<i>n</i> -type silicon 184	oxygen as impurity in silicon 187–8
Nagarjuna Finance Ltd. (India) 1113	oxygen segregation 220
nanotechnology 39	, e e e
National Meteorological Services 916	p-type material 77, 83
National Renewable Energy Laboratory	<i>p</i> -type multicrystalline silicon 217, 220
(NREL) 323, 360, 498	<i>p</i> -type semiconductors 76
	p-type side 24
natural integration 1015	pair formation 185
NEDO process 198	1
Nernst equation 803	parallel resistance 953
New Alternatives Fund Inc. 1110	parasitic power loss 37
New Century Finance Limited 1107	parasitic resistance effects of solar cell
New Energies Invest Ltd. 1107	102
NiCd batteries 818–21	partial-shunting controller 869
nickel-metal hydride (NiMH) batteries	passivated emitter rear contact (PERC) cell
821-2	466
Ni-Si phase diagram 190	passivated emitter rear floating junction
nominal operating cell temperature	(PERF) cells 266
(NOCT) 714, 947, 951, 955	passivated emitter rear locally diffused
noncrystalline semiconductors 517, 532	(PERL) cells 261, 263, 266,270–1,
	314–15, 469
<i>n-p</i> junction 340	passivated emitter rear totally diffused
Nth Power Technologies 1110	
nucleation 349	(PERT) cell 266, 314
numerical modeling of solar cells 109–10	passivation with hydrogen 283–5
numerical simulations of crystal growth	Pathfinder unpiloted prototype 782
techniques 244–51	$Pb/H_2SO_4/PbO_2$ cell 830
	PC1D 334
off-grid energy supply systems,	peak load 51
characteristics of 55	peak-load-reduction technology 14
off-grid power supply systems 54–7, 754	performance rating methods, energy-based
future developments 794–6	716–17
prerequisites 57	performance ratio (PR) 965
off-grid rural electrification 768–71	periodic table of elements 64
categorization of delivery models	personal digital assistant 58
773–4	phonon absorption 72
economic aspects 771–4	phonons 72
see also rural electrification	phosphorus diffusion 273
open-circuit voltage 309, 529, 534–7,	phosphorus doping 518
809, 951, 954	
	photocarrier drift in absorber layers
optical confinement 285	530-3
optical design, a-Si:H solar cells 537–40	photoconductivity 505
optical generation rate 89	photoluminescence (PL) intensity 400
optical properties	photon absorption 71–2
crystalline silicon photovoltaic modules	photon conversion efficiency, wavelength
300	dependence of 363–4
GaAs 394	photon energy 61, 70, 73, 130
GaInP 387-9	monochromatic cell efficiency versus
germanium 394	125
thin-film silicon solar cells 328	photon flux 74, 121
optics 268-70, 326-36	photon flux absorption 313
concentrators 452–5, 474–95	photons 3, 5, 61, 117–18, 127–8, 142,
optimal tilt angle for minimizing solar	144
generator size 793 Orbital Workshop array 414	photosynthesis 39
Orbital Workshop array 414	photovoltaic cells 57
Ostwald ripening 185	and BIPV modules 1029–35
overcast skies, radiance distribution	manufacturers 22
associated with 930	measurement and characterization
overvoltage 806	701-52