

Figure 14.9 TEM images comparing PVD CdTe/CdS thin-film structures (a) before and (b) after CdCl₂ heat treatment at 420°C for 20 min. Average grain size increased from roughly 0.1 to 0.5 μ m in both CdTe and CdS

Table 14.2 Structural changes of CdCl₂ HT on CdTe deposited by different methods. Data from films examined by B. E. McCandless. For sprayed and screen-printed cells, random film orientation is obtained as a result of the film formation process

Deposition method	Film thickness [µm]	Mean grain size: D Init \rightarrow CdCl ₂ HT [μ m]	Orientation Init \rightarrow CdCl ₂ HT
PVD	4	$0.1 \rightarrow 1$	$(111) \rightarrow (220)$
ED	2	$0.1 \rightarrow 0.3$	$(111) \rightarrow (110)$
Spray	10	$10 \rightarrow 10$	Rand
Screen	12	~ 10	Rand
VTD	4	$4 \rightarrow 4$	Rand \rightarrow Rand
CSS	8	$8 \rightarrow 8$	Rand \rightarrow Rand
Sputter	2	$0.3 \rightarrow 0.5$	$(111) \rightarrow (?)$
MOCVD	2	$0.2 \rightarrow 1$	$(111) \rightarrow \text{Rand}$

pushed closer to the band edges, resulting in a single, relatively shallow acceptor state. Although this complex is a more effective dopant than the Cd vacancies alone, excess Cl can lead to compensating Cl_{Te} donors.

The impact of CdCl₂ treatment on cell operation is increased photocurrent and open-circuit voltage, and reduced shunting. Figure 14.11 compares the light J-V behavior of three PVD cells having 4-µm-thick CdTe and 0.2-µm-thick CdS, processed with the same back contact but with no postdeposition treatment, air-heat treatment at 550°C, and optimized CdCl₂ treatment at 420°C for 20 min in air. With no treatment, the device exhibits very low photocurrent and high series resistance. The spectral response is low

635