 \times .45 \times 1 \times 17.1 \times 20.8)=352.10
\end{aligned}
$$

Standard Deviation $=\sqrt{352.1}=18.7 \%$

Portfolio Risk

Expected Portfolio Return $=\left(\mathrm{x}_{1} \mathrm{r}_{1}\right)+\left(\mathrm{X}_{2} \mathrm{r}_{2}\right)$

Portfolio Variance $=\mathrm{x}_{1}^{2} \hat{\sigma}_{1}^{2}+\mathrm{x}_{2}^{2} \hat{\mathrm{O}}_{2}^{2}+2\left(\mathrm{x}_{1} \mathrm{x}_{2} \tilde{\mathrm{n}}_{12} \hat{\mathrm{O}}_{1} \mathrm{O}_{2}\right)$

Portfolio Risk

The shaded boxes contain variance terms; the remainder contain covariance terms.

STOCK

To calculate portfolio variance add up the boxes

Beta and Unique Risk

1. Total risk $=$ diversifiable risk + market risk
2. Market risk is measured by beta, the sensitivity to market changes.

Expected
stock
return

Beta and Unique Risk

Market Portfolio - Portfolio of all assets in the economy. In practice a broad stock market index, such as the $\mathrm{S} \& \mathrm{P}$ Composite, is used to represent the market.

Beta - Sensitivity of a stock's return to the return on the market portfolio.

Beta and Unique Risk

$$
B_{i}=\frac{\boldsymbol{\sigma}_{i m}}{\boldsymbol{\sigma}_{m}^{2}}
$$

Beta and Unique Risk

$$
B_{i}=\frac{\sigma_{i m}}{\sigma_{m}^{2}} \quad \longrightarrow \begin{aligned}
& \text { Covariance with the } \\
& \text { market }
\end{aligned}
$$

Variance of the market

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Risk and Return

Chapter 8

Topics Covered

- Markowitz Portfolio Theory
- Risk and Return Relationship
- Testing the CAPM
- CAPM Alternatives

Markowitz Portfolio Theory

- Combining stocks into portfolios can reduce standard deviation below the level obtained from a simple weighted average calculation.
- Correlation coefficients make this possible.
- The various weighted combinations of stocks that create this standard deviations constitute the set of efficient portfolios.

Markowitz Portfolio Theory

Price changes vs. Normal distribution
Microsoft - Daily \% change 1986-1997

Daily \% Change

Markowitz Portfolio Theory

Price changes vs. Normal distribution
Microsoft - Daily \% change 1986-1997

Daily \% Change

Markowitz Portfolio Theory

Standard Deviation VS. Expected Return
Investment C

Markowitz Portfolio Theory

Standard Deviation VS. Expected Return
Investment D

Markowitz Portfolio Theory

- Expected Returns and Standard Deviations vary given different weighted combinations of the stocks.

Expected Return (\%)

Standard Deviation

Efficient Frontier

-Each half egg shell represents the possible weighted combinations for two stocks.
-The composite of all stock sets constitutes the efficient frontier.

Standard Deviation

Efficient Frontier

-Lending or Borrowing at the risk free rate $\left(\mathrm{r}_{\mathrm{f}}\right)$ allows us to exist outside the efficient frontier.

Standard Deviation

Efficient Frontier

Example

Stocks	$\underline{\sigma}$	\% of Portfolio	
ABC Corp	28	60%	15%
Big Corp	42	40%	21%

Standard Deviation $=$ weighted $\operatorname{avg}=\underline{33.6}$
Standard Deviation $=$ Portfolio $=\underline{28.1}$
Return $=$ weighted avg $=$ Portfolio $=\underline{17.4 \%}$

Efficient Frontier

Example
Stocks
ABC Corp
Big Corp
$\underline{\sigma}$
28
42

Correlation Coefficient $=.4$
Avg Return
15%
21%

Standard Deviation $=$ weighted $\operatorname{avg}=\underline{33.6}$
Standard Deviation $=$ Portfolio $=\underline{28.1}$
Return $=$ weighted $\operatorname{avg}=$ Portfolio $=\underline{17.4 \%}$

Let's Add stock New Corp to the portfolio

Efficient Frontier

Example
Correlation Coefficient $=.3$

Stocks	$\underline{\sigma}$	$\%$ of Portfolio	Avg Return
Portfolio	28.1	50\%	17.4\%
New Corp	30	50\%	19\%

NEW Standard Deviation $=$ weighted avg $=31.80$
NEW Standard Deviation $=$ Portfolio $=\underline{\mathbf{2 3 . 4 3}}$
NEW Return $=$ weighted avg $=$ Portfolio $=\underline{\mathbf{1 8 . 2 0 \%}}$

Efficient Frontier

Example
Correlation Coefficient $=.3$
$\begin{array}{llcc}\text { Stocks } & \underline{\sigma} & \text { \% of Portfolio } & \\ \text { Portfolio } & 28.1 & 50 \% & \\ \text { New Corp Return } \\ \text { Ne } & 30 & 50 \% & 17.4 \% \\ & & 19 \%\end{array}$

NEW Standard Deviation $=$ weighted avg $=31.80$
NEW Standard Deviation $=$ Portfolio $=\underline{23.43}$
NEW Return $=$ weighted $\operatorname{avg}=$ Portfolio $=\underline{18.20 \%}$

NOTE: Higher return \& Lower risk

Efficient Frontier

Example Correlation Coefficient $=.3$

Stocks	$\underline{\sigma}$	\% of Portfolio	Avg Return
Portfolio	28.1	50\%	17.4\%
New Corp	30	50\%	19\%

NEW Standard Deviation $=$ weighted avg $=31.80$
NEW Standard Deviation $=$ Portfolio $=\underline{23.43}$
NEW Return $=$ weighted avg $=$ Portfolio $=\underline{18.20 \%}$

NOTE: Higher return \& Lower risk
How did we do that?

Efficient Frontier

Example Correlation Coefficient $=.3$

Stocks	$\underline{\sigma}$	\% of Portfolio	
	Avg Return		
Portfolio	28.1	50%	
New Corp	30	50%	17.4%
N		19%	

NEW Standard Deviation $=$ weighted avg $=31.80$
NEW Standard Deviation $=$ Portfolio $=\underline{23.43}$
NEW Return $=$ weighted $\mathrm{avg}=$ Portfolio $=\underline{18.20 \%}$

NOTE: Higher return \& Lower risk How did we do that? DIVERSIFICATION

Efficient Frontier

Return

B

A

Risk
(measured as σ)

Efficient Frontier

Return

Risk

Efficient Frontier

Return

Risk

Efficient Frontier

Return

Risk

Efficient Frontier

Return
Goal is to move

Risk

Efficient Frontier

Return

Low Risk
High Return

Risk

Efficient Frontier

Return

Low Risk High Risk
High Return High Return

Risk

Efficient Frontier

Return

Low Risk	High Risk
High Return	High Return

Low Risk
Low Return

Risk

Efficient Frontier

Return

Low Risk High Return	High Risk High Return
Low Risk Low Return	High Risk Low Return

Risk

Efficient Frontier

Return

Low Risk
Hiamerirk
High Rety High Return
Low isk High Risk
Low Return

Risk

Efficient Frontier

Return

Risk

Security Market Line

Security Market Line

Risk

Security Market Line

Risk

Security Market Line

Security Market Line

Return
 Market Return $=\mathbf{r}_{\mathrm{m}}$
 Risk Free
 Return

 Security Market
 Line (SML)
 BETA
 1.0

Security Market Line

Return

SML Equation $=r_{f}+B\left(r_{m}-r_{f}\right)$

Capital Asset Pricing Model

$R=r_{f}+B\left(r_{m}-r_{f}\right)$

CAPM

Testing the CAPM

Beta vs. Average Risk Premium

Avg Risk Premium

 1931-65
SML

30

Testing the CAPM

Beta vs. Average Risk Premium

Testing the CAPM

Company Size vs. Average Return

Average Return (\%)

Testing the CAPM

Book-Market vs. Average Return

Average Return (\%)

Book-Market Ratio
Highest
Lowest

Consumption Betas vs Market Betas

Stocks

(and other risky assets)

Wealth = market portfolio

Consumption Betas vs Market Betas

Stocks
(and other risky assets)

Market risk makes wealth uncertain.

Wealth = market portfolio

Consumption Betas vs Market Betas

Consumption Betas vs Market Betas

Stocks
(and other risky assets)

Consumption

Consumption Betas vs Market Betas

Consumption Betas vs Market Betas

Arbitrage Pricing Theory

Alternative to CAPM

Expected Risk
Premium $=r-r_{f}$

$$
=B_{\text {factor } 1}\left(r_{\text {factor } 1}-r_{f}\right)+B_{f 2}\left(r_{f 2}-r_{f}\right)+\ldots
$$

Arbitrage Pricing Theory

Alternative to CAPM

Expected Risk

$$
\begin{aligned}
\text { Premium } & =\mathrm{r}-\mathrm{r}_{\mathrm{f}} \\
& =\mathrm{B}_{\text {factor } 1}\left(\mathrm{r}_{\text {factor } 1}-\mathrm{r}_{\mathrm{f}}\right)+\mathrm{B}_{\mathrm{f} 2}\left(\mathrm{r}_{\mathrm{f} 2}-\mathrm{r}_{\mathrm{f}}\right)+\ldots
\end{aligned}
$$

Return $=\mathrm{a}+\mathrm{b}_{\text {factor } 1}\left(\mathrm{r}_{\text {factor } 1}\right)+\mathrm{b}_{\mathrm{f} 2}\left(\mathrm{r}_{\mathrm{f} 2}\right)+\ldots$

Arbitrage Pricing Theory

Estimated risk premiums for taking on risk factors

(1978-1990)

Estimated Risk Premium

Factor	$\left(\mathrm{r}_{\text {factor }}-r_{f}\right.$
Yield spread	5.10\%
Interest rate	-. 61
Exchange rate	-. 59
Real GNP	. 49
Inflation	-. 83
Mrket	6.36

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Capital Budgeting and Risk

Chapter 9

Topics Covered

- Measuring Betas
- Capital Structure and COC
- Discount Rates for Intl. Projects
- Estimating Discount Rates
- Risk and DCF

Company Cost of Capital

- A firm's value can be stated as the sum of the value of its various assets.

Firm value $=P V(A B)=P V(A)+P V(B)$

Company Cost of Capital

- A company's cost of capital can be compared to the CAPM required return.

Measuring Betas

- The SML shows the relationship between return and risk.
- CAPM uses Beta as a proxy for risk.
- Beta is the slope of the SML, using CAPM terminology.
- Other methods can be employed to determine the slope of the SML and thus Beta.
- Regression analysis can be used to find Beta.

Measuring Betas

Hewlett Packard Beta

Price data - Jan 78 - Dec 82

$$
\begin{aligned}
& \mathrm{R}^{2}=.53 \\
& \mathrm{~B}=1.35
\end{aligned}
$$

Slope determined from 60 months of prices and plotting the line of best fit.

Market return (\%)

Measuring Betas

Hewlett Packard Beta

Price data - Jan 83 - Dec 87

$$
\begin{aligned}
& \mathrm{R}^{2}=.49 \\
& \mathrm{~B}=1.33
\end{aligned}
$$

Slope determined from 60 months of prices and plotting the line of best fit.

Hewlett-Packard return (\%)

Market return (\%)

Measuring Betas

Hewlett Packard Beta

Price data - Jan 88 - Dec 92

$$
\begin{aligned}
& \mathrm{R}^{2}=.45 \\
& \mathrm{~B}=1.70
\end{aligned}
$$

Slope determined from 60 months of prices and plotting the line of best fit.

Hewlett-Packard return (\%)

Market return (\%)

Measuring Betas

Hewlett Packard Beta

Price data - Jan 93 - Dec 97

$$
\begin{aligned}
& \mathrm{R}^{2}=.35 \\
& \mathrm{~B}=1.69
\end{aligned}
$$

Slope determined from 60 months of prices and plotting the line of best fit.

Hewlett-Packard return (\%)

Measuring Betas

AT\&T Beta

Price data - Jan 78 - Dec 82

$$
\begin{aligned}
& \mathrm{R}^{2}=.28 \\
& \mathrm{~B}=0.21
\end{aligned}
$$

Slope determined from 60 months of prices and plotting the line of best fit.

Market return (\%)

Measuring Betas

AT\&T Beta

Price data - Jan 83 - Dec 87

$$
\begin{aligned}
& \mathrm{R}^{2}=.23 \\
& \mathrm{~B}=0.64
\end{aligned}
$$

Slope determined from 60 months of prices and plotting the line of best fit.

Market return (\%)

Measuring Betas

AT\&T Beta

Price data - Jan 88 - Dec 92

$$
\begin{aligned}
& \mathrm{R}^{2}=.28 \\
& \mathrm{~B}=0.90
\end{aligned}
$$

Slope determined from 60 months of prices and plotting the line of best fit.

Market return (\%)

Measuring Betas

A T \& T Beta

Price data - Jan 93 - Dec 97

$$
\begin{aligned}
& \mathrm{R}^{2}=. .17 \\
& \mathrm{~B}=.90
\end{aligned}
$$

Slope determined from 60 months of prices and plotting the line of best fit.

Market return (\%)

RISK	CLASS 5 CLASS	CLASS 5 YEARS LATER
10 (High betas)	35	69
9	18	54
8	16	45
7	13	41
6	14	39
5	14	42
4	13	40
3	16	45
2	21	61
1 (Low betas)	40	62

Capital Budgeting \& Risk

Modify CAPM
(account for proper risk)

- Use COC unique to project, rather than Company COC
- Take into account Capital Structure

Company Cost of Capital simple approach

- Company Cost of Capital (COC) is based on the average beta of the assets.
- The average Beta of the assets is based on the $\%$ of funds in each asset.

Company Cost of Capital simple approach

Company Cost of Capital (COC) is based on the average beta of the assets.

The average Beta of the assets is based on the \% of funds in each asset.

Example
$1 / 3$ New Ventures B=2.0
$1 / 3$ Expand existing business $\mathrm{B}=1.3$
$1 / 3$ Plant efficiency $B=0.6$

AVG B of assets $=1.3$

Capital Structure

Capital Structure - the mix of debt \& equity within a company

Expand CAPM to include CS

$$
\mathrm{R}=\mathrm{r}_{\mathrm{f}}+\mathrm{B}\left(\mathrm{r}_{\mathrm{m}}-\mathrm{r}_{\mathrm{f}}\right)
$$

becomes

$$
\mathrm{R}_{\text {equity }}=\mathrm{r}_{\mathrm{f}}+\mathrm{B}\left(\mathrm{r}_{\mathrm{m}}-\mathrm{r}_{\mathrm{f}}\right)
$$

Capital Structure \& COC

$\mathrm{COC}=\mathrm{r}_{\text {portfolio }}=\mathrm{r}_{\text {assets }}$

Capital Structure \& COC

$\mathrm{COC}=\mathrm{r}_{\text {portfolio }}=\mathrm{r}_{\text {assets }}$

$$
r_{\text {assets }}=W A C C=r_{\text {debt }} \frac{(D)}{(V)}+r_{\text {equity }} \frac{(E)}{(V)}
$$

Capital Structure \& COC

$$
\mathrm{COC}=\mathrm{r}_{\text {portfolio }}=\mathrm{r}_{\text {assets }}
$$

$$
r_{\text {assets }}=W A C C=r_{\text {debt }} \frac{(D)}{(V)}+r_{\text {equity }} \frac{(E)}{(V)}
$$

$$
B_{\text {assets }}=B_{\text {debt }} \frac{(D)}{(V)}+B_{\text {equity }} \frac{(E)}{(V)}
$$

Capital Structure \& COC

$$
\mathrm{COC}=\mathrm{r}_{\text {portfolio }}=\mathrm{r}_{\text {assets }}
$$

$$
r_{\text {assets }}=W A C C=r_{\text {debt }} \frac{(D)}{(V)}+r_{\text {equity }} \frac{(E)}{(V)}
$$

$$
B_{\text {assets }}=B_{\text {debt }} \frac{(D)}{(V)}+B_{\text {equity }} \frac{(E)}{(V)}
$$

$$
r_{\text {equity }}=r_{f}+B_{\text {equity }}\left(r_{m}-r_{f}\right)
$$

Capital Structure \& COC

$$
\mathrm{COC}=\mathrm{r}_{\text {portfolio }}=\mathrm{r}_{\text {assets }}
$$

$$
r_{\text {assets }}=W A C C=r_{\text {debt }} \frac{(D)}{(V)}+r_{\text {equity }} \frac{(E)}{(V)}
$$

$$
\begin{aligned}
& B_{\text {assets }}=B_{\text {debt }} \frac{(D)}{(V)}+B_{\text {equity }} \frac{(E)}{(V)} \\
& r_{\text {equity }}=r_{f}+B_{\text {equity }}\left(r_{m}-r_{f}\right)
\end{aligned}
$$

IMPORTANT

E, D, and V are all market values

Capital Structure \& COC

Expected Returns and Betas prior to refinancing

Pinnacle West Corp.

$$
\begin{aligned}
\mathrm{R}_{\text {equity }} & =\mathrm{r}_{\mathrm{f}}+\mathrm{B}\left(\mathrm{r}_{\mathrm{m}}-\mathrm{r}_{\mathrm{f}}\right) \\
& =.045+.51(.08)=.0858 \text { or } 8.6 \%
\end{aligned}
$$

$\mathrm{R}_{\text {debt }}=\mathrm{YTM}$ on bonds

$$
=6.9 \%
$$

Pinnacle West Corp.

	Beta	Standard.Error
Boston Electric	.60	.19
Central HUdson	.30	.18
Consolidated Edison	.65	.20
DTE Energy	.56	.17
Eastern Utilities Assoc	.66	.19
GPU Inc	.65	.18
NE Electric System	.35	.19
OGE Energy	.39	.15
PECO Energy	.70	.23
Pinnacle West Corp	.43	.21
PP \& LResources	.37	.21
Portfolio Average	.51	.15

Pinnacle West Corp.

$$
\begin{aligned}
C O C=r_{\text {assest }} & =\frac{D}{V} r_{\text {debt }}+\frac{E}{V} r_{\text {equity }} \\
& =.35(.08)+.65(.10) \\
& =.093 \text { or } 9.3 \%
\end{aligned}
$$

International Risk

	σ Ratio	Correlation coefficient	Beta
Argentina	3.52	.416	1.46
Brazil	3.80	.160	.62
Kazakhstan	2.36	.147	.35
Taiwan	3.80	.120	.47

Source: The Brattle Group, Inc.
σ Ratio - Ratio of standard deviations, country index vs. S\&P composite index

Unbiased Forecast

- Given three outcomes and their related probabilities and cash flows we can determine an unbiased forecast of cash flows.

Possible cash flow	Probability	Prob weighted cash flow	Unbiased forecast
1.2	.25	.3	
1.0	.50	.5	$\$ 1.0$ million
0.8	.25	.2	

Asset Betas

Cash flow $=$ revenue - fixed cost - variable cost
$\mathrm{PV}($ asset $)=\mathrm{PV}($ revenue $)-\mathrm{PV}($ fixed cost $)-\mathrm{PV}($ variable cost $)$
or
$P V($ revenue $)=P V($ fixed cost $)+P V($ variable cost $)+P V($ asset $)$

Asset Betas

$$
\begin{aligned}
B_{\text {revenue }}= & B_{\text {fixed cost }} \frac{P V(\text { fixed cost })}{P V(\text { revenue })}+ \\
& +B_{\text {variablecost }} \frac{P V(\text { variable cost })}{P V(\text { revenue })}+B_{\text {asset }} \frac{P V(\text { asset })}{P V(\text { revenue })}
\end{aligned}
$$

Asset Betas

$$
\begin{aligned}
\mathrm{B}_{\text {asset }} & =\mathrm{B}_{\text {revenue }} \frac{\mathrm{PV}(\text { revenue })-\mathrm{PV}(\text { variabl e cost })}{\mathrm{PV}(\text { asset })} \\
& =\mathrm{B}_{\text {revenue }}\left[1-\frac{\mathrm{PV}(\text { fixed cost })}{\mathrm{PV}(\text { asset })}\right]
\end{aligned}
$$

Risk,DCF and CEQ

Example

Project A is expected to produce $\mathrm{CF}=\$ 100 \mathrm{mil}$ for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project?

Risk,DCF and CEQ

Example

Project A is expected to produce $\mathrm{CF}=\$ 100$ mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project?

$$
\begin{aligned}
r & =r_{f}+B\left(r_{m}-r_{f}\right) \\
& =6+.75(8) \\
& =12 \%
\end{aligned}
$$

Risk,DCF and CEQ

Example

Project A is expected to produce $\mathrm{CF}=\$ 100 \mathrm{mil}$ for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project?

Project A

Year	Cash Flow	PV @ 12\%		
1	100	89.3		
2	100	79.7		
3	100	71.2		
	Total PV			240.2

Risk,DCF and CEQ

Example

Project A is expected to produce $\mathrm{CF}=\$ 100 \mathrm{mil}$ for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project?

Project A		
Year	Cash Flow	PV @ 12\%
1	100	89.3
2	100	79.7
3	100	71.2
$3 y y$	Total PV	240.2

$$
\begin{aligned}
r & =r_{f}+B\left(r_{m}-r_{f}\right) \\
& =6+.75(8) \\
& =12 \%
\end{aligned}
$$

Now assume that the cash flows change, but are RISK FREE. What is the new PV?

Risk,DCF and CEQ

Example

Project A is expected to produce $\mathrm{CF}=\$ 100$ mil for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project?.. Now assume that the cash flows change, but are RISK FREE. What is the new PV?

