

Figure 14.18 Sensitivity of bulk and grain-boundary diffusion coefficients (a) to pCdCl₂ at constant pO₂~125 Torr, at $T = 420^{\circ}$ C, and (b) to pO₂ at constant pCdCl₂ = 9 mTorr, at $T = 420^{\circ}$ C

from the differences in current generation, device operation is fundamentally similar for cells with differing amounts of $CdTe_{1-x}S_x$ alloy in the absorber layer.

14.3.4 Back Contact

The top region shown in Figure 14.7 is the back contact, consisting of a primary contact to CdTe, which typically consists of a tellurium-containing p^+ surface, and a secondary contact, which is the current-carrying conductor. As with other *p*-type semiconductors, there is a tendency to form a Schottky barrier with many metals, and achieving a low-resistance ohmic contact has proven to be challenging. The most common strategy is to form a Te-rich surface by selective chemical etching and then apply copper or a

642