3. *Texturization*: NaOH etching leading to microscopic pyramids is commonly employed. Their size must be optimized, since very small pyramids lead to high reflection, while very large ones can hinder the formation of the contacts. To ensure complete texturing coverage and adequate pyramid size, the concentration, the temperature and the agitation of the solution and the duration of the bath must be controlled (in fact NaOH at a higher concentration and at a higher temperature is commonly used as an isotropic etch for saw damage removal). Alcohol is added to improve homogeneity through an enhancement of the wettability of the silicon surface. Typical parameters are 5% NaOH concentration, 80°C and 15 min [69].

Texturing alternatives for multicrystalline material are presented in Section 7.6.

4. *Phosphorus diffusion*: Phosphorus is universally used as the *n*-type dopant for silicon in solar cells. Since solid-state diffusion demands high temperature, it is very important that the surfaces are contamination-free before processing. To this end, after the texturing the wafers are subjected to acid etch to neutralize alkaline remains and eliminate adsorbed metallic impurities.

The industry uses a number of procedures to perform the phosphorus diffusion. The following classification is based on the type of furnace in which the high-temperature step takes place:

*Quartz furnaces*: The cells to be diffused, loaded in quartz boats, are placed in a quartz tube with resistance heating and held at the processing temperature (Figure 7.7a). The cells enter and exit the furnace through one end, while gases are fed through the opposite one. Phosphorus itself can be supplied in this way, typically by bubbling nitrogen through liquid POCl<sub>3</sub> before injection into the furnace. Solid dopant sources are also compatible with furnace processing. Five to fifteen minutes at temperatures in the range from 900 to 950°C can be considered representative. As suggested in Figure 7.6, both surfaces and the edges of the wafer will be diffused.

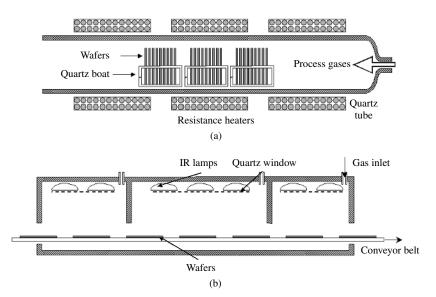



Figure 7.7 (a) A quartz furnace; and (b) a belt furnace for the diffusion of phosphorus

273