Project B

Project A		
Year	Cash Flow	PV @ 12\%
1	100	89.3
2	100	79.7
3	100	71.2
	Total PV	240.2

Year	Cash Flow	PV @ 6\%
1	94.6	89.3
2	89.6	79.7
3	84.8	71.2
	Total PV	240.2

Risk,DCF and CEQ

Example

Project A is expected to produce $\mathrm{CF}=\$ 100 \mathrm{mil}$ for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project?.. Now assume that the cash flows change, but are RISK FREE. What is the new PV?

Project A			Project B		
Year	Cash Flow	PV @ 12\%	Year	Cash Flow	PV @ 6\%
1	100	89.3	1	94.6	89.3
2	100	79.7	2	\%9.6	79.7
3	100	71.2	3	84.8	71.2
	Total PV	240.2		Tọtal PV	240.2

Since the 94.6 is risk free, we call it a Certainty Equivalent of the 100 .

Risk,DCF and CEQ

Example

Project A is expected to produce $\mathrm{CF}=\$ 100 \mathrm{mil}$ for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project?.. Now assume that the cash flows change, but are RISK FREE. What is the new PV?

The difference between the 100 and the certainty equivalent (94.6) is 5.4%...this \% can be considered the annual premium on a risky cash flow

Risky cash flow
= certainty equivalent cash flow
1.054

Risk,DCF and CEQ

Example

Project A is expected to produce $\mathrm{CF}=\$ 100 \mathrm{mil}$ for each of three years. Given a risk free rate of 6%, a market premium of 8%, and beta of .75 , what is the PV of the project?.. Now assume that the cash flows change, but are RISK FREE. What is the new PV?

$$
\begin{aligned}
& \text { Year } 1=\frac{100}{1.054}=94.6 \\
& \text { Year } 2=\frac{100}{1.054^{2}}=89.6 \\
& \text { Year } 3=\frac{100}{1.054^{3}}=84.8
\end{aligned}
$$

Risk,DCF and CEQ

- The prior example leads to a generic certainty equivalent formula.

$$
P V=\frac{C_{t}}{(1+r)^{t}}=\frac{C E Q_{t}}{\left(1+r_{f}\right)^{t}}
$$

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

A Project Is Not a Black Box

Chapter 10

Topics Covered

- Sensitivity Analysis
- Break Even Analysis
- Monte Carlo Simulation
- Decision Trees

How To Handle Uncertainty

Sensitivity Analysis - Analysis of the effects of changes in sales, costs, etc. on a project.
Scenario Analysis - Project analysis given a particular combination of assumptions.
Simulation Analysis - Estimation of the probabilities of different possible outcomes.
Break Even Analysis - Analysis of the level of sales (or other variable) at which the company breaks even.

Sensitivity Analysis

Example
Given the expected cash flow forecasts for Otoban Company's Motor Scooter project, listed on the next slide, determine the NPV of the project given changes in the cash flow components using a 10% cost of
 capital. Assume that all variables remain constant, except the one you are changing.

Sensitivity Analysis

Example - continued

	Year 0	Years 1-10
Investment	-15	
Sales		37.5
Variable Costs		30
Fixed Costs	3	
Depreciation		1.5
Pretax profit		3
Taxes @ 50\%		1.5
Profit after tax		3.5
Operating cash flow		3
Net Cash Flow	-15	

$¥$Fixed Costs 3

Pretax profit 3
.Taxes @ $50 \% 1.5$
Profit after tax 1.5
Operating cash flow 3.0
Net Cash Flow -15 3
NPV $=3.43$ billion Yen

Sensitivity Analysis

Example - continued

Possible Outcomes

Range
Variable Pessimistic Expected Optimistic

Market Size	.9 mil	51 mil	1.1 mil
Market Share	.04	.1	.16
Unit price	350,000	375,000	380,000
Unit Var Cost	360,000	300,000	275,000
Fixed Cost	4 bil	3 bil	2 bil

Sensitivity Analysis

Example - continued
NPV Calculations for Pessimistic Market Size Scenario

Sales 41.25

Variable Costs 33
Fixed Costs 3
Depreciation 1.5
Pretax profit 3.75
$¥$
.Taxes @ 50\%
1.88

Profit after tax 1.88
Operating cash flow 3.38
Net Cash Flow
-15
$+3.38$
$\underline{\mathrm{NPV}}=+5.7$ bil yen

Sensitivity Analysis

Example - continued

NPV Possibilities (Billions Yen)

Range
Variable Pessimistic Expected Optimistic

Market Size	1.1	3.4	5.7
Market Share	-10.4	3.4	17.3
Unit price	-4.2	3.4	5.0
Unit Var Cost	-15.0	3.4	11.1
Fixed Cost	0.4	3.4	6.5

Break Even Analysis

- Point at which the NPV=0 is the break even point.
- Otoban Motors has a breakeven point of 8,000 units sold.

PV (Yen)
Billions

Monte Carlo Simulation

Modeling Process

- Step 1: Modeling the Project
- Step 2: Specifying Probabilities
- Step 3: Simulate the Cash Flows

Decision Trees

Turboprop
960 (.8)

Decision Trees

Turboprop

-

960 (.8)

Decision Trees

Turboprop
960 (.8)
$-550<+30(.4) \longrightarrow 930$
$\mathrm{NPV}=?$

Piston
n

$$
N P V=?(960 \times .80)+(220 \times .20)=812
$$

Decision Trees

Turboprop

Decision Trees

Decision Trees

Piston

$$
\mathrm{NPV}=\text { ? }
$$

$$
\underbrace{=(80(.4)}_{\mathrm{NPV}=184.55} \mathrm{C}_{1}^{(88.18 \times .60)+(444.55 \times .40)}{ }^{220(.4)} 148(.6)
$$

Decision Trees

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Where Net Present Values Come From

Chapter 11

Topics Covered

- Look First To Market Values
- Forecasting Economic Rents
- Marvin Enterprises

Market Values

- Smart investment decisions make MORE money than smart financing decisions

Market Values

- Smart investments are worth more than they cost: they have positive NPVs
- Firms calculate project NPVs by discounting forecast cash flows, but . . .

Market Values

- Projects may appear to have positive NPVs because of forecasting errors.
e.g. some acquisitions result from errors in a DCF analysis.

Market Values

- Positive NPVs stem from a comparative advantage.
- Strategic decision-making identifies this comparative advantage; it does not identify growth areas.

Market Values

- Don't make investment decisions on the basis of errors in your DCF analysis.
- Start with the market price of the asset and ask whether it is worth more to you than to others.

Market Values

- Don't assume that other firms will watch passively.

Ask -How long a lead do I have over my rivals? What will happen to prices when that lead disappears?

In the meantime how will rivals react to my move? Will they cut prices or imitate my product?

Department Store Rents

$\mathrm{NPV}=-100+\frac{8}{1.10}+\ldots+\frac{8+134}{1.10^{10}}=\$ 1$ million
[assumes price of property appreciates by $\mathbf{3 \%}$ a year]

Rental yield $=10-3=7 \%$

NPV $\frac{8-7}{1.10}+\frac{8-7.21}{1.10^{2}}+\ldots+\frac{8-8.87}{1.10^{9}}+\frac{8-9.13}{1.10^{10}}=\$ 1$ million

Using Market Values

EXAMPLE: KING SOLOMON'S MINE

$$
\begin{array}{ll}
\text { Investment } & =\$ 200 \text { million } \\
\text { Life } & =10 \text { years } \\
\text { Production } & =.1 \text { million oz. } \\
\text { Production cost } & =\$ 200 \text { per } \mathrm{oz} . \\
\text { Current gold price } & =\$ 400 \text { per oz. } \\
\text { Discount rate } & =\mathbf{1 0 \%}
\end{array}
$$

Using Market Values

EXAMPLE: KING SOLOMON'S MINE - continued

If the gold price is forecasted to rise by 5% p.a.:
$\mathrm{NPV}=-200+(.1(420-200)) / 1.10+(.1(441-200)) / 1.10^{2}+\ldots=-\$ 10 \mathrm{~m}$.
But if gold is fairly priced, you do not need to forecast future gold prices:
NPV = -investment + PV revenues - PV costs
$=200+400-\Sigma\left((.1 \times 200) / 1.100^{t}\right)=\$ 77$ million

Do Projects Have Positive NPVs?

- Rents = profits that more than cover the cost of capital.
- NPV = PV (rents)
- Rents come only when you have a better product, lower costs or some other competitive edge.
- Sooner or later competition is likely to eliminate rents.

Competitive Advantage

Proposal to manufacture specialty chemicals

- Raw materials were commodity chemicals imported from Europe.
- Finished product was exported to Europe.
- High early profits, but . . .
- . . . what happens when competitors enter?

Marvin Enterprises

Capacity
 Unit cost

* Proposed

Marvin Enterprises

Prices

Technology Production Interest Interest Invest Scrap cost
 $\begin{array}{ll}\text { on } & \text { on } \\ \text { capital } & \text { salvage }\end{array}$

1. 2011
5.5
3.5
. 5
9
6
2. 2019
3.5
3,5
. 5
7
4

Marvin Enterprises

Demand for Garbage Blasters

Marvin Enterprises

Value of Garbage Blaster Investment

NPV new plant $=100 \times\left[-10+\Sigma\left((6-3) / 1.2^{\mathrm{t}}\right)+10 / 1.25\right.$
$=\$ 299$ million

Change PV existing plant $=24 \times \Sigma\left(1 / 1.2^{\mathrm{t}}\right)=\$ 72$ million

Net benefit $=299-72=\$ 227$ million

Marvin Enterprises

-VALUE OF CURRENT BUSINESS:
At price of $\$ 7 \mathrm{PV}=24 \times 3.5 / .20$
VALUE
420
-WINDFALL LOSS:
Since price falls to $\$ 5$ after 5 years,
Loss $=-24 \times(2 / .20) \times(1 / 1.20)^{5}$

- 96
-VALUE OF NEW INVESTMENT:
Rent gained on new investment $=100 \times 1$ for 5 years $=299$
Rent lost on old investment $=-24 \times 1$ for 5 years $=\underline{-72}$ $\underline{227} \underline{227}$

TOTAL VALUE: 551

CURRENT MARKET PRICE:

Marvin Enterprises

Alternative Expansion Plans

NPV \$m.

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Making Sure Managers Maximize NPV

Chapter 12

Topics Covered

- The capital investment process
- Decision Makers and Information
- Incentives
- Residual Income and EVA
- Accounting Performance Measures
- Economic Profit

The Principal Agent Problem

Shareholders $=$ Owners

Question: Who has the power?

Answer: Managers
Managers = Employees

Capital Investment Decision

Strategic Planning "Top Down"

Capital Investments

Project Creation
"Bottom Up"

Off Budget Expenditures

OInformation Technology
〇Research and Development
OMarketing
OTraining and Development

Information Problems

1. Consistent Forecasts
2. Reducing Forecast Bias
3. Getting Senior Management Needed Information

Growth and Returns

Rate of return, \%

Brealey \& Myers Second Law

The proportion of proposed projects having a positive NPV at the official corporate hurdle rate is independent of the hurdle rate.

Incentives

Agency Problems in Capital Budgeting

- Reduced effort
- Perks
- Empire building
- Entrenching investment
- Avoiding risk

Incentive Issues

- Monitoring - Reviewing the actions of managers and providing incentives to maximize shareholder value.
- Free Rider Problem - When owners rely on the efforts of others to monitor the company.
- Compensation - How to pay managers so as to reduce the cost and need for monitoring and to maximize shareholder value.

Residual Income \& EVA

- Techniques for overcoming errors in accounting measurements of performance.
- Emphasizes NPV concepts in performance evaluation over accounting standards.
- Looks more to long term than short term decisions.
- More closely tracks shareholder value than accounting measurements.

Residual Income \& EVA

Ouayle City Subduction Plant (\$mil)

Income
Sales
550
COGS 275
Selling, G\&A 75
$\underline{200}$
taxes @ 35\% 70
Net Income \$130

Assets
Net W.C. 80
Property, plant and
equipment 1170
less depr. $\quad \underline{360}$
Net Invest.. 810
Other assets 110
Total Assets \$1,000

Residual Income \& EVA

Ouayle City Subduction Plant (\$mil)

$$
R O I=\frac{130}{1,000}=.13
$$

Given $\mathrm{COC}=10 \%$

$$
\text { NetROI }=13 \%-10 \%=3 \%
$$

Residual Income \& EVA

Residual Income or EVA = Net Dollar return after deducting the cost of capital.

$E V A=\quad$ idual Income
= Income Earned - income required
$=$ Income Earned - [Cost of Capital \times Investment]
© EVA is copyrighted by Stern-Stewart Consulting Firm and used with permission.

Residual Income \& EVA

Ouayle City Subduction Plant (\$mil)

$$
\text { Given COC = } 12 \%
$$

$$
\begin{aligned}
E l & =\text { idual Income } \\
& =130-(.12 \times 1,000) \\
& =+\$ 10 \text { million }
\end{aligned}
$$

Economic Profit

Economic Profit = capital invested multiplied by the spread between return on investment and the cost of capital.

$E P=$ nomic Profit $=(R O I-r) \times$ Capital Invested

© EVA is copyrighted by Stern-Stewart Consulting Firm and used with permission.

Economic Profit

Ouayle City Subduction Plant (\$mil)

Example at 12% COC continued.

$$
\begin{aligned}
E P & =(R O I-r \times \quad \text { ital Invested } \\
& =(.13-.12) \times 1,000 \\
& =\$ 10 \text { million }
\end{aligned}
$$

© EVA is copyrighted by Stern-Stewart Consulting Firm and used with permission.

Message of EVA

+ Managers are motivated to only invest in projects that earn more than they cost.
+ EVA makes cost of capital visible to managers.
+ Leads to a reduction in assets employed.
- EVA does not measure present value.
- Rewards quick paybacks and ignores time value of money.

EVA of US firms - 1997

\$ in millions)	EVA	Capital Invested	Return on Capital	Cost of Capital
Coca Cola	$\$ 2,442$	$\$ 10,814$	36.0%	9.7%
Dow Chemical	6,81	23,024	12.2	9.0
Ford Motor	1,719	58,272	12.1	9.1
General Electric	2,515	53,567	17.7	12.7
General Motors	$-3,527$	82,887	5.9	9.7
Hewlett - Packard	-99	24,185	15.2	15.7
IBM	$-2,743$	67,431	7.8	11.8
Johnson \& Johnson	1,327	18,138	21.8	13.3
Merck	1,688	22,219	23.0	14.5
Microsoft	1,727	5,680	47.1	11.8
Philip Morris	3,119	42,885	20.1	12.5
Safeway	335	4,963	15.7	8.5
UAL	298	13,420	9.8	7.2
Walt Disney	-347	30,702	11.0	12.6

Accounting Measurements

Rate of return $=\frac{\text { cash receipts }+ \text { change in price }}{\text { beginning price }}$

$$
=\frac{C_{1}+\left(P_{1}-P_{0}\right)}{P_{0}}
$$

Accounting Measurements

Rate of return $=\frac{\text { cash receipts }+ \text { change in price }}{\text { beginning price }}$

$$
=\frac{C_{1}+\left(P_{1}-P_{0}\right)}{P_{0}}
$$

Economic income $=$ cash flow + change in present value

Rate of return $=\frac{C_{1}+\left(P V_{1}-P V_{0}\right)}{P V_{0}}$

Accounting Measurements

INCOME

ECONOMIC

Cash flow + change in $\mathrm{PV}=$

Cash flow -
economic depreciation

Nodhead Store Forecastes

YEAR

	1	2	3	4	5	6
Cash flow	100	200	250	298	298	298
PV at start of year ($\mathrm{r}=10 \%$)	1000	1000	901	741	517	271
PV at end of year ($r=10 \%$)	1000	901	741	517	271	0
Change in value	0	-99	-160	-224	-246	-271
Economic income	100	101	90	74	52	27
Rate of return \%	10	10	10	10	10	10
Economic	0	99	160	224	246	271

Nodhead Book Income \& ROI

YEAR

	1	2	3	4	5	6
Cash flow	100	200	250	298	298	298
BV at start of year, strt line depn	1000	833	667	500	333	167
BV at end of year, strt line depn	833	667	500	333	167	0
Change in BV	-167	-167	-167	-167	-167	-167
Book income	-67	+33	+83	+131	+131	+131
Book ROI \%	-6.7	4.0	12.4	26.2	39.3	78.4
Book depn.	167	167	167	167	167	167

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Corporate Financing and the Six Lessons of Market Efficiency

Chapter 13

Topics Covered

- We Always Come Back to NPV
- What is an Efficient Market?
\rightarrow Random Walk
- Efficient Market Theory
- The Evidence on Market Efficiency
- Six Lessons of Market Efficiency

Return to NPV

- NPV employs discount rates.
- These discount rates are risk adjusted.
- The risk adjustment is a byproduct of market established prices.
- Adjustable discount rates change asset values.

Return to NPV

Example

The government is lending you $\$ 100,000$ for 10 years at 3% and only requiring interest payments prior to maturity. Since 3% is obviously below market, what is the value of the below market rate loan?

NPV = amount borrowed - PV of interest pmts

- PV of loan repayment

Return to NPV

Example

The government is lending you $\$ 100,000$ for 10 years at 3% and only requiring interest payments prior to maturity. Since 3% is obviously below market, what is the value of the below market rate loan?
Assume the market return on equivalent risk projects is 10%.

Random Walk Theory

- The movement of stock prices from day to day DO NOT reflect any pattern.
- Statistically speaking, the movement of stock prices is random (skewed positive over the long term).

Random Walk Theory

Coin Toss Game
Heads

Random Walk Theory

S\&P 500 Five Year Trend? or

 5 yrs of the Coin Toss Game?

Month

Random Walk Theory

Month

Random Walk Theory

microsoft return pattern: structure without predictibility

Random Walk Theory

Random Walk Theory

Random Walk Theory

fig13.4.c: DAX autocorr=4\%

Random Walk Theory

Efficient Market Theory

- Weak Form Efficiency
\rightarrow Market prices reflect all historical information.
- Semi-Strong Form Efficiency
\rightarrow Market prices reflect all publicly available information.
- Strong Form Efficiency
\rightarrow Market prices reflect all information, both public and private.

Efficient Market Theory

- Fundamental Analysts

\rightarrow Research the value of stocks using NPV and other measurements of cash flow.

Efficient Market Theory

- Technical Analysts

\rightarrow Forecast stock prices based on the watching the fluctuations in historical prices (thus "wiggle watchers").

Efficient Market Theory

Efficient Market Theory

Efficient Market Theory

Average Annual Return on 1493 Mutual Funds and the Market Index

Efficient Market Theory

IPO Non-Excess Returns

Year After Offering

Efficient Market Theory

1987 Stock Market Crash

$P V(\text { index })_{\text {pre crash }}=\frac{D i v}{r-g}=\frac{16.7}{.114-.10}=1193$

Efficient Market Theory

1987 Stock Market Crash

$P V(\text { index })_{\text {pre crash }}=\frac{\operatorname{Div}}{r-g}=\frac{16.7}{.114-.10}=1193$
$P V(\text { index })_{\text {post crash }}=\frac{D i v}{r-g}=\frac{16.7}{.114-.096}=928$

Lessons of Market Efficiency

OMarkets have no memory
©Trust market prices
©Read the entrails
OThere are no financial illusions
-The do it yourself alternative
-Seen one stock, seen them all

Example: How stock splits affect value

Source: Fama, Fisher, Jensen \& Roll

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

An Overview of Corporate Financing

Chapter 14

Topics Covered

- Patterns of Corporate Financing
- Common Stock
- Preferred Stock
- Debt
- Derivatives

Patterns of Corporate Financing

- Firms may raise funds from external sources or plow back profits rather than distribute them to shareholders.
- Should a firm elect external financing, they may choose between debt or equity sources.

Patterns of Corporate Financing

TABLE 14-1 Sources and uses of funds in nonfinancial corporations expressed as percentage of each year's total investment.

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Uses.'										
1. Capital expenditures	74	87	87	98	73	89	92	77	81	83
2. Investment in net working capital and other usesa	26	13	13	2	27	19	20	23	19	17
3. Total investment	100	100	100	100	100	100	100	100	100	100
Sources:										
4. Internally generated cash b	81	87	90	112	88	88	86	78	89	85
5. Financial deficit (5-4); equals required external financing	19	13	10	-12	12	12	14	22	11	15
Financial deficit covered by:										
6. Net stock issues	-26	-27	-14	3	6	4	-7	-8	-9	-14
7. Net increase in debt	45	40	24	-14	7	8	21	30	20	30
a Changes in short-term borrowing are shown under net increase in debt. "Other uses" are net of any increase in miscellaneous liabilities and any statistical discrepancy.										
b Net income plus depreciation less cash dividends paid to stockholders										
Source: Board of Governors of the Federal Reserve System, Division of Research and Statistics, Flow of Funds Accounts, various issues.										

Patterns of Corporate Financing

Aggregate balance sheet for manufacturing corporations in the United States, 1997 (figures in Billions).						
Current assets		\$	1,320	Current liabilities		\$ 997
Fixed assets	2,181			Long term debt	815	
Less	1,097			Other long term	576	
deprecication				liabilities		
Net fixed assets			1,085	Total long term liabilities		1,391
Other long term			1,491	Stockholders' equity		1,508
Total assets			3,896	Total liabilities and stockholders' equity		3,896

Patterns of Corporate Financing

? How do we define debt?

$$
\frac{\text { Debt }}{\text { Total assets }}=\frac{997+1391}{3896}=.61
$$

Long term liabilities
 $=\frac{1391}{1391+1508}=.48$

Patterns of Corporate Financing

DEBT TO TOTAL CAPITAL

	Book	Book, Adjusted	Market	Market, Adjusted
Canada	39%	37%	35%	32%
France	48	34	41	28
Germany	38	18	23	15
Italy	47	39	46	36
Japan	53	37	29	17
United Kingdom	28	16	19	11
United States	37	33	28	23

Common Stock

Book Value vs. Market Value

Book value is a backward looking measure. It tells us how much capital the firm has raised from shareholders in the past. It does not measure the value that shareholders place on those shares today. The market value of the firm is forward looking, it depends on the future dividends that shareholders expect to receive.

