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Introduction

Physics is what it’s all about.

What what’s all about?

Everything. That’s the whole point. Physics is present in every action around
you. And because physics has no limits, it gets into some tricky places, which
means that it can be hard to follow. It can be even worse when you’re reading
some dense textbook that’s hard to follow.

For most people who come into contact with physics, textbooks that land
with 1,200-page whumps on desks are their only exposure to this amazingly
rich and rewarding field. And what follows are weary struggles as the readers
try to scale the awesome bulwarks of the massive tomes. Has no brave soul
ever wanted to write a book on physics from the reader’s point of view? Yes,
one soul is up to the task, and here I come with such a book.

About This Book
Physics For Dummies is all about physics from your point of view. I’ve taught
physics to many thousands of students at the university level, and from that
experience, I know that most students share one common trait: confusion.
As in, “I’m confused as to what I did to deserve such torture.”

This book is different. Instead of writing it from the physicist’s or professor’s
point of view, I write it from the reader’s point of view. After thousands of
one-on-one tutoring sessions, I know where the usual book presentation
of this stuff starts to confuse people, and I’ve taken great care to jettison
the top-down kinds of explanations. You don’t survive one-on-one tutoring
sessions for long unless you get to know what really makes sense to people —
what they want to see from their points of view. In other words, I designed
this book to be crammed full of the good stuff — and only the good stuff.
You also discover unique ways of looking at problems that professors and
teachers use to make figuring out the problems simple.
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Conventions Used in This Book
Some books have a dozen conventions that you need to know before you can
start. Not this one. All you need to know is that new terms appear in italics,
like this, the first time I discuss them and that vectors — items that have both
a magnitude and a direction — appear in bold in Chapter 4, like this.

What You’re Not to Read
I provide two elements in this book that you don’t have to read at all if you’re
not interested in the inner workings of physics — sidebars and paragraphs
marked with a Technical Stuff icon.

Sidebars are there to give you a little more insight into what’s going on with a
particular topic. They give you a little more of the story, such as how some
famous physicist did what he did or an unexpected real-life application of the
point under discussion. You can skip these sidebars, if you like, without miss-
ing any essential physics.

The Technical Stuff material gives you technical insights into a topic, but you
don’t miss any information that you need to do a problem. Your guided tour
of the world of physics won’t suffer at all.

Foolish Assumptions
I assume that you have no knowledge of physics when you start to read this
book. However, you should have some math prowess. In particular, you should
know some algebra. You don’t need to be an algebra pro, but you should know
how to move items from one side of an equation to another and how to solve
for values. Take a look at Chapter 2 if you want more information on this topic.
You also need a little knowledge of trigonometry, but not much. Again, take a
look at Chapter 2, where I review all the trig you need to know — a grasp of
sines and cosines — in full.

How This Book Is Organized
The natural world is, well, big. And to handle it, physics breaks the world
down into different parts. The following sections present the various parts
you see in this book.

2 Physics For Dummies 
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Part I: Putting Physics into Motion
Part I is where you usually start your physics journey, because describing
motion — including acceleration, velocity, and displacement — isn’t very 
difficult. You have only a few equations to deal with, and you can get them
under your belt in no time at all. Examining motion is a great way to under-
stand how physics works, both in measuring and predicting what’s going on.

Part II: May the Forces of Physics
Be with You
“For every action, there is an equal and opposite reaction.” Ever heard that
one? The law, and its accompanying implications, comes up in this part.
Without forces, the motion of objects wouldn’t change at all, which would
make for a very boring world. Thanks to Sir Isaac Newton, physics is particu-
larly good at explaining what happens when you apply forces.

Part III: Manifesting the Energy to Work
If you apply a force to an object, moving it around and making it go faster,
what are you really doing? You’re doing work, and that work becomes the
energy of that object. Together, work and energy explain so much about the
whirling world around us, which is why I dedicate Part III to these topics.

Part IV: Laying Down the Laws
of Thermodynamics
What happens when you stick your finger in a candle flame and hold it there?
You get a burned finger, that’s what. And you complete an experiment in heat
transfer, one of the topics you see in Part IV, a roundup of thermodynamics —
the physics of heat and heat flow. You also see how heat-based engines work,
how ice melts, and more.

Part V: Getting a Charge out of Electricity
and Magnetism
Part V is where the zap! part of physics comes in. You see the ins and outs of
electricity, all the way down to the component electrons that make action

3Introduction
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happen and all the way up to circuits with currents and voltages. Magnetism is
a pretty attractive topic, too. When electricity flows, you see magnetism, and
you get its story in Part V, including how magnetism and electricity form light.

Part VI: The Part of Tens
Parts of Tens are made up of fast-paced lists of 10 items each, and physics can
put together lists like no other science can. You discover all kinds of amazing
relativity topics here, such as time dilation and length contraction. And you
see some far-out physics — everything from black holes and the Big Bang to
wormholes in space and the smallest distance you can divide space into.

Icons Used in This Book
You come across some icons in this book that call attention to certain tidbits
of information. Here’s what the icons mean:

This icon marks information to remember, such as an application of a law of
physics or a shortcut for a particularly juicy equation.

This icon means that the info is technical, insider stuff. You don’t have to
read it if you don’t want to, but if you want to become a physics pro (and
who doesn’t?), take a look.

When you run across this icon, be prepared to find a little extra info designed
to help you understand a topic better.

Where to Go from Here
You can leaf through this book; you don’t have to read it from beginning to
end. Like other For Dummies books, this one has been designed to let you skip
around as you like. This is your book, and physics is your oyster. You can jump
into Chapter 1, which is where all the action starts; you can head to Chapter 2
for a discussion on the necessary algebra and trig you should know; or you can
jump in anywhere you like if you know exactly what topic you want to study.
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Part I
Putting Physics

into Motion
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In this part . . .

Part I is designed to give you an introduction to the
ways of physics — also known as the ways of motion.

Motion is all around you, and thankfully, it’s one of the
easiest topics in physics to work with. Physics excels at
measuring stuff and making predictions, and with just a
few equations, you can become a motion meister. The equa-
tions in this part show you how physics works in the world
around you. Just plug in the numbers, and you can make
calculations that astound your peers.
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Chapter 1

Using Physics to Understand
Your World

In This Chapter
� Recognizing the physics in your world

� Putting the brakes on motion

� Handling the force and energy around you

� Getting hot under the collar with thermodynamics

� Introducing electricity and magnetism

� Wrapping your head around some wild physics

P hysics is the study of your world and the world and universe around
you. You may think of physics as a burden — an obligation placed on

you in school, mostly to be nasty — but it isn’t like that. Physics is a study
that you undertake naturally from the moment you open your eyes.

Nothing falls beyond the scope of physics; it’s an all-encompassing science.
You can study various aspects of the natural world, and, accordingly, you can
study different fields in physics: the physics of objects in motion, of forces, of
electricity, of magnetism, of what happens when you start going nearly as fast
as the speed of light, and so on. You enjoy the study of all these topics and
many more in this book.

Physics has been around as long as people have tried to make sense of their
world. The word “physics” is derived from the Greek word “physika,” which
means “natural things.”

What Physics Is All About
You can observe plenty going on around you all the time in the middle of your
complex world. Leaves are waving, the sun is shining, the stars are twinkling,
light bulbs are glowing, cars are moving, computer printers are printing,
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people are walking and riding bikes, streams are flowing, and so on. When
you stop to examine these actions, your natural curiosity gives rise to endless
questions:

� How can I see?

� Why am I hot?

� What’s the air I breathe made up of?

� Why do I slip when I try to climb that snow bank?

� What are those stars all about? Or are they planets? Why do they seem
to move?

� What’s the nature of this speck of dust?

� Are there hidden worlds I can’t see?

� What’s light?

� Why do blankets make me warm?

� What’s the nature of matter?

� What happens if I touch that high-tension line? (You know the answer to
that one; as you can see, a little knowledge of physics can be a lifesaver.)

Physics is an inquiry into the world and the way it works, from the most basic
(like coming to terms with the inertia of a dead car that you’re trying to push) to
the most exotic (like peering into the very tiniest of worlds inside the smallest
of particles to try to make sense of the fundamental building blocks of matter).
At root, physics is all about getting conscious about your world.

Observing Objects in Motion
Some of the most fundamental questions you may have about the world deal
with objects in motion. Will that boulder rolling toward you slow down? How
fast will you have to move to get out of its way? (Hang on just a moment
while I get out my calculator . . .) Motion was one of the earliest explorations
of physics, and physics has proved great at coming up with answers.

Part I of this book handles objects in motion — from balls to railroad cars
and most objects in between. Motion is a fundamental fact of life, and one
that most people already know a lot about. You put your foot on the accelera-
tor, and the car takes off.

But there’s more to the story. Describing motion and how it works is the first
step in really understanding physics, which is all about observations and
measurements and making mental and mathematical models based on those
observations and measurements. This process is unfamiliar to most people,
which is where this book comes in.

8 Part I: Putting Physics into Motion 

05_554336 ch01.qxd  11/2/05  11:26 PM  Page 8



Studying motion is fine, but it’s just the very beginning of the beginning. When
you take a look around, you see that the motion of objects changes all the
time. You see a motorcycle coming to a halt at the stop sign. You see a leaf
falling and then stopping when it hits the ground, only to be picked up again
by the wind. You see a pool ball hitting other balls in just the wrong way so
that they all move without going where they should.

Motion changes all the time as the result of force, which is what Part II is all
about. You may know the basics of force, but sometimes it takes an expert to
really know what’s going on in a measurable way. In other words, sometimes
it takes a physicist like you.

Absorbing the Energy Around You
You don’t have to look far to find your next piece of physics. You never do. As
you exit your house in the morning, for example, you may hear a crash up the
street. Two cars have collided at a high speed, and, locked together, they’re
sliding your way.

Thanks to physics (and, more specifically, Part III of this book), you can make
the necessary measurements and predictions to know exactly how far you
have to move to get out of the way. You know that it’s going to take a lot to
stop the cars. But a lot of what?

It helps to have the ideas of energy and momentum mastered at such a time.
You use these ideas to describe the motion of objects with mass. The energy
of motion is called kinetic energy, and when you accelerate a car from 0 to
60 miles per hour in 10 seconds, the car ends up with plenty of kinetic energy.

