GaInP solar cells (continued)	grain boundary interface recombination
doping characteristics 389–91	velocities 342
lattice matching 383–7	grain enhancement, thin-film silicon solar
window layers 391–2	cells 343-50
GaInP/GaAs cell efficiencies 361	grain growth 349
GaInP/GaAs multijunction solar cell 360	grain size 217–18, 340
GaInP/GaAs tandem solar cells 360, 362	grain size distribution 349
GaInP/GaAs/Ge concentrator cell 379–80	grains, categorization 337–8
GaInP/GaAs/Ge solar cells 361, 363	Grameen Shakti (Bangladesh) 1112
materials issues 382–98	grand canonical potential current density
MOCVD 382	129
refinements to 403-4	grand canonical potential flow for electrons
GaInP/GaAs/Ge tandem cell 359	130
Galaxy XI spacecraft 438	grand potential 115
gap states 517–18	green design, PV role in 1011
GaSb 472	grid-connected systems 754, 779–80
GE Capital Corporation 1109	block diagram 775
generator capacity 957–62	decentralized 774–9
versus storage capacity 959	dependence of annually used solar
Geospace Electrodynamic Connection	energy from 792
(GEC) projects 440	energy losses in 966
geosynchronous Earth orbits (GEO) 420	energy yield of 965-6
	future developments 796–7
German 100 000 photovoltaic roofs	inverters 788–9, 881–902
programme 778–9	joint ownership 779–80
germanium	grid-independent systems, for small
optical properties 394	devices and appliances 755–9
properties at 298K 386	Group IB formation in QD arrays 147
see also GaInP/GaAs/Ge	Group IB material 144–5
germanium cells 394–6, 426–7	Group IB solar cell
III-V heteroepitaxy 395–6	limiting efficiency 147
junction formation 394–5	structure 146
germanium substrates 393–4	Group III-V semiconductor compounds and
Germany 1074	alloys 362
gettering 262, 283	Group III-V solar cells, space applications
Global Approval Program for Photovoltaics	426-31
(PV GAP) 1054	Group VB 120-1, 129, 144-5
Global Environment Facility (GEF)	
1089–91, 1101	H-type bridge 892, 895-6
global horizontal irradiation 918	H-type bridge inverter 892
global irradiance on inclined surface	hazard classification 10
927–33	Heat Exchange Method (HEM) 246
global radiation 913, 920–5	heat flow in crystallization 247
global trends in performance and	heat load and daylight control systems
applications 20–3	1013
global warming 48	Helios unmanned prototype aircraft 783,
glow discharge deposition at different	785
frequencies 523–5	Heller Financial Incorporated 1109–10
goals of current solar cell research and	heterojunction with intrinsic thin-layer
manufacturing 19	(HIT) solar cells 271, 288–9
government funding of research and	high-efficiency III-V multijunction solar
development 1096–100	cells 359-411
government incentives and programs	antireflective (AR) coating effects
1092-6	375-6
grain boundaries (GB) 183, 185, 217,	cell configuration 365–6
310, 333, 337	chromatic aberration 375
categorization 337–8	concentration 376–80