rural areas 56-7, 1049-51, 1053,	Ethyl Corporation process for 173–5
1083-6	production 167–75
financing PV 1083-6	Siemens process for 168–72
rural electrification 14, 1045–6	Union Carbide process for 172–3
advantages of PV technology 1048-9	semiconductor lasers 76
applications 1046–7	semiconductors 5
Argentina 1061	crystal structure 64–5
barriers to PV implementation	electronic grade 64–5
1051-60	fundamental properties 64–83
Bolivia 1061–3	n-type $69-70$
Brazil 1063-4	nondegenerate 68
initial cost 1055-60	<i>p</i> -type 69–70
Mexico 1064-5	semitransparent cells 1034
nontechnical issues 1055–9	series resistance 951
Sri Lanka 1065–7	shading structure 1013
toward a new paradigm 1068-9	shading system 1014
trained human resources for 1059–60	shadows and trajectory maps 939
see also off-grid	Shell Solar/BOAL profiles 1008
rural energy scene 1046	Shockley-Queisser cell
Tarar energy seeme 10.10	entrophy production in 129–31
safety procedures 9–10	thermodynamic consistence of 126–9
Sahel, water pumping 1067–8	Shockley-Read-Hall (SRH) lifetimes
SAM Equity Partners Ltd. 1110	257, 261
Sandia Baseline III point-focus module	Shockley-Read-Hall (SRH)
design 465	recombination 75, 620
Sandia National Laboratories Concentrator	shopping mall, Lausanne 1024
Program 461–2	short-circuit current 92, 422, 540, 951,
satellites 59–60, 363	953
SAVANT radiation degradation modeling	short-circuit current density 536
computer 420	shunt resistances 102–4
saw damage 271–2	SiC 163
and wafer quality 229–30	SiC bond 156
Scanning Electron Microscopy (SEM)	SiC formation 221
193, 221	Siemens process for semiconductor grade
SCARLET arrays 416, 427–8, 437	silicon 168–72
Scarlet Deep Space One Satellite 59	Siemens Solar Boron Back Surface Field
scattering mechanisms 79	(BSF) process 213
Schrödinger equation 65	SiGe alloys 519
Schüco façade profile system 1031	silica
Schüco roof profile system 1030	aluminothermic reduction of 201
screen printing 261, 265, 275–9, 679–80	carbothermic reduction of 161–3, 198
SEA Corporation 466	silicon 5, 154–61, 182
second-order effects 953–6	bulk monocrystalline material 206–13
secondary electrochemical accumulators	carbon as impurity in 187
with internal storage 817–49	cell technology, module price for
secondary optical element (SOE) 454	985–90
segregation coefficient 219	chemical properties relevant for
selenium 505	photovoltaics 156
selenium dopant 389–90	crystalline 153–4
selenization 29	current feedstock to solar cells 175–9
self-discharge 811	dopant 390
self-interstitial 184	effect of various impurities 186–93
self-regulating PV system 865	electrolytic transfer of 201
semiconductor band gap 121, 153	feedstock for crystalline cells 178
semiconductor equations 81–2	group IIIA impurities 186–7
semiconductor grade silicon 24, 176–7	group VA impurities 186–7
economics and industry 175	health factors 156–7