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of states in each band. This again involves solving the time-independent Schrödinger
equation for the wave function of a particle in a box, but in this case the box is empty. All
the complexities of the periodic potentials of the component atoms have been incorporated
into the effective mass. The density of states in the conduction band is given by

gC(E) = m∗
n

√
2m∗

n(E − EC)

π2h̄3 cm−3 eV−1 (3.7)

while the density of states in the valence band is given by

gV(E) =
m∗

p

√
2m∗

p(EV − E)

π2h̄3 cm−3 eV−1 (3.8)

3.2.4 Equilibrium Carrier Concentrations

When the semiconductor is in thermal equilibrium (i.e. at a constant temperature with no
external injection or generation of carriers), the Fermi function determines the ratio of
filled states to available states at each energy and is given by

f (E) = 1

1 + e(E−EF)/kT
(3.9)

where EF is the Fermi energy, k is Boltzmann’s constant, and T is the Kelvin temperature.
As seen in Figure 3.4, the Fermi function is a strong function of temperature. At absolute
zero, it is a step function and all the states below EF are filled with electrons and all
those above EF are completely empty. As the temperature increases, thermal excitation
will leave some states below EF empty, and the corresponding number of states above
EF will be filled with the excited electrons.

The equilibrium electron and hole concentrations (#/cm3) are therefore

no =
∫ ∞

EC

gC(E)f (E) dE = 2NC√
π

F1/2((EF − EC)/kT ) (3.10)

po =
∫ EV

−∞
gV(E)[1 − f (E)] dE = 2NV√

π
F1/2((EV − EF)/kT ) (3.11)

where F1/2(ξ) is the Fermi–Dirac integral of order 1/2,

F1/2(ξ) =
∫ ∞

0

√
ξ ′ dξ ′

1 + eξ ′−ξ
(3.12)

The conduction-band and valence-band effective densities of state (#/cm3), NC and NV,
respectively, are given by

NC = 2
(

2πm∗
nkT

h2

)3/2

(3.13)