Common Stock

Example - Mobil Book Value vs. Market Value (12/97)
Total Shares outstanding $=783.4$ million

CommonShares (\$1 par) 894
Additional paid in capital 1,549 Retained earnings 20,661
Currency adjustment -821

Treasury shares at cost $-3,158$
Net common equity (Book Value) 19,125

Common Stock

Example - Mobil Book Value vs. Market Value (12/97)
Total Shares outstanding $=783.4$ million

Dec 1997 Market price $=$
\$72/sh \# of shares
x 783.4
Market Value $\$ 56.4$ billion

Preferred Stock

Preferred Stock - Stock that takes priority over common stock in regards to dividends.
Net Worth - Book value of common shareholder's equity plus preferred stock.

Floating-Rate Preferred - Preferred stock paying dividends that vary with short term interest rates.

Corporate Debt

- Debt has the unique feature of allowing the borrowers to walk away from their obligation to pay, in exchange for the assets of the company.
- "Default Risk" is the term used to describe the likelihood that a firm will walk away from its obligation, either voluntarily or involuntarily.
- "Bond Ratings"are issued on debt instruments to help investors assess the default risk of a firm.

Corporate Debt

TABLE 14-5 Large firms typically issue many different securities. This table shows some of the debt securities on Mobil Corporation's balance sheet at the end of 1996 and 1997 (figures in millions).

Debt Security	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$
6 1/2\% notes 1997	$\$ 148$	
$63 / 8 \%$ notes 1998	200	$\$ 200$
$71 / 4 \%$ notes 1999	162	148
$83 / 8 \%$ notes 2001	200	180
8 5/8\% notes 2006	250	250
8 5/8\% debentures 2021	250	250
$75 / 8 \%$ debentures 2033	240	216
8\% debentures 2032	250	164
8 1/8\% Canadian dollar eurobonds 1998 a	110	
9% ECU eurobonds 1997 b	148	

Corporate Debt

continued

TABLE 14-5 Large firms typically issue many different securities. This table shows some of the debt securities on Mobil Corporation's balance sheet at the end of 1996 and 1997 (figures in millions).

Debt Security	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$
9 5/8\% sterling eurobonds 1999	187	182
Variable rate notes 1999	110	
Japanese yen loans 2003-2005	388	347
Variable rate project financing 1998	105	52
Industrial revenue bonds 1998-2030	491	484
Other foreign currencies due 1997-2030	1090	764
Other long-term debt	660	716
Capital leases	247	335
Commercial paper	1634	1097
Bank and other short	894	1168

Corporate Debt

Prime Rate - Benchmark interest rate charged by banks.

Funded Debt - Debt with more than 1 year remaining to maturity.
Sinking Fund - Fund established to retire debt before maturity.
Callable Bond - Bond that may be repurchased by firm before maturity at specified call price.

Corporate Debt

Subordinate Debt - Debt that may be repaid in bankruptcy only after senior debt is repaid.
Secured Debt - Debt that has first claim on specified collateral in the event of default.

Investment Grade - Bonds rated Baa or above by Moody's or BBB or above by S\&P.
Junk Bond - Bond with a rating below Baa or BBB.

Corporate Debt

Eurodollars - Dollars held on deposit in a bank outside the United States.

Eurobond - Bond that is marketed internationally.
Private Placement - Sale of securities to a limited number of investors without a public offering.
Protective Covenants - Restriction on a firm to protect bondholders.
Lease - Long-term rental agreement.

Corporate Debt

Warrant - Right to buy shares from a company at a stipulated price before a set date.
Convertible Bond - Bond that the holder may exchange for a specified amount of another security.

Convertibles are a combined security, consisting of both a bond and a call option.

Derivatives

Traded Options - A derivative that gives the firm the right (but not the obligation) to buy or sell an asset in the future at a price that is agreed upon today.
Futures - A contractual obligation entered into in advance to buy or sell an asset or commodity.
Forwards - A tailor made contract for the purchase of an asset. Not traded on exchanges like futures.
Swaps - An agreement between two parties to exchange the interest rate characteristics of two loans.

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

How Corporations Issue Securities

Chapter 15

Topics Covered

- Venture Capital
- The Initial Public Offering
- The Underwriters
- General Cash Offers
- Rights Issue

Venture Capital

Venture Capital

Money invested to finance a new firm

Venture Capital

Venture Capital

Money invested to finance a new firm

Since success of a new firm is highly dependent on the effort of the managers, restrictions are placed on management by the venture capital company and funds are usually dispersed in stages, after a certain level of success is achieved.

Venture Capital

First Stage Market Value Balance Sheet (\$mil)

Assets	Liabilities and Equity		
Cash from new equity	1.0	New equity from venture capital	1.0
Other assets	1.0	Your original equity	1.0
Value	2.0	Value	2.0

Venture Capital

Second Stage Market Value Balance Sheet (\$mil)

Assets Liabilities and Equity

Cash from new equity 4.0 New equity from 2nd stage $\quad 4.0$
$\begin{array}{lll}\text { Fixed assets } & 1.0 \quad \text { Equity from 1st stage } \quad 5.0\end{array}$
$\begin{array}{llll}\text { Other assets } & 9.0 & \text { Your original equity } & 5.0\end{array}$
Value $14.0 \quad$ Value 14.0

Initial Offering

Initial Public Offering (IPO) - First offering of stock to the general public.
Underwriter - Firm that buys an issue of securities from a company and resells it to the public.
Spread - Difference between public offer price and price paid by underwriter.

Prospectus - Formal summary that provides information on an issue of securities.
Underpricing - Issuing securities at an offering price set below the true value of the security.

The Underwriters

Top U.S. Underwriters in 1997
 (\$bil of total issues)

Merrill Lynch \$208
Saloman Smith Barney 167
Morgan Stanley 140
Goldman Sachs 137
Lehman Brothers 121
JPMorgan 104
Credit Suisse First Boston 68
Bear Stearns 58
Donaldson Lufkin Jenrette 46
Chase 33
All Underwriters 1,293

The Underwriters

Top Intl.Underwriters in 1997
(\$bil of total issues)
Merrill Lynch \$37
Goldman Sachs 32
SBC Warburg 29
Deutsche Morgan 29
Credit Suisse First Boston 27
JPMorgan 24
Morgan Stanley 23
ABN AMRO Hoare 22
Lehman Brothers 18

Paribas	18
All Underwriters	496

Initial Offering

Average Expenses on 1767 IPOs from 1990-1994

Value of Issues $(\$ m i l)$	Direct Costs (\%)	Avg First Day Return (\%)	Total Costs (\%)
$2-9.99$	16.96	16.36	25.16
$10-19.99$	11.63	9.65	18.15
$20-39.99$	9.7	12.48	18.18
$40-59.99$	8.72	13.65	17.95
$60-79.99$	8.2	11.31	1635
$80-99.99$	7.91	8.91	14.14
$100-199.99$	7.06	7.16	1278
$200-499.99$	6.53	5.70	1110
500 and up	5.72	7.53	1036
All Issues	11.00	12.05	18.69

Tombstone

12,937,500 Shares

MONY
 THE GROUP

The MONY Group Inc.

Common Stock

(par value sa.01 per share)

Price $\mathbf{\$ 2 3 . 5 0}$ Per Share


```
10,925,000 Shares
```


Goldman, Sachs \& Co.
Morgan Stanley Dean Witter

Donaldson, Lufkin \& Jenrette
Salomon Smith Barney

CIBC Oppenheimer
Fox-Pitt, Kélton Inc.
Robert W. Baird \& Co.
Edward D. Jones \& Co, LP

Conning \& Company
Schroder \& Co. Inc. Chatsworth Securities LLC

Legg Mason Wood Walker neenewtes
A.G. Edwards \& Sons, Inc.

Alien \& Company Doley Securities, Inc.

Stephens Inc.

2,012,500 Shares

Goldman Sachs International

General Cash Offers

Seasoned Offering - Sale of securities by a firm that is already publicly traded.
General Cash Offer - Sale of securities open to all investors by an already public company.
Shelf Registration - A procedure that allows firms to file one registration statement for several issues of the same security.
Private Placement - Sale of securities to a limited number of investors without a public offering.

Underwriting Spreads

Gross underwriter spreads of selected issues, 1998

Type	Companv	Issue amount, millions of dollars	Underwriter's spread, percent
IPO	Hypertension Diagnostics, Inc.	9.3	8.49
IPO	Actuate Software Corp.	33.0	7.00
IPO	Enterprise Product Partners	264.0	6.36
IPO	EquantNY	282.2	5.25
IPO	Conoco	4403.5	3.99
Seasoned	Coulter Pharmaceuticals	60.0	5.48
Seasoned	Stillwater Mining	61.5	5.00
Seasoned	Metronet Commuications Corp.	232.6	5.00
Seasoned	Staples, Inc.	446.6	3.25
Seasoned	Safeway, Inc.	1125.0	2.75
Seasoned	Media One Group	1511.3	2.74
Debt:			
2-year notes	General Motors Acceptance Corp.	100	0.18
30-year debentures	Bausch \& Lornb, Inc.	200	0.88
6 -year notes	Ararnark Corp.	300	0.63
15-year subordinated notes	B anque Paribas	400	0.75
Convertible zero-coupon bonds	Aspect Telecommunications	490	3.00
10-year notes	Federal Home Loan Mortgage Corp	1500	0.15

Rights Issue

Rights Issue - Issue of securities offered only to current stockholders.

Rights Issue

Rights Issue - Issue of securities offered only to current stockholders.

Example - AEP Corp currently has 11 million shares outstanding. The market price is $\$ 24 /$ sh. AEP decides to raise additional funds via a 1 for 11 rights offer at $\$ 22$ per share. If we assume 100\% subscription, what is the value of each right?

Rights Issue

Example - AEP Corp currently has 11 million shares outstanding. The market price is $\$ 24 /$ sh. AEP decides to raise additional funds via a 1 for 11 rights offer at $\$ 22$ per share. If we assume 100% subscription, what is the value of each right?
\Rightarrow Current Market Value $=2 \mathrm{mil} \times \$ 24=\$ 264 \mathrm{mil}$
\Rightarrow Total Shares $=11 \mathrm{mil}+1 \mathrm{mil}=12 \mathrm{mil}$
\Rightarrow Amount of new funds $=1 \mathrm{mil} \times \$ 22=\$ 22 \mathrm{mil}$
\Rightarrow New Share Price $=(264+22) / 12=\$ 23.83 /$ sh
\Rightarrow Value of a Right $=24-23.83=\$ 0.17$

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

The Dividend Controversy

Chapter 16

Topics Covered

- How Dividends Are Paid
- How Do Companies Decide on Dividend Payments?
- Information in Dividends and Stock Repurchases
- Dividend Policy is Irrelevant
- The Rightists
- Taxes and the Radical Left
- The Middle of the Roaders

Types of Dividends

○Cash Div
-Regular Cash Div
OSpecial Cash Div
-Stock Div
-Stock Repurchase (3 methods)

1. Buy shares on the market
2. Tender Offer to Shareholders
3. Private Negotiation (Green Mail)

Dividend Payments

Cash Dividend - Payment of cash by the firm to its shareholders.

Dividend Payments

Cash Dividend - Payment of cash by the firm to its shareholders.

Ex-Dividend Date - Date that determines whether a stockholder is entitled to a dividend payment; anyone holding stock before this date is entitled to a dividend.

Dividend Payments

Cash Dividend - Payment of cash by the firm to its shareholders.

Ex-Dividend Date - Date that determines whether a stockholder is entitled to a dividend payment; anyone holding stock before this date is entitled to a dividend.

Record Date - Person who owns stock on this date received the dividend.

Dividend Payments

Stock Dividend - Distribution of additional shares to a firm's stockholders.

Dividend Payments

Stock Dividend - Distribution of additional shares to a firm's stockholders.

Stock Splits - Issue of additional shares to firm's stockholders.

Dividend Payments

Stock Dividend - Distribution of additional shares to a firm's stockholders.

Stock Splits - Issue of additional shares to firm's stockholders.

Stock Repurchase - Firm buys back stock from its shareholders.

Stock Repurchases

U.S. Stock Repurchases 1985-1997

Dividend Payments

Maytag's Quarterly Dividend

Aug 14	Aug 25	Aug26	Sept 1	Sept 15
Declaration date	Withdividend date	Ex-dividend date	Record	Payment
			date	date
		Share		
		price		
		falls		

The Dividend Decision

Lintner's "Stylized Facts"

(How Dividends are Determined)

1. Firms have longer term target dividend payout ratios.
2. Managers focus more on dividend changes than on absolute levels.
3. Dividends changes follow shifts in long-run, sustainable levels of earnings rather than short-run changes in earnings.
4. Managers are reluctant to make dividend changes that might have to be reversed.

The Dividend Decision

- Attitudes concerning dividend targets vary

$$
\begin{aligned}
\mathrm{DIV}_{1} & =\text { target dividend } \\
& =\text { target ratio } \times \mathrm{EPS}_{1}
\end{aligned}
$$

- Dividend Change
$\mathrm{DIV}_{1}-\mathrm{DIV}_{0}=$ target change

$$
=\text { target ratio } \times \mathrm{EPS}_{1}-\mathrm{DIV}_{0}
$$

The Dividend Decision

- Dividend changes confirm the following:
$\mathrm{DIV}_{1}-\mathrm{DIV}_{0}=$ adjustment rate \times target change
$=$ adjustment rate $\times\left(\right.$ target ratio $\left.\times \mathrm{EPS}_{1}-\mathrm{DIV}_{0}\right)$

Dividend Policy

Impact of Dividend Changes on EPS

Source: Healy \& Palepu (1988)

Dividend Policy is Irrelevant

- Since investors do not need dividends to convert shares to cash they will not pay higher prices for firms with higher dividend payouts. In other words, dividend policy will have no impact on the value of the firm.

Dividend Policy is Irrelevant

Example - Assume Rational Demiconductor has no extra cash, but declares a $\$ 1,000$ dividend. They also require $\$ 1,000$ for current investment needs. Using M\&M Theory, and given the following balance sheet information, show how the value of the firm is not altered when new shares are issued to pay for the dividend.

Record Date

Cash
Asset Value
Total Value
New Proj NPV
\# of Shares price/share

1,000
$\underline{\mathbf{9 , 0 0 0}}$ $10,000+$ 2,000
1,000 \$12

Dividend Policy is Irrelevant

Example - Assume Rational Demiconductor has no extra cash, but declares a $\$ 1,000$ dividend. They also require $\$ 1,000$ for current investment needs. Using M\&M Theory, and given the following balance sheet information, show how the value of the firm is not altered when new shares are issued to pay for the dividend.

Record Date
Cash
Asset Value
Total Value
New Proj NPV
\# of Shares price/share

1,000
$\underline{9,000}$
$10,000+$
2,000
1,000
\$12

Pmt Date

0
$\underline{\mathbf{9 , 0 0 0}}$
9,000
2,000
1,000
\$11

Dividend Policy is Irrelevant

Example - Assume Rational Demiconductor has no extra cash, but declares a $\$ 1,000$ dividend. They also require $\$ 1,000$ for current investment needs. Using M\&M Theory, and given the following balance sheet information, show how the value of the firm is not altered when new shares are issued to pay for the dividend.

Record Date
Cash $\quad 1,000$
Asset Value
Total Value
New Proj NPV
\# of Shares price/share

Pmt Date
0
$\underline{9,000}$
9,000
2,000
1,000
\$11

Post Pmt

1,000 (910sh @ s11)
$\underline{9,000}$
10,000
2,000
1,091
\$11

Dividend Policy is Irrelevant

Example - continued - Shareholder Value

Record

Stock
Cash
12,000
0

Total Value
12,000

Stock $=1,000$ sh @ $\$ 12=12,000$

Dividend Policy is Irrelevant

Example - continued - Shareholder Value

	$\frac{\text { Record }}{}$		$\underline{\text { Pmt }}$
Stock	12,000		11,000
Cash	0		1,000
Total Value	12,000		12,000

Stock $=1,000$ sh $@ \$ 11=11,000$

Dividend Policy is Irrelevant

Example - continued - Shareholder Value

	Record	$\underline{\text { Pmt }}$	Post
Stock	12,000	11,000	$\mathbf{1 2 , 0 0 0}$
Cash	0	1,000	$\mathbf{0}$
Total Value	12,000	12,000	$\mathbf{1 2 , 0 0 0}$

Stock $=1,091$ sh $@ \$ 115=12,000$

- Assume stockholders purchase the new issue with the cash dividend proceeds.

Dividends Increase Value

Market Imperfections and Clientele Effect

There are natural clients for high-payout stocks, but it does not follow that any particular firm can benefit by increasing its dividends. The high dividend clientele already have plenty of high dividend stock to choose from.

These clients increase the price of the stock through their demand for a dividend paying stock.

Dividends Increase Value

Dividends as Signals

Dividend increases send good news about cash flows and earnings. Dividend cuts send bad news.

Because a high dividend payout policy will be costly to firms that do not have the cash flow to support it, dividend increases signal a company's good fortune and its manager's confidence in future cash flows.

Dividends Decrease Value

Tax Consequences

Companies can convert dividends into capital gains by shifting their dividend policies. If dividends are taxed more heavily than capital gains, taxpaying investors should welcome such a move and value the firm more favorably.

In such a tax environment, the total cash flow retained by the firm and/or held by shareholders will be higher than if dividends are paid.

Taxes and Dividend Policy

- Since capital gains are taxed at a lower rate than dividend income, companies should pay the lowest dividend possible.
- Dividend policy should adjust to changes in the tax code.

Taxes and Dividend Policy

	Firm A (no dividend)	Firm B (high dividend)
Next year' s price	112.50	102.50
Dividend	0	10
Total pretax payoff	112.50	112.50
Today' s stock price	100	96.67
Capital gain	12.50	5.83
Pretax rate of return (\%)	$\frac{12.5}{100} \times 100=12.5$	$\frac{15.83}{96.67} \times 100=16.4$
Tax on div @ 50\%	0	$.50 \times 10=5.00$
Tax on Cap Gain @ 20\%	$.20 \times 12.50=2.50$	$.20 \times 5.83=1.17$
Total After Tax income	$(0+12.50)-2.50=10$	$(10-5.83)-(5+1.17)=9.66$
(div + cap gain -taxes)	$\frac{10}{100} \times 100=10.0$	$\frac{9.66}{96.67} \times 100=10.0$

Taxes and Dividend Policy

1998 Marginal Income Tax Brackets

Income Bracket

Marginal Tax Rate	Single	Married (joint return)
15%	$\$ 0-\$ 25,350$	$\$ 0-\$ 42,350$
28	$25,351-61,400$	$42,351-102,300$
31	$61,401-128,100$	$102,301-155,950$
36	$128,101-278,450$	$155,951-278,450$
39.6	over 278,450	over 278,450

Taxes and Dividend Policy

In U.S., shareholders are taxed twice (figures in dollars)

Rate of Income tax

	$\mathbf{0 \%}$	
Operating Income	$\mathbf{3 9 . 6 0 \%}$	
Corporate tax (Tc $=35$)	35	100
After Tax income (paid as div)	65	35
Income tax	0	65
Cash to Shareholder	65	25.7

Taxes and Dividend Policy

Under imputed tax systems, such as that in Australia, shareholders receive a tax credit for the corporate tax the firm pays (figures in Australian dollars)

Rate of Income tax

	Rate of Income tax		
	$\mathbf{1 5 \%}$	$\mathbf{3 3 \%}$	$\mathbf{4 7 \%}$
Operating Income	100	100	100
Corporate tax (Tc=.33)	35	33	33
After Tax income	67	67	67
Grossed up Dividend	100	100	100
Income tax	15	33	47
Tax credit for Corp Pmt	-33	-33	-33
Tax due from shareholder	-18	0	14
Cash to Shareholder	85	67	53

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Does Debt Policy Matter?

Chapter 17

Topics Covered

- Leverage in a Tax Free Environment
- How Leverage Effects Returns
- The Traditional Position

M\&M (Debt Policy Doesn’t Matter)

- Modigliani \& Miller
\rightarrow When there are no taxes and capital markets function well, it makes no difference whether the firm borrows or individual shareholders borrow. Therefore, the market value of a company does not depend on its capital structure.

M\&M (Debt Policy Doesn’t Matter)

Assumptions

- By issuing 1 security rather than 2 , company diminishes investor choice. This does not reduce value if:
\rightarrow Investors do not need choice, OR
\rightarrow There are sufficient alternative securities
- Capital structure does not affect cash flows e.g...
\rightarrow No taxes
\rightarrow No bankruptcy costs
\rightarrow No effect on management incentives

M\&M (Debt Policy Doesn't Matter)

Example - Macbeth Spot Removers - All Equity Financed

Data	
Number of shares	1,000
Price per share	$\$ 10$
Market Value of Shares	$\$ 10,000$

Outcomes					
	A	B	C	D	
Operating Income	$\$ 500$	1,000	1,500	2,000	Expected
Earnings per share	$\$.50$	1.00	1.50	2.00	outcome
Return on shares $(\%)$	5%	10	15	20	

M\&M (Debt Policy Doesn’t Matter)

Example

 cont.50% debt

Data

Outcomes

M\&M (Debt Policy Doesn’t Matter)

Example - Macbeth's

Outcomes

- All Equity Financed
- Debt replicated by investors

	A	B	C	D
Earnings on two shares	$\$ 1.00$	2.00	3.00	4.00
LESS : Interest @ 10\%	$\$ 1.00$	1.00	1.00	1.00
Net earnings on investment	$\$ 0$	1.00	2.00	3.00
Return on \$10 investment (\%)	$\mathbf{0 \%}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$

No Magic in Financial Leverage

MM'S PROPOSITION I

If capital markets are doing their job, firms cannot increase value by tinkering with capital structure.