Where does the kinetic energy come from? Not from nowhere — if it did, you
wouldn’t have to worry about the price of gas. Using gas, the engine does
work on the car to get it up to speed.

Or say, for example, that you don’t have the luxury of an engine when you’re
moving a piano up the stairs of your new place. But there’s always time for a
little physics, so you whip out your calculator to calculate how much work
you have to do to carry it up the six floors to your new apartment.

After you move up the stairs, your piano will have what’s called potential
energy, simply because you put in a lot of work against gravity to get the
piano up those six floors.

Unfortunately, your roommate hates pianos and drops yours out the window.
What happens next? The potential energy of the piano due to its height in a
gravitational field is converted into kinetic energy, the energy of motion. It’s
an interesting process to watch, and you decide to calculate the final speed
of the piano as it hits the street.

9Chapter 1: Using Physics to Understand Your World
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Next, you calculate the bill for the piano, hand it to your roommate, and go
back downstairs to get your drum set.

Feeling Hot but Not Bothered
Heat and cold are parts of your everyday life, so, of course, physics is there
with you in summer and winter. Ever take a look at the beads of condensation
on a cold glass of water in a warm room? Water vapor in the air is being
cooled when it touches the glass, and it condenses into liquid water. The
water vapor passes thermal energy to the cold drink, which ends up getting
warmer as a result.

Thermodynamics is what Part IV of this book is all about. Thermodynamics
can tell you how much heat you’re radiating away on a cold day, how many
bags of ice you need to cool a lava pit, the temperature of the surface of the
sun, and anything else that deals with heat energy.

You also discover that physics isn’t limited to our planet. Why is space cold?
It’s empty, so how can it be cold? It isn’t cold because you can measure its
temperature as cold. In space, you radiate away heat, and very little heat
radiates back to you. In a normal environment, you radiate heat to everything
around you, and everything around you radiates heat back to you. But in
space, your heat just radiates away, so you can freeze.

Radiating heat is just one of the three ways heat can be transferred. You can
discover plenty more about the heat happening around you all the time,
whether created by a heat source like the sun or by friction, through the
topics in this book.

Playing with Charges and Magnets
After you master the visible world of objects hurtling around in motion, you
can move on to the invisible world of work and energy. Part V offers more
insight into the invisible world by dissecting what goes on with electricity
and magnetism.

You can see both electricity and magnetism at work, but you can’t see them
directly. However, when you combine electricity and magnetism, you produce
pure light — the very essence of being visible. How light works and how it
gets bent in lenses and other materials comes up in Part V.
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A great deal of physics involves taking apart the invisible world that sur-
rounds you. Matter itself is made up of particles that carry electric charges,
and an incredible number of these charges exist in all people.

When you get concentrations of charges, you get static electricity and such
attention-commanding phenomena as lightning. When those charges move, on
the other hand, you get normal, wall-socket-brand electricity and magnetism.

From lightning to light bulbs, electricity is part of physics, of course. In this
book, you see not only that electricity can flow in circuits but also how it
does so. You also come to an understanding of the ins and outs of resistors,
capacitors, and inductors.

Preparing for the Wild, Wild Physics
Coming Up

Even when you start with the most mundane topics in physics, you quickly
get to the most exotic. In Part VI, you discover ten amazing insights into
Einstein’s Special Theory of Relativity and ten amazing physics facts.

Einstein is one of the most well-known heroes of physics, of course, and an
iconic genius. He typifies the lone physics genius for many people, striking
out into the universe of the unknown and bringing light to dark areas.

But what exactly did Einstein say? What does the famous E = mc2 equation
really mean? Does it really say that matter and energy are equivalent — that
you can convert matter into energy and energy into matter? Yep, sure does.

That’s a pretty wild physics fact, and it’s one you may not think you’ll come
across in everyday life. But you do. To radiate as much light as it does, the
sun converts about 4.79 million tons of matter into radiant energy every
second.

And stranger things happen when matter starts moving near the speed of
light, as predicted by your buddy Einstein.

“Watch that spaceship,” you say as a rocket goes past at nearly the speed of
light. “It appears compressed along its direction of travel — it’s only half as
long as it would be at rest.”

“What spaceship?” your friends all ask. “It went by too fast for us to see 
anything.”

11Chapter 1: Using Physics to Understand Your World
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“Time measured on that spaceship goes more slowly than time here on Earth,
too. For us, it will take 200 years for the rocket to reach the nearest star. But
for the rocket, it will take only 2 years.”

“Are you making this up?” everyone asks.

Physics is all around you, in every commonplace action. But if you want to get
wild, physics is the science to do it. This book finishes off with a roundup of
some wild physics: the possibility of wormholes in space, for example, and
how the gravitational pull of black holes is too strong for even light to escape.
Enjoy!
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Chapter 2

Understanding Physics
Fundamentals

In This Chapter
� Understanding the concept of physics . . . and why it matters

� Mastering measurements (and keeping them straight as you solve equations)

� Accounting for significant digits and possible error

� Brushing up on basic algebra and trig concepts

There you are, working away at a tough, nearly unanswerable physics
problem, seeking a crucial breakthrough. The question is tough, and

you know that legions of others have struggled with it fruitlessly. Suddenly,
illumination strikes, and everything becomes clear.

“Of course,” you say. “It’s elementary. The ball will rise 9.8 meters into the air
at its highest point.”

Shown the correct solution to the problem, a grateful instructor awards you a
nod. You modestly acknowledge the accolade and turn to the next problem.
Not bad.

With physics, the glory awaits you, but you have some hard work waiting for
you, too. Don’t worry about the work; the satisfaction of success is worth it.
And when you finish this book, you’ll be a physics pro, plowing through for-
merly difficult problems left and right like nobody’s business.

This chapter starts your adventure by covering some basic skills you need
for the coming chapters. I cover measurements and scientific notation, give
you a refresher on basic algebra and trigonometry, and show you which
digits in a number to pay attention to — and which ones to ignore. Continue
on to build a physics foundation, solid and unshakeable, that you can rely on
throughout this book.
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Don’t Be Scared, It’s Only Physics
Many people are a little on edge when they think about physics. It’s easy to feel
intimidated by the subject, thinking it seems like some foreign high-brow topic
that pulls numbers and rules out of thin air. But the truth is that physics exists
to help you make sense of the world. It’s a human adventure, undertaken on
behalf of everyone, into the way the world works.

Although the contrary may seem true, there’s no real mystery about the
goals and techniques of physics; physics is simply about modeling the world.
The whole idea behind it is to create mental models to describe how the
world works: how blocks slide down ramps, how stars form and shine, how
black holes trap light so it can’t escape, what happens when cars collide, and
so on. When these models are first created, they often have little to do with
numbers; they just cover the gist of the situation. For example, a star is made
up of this layer and then that layer, and as a result, this reaction takes place,
followed by that one. And — pow — you have a star.

As time goes on, those models start getting numeric, which is where physics
students sometimes start having problems. Physics class would be a cinch if
you could simply say, “That cart is going to roll down that hill, and as it gets
toward the bottom, it’s going to roll faster and faster.” But the story is more
involved than that — not only can you say that the cart is going to go faster,
but in exerting your mastery over the physical world, you can also say how
much faster it will go.

The gist of physics is this: You start by making an observation, you create
a model to simulate that situation, and then you add some math to fill it
out — and voilà! You have the power to predict what will happen in the
real world. All this math exists to help you feel more at home in the physical
world and to help you see what happens and why, not to alienate you from
your surroundings.
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Be a genius: Don’t focus on the math
Richard Feynman was a famous Nobel Prize
winner in physics who had a reputation during
the 1950s and ’60s as an amazing genius. He
later explained his method: He attached the
problem at hand to a real-life scenario, creating
a mental image, while others got caught in the
math. When someone would show him a long
derivation that had gone wrong, for example,
he’d think of some physical phenomenon that

the derivation was supposed to explain. As he
followed along, he’d get to the point where he
suddenly realized the derivation no longer
matched what happened in the real world, and
he’d say, “No, that’s the problem.” He was
always right, which mystified people who,
awestruck, took him for a supergenius. Want to
be a supergenius? Do the same thing: Don’t let
the math scare you.
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Always keep in mind that the real world comes first and the math comes
later. When you face a physics problem, make sure you don’t get lost in
the math; keep a global perspective about what’s going on in the problem,
because doing so will help you stay in control. After teaching physics to 
college students for many years, I’m very familiar with one of the biggest
problems they face — getting lost in, and being intimidated by, the math.

And now, to address that nagging question plaguing your mind: What are you
going to get out of physics? If you want to pursue a career in physics or in an
allied field such as engineering, the answer is clear — you’ll need this knowl-
edge on an everyday basis. But even if you’re not planning to embark on a
physics-related career, you can get a lot out of studying the subject. You can
apply much of what you discover in an introductory physics course to real life.
But far more important than the application of physics are the problem-solving
skills it arms you with for approaching any kind of problem — physics prob-
lems train you to stand back, consider your options for attacking the issue,
select your method, and then solve the problem in the easiest way possible.

Measuring the World Around You
and Making Predictions

Physics excels at measuring and predicting the physical world — after all,
that’s why it exists. Measuring is the starting point — part of observing the
world so you can then model and predict it. You have several different mea-
suring sticks at your disposal: some for length, some for weight, some for
time, and so on. Mastering those measurements is part of mastering physics.

To keep like measurements together, physicists and mathematicians have
grouped them into measurement systems. The most common measurement
systems you see in physics are the centimeter-gram-second (CGS) and 
meter-kilogram-second (MKS) systems, together called SI (short for Système
International d’Unités), but you may also come across the foot-pound-inch
(FPI) system. For reference, Table 2-1 shows you the primary units of mea-
surement in the CGS system. (Don’t bother memorizing the ones you’re not
familiar with now; come back to them later as needed.)

Table 2-1 Units of Measurement in the CGS System
Measurement Unit Abbreviation

Length centimeter cm

Mass gram g

Time second s

(continued)
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Table 2-1 (continued)
Measurement Unit Abbreviation

Force dyne dyne

Energy erg erg

Pressure barye ba

Electric current biot Bi

Magnetism gauss G

Electric charge franklin Fr

Table 2-2 lists the primary units of measurement in the MKS system, along
with their abbreviations.

