Belt furnaces: In this case, solid phosphorus sources are used: screen printed, spun-on or CVD pastes containing phosphorus compounds are applied on one wafer face and, after drying, placed in a conveyor belt passing through the furnace (Figure 7.7b). The temperature inside it can be adjusted in several zones and, though the furnace is open, gases can be supplied. The temperature cycle undergone by the wafer will mimic the temperature profile along the furnace with the time scale set by the advancing speed of the belt. A cycle begins with several minutes at around 600°C with clean air to burn off the organic materials of the paste, followed by the diffusion step in nitrogen at 950°C for 15 min. Only one face of the wafer is diffused, but the parasitic junction formed at the edges is also present in this technique due to diffusion from the gas phase. Resistance or infrared heating can be employed, the latter offering the possibility of faster heating–cooling rates of the wafer.

The main benefit of the quartz furnace is cleanliness, since no metallic elements are hot and no air flows into the tube. Though this is a batch step, high throughput can be achieved since many wafers can be simultaneously diffused in each tube, commercial furnaces consisting of stacks of four tubes. In a belt furnace, the ambient air can get into the furnace and the hot conveyor belt is a source of metallic impurities. The assets of belt furnaces are found in automation and in-line production, throughput and the ability to implement temperature profiles. New designs try to reconcile the advantages of both types of equipment [70].

After diffusion, an amorphous glass of phospho-silicates remains at the surface that is usually etched off in diluted HF because it can hinder subsequent processing steps.

5. *Junction isolation*: The *n*-type region at the wafer edges would interconnect the front and back contacts: the junction would be shunted by this path translating into a very low shunt resistance. To remove this region, dry etching, low temperature procedures are used.

For the widely employed etch with plasma, the cells are coin-stacked and placed into barrel-type reactors. In this way, the surfaces are protected and only the edges remain exposed to the plasma. This is obtained by exciting with an RF field a fluorine compound (CF_4 , SF_6), which produces highly reactive species, ions and electrons that quickly etch the exposed silicon surface [71]. Though this is a batch step, a large number of wafers can simultaneously be processed allowing high throughput. Laser cutting of the wafer edges is an alternative in industrial use.

6. *ARC deposition*: Titanium dioxide (TiO₂) is often used for creating the antireflecting coating due to its near-optimum refraction index for encapsulated cells. A popular technique is atmospheric pressure chemical vapor deposition (APCVD) from titanium organic compounds and water: the mixture is sprayed from a nozzle on the wafer held at around 200°C and the compound is hydrolyzed on the surface [72]. This process is easily automated in a conveyor-belt reactor. Other possibilities include to spin-on or screen print appropriate pastes.

Silicon nitride is also used as AR coating material with unique properties that will be described in Section 7.6.

7. *Front contact print and dry*: The requirements for the front metallization are low contact resistance to silicon, low bulk resistivity, low line width with high aspect ratio, good mechanical adhesion, solderability and compatibility with the encapsulating