intragrain defects 333	Landsberg efficiency 148
inverters 5, 788, 881–902	laser-grooved buried-grid (LGBG)
active quality control in the grid 900	industrial cells 264
combination of step-down converter with	laser-grooved buried-grid (LGBG) solar
890	
	cell process 290–1
general characteristics 881	laser-induced recrystallization 350
grid-connected systems 788–9,	laser-pulse time-of-flight measurements
881-902	531
H-bridge-type 885	law of the junction 88
high-frequency concepts 894–6	lead acid batteries 806, 817, 826-49, 856
power factor as function of output power	acid stratification 837–9
899	ageing processes and their influences of
power quality 896–9	properties 837
principles 884–96	
safety aspects for grid-connected	applications 829–35
systems 900–2	charge/discharge process in lead
	electrode 828
square-wave-type 884–5	charging 845-6
stand-alone operation 883	chemistry 827–9
stand-alone systems 789–90	concepts 829-35
three-phase PWM 894	corrosion 840
with sinusoidal AC output 885–96	deep-discharge protection 847–9
Ioffe Physical-Technical Institute 498	discharge capacity 836–7
ionizing radiation 419	discharge curves 849
IREDA (India) 1112	erosion 840–1
iron concentration 222	fundamentals 829–35
irradiance 913, 915	
irradiance measurements 721–2	ice formation 842–3
irradiance to daily irradiation ratios 926	operation strategies 844–9
irradiation 913	peripherals 843–4
	reverse charging 842
of most widely studied surfaces 940–1	short circuits 841–2
on fixed surfaces 943–5	sulphation 839
IT Power India Pvt. Ltd. 1112	technology 829-35
<i>I–V</i> characteristics 92–5, 336	voltage thresholds 875-6
<i>I–V</i> curves 275–6, 299, 867, 949–50	lead sulphate crystals 807
<i>I–V</i> measurements	Legendre's transformation 114–15
cell and module systems 731–6	less-developed areas 972
multijunction cells 400–1	light absorption 70–4
simulator-based 722–3	light emitting diode (LED) 76, 137–8,
I-V performance 548–9	
	148
Japan, PV programs 1097	light-induced degradation (LID) 212–13
Japanese residential PV promotion program	light-soaking effects 541
777	light-trapping 269–70, 320, 325–7, 333,
Jet Propulsion Laboratory (JPL) Flat Plate	537-8
Array Project 230	lithium batteries 859
	lithium-ion batteries 822–4
joint ownership project 781	lithium-polymer batteries 822–4
JRC Ispra guidelines 965	local apparent time 909
junction isolation 274	local horizon 939
J-V characteristics 544	long-base approximation 96
J-V curves 341–2, 368–70	C 11
for series-connected subcells 369	Loss of Load Probability (LLP) 956–7, 960–1, 963–4
	· · · · · · · · · · · · · · · · · · ·
Kyoto Protocol 22	low intensity low temperature (LILT) cells
	441-2
Lafarge Braas PV 700 roof tile system	low pressure chemical vapor deposition
1015	(LPCVD) method 213
Lagrange invariant 118	low-Earth orbit (LEO) 414, 420