Table 2-2 Units of Measurement in the MKS System
Measurement Unit Abbreviation

Length meter m

Mass kilogram kg

Time second s

Force Newton N

Energy Joule J

Pressure Pascal Pa

Electric current ampere A

Magnetism Tesla T

Electric charge Coulomb C

Don’t mix and match: Keeping physical
units straight
Because each measurement system uses a different standard length, you can
get several different numbers for one part of a problem, depending on the
measurement you use. For example, if you’re measuring the depth of the
water in a swimming pool, you can use the MKS measurement system, which
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gives you an answer in meters; the CGS system, which yields a depth in cen-
timeters; or the less common FPI system, in which case you determine the
depth of the water in inches.

Suppose, however, that you want to know the pressure of the water at the
bottom of the pool. You can simply use the measurement you find for the depth
and input it into the appropriate equation for pressure (see Chapters 14 and 15).
When working with equations, however, you must always keep one thing in
mind: the measurement system.

Always remember to stick with the same measurement system all the way
through the problem. If you start out in the MKS system, stay with it. If you
don’t, your answer will be a meaningless hodgepodge, because you’re switch-
ing measuring sticks for multiple items as you try to arrive at a single answer.
Mixing up the measurements causes problems — imagine baking a cake where
the recipe calls for two cups of flour, but you use two liters instead.

Over the years, I’ve seen people mix up the measurement systems over and
over and then scratch their heads when their answers come out wrong. Sure,
they had noble intentions, and everything about their solutions was great —
and sure, they had masterful insights, masterful applications, and masterful
egos. But they also had the wrong answers.

Suppose the solution to a test problem is 15 kilogram-meters per second2, but
a student comes up with the result 1,500 kilogram-centimeters per second2.
The answer is wrong not because of an error in understanding, but because
the answer is in the wrong measurement system.

From meters to inches and back again:
Converting between units
Physicists use various measurement systems to record numbers from their
observations. But what happens when you have to convert between those
systems? Physics problems sometimes try to trip you up here, giving you the
data you need in mixed units: centimeters for this measurement but meters
for that measurement — and maybe even mixing in inches as well. Don’t be
fooled. You have to convert everything to the same measurement system
before you can proceed. How do you convert in the easiest possible way?
You use conversion factors. For an example, consider the following problem.

Passing another state line, you note that you’ve gone 4,680 miles in exactly
three days. Very impressive. If you went at a constant speed, how fast were you
going? As I discuss in Chapter 3, the physics notion of speed is just as you may
expect — distance divided by time. So, you calculate your speed as follows:

, ,3 days
4 680 miles 1 560 miles/day=
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Your answer, however, isn’t exactly in a standard unit of measure. You want
to know the result in a unit you can get your hands on — for example, miles
per hour. To get miles per hour, you need to convert units.

To convert between measurements in different measuring systems, you can
multiply by a conversion factor. A conversion factor is a ratio that, when multi-
plied by the item you’re converting, cancels out the units you don’t want and
leaves those that you do. The conversion factor must equal 1.

In the preceding problem, you have a result in miles per day, which is written
as miles/day. To calculate miles per hour, you need a conversion factor that
knocks days out of the denominator and leaves hours in its place, so you 
multiply by days per hour and cancel out days:

miles/day × days/hour = miles/hour

Your conversion factor is days per hour. When you plug in all the numbers,
simplify the miles-per-day fraction, and multiply by the conversion factor,
your work looks like this:

4,680 miles/3 days = 1,560 miles/1 day = 1,560 miles/day × 1 day/24 hours

Note: Words like “seconds” and “meters” act like the variables x and y in that
if they’re present in both the numerator and denominator, they cancel each
other out.
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When numbers make your head spin, 
look at the units

Want an inside trick that teachers and instruc-
tors often use to solve physics problems? Pay
attention to the units you’re working with. I’ve
had thousands of one-on-one problem-solving
sessions with students in which we worked on
homework problems, and I can tell you that this
is a trick instructors use all the time.

As a simple example, say you’re given a dis-
tance and a time, and you have to find a speed.
You can cut through the wording of the problem
immediately, because you know that distance
(for example, meters) divided by time (for exam-
ple, seconds) gives you speed (meters/second).

As the problems get more complex, however,
more items will be involved — say, for example,

a mass, a distance, a time, and so on. You find
yourself glancing over the words of a problem
to pick out the numeric values and their units.
Have to find an amount of energy? As I discuss
in Chapter 10, energy is mass times distance
squared over time squared, so if you can iden-
tify these items in the question, you know how
they’re going to fit into the solution, and you
won’t get lost in the numbers.

The upshot is that units are your friends. They
give you an easy way to make sure you’re
headed toward the answer you want. So, when
you feel too wrapped up in the numbers, check
the units to make sure you’re on the right path.
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Note that because there are 24 hours in a day, the conversion factor equals
exactly 1, as all conversion factors must. So, when you multiply 1,560 miles/
day by this conversion factor, you’re not changing anything — all you’re
doing is multiplying by 1.

When you cancel out days and multiply across the fractions, you get the
answer you’ve been searching for:

,
day

1 560 miles
24 hours

1 day
hour

65 miles
# =

So, your average speed is 65 miles per hour, which is pretty fast considering
that this problem assumes you’ve been driving continuously for three days.

You don’t have to use a conversion factor; if you instinctively know that to
convert from miles per day to miles per hour you need to divide by 24, so
much the better. But if you’re ever in doubt, use a conversion factor and
write out the calculations, because taking the long road is far better than
making a mistake. I’ve see far too many people get everything in a problem
right except for this kind of simple conversion.

Converting between hours and days is pretty easy, because you know that
a day consists of 24 hours. However, not all conversions are so obvious;
you may not be familiar with the CGS and MKS systems, so Table 2-3 gives you
a handy list of conversions for reference (refer to Tables 2-1 and 2-2 for the
abbreviations).

Table 2-3 Conversions from the MKS System 
to the CGS System

MKS Measurement CGS Measurement

1 m 100 cm 

1 km 1,000 m

1 kg 1,000 g

1 N 105 dynes

1 J 107 ergs

1 Pa 10 ba

1 A 0.1 Bi

1 T 104 G

1 C 2.9979 x 109 Fr 
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Because the difference between CGS and MKS is almost always a factor of
100, converting between the two systems is easy. For example, if you know
that a ball drops 5 meters, but you need the distance in centimeters, you just
multiply by 100 centimeters/1 meter to get your answer:

5.0 meters 1 meter
100 centimeters 500 centimeters# =

However, what if you need to convert to and from the FPI system? No problem.
I include all the conversions you need in the front of this book, on the Cheat
Sheet. Keep it on hand when reading through this book or when tackling
physics problems on your own.

Eliminating Some Zeros:
Using Scientific Notation

Physicists have a way of getting their minds into the darndest places, and
those places often involve really big or really small numbers. For example,
say you’re dealing with the distance between the sun and Pluto, which is
5,890,000,000,000 meters. You have a lot of meters on your hands, accompa-
nied by a lot of zeroes. Physics has a way of dealing with very large and
very small numbers; to help reduce clutter and make them easier to digest,
it uses scientific notation. In scientific notation, you express zeroes as a
power of ten — to get the right power of ten, you count up all the places in
front of the decimal point, from right to left, up to the place just to the right
of the first digit (you don’t include the first digit because you leave it in front
of the decimal point in the result). So you can write the distance between the
sun and Pluto as follows:

5,890,000,000,000 meters = 5.89 × 1012 meters

Scientific notation also works for very small numbers, such as the one that
follows, where the power of ten is negative. You count the number of places,
moving left to right, from the decimal point to just after the first nonzero digit
(again leaving the result with just one digit in front of the decimal):

0.0000000000000000005339 meters = 5.339 × 10-19 meters

If the number you’re working with is greater than ten, you’ll have a positive
exponent in scientific notation; if it’s less than one, you’ll have a negative
exponent. As you can see, handling super large or super small numbers with
scientific notation is easier than writing them all out, which is why calculators
come with this kind of functionality already built in.
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Checking the Precision of Measurements
Precision is all-important when it comes to making (and analyzing) measure-
ments in physics. You can’t imply that your measurement is more precise
than you know it to be by adding too many significant digits, and you have
to account for the possibility of error in your measurement system by adding
a ± when necessary. The following sections delve deeper into the topics of
significant digits and accuracy.

Knowing which digits are significant
In a measurement, significant digits are those that were actually measured.
So, for example, if someone tells you that a rocket traveled 10.0 meters in
7.00 seconds, the person is telling you that the measurements are known to
three significant digits (the number of digits in both of the measurements).

If you want to find the rocket’s speed, you can whip out a calculator and
divide 10.0 by 7.00 to come up with 1.428571429 meters per second, which
looks like a very precise measurement indeed. But the result is too precise —
if you know your measurements to only three significant digits, you can’t say
you know the answer to ten significant digits. Claiming as such would be like
taking a meter stick, reading down to the nearest millimeter, and then writing
down an answer to the nearest ten-millionth of a millimeter.

In the case of the rocket, you have only three significant digits to work with,
so the best you can say is that the rocket is traveling at 1.43 meters per
second, which is 1.428571429 rounded up to two decimal places. If you
include any more digits, you claim an accuracy that you don’t really have and
haven’t measured.

When you round a number, look at the digit to the right of the place you’re
rounding to. If that right-hand digit is 5 or greater, you should round up. If it’s
4 or less, round down. For example, you should round 1.428 to 1.43 and 1.42
down to 1.4.

What if a passerby told you, however, that the rocket traveled 10.0 meters in
7.0 seconds? One value has three significant digits, and the other has only
two. The rules for determining the number of significant digits when you
have two different numbers are as follows:

� When you multiply or divide numbers, the result has the same number
of significant digits as the original number that has the fewest significant
digits.

In the case of the rocket, where you need to divide, the result should
have only two significant digits — so the correct answer is 1.4 meters
per second.
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� When you add or subtract numbers, line up the decimal points; the last
significant digit in the result corresponds to the right-most column
where all numbers still have significant digits.

If you have to add 3.6, 14, and 6.33, you’d write the answer to the nearest
whole number — the 14 has no significant digits after the decimal place,
so the answer shouldn’t, either. To preserve significant digits, you should
round the answer up to 24. You can see what I mean by taking a look for
yourself:

3.6
+14
+ 6.33
23.93

By convention, zeroes used simply to fill out values down to (or up to) the
decimal point aren’t considered significant. For example, the number 3,600
has only two significant digits by default. If you actually measure the value to
be 3,600, of course, you’d express it as 3,600.0, with a decimal point; the final
decimal point indicates that you mean all the digits are significant.

