CdTe/CdS (continued)	Cherry Hill Conference 13
grain-boundary diffusion coefficient	CHP space-heating applications 855
versus inverse of treatment	CIS flat-plate 36
temperature 641	Clean Energy Fund 1105
CdTe/CdS heterojunction solar cells 619	clearness index 920, 945
CdTe/CdS junction band diagrams 644	close spaced sublimation (CSS) 30
CdTe/CdS solar cells	
	cloudiness index 921
current-voltage and relative quantum	CO ₂ emissions 48–9
efficiency curves 621	CO ₂ reduction 22
quantitative assessment of film	Cold Wall process 246
properties 626	Colt shading system 1012
CdTe/CdS thin-film structures,	Commons Capital LP 1108-9
time-progressive X-ray diffraction line	Communication/Navigation Outage
profiles 640	Forecast System (CNOFS) 440
CdTe-CdS pseudobinary phase diagram	Composited Optics Incorporated (COI)
639	440
$CdTe_{1-x}S_x$ alloy thin film optical band	
gap versus composition 638	compound parabolic concentrator (CPC)
celestial equator 909	454, 482–3
	concentrating arrays 436–8
celestial poles 909	concentration PV systems 31–2
celestial sphere 908–9, 911	concentration ratio 450, 455, 484
cell potential 809	concentrator cell and module efficiencies
cell technology and efficiency, effect on	473
module price 36	Concentrator Initiative 465–6
cell voltage 809	concentrators 106–7, 124, 376–80,
Central and Southwest Services (CSW)	406-7, 449-503, 946-7
467	
Centre for Sustainability De Kleine Aarde	basic types 452–60
in Boxtel 1017	compound parabolic (CPCs) 454,
centrifugal pump system 894	482-3
chalcopyrite lattice structure 571	current activities 495–500
characteristic curve 952	D-SMTS 494
	development dilemma 450-2
characteristic parameters 951–2	dielectric-filled 491–2
charge controllers 33, 787–8, 843,	early demonstration projects 466–7
864–77	historical overview 460–74
appraisal factors 875–7	history of performance improvements
compliance to codes 877	472–4
design criteria 875–7	
efficiency 876–7	innovative 492–4
linear 865	literature 450
safety aspects 877	market barriers 449–503
self-regulating PV systems 865	marketing 451
with integrated voltage and current	miscellaneous programs 471–2
meter 874	optics 452-5, 474-95
see also T-CHEQ system	parabolic 479–82
charge equaliser 843	reflection and refraction 478
	reflective trough 494
for long battery strings 877–80	research 449–503
charge transfer between molecular orbitals	
39	RXI 494
chemical etchants 397	Sandia National Laboratories program
chemical leaching, post-treatment by	461–2
195-6	schematic representation 475
chemical potential 134, 140, 142, 145	secondary optics 489–91
chemical processes 807	static 456–60, 470, 491–2
chemical texturing 285–7	two-stage 473
chemical vapor deposition (CVD) 284,	types of tracking 456–60
315	V-trough 483–5