Compound	Single crystal optical $E_{\rm g}$ range 300 K [eV]	Optical bowing parameter	Stable endpoint structure	Miscibility gap?
Cation substitution				
$Cd_{1-r}Zn_rTe$	$1.49 - 2.25$	0.20	$ZB-ZB$	N
$Hg_{1-r}Cd_rSe$	$0.10 - 1.73$?	$ZB-W$	N
$Hg_{1-r}Zn_rTe$	$0.15 - 2.25$	0.10	$ZB-ZB$	N
Anion substitution				
$CdTe_{1-r}S_r$	$1.49 - 2.42$	1.70	$ZB-W$	Y
$CdTe_{1-r}Se_r$	$1.49 - 1.73$	0.85	$ZB-W$	γ
$CdSe_{1-r}S_r$	$1.73 - 2.42$	0.31	$W-W$	N
$HgTe_{1-r}S_r$	$0.15 - 2.00$	$\overline{\mathcal{L}}$	$ZB-ZB$	γ
$HgSe_{1-x}S_x$	$0.10 - 2.00$	$\overline{\mathcal{C}}$	$ZB-ZB$	γ

Table 14.5 Properties of pseudobinary II^B -VI^A alloys suitable for absorber layers

devices. For terrestrial photovoltaic applications, in which a band gap of ∼1*.*5 eV is desired, considerable progress has been made in the development of solar cells based on the CdS-CdTe heterojunction wherein CdS1−*y*Te*^y* and CdTe1−*x*S*^x* alloys have been shown to play a role in the device operation. For the development of next-generation, multijunction cells, top cells with an absorber band gap of ∼1*.*7 eV are required [193, 194].

The alloy systems shown in Table 14.5, separated by cation and anion substitution in pseudobinary compounds, define a broad range of optical band gap suitable as absorber layers in terrestrial photovoltaic converters. The isostructural systems Cd1−*x*Zn*x*Te and Hg1−*x*Zn*x*Te offer tunable systems with a wide range of band gap and controllable *p*-type conductivity.

Thin-film solar cells based on $Cd_{1-x}Zn_xTe$ were the subject of study in the late 1980s, by several laboratories, including the Georgia Institute of Technology (GIT) and International Solar Energy Technology (ISET). Two approaches to depositing the $Cd_{1−*x*}Zn_{*x*}Te films had been considered in the previous work: synthesis by reaction of$ sequentially deposited metal layers (ISET) and metal organic chemical vapor deposition (GIT). CdS/Cd_{1−*x*}Zn_{*x*}Te devices using Cd_{1−*x*}Zn_{*x*}Te films made by the reaction of sequentially deposited metals with $x = 0.1$, corresponding to $E_g \sim 1.6$ eV, yielded 3.8% efficiency and suffered from low V_{OC} and FF [195]. Although little follow-up work was conducted to explain the low performance, for CdS/ Cd1−*x*Zn*x*Te devices made by MOCVD, it was found that the CdCl₂+ air treatment step reduced the band gap from 1.7 to 1.55 eV, owing to chemical conversion of the zinc alloy to volatile $ZnCl₂$. The best cells made with the 1.55 eV band gap yielded 4.4% conversion efficiency [196].

CdTe-based thin-film photovoltaic devices are also suited to applications beyond terrestrial power conversion, including space-power generation, infrared detectors, and gamma radiation detectors. Using the current–voltage characteristics of state-of-the-art and realistic devices on rigid glass superstrates, AM0 operation at 60°C can be determined by accounting for the temperature dependence of the band gap and differences in irradiance. State-of-the-art cells with 16.5% AM1.5 efficiency at 25◦ C translate to 13.9% AM0 efficiency at 60◦ C. Typical cells having 12% AM1.5 efficiency at 25◦ C