Estimating accuracy
Physicists don’t always rely on significant digits when recording measure-
ments. Sometimes, you see measurements such as

5.36 ± 0.05 meters

The ± part (0.05 meters in the preceding example) is the physicist’s estimate
of the possible error in the measurement, so the physicist is saying that the
actual value is between 5.36 + 0.05 (that is, 5.41) meters and 5.36 – 0.05 (that
is, 5.31 meters), inclusive. (It isn’t the amount your measurement differs from
the “right” answer as given in books; it’s an indication of how precise your
apparatus can measure — in other words, how reliable your results are as a
measurement.)
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Fathoming the ± fad
This ± business has become so popular that you
see it all over the place now, as in a real-estate
ad that announces 35± acres for sale.
Sometimes, you even see real-estate ads with
numbers such as ±35 acres, which makes you

wonder whether the agent realizes that the ad
means the actual acreage is in the range of –35
to +35 acres. What if you buy the place and it
turns out to be –15 acres? Do you owe the agent
15 acres?
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Arming Yourself with Basic Algebra
Yep, physics deals with plenty of equations, and to be able to handle them,
you should know how to move the items in them around. Time to travel back
to basic algebra for a quick refresher.

The following equation tells you the distance, s, that an object travels if it
starts from rest and accelerates at a for a time t:

s = 1⁄2at2

Now suppose the problem actually tells you the time the object was in motion
and the distance it traveled and asks you to calculate the object’s acceleration.
By rearranging the equation, you can solve for the acceleration:

a = 2s / t2

In this case, you multiply both sides by 2 and divide both sides by t2 in order
to isolate the acceleration, a, on one side of the equation.

What if you have to solve for the time, t? By moving the number and variables
around, you get the following equation:

t a
2s=

Do you need to memorize all three of these variations on the same equation?
Certainly not. You just memorize one equation that relates these three items —
distance, acceleration, and time — and then rearrange the equation as needed.
(For a handy list of many of the equations you should keep in mind, check out
the Cheat Sheet at the front of this book.)

Tackling a Little Trig
Besides some basic algebra, you need to know a little trigonometry, including
sines, cosines, and tangents, for physics problems. To find these values, you
start out with a simple right triangle — take a look at Figure 2-1, which dis-
plays a triangle in all its glory, complete with labels I’ve provided for the sake
of explanation (note in particular the angle between the two shorter sides, θ).
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To find the trigonometric values of the triangle in Figure 2-1, you divide one
side by another. You need to know the following equations, because as soon
as vectors appear in Chapter 4, these equations will come in handy:

sin θ = y/r

cos θ = x/r

tan θ = y/x

If you’re given the measure of one angle and one side of the triangle, you can
find all the others. Here are some examples — they’ll probably become dis-
tressingly familiar before you finish any physics course, but you don’t need to
memorize them. If you know the preceding sine, cosine, and tangent equations,
you can derive the following ones as needed:

x = r cos θ = y/tan θ

y = r sin θ = x tan θ

r = y/sin θ = x/cos θ

Remember that you can go backward with the inverse sine, cosine, and tan-
gent, which are written as sin-1, cos-1, and tan-1. Basically, if you input the sine
of an angle into the sin-1 equation, you end up with the measure of the angle
itself. (If you need a more in-depth refresher, check out Trigonometry For
Dummies, by Mary Jane Sterling [Wiley].) Here are the inverses for the 
triangle in Figure 2-1:

sin-1(y/r) = θ

cos-1(x/r) = θ

tan-1(y/x) = θ

h

x

y

θ

Figure 2-1:
A labeled

triangle that
you can use

to find trig
values.
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Chapter 3

Exploring the Need for Speed
In This Chapter
� Getting up to speed on displacement

� Dissecting different kinds of speed

� Stopping and going with acceleration

� Examining the link among acceleration, time, and displacement

� Connecting speed, acceleration, and displacement

There you are in your Formula 1 racecar, speeding toward glory. You have
the speed you need, and the pylons are whipping past on either side.

You’re confident that you can win, and coming into the final turn, you’re far
ahead. Or at least you think you are. Seems that another racer is also making
a big effort, because you see a gleam of silver in your mirror. You get a better
look and realize that you need to do something — last year’s winner is gaining
on you fast.

It’s a good thing you know all about velocity and acceleration. With such
knowledge, you know just what to do: You floor the gas pedal, accelerating
out of trouble. Your knowledge of velocity lets you handle the final curve with
ease. The checkered flag is a blur as you cross the finish line in record time.
Not bad. You can thank your understanding of the issues in this chapter: dis-
placement, speed, and acceleration.

You already have an intuitive feeling for what I discuss in this chapter, or you
wouldn’t be able to drive or even ride a bike. Displacement is all about where
you are, speed is all about how fast you’re going, and anyone who’s ever been
in a car knows about acceleration. These forces concern people every day,
and physics has made an organized study of them. Knowledge of these forces
has allowed people to plan roads, build spacecraft, organize traffic patterns,
fly, track the motion of planets, predict the weather, and even get mad in
slow-moving traffic jams.

Understanding physics is all about understanding movement, and that’s the
topic of this chapter. Time to move on.
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Dissecting Displacement
When something moves from point A to point B, displacement takes place in
physics terms. In plain English, displacement is a distance. Say, for example,
that you have a fine new golf ball that’s prone to rolling around by itself,
shown in Figure 3-1. This particular golf ball likes to roll around on top of a
large measuring stick. You place the golf ball at the 0 position on the measur-
ing stick, as you see in Figure 3-1, diagram A.

So far, so good. Note, however, that the golf ball rolls over to a new point,
3 meters to the right, as you see in Figure 3-1, diagram B. The golf ball has
moved, so displacement has taken place. In this case, the displacement is
just 3 meters to the right. Its initial position was 0 meters, and its final posi-
tion is at +3 meters.

In physics terms, you often see displacement referred to as the variable s
(don’t ask me why). In this case, s equals 3 meters.

Like any other measurement in physics (except for certain angles), displace-
ment always has units — usually centimeters or meters. You may also use
kilometers, inches, feet, miles, or even light years (the distance light travels
in one year, a whopper of a distance not fit for measuring with a meter
stick: 5,865,696,000,000 miles, which is 9,460,800,000,000 kilometers or
9,460,800,000,000,000 meters).

Scientists, being who they are, like to go into even more detail. You often see
the term s0, which describes initial position (alternatively referred to as si; the
i stands for initial). And you may see the term sf used to describe final posi-
tion. In these terms, moving from diagram A to diagram B in Figure 3-1, s0 is at
the 0-meter mark and sf is at +3 meters. The displacement, s, equals the final
position minus the initial position:

s = sf – s0 = +3 – 0 = 3 meters

A
meters− 4 − 3 −2 −1 0 1 2 3 4

B
meters− 4 − 3 −2 −1 0 1 2 3 4

C
meters− 4 − 3 −2 −1 0 1 2 3 4

Figure 3-1:
Examining
displace-

ment with a
golf ball.
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Displacements don’t have to be positive; they can be zero or negative as well.
Take a look at Figure 3-1, diagram C, where the restless golf ball has moved to
a new location, measured as –4 meters on the measuring stick. What’s the
displacement here? That depends on what starting point you choose, which
is always true in physics problems. The starting point is also called the origin
(where the action originates from), and you’re often free to choose the origin
yourself. If you choose the 0 position on the meter stick, a common choice
(because it’s where the ball started), you get the following displacement:

s = sf – s0 = –4 – 0 = –4 meters

Note that s is negative!

You can also choose origins other than the 0 position. Without seeing
Figure 3-1, diagram A, for example, you may decide that the golf ball starts
at the +3 meter position in Figure 3-1, diagram B, and when it moves to the
–4 meter position in Figure 3-1, diagram C, you get this displacement:

s = sf – s0 = –4 – 3 = –7 meters

Displacement depends on where you set your origin. Usually, your choice
becomes pretty clear when you work on a problem. But what happens when
the situation isn’t clear and linear?

Examining axes
Motion that takes place in the world isn’t always linear, like the golf ball shown
in Figure 3-1. Motion can take place in two or three dimensions. And if you want
to examine motion in two dimensions, you need two intersecting meter sticks,
called axes. You have a horizontal axis — the X-axis — and a vertical axis — the
Y-axis (for three-dimensional problems, watch for a third axis — the Z-axis —
sticking straight up out of the paper).

Take a look at Figure 3-2, where a golf ball moves around in two dimensions.
It starts at the center of the graph and moves up to the right.

In terms of the axes, the golf ball moves to +4 meters on the X-axis and
+3 meters on the Y-axis, which is represented as the point (4, 3); the 
X measurement comes first, followed by the Y measurement: (x, y).

So what does this mean in terms of displacement? The change in the X posi-
tion, ∆x (∆, the Greek letter delta, means “change in”), is equal to the final
position minus the initial position. If the golf ball starts at the center of the
graph — the origin of the graph, location (0, 0) — you have a change in the
X location of

∆x = xf – x0 = +4 – 0 = 4 meters
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The change in the Y location is

∆y = yf – y0 = +3 – 0 = 3 meters

If you’re more interested in figuring out the magnitude of the displacement
than in the change in the X and Y location of the golf ball, that’s a different
story. The question now becomes: How far is the golf ball from its starting
point at the center of the graph? Using the Pythagorean theorem, you can
find the magnitude of the displacement of the golf ball, which is the distance
it travels from start to finish. Here’s how to work the equation:

x y∆ ∆s 4 3 16 9 25 5 meters2 2 2 2= + = + = + = =

So, in this case, the magnitude of the golf ball’s displacement is exactly
5 meters.

The Pythagorean theorem states that the sum of the areas of the squares
on the legs of a right triangle is equal to the area of the square on the
hypotenuse. Visit www.cut-the-knot.org/pythagorus/index.shtml
for more information.