V is independent of the debt ratio.

AN EVERYDAY ANALOGY

It should cost no more to assemble a chicken than to buy one whole.

Proposition I and Macbeth

Macbeth continued

CuttentStructure: ProposedStructure:

All Equity	Equal Debt and Equity
1.50	2.00
10	10
15	20

Leverage and Returns

Expected return on assets $=r_{a}=\frac{\text { expected operating income }}{\text { market value of all securities }}$

$$
r_{A}=\left(\frac{D}{D+A} \times r_{D}\right)+\left(\frac{E}{D+E} \times r_{E}\right)
$$

M\&M Proposition II

Macbeth continued

$$
r_{E}=r_{A}+\frac{D}{V}\left(r_{A}-r_{D}\right)
$$

$$
\begin{aligned}
\mathrm{r}_{\mathrm{E}} & =\mathrm{r}_{\mathrm{A}}=\frac{\text { expected operating income }}{\text { market value of all securities }} \\
& =\frac{1500}{10,000}=.15
\end{aligned}
$$

M\&M Proposition II

$$
r_{E}=r_{A}+\frac{D}{V}\left(r_{A}-r_{D}\right)
$$

Macbeth continued

$$
\begin{aligned}
r_{E} & =.15+\frac{5000}{5000}(.15-.10) \\
& =.20 \text { or } 20 \%
\end{aligned}
$$

M\&M Proposition II

Leverage and Risk

Macbeth continued

Leverage increases the risk of Macbeth shares

Leverage and Returns

$$
B_{A}=\left(\frac{D}{D+A} \times B_{D}\right)+\left(\frac{E}{D+E} \times B_{E}\right.
$$

$$
B_{E}=B_{A}+\frac{D}{V}\left(B_{A}-B_{D}\right)
$$

(2) WACC is the traditional view of capital structure, risk and return.

$$
W A C C=r_{A}=\left(\frac{D}{V} \times r_{D}\right)+\left(\frac{E}{V} \times r_{E}\right)
$$

Expected
Return

Example - A firm has $\$ 2$ mil of debt and 100,000 of outstanding shares at $\$ 30$ each. If they can borrow at 8% and the stockholders require 15% return what is the firm's WACC?

$$
\begin{aligned}
& D=\$ 2 \text { million } \\
& E=100,000 \text { shares } X \$ 30 \text { per share }=\$ 3 \text { million } \\
& V=D+E=2+3=\$ 5 \text { million }
\end{aligned}
$$

Example - A firm has $\$ 2$ mil of debt and 100,000 of outstanding shares at $\$ 30$ each. If they can borrow at 8% and the stockholders require 15% return what is the firm's WACC?

$$
\begin{aligned}
& \mathrm{D}=\$ 2 \text { million } \\
& \mathrm{E}=100,000 \text { shares } X \$ 30 \text { per share }=\$ 3 \text { million } \\
& \mathrm{V}=\mathrm{D}+\mathrm{E}=2+3=\$ 5 \text { million }
\end{aligned}
$$

$$
\begin{aligned}
\text { WACC } & =\left(\frac{D}{V} \times r_{D}\right)+\left(\frac{E}{V} \times r_{E}\right) \\
& =\left(\frac{2}{5} \times .08\right)+\left(\frac{3}{5} \times .15\right) \\
& =.122 \text { or } 12.2 \%
\end{aligned}
$$

WACC (traditional view)

WACC (M\&M view)

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

How Much Should a Firm Borrow?

Chapter 18

Topics Covered

- Corporate Taxes and Value
- Corporate and Personal Taxes
- Cost of Financial Distress
- Pecking Order of Financial Choices

C.S. \& Corporate Taxes

Financial Risk - Risk to shareholders resulting from the use of debt.

Financial Leverage - Increase in the variability of shareholder returns that comes from the use of debt.
Interest Tax Shield- Tax savings resulting from deductibility of interest payments.

C.S. \& Corporate Taxes

Example - You own all the equity of Space Babies Diaper Co.. The company has no debt. The company's annual cash flow is $\$ 1,000$, before interest and taxes. The corporate tax rate is 40%. You have the option to exchange $1 / 2$ of your equity position for 10% bonds with a face value of $\$ 1,000$.

Should you do this and why?

C.S. \& Corporate Taxes

Example - You own all the equity of Space Babies Diaper Co.. The company has no debt. The company's annual cash flow is $\$ 1,000$, before interest and taxes. The corporate tax rate is 40%. You have the option to exchange $1 / 2$ of your equity position for 10% bonds with a face value of $\$ 1,000$.
Should you do this and why?

All Equity $\quad 1 / 2$ Debt

EBIT

Interest Pmt
Pretax Income

Taxes @ 40\% Net Cash Flow

1,000

0

1,000
400
$\$ 600$

C.S. \& Corporate Taxes

Example - You own all the equity of Space Babies Diaper Co.. The company has no debt. The company's annual cash flow is $\$ 1,000$, before interest and taxes. The corporate tax rate is 40%. You have the option to exchange $1 / 2$ of your equity position for 10% bonds with a face value of $\$ 1,000$.
Should you do this and why?

All Equity 1/2 Debt

EBIT

Interest Pmt
Pretax Income

1,000

0
1,000
400
$\$ 600$

1,000
100
900
360
$\$ 540$

C.S. \& Corporate Taxes

Example - You own all the equity of Space Babies Diaper Co.. The company has no debt. The company's annual cash flow is $\$ 1,000$, before interest and taxes. The corporate tax rate is 40%. You have the option to exchange $1 / 2$ of your equity position for 10% bonds with a face value of $\$ 1,000$.
Should you do this and why?

All Equity

EBIT

Interest Pmt
Pretax Income
Taxes @ 40\% Net Cash Flow

1,000
0
1,000
400
$\$ 600$

1/2 Debt

1,000
100 900

360
$\$ 540$

Total Cash Flow

All Equity $=600$
*1/2 Debt $=640$
$(540+100)$

Capital Structure

PV of Tax Shield =
(assume perpetuity)

Capital Structure

PV of Tax Shield $\quad \mathrm{D} \times \mathrm{r}_{\mathrm{D}} \times \mathrm{Tc}$
 (assume perpetuity)
 r_{D}

Example:

Tax benefit $=1000 \times(.10) \times(.40)=\$ 40$

Capital Structure

$$
\underset{\text { (assume perpetuity) }}{\mathrm{PV} \text { of Tax Shield }}=\frac{\mathrm{D} \times \mathrm{r}_{\mathrm{D}} \times T \mathrm{C}}{r_{\mathrm{D}}}=\mathrm{D} \times \mathrm{Tc}
$$

Example:

Tax benefit $=1000 \times(.10) \times(.40)=\$ 40$
PV of 40 perpetuity $=40 / .10=\$ 400$

Capital Structure

$$
\underset{\text { (assume perpetuity) }}{\mathrm{PV} \text { of Tax Shield }}=\frac{\mathrm{D} \times r_{D} \times T \mathrm{c}}{r_{D}}=\mathrm{D} \times \mathrm{Tc}
$$

Example:

Tax benefit $=1000 \times(.10) \times(.40)=\$ 40$ PV of 40 perpetuity $=40 / .10=\$ 400$

PV Tax Shield $=$ D \times Tc $=1000 \times .4=\underline{\$ 400}$

Capital Structure

Firm Value =
Value of All Equity Firm + PV Tax Shield

Capital Structure

Firm Value $=$

Value of All Equity Firm + PV Tax Shield

Example
All Equity Value $=600 / .10=6,000$

Capital Structure

Firm Value $=$

Value of All Equity Firm + PV Tax Shield

Example

All Equity Value $=600 / .10=6,000$ PV Tax Shield $=400$

Capital Structure

Firm Value = Value of All Equity Firm + PV Tax Shield

Example
All Equity Value $=600 / .10=6,000$ PV Tax Shield $=400$

Firm Value with 1/2 Debt $=\$ 6,400$

C.S. \& Taxes (Personal \& Corp)

Relative Advantage Formula

(Debt vs Equity)

$$
\begin{gathered}
1-T_{P} \\
\left(1-T_{P E}\right)(1-T C)
\end{gathered}
$$

C.S. \& Taxes (Personal \& Corp)

Relative Advantage Formula

(Debt vs Equity)

$$
\frac{1-T_{P}}{\left(1-T_{P E}\right)(1-T C)}
$$

Advantage

RAF > 1
RAF < 1
Equity

Example 1

All Debt All Equity
1.00
0.00
1.00
0.50

After Tax Income
0.50

C.S. \& Taxes (Personal \& Corp)

Example 1

	All Debt	
Income BTcP	1.00	$\underline{A l l}$ Equity
less TC=.46	$\underline{0.00}$	1.00
Income BTp	1.00	$\underline{0.46}$
Taxes Tp $=.5$ Tpe=0	$\underline{0.50}$	0.54
After Tax Income	0.50	$\underline{0.00}$
		0.54

C.S. \& Taxes (Personal \& Corp)

Example 1

	All Debt	All Equity
Income BTcP	1.00	$\underline{0.00}$
less TC $=.46$	1.00	$\underline{0.46}$
Income BTp	$\underline{0.50}$	0.54
Taxes Tp $=.5$ TPE=0	$\underline{0.00}$	
After Tax Income	0.50	

RAF $=.926$ Advantage Equity

C.S. \& Taxes (Personal \& Corp)

Example 2

All Debt All Equity1.000.001.00Income BTpTaxes TP =. 28 TPE=. $21 \quad \underline{0.28}$After Tax Income0.72

C.S. \& Taxes (Personal \& Corp)

Example 2

	All Debt	All Equity
Income BTcp	1.00	1.00
less TC= 34	0.00	0.34
Income BTP	1.00	0.66
Taxes TP =. 28 TPE=. 21	0.28	0.139
After Tax Income	0.72	0.521

C.S. \& Taxes (Personal \& Corp)

Example 2

All Debt
1.00
0.00
1.00
0.28
0.72

All Equity
1.00
0.34
0.66
0.139
0.521

RAF $=1.381$ Advantage Debt

C.S. \& Taxes (Personal \& Corp)

- Today's RAF \& Debt vs Equity preference.

$$
\mathrm{RAF}=\frac{1-.28}{(1-.28)(1-.34)}=1.52
$$

- Old Tax Code

C.S. \& Taxes (Personal \& Corp)

- Today's RAF \& Debt vs Equity preference.

$$
\mathrm{RAF}=\frac{1-.28}{(1-.20)(1-.34)}=1.36
$$

- New Tax Code

C.S. \& Taxes (Personal \& Corp)

- Today's RAF \& Debt vs Equity preference.

$$
\operatorname{RAF}=\frac{1-.28}{(1-.20)(1-.34)}=1.36
$$

Why are companies not all debt?

Capital Structure

Structure of Bond Yield Rates

Weighted Average Cost of Capital without taxes (traditional view)

Includes Bankruptcy Risk

Financial Distress

Costs of Financial Distress - Costs arising from bankruptcy or distorted business decisions before bankruptcy.

Financial Distress

Costs of Financial Distress - Costs arising from bankruptcy or distorted business decisions before bankruptcy.

Market Value $=\quad$ Value if all Equity Financed + PV Tax Shield

- PV Costs of Financial Distress

Financial Distress

Debt

Conflicts of Interest

Circular File Company has \$50 of 1-year debt.

Circular File Company (Book Values)

Net W.C.
Fixed assets
Total assets

20
80
100

50
50
100 Total liabilities

Conflicts of Interest

Circular File Company has \$50 of 1-year debt.

Circular File Company (Market Values)

Net W.C.
Fixed assets
Total assets

20
25
5
30

Bonds outstanding Common stock
Total liabilities

- Why does the equity have any value ?
- Shareholders have an option -- they can obtain the rights to the assets by paying off the $\$ 50$ debt.

Conflicts of Interest

Circular File Company has may invest $\$ 10$ as follows.

Now Possible Payoffs Next Year

$>$ Assume the NPV of the project is $(-\$ 2)$. What is the effect on the market values?

Conflicts of Interest

Circular File Company value (post project)

Circular File Company (Market Values)

Net W.C.	10	20	Bonds outstanding

Fixed assets
Total assets
18

8 Common stock
$\begin{array}{llll}28 & 28 & \text { Total liabilities }\end{array}$

- Firm value falls by $\$ 2$, but equity holder gains $\$ 3$

Conflicts of Interest

Circular File Company value (assumes a safe project with $N P V=\$ 5$)

Circular File Company (Market Values)

Net W.C.
Fixed assets
Total assets

20
$\underline{25}$
45
-
I

Bonds outstanding Common stock
Total liabilities

- While firm value rises, the lack of a high potential payoff for shareholders causes a decrease in equity value.

Financial Distress Games

$>$ Cash In and Run

$>$ Playing for Time
$>$ Bait and Switch

Financial Choices

Trade-off Theory - Theory that capital structure is based on a trade-off between tax savings and distress costs of debt.

Pecking Order Theory - Theory stating that firms prefer to issue debt rather than equity if internal finance is insufficient.

Trade Off Theory \& Prices

1. Stock-for-debt exchange offers

Debt-for-stock exchange offers

Stock price falls

Stock price rises
2. Issuing common stock drives down stock prices; repurchase increases stock prices.
3. Issuing straight debt has a small negative impact.

Issues and Stock Prices

- Why do security issues affect stock price? The demand for a firm's securities ought to be flat.

Any firm is a drop in the bucket.

- Plenty of close substitutes.

Large debt issues don't significantly depress the stock price.

Pecking Order Theory

Consider the following story:

The announcement of a stock issue drives down the stock price because investors believe managers are more likely to issue when shares are overpriced.

Therefore firms prefer internal finance since funds can be raised without sending adverse signals.

If external finance is required, firms issue debt first and equity as a last resort.

The most profitable firms borrow less not because they have lower target debt ratios but because they don't need external finance.

Pecking Order Theory

Some Implications:

O Internal equity may be better than external equity.

Financial slack is valuable.
If external capital is required, debt is better. (There is less room for difference in opinions about what debt is worth).

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Interactions of Investment and Financing Decisions

Chapter 19

Topics Covered

- After Tax WACC
- Tricks of the Trade
- Capital Structure and WACC
- Adjusted Present Value

After Tax WACC

- The tax benefit from interest expense deductibility must be included in the cost of funds.
- This tax benefit reduces the effective cost of debt by a factor of the marginal tax rate.

$$
W A C C=\left(\frac{D}{V} \times r_{D}\right)+\left(\frac{E}{V} \times r_{E}\right)
$$

Old Formula

After Tax WACC

Tax Adjusted Formula

$W A C C=(1-T c)\left(\frac{D}{V} \times r_{D}\right)+\left(\frac{E}{V} \times r_{E}\right)$

After Tax WACC

Example - Sangria Corporation

The firm has a marginal tax rate of 35%. The cost of equity is 14.6% and the pretax cost of debt is 8%. Given the book and market value balance sheets, what is the tax adjusted WACC?

After Tax WACC

Example - Sangria Corporation - continued

Balance Sheet (Book Value, millions)

Assets	100	50	Debt
		$\underline{50}$	Equity
Total assets	100	100	Total liabilities

After Tax WACC

Example - Sangria Corporation - continued

Balance Sheet (Market Value, millions)

Assets	125	50	Debt
		$\underline{75}$	Equity
Total assets	125	125	Total liabilities

After Tax WACC

Example - Sangria Corporation - continued

Debt ratio $=(D / V)=50 / 125=.4$ or 40%
Equity ratio $=(\mathrm{E} / \mathrm{V})=75 / 125=.6$ or 60%
$W A C C=(1-T c)\left(\frac{D}{V} \times r_{D}\right)+\left(\frac{E}{V} \times r_{E}\right)$

After Tax WACC

Example - Sangria Corporation - continued

$$
W A C C=(1-T c)\left(\frac{D}{V} \times r_{D}\right)+\left(\frac{E}{V} \times r_{E}\right)
$$

$$
\begin{aligned}
W A C C & =(1-.35)\left(\frac{50}{125} \times .08\right)+\left(\frac{75}{125} \times .146\right) \\
& =.1084 \\
& =10.84 \%
\end{aligned}
$$

After Tax WACC

Example - Sangria Corporation - continued

The company would like to invest in a perpetual crushing machine with cash flows of $\$ 2.085$ million per year pre-tax.

Given an initial investment of $\$ 12.5$ million, what is the value of the machine?

After Tax WACC

Example - Sangria Corporation - continued

The company would like to invest in a perpetual crushing machine with cash flows of $\$ 2.085$ million per year pre-tax. Given an initial investment
 of $\$ 12.5$ million, what is the value of the machine?

Cash Flows

Pretax cash flow 2.085
Tax @ 35\% 0.73
After-tax cash flow $\quad \$ 1.355$ million

After Tax WACC

Example - Sangria Corporation - continued

The company would like to invest in a perpetual crushing machine with cash flows of $\$ 2.085$ million per year pre-tax. Given an initial investment
 of $\$ 12.5$ million, what is the value of the machine?

$$
\begin{aligned}
N P V & =C_{0}+\frac{C_{1}}{r-g} \\
& =-12.5+\frac{1.355}{.1084} \\
& =0
\end{aligned}
$$

After Tax WACC

- Preferred stock and other forms of financing must be included in the formula.

$$
W A C C=(1-T c)\left(\frac{D}{V} \times r_{D}\right)+\left(\frac{P}{V} \times r_{P}\right)+\left(\frac{E}{V} \times r_{E}\right)
$$

After Tax WACC

Example - Sangria Corporation - continued

Calculate WACC given preferred stock is $\$ 25$ mil of total equity and yields 10%.

Balance Sheet (Market Value, millions)

Assets	125	50	Debt
		25	Preferred Equity
	$\underline{50}$	Common Equity	
Total assets	125	125	Total liabilities

$$
\begin{aligned}
W A C C & =(1-.35)\left(\frac{50}{125} \times .08\right)+\left(\frac{25}{125} \times .10\right)+\left(\frac{50}{125} \times .146\right) \\
& =.1104 \\
& =11.04 \%
\end{aligned}
$$

Tricks of the Trade

-What should be included with debt?
\rightarrow Long-term debt?
\rightarrow Short-term debt?
\rightarrow Cash (netted off?)
\rightarrow Receivables?
\rightarrow Deferred tax?

Tricks of the Trade

- How are costs of financing determined?
\rightarrow Return on equity can be derived from market data.
\rightarrow Cost of debt is set by the market given the specific rating of a firm's debt.
\rightarrow Preferred stock often has a preset dividend rate.

Historical WACC

WACC vs. Flow to Equity

\rightarrow If you discount at WACC, cash flows have to be projected just as you would for a capital investment project. Do not deduct interest.

Calculate taxes as if the company were 41 -equity financed. The value of interest tax shields is picked up in the WACC formula.

WACC vs. Flow to Equity

\rightarrow The company's cash flows will probably not be forecasted to infinity. Financial managers usually forecast to a medium-term horizon -- ten years, say -- and add a terminal value to the cash flows in the horizon year. The terminal value is the present value at the horizon of posthorizon flows. Estimating the terminal value requires careful attention, because it often accounts for the majority of the value of the company.

WACC vs. Flow to Equity

\rightarrow Discounting at WACC values the assets and operations of the company. If the object is to value the company's equity, that is, its common stock, don't forget to subtract the value of the company's outstanding debt.

Adjusted Present Value

APV = Base Case NPV + PV Impact

- Base Case = All equity finance firm NPV.
- PV Impact = all costs/benefits directly resulting from project.

Adjusted Present Value

example:
Project A has an NPV of $\$ 150,000$. In order to finance the project we must issue stock, with a brokerage cost of $\$ 200,000$.

Adjusted Present Value

example:
Project A has an NPV of $\$ 150,000$. In order to finance the project we must issue stock, with a brokerage cost of $\$ 200,000$.

Project NPV $=150,000$
$\underline{\text { Stock issue cost }=\underline{-200,000}}$
Adjusted NPV - 50,000
don't do the project

Adjusted Present Value

example:
Project B has a NPV of $-\$ 20,000$. We can issue debt at 8% to finance the project. The new debt has a PV Tax Shield of $\$ 60,000$. Assume that Project B is your only option.

Adjusted Present Value

example:
Project B has a NPV of $-\$ 20,000$. We can issue debt at 8% to finance the project. The new debt has a PV Tax Shield of $\$ 60,000$. Assume that Project B is your only option.

Project NPV $=-20,000$
Stock issue cost $=\underline{60,000}$
Adjusted NPV 40,000
do the project

Miles and Ezzell

$$
W A C C=r-L r_{D} T_{c}\left(\frac{1+r}{1+r_{D}}\right)
$$

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Spotting and Valuing Options

Chapter 20

Topics Covered

- Calls, Puts and Shares
- Financial Alchemy with Options
- What Determines Option Value
- Option Valuation

Option Terminology

Call Option

Right to buy an asset at a specified exercise price on or before the exercise date.

Option Terminology

Call Option

Right to buy an asset at a specified exercise price on or before the exercise date.

Put Option

Right to sell an asset at a specified exercise price on or before the exercise date.

Option Obligations

Buyer Seller

Call option Right to buy asset Obligation to sell asset Put option Right to sell asset Obligation to buy asset

Option Value

- The value of an option at expiration is a function of the stock price and the exercise price.

