

Figure 3.5 Donor and acceptor levels in a semiconductor. The nonuniform spatial distribution of these states reinforces the concept that these are localized states

in *n*-type material and as

$$E_{\rm F} = E_{\rm i} - kT \ln \frac{N_{\rm A}}{n_{\rm i}} \tag{3.23}$$

in *p*-type material.

When a very large concentration of dopants is introduced into the semiconductor, the dopants can no longer be thought of as a minor perturbation to the system. Their effect on the band structure must be considered. Typically, this so-called heavy doping effect manifests itself as a reduction in the band gap, E_G , and thus an increase in the intrinsic carrier concentration, as can be seen from equation (3.18). This band gap narrowing (BGN) [8] is detrimental to solar cell performance and solar cells are typically designed to avoid this effect, though it may be a factor in the heavily doped regions near the solar cell contacts.

3.2.5 Light Absorption

The creation of electron-hole pairs via the absorption of sunlight is fundamental to the operation of solar cells. The excitation of an electron directly from the valence band (which leaves a hole behind) to the conduction band is called *fundamental absorption*. Both the total energy and momentum of all particles involved in the absorption process must be conserved. Since the photon momentum, $p_{\lambda} = h/\lambda$, is very small compared to the range of the crystal momentum, $p = h/\ell$, the photon absorption process must, for practical purposes, conserve the momentum of the electron.¹ The absorption coefficient for a given photon energy, $h\nu$, is proportional to the probability, P_{12} , of the transition of an electron from the initial state E_1 to the final state E_2 , the density of electrons in the initial state, $g_V(E_1)$, and the density of available final states, and is then summed over

¹ The wavelength of sunlight, λ , is on the order of a micron (10⁻⁴ cm), while the lattice constant is a few angstroms (10⁻⁸ cm). Thus, the crystal momentum is several orders of magnitude larger than the photon momentum.