



**Figure 4.8** TPV ideal converter efficiency versus  $H_{rc}\Delta\varepsilon/H_{rs}\varepsilon$ . The energy  $\varepsilon$  and the cell voltage V are optimised



**Figure 4.9** Diagram of the TPH converter with cavity. In (b), the energy fluxes are given by  $\dot{E}_s \equiv E(T_s, 0, 0, \infty, H_{rs})$ ,  $\dot{E}_r \equiv E(T_r, qV_r, 0, \infty, H_{rs})$ ,  $\dot{Q}_r = \dot{E}_s - \dot{E}_r$ ,  $\dot{E}'_r \equiv E(T_r, qV_r, 0, \infty, H_{rc})$ ,  $\dot{E}'_c \equiv E(T_a, qV_c, \varepsilon_g, \infty, H_{rc})$ 

emitted by a heated light emitting diode (LED) into electricity. A diagram of this device is found in Figure 4.9. As in the TPV device, the LED can be heated with a fuel, but in our context it is heated as well with radiation absorbed from the sun. To emit luminescent radiation, the LED absorbs electric power,  $\dot{W}_r$ , in addition to the power delivered from the photons that illuminate the absorber. This power is to be subtracted from the electric power converted by the solar cell  $\dot{W}_c$ .