Polytechnical University of Madrid 496–9	Radio Corporation of America (RCA) 506
porous-Si layer on single-crystal substrate 317	rapid thermal processes (RTP) 282–3, 314, 350, 353
post-treatment	reactive ion etching (RIE) 286-7
by chemical leaching 195–6	realistic reporting conditions (RRC) 716
by extraction metallurgy in ladle	receiver position 912
196–8	rechargeable alkali mangan (RAM)
power conditioning 863–903	batteries 822
power distribution of solar irradiation 966	recombination current 339
Power Management and Distribution	recombination mechanisms 113
(PMAD) 441	recombination process 74–7, 121
powerguard flat-roof PV system 1012	recombination sites 185
precipitates in silicon 190-3	recombinators 844
precipitation 185	redox batteries 860
pre-electrification 1068	redox electrolyte 667-8
premature capacity loss 832	redox-flow batteries 850-2
price–experience curve 47–8	reference cell calibration procedures
primary reference cell calibration methods	intercomparison 727–8
723-6	uncertainty estimates 726–7
Production of High Silicon Alloys 167	Reference Year 937
professional industrial systems 57	Reference Yield 965
proton exchange membrane fuel cell	reflective concentrator configurations 454
(PEMFC) 854	reflective secondary concentrators 463
pumping stations 56	refractive lenses 485–9
pumping systems 768	Regional Solar Programme (RSP) 1067
PVUSA 467, 715, 736	relative transmittance plotted against angle
PWM controllers 871, 895	of incidence 935
· · · · · · · · · · · · · · · · · · ·	reliability, stand-alone systems 953–6
pyrogenic silica 170	reliability maps 959, 961
QD arrays, IB formation in 147	remote areas 57, 761–74, 1048
quality-assurance and quality-control	see also rural electrification
(QA/QC) evaluation 555	remote low power systems 57
quantum dot (QD) arrays 148	remote (or village) systems 972
IB formation in 147	renewable energies 54
quantum dot (QD) solar cells 442	Renewable Energy and Energy Efficiency
quantum efficiency 538	Fund (REEF) 1101
quantum efficiency measurements,	renewable energy sources 45
multijunction cells 549	current use and current potentials 46
quantum efficiency spectra 545	repeater station 762–3
quartz, carbothermic reduction 167	residential sector
quartz-furnaces 273	financing for 1079–82
quasi-Fermi energy 535–6	financing of PV growth 1082
quasi-Fermi levels 119–20, 122, 126, 145	rooftop system 1079
quasi-neutral region 83	reverse bias 139
quasi-neutral region 83	RF glow discharge deposition 521–3
	Ribbon Growth on Substrate (RGS)
R&D	231-2, 236-41, 246, 249-50
funding sources 1099–100	RIGES 17
future programs 1099	rigid panel planar arrays 432-3
government funding 1096–100	rolling-grain model 227
Rabobank Nederland/Groen Management	roof-integrated photovoltaic system 53,
BV 1107	1008
radiance distribution associated with	rooftop PV generators 774
overcast skies 930	Rossi X-Ray Timing Explorer (XTE) 433
radiation, use of term 913	Ru complex photosensitizers 666–7,
radiation spectrum for black body 63	685-6