lowered until it contacts the liquid in the capillary. The liquid spreads out over the top of the die to the edges where it is pinned by surface tension. The seed is withdrawn, pulling the liquid up while more liquid flows upward through the capillary. As the ribbon is withdrawn, the liquid freezes on the solid crystal. The die and the crucible are integral, that is, made of the same piece of graphite. The thickness of the sheet material is fixed by the width of the die top, distance between the die tip and melt level, meniscus shape, heat loss from the sheet and the pull rate. The shape of the liquid–gas interface, or meniscus, which connects the die to the solidifying ribbon, is described by the Young–Laplace or the capillary equation. As with WEB, the growth rate is controlled by how fast heat can be conducted away from the interface and lost by radiation or convection from the solid crystal. Growth is self-stabilising because the meniscus height increases with an increase in pull rate. The curvature of the meniscus causes the thickness of the crystal to decrease. This increases the rate of heat removal per unit area of the interface, thus increasing the growth rate until it is again equal to the pull rate.

The dominant impurity in EFG ribbon is carbon, which is in supersaturation. Temperature control of a few degrees along the interface is sufficient to prevent ribbon pull-out or freezing of a growing ribbon to the die top. Over time, the die becomes eroded affecting ribbon properties and leading to a non-uniform ribbon thickness and growth difficulties.

Ribbons with thicknesses from 400 μ m to as little as 100 μ m have been grown. Rather than a single flat ribbon, hollow EFG polygons are grown to enhance the rate of throughput. The favoured geometries for commercial development today are octagons with 10-cm- or 12.5-cm-wide faces, equivalent to growth of up to a 100-cm-wide ribbon from a single furnace. Various closed geometries, including nonagons with 5-cm faces, and large-diameter cylinders have been grown. Growth velocities for the EFG octagon are 1.7 cm/min. The relationships between the EFG process parameters and the silicon ribbon characteristics, including thermal stress and the influence of impurities and defects on the quality of the material, have been extensively examined and are reviewed in Reference [49].

An extension of the EFG process to growth of 50-cm-diameter cylinders has recently been demonstrated [50]. An example of such a cylinder 1.2 m in length is shown in Figure 6.23. The cylindrical geometry offers some relief from the large thermoelastic stresses generated in plane ribbon. This allows consideration of higher productivity furnaces from a combination of larger perimeters and potentially higher growth speeds. Growth of EFG cylinders with average wall thickness down to 100 μ has been demonstrated, and solar cells have been made on this material [51].

STR. In this technique, ribbon growth takes place directly from a pool of melted silicon without a die (Figure 6.24) in a process mirroring the WEB geometrically. Rather than dendrites, as with WEB, the position of the ribbon edges in STR is maintained by two strings fed through holes in the bottom of the crucible. The strings are drawn upward out of the melt to support the meniscus and the ribbon, and their pull rate determines the growth speed of the ribbon. The thickness of the ribbon is controlled by surface tension, heat loss from the sheet and pull rate. An important difference of the STR process from WEB growth is that the constraints of maintaining propagating dendrites and a supercooled melt are eliminated, and this relaxes the high degree of temperature control required in the WEB furnace. The high meniscus, 7 mm (see Equation 2), allows simple control of

235