Option Value

- The value of an option at expiration is a function of the stock price and the exercise price.

Example - Option values given a exercise price of $\$ 85$

Stock Pric e	$\$ 60$	70	80	90	100	110
Call Value	0	0	0	5	15	25
Put Value	25	15	5	0	0	0

Option Value

Call option value (graphic) given a $\$ 85$ exercise price.

Share Price

Option Value

Put option value (graphic) given a $\$ 85$ exercise price.

Share Price

Option Value

Call option payoff (to seller) given a $\$ 85$ exercise price.

Call option \$ payoff

Share Price

Option Value

Put option payoff (to seller) given a $\$ 85$ exercise price.

85
Share Price

Option Value

Protective Put - Long stock and long put

Option Value

Protective Put - Long stock and long put

Share Price

Option Value

Protective Put - Long stock and long put

Option Value

Straddle - Long call and long put

- Strategy for profiting from high volatility

Share Price

Option Value

Straddle - Long call and long put

- Strategy for profiting from high volatility

Share Price

Option Value

Straddle - Long call and long put

- Strategy for profiting from high volatility

Share Price

Option Value

Straddle - Long call and long put

- Strategy for profiting from high volatility

Option Value

Stock Price

Upper Limit

Option Value

Stock Price

Upper Limit

Lower Limit
(Stock price - exercise price) or 0 whichever is higher

Option Value

Components of the Option Price

1 - Underlying stock price
2 - Striking or Exercise price
3 - Volatility of the stock returns (standard deviation of annual returns)
4 - Time to option expiration
5 - Time value of money (discount rate)

Option Value

Black-Scholes Option Pricing Model

$$
O_{C}=P_{S}\left[N\left(d_{1}\right)\right]-S\left[N\left(d_{2}\right)\right] e^{-r t}
$$

Black-Scholes Option Pricing Model

$$
\mathrm{O}_{\mathrm{C}}=\mathrm{P}_{\mathrm{s}}\left[\mathrm{~N}\left(\mathrm{~d}_{1}\right)\right]-\mathrm{S}\left[\mathrm{~N}\left(\mathrm{~d}_{2}\right)\right] \mathrm{e}^{-\mathrm{rt}}
$$

O_{C} - Call Option Price
P_{s} - Stock Price
$N\left(d_{1}\right)$ - Cumulative normal density function of $\left(d_{1}\right)$
S - Strike or Exercise price
$\mathbf{N}\left(\mathrm{d}_{2}\right)$ - Cumulative normal density function of $\left(\mathrm{d}_{2}\right)$
\mathbf{r} - discount rate (90 day comm paper rate or risk free rate)
\mathbf{t} - time to maturity of option (as \% of year)
v - volatility - annualized standard deviation of daily returns

Black-Scholes Option Pricing Model

$$
\left(d_{1}\right)=\frac{\ln \frac{P_{s}}{S}+\left(r+\frac{v^{2}}{2}\right) t}{v \sqrt{t}}
$$

3234363840

Cumulative Normal Density Function

$$
\left(d_{1}\right)=\frac{\ln \frac{P_{s}}{S}+\left(r+\frac{v^{2}}{2}\right) t}{v \sqrt{t}}
$$

$$
\left(d_{2}\right)=d_{1}-v \sqrt{t}
$$

Call Option

Example

What is the price of a call option given the following?

$$
\begin{array}{lll}
P=36 & r=10 \% & v=.40 \\
S=40 & t=90 \text { days } / 365 &
\end{array}
$$

Call Option

Example

What is the price of a call option given the following?

$$
\begin{array}{lll}
\mathrm{P}=36 & \mathrm{r}=10 \% & \mathrm{v}=.40 \\
\mathrm{~S}=40 & \mathrm{t}=90 \text { days } / 365 &
\end{array}
$$

$$
\left(d_{1}\right)=\frac{\ln \frac{P_{s}}{S}+\left(r+\frac{v^{2}}{2}\right) t}{v \sqrt{t}}
$$

$$
\left(d_{1}\right)=-.3070
$$

$$
N\left(d_{1}\right)=1-.6206=.3794
$$

Call Option

Example

What is the price of a call option given the following?

$$
\begin{array}{lll}
P=36 & r=10 \% & v=.40 \\
S=40 & t=90 \text { days } / 365 &
\end{array}
$$

$$
\left(d_{2}\right)=d_{1}-v \sqrt{t}
$$

$$
\left(d_{2}\right)=-.5056
$$

$$
N\left(d_{2}\right)=1-.6935=.3065
$$

Call Option

Example

What is the price of a call option given the following?

$$
\begin{array}{lll}
\mathrm{P}=36 & \mathrm{r}=10 \% & \mathrm{v}=.40 \\
\mathrm{~S}=40 & \mathrm{t}=90 \text { days } / 365 &
\end{array}
$$

$$
\begin{aligned}
& \mathrm{O}_{\mathrm{C}}=\mathrm{P}_{\mathrm{s}}\left[\mathrm{~N}\left(\mathrm{~d}_{1}\right)\right]-\mathrm{S}\left[\mathrm{~N}\left(\mathrm{~d}_{2}\right)\right] \mathrm{e}^{-\mathrm{tt}} \\
& \mathrm{O}_{\mathrm{C}}=36[.3794]-40[.3065] \mathrm{e}^{-(.10)(.2466)} \\
& \mathrm{O}_{\mathrm{C}}=\$ 1.70
\end{aligned}
$$

Put - Call Parity

Put Price $=\mathrm{Oc}+\mathrm{S}-\mathrm{P}-$ Carrying Cost + Div.

Carrying cost $=r \times S \times t$

Put - Call Parity

Example
ABC is selling at $\$ 41$ a share. A six month May 40 Call is selling for $\$ 4.00$. If a May $\$.50$ dividend is expected and $\mathrm{r}=10 \%$, what is the put price?

Put - Call Parity

Example

ABC is selling at $\$ 41$ a share. A six month May 40 Call is selling for $\$ 4.00$. If a May $\$.50$ dividend is expected and $\mathrm{r}=10 \%$, what is the put price?
$O p=O c+S-P-$ Carrying Cost + Div.
$O p=4+40-41-(.10 \times 40 \times .50)+.50$
$O p=3-2+.5$
$O p=\$ 1.50$

Principles of Corporate Finance

Brealey and Myers
Sixth Edition

Real Options

Chapter 21

Topics Covered

- Real Options
\rightarrow Follow Up Investments
\rightarrow Abandon
\rightarrow Wait
\rightarrow Vary Output or Production
- Binomial Model

Corporate Options

4 types of "Real Options"

1 - The opportunity to make follow-up investments.
2 - The opportunity to abandon a project
3 - The opportunity to "wait" and invest later.
4 - The opportunity to vary the firm's output or production methods.

Value "Real Option" = NPV with option - NPV w/o option

Option to Wait

Intrinsic Value

Option to Wait

Intrinsic Value + Time Premium = Option Value

Time Premium $=$ Vale of being able to wait
Option
Price

Stock Price

Option to Wait

More time $=$ More value

Option to Abandon

Example - Abandon

Mrs. Mulla gives you a non-retractable offer to buy your company for $\$ 150 \mathrm{mil}$ at anytime within the next year. Given the following decision tree of possible outcomes, what is the value of the offer (i.e. the put option) and what is the most Mrs. Mulla could charge for the option?

Use a discount rate of 10%

Option to Abandon

Example - Abandon

Mrs. Mulla gives you a non-retractable offer to buy your company for $\$ 150$ mil at anytime within the next year. Given the following decision tree of possible outcomes, what is the value of the offer (i.e. the put option) and what is the most Mrs. Mulla could charge for the option?

Option to Abandon

Example - Abandon

Mrs. Mulla gives you a non-retractable offer to buy your company for $\$ 150 \mathrm{mil}$ at anytime within the next year. Given the following decision tree of possible outcomes, what is the value of the offer (i.e. the put option) and what is the most Mrs. Mulla could charge for the option?
Year 0 Year 1

Corporate Options

Reality

- Decision trees for valuing "real options" in a corporate setting can not be practically done by hand.
- We must introduce binomial theory \& B-S models

Binomial Pricing

Probability Up $=p=\frac{(\mathbf{a}-\underline{d})}{(\mathbf{u}-\mathbf{d})} \quad$ Prob Down $=1-p$
$a=e^{r \Delta t} \quad d=e^{-\sigma[\Delta t]^{.5}} \quad u=e^{\sigma[\Delta t]^{.5}}$
$\Delta t=$ time intervals as $\%$ of year

Binomial Pricing

Example
Price $=36 \quad \sigma=.40 \quad \mathrm{t}=90 / 365 \quad \Delta \mathrm{t}=30 / 365$
Strike $=40 \quad r=10 \%$
$\mathrm{a}=1.0083$
$\mathrm{u}=1.1215$
$\mathrm{d}=.8917$
$\mathrm{Pu}=.5075$
$\mathrm{Pd}=.4925$

Binomial Pricing

Binomial vs. Black Scholes

Expanding the binomial model to allow more possible price changes

1 step
(2 outcomes)

2 steps
(3 outcomes)

4 steps
(5 outcomes)
etc. etc.

Binomial vs. Black Scholes

How estimated call price changes as number of binomial steps increases

No. of steps	Estimated value
1	48.1
2	41.0
3	42.1
5	41.8
10	41.4
50	40.3
100	40.6
Black-Scholes	40.5

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Warrants and Convertibles

Chapter 22

Topics Covered

- What is a Warrant?
- What is a Convertible Bond?
- The Difference Between Warrants and Convertibles
- Why do Companies Issue Warrants and Convertibles?

Warrant Value

Example:

BJ Services warrants, January 1999
Exercise price \$15
Warrant price \$ 9
Share price \$ 16

Warrant price at maturity

BJ Services share price

Warrant Value vs. Stock Price

Value of warrant

Exercise price $=\$ 15$

Stock price

United Glue Warrants

- United glue has just issued $\$ 2$ million package of debt and warrants. Using the following data, calculate the warrant value.
- \# shares outstanding $=1 \mathrm{mil}$
- Current stock price $=\$ 12$

O Number of shares issued per share outstanding $=.10$
D Total number of warrants issued $=100,000$

- Exercise price of warrants $=\$ 10$

Time to expiration of warrants $=4$ years

- Annualized standard deviation of stock daily returns $=.40$

Date of return $=10$ percent

United Glue Warrants

- United glue has just issued $\$ 2$ million package of debt and warrants. Using the following data, calculate the warrant value.

Cost of warrants $=$ total financing - value of loans w/o warrants

$$
\begin{aligned}
500,000 & =2,000,000-1,500,000 \\
\$ 5 & =\frac{500,000}{100,000} \text { Cost of each warrant }
\end{aligned}
$$

United Glue Warrants

- United glue has just issued $\$ 2$ million package of debt and warrants. Using the following data, calculate the warrant value.

$$
\begin{array}{ll}
\left(d_{1}\right)=1.104 & \left(d_{2}\right)=.304 \\
N\left(d_{1}\right)=.865 & N\left(d_{2}\right)=.620
\end{array}
$$

United Glue Warrants

- United glue has just issued $\$ 2$ million package of debt and warrants. Using the following data, calculate the warrant value.

Warrant $=12[.865]-[.620]\left\{10 / 1.1^{4}\right]$
 $=\$ 6.15$

United Glue Warrants

- United glue has just issued $\$ 2$ million package of debt and warrants. Using the following data, calculate the warrant value.
- Value of warrant with dilution

Current equity value of

$$
=V=\begin{aligned}
& \text { Value of United's } \\
& \text { total assets }
\end{aligned} \text { - value of loans }
$$ alternative firm

$$
V=18-5.5=\$ 12.5 \text { million }
$$

United Glue Warrants

- United glue has just issued $\$ 2$ million package of debt and warrants. Using the following data, calculate the warrant value.
- Value of warrant with dilution
$\begin{aligned} & \text { Current share price of } \\ & \text { alternative firm }\end{aligned}=\frac{V}{N}=\frac{12.5 \text { million }}{1 \text { million }}=\$ 12.50$

Black Scholes formula gives value $=\$ 6.64$

United Glue Warrants

- United glue has just issued $\$ 2$ million package of debt and warrants. Using the following data, calculate the warrant value.
- Value of warrant with dilution

$$
\frac{1}{1+q} \times \text { value of call on alternative firm }
$$

$$
\frac{1}{1.10} \times 6.64=\$ 6.03
$$

What is a Convertible Bond?

- ALZA
\rightarrow 5\% Convertible 2006
\rightarrow Convertible into 26.2 shares
\rightarrow Conversion ratio 26.2
\rightarrow Conversion price $=1000 / 26.2=\$ 38.17$
\rightarrow Market price of shares $=\$ 28$

What is a Convertible Bond?

- ALZA
\rightarrow 5\% Convertible 2006
\rightarrow Convertible into 26.2 shares
\rightarrow Conversion ratio 26.2
\rightarrow Conversion price $=1000 / 26.2=\$ 38.17$
\rightarrow Market price of shares $=\$ 28$
- Lower bound of value
\rightarrow Bond value
\rightarrow Conversion value $=26.2 \times 28=733.60$

What is a Convertible Bond?

- How bond value varies with firm value at maturity.

Bond value (\$ thousands)

What is a Convertible Bond?

- How conversion value at maturity varies with firm value.

What is a Convertible Bond?

- How value of convertible at maturity varies with firm value.

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Valuing Debt

Chapter 23

Topics Covered

- The Classical Theory of Interest
- The Term Structure and YTM
- Duration and Volatility
- Explaining the Term Structure
- Allowing for the Risk of Default

Debt \& Interest Rates

Classical Theory of Interest Rates (Economics)

- developed by Irving Fisher

Debt \& Interest Rates

Classical Theory of Interest Rates (Economics)

- developed by Irving Fisher

Nominal Interest Rate $=$ The rate you actually pay when you borrow money.

Debt \& Interest Rates

Classical Theory of Interest Rates (Economics)

- developed by Irving Fisher

Nominal Interest Rate $=$ The rate you actually pay when you borrow money.

Real Interest Rate $=$ The theoretical rate you pay when you borrow money, as determined by supply and demand.

Debt \& Interest Rates

Nominal $r=$ Real $r+$ expected inflation

Real r is theoretically somewhat stable

Inflation is a large variable

Q: Why do we care?
A: This theory allows us to understand the Term Structure of Interest Rates.

Q: So What?
A: The Term Structure tells us the cost of debt.

Term Structure

Spot Rate - The actual interest rate today ($\mathrm{t}=0$)
Forward Rate - The interest rate, fixed today, on a loan made in the future at a fixed time.

Future Rate - The spot rate that is expected in the future.
Yield To Maturity (YTM) - The IRR on an interest bearing instrument.

Debt \& Risk

Example (Bond 1)
Calculate the duration of our 10.5% bond @ 8.5% YTM
Year CF PV@YTM \% of Total PV \% \times Year

Debt \& Risk

Example (Bond 1)

Calculate the duration of our 10.5% bond @ 8.5% YTM

| Year CF PV@YTM
 1 105 \quad \% of Total PV \quad Y Year | | | |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 105 | | |
| 3 | 105 | | |
| 4 | 105 | | |
| 5 | 1105 | | |

Debt \& Risk

Example (Bond 1)

Calculate the duration of our 10.5% bond @ 8.5% YTM
Year CF PV@YTM \% of Total PV \% x Year
$\begin{array}{lll}1 & 105 & 96.77\end{array}$
$\begin{array}{lll}2 & 105 & 89.19\end{array}$
310582.21
$\begin{array}{lll}4 & 105 & 75.77\end{array}$
$5 \quad 1105 \quad \underline{734.88}$
1078.82

Debt \& Risk

Example (Bond 1)
Calculate the duration of our 10.5% bond @ 8.5% YTM

Year	CF	PV@YTM	\% of Total PV	\% x Year
1	105	96.77	. 090	
2	105	89.19	. 083	
3	105	82.21	. 076	
4	105	75.77	. 070	
5	1105	734.88	. 681	
		1078.82	1.00	

Debt \& Risk

Example (Bond 1)
Calculate the duration of our 10.5% bond @ 8.5% YTM

Year	CF	$\underline{\text { PV@YTM }}$	\% of Total PV		\% x Year
1	105	96.77	.090	0.090	
2	105	89.19	.083	0.164	
3	105	82.21	.076	0.227	
4	105	75.77	.070	0.279	
5	1105	$\underline{734.88}$	$\underline{.681}$	$\underline{3.406}$	
		$\underline{1078.82}$	$\underline{1.00}$	$\underline{4.166}$ Duration	

Debt \& Risk

Example (Bond 2)
Given a 5 year, $9.0 \%, \$ 1000$ bond, with a 8.5% YTM, what is this bond's duration?
Year CF PV@YTM \% of Total PV \% x Year

Debt \& Risk

Example (Bond 2)
Given a 5 year, $9.0 \%, \$ 1000$ bond, with a 8.5% YTM, what is this bond's duration?
$\begin{array}{lllll}\begin{array}{lll}\text { Year } & \text { CF } & \text { PV@YTM } \\ 1 & 90 & \end{array} \quad \text { \% of Total PV } \quad \text {. Year } \\ 2 & 90 & & \\ 3 & 90 & & \\ 4 & 90 & & \\ 5 & 1090 & & \end{array}$

Debt \& Risk

Example (Bond 2)
Given a 5 year, $9.0 \%, \$ 1000$ bond, with a 8.5% YTM, what is this bond's duration?
Year CF PV@YTM \% of Total PV \% x Year
$1 \quad 90 \quad 82.95$
$2 \quad 90 \quad 76.45$
$3 \quad 90 \quad 70.46$
$4 \quad 90 \quad 64.94$
$5 \quad 1090 \quad \underline{724.90}$
1019.70

Debt \& Risk

Example (Bond 2)
Given a 5 year, $9.0 \%, \$ 1000$ bond, with a 8.5% YTM, what is this bond's duration?

Year	CF		PV@YTM	\% of Total PV	\% x Year
1	90	82.95	.081		
2	90	76.45	.075		
3	90	70.46	.069		
4	90	64.94	.064		
5	1090	$\underline{724.90}$	$\underline{.711}$		
		$\underline{1019.70}$	$\underline{1.00}$		

Debt \& Risk

Example (Bond 2)
Given a 5 year, $9.0 \%, \$ 1000$ bond, with a 8.5% YTM, what is this bond's duration?

Year	CF	$\underline{\text { PV@YTM }}$		\% of Total PV	
1	90	82.95	.081	0.081	
2	90	76.45	.075	0.150	
3	90	70.46	.069	0.207	
4	90	64.94	.064	0.256	
5	1090	$\underline{724.90}$	$\underline{711}$	$\underline{3.555}$	
		$\underline{1019.70}$	$\underline{1.00}$	$\underline{4.249}$ Duration	

Term Structure

What Determines the Shape of the TS?
1 - Unbiased Expectations Theory
2 - Liquidity Premium Theory
3 - Market Segmentation Hypothesis

Term Structure \& Capital Budgeting

- CF should be discounted using Term Structure info.
- Since the spot rate incorporates all forward rates, then you should use the spot rate that equals the term of your project.
- If you believe inother theories take advantage of the arbitrage.

Yield To Maturity

- All interest bearing instruments are priced to fit the term structure.
- This is accomplished by modifying the asset price.
- The modified price creates a New Yield, which fits the Term Structure.
- The new yield is called the Yield To Maturity (YTM).

Yield to Maturity

Example

- A $\$ 1000$ treasury bond expires in 5 years. It pays a coupon rate of 10.5%. If the market price of this bond is $107-88$, what is the YTM?

Yield to Maturity

Example

- A $\$ 1000$ treasury bond expires in 5 years. It pays a coupon rate of 10.5%. If the market price of this bond is $107-88$, what is the YTM?

$$
\begin{array}{llllll}
\underline{C 0} & \frac{\text { C1 }}{} & \frac{\text { C2 }}{} & \frac{\text { C3 }}{} & \frac{\text { C4 }}{} & \frac{\text { C5 }}{1078.80} \\
-105 & 105 & 105 & 105 & 1105
\end{array}
$$

Calculate IRR = 8.5\%

Default, Premiums \& Ratings

The risk of default changes the price of a bond and the YTM.

Book Example

We have a $9 \% 1$ year bond. The built in price is $\mathbf{\$ 1 0 0 0}$. But, there is a $\mathbf{2 0 \%}$ chance the company will go into bankruptcy and not be able to pay. What is the bond's value?

A:

Default, Premiums \& Ratings

Book Example

We have a $9 \% 1$ year bond. The built in price is $\$ 1000$. But, there is a 20% chance the company will go into bankruptcy and not be able to pay. What is the bond's value?

A: Bond Value Prob

1090	.80	$=872.00$
0	.20	$=0$

$$
\begin{aligned}
& \text { Value }=\frac{872}{1.09}=\$ 800 \\
& \text { YTM }=\frac{1090}{800}=36.3 \%
\end{aligned}
$$

Default, Premiums \& Ratings

Conversely - If on top of default risk, investors require an additional 2 percent market risk premium, the price and YTM is as follows:

$$
\begin{aligned}
& \text { Value }=\frac{872}{1.11}=\$ 785.59 \\
& Y T M=\frac{1090}{785.59}=38.8 \%
\end{aligned}
$$

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

The Many Different Kinds of Debt

Chapter 24

Topics Covered

- Domestic Bonds and International Bonds
- The Bond Contract
- Security and Seniority Asset-Backed Securities
- Repayment Provisions
- Restrictive Covenants
- Private Placements and Project Finance
- Innovation in the Bond Market

Bond Terminology

- Foreign bonds - Bonds that are sold to local investors in another country's bond market.
- Yankee bond- a bond sold publicly by a foreign company in the United States.
- Sumari - a bond sold by a foreign firm in Japan.
- Eurobond market - wind European and American multinationals were forced to tap into international markets for capital.

