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je∇1/T ), free energy (µg) generation, Joule effect ( jn∇µ) and expansion of the volume
that contains the particles (∇jω/T ). This equation is very important and will be used to
prove the thermodynamic consistence of solar cells.

4.2.4 An Integral View

Fluxes, Ẋ, of the thermodynamic currents, jx , will be frequently used in this paper. In this
text, they will be also called thermodynamic variable rates. By definition, the following
relationship exists:
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jx dA (4.14)

where the sum refers to the different subsystems with different velocities to be found at
a given position. A is the surface through which the flux is calculated. Actually, jx dA

represents the scalar product of the current density vector jx and the oriented surface
element dA (orientation is arbitrary and if a relevant volume exists the orientation selected
leads to the definition of escaping or entering rates).

4.2.5 Thermodynamic Functions of Radiation

The number of photons in a given mode of radiation is given [9] by the well-known
Bose–Einstein factor fBE = {exp[(ε − µ)/kT ] − 1}−1, which through equation (4.3) is
related to the grand canonical potential Ω = kT ln{exp[(µ − ε)/kT ] − 1}. In these
equations, most of the symbols have been defined earlier: ε is the photon energy in
the mode and k is the Boltzman constant. The corresponding thermodynamic current
densities for these photons are

jn = fBEc/(Unr); je = εjnfBEc/(Unr); jω = Ωc/(Unr) (4.15)

where c is the light velocity (a vector since it includes its direction) in the vacuum and
nr is the index of refraction of the medium in which the photons propagate, which is
assumed to be independent of the direction of propagation. Thus, c/nr is the velocity of
the photons in the medium.

The number of photon modes with energy between ε and ε + dε is
8πUn3

r ε
2/(h3c2) dε. When the modes with energies εm < ε < εM are taken into account,

the total grand canonical potential of the photons, Ωph, associated with these modes is
the sum of the contributions from each mode and can be written as

Ωph(U, T , µ) = 8πUn3
r

h3c3

∫ εM

εm

ε2kT ln(1 − e(µ−ε)/kT ) dε (4.16)

where h is the Planck’s constant.

Photons do not interact among themselves, such that temperatures and chemical
potentials can be different for each mode. This means that they can be a function of the
energy and of the direction of propagation. In the non-equilibrium case they can also be a