Measuring speed
In the previous sections, you examine the motion of objects across one and
two dimensions. But there’s more to the story of motion than just the actual
movement. When displacement takes place, it happens in a certain amount of

meters− 4

− 4

− 3

− 2

− 1

1

2

3

4

− 3 −2 −1 1 2 3 4

Figure 3-2:
As you

know from
your golf

game,
objects

don’t always
move in a

linear
fashion.
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time, which means that it happens at a certain speed. How long does it take
the ball in Figure 3-1, for example, to move from its initial to its final position?
If it takes 12 years, that makes for a long time before the figure was ready for
this book. Now, 12 seconds? Sounds more like it.

Measuring how fast displacement happens is what the rest of this chapter is
all about. Just as you can measure displacement, you can measure the differ-
ence in time from the beginning to the end of the motion, and you usually see
it written like this:

∆t = tf – to

Here, tf is the final time, and to is the initial time, and the difference between
these two is the amount of time it takes something to happen, such as a golf
ball moving to its final destination. Scientists want to know all about how fast
things happen, and that means measuring speed.

Speed Specifics: What Is Speed, Anyway?
You may already have the conventional idea of speed down pat, assuming you
speak like a scientist:

speed = distance / time

For example, if you travel distance s in a time t, your speed, v, is

v = s / t

The variable v really stands for velocity (a concept I discuss in Chapter 4),
but true velocity also has a direction associated with it, which speed does
not. For that reason, velocity is a vector (you usually see the velocity vector
represented as v). Vectors have both a magnitude and a direction, so with
velocity, you know not only how fast you’re going but also in what direction.
Speed is only a magnitude (if you have a certain velocity vector, in fact, the
speed is the magnitude of that vector), so you see it represented by the term
v (not in bold). Displacement is also a vector, by the way, and you can read
more about that in Chapter 4, too.

Phew, that was easy enough, right? Technically speaking (physicists love to
speak technically), speed is the change in position divided by the change
in time, so you can also represent it like this, if, say, you’re moving along the
X-axis:

v = ∆x / ∆t = (xf – xo) / (tf – to)

You don’t often see speed represented on graphs in the real world, however.
Speed can take many forms, which you find out about in the following sections.
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Reading the speedometer:
Instantaneous speed
You already have an idea of what speed is; it’s what you measure on your car’s
speedometer, right? When you’re tooling along, all you have to do to see your
speed is look down at the speedometer. There you have it: 75 miles per hour.
Hmm, better slow it down a little — 65 miles per hour now. You’re looking at
your speed at this particular moment. In other words, you see your instanta-
neous speed.

Instantaneous speed is an important term in understanding the physics of
speed, so keep it in mind. If you’re going 65 mph right now, that’s your instan-
taneous speed. If you accelerate to 75 mph, that becomes your instantaneous
speed. Instantaneous speed is your speed at a particular instant of time. Two
seconds from now, your instantaneous speed may be totally different.

Staying steady: Uniform speed
What if you keep driving 65 miles per hour forever? You achieve uniform
speed in physics (also called constant speed), and it may be possible in the
western portion of the United States, where the roads stay in straight lines
for a long time and you don’t have to change your speed.

Uniform motion is the simplest speed variation to describe, because it never
changes.

Swerving back and forth:
Nonuniform motion
Nonuniform motion varies over time; it’s the kind of speed you encounter
more often in the real world. When you’re driving, for example, you change
speed often, and your changes in speed come to life in an equation like this,
where vf is your final speed and vo is your original speed:

∆v = vf – vo

The last part of this chapter is all about acceleration, which occurs in nonuni-
form motion (whether it be acceleration or deceleration).
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Busting out the stopwatch: Average speed
Speed equations don’t always have to be intangible ideas. You can make mea-
suring speed more concrete. Say, for example, that you want to pound the
pavement from New York to Los Angeles to visit your uncle’s family, a distance
of about 2,781 miles. If the trip takes you four days, what was your speed?

Speed is the distance you travel divided by the time it takes, so your speed
for the trip would be

2,781 miles / 4 days = 695.3

Okay, you calculate 695.3, but 695.3 what?

This solution divides miles by days, so you come up with 695.3 miles per day.
Not exactly a standard unit of measurement — what’s that in miles per hour?
To find it, you want to cancel “days” out of the equation and put in “hours”
(see Chapter 2). Because a day is 24 hours, you can multiply this way (note
that “days” cancel out, leaving miles over hours, or miles per hour):

(2,781 miles / 4 days) × (1 day / 24 hours) = 28.97 miles per hour

You go 28.97 miles per hour. That’s a better answer, although it seems pretty
slow, because when you’re driving, you’re used to going 65 miles per hour.
You’ve calculated an average speed over the whole trip, obtained by dividing
the total distance by the total trip time, which includes non-driving time.

Average speed is sometimes written as v–; a bar over a variable means average
in physics terms.

Pitting average speed versus
uniform motion
Average speed differs from instantaneous speed, unless you’re traveling in uni-
form motion, in which case your speed never varies. In fact, because average
speed is the total distance divided by the total time, it may be very different
from your instantaneous speed.

During a trip from New York to L.A., you may stop at a hotel several nights, and
while you sleep, your instantaneous speed is 0 miles per hour; yet, even at that
moment, your average speed is still 28.97 miles per hour (see the previous sec-
tion for this calculation)! That’s because you measure average speed by dividing
the whole distance, 2,781 miles, by the time the trip takes, 4 days.
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Average speed also depends on the start and end points. Say, for example,
that while you’re driving in Ohio on your cross-country trip, you want to
make a detour to visit your sister in Michigan after you drop off a hitchhiker
in Indiana. Your travel path may look like the straight lines in Figure 3-3 —
first 80 miles to Indiana and then 30 miles to Michigan.

If you drive 55 miles per hour, and you have to cover 80 + 30 = 110 miles,
it takes you 2 hours. But if you calculate the speed by taking the distance
between the starting point and the ending point, 85.4 miles as the crow flies,
you get

85.4 miles / 2 hours = 42.7 miles per hour

You’ve calculated your average speed along the dotted line between the start
and end points of the trip, and if that’s what you really want to find, no prob-
lem. But if you’re interested in your average speed along either of the two
legs of the trip, you have to measure the time it takes for a leg and divide by
length of that leg to get the average speed for that part of the trip.

If you move at a uniform speed, your task becomes easier. You can look at the
whole distance traveled, which is 80 + 30 = 110 miles, not just 85.4 miles. And
110 miles divided by 2 hours is 55 miles per hour, which, because you travel
at a constant speed, is your average speed along both legs of the trip. In fact,
because your speed is constant, 55 miles per hour is also your instantaneous
speed at any point on the trip.

When considering motion, it’s not only speed that counts, but also direction.
That’s why velocity is important, because it lets you record an object’s speed
and its direction. Pairing speed with direction enables you to handle cases
like cross-country travel, where the direction can change.

Michigan

Indiana

Ohio

80 miles

85.4 miles

30 miles

Figure 3-3:
Traveling

detours
provide

variations in
average

speed.
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Speeding Up(or Down): Acceleration
Just like speed, you already know the basics about acceleration. Acceleration
is how fast your speed changes. When you pass a parking lot’s exit and hear
squealing tires, you know what’s coming next — someone is accelerating to
cut you off. And sure enough, the jerk appears right in front of you, missing
you by inches. After he passes, he slows down, or decelerates, right in front
of you, forcing you to hit your brakes to decelerate yourself. Good thing you
know all about physics.

Defining acceleration
In physics terms, acceleration, a, is the amount by which your speed changes
in a given amount of time, or

a = ∆v / ∆t

Given the initial and final velocities, vo and vf, and initial and final times over
which your speed changes, to and tf, you can also write the equation like this:

a = ∆v / ∆t = (vf – vo) / (tf – to)

Acceleration, like velocity (see Chapter 4), is actually a vector and is often
written as a, in vector style. In other words, acceleration, like velocity and
unlike speed, has a direction associated with it.

Determining the units of acceleration
You can calculate the units of acceleration easily enough by dividing speed
by time to get acceleration:

a = (vf – vo) / (tf – to)

In terms of units, the equation looks like this:

a = (vf – vo) / (tf – to) = distance/time / time = distance / time2

Distance over time squared? Don’t let that throw you. You end up with time
squared in the denominator because you divide velocity by time. In other
words, acceleration is the rate at which your speed changes, because rates
have time in the denominator.
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The unit of acceleration is distance divided by time squared. So, for accelera-
tion, you see units of meters per second2, centimeters per second2, miles per
second2, feet per second2, or even kilometers per hour2.

For example, say that you’re driving at 75 miles per hour, and you see those
flashing red lights in the rearview mirror. You pull over, taking about 20 sec-
onds to come to a stop. The officer appears by your window and says, “You
were going 75.0 miles per hour in a 30 mile-per-hour zone.” What can you say
in reply?

You can calculate how quickly you decelerated as you pulled over, which,
no doubt, would impress the officer — look at you and your law-abiding ten-
dencies! You whip out your calculator and begin entering your data. Start by
converting 75.0 miles per hour into something you see more often in physics
problems — centimeters per second, for example. First, you convert to miles
per second:

75.0 miles per hour × (1 hour / 60 minutes) × (1 minute / 60 seconds) =
0.0208 = 2.08 × 10-2 miles per second

Next, you have to convert from miles per second to centimeters per second.
You see in Chapter 2 that 1 inch = 2.54 cm, so start by converting from miles
per second to inches per second:

2.08 × 10-2 mps × 5,280 feet × 12 inches = 1,318 inches

Your speed equals 1,318 inches per second, but you won’t impress the cop
unless you convert to centimeters per second. Grab your calculator again
and do this conversion:

2.08 × 10-2 mps × 5,280 feet × 12 inches × 2.54 centimeters = 3,350 cm/s

Okay, so your original speed was 3,350 centimeters per second, and your final
speed was 0 centimeters per second, and you accomplished that change in
speed in 20 seconds; so what was your acceleration? You know that accelera-
tion is the change in speed divided by the change in time, written like this:

a = ∆v / ∆t

Plugging in the numbers, it looks like

a = ∆v / ∆t = 3,350 cm/sec / 20 seconds = 168 cm/sec2
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Your acceleration was 168 cm/sec2. But that can’t be right! You may already
see the problem here; take a look at the original definition of acceleration:

a = ∆v / ∆t = (vf – vo) / (tf – to)

Your final speed was 0, and your original speed was 3,350 cm/sec, so plugging
in the numbers here gives you this acceleration:

a = ∆v / ∆t = (vf – vo) / (tf – to) = (0 – 3350 cm/sec) / 20 seconds =
–168 cm/sec2

In other words, –168 cm/sec2, not +168 cm/sec2 — a big difference in terms of
solving physics problems (and in terms of law enforcement). If you acceler-
ated at +168 cm/sec2 rather than –168 cm/sec2, you’d end up going 150 miles
per hour at the end of 20 seconds, not 0 mph. And that probably wouldn’t
make the cop very happy.