Bond Terminology

- Indenture or trust deed - the bond agreement between the borrower and a trust company.
- Registered bond - a bond in which the Company's records show ownership and interest and principle are paid directly to each owner.
- Bearer bonds - the bond holder must send in coupons to claim interest and must send a certificate to claim the final payment of principle.

Bond Terminology

- Accrued interest - the amount of accumulated interest since the last coupon payment
- Debentures - long-term unsecured issues on debt
- Mortgage bonds - long-term secured debt often containing a claim against a specific building or property
- Asset-backed securities - the sale of cash flows derived directly from a specific set of bundled assets

Bond Terminology

- Sinking fund - a fund established to retired debt before maturity.
- Callable bond - a bond that may be repurchased by a the firm before maturity at a specified call price.
- Defeasance - a method of retiring corporate debt involving the creation of a trust funded with treasury bonds.

Straight Bond vs. Callable Bond

Bond Terminology

- Restrictive covenants - Limitations set by bondholders on the actions of the Corporation.
- Negative Pledge Clause - the processing of giving unsecured debentures equal protection and when assets are mortgaged.
- Poison Put - a clause that obliges the borrower to repay the bond if a large quantity of stock is bought by single investor, which causes the firms bonds to beat down rated.

Bond Terminology

- Pay in kind (PIK) - a bond that makes regular interest payments, but in the early years of the bonds life the issuer can choose to pay interest in the form of either cash or more bonds with an equivalent face value.

Covenants

- Debt ratios:
\rightarrow Senior debt limits senior borrowing
\rightarrow Junior debt limits senior \& junior borrowing
- Security:
\rightarrow Negative pledge
- Dividends
- Event risk
- Positive covenants:
\rightarrow Working capital
\rightarrow Net worth

Event Risk: An Example

October 1993 Marriott spun off its hotel management business worth $\mathbf{8 0 \%}$ of its value.

Before the spin-off, Marriott's long-term book debt ratio was 2891/3644 $=\mathbf{7 9} \%$. Almost all the debt remained with the parent (renamed Host Marriott), whose debt ratio therefore rose to $\mathbf{9 3 \%}$.

Marriott's stock price rose 13.8% and its bond prices declined by up to $\mathbf{3 0 \%}$.

Bondholders sued and Marriott modified its spinoff plan.

Project Finance

1. Project is set up as a separate company.
2. A major proportion of equity is held by project manager or contractor, so provision of finance and management are linked.
3. The company is highly levered.

Parties In Project Finance

Risk Allocation

Risk
Shifted to:
Contract

Completion/ continuing management
Construction cost

Raw materials

Revenues

Sponsor

Contractor

Supplier(s)

Purchaser(s)

Management contract/ completion gtees / working capital maintenance Turnkey contract/ fixed price/ delay penalties
Long-term contract/ indexed prices/ supply or pay
Long-term contract/ indexed to costs/ take or pay/ throughput agreements/ tolling contract
Concession/regulation Government Concession agreement/ provision of supporting infrastructure
Currency convertibility

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Leasing

Chapter 25

Topics Covered

-What is a Lease?

- Why Lease?
- Operating Leases
- Valuing Financial Leases
- When Do Financial Leases Pay?

Lease Terms

- Operating Leases
- Financial Leases
\rightarrow Rental Lease
\rightarrow Net lease
\rightarrow Direct lease
\rightarrow Leveraged lease

Why Lease?

- Sensible Reasons for Leasing
\rightarrow Short-term leases are convenient
\rightarrow Cancellation options are valuable
\rightarrow Maintenance is provided
\rightarrow Standardization leads to low costs
\rightarrow Tax shields can be used
\rightarrow Avoiding the alternative minimum tax

Why Lease?

- Dubious Reasons for Leasing
\rightarrow Leasing avoids capital expenditure controls
\rightarrow Leasing preserves capital
\rightarrow Leases may be off balance sheet financing
\rightarrow Leasing effects book income

Operating Lease

Example

Acme Limo has a client who will sign a lease for 7 years, with lease payments due at the start of each year. The following table shows the NPV of the limo if Acme purchases the new limo for $\$ 75,000$ and leases it our for 7 years.

Operating Lease

Example - cont

Acme Limo has a client who will sign a lease for 7 years, with lease payments due at the start of each year. The following table shows the NPV of the limo if Acme purchases the new limo for $\$ 75,000$ and leases it our for 7 years.

	Year						
	0	1	2	3	4	5	6
Initial cost	-75						
Maintenance, insurance, selling, and administrative costs	-12	-12	-12	-12	-12	-12	-12
Tax shield on costs	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Depreciation tax shield	0	5.25	8.4	5.04	3.02	3.02	1.51
Total	-82.8	-2.55	0.6	-2.76	-4.78	-4.78	-6.29
NPV @ 7\% = - \$98.15							
Break even rent(level)	26.18	26.18	26.18	26.18	26.18	26.18	26.18
Tax	-9.16	-9.16	-9.16	-9.16	-9.16	-9.16	-9.16
Break even rent after-tax	17.02	17.02	17.02	17.02	17.02	17.02	17.02

Financial Leases

Example

Greymore Bus Lines is considering a lease. Your operating manager wants to buy a new bus for $\$ 100,000$. The bus has an 8 year life. The bus saleswoman says she will lease Greymore the bus for 8 years at $\$ 16,900$ per year, but Greymore assumes all operating and maintenance costs.
Should Greymore buy or lease the bus?

Financial Leases

Example - cont

Greymore Bus Lines is considering a lease. Your operating manager wants to buy a new bus for $\$ 100,000$. The bus has an 8 year life. The bus saleswoman says she will lease Greymore the bus for 8 years at $\$ 16,900$ per year, but Greymore assumes all operating and maintenance gosts.
Should Greymore buy or lease the bus?

Cash flow consequences of the lease contract to Greymore

Year

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Cost of new bus	100.00							
Lost Depr tax shield		(7.00)	(11.20)	(6.72)	(4.03)	(4.03)	(2.02)	-
Lease payment	(16.90)	(16.90)	(16.90)	(16.90)	(16.90)	(16.90)	(16.90)	(16.90)
Tax shield of lease	5.92	5.92	5.92	5.92	5.92	5.92	5.92	5.92
Cash flow of lease	89.02	(17.98)	(22.18)	(17.70)	(15.01)	(15.01)	(13.00)	(10.98)

Financial Leases

Example - cont

> Greymore Bus Lines is considering a lease. Your operating manager wants to buy a new bus for $\$ 100,000$. The bus has an 8 year life. The bus saleswoman says she will lease Greymore the bus for 8 years at $\$ 16,900$ per year, but Greymore assumes all operating and maintenance costs.

Should Greymore buy or lease the bus?
Cash flow consequences of the lease contract to Greymore:
-Greymore saves the $\$ 100,000$ cost of the bus.
-Loss of depreciation benefit of owning the bus.

- $\$ 16,900$ lease payment is due at the start of each year.
-Lease payments are tax deductible.

Financial Leases

Example - cont

Greymore Bus Lines Balance Sheet without lease

Greymore Bus Lines (figures in $\$ 1,000$ s)

Bus	10	100	Loan secured by bus
All other assets	1000	450	Other loans
		550	Equity
Toital Assets	1100	1100	Total liabilities

Equivalent lease balance sheet
Greymore Bus Lines (figures in $\$ 1,000 \mathrm{~s}$)

Bus	10	100	Financial lease
All other assets	1000	450	Other loans
		550	Equity
Toital Assets	1100	1100	Total liabilities

Financial Leases

Example - cont

Greymore Bus Lines can borrow at 10%, thus the value of the lease should be discounted at 6.5% or $.10 \times(1-.35)$. The result will tell us if Greymore should lease or buy the bus.

Financial Leases

Example - cont

Greymore Bus Lines can borrow at 10%, thus the value of the lease should be discounted at 6.5% or $.10 \times(1-.35)$. The result will tell us if Greymore should lease or buy the bus.

$$
\begin{aligned}
& \text { NPV lease }=89.02-\frac{17.99}{1.065}-\frac{22.19}{(1.065)^{2}}-\frac{17.71}{(1.065)^{3}}-\frac{15.02}{(1.065)^{4}} \\
& \text { \II } \\
& \begin{array}{cc}
10 & -\frac{15.02}{(1.065)^{5}}-\frac{13.00}{(1.065)^{6}}-\frac{10.98}{(1.065)^{7}} \\
=-.70 \text { or }-\$ 700
\end{array}
\end{aligned}
$$

Financial Leases

Example - cont

Greymore Bus Lines lease cash flows can also be thought of as loan equivalent cash flows.

Financial Leases

Example - cont

Greymore Bus Lines lease cash flows can also be thought of as loan equivalent cash flows.

Year								
	0	1	2	3	4	5	6	7
Amount borrowed at year end	89.72	77.56	60.42	46.64	34.66	21.89	10.31	0.00
Interest paid @ 10\%		-8.97	-7.76	-6.04	-4.66	-3.47	-2.19	-1.03
Tax shield @ 35\%		3.14	2.71	2.11	1.63	1.21	0.77	0.36
Interest paid after tax		-5.83	-5.04	-3.93	-3.03	-2.25	-1.42	-0.67
Principal repaid		-12.15	-17.14	-13.78	-11.99	-12.76	-11.58	-10.31
Net cash flow of equivalent loan	89.72	-17.99	-22.19	-17.71	-15.02	-15.02	-13.00	-10.98

Financial Leases

Example - cont

The Greymore Bus Lines lease cash flows can also be treated as a favorable financing alternative and valued using APV.

$\mathrm{APV}=\mathrm{NPV}$ of project NPV of lease $\mathrm{APV}=-5,000+8,000=\$ 3,000$

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Managing Risk

Chapter 26

Topics Covered

- Insurance
- Hedging With Futures
- Speculating and Margin
- SWAPS

Insurance

- Most businesses face the possibility of a hazard that can bankrupt the company in an instant.
- These risks are neither financial or business and can not be diversified.
- The cost and risk of a loss due to a hazard, however, can be shared by others who share the same risk.

Insurance

Example

An offshore oil platform is valued at $\$ 1$ billion. Expert meteorologist reports indicate that a 1 in 10,000 chance exists that the platform may be destroyed by a storm over the course of the next year.

How can the cost of this hazard be shared?

Insurance

Example - cont.

An offshore oil platform is valued at $\$ 1$ billion. Expert meteorologist reports indicate that a 1 in 10,000 chance exists that the platform may be destroyed by a storm over the course of the next year.

How can the cost of this hazard be shared?

Answer:
A large number of companies with similar risks can each contribute pay into a fund that is set aside to pay the cost should a member of this risk sharing group experience the 1 in 10,000 loss. The other 9,999 firms may not experience a loss, but also avoided the risk of not being compensated should a loss have occurred.

Insurance

Example - cont.

An offshore oil platform is valued at $\$ 1$ billion. Expert meteorologist reports indicate that a 1 in 10,000 chance exists that the platform may be destroyed by a storm over the course of the next year.
What would the cost to each group member be for this protection?

Answer:

1,000,000,000

 10,000

Insurance

- Why would an insurance company not offer a policy on this oil platform for $\$ 100,000$?
\rightarrow Administrative costs
\rightarrow Adverse selection
\rightarrow Moral hazard

Insurance

- The loss of an oil platform by a storm may be 1 in 10,000 . The risk, however, is larger for an insurance company since all the platforms in the same area may be insured, thus if a storm damages one in may damage all in the same area. The result is a much larger risk to the insurer.
- Catastrophe Bonds - (CAT Bonds) Allow insurers to transfer their risk to bond holders by selling bonds whose cash flow payments depend on the level of insurable losses NOT occurring.

Hedging

Business has risk

Business Risk - variable costs
Financial Risk - Interest rate changes

Goal - Eliminate risk

HOW?
Hedging \& Futures Contracts

Hedging

Ex - Kellogg produces cereal. A major component and cost factor is sugar.

- Forecasted income \& sales volume is set by using a fixed selling price.
- Changes in cost can impact these forecasts.
- To fix your sugar costs, you would ideally like to purchase all your sugar today, since you like today's price, and made your forecasts based on it. But, you can not.
- You can, however, sign a contract to purchase sugar at various points in the future for a price negotiated today.
- This contract is called a "Futures Contract."
- This technique of managing your sugar costs is called "Hedging."

Hedging

1- Spot Contract - A contract for immediate sale \& delivery of an asset.

2- Forward Contract - A contract between two people for the delivery of an asset at a negotiated price on a set date in the future.
3- Futures Contract - A contract similar to a forward contract, except there is an intermediary that creates a standardized contract. Thus, the two parties do not have to negotiate the terms of the contract.

The intermediary is the Commodity Clearing Corp (CCC). The CCC guarantees all trades \& "provides" a secondary market for the speculation of Futures.

Types of Futures

Commodity Futures
 -Sugar -Corn -OJ
 -Wheat-Soy beans -Pork bellies

Financial Futures

-Tbills	-Yen	-GNMA
-Stocks	-Eurodollars	

Index Futures
-S\&P 500 -Value Line Index
-Vanguard Index

Futures Contract Concepts

Not an actual sale
Always a winner \& a loser (unlike stocks)
K are "settled" every day. (Marked to Market)
Hedge - K used to eliminate risk by locking in prices
Speculation - K used to gamble
Margin - not a sale - post partial amount
$\operatorname{Hog} \mathrm{K}=30,000 \mathrm{lbs}$
Tbill $\mathrm{K}=\$ 1.0 \mathrm{mil}$
Value line Index $\mathrm{K}=$ \$index x 500

Ex - Settlement \& Speculate

Example - You are speculating in Hog Futures. You think that the Spot Price of hogs will rise in the future. Thus, you go Long on 10 Hog Futures. If the price drops .17 cents per pound (\$.0017) what is total change in your position?

Ex - Settlement \& Speculate

Example - You are speculating in Hog Futures. You think that the Spot Price of hogs will rise in the future. Thus, you go Long on 10 Hog Futures. If the price drops .17 cents per pound (\$.0017) what is total change in your position?

30,000 lbs $\times \$.0017$ loss $\times 10 \mathrm{Ks}=\$ 510.00$ loss

Since you must settle your account every day, you must give your broker \$510.00

Commodity Hedge

In June, farmer John Smith expects to harvest 10,000 bushels of corn during the month of August. In June, the September corn futures are selling for $\$ 2.94$ per bushel ($1 \mathrm{~K}=5,000$ bushels). Farmer Smith wishes to lock in this price.
Show the transactions if the Sept spot price drops to \$2.80.

Commodity Hedge

In June, farmer John Smith expects to harvest 10,000 bushels of corn during the month of August. In June, the September corn futures are selling for $\$ 2.94$ per bushel ($1 \mathrm{~K}=5,000$ bushels). Farmer Smith wishes to lock in this price.
Show the transactions if the Sept spot price drops to $\$ 2.80$.

Revenue from Crop: 10,000 x 2.80
June: Short 2K @ 2.94=29,400
Sept: Long 2K @ $2.80=\underline{28,000}$
Gain on Position--------------------------------1, 100
Total Revenue

Commodity Hedge

In June, farmer John Smith expects to harvest 10,000 bushels of corn during the month of August. In June, the September corn futures are selling for $\$ 2.94$ per bushel ($1 \mathrm{~K}=5,000$ bushels). Farmer Smith wishes to lock in this price.
Show the transactions if the Sept spot price rises to \$3.05.

Commodity Hedge

In June, farmer John Smith expects to harvest 10,000 bushels of corn during the month of August. In June, the September corn futures are selling for $\$ 2.94$ per bushel ($1 \mathrm{~K}=5,000$ bushels). Farmer Smith wishes to lock in this price.
Show the transactions if the Sept spot price rises to $\$ 3.05$.

Revenue from Crop: 10,000 x 3.05
June: Short 2K @ 2.94=29,400
Sept: Long 2K @ $3.05=\underline{30,500}$
Loss on Position-------------------------------(1,100)
Total Revenue

Commodity Speculation

You have lived in NYC your whole life and are independently wealthy. You think you know everything there is to know about pork bellies (uncurred bacon) because your butler fixes it for you every morning. Because you have decided to go on a diet, you think the price will drop over the next few months. On the CME, each PB K is 38,000 lbs. Today, you decide to short three May Ks @ 44.00 cents per lbs. In Feb, the price rises to 48.5 cents and you decide to close your position. What is your gain/loss?

Commodity Speculation

You have lived in NYC your whole life and are independently wealthy. You think you know everything there is to know about pork bellies (uncurred bacon) because your butler fixes it for you every morning. Because you have decided to go on a diet, you think the price will drop over the next few months. On the CME, each PB K is 38,000 lbs. Today, you decide to short three May Ks @ 44.00 cents per lbs. In Feb, the price rises to 48.5 cents and you decide to close your position. What is your gain/loss?

Nov: Short 3 May K (. $4400 \times 38,000 \times 3)=+50,160$
Feb: Long 3 May K $(.4850 \times 38,000 \times 3)=-55,290$

$$
\text { Loss of } 10.23 \%=-5,130
$$

Margin

- The amount (percentage) of a Futures Contract Value that must be on deposit with a broker.
- Since a Futures Contract is not an actual sale, you need only pay a fraction of the asset value to open a position $=$ margin.
- CME margin requirements are 15%
- Thus, you can control $\$ 100,000$ of assets with only $\$ 15,000$.

Commodity Speculation with margin

You have lived in NYC your whole life and are independently wealthy. You think you know everything there is to know about pork bellies (uncurred bacon) because your butler fixes it for you every morning. Because you have decided to go on a diet, you think the price will drop over the next few months. On the CME, each PB K is $38,000 \mathrm{lbs}$. Today, you decide to short three May Ks @ 44.00 cents per lbs. In Feb, the price rises to 48.5 cents and you decide to close your position. What is your gain/loss?

Commodity Speculation with margin

You have lived in NYC your whole life and are independently wealthy. You think you know everything there is to know about pork bellies (uncurred bacon) because your butler fixes it for you every morning. Because you have decided to go on a diet, you think the price will drop over the next few months. On the CME, each PB K is $38,000 \mathrm{lbs}$. Today, you decide to short three May Ks @ 44.00 cents per lbs. In Feb, the price rises to 48.5 cents and you decide to close your position. What is your gain/loss?

Nov: Short 3 May K $(.4400 \times 38,000 \times 3)=+50,160$
Feb: Long 3 May K $(.4850 \times 38,000 \times 3)=-55,290$

$$
\text { Loss }=-5,130
$$

Loss

Birth 1981

Definition - An agreement between two firms, in which each firm agrees to exchange the "interest rate characteristics" of two different financial instruments of identical principal

Key points
Spread inefficiencies
Same notation principle
Only interest exchanged

SWAPS

- "Plain Vanilla Swap" - (generic swap)
- fixed rate payer
- floating rate payer
- counterparties
- settlement date
- trade date
- effective date
- terms
- Swap Gain = fixed spread - floating spread

SWAPS

example (vanilla/annually settled)

	XYZ	ABC
fixed rate	10%	11.5%
floating rate	libor +.25	libor +.50

Q: if libor $=7 \%$, what swap can be made 7 what is the profit (assume $\$ 1$ mil face value loans)

A:
XYZ borrows \$1mil @ 10\% fixed
ABC borrows $\$ 1 \mathrm{mil}$ @ 7.5% floating
XYZ pays floating @ 7.25\%
ABC pays fixed @ 10.50\%

example - cont.

Benefit to XYZ
floating $+7.25-7.25$
fixed $+10.50-10.00$
Net gain

Benefit ABC
floating $+7.25-7.50$
$\underline{\text { fixed }-10.50+11.50}$
net gain

Net position
0
$+.50$
$+.50 \%$

Net Position
-. 25
$+1.00$
$+.75 \%$

example - cont.

Settlement date

$$
\begin{array}{ll}
\mathrm{ABC} \text { pmt } 10.50 \times 1 \mathrm{mil} & =105,000 \\
\underline{\mathrm{XYZ} \text { pmt } 7.25 \times 1 \mathrm{mil}} & =72,500 \\
\hline \text { net cash pmt by ABC } & =32,500
\end{array}
$$

if libor rises to 9%
settlement date
ABC pmt $10.50 \times 1 \mathrm{mil}=105,000$
$\underline{X Y Z ~ p m t ~} 9.25 \times 1 \mathrm{mil} \quad=92.500$
net cash pmt by ABC $=12,500$

SWAPS

- transactions
- rarely done direct
- banks = middleman
- bank profit = part of "swap gain"
example - same continued

XYZ \& ABC go to bank separately
XYZ term $=$ SWAP floating @ libor +.25 for fixed @ 10.50
ABC terms $=$ swap floating libor +.25 for fixed 10.75

SWAPS

example - cont.
settlement date - XYZ

$$
\begin{array}{ll}
\text { Bank pmt } 10.50 \times 1 \mathrm{mil} & =105,000 \\
\underline{\text { XYZ pmt } 7.25 \times 1 \mathrm{mil}} & =72,500 \\
\text { net Bank pmt to XYZ } & =32,500
\end{array}
$$

settlement date - ABC
Bank pmt $7.25 \times 1 \mathrm{mil}=72,500$
$\underline{\text { ABC pmt } 10.75 \times 1 \mathrm{mil}}=107,500$
net ABC pmt to bank $=35,000$
bank "swap gain" $=+35,000-32,500=+2,500$

example - cont.

benefit to XYZ
floating $7.25-7.25=0$
fixed $\quad 10.50-10.00=+.50 \quad$ net gain .50
benefit to ABC
floating $7.25-7.50=-.25$
fixed $\quad-10.75+11.50=+.75$
net gain . 50
benefit to bank
floating $+7.25-7.25=0$
fixed
$10.75-10.50=+.25$
net gain +.25
total benefit $=12,500($ same as w/o bank $)$

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Managing International Risk

Chapter 27

Topics Covered

- Foreign Exchange Markets
- Some Basic Relationships
- Hedging Currency Risk
- Exchange Risk and International Investment Decisions

Foreign Exchange Markets

Exchange Rate - Amount of one currency needed to purchase one unit of another.
Spot Rate of Exchange - Exchange rate for an immediate transaction.
Forward Exchange Rate - Exchange rate for a forward transaction.

