$D(\beta, \alpha)$ and $R(\beta, \alpha)$, respectively. Once these are known

$$G(\beta, \alpha) = B(\beta, \alpha) + D(\beta, \alpha) + R(\beta, \alpha)$$
(20.27)

20.5.3.1 Direct irradiance

Straightforward geometrical considerations lead to

$$B(\beta, \alpha) = B \max(0, \cos \theta_{\rm S}) \tag{20.28}$$

where *B* is the direct irradiance falling on a surface perpendicular to the sun's rays, and $\cos \theta_{\rm S}$ is the angle of incidence between the sun's rays and the normal to the surface, given by equation (20.9). *B* can be obtained from the corresponding value on a horizontal surface

$$B = \frac{B(0)}{\cos \theta_{\rm ZS}} \tag{20.29}$$

Note that when the sun is illuminating the back of the surface (for example, during all morning on a vertical surface oriented to the west) $|\theta_S| > \pi/2$. Then, $\cos \theta_S < 0$ and B = 0. This way, the factor $\max(0, \cos \theta_S)$ reflects that the irradiance incident on the back surface of PV modules is normally not utilised.

20.5.3.2 Diffuse irradiance

We can assume that, when the sun is occulted, the sky is composed of elemental solid angles, such as d Ω (Figure 20.14) from which a diffuse radiance $L(\theta_Z, \psi)$ is emanated towards the horizontal surface. The term radiance is taken to mean the flux of energy per unit solid angle crossing a surface normal to the direction of the radiation. It is expressed in W/m².steradian.

Figure 20.14 Angular co-ordinates, θ_z and ψ , of an elemental solid angle of the sky