Now you have your acceleration. You can turn off your calculator and smile,
saying, “Maybe I was going a little fast, officer, but I’m very law abiding. Why,
when I heard your siren, I accelerated at –168 cm/sec2 just in order to pull over
promptly.” The policeman pulls out his calculator and does some quick calcu-
lations. “Not bad,” he says, impressed. And you know you’re off the hook.

Like the nonvector speed, the vector acceleration takes many forms that
affect your calculations in various physics situations. In different physics
problems, you have to take into account whether the acceleration is positive
or negative, average or instantaneous, or uniform or nonuniform. The follow-
ing sections explore these variations.

Positive and negative acceleration
Don’t let someone catch you on the wrong side of a numeric sign. Accelera-
tions, like speeds, can be positive or negative, and you have to make sure you
get the sign right. If you decelerate to a complete stop in a car, for example,
your original speed was positive and your final speed is 0, so the acceleration
is negative because a positive speed comes down to 0.

Acceleration, like speed, has a sign, as well as units.

Also, don’t get fooled into thinking that a negative acceleration (deceleration)
always means slowing down or that a positive acceleration always means
speeding up. For example, take a look at the ball in Figure 3-4, which is hap-
pily moving in the negative direction in diagram A. In diagram B, the ball
is still moving in the negative direction, but at a slower speed.
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Because the ball’s negative speed has decreased, the acceleration is positive
during the speed decrease. In other words, to slow its negative speed, you
have to add a little positive speed, which means that the acceleration is 
positive.

The sign of the acceleration tells you how the speed is changing. A positive
acceleration says that the speed is increasing in the positive direction, and a
negative acceleration tells you that the speed is increasing in the negative
direction.

Average and instantaneous acceleration
Just as you can examine average and instantaneous speed, you can examine
average and instantaneous acceleration. Average acceleration is the ratio of
the change in velocity and the change in time. You calculate average accelera-
tion, also written as a–, by taking the final velocity, subtracting the original
velocity, and dividing the result by the total time (final time minus the origi-
nal time):

a– = (vf – vo) / (tf – to)

This equation gives you an average acceleration, but the acceleration may
not have been that average value all the time. At any given point, the acceler-
ation you measure is the instantaneous acceleration, and that number can
be different from the average acceleration. For example, when you first see
red flashing police lights behind you, you may jam on the brakes, which
gives you a big deceleration. But as you coast to a stop, you lighten up a
little, so the deceleration is smaller; however, the average acceleration
is a single value, derived by dividing the overall change in speed by the 
overall time.

A
meters−4 −3 −2 −1 0 1 2 3 4

B
meters−4 −3 −2 −1 0 1 2 3 4

Figure 3-4:
The golf ball

is traveling
in the

negative
direction,
but with a

positive
acceler-

ation, so it
slows down.
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Uniform and nonuniform acceleration
Acceleration can be uniform or nonuniform. Nonuniform acceleration requires
a change in acceleration. For example, when you’re driving, you encounter
stop signs or stop lights often, and when you decelerate to a stop and then
accelerate again, you take part in nonuniform acceleration.

Other accelerations are very uniform (in other words, unchanging), such as
the acceleration due to gravity on the surface of the earth. This acceleration
is 9.8 meters per second2 downward, toward the center of the earth, and it
doesn’t change (if it did, plenty of people would be pretty startled).

Relating Acceleration, Time,
and Displacement

You deal with four quantities of motion in this chapter: acceleration, speed,
time, and displacement. You work the standard equation relating displace-
ment and time in the section on displacement to get speed:

v = ∆x / ∆t = (xf – xo) / (tf – to)

And you see the standard equation relating speed and time to get accelera-
tion from the speed section:

a = ∆v / ∆t = (vf – vo) / (tf – to)

But both of these equations only go one level deep, relating speed to dis-
placement and time and acceleration to speed and time. What if you want to
relate acceleration to displacement and time?

Say, for example, you give up your oval-racing career to become a drag racer
in order to analyze your acceleration down the dragway. After a test race, you
know the distance you went — 0.25 miles, or about 402 meters — and you
know the time it took — 5.5 seconds. So, how hard was the kick you got —
the acceleration — when you blasted down the track? Good question. You
want to relate acceleration, time, and displacement; speed isn’t involved.

You can derive an equation relating acceleration, time, and displacement. To
make this simpler, this derivation doesn’t work in terms of vf – vo; you can
easily subtract the initial values later.

When you’re slinging around algebra, you may find it easier to work with
single quantities like v rather than vf – vo, if possible. You can usually turn v
into vf – vo later, if necessary.
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Not-so-distant relations
You relate acceleration, distance, and time by messing around with the 
equations until you get what you want. Displacement equals average speed
multiplied by time:

s = v– × t = v–t

You have a starting point. But what’s the average speed during the drag race
from the previous section? You started at 0 and ended up going pretty fast.
Because your acceleration was constant, your speed increased in a straight
line from 0 to its final value, as shown in Figure 3-5.

On average, your speed was half your final value, and you know this because
there was constant acceleration. Your final speed was

vf = a × t = at

Okay, you can find your final speed, which means your average speed because
it went up in a straight line, was

v– = 1⁄2 (a × t)

So far, so good. Now you can plug this average speed into the s = v–t equation
and get

s = v–t = 1⁄2 (vf t)

And because you know that vf = at, you can get

s = v–t = 1⁄2 vft = 1⁄2 (at)(t)

And this becomes

s = 1⁄2 at2

Speed

Time

Final Speed
Figure 3-5:
Increasing

speed under
constant
acceler-

ation.
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You can also put in tf – to rather than just plain t:

s = 1⁄2 a(tf – to)
2

Congrats! You’ve worked out one of the most important equations you need
to know when you work with physics problems relating acceleration, dis-
placement, time, and speed.

Equating more speedy scenarios
What if you don’t start off at zero speed, but you still want to relate accel-
eration, time, and displacement? What if you’re going 100 miles per hour?
That initial speed would certainly add to the final distance you go. Because
distance equals speed multiplied by time, the equation looks like this (don’t
forget that this assumes the acceleration is constant):

s = v0(tf – to) + 1⁄2 (a)(tf - to)
2

Quite a mouthful. As with other long equations, I don’t recommend you mem-
orize the extended forms of these equations unless you have a photographic
memory. It’s tough enough to memorize

s = 1⁄2 at2

If you don’t start at 0 seconds, you have to subtract the starting time to get
the total time the acceleration is in effect.

If you don’t start at rest, you have to add the distance that comes from the
initial velocity into the result as well. If you can, it really helps to solve prob-
lems by using as much common sense as you can so you have control over
everything rather than mechanically trying to apply formulas without know-
ing what the heck is going on, which is where errors come in.

So, what was your acceleration as you drove the drag racer I introduced in
the last couple sections? Well, you know how to relate distance, acceleration,
and time, and that’s what you want — you always work the algebra so that
you end up relating all the quantities you know to the one quantity you don’t
know. In this case, you have

s = 1⁄2 at2

You can rearrange this with a little algebra; just divide both sides by t2 and
multiply by 2 to get

a = 2s / t2

39Chapter 3: Exploring the Need for Speed

07_554336 ch03.qxd  11/2/05  11:24 PM  Page 39



Great. Plugging in the numbers, you get

a = 2s / t2 = 2(402 meters) / (5.5 seconds)2 = 27 meters/second2

Okay, 27 meters per second2. What’s that in more understandable terms? The
acceleration due to gravity, g, is 9.8 meters per second2, so this is about 2.7 g.

Linking Speed, Acceleration,
and Displacement

Impressive, says the crafty physics textbook, you’ve been solving problems
pretty well so far. But I think I’ve got you now. Imagine you’re a drag racer for
an example problem. I’m only going to give you the acceleration — 26.6 meters
per second2 — and your final speed — 146.3 meters per second. With this
information, I want you to find the total distance traveled. Got you, huh?
“Not at all,” you say, supremely confident. “Just let me get my calculator.”

You know the acceleration and the final speed, and you want to know the
total distance it takes to get to that speed. This problem looks like a puzzler
because the equations in this chapter have involved time up to this point.
But if you need the time, you can always solve for it. You know the final speed,
vf, and the initial speed, vo (which is zero), and you know the acceleration, a.
Because

vf – vo = at

you know that

t = (vf – vo) / a = (146.3 – 0) / 26.6 = 5.5 seconds

Now you have the time. You still need the distance, and you can get it this way:

s = 1⁄2 at2 + vot

The second term drops out, because vo = 0, so all you have to do is plug in
the numbers:

s = 1⁄2 at2 = 1⁄2 (26.6)(5.5)2 = 402 meters

In other words, the total distance traveled is 402 meters, or a quarter mile.
Must be a quarter-mile racetrack.
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If you’re an equation junkie (and who isn’t?), you can make this simpler on
yourself with a new equation, the last one for this chapter. You want to relate
distance, acceleration, and speed. Here’s how it works; first, you solve for
the time:

t = (vf – vo) / a

Because displacement = v–t, and v– = 1⁄2 (vo + vf) when the acceleration is con-
stant, you can get

s = 1⁄2 (vo + vf)t

Substituting for the time, you get

s = 1⁄2 (vo + vf)t = 1⁄2 (vo + vf) [(vf – vo) / a]

After doing the algebra, you get

s = 1⁄2 (vo + vf)t = 1⁄2 (vo + vf)[(vf – vo) / a] = (vf
2 – vo

2) / 2a

Moving the 2a to the other side of the equation, you get an important equa-
tion of motion:

vf
2 – vo

2 = 2as = 2a(xf – xo)

Whew. If you can memorize this one, you’re able to relate velocity, accelera-
tion, and distance.

You can now consider yourself a motion master.
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Chapter 4

Following Directions:
Which Way Are You Going?

