Property		Value	Units	Reference
Lattice constant	a	5.78	Å	[28]
	\mathcal{C}	11.62	Å	
Density		5.75	g/cm ³	[28]
Melting temperature		986	C	[29]
Thermal expansion	$(a \text{ axis})$	8.32×10^{-6}	1/K	[30]
coefficients at 273 K	$(c \text{ axis})$	7.89×10^{-6}	1/K	
Thermal conductivity at 273 K		0.086		[30]
Dielectric constant	Low frequency	13.6 ± 2.4		[31]
	High frequency	8.1 ± 1.4		
	Electrons	0.09		[30]
Effective mass $[m_e]$	Holes (heavy)	0.71		[30]
	Holes (light)	0.092		[30]
Energy gap		1.02	eV	[30]
Energy gap temperature coefficient		-2×10^{-4}	eV/K	[30]

Table 13.1 Selected properties of CuInSe₂

Figure 13.4 Ternary phase diagram of the Cu–In–Se system. Thin-film composition is usually near the pseudobinary $Cu₂Se-In₂Se₃$ tie-line

the composition 25% Cu. At higher temperatures, around 500◦ C, where thin films are grown, the phase field widens toward the In-rich side. Typical average compositions of device-quality films have 22 to 24 at.% Cu, which fall within the single-phase region at growth temperature.

 $CuInSe₂$ can be alloyed in any proportion with $CuGaSe₂$, thus forming $Cu(InGa)Se_2$. Similarly, the binary phase In_2Se_3 at the end point of the pseudobinary tie-line can be alloyed to form $(InGa)₂Se₃$, although it undergoes a structural change at $Ga/(In + Ga) = 0.6$ [33]. In high-performance devices, $Ga/(In + Ga)$ ratios are typically 0.2 to 0.3.

One of the central characteristics of $Cu(InGa)Se₂$ is its ability to accommodate large variations in composition without appreciable differences in optoelectronic properties.