conduction band (CB) 4, 66–7, 74,	crystalline silicon solar cells 255–91, 948
119–21, 129, 144–5, 536	back contact print and dry 275
confidence coefficient 918	back surface 266
confidence interval 918	back surface passivation 281
conservation of energy 71	cell structure 259–60
consumer products 57–9	cofiring of metal contacts 275
control strategies 870–1	front contact print and dry 274-5
cost break down of solar home system 56	front surface 263-6
cost distribution for modules and silicon	manufacturing process 271–80
wafers 223	materials and processing 260-2
cost model 35	performance comparison 270
cost of electricity for utility-scale PV	process flow 271-6
plants 990–4	size effects 266–8
cost projections 50	substrate 260-3
costs 15–19	substrate thickness 263
for TFSC 34	testing and sorting 275
for very high-efficiency 1000	throughput and yield 279-80
suns-concentrating systems 38	variations to basic process 280-3
of construction of PV central	crystalline silicon technology 40
plant 35	crystalline silicon wafer PV technology
of small professional autonomous	28
photovoltaic systems 55	crystallization 193-4, 216-17, 219, 223
of stand-alone PV installation 33	from aluminum melt 194
see also economic analysis; system cost	from silicon-melt 194
covalent bonds 183	heat flow in 247
crystal defects 217–19	thermal modeling of 245-7
crystal growth techniques, numerical	Cu ₂ S/CdS thin-film solar cells 568
simulations of 244–51	Cu-In-Se system 571-2
crystal imperfections, effect of 182-5	$CuIn_{1-x}$ Ga_xSe_2 , complex refractive index
crystalline silicon 21, 27–8, 176, 230	575
bulk properties 257	Cu(InGa)Se ₂ 21, 27, 29, 31, 35
contacting structures 260	Cu(InGa)Se ₂ solar cells 567–616
contacts 257-8	absorption of light with different
progress and challenges 23-7	wavelengths 595
surfaces 256-9	alternative buffer layers 588-90
wafer material for 245	back contact 580
crystalline silicon Cz module 35	buffer layers 591–2
crystalline silicon noncontacted surfaces	chemical bath deposition (CBD) 585-6
258-9	coevaporation 580-3
crystalline silicon photovoltaic modules	commercial development 570
291–302, 948–9, 955	composition 571–3
cell matrix 291–2	critical materials with respect to primary
electrical characteristics 295–7	supply 608
fabrication spread 297	current loss 594
field performance 301–2	deposition methods 578–84, 587–8
lamination and curing 293	device completion 592
layers of the module 292-3	device operation 592–602
lifetime 301	efficiency 590, 593
local shading and hot spot formation	electrical properties 574–6
297-9	environmental concerns 608-9
mismatch losses 297	equipment 602–4
optical properties 300	evolution of device record efficiencies
postlamination steps 294	605
qualification tests 301–2	future outlook 609–11
special modules 294–5	grain boundaries 576–7
thermal characteristics 295–7	interface effects 586–7
with back contact cells 295	junction and device formation 584–92