In This Chapter
� Mastering vector addition and subtraction

� Putting vectors into numerical coordinates

� Diving vectors into components

� Identifying displacement, acceleration, and velocity as vectors

� Completing an exercise in gravitational velocity

You have a hard time getting where you want to go — on foot, on a bike,
in a car, or in a plane — if you don’t know which way to go. Distance

isn’t all that matters; you need to know how far and in which direction you
must go. Chapter 3 is all about forces like displacement, speed, and accelera-
tion, with equations like s = v0(tf – to) + 1⁄2 a(tf – to)

2, giving you your distance.
Working with these forces, you get answers like 27 meters per second2 or
42.7 miles per hour. These figures are fine, but what about the direction?

In the real world, you need to know which way you’re going. That’s what vec-
tors are all about. Too many people who’ve had tussles with vectors decide
they don’t like them, which is a mistake — vectors are easy when you get a
handle on them, and you’re going to get a handle on them in this chapter. I
break down vectors from top to bottom and relate the forces of motion to the
concept of vectors.

Conquering Vectors
In Chapter 3, you work with simple numbers, or measurements called magni-
tudes in physics. If you measure a displacement of 3.0 meters, for example,
that displacement has a magnitude of 3.0 meters. Vectors are the next step
up; they add a direction to a magnitude. They mimic everyday life — when a
person gives you directions, she may say something like, “The posse went
15 miles thataway” and point, giving you a magnitude (a measurement) and
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a direction (by pointing). When you’re helping someone hang a door, the
person may say, “Push hard to the left!” Another vector. When you swerve to
avoid hitting someone in your car, you accelerate or decelerate in another
direction. Yet another vector.

Plenty of situations in everyday life display vectors, such as driving direc-
tions, door-hanging instructions, or swerving to avoid an accident. And
because physics mimics everyday life, plenty of concepts in physics are vec-
tors too, like velocity, acceleration, force, and many more. For that reason,
you should snuggle up to vectors, because you see them in just about any
physics course you take. Vectors are fundamental.

Asking for directions: Vector basics
When you have a vector, you have to keep in mind two quantities: its direction
and its magnitude. Technically speaking, forces that have only a quantity, like
speed, are called scalars. If you add a direction to a scalar, you create a vector.

Visually, you see vectors drawn as arrows in physics, which is perfect
because an arrow has both a clear direction and a clear magnitude (the
length of the arrow). Take a look at Figure 4-1. The arrow represents a vector
that starts at the foot and ends at the head.

You can use vectors to represent a force, an acceleration, a velocity, and so
on. In physics, you use A to represent a vector. In some books, you see it with
an arrow on top like this:

A

The arrow means that this is not only a scalar value, which would be repre-
sented by A, but also something with direction.

A

Figure 4-1:
The arrow, a

vector, has
both a

direction
and a

magnitude.
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Say that you tell some smartypants that you know all about vectors. When he
asks you to give him a vector, A, you give him not only its magnitude but also
its direction, because you need these two bits of info together to define this
vector. That impresses him to no end! For example, you may say that A is a
vector at 15 degrees (15°) from the horizontal with a magnitude of 12 meters
per second. Smartypants knows all he needs to know, including that A is a
velocity vector.

Take a look at Figure 4-2, which features two vectors, A and B. They look
pretty much the same — the same length and the same direction. In fact,
these vectors are equal. Two vectors are equal if they have the same magni-
tude and direction, and you can write this as A = B.

You’re on your way to becoming a vector pro. Already you know that when
you see the symbol A, you’re dealing with an item that has a magnitude and
a direction — or a vector — and that two vectors are equal if they have the
same magnitude and direction. But there’s more to come. What if, for exam-
ple, someone says the hotel you’re looking for is 20 miles due north and then
20 miles due east? How far away is the hotel, and in which direction?

Putting directions together: Adding vectors
You can add two direction vectors together, and when you do, you get a resul-
tant vector — the sum of the two — that gives you the distance to your target
and the direction to that target.

Assume, for example, that a passerby tells you that to get to your destination,
you first have to follow vector A and then vector B. Just where is that desti-
nation? You work this problem just as you find the destination in everyday
life. First, you drive to the end of vector A, and at that point, you drive to the
end of vector B, just as you see in Figure 4-3.

B

A

Figure 4-2:
Two arrows

(and
vectors)
with the

same
magnitude

and
direction.
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When you get to the end of vector B, how far are you from your starting
point? To find out, you draw a vector, C, from your starting point to your
ending point, as you see in Figure 4-4.

This new vector, C, represents the result of your complete trip, from start to
finish. To get C, all you have to do is draw the two vectors A and B and then
draw C as the resulting vector.

You make vector addition simple by putting one at the end of the other and
drawing the new vector, or the sum, from the start of the first vector to the
end of the second. In other words, C = A + B. C is called the sum, the result,
or the resultant vector. But if having only one option bores you, there are
other ways of combining vectors, too — you can subtract them if you want.

Taking distance apart: Subtracting vectors
What if someone hands you vector C and vector A from Figure 4-4 and says,
“Can you get their difference?” The difference is vector B, because when you
add vectors A and B together, you end up with vector C. To show the person
what you mean, you explain that you subtract A from C like this: C – A. You
don’t come across vector subtraction that often in physics problems, but it
does pop up, so it’s worth a look.

B
C

A

Figure 4-4:
Take the

sum of two
vectors by
creating a

new vector.

B

A

Figure 4-3:
Going from

the tail of
one vector
to the head
of a second

gets you
to your

destination.
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To subtract two vectors, you put their feet (the non-pointy part of the arrow)
together — you don’t put the foot of one at the head of the other, as you do
when adding vectors — and then draw the resultant vector, which is the dif-
ference of the two vectors, from the head of the vector you’re subtracting (A)
to the head of the vector you’re subtracting it from (C). To make heads from
tails, check out Figure 4-5, where you subtract A from C (in other words, C – A).
As you can see, the result is B, because C = A + B.

Another (and for some people easier) way to do vector subtraction is to
reverse the direction of the second vector (A in C – A) and use vector addi-
tion (that is, start with the first vector [C] and put the reversed vector’s foot
[A] at the first vector’s head, and draw the resulting vector).

As you can see, both vector addition and subtraction are possible with the
same vectors in the same problems. In fact, all kinds of math operations are
possible on vectors. That means that in equation form, you can play with vec-
tors just as you can scalars, like C = A + B, C – A = B, and so on. This looks
pretty numerical, and it is. You can get numerical with vectors just as you can
with scalars.

Waxing Numerical on Vectors
Vectors may look good as arrows, but that’s not exactly the most precise way
of dealing with them. You can get numerical on vectors, taking them apart as
you need them. Take a look at the vector addition problem, A + B, shown in
Figure 4-6. Now that you have the vectors plotted on a graph, you can see
how easy vector addition really is.

Assume that the measurements in Figure 4-6 are in meters. That means
vector A is 1 meter up and 5 to the right, and vector B is 1 meter to the right
and 4 up. To add them for the result, vector C, you add the horizontal parts
together and the vertical parts together.

B = C − A
C

A

Figure 4-5:
Subtracting
two vectors

by putting
their feet
together

and drawing
the result.
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The resulting vector, C, ends up being 6 meters to the right and 5 meters up.
You can see what that looks like in Figure 4-6 — to get the vertical part of the
sum, C, you just add the vertical part of A to the vertical part of B. And to
get the horizontal part of the sum, you add the horizontal part of A to the
horizontal part of B.

If vector addition still seems cloudy, you can use a notation that was invented
for vectors to help physicists and For Dummies readers keep it straight.
Because A is 5 meters to the right (the positive X-axis direction) and 1 up
(the positive Y-axis direction), you can express it with (x, y) coordinates
like this:

A = (5, 1)

And because B is 1 meter to the right and 4 up, you can express it with (x, y)
coordinates like this:

B = (1, 4)

Having a notation is great, because it makes vector addition totally simple. To
add two vectors together, you just add their X and Y parts, respectively, to
get the X and Y parts of the result:

A (5, 1) + B (1, 4) = C (6, 5)

So, the whole secret of vector addition is breaking each vector up into its X and
Y parts and then adding those separately to get the resultant vector’s X and Y
parts? Nothing to it. Now you can get as numerical as you like, because you’re
just adding or subtracting numbers. It can take a little work to get those X and
Y parts, but it’s a necessary step. And when you have those parts, you’re
home free.

For another example, assume you’re looking for a hotel that’s 20 miles due
north and then 20 miles due east. What’s the vector that points at the hotel
from your starting location? Taking your coordinate info into account, this is
an easy problem. Say that the east direction is along the positive X-axis and

B

C

A

Figure 4-6:
Use vector

coordinates
to make

handling
vectors

easy.
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that north is along the positive Y-axis. Step 1 of your travel directions is 20 miles
due north, and Step 2 is 20 miles due east. You can write the problem in vector
notation like this (east [positive X], north [positive Y]):

Step 1: (0, 20)

Step 2: (20, 0)

To add these two vectors together, add the coordinates:

(0, 20) + (20, 0) = (20, 20)

The resultant vector is (20, 20). It points from your starting point directly to
the hotel.

For another quick numerical method, you can perform simple vector multipli-
cation. For example, say you’re driving along at 150 miles per hour eastward
on a racetrack and you see a competitor in your rearview. No problem, you
think; you’ll just double your speed:

2(0, 150) = (0, 300)

Now you’re flying along at 300 miles per hour in the same direction. In this
problem, you multiply a vector by a scalar.

Breaking Up Vectors into Components
Physics problems have a way of not telling you what you want to know
directly. Take a look at the first vector you see in this chapter — vector A in
Figure 4-1. Instead of telling you that vector A is coordinate (4, 1) or some-
thing similar, a problem may say that a ball is rolling on a table at 15° with a
speed of 7.0 meters per second and ask you how long it will take the ball to
roll off the table’s edge if that edge is 1.0 meter away to the right. Given cer-
tain information, you can find the components that make up vector problems.

Finding vector components given 
magnitudes and angles
You can take action to find tough vector information by breaking a vector up
into its parts. When you break a vector into its parts, those parts are called
its components. For example, in the vector (4, 1), the X-axis component is 4
and the Y-axis component is 1.
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Typically, a physics problem gives you an angle and a magnitude to define a
vector; you have to find the components yourself. If you know that a ball is
rolling on a table at 15° with a speed of 7.0 meters per second, and you want to
find out how long it will take the ball to roll off the edge 1.0 meter to the right,
what you need is the X-axis direction. So, the problem breaks down to finding
out how long the ball will take to roll 1.0 meter in the X direction. In order to
find out, you need to know how fast the ball is moving in the X direction.

