

Figure 3.27 Band diagram of a *p-i-n* solar cell illustrating field-enhanced collection

equations (three coupled nonlinear partial differential equations) are cast in a normalized form [28] to simplify the calculations. Finite difference or finite element methods are then used to discretize the equations on a mesh (grid), resulting in a set of three coupled nonlinear difference equations. Using appropriately discretized boundary conditions, these equations are solved iteratively using a generalized Newton method to obtain the carrier concentrations and electric potential at each mesh point. Each Newton iteration involves the solution of a very large matrix equation or order 3N, where N is the number of mesh points. One-dimensional simulations typically utilize on the order of 1000 mesh points, so the matrix is 3000×3000 . In 2D, the minimum mesh is typically at least 100×100 , so $N = 10^4$ and the matrix is of order 3×10^4 and contains 9×10^8 elements. Fortunately, the matrices are sparse and can be solved using considerably less computer memory than one would expect at first glance.

Numerical simulation allows analysis of solar cell designs and operating conditions for which simple analytic expressions are inadequate. The necessity of ignoring the spatial variation of parameters is eliminated and more accurate representations of the solar cell are possible. In particular, nonuniform doping, heterojunction solar cells (band gap varies spatially), amorphous silicon solar cells (complex trapping/recombination mechanisms, field-assisted collection), and concentrator solar cells (high-level injection, 2D/3D effects) can all be modeled with more precision.

3.6 SUMMARY

It has been the objective of this chapter to give the reader a basic understanding of the physical principles that underlie the operation of solar cells. Toward that end, the fundamental physical characteristics of solar cell materials that permit the conversion of light into electricity have been reviewed. These characteristics include the ability of