Foreign Exchange Markets

Forward Premiums and Forward Discounts Example - The yen spot price is 112.645 yen per dollar and the 6 month forward rate is 111.300 yen per dollar, what is the premium and discount relationship?

Foreign Exchange Markets

Forward Premiums and Forward Discounts

Example - The yen spot price is 112.645 yen per dollar and the 6 month forward rate is 111.300 yen per dollar, what is the premium and discount relationship?
$\frac{\text { Forward Price }- \text { Spot Price }}{\text { Spot Price }}=$ Premium or $(-$ Discount $)$

$$
4 \times \frac{112.645-111.300}{111.300} \times 100=4.8 \%
$$

Foreign Exchange Markets

Forward Premiums and Forward Discounts

Example - The yen spot price is 112.645 yen per dollar and the 6 month forward rate is 111.300 yen per dollar, what is the premium and discount relationship?

Answer - The dollar is selling at a 4.8% premium, relative to the yen. The yen is selling at a 4.8% discount, relative to the dollar.

Exchange Rate Relationships

- Basic Relationships

$$
\frac{1+\mathrm{r}_{\text {foreign }}}{1+\mathrm{r}_{\$}}
$$

equals

$f_{\text {foreign } / \$}$
 $S_{\text {foreign / }}$

$$
\frac{1+i_{\text {foreign }}}{1+i_{\$}}
$$

equals

$$
\frac{E\left(S_{\text {foreign } / \$}\right)}{S_{\text {foreign } / \$}}
$$

Exchange Rate Relationships

1) Interest Rate Parity Theory

$$
\frac{1+\mathrm{r}_{\text {foreign }}}{1+\mathrm{r}_{\$}}=\frac{f_{\text {foreign } / \$}}{S_{\text {foreign } / \$}}
$$

- The ratio between the risk free interest rates in two different countries is equal to the ratio between the forward and spot exchange rates.

Exchange Rate Relationships

Example - You have the opportunity to invest $\$ 1,000,000$ for one year. All other things being equal, you have the opportunity to obtain a 1 year Japanese bond (in yen) @ 0.25% or a 1 year US bond (in dollars) @ 5\%. The spot rate is 112.645 yen:\$1 The 1 year forward rate is 107.495 yen:\$1

Which bond will you prefer and why?
Ignore transaction costs.

Exchange Rate Relationships

Example - You have the opportunity to invest $\$ 1,000,000$ for one year. All other things being equal, you have the opportunity to obtain a 1 year Japanese bond (in yen) @ 0.25% or a 1 year US bond (in dollars) @ 5%. The spot rate is 112.645 yen:\$1 The 1 year forward rate is 107.495 yen:\$1

Which bond will you prefer and why? Ignore transaction costs.

Value of US bond $=\$ 100,000 \times 1.05=\$ 105,000$

Exchange Rate Relationships

Example - You have the opportunity to invest $\$ 1,000,000$ for one year. All other things being equal, you have the opportunity to obtain a 1 year Japanese bond (in yen) @ 0.25% or a 1 year US bond (in dollars) @ 5%. The spot rate is 112.645 yen:\$1 The 1 year forward rate is 107.495 yen:\$1

Which bond will you prefer and why? Ignore transaction costs

Value of US bond $=\$ 100,000 \times 1.05=\$ 105,000$
Value of Japan bond $=\$ 100,000 \times 112.645=112,645,000$ yen exchange

Exchange Rate Relationships

Example - You have the opportunity to invest $\$ 1,000,000$ for one year. All other things being equal, you have the opportunity to obtain a 1 year Japanese bond (in yen) @ 0.25% or a 1 year US bond (in dollars) @ 5%. The spot rate is 112.645 yen:\$1 The 1 year forward rate is 107.495 yen:\$1

Which bond will you prefer and why? Ignore transaction costs

Value of US bond $=\$ 100,000 \times 1.05=\$ 105,000$
Value of Japan bond $=\$ 100,000 \times 112.645=112,645,000$ yen exchange $112,645,000$ yen $\times 1.08=112,927,000$ yen bond pmt

Exchange Rate Relationships

Example - You have the opportunity to invest $\$ 1,000,000$ for one year. All other things being equal, you have the opportunity to obtain a 1 year Japanese bond (in yen) @ 0.25% or a 1 year US bond (in dollars) @ 5%. The spot rate is 112.645 yen:\$1 The 1 year forward rate is 107.495 yen:\$1

Which bond will you prefer and why? Ignore transaction costs

Value of US bond $=\$ 100,000 \times 1.05=\$ 105,000$
Value of Japan bond $=\$ 100,000 \times 112.645=112,645,000$ yen exchange
$112,645,000$ yen $\times 1.08=112,927,000$ yen bond pmt
$112,927,000$ yen $/ 107.495=\$ 1,050,500$
exchange

Exchange Rate Relationships

2) Expectations Theory of Exchange Rates

$$
\frac{f_{\text {foreign } / \$}}{S_{\text {foreign } / \$}}=\frac{E\left(S_{\text {foreign } / \$}\right)}{S_{\text {foreign } / \$}}
$$

Theory that the expected spot exchange rate equals the forward rate.

Exchange Rate Relationships

3) Purchasing Power Parity

$$
\frac{1+\mathrm{i}_{\text {foreign }}}{1+\mathrm{i}_{\$}}=\frac{E\left(s_{\text {foreign } / \$}\right)}{S_{\text {foreign } / \$}}
$$

The expected change in the spot rate equals the expected difference in inflation between the two countries.

Exchange Rate Relationships

Example

If inflation in the US is forecasted at 2.0% this year and Japan is forecasted to fall 2.5%, what do we know about the expected spot rate?

Given a spot rate of
112.645yen:\$1

Exchange Rate Relationships

Example - If inflation in the US is forecasted at 2.0% this year and Japan is forecasted to fall 2.5%, what do we know about the expected spot rate?
Given a spot rate of $112.645 y$ y $: \$ 1$

$$
\frac{1+\mathrm{i}_{\text {foreign }}}{1+\mathrm{i}_{\$}}=\frac{E\left(s_{\text {foreign } / \$}\right)}{S_{\text {foreign } / \$}}
$$

Exchange Rate Relationships

Example - If inflation in the US is forecasted at 2.0% this year and Japan is forecasted to fall 2.5%, what do we know about the expected spot rate?
Given a spot rate of $112.645 y$ y $: \$ 1$

$$
\begin{aligned}
\frac{1+\mathrm{i}_{\text {foreign }}}{1+\mathrm{i}_{\$}} & =\frac{E\left(s_{\text {foreign } / \$}\right)}{S_{\text {foreign } / \$}} \\
\frac{1-.025}{1+.02} & =\frac{E\left(s_{\text {foreign } / \$}\right)}{112.645}
\end{aligned}
$$

Exchange Rate Relationships

Example - If inflation in the US is forecasted at 2.0% this year and Japan is forecasted to fall 2.5%, what do we know about the expected spot rate?
Given a spot rate of 112.645yen:\$1

$$
\begin{array}{ll}
\frac{1+\mathrm{i}_{\text {foreign }}}{1+\mathrm{i}_{\$}}=\frac{E\left(s_{\text {foreign/s }}\right)}{S_{\text {foreignn/s }}} & \text { solve for } E s \\
\frac{1-.025}{1+.02}=\frac{E\left(s_{\text {foreign/s }}\right)}{112.645} & E s=107.68
\end{array}
$$

Exchange Rate Relationships

4) International Fisher effect

$$
\frac{1+r_{\text {foreign }}}{1+r_{\$}}=\frac{1+i_{\text {foreign }}}{1+i_{\$}}
$$

The expected difference in inflation rates equals the difference in current interest rates.

Also called common real interest rates.

Exchange Rate Relationships

Example - The real interest rate in each country is about the same.

$$
\begin{gathered}
r(\text { real })=\frac{1+\mathrm{r}_{\text {foreign }}}{1+\mathrm{i}_{\text {foreign }}}=\frac{1.0025}{.975}=.028 \\
r(\text { real })=\frac{1+\mathrm{r}_{\$}}{1+\mathrm{i}_{\$}}=\frac{1.05}{1.02}=.029
\end{gathered}
$$

Exchange Rate Risk

Example - Honda builds a new car in Japan for a cost + profit of 1,715,000 yen. At an exchange rate of 101.18:\$1 the car sells for $\$ 16,950$ in Baltimore. If the dollar rises in value, against the yen, to an exchange rate of $105: \$ 1$, what will be the price of the car?

Exchange Rate Risk

Example - Honda builds a new car in Japan for a cost + profit of 1,715,000 yen. At an exchange rate of 101.18:\$1 the car sells for $\$ 16,950$ in Baltimore. If the dollar rises in value, against the yen, to an exchange rate of $105: \$ 1$, what will be the price of the car?

$1,715,000=\$ 16,333$ 105

Exchange Rate Risk

Example - Honda builds a new car in Japan for a cost + profit of 1,715,000 yen. At an exchange rate of 101.18:\$1 the car sells for $\$ 16,950$ in Baltimore. If the dollar rises in value, against the yen, to an exchange rate of $105: \$ 1$, what will be the price of the car?

$1,715,000=\$ 16,333$ 105

Conversely, if the yen is trading at a forward discount, Japan will
experience a decrease in purchasing power.

Exchange Rate Risk

Example - Harley Davidson builds a motorcycle for a cost plus profit of $\$ 12,000$. At an exchange rate of 101.18:\$1, the motorcycle sells for $1,214,160$ yen in Japan. If the dollar rises in value and the exchange rate is 105:\$1, what will the motorcycle cost in Japan?

Exchange Rate Risk

Example - Harley Davidson builds a motorcycle for a cost plus profit of $\$ 12,000$. At an exchange rate of 101.18:\$1, the motorcycle sells for $1,214,160$ yen in Japan. If the dollar rises in value and the exchange rate is 105:\$1, what will the motorcycle cost in Japan?

$\$ 12,000 \times 105=1,260,000$ yen (3.78% rise)

Exchange Rate Risk

- Currency Risk can be reduced by using various financial instruments.
- Currency forward contracts, futures contracts, and even options on these contracts are available to control the risk.

Capital Budgeting

Techniques

1) Exchange to \$ and analyze.
2) Discount using foreign cash flows and interest rates, then exchange to $\$$.
3) Choose a currency standard (\$) and hedge all non dollar CF.

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Financial Analysis and Planning

Chapter 28

Topics Covered

- Executive Paper Corporation
- Financial Ratios
- The DuPont System
- Financial Planning
- Growth and External Financing

Executive Paper

Executive Paper Balance Sheet

Assets

Current Assets
Cash \& Securities
Receivables
Inventory
Total

100.0	110.0	10.0
433.1	440.0	6.9
339.9	350.0	10.1
873.0	900.0	27.0

Fixed Assets
P, P, E
accum Depr
Net Fixed Assets

Total Assets

929.8	100.0	-829.8
396.7	450.0	53.3
533.1	550.0	16.9
$1,406.1$	$1,450.0$	43.9

Executive Paper

Liabilities and Equity

Current Liabilities

Debt due in 1 year	96.6	100.0	3.4
Payable	349.9	360.0	10.1
Total current liabilities	446.5	460.0	13.5
Long term debt	400.0	400.0	0.0
Shareholders equity			
		559.6	590.0
Total liabilities and equity		$1,406.1$	$1,450.0$

Executive Paper

Executive Paper - Other Data

1998
1999

Estimated repalcement cost of assets
1110
1231

Market value of equity 598 708

Average number of shares, millions
14.16
14.16

Share price, dollars
42.25

50

Executive Paper

Executive Paper Income Statement (1999)

	$\$$ millions
Revenues	$2,200.00$
Costs	$1,980.00$
Depreciation	53.30
EBIT	166.70
Interest	40.00
Tax	50.70
Net income	$\mathbf{7 6 . 0 0}$

Dividend 45.60

Retained earnings 30.40
Earnings per share, dollars 5.37
Dividend per share, dollars 3.22

Executive Paper

Executive Paper Sources and Uses of Funds (1999)

Sources:
Net Income
\$ millions

Depreciation
76.00

Operating cash flow
Borrowing
Stock issues
Total sources
129.30

Uses:

Increase in net working capital	13.50
Investment	70.20
Dividends	45.60
Total uses	$\mathbf{1 2 9 . 3 0}$

Leverage Ratios

$$
\text { Long term debt ratio }=\frac{\text { long term debt }}{\text { long term debt }+ \text { equity }}
$$

$$
\text { Debt equity ratio }=\frac{\text { long term debt }+ \text { value of leases }}{\text { equity }}
$$

Leverage Ratios

Total debt ratio $=\frac{\text { total liabilities }}{}$ total assets

$$
\text { Times interest earned }=\frac{\text { EBIT }}{\text { interest payments }}
$$

Cash cover age ratio $=\frac{\text { EBIT }+ \text { depreciation }}{\text { interest payments }}$

Liquidity Ratios

Net working capital
 $$
=\frac{\text { Net working capital }}{\text { Total assets }}
$$

Current ratio $=\frac{\text { current assets }}{\text { current liabilities }}$

Liquidity Ratios

$$
\text { Quick ratio }=\frac{\text { cash }+ \text { marketable securities }+ \text { receivables }}{\text { current liabilities }}
$$

$$
\text { Cash ratio }=\frac{\text { cash }+ \text { marketable securities }}{\text { current liabilities }}
$$

$$
\text { Interval measure }=\frac{\text { cash }+ \text { marketable securities }+ \text { receivables }}{\text { average daily expenditures from operations }}
$$

Efficiency Ratios

$$
\text { Asset turnover ratio }=\frac{\text { Sales }}{\text { Average total assets }}
$$

$$
\text { NWCturnover }=\frac{\text { sales }}{\text { average net working capital }}
$$

Efficiency Ratios

$$
\text { Inventory turnover ratio }=\frac{\text { cost of goods sold }}{\text { average inventory }}
$$

Days' sales in inventory $=\frac{\text { average inventory }}{}$ cost of goods sold / 365

$$
\text { Average collection period }=\frac{\text { average receivables }}{\text { average daily sales }}
$$

Profitability Ratios

$$
\text { Net profit margin }=\frac{\text { EBIT }- \text { tax }}{\text { sales }}
$$

$$
\text { Return on assets }=\frac{\text { EBIT }- \text { tax }}{\text { average total assets }}
$$

$$
\text { Return on equity }=\frac{\text { earnings available for common stock }}{\text { average equity }}
$$

Profitability Ratios

$$
\text { Payout ratio }=\frac{\text { dividends }}{\text { earnings }}
$$

$$
\begin{aligned}
\text { Plowback ratio } & =\frac{\text { earnings }- \text { dividends }}{\text { earnings }} \\
& =1-\text { payout ratio }
\end{aligned}
$$

Growth in equity from plowback $=\frac{\text { earnings }- \text { dividends }}{\text { earnings }}$

Market Value Ratios

$$
\text { PE Ratio }=\frac{\text { stock price }}{\text { earnings per share }}
$$

$$
\text { Forecasted PE ratio }=\frac{P_{0}}{\operatorname{aveEPS}_{1}}=\frac{\mathrm{Di}_{1}}{E P S_{1}} \times \frac{1}{r-g}
$$

$$
\text { Dividend yield }=\frac{\text { dividend per share }}{\text { stock price }}
$$

Market Value Ratios

$$
\text { Price per share }=P_{0}=\frac{\operatorname{Div}_{1}}{r-g}
$$

$$
\text { Market to book ratio }=\frac{\text { stock price }}{\text { book value per share }}
$$

$$
\text { Tobins } Q=\frac{\text { market value of assets }}{\text { estimated replcement cost }}
$$

The DuPont System

- A breakdown of ROE and ROA into component ratios:

ROA $=\frac{\text { EBIT }- \text { taxes }}{\text { assets }}$

ROE $=\frac{\text { earnings available for common stock }}{\text { equity }}$

The DuPont System

ROA $=\frac{\text { sales }}{\text { assets }} \times \frac{\text { EBIT }- \text { taxes }}{\text { sales }}$

The DuPont System

ROA $=\frac{\text { sales }}{\text { assets }} \times \frac{\text { EBIT }- \text { taxes }}{\text { sales }}$

asset
turnover
profit
margin

The DuPont System

ROE $=\frac{\text { assets }}{\text { equity }} \times \frac{\text { sales }}{\text { assets }} \times \frac{\text { EBIT }- \text { taxes }}{\text { sales }} \times \frac{\text { EBIT }- \text { taxes }- \text { interest }}{\text { EBIT }- \text { taxes }}$

The DuPont System

ROE $=\frac{\text { assets }}{\text { equity }} \times \frac{\text { sales }}{\text { assets }} \times \frac{\text { EBIT }- \text { taxes }}{\text { sales }} \times \frac{\text { EBIT - taxes - interest }}{\text { EBIT }- \text { taxes }}$

leverage asset ratio turnover

profit
margin

debt
burden

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Short Term Financial Planning

Topics Covered

- Working Capital
- Links Between Long-Term and Short-Term Financing
- Tracing Changes in Cash and Working Capital
- Cash Budgeting
- A Short-Term Financing Plan

Working Capital

Net Working Capital - Current assets minus current liabilities. Often called working capital.
Cash Conversion Cycle - Period between firm's payment for materials and collection on its sales.
Carrying Costs - Costs of maintaining current assets, including opportunity cost of capital.
Shortage Costs - Costs incurred from shortages in current assets.

Firm's Cumulative Capital Requirement

Lines A, B, and C show alternative amounts of long-term finance.
Strategy A: A permanent cash surplus
Strategy B: Short-term lender for part of year and borrower for remainder
Strategy C: A permanent short-term borrower

Working Capital

Simple Cycle of operations

Changes in Cash \& W.C.

Example - Dynamic Mattress Company

Assets	1998	1999	Liabilities \& Equity	1998	1999
Current Assets	4	5	Current Liabilities		
Cash	4	5	Bank Loans	5	0
Mark Securities	0	5	Accts Payable	20	27
Inventory	26	25	Total Curr Liab	25	27
Accts Recv	25	30	Long Term Debt	5	12
Total Curr Assets	55	65	Net Worth	65	76
Fixed Assets			Total Liab and		
Gross investment	56	70			
less Depr	16	20			
Net Fixed Assets	40	50			
Total Assets	95	115	owner' s equity	95	115

Changes in Cash \& W.C.

Example - Dynamic Mattress Company
Income Statement

Changes in Cash \& W.C.

Example -
 Dynamic Mattress
 Company

Sources
Issued long term debt 7
Reduced inventories 1
Increased accounts payable 7
Cash from operations
Net income 12
Depreciation 4
Total Sources \$31
Uses
Repaid short term bank loan 5
Invested in fixed assets 14
Purchased marketable securities 5
Increased accounts receivable 5
Dividend 1
Total Uses \$30
Increase in cash balance \$1

Changes in Cash \& W.C.

Example - Dynamic Mattress Company

Dynamic used cash as follows:

- Paid $\$ 1$ mil dividend.
- Repaid $\$ 5$ mil short term bank loan.
- Invested $\$ 14$ mil.
- Purchased $\$ 5$ mil of marketable securities.
- Accounts receivable expanded by $\$ 5$ mil.

Cash Budgeting

Steps to preparing a cash budget
Step 1 - Forecast the sources of cash.
Step 2 - Forecast uses of cash.
Step 3 - Calculate whether the firm is facing a cash shortage or surplus.

