

Figure 13.18 Temperature dependence of V_{OC} for the devices shown in Figure 13.16

and (13.8) and assuming $G \ll J_L/V_{OC}$, the open-circuit voltage becomes

$$V_{\rm OC} = \frac{E_{\rm g}}{q} - \frac{AkT}{q} \ln\left(\frac{J_{\rm OO}}{J_{\rm L}}\right) \tag{13.9}$$

with the barrier height $\Phi_b = E_g$.

The different recombination paths are effectively connected in parallel so that $V_{\rm OC}$ will be controlled by the single dominant mechanism with the highest current. The values of Φ_b and A can be used to distinguish between recombination in the bulk absorber, in the space charge region of the Cu(InGa)Se₂, or at the Cu(InGa)Se₂/CdS interface [27, 169]. Each of the curves in Figure 13.16 can be fit to equation (13.7) with $A = 1.5 \pm 0.3$. For a wide range of thin-film solar cells, it has been demonstrated that $V_{\rm OC}(T \rightarrow 0) = QE_{\rm g}$ and 1 < A < 2 similar to the data above. Specifically, this has been shown for CuInSe₂ [116, 170] and Cu(InGa)(SeS)₂ [171] devices, independent of the (CdZn)S buffer-layer band gap [170], and for a variety of different absorber-layer deposition processes [172]. These results for Φ_b and A indicate that Cu(InGa)Se₂/CdS solar cells operate with the diode current controlled by Shockley-Read-Hall type recombination in the Cu(InGa)Se₂ layer [168]. This recombination is greatest through deep trap states in the space charge region of the Cu(InGa)Se₂ where there are comparable supplies of electrons and holes available, that is, $p \approx n$. The variation in A between 1 and 2 depends on the energies of the deep defects that act as dominant trap states [173]. As these states move toward the band edges, $A \rightarrow 1$ and the recombination becomes closer to band-to-band bulk recombination.

These observations exclude recombination in the neutral bulk region of the absorber layer, which should give A = 1. Interface recombination would give $\Phi_b < E_g[Cu(InGa)Se_2]$ with a dependence on the (CdZn)S band gap, although A might vary from 1 to >2 [174]. Back surface recombination at the Mo/Cu(InGa)Se₂ interface will