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of hydrogen on the surface [117]. At the low temperature side (below 250◦C), it again
takes a higher hydrogen dilution to reach the transition between amorphous to microcrys-
talline [117]; this effect is likely due to the low surface diffusivity of hydrogen during
growth. When a-Si is deposited at a lower temperature with higher H dilution, more H
is incorporated and the material has a wider band gap. By following the edge of the
transition curve (but staying on the amorphous side) while reducing the deposition tem-
perature, wide-gap a-Si and single-junction a-Si n-i-p cells with 1.053 V open-circuit
voltage were deposited [76, 118]. It was also observed that materials deposited near the
edge of microcrystalline formation show intermediate-range structural order [119].

12.3.7 Alloys and Doping

As was discussed in Section 12.2.7, a-Si-based alloys can be deposited using a gas mixture
of SiH4 with other gases such as GeH4, CH4, O2 (or NO2), and NH3 for obtaining a-
SiGex , a-SiCx , a-SiOx and a-SiNx , respectively. Among these alloy materials, a-SiGe has
been explored extensively for PV applications as the narrow band gap absorber. As we
see from Figure 12.10, the band gap EG decreases with increasing Ge content. When EG

is decreased to below 1.4 eV, the defect density becomes so high that the materials can no
longer be used as the intrinsic layer for solar cells. Various approaches have been explored
to make a-SiGe or a-Ge with low band gap (below 1.3 eV) and low defect density [61].
Despite tremendous progress, device quality a-SiGe with low band gap (below 1.3 eV)
has not been demonstrated.

Another related aspect for a-SiGe deposition is the deposition uniformity. Because
of the different dissociation rates of germane (GeH4) and of silane (SiH4) in an RF plasma,
the film deposited near the gas inlet side of the chamber has higher Ge content than the film
near the exhaust. This nonuniformity makes it difficult to implement the process over large
areas in manufacturing. By taking advantage of the approximately similar dissociation rate
of GeH4 and disilane (Si2H6), many research groups use a mixture of GeH4 and Si2H6

for the fabrication of a-SiGe alloy and successfully obtain uniform film [52].

As discussed in Section 12.2.6, a-Si can be doped n-type by mixing phosphine
(PH3) with the gas mixture or doped p-type by mixing diborane (B2H6), BF3, or trimethyl-
boron [TMB, B(CH3)3] with the gas mixture during deposition. Because of the need for
transparency in p-layers, which act as the “window” layer for sunlight, most cells have
either µc-Si or a-SiC as the uppermost p-layer. Amorphous SiC p-layers are usually
made using a mixture of SiH4 and CH4 strongly diluted in hydrogen [61]. The µc-Si
p-layer is generally made in a PECVD process using high H dilution with high RF power
at relatively low temperature. There have been suggestions that the optimum p-layer for
a-Si solar cells is either nanocrystalline or is very close to the transition from amorphous
to microcrystalline [120, 121].

12.4 UNDERSTANDING a-Si pin CELLS

12.4.1 Electronic Structure of a pin Device

Profiles showing electronic levels such as bandedges are an important tool in understand-
ing device physics. Figure 12.14 illustrates the profiles of the bandedge levels EC and EV




