diment assument (DC) 2 5 24	amanatina mainainta 670
direct current (DC) 3, 5, 34	operating principle 670
direct irradiance 928	organic dye photosensitizers 687–8
direct irradiation 913	photovoltaic performance 672–3
direct subsidies (buy-downs) 1094–5	primary processes 670–2
dirt effects 934–7	prospects 695-6
dirty surfaces 944	quasi-solid-state 689–90
Discovery Science Center, Santa Ana, Los	recombination between injected electrons
Angeles 1018	and tri-iodide ions (dark current)
dislocations 184–5, 218	676–7
dispersion parameter 532	
	redox electrolyte 681
dispersive transport 532	regeneration of oxidized photosensitizers
displacement current 81	676
distributed power generation 53	sealing materials 670
distribution coefficients 182	solid electrolyte 696
distribution function of monthly electricity	solid-state 689–90
consumption 963	stability 691–4
diurnal variations of ambient temperature	structure 664–70
933-4	
divergence operator 116	E&Co 1109
doctor blade technique 679	Earth–Sun position 912
domestic appliances, energy-saving	ecliptic plane 907, 909
793–4	ecological dimension 48–54
donor funding 1086–7	economic analysis 971–1003
	annual energy production 983
donors 69–70, 186, 220	
doping 69, 216, 518	annual energy value 984
silicon alloys 528	capital recovery factor (CRF) 980
doping level and type 262-3	case studies 984–97
double-layer capacitors 824-6, 859	cash flows 973, 977
double-sided textured (DT) cells 329, 331	discount rate 975
drift 78–9	discounted payback (DPB) 979, 984
of electrons 534	energy payback 997–9
of holes 531, 534	financial evaluation of system 976
dummy wafers 178	general methodology 980-4
dust-covered surface 935	inflationary effects 977
dye fixation onto TiO ₂ film 680	internal rate of return 979
dye-sensitized solar cells (DSSC)	key concepts 973
663-700	key technical and financial parameters
approach to commercialization 691–4	986
**	levelized bus bar energy cost (LBEC)
background 663–4	980
cell assembly 681–2	
cell performance 681–2	levelized energy cost (LEC) 980, 983
characteristics 678	net cash flow 978
charge recombination 675	overview 972–3
charge-transfer kinetics 673–8	payback 984
counter electrode 669, 681	payback period in years 979
efficiency improvement 695–6	present value or present worth 974–7
electron injection process 673–5	return on equity (ROE) 992
fabrication 678–82	total capital requirements for central
materials 664–70	station plants 993–4
metal complex photosensitizers 683–7	value of system 975
module fabrication 694	see also cost(s); financing of PV growth
natural dye photosensitizers 687–8	Edge-defined Film-fed Growth (EFG)
new developments 682–90	
new developments 002-90	230, 232, 234–5, 239–41, 244–5,
new dye photosensitizers 683–8	251, 288
new electrolytes 688-9	Edge-Stabilized Ribbon (ESR) 231
new oxide semiconductor film	Edge-Supported Pulling (ESP) 231
photoelectrodes 683	effective concentration 803