Cash Budgeting

Example - Dynamic Mattress Company

Dynamic forecasted sources of cash

Sales, \$mil

Quarter	1st	2nd	3rd	4th
87.50	78.50	116.00	131.00	

AR ending balance $=A R$ beginning balance + sales collections

Cash Budgeting

Example - Dynamic Mattress Company

Dynamic collections on AR

Qtr				
	1st	2nd	3rd	4th
1. Beginning receivables	30.0	32.5	30.7	38.2
2. Sales	87.5	78.5	116.0	131.0

3. Collections
. Sales in current $\mathrm{Qtr}(80 \%) \quad 70 \quad 62.8 \quad 92.8 \quad 104.8$
$\begin{array}{llllll}\text {. Sales in previous } \mathrm{Qtr}(20 \%) & 15.0 & 17.5 & 15.7 & 23.2\end{array}$
$\begin{array}{llllll}\text { Total collections } & 85.0 & 80.3 & 108.5 & 128.0\end{array}$
4. Receivables at end of period

$$
.(4=1+2-3) \quad \$ 32.5 \quad \$ 30.7 \quad \$ 38.2 \quad \$ 41.2
$$

Cash Budgeting

Example - Dynamic Mattress Company

Dynamic forecasted uses of cash

- Payment of accounts payable
- Labor, administration, and other expenses
- Capital expenditures
- Taxes, interest, and dividend payments

Cash Budgeting

Example - Dynamic Mattress Company

Dynamic cash budget

	Qtr		3rd	4th
	1st	2nd		
Sources of cash				
collections on AR	85.0	80.3	108.5	128.0
other	0.0	0.0	12.5	0.0
Total Sources	85.0	80.3	121.0	128.0
Uses of cash				
payment of AP	65.0	60.0	55.0	50.0
labor and admin expenses	30.0	30.0	30.0	30.0
capital expenditures	32.5	1.3	5.5	8.0
taxes, interest, \& dividends	4.0	4.0	4.5	5.0
Total uses of cash	131.5	95.3	95.0	93.0
Net cash inflow (sources minus uses)	\$46.5	\$15.0	\$26.0	\$35.0

Cash Budgeting

Example - Dynamic Mattress Company

Dynamic short term financing requirements

Cash at start of period	5	-41.5	-56.5	-30.5
+ Net cash flow	-46.5	-15	+26	+35
= Cash at end of period	-41.5	-56.5	-30.5	+4.5
Min operating cash balance	5	5	5	5

Cumulative short term financing $\begin{array}{lllll}\$ 46.5 & \$ 61.5 & \$ 35.5 & -\$.5\end{array}$ required (minimum cash balance minus caash at end of period)

A Short Term Financing Plan

Example - Dynamic Mattress Company

Dynamic forecasted deferrable expenses

Quarter 1st 2nd 3rd 4th

A Short Term Financing Plan

Example -

Dynamic
Mattress
Company-
Financing Plan

	1st	2nd	3rd	4th
New borrowing				
1. Line of credit	41.0	0.0	0.0	0.0
2. Stretching payables	3.6	20.0	0.0	0.0
3. Total	44.6	20.0	0.0	0.0
Repayments				
4. Line of credit	0.0	0.0	4.8	36.2
5. Stetched payables	0.0	3.6	20.0	0.0
6. Total	0.0	3.6	24.8	36.2
7. Net new borrowing	44.6	16.4	-24.8	-36.2
8. Plus securities sold	5.0	0.0	0.0	0.0
9. Less securities bought	0.0	0.0	0.0	0.0
10. Total cash raised	49.6	16.4	-24.8	-36.2
Interest payments:				
11. Line of credit	0.0	1.2	1.2	1.0
12. Stretching payables	0.0	0.2	1.0	0.0
13. Less interest on securities	-0.1	0.0	0.0	0.0
14. Net interest paid	-0.1	1.4	2.2	1.0
15. Funds for Compensating balances	3.2	0.0	-1.0	-2.2
16. Cash required for operations	46.5	15.0	0.3	-35.0
17. Total cash required	49.6	16.4	-24.8	-36.2

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Credit Management

Chapter 30

Topics Covered

- Terms of Sale
- Commercial Credit Instruments
- Credit Analysis
- The Credit Decision
- Collection Policy
- Bankruptcy

Terms of Sale

Terms of Sale - Credit, discount, and payment terms offered on a sale.

Example - 5/10 net 30

5 - percent discount for early payment 10 - number of days that the discount is available net 30 - number of days before payment is due

Terms of Sale

- A firm that buys on credit is in effect borrowing from its supplier. It saves cash today but will have to pay later. This, of course, is an implicit loan from the supplier.
- We can calculate the implicit cost of this loan.

Terms of Sale

- A firm that buys on credit is in effect borrowing from its supplier. It saves cash today but will have to pay later. This, of course, is an implicit loan from the supplier.
- We can calculate the implicit cost of this loan

Effective annual rate
$=\left(1+\frac{\text { discount }}{\text { discounted price }}\right)^{365 / \text { extra days credit }}-1$

Terms of Sale

Example - On a $\$ 100$ sale, with terms 5/10 net 60, what is the implied interest rate on the credit given?

Terms of Sale

Example - On a $\$ 100$ sale, with terms 5/10 net 60, what is the implied interest rate on the credit given?

Effective annual rate

$=\left(1+\frac{\text { discount }}{\text { discounted price }}\right)^{365 / \text { extra days credit }}-1$

$$
=\left(1+\frac{5}{95}\right)^{365 / 50}-1=.454, \text { or } 45.4 \%
$$

Credit Instruments

- Terminology
\rightarrow open account
\rightarrow promissory note
\rightarrow commercial draft
\rightarrow sight draft
\rightarrow time draft
\rightarrow trade acceptance
\rightarrow banker's acceptance

Credit Analysis

Credit Analysis - Procedure to determine the likelihood a customer will pay its bills.

- Credit agencies, such as Dun \& Bradstreet provide reports on the credit worthiness of a potential customer.
- Financial ratios can be calculated to help determine a customer's ability to pay its bills.

Credit Analysis

Numerical Credit Scoring categories
\rightarrow The customer's character
\rightarrow The customer's capacity to pay
\rightarrow The customer's capital
\rightarrow The collateral provided by the customer
\rightarrow The condition of the customer's business

Credit Analysis

Multiple Discriminant Analysis - A technique used to develop a measurement of solvency, sometimes called a Z Score. Edward Altman developed a Z Score formula that was able to identify bankrupt firms approximately 95% of the time.

Credit Analysis

Multiple Discriminant Analysis - A technique used

 to develop a measurement of solvency, sometimes called a Z Score. Edward Altman developed a Z Score formula that was able to identify bankrupt firms approximately 95% of the time.Altman Z Score formula

$$
\mathrm{Z}=3.3 \frac{\mathrm{EBIT}}{\text { total assets }}+1.0 \frac{\text { sales }}{\text { total assets }}+.6 \frac{\text { market value of equity }}{\text { total book debt }}
$$

$$
+1.4 \frac{\text { retained earnings }}{\text { total assets }}+1.2 \frac{\text { working capital }}{\text { total assets }}
$$

Credit Analysis

Example - If the Altman Z score cut off for a credit worthy business is 2.7 or higher, would we accept the following client?

Credit Analysis

Example - If the Altman Z score cut off for a credit worthy business is 2.7 or higher, would we accept the following client?
$\frac{\text { EBIT }}{\text { total assets }}=12$
retained earnings total assets
working capital total assets
$\frac{\text { market equity }}{\text { book debt }}=9$

Credit Analysis

Example - If the Altman Z score cut off for a credit worthy business is 2.7 or higher, would we accept the following client?

Firm' s Z Score
$(33 x .12)+(10 x 14)+(.6 x .9)+(14 x .4)+(1.2 x .12)=304$

A score above 2.7 indicates good credit.

Credit Analysis

- Credit analysis is only worth while if the expected savings exceed the cost.
\rightarrow Don't undertake a full credit analysis unless the order is big enough to justify it.
\rightarrow Undertake a full credit analysis for the doubtful orders only.

The Credit Decision

Credit Policy - Standards set to determine the amount and nature of credit to extend to customers.

- Extending credit gives you the probability of making a profit, not the guarantee. There is still a chance of default.
- Denying credit guarantees neither profit or loss.

The Credit Decision

The credit decision and its probable payoffs

The Credit Decision

The credit decision and its probable payoffs

The Credit Decision

The credit decision and its probable payoffs

The Credit Decision

- Based on the probability of payoffs, the expected profit can be expressed as:

The Credit Decision

- Based on the probability of payoffs, the expected profit can be expressed as:

$$
p \times P V(\operatorname{Rev}-\operatorname{Cost})-(1-p) x(P V(\cos t)
$$

The Credit Decision

- Based on the probability of payoffs, the expected profit can be expressed as:
$\mathrm{p} \times \mathrm{PV}(\operatorname{Rev}-\operatorname{Cost})-(1-\mathrm{p}) \times(\mathrm{PV}(\cos t)$
- The break even probability of collection is:

$$
\mathrm{p}=\frac{\mathrm{PV}(\text { Cost })}{\mathrm{PV}(\text { Rev })}
$$

Collection Policy

Collection Policy - Procedures to collect and monitor receivables.

Aging Schedule - Classification of accounts receivable by time outstanding.

Collection Policy

Sample aging schedule for accounts receivable

Customer's Name	Amount Not Yet Due	1 Month Overdue	More than 1 Month Overdue	Total Owed
Alpha	10,000	0	0	10,000
Beta	0	0	5,000	5,000
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
Omega	5,000	4,000	21,000	30,000
Total	\$200,000	\$40,000	\$58,000	\$298,000

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Cash Management

Chapter 31

Topics Covered

- Inventories and Cash Balances
- Cash Collection and Disbursement Systems
\rightarrow Float
- Bank Relations

Inventories \& Cash Balances

Economic Order Ouantity - Order size that minimizes total inventory costs.

Economic Order Quantity $=\sqrt{\frac{2 \times \text { annual sales } \mathrm{x} \text { cost per order }}{\text { carrying cost }}}$

Inventories \& Cash Balances

Determination of optimal order size

Inventories \& Cash Balances

- The optimal amount of short term securities sold to raise cash will be higher when annual cash outflows are higher and when the cost per sale of securities is higher. Conversely, the initial cash balance falls when the interest is higher.

Initial cash balance $=\sqrt{\frac{2 \mathrm{x} \text { annual cash outflows } \mathrm{x} \text { cost per sale of securities }}{\text { interest rate }}}$

Inventories \& Cash Balances

- Money Market - market for short term financial assets.
\rightarrow commercial paper
\rightarrow certificates of deposit
\rightarrow repurchase agreements

Inventories \& Cash Balances

Cash

balance (\$000)
(Everyman's Bookstore)

Value of bills sold $=\mathbf{Q}=$
$\sqrt{\frac{2 \times \text { annual cash disbursem }}{\text { interest rate }}}$
$\sqrt{\frac{2 \times 1260 \times 20}{.08}}=25$

Float

- Time exists between the moment a check is written and the moment the funds are deposited in the recipient's account.
- This time spread is called Float.

Payment Float - Checks written by a company that have not yet cleared.
Availability Float - Checks already deposited that have not yet cleared.

Float

Payment Float illustration - The company issues a $\$ 200,000$ check that has not yet cleared.

Float

Payment Float illustration - The company issues a $\$ 200,000$ check that has not yet cleared.
Company's ledger balance
\$800,000
Payment float
\$200,000

Float

Payment Float illustration - The company issues a $\$ 200,000$ check that has not yet cleared.

Float

Availability Float illustration - The company deposits a $\$ 100,000$ check that has not yet cleared.

Float

Availability Float illustration - The company

 deposits a $\$ 100,000$ check that has not yet cleared.Company's ledger balance \$900,000

Payment float
\$200,000

Float

Availability Float illustration - The company

 deposits a $\$ 100,000$ check that has not yet cleared.

Float

Net Float illustration

Net float = payment float - availability float

Float

Net Float illustration

Net float $=$ payment float - availability float

Bank's ledger balance
\$1,100,000

Float

Net Float illustration

Net float = payment float - availability float

Managing Float

- Payers attempt to create delays in the check clearing process.
- Recipients attempt to remove delays in the check clearing process.
- Sources of delay
\rightarrow Time it takes to mail check
\rightarrow Time for recipient to process check
\rightarrow Time for bank to clear check

Managing Float

Check mailed

Managing Float

Check mailed

Mail float

Check received

Managing Float

Check mailed

Managing Float

Check mailed

Availability float

Managing Float

Concentration Banking - system whereby customers make payments to a regional collection center which transfers the funds to a principal bank.
Lock-Box System - System whereby customers send payments to a post office box and a local bank collects and processes checks.
Zero-Balance Accounts - Regional bank accounts to which just enough funds are transferred daily to pay each day's bills.

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Short Term Lending and Borrowing

Topics Covered

- Short-Term Lending
- Money Market Instruments
- Floating Rate Preferred Stock
- Short Term Borrowing

Sources of Short Term Financing

- Money Markets
- Commercial paper
- Secured loans
- Eurodollars

Cost of Short-Term Loans

Simple Interest

annual interest rate number of periods in the year

Cost of Short-Term Loans

Simple Interest

annual interest rate number of periods in the year

Effective annual rate

$$
\left(1+\frac{\text { quoted annual interest rate }}{n}\right)^{n}-1
$$

Cost of Short-Term Loans

Discount Interest

Face value of loan $X\left(1-\frac{\text { quoted annual interest rate }}{\text { number of periods in the year }}\right)$

Calculating Yields

Example

In January of 1999, 91-day T-bills were issued at a discount of 4.36\%.

1. Price of bill $=100-91 / 360 \times 4.36=98.898$
2. 91 -day return $=(100-98.898) / 98.898=1.11 \%$
3. Annual return $=1.11 \times 365 / 91=4.47 \%$ simple interest or
$(1.0111)^{365 / 91}-1=4.55 \%$ compound interest

Money Market Investments

- US Treasury Bills
- Federal Agency Securities
- Short-Term Tax-Exempts
- Bank Time Deposits and CDs

- Commercial Paper
- Medium Term Notes
- Bankers’ Acceptances
- Repos

Credit Rationing

Example - Henrietta Ketchup

Investments Payoff Prob. of Payoff

Project 1	-12	15	1
Project 2	-12	24 or 0	.5 or .5

Credit Rationing

Example - Henrietta Ketchup

Credit Rationing

Example - Henrietta Ketchup

Expected Payoff to Bank
Project 1 5
$(.5 \times 5)+(.5 \times 0)=+2.5$
Project $2(.5 \times 5)+(.5 \times 0)=+2.5$
Expected Payoff
to Ms. Ketchup
10
$.5 \times(24-5)=+9.5$

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Mergers

Chapter 33

Topics Covered

- Sensible Motives for Mergers
- Some Dubious Reasons for Mergers
- Estimating Merger Gains and Costs
- The Mechanics of a Merger
- Takeover Battles
- Mergers and the Economy

1997 and 1998 Mergers

Selling Company Acquiring Company Payment, billions of dollars
NYNEX Bell Atlantic 21.0
McDonnell Douglas Boeing 13.4
Digital Equipment Compaq Computer 9.1
Schweizerischer Union Bank of Swiz. 23.0
Energy Group PCC Texas Utilities 11.0
Amoco Corp. British Petroleum 48.2
Sun America American Intl. 18.0
BankAmerica Corp. Nationsbank Corp. 61.6
Chrysler Daimler-Benz 38.3
Bankers Trust Corp.
America Online 4.2
Netscape
Travelers Group Inc. 83.0

Sensible Reasons for Mergers

Economies of Scale

A larger firm may be able to reduce its per unit cost by using excess capacity or spreading fixed costs across more units.

Reduces costs

Sensible Reasons for Mergers

Economies of Vertical Integration

\rightarrow Control over suppliers "may" reduce costs.
\rightarrow Over integration can cause the opposite effect.

Sensible Reasons for Mergers

Economies of Vertical Integration

\rightarrow Control over suppliers "may" reduce costs.
\rightarrow Over integration can cause the opposite effect.

Pre-integration

(less efficient)

Sensible Reasons for Mergers

Economies of Vertical Integration

\rightarrow Control over suppliers "may" reduce costs.
\rightarrow Over integration can cause the opposite effect.

Pre-integration
(less efficient)

Post-integration
(more efficient)

Company

Sensible Reasons for Mergers

Combining Complementary Resources

Merging may result in each firm filling in the "missing pieces" of their firm with pieces from the other firm.

Firm A

Firm B

Sensible Reasons for Mergers

Combining Complementary Resources

Merging may result in each firm filling in the "missing pieces" of their firm with pieces from the other firm.

Firm A

Firm B

Sensible Reasons for Mergers

Mergers as a Use for Surplus Funds

If your firm is in a mature industry with few, if any, positive NPV projects available, acquisition may be the best use of your funds.

Dubious Reasons for Mergers

- Diversification
\rightarrow Investors should not pay a premium for diversification since they can do it themselves.

Dubious Reasons for Mergers

The Bootstrap Game

Acquiring Firm has high P/E ratio

Dubious Reasons for Mergers

The Bootstrap Game

Acquiring Firm has high P/E ratio

Selling firm has low P/E ratio (due to low number of shares)

Dubious Reasons for Mergers

The Bootstrap Game

Acquiring Firm has high P/E ratio

Selling firm has low P/E ratio (due to low number of shares)

After merger, acquiring firm has short term EPS rise

Dubious Reasons for Mergers

The Bootstrap Game

Acquiring Firm has high P/E ratio

Selling firm has low P/E ratio (due to low number of shares)

After merger, acquiring firm has short term EPS rise

Long term, acquirer will have slower than normal EPS growth due to share dilution.

Dubious Reasons for Mergers

$\left.\begin{array}{c}\text { Earnings per } \\ \text { dollar invested } \\ \text { (log scale) }\end{array}\right)$ World Enterprises (before merger)

Estimating Merger Gains

- Questions
\rightarrow Is there an overall economic gain to the merger?
\rightarrow Do the terms of the merger make the company and its shareholders better off?
????
$\mathrm{PV}(\mathrm{AB})>\mathrm{PV}(\mathrm{A})+\mathrm{PV}(\mathrm{B})$

Estimating Merger Gains

- Economic Gain

Economic Gain $=P V($ increased earnings $)$

New cash flows from synergies
discount rate

Takeover Defenses

White Knight - Friendly potential acquirer sought by a target company threatened by an unwelcome suitor.
Shark Repellent - Amendments to a company charter made to forestall takeover attempts.
Poison Pill - Measure taken by a target firm to avoid acquisition; for example, the right for existing shareholders to buy additional shares at an attractive price if a bidder acquires a large holding.

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Control, Governance, and Financial Architecture

Chapter 34

Topics Covered

- Leveraged Buyouts
- Spin-offs and Restructuring
- Conglomerates
- Private Equity Partnership
- Control and Governance

Definitions

- Corporate control -- the power to make investment and financing decisions.
- Corporate governance -- the role of the Board of Directors, shareholder voting, proxy fights, etc. and the actions taken by shareholders to influence corporate decisions.
- Financial architecture -- the financial organization of the business.

Leveraged Buyouts

- The difference between leveraged buyouts and ordinary acquisitions:

1. A large fraction of the purchase price is debt financed.
2. The LBO goes private, and its share is no longer trade on the open market.

Leveraged Buyouts

- The three main characteristics of LBOs:

1. High debt
2. Incentives
3. Private ownership

Leveraged Buyouts

10 Largest LBOs in 1980s and 1997/98 examples

Acquirer	Target	Year	Price (\$bil)	
KKR	RJR Nabisco	1989	$\$$	24.72
KKR	Beatrice	1986	$\$$	6.25
KKR	Safeway	1986	$\$$	4.24
Thompson Co.	Southland	1987	$\$$	4.00
AV Holdings	Borg-Warner	1987	$\$$	3.76
Wing Holdings	NWA, Inc.	1989	$\$$	3.69
KKR	Owens-Illinois	1987	$\$$	3.69
TF Investments	Hospital Corp of America	1989	$\$$	3.69
FH Acquisitions	For Howard Corp.	1988	$\$$	3.59
Macy Acquisition Corp.	RH Macy \& Co	1986	$\$$	3.50
Bain Capital	Sealy Corp.	1997	$\$$	811.20
Citicorp Venture Capital	Neenah Corp.	1997	$\$$	250.00
Cyprus Group (w/mgmt)	WESCO Distribution Inc.	1998	$\$$	$1,100.00$
Clayton, Dublier \& Rice	North Maerican Van Lines	1998	$\$$	200.00
Clayton, Dublier \& Rice (w/mgmt)	Dynatech Corp.	1998	$\$$	762.90
Kohlberg \& Co. (w.mgmt)	Helley Performance Products	1998	$\$$	100.00

Spin-offs, etc.

- Spin off -- debut independent company created by detaching part of a parent company's assets and operations.
- Carve-outs-- similar to spin offs, except that shares in the new company are not given to existing shareholders but sold in a public offering.
- Privatization -- the sale of a governmentowned company to private investors.

Privatization

- Motives for Privatization:

1. Increased efficiency
2. Share ownership
3. Revenue for the government

Privatization

Examples of Privatization

Country	Company and Date	Amount Issued, \$ millions	
France	St. Gobain (1986)	$\$$	$2,091.40$
France	Paribas (1987)	$\$$	$2,742.00$
Germany	Volkswagon (1961)	$\$$	315.00
Jamaica	Caribbean Cement (1987)	$\$$	45.60
Jpan	Japan Airlines (1987)	$\$$	$2,600.00$
Mexico	Telefonos de Mexico (1990)	$\$$	$3,760.00$
New Zealand	Air New Zealand (1989)	$\$$	99.10
Singapore	Neptune Orient Lines (1981-1988)	$\$$	308.50
United Kingdom	British Gas (1986)	$\$$	$8,012.00$
United Kingdom	BAA (Airports)(1987)	$\$$	$2,028.00$
United Kingdom	British Steel (1988)	$\$$	$4,524.00$
United States	Conrail (1987)	$\$$	$1,650.00$

Conglomerates

The largest US conglomerates in 1979

Sales Rank	Company	Numebr of Industries
8	ITT	38
15	Tenneco	28
42	Gulf \& Western Industries	41
51	Litton Industries	19
66	LTV	18
73	Illinois Central Industries	26
103	Textron	16
104	Greyhound	19
128	Marin Marietta	14
131	Dart Industries	18
132	U.S. Industries	24
143	Northwest Industries	18
173	Walter Kidde	22
180	Ogden Industries	13
188	Colt Industries	9

Private Equity Partnership

Investment Phase

Payout Phase

General Partner put up
1% of capital
\downarrow Mgmt fees

Principles of Corporate Finance

Brealey and Myers

Sixth Edition

Conclusion: What We Do and Do Not Know about Finance

Chapter 35

Topics Covered

- What We Do Know
- What We Do Not Know

7 Most Important Ideas in Finance

- Net Present Value
- Capital Asset Pricing Model (CAPM)
- Efficient Capital Markets
- Value Additivity \& Law Conservation of Value
- Capital Structure Theory
- Option Theory
- Agency Theory

10 Unsolved Problems In Finance

- How major decisions are made?
- What determines project risk and PV ?
- Risk and return - What have we missed?
- How important are the exceptions to the Efficient Market Theory?
- Is management an off-balance-sheet liability?

10 Unsolved Problems In Finance

- How can we explain the success of new markets and new securities?
- How can we resolve the dividend controversy?
- What risks should a firm take?
-What is the value of liquidity?

