arrays for dish and TPV applications. These cells are supplied to companies developing concentrating systems.

11.5.12 University of Reading

The University of Reading, United Kingdom, is researching a variety of concentrating approaches including point-focus Fresnel modules [78] and novel reflective trough modules [79].

11.5.13 Tokyo A&T University

Tokyo A&T University has been researching two and three-dimensional refractive static concentrators. These are designed to accept most of the diffuse light and, hence, are suitable for cloudy climates [80]. The two-dimensional lens has a concentration of 1.65X and the three-dimensional lens has a concentration of around 2X. While it might be concluded that this modest concentration is hardly worth the effort, it must be remembered that these systems use standard one-sun cells and the cell cost, which dominates module cost, is correspondingly reduced by these factors.

11.5.14 Zentrum fur Sonnenenergie und Wasserstoff Forschung Baden Wurttenberg (ZSW)

Zentrum fur Sonnenenergie und Wasserstoff Forschung Baden Wurttenberg (ZSW), in conjunction with a European consortium consisting of BP Solar, the Instituto de Energias Renovables (Spain) and the University of Crete, is developing a promising low-concentration system based on a 2X v-trough concentrator. The system uses polar-axis tracking that is driven by a passive, thermo-hydraulic system. This results in a simple, maintenance-free system that is projected to offer a 40% cost advantage over fixed, flat-plate modules [81].

REFERENCES

- Swanson R, Sinton R, "High-Efficiency Silicon Solar Cells", in Boer K, Ed, Advances in Solar Energy, Vol. 6, 427–484, Plenum Press, New York (1990).
- 2. Luque A, *Solar Cells and Optics for Photovoltaic Concentration*, Adam Hilger, Bristol, Philadelphia (1989).
- 3. Swanson R, Prog. Photovolt.: Res. Appl. 8, 93-111 (2000).
- Kaminar N et al., "Cost Effective Concentrator Progress", Twenty Third IEEE Photovoltaic Specialists Conference, 1213–1215 (1993).
- 5. Butti K, Perlin J, "The History of Terrestrial Uses of Solar Energy", in Kreider J, Kreith F, Eds, *Solar Energy Handbook*, McGraw-Hill, New York (1981).
- 6. Chapin D, Fuller C, Pearson G, J. Appl. Phys. 25, 676 (1954).
- 7. Pfeifer C, Schoffer P, Spars B, Duffie J, Trans. ASME, J. Eng. Power January, 33-38 (1962).
- 8. Beckman W, Schoffer P, Hartmann Jr. W, Lof G, Sol. Energy 10, 132-136 (1966).
- 9. Ralph E, Sol. Energy 10, 67-71 (1966).
- 10. Sandia, Presented at First Project Integration Meeting (Denver, CO, 1978).

500