parasitic resistance effects of 102	solar shading 1010
performance 62, 96–8	solar simulators 736–8
physics 61–112	solar spectrum 915
power density as function of time 422	Solar Terrestrial Probe (STP) Program
properties of 95–6	Magnetospheric Multiscale (MMS)
schematic 4, 62	440
short-circuit current versus open-circuit	solar time 911
voltage 105	solar zenith angle 909
silicon current feedstock to 175–9	SOLERAS 466-7
technology 14	Solgreen flat-roof system 1031
temperature effects on 104–6	solid-phase crystallization 343
Solar Cells and Optics for Photovoltaic	solid solutions 184
Concentration 492, 498	solidification, silicon 179–82
solar constant 912	Solidification by Planar Interface
solar converters, technical efficiency limit	(SOPLIN) processes 246–7, 249
for 131–2	Solrif solar profile system 1029
solar declination 907	space applications 780–3
solar design 1038–9	high-efficiency III-V multijunction solar
Solar Development Capital 1102	cells 363
Solar Development Foundation (SDF)	silicon solar cells 425–6
1102–3	solar arrays 431–41
solar electric farms 23	thin-film solar cells 428
Solar Electric Light Fund (SELF) 1103	space charge region (SCR) 83, 339
solar electricity, see also photovoltaic	space environment 417–20
electricity	space solar cells 413–31
solar energy, availability 799	calibration and measurement 424–5
solar grade silicon 359	challenge for 416–25
solar grade silicon routes 193–201	history 413
solar home systems (SHS) 56, 759–60,	performance 416
813–14, 865, 873, 962–4, 1052,	technology requirements 418
1054,1083, 1088	space vehicles 363
cost breakdown 56, 772	spacecraft 59–60
solar hour 909	Spanish National Meteorological Institute
solar illumination 540	916
Solar International Management Inc.	specialty markets 7
(SolarBank Program) 1103	spectral effects 955
solar irradiation, power distributions of	spectral response 100–2
966	modeling 955
solar lantern for rural households in	spectral responsivity, versus wavelength
developing countries 758–9	characteristics 701
solar modules	spectral responsivity error sources
architecture 1035	for measurement of light power 744
color 1035	for measurement of photocurrent 743
shipment by technology 176	for monochromatic light 745
solar office, Doxford, Sunderland 1019	spectral responsivity measurements
solar radiation 6	738–44
and uncertainty 915–20	filter-based 739–41
available for fixed flat-plate conventional	grating-based systems 741–2
PV modules 947	uncertainty 742–4
components 912–15	Spectrolab Spectrosum Large Area Pulsed
estimation of hourly irradiation from	Solar Simulator 425, 466, 499
daily irradiation 925–7	spectrum-splitting 364–5, 406, 510, 543
on inclined surfaces 920–33	spherical radiator 476
on surfaces on arbitrary orientation	spray pyrolysis (SP) 30
927–33	spring equinox 907
parameters 919	Sri Lanka, rural electrification 1065–7
Solar Research Corporation Pty Ltd 499	Staebler–Wronski effect 511–12