

Figure 3.18 Effect of the back-surface field recombination velocity on solar cell performance. All other parameters are from Table 3.2

No grid $(s = 0)$	$S_{\mathrm{F,eff}} = S_{\mathrm{F}}$
Full grid $(s = 1)$	$S_{\mathrm{F,eff}} ightarrow \infty$
Dark ($\overline{G} = 0$)	$S_{\rm F,eff} = \frac{S_{\rm F} + sD_p/W_N}{1-s}$
Short circuit $(V = 0)$	$S_{\mathrm{F,eff}} = S_{\mathrm{F}}$
V large ($\approx V_{\rm OC}$)	$S_{\rm F,eff} = \frac{S_{\rm F} + sD_p/W_N}{1-s}$

Table 3.3 Special cases of $S_{\rm Feff}$

3.4.8 An Analogy for Understanding Solar Cell Operation: A Partial Summary

The following analogy illustrates the importance of minimizing all sources of recombination in the solar cell.⁴ Imagine a funnel that has a variety of holes of different shapes and sizes in it. It also has a stopcock at the bottom for controlling the flow of liquid

⁴ This analogy was developed on the basis of discussions with Professor Richard J. Schwartz of Purdue University, West Lafayette, Indiana.