

Figure 14.12 Local variations in quantum efficiency with 1- μ m beam and $\lambda = 788$ nm. Areas shown are 50 × 10 μ m

overall and exhibits a peak near the CdTe band edge, suggesting p-*i*-n device operation [137]. With either air treatment or vapor CdCl₂ + air treatment, the J-V and spectral response behavior correspond to p-n device operation, with optimal properties obtained for the vapor CdCl₂ + air treatment. For devices made by other methods, similar behavior is obtained, but the starting condition (Figure 14.11a) can be improved by deposition at high temperature in an oxygen-containing ambient.

The effect of the CdCl₂ treatment on photocurrent microuniformity is shown in Figure 14.12, for cells with CdTe deposited by CSS. The QE map on the left was made on a cell following a typical CdCl₂ treatment, and shows spatially uniform collection. The map on the right was for a cell fabricated without the CdCl₂ treatment and exhibits considerable nonuniformity [138]. The light intensity for these maps is nearly 100 mW/cm² and the light spot is slightly smaller than 1 μ m. The large local reductions in photocurrent without CdCl₂ treatment are areas of high resistance associated with grain boundaries. With the use of the CdCl₂ treatment, spatial-junction uniformity is improved by the electronic incorporation of Cl and O species and alloy formation by diffusion of CdS into CdTe. The QE of the sample with CdCl₂ treatment ranges from 0.50 to 0.68.

14.3.3 CdS/CdTe Intermixing

All CdS/CdTe cells are exposed to processing temperatures of at least 350° C during CdCl₂ treatment. In some cases, such as spray pyrolysis, much higher temperatures are involved. Hence, a chemical reaction between CdTe and CdS can occur and this is the