You already know that the ball is rolling at a speed of 7.0 meters per second at
15° to the horizontal (along the positive X-axis), which is a vector: 7.0 meters
per second at 15° gives you both a magnitude and a direction. What you have
here is a velocity — the vector version of speed. The ball’s speed is the mag-
nitude of its velocity vector, and when you add a direction to that speed, you
get the velocity vector v.

Here you need not only the speed, but also the X component of the ball’s
velocity to find out how fast the ball is traveling toward the table edge. The
X component is a scalar (a number, not a vector), and it’s written like this:
vx. The Y component of the ball’s velocity vector is vy. So, you can say that

v = (vx, vy)

That’s how you express breaking a vector up into its components. So, what’s
vx here? And for that matter, what’s vy, the Y component of the velocity? The
vector has a length (7.0 meters per second) and a direction (θ = 15° to the
horizontal). And you know that the edge of the table is 1.0 meter to the right.
As you can see in Figure 4-7, you have to use some trigonometry (oh no!)
to resolve this vector into its components. No sweat; the trig is easy after
you get the angles you see in Figure 4-7 down. The magnitude of a vector
v is expressed as v (if your physics class uses v, you use |v|), and from
Figure 4-7, you can see that

vx = v cos θ

vy = v sin θ

v
v sinθ

v cosθ
θ

Figure 4-7:
Breaking a
vector into

components
allows you

to add or
subtract

them easily.
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The two vector component equations are worth knowing, because you see
them a lot in any beginning physics course. Make sure you know how they
work, and always have them at your fingertips.

You can go further by relating each side of the triangle to each other side
(and if you know that tan θ = sin θ / cos θ, you can derive all these from the
previous two equations as required; no need to memorize all these):

vx = v cos θ = vy / tan θ

vy = v sin θ = vx tan θ

v = vy / sin θ = vx / cos θ

You know that vx = v cos θ, so you can find the X component of the ball’s
velocity, vx, this way:

vx = v cos θ = v cos 15°

Plugging in the numbers gives you

vx = v cos θ = v cos 15° = (7.0)(0.96) = 6.7 meters per second

You now know that the ball is traveling at 6.7 meters per second to the right.
And because the table’s edge is 1.0 meter away,

1.0 meters / 6.7 meters per second = 0.15 seconds

Because you know how fast the ball is going in the X direction, you now
know the answer to the problem: It will take the ball 0.15 seconds to fall off
the edge of the table. What about the Y component of the velocity? That’s
easy to find, too:

vy = v sin θ = v sin 15° = (7.0)(.26) = 1.8 meters per second

Finding magnitudes and angles given
vector components
Sometimes, you have to find the angles of a vector rather than the compo-
nents. For example, assume you’re looking for a hotel that’s 20 miles due
north and then 20 miles due east. What’s the angle the hotel is at from your
present location, and how far away is it? You can write this problem in vector
notation, like so (see the section “Waxing Numerical on Vectors”):

Step 1: (0, 20)

Step 2: (20, 0)
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When adding these vectors together, you get this result:

(0, 20) + (20, 0) = (20, 20)

The resultant vector is (20, 20). That’s one way of specifying a vector — use its
components. But this problem isn’t asking for the results in terms of compo-
nents. The question wants to know the angle the hotel is at from your present
location and how far away it is. In other words, looking at Figure 4-8, the prob-
lem asks, “What’s h, and what’s θ?”

Finding h isn’t so hard, because you can use the Pythagorean theorem:

h x y2 2= +

Plugging in the numbers gives you

h x y 20 20 28.3 miles2 2 2 2= + = + =

The hotel is 28.3 miles away. What about the angle θ? Because of your superior
knowledge of trigonometry, you know that

x = h cos θ

y = h sin θ

In other words, you know that

x / h = cos θ

y / h = sin θ

x = 20 miles

Hotel

You

y = 20 miles
h

θ

Figure 4-8:
Using the

angle
created by a
vector to get

to a hotel.
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Now all you have to do is take the inverse sine or cosine (you don’t really
need to memorize these; if you just know that x = h cos θ and y = h sin θ, you
can derive these as needed):

θ = sin-1(y / h)

θ = cos-1(x / h)

How do you get the inverse sine (sin-1) or inverse cosine (cos-1)? Take a look at
your calculator and look for the sin-1 and cos-1 buttons! Just enter the number
you want the inverse sine or inverse cosine of and press the proper button. In
this case, you can find the angle θ like this:

θ = sin-1(y / h) = sin-1(20 / 28.3) = 45°

You now know all there is to know: The hotel is 28.3 miles away, at an angle of
45°. Another physics triumph!

If you’re a trig master, you can use the tangent to find the angle θ; no need to
take the intermediate step of finding h first:

y = x tan θ

θ = tan-1(y / x)

Unmasking the Identities of Vectors
You have two ways to describe vectors to solve physics problems. The first is
in terms of their X and Y components. The second is in terms of a magnitude
and an angle (the angle is usually given in degrees, 0° to 360°, where 0° is along
the positive X-axis). Knowing how to convert between these two forms is pretty
important, because to perform vector addition, you need the component form,
but physics problems usually give vectors in the magnitude/angle form.

Here’s how you can convert from the magnitude/angle form of a vector to the
component form:

h = (x, y) = (h cos θ, h sin θ)

This equation assumes that θ is the angle between the horizontal component
and the hypotenuse (the longest side of a triangle located opposite the right
angle), which you see in Figure 4-8. If you’re not given that angle, you can
derive it by remembering that adding the angles together in a triangle gives
you a total of 180°. And in a right triangle, like the one in Figure 4-8, the right
angle = 90°, so the other two angles have to add up to 90° also.
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If you’re given the (x, y) component form of a vector, you can get its magni-
tude and angle like this:

h x y2 2= +

θ = sin-1(y / h) = cos-1(x / h) = tan-1(y / x)

This is the kind of stuff you should make sure you have under your belt,
because the conversions trip so many people up. This is where I often see
people who were really into the material before start to peel away from it —
all because they didn’t master converting a vector into components.

You should also remember that vectors, although mainly good for solving
physics problems, have identities of their own. Guess what? Just about all
quantities (except speed) I cover in Chapter 3 are really vectors, not scalars.
Displacement isn’t a scalar — physics treats it as a vector, and as such, it has
a magnitude and a direction associated with it.

Displacement is a vector
Instead of writing displacement as s, you should write it as s, a vector with
both a magnitude and a direction (if you’re writing on paper, you can put an
arrow over the s to signify its vector status). When you’re talking about dis-
placement in the real world, direction is as important as magnitude.

For example, say your dreams have come true: You’re a big-time baseball or
softball hero, slugging another line drive into the outfield. You take off for first
base, which you know is 90 feet away. But 90 feet in which direction? Because
you know how vital physics is, you happen to know that first base is 90 feet
away at a 45° angle, as you can see in Figure 4-9. Now you’re set, all because
you know that displacement is a vector. In this case, here’s the displacement
vector:

s = 90 feet at 45°

What’s that in components?

s = (s cos θ, s sin θ) = (63 feet, 63 feet)

Velocity is another vector
Imagine that you just hit a ground ball on the baseball diamond and you’re
running along the first-base line, or the s vector, 90 feet at a 45° angle to the
positive X-axis. But, as you run, it occurs to you to ask: “Will my velocity
enable me to evade the first baseman?” A good question, because the ball is
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on its way from the shortstop. Whipping out your calculator, you figure that it
will take you about 3 seconds to reach first base from home plate; so, what’s
your velocity? To find your velocity, you quickly divide the s vector by the
time it takes to reach first base:

s / 3.0

This expression represents a displacement vector divided by a time, and time
is just a scalar. The result must be a vector, too. And it is: velocity, or v:

s / 3.0 = 90 feet at 45° / 3.0 seconds = 30 feet per second at 45° = v

Your velocity is 30 feet per second at 45°, and it’s a vector, v. Dividing a vector
by a scalar gives you a vector with different units and the same direction. In
this case, you see that dividing a displacement vector, s, by a time gives you a
velocity vector, v. It has the same magnitude as when you divided a distance
by a time, but now you see a direction associated with it as well, because the
displacement vector, s, is a vector. So, you end up with a vector result rather
than the scalars you see in the Chapter 3.

With your lightning-quick physics insight, however, you decide that this veloc-
ity wouldn’t be quite enough to get you to first base safely, because the first
baseman already has the ball and is coming toward you. A straight direction is
all wrong. What can you do? You gotta swerve!

Acceleration: Yep, another vector
What happens when you swerve, whether in a car or on a walk? You accelerate
in a different direction. And just like displacement and velocity, acceleration is
a vector, a.

x axis

90 feet

45°

Figure 4-9:
A baseball

diamond is a
series of
vectors

created by
the X-axis

and Y-axis.
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Assume that you’ve just managed to hit a groundball in a softball game and
you’re running to first base. You figure you need the Y component of your
velocity to be at least 25 feet per second to evade the first baseman, who has
the ball and is waiting for you because of a poor throw down the baseline,
and that you can swerve at 90° to your present path with an acceleration of
60 feet per second2 (in a desperate attempt to dodge the first baseman). Is
that acceleration going to be enough to change your velocity to what you
need it to be in the tenth of a second that you have before the first baseman
touches you with the ball? Sure, you’re up to the challenge!

Your final time, tf, minus your initial time, to, equals your change in time, ∆t.
You can find your change in velocity with the following equation:

∆v = a∆t

Now you can calculate the change in your velocity from your original veloc-
ity, as shown in Figure 4-10 (where fps = feet per second).

Finding your new velocity, vf, becomes an issue of vector addition. That
means you have to break your original velocity, vo, and the change in your
velocity, ∆v, into components. Here’s what vo equals:

vo = (vo cos θ, vo sin θ) = (30 fps cos 45°, 30 fps sin 45°) = (21.2 fps, 21.2 fps)

You’re halfway there. Now, what about ∆v, the change in your velocity? You
know that ∆v = a∆t, and that a = 60 feet per second2 at 90° to your present
path, as shown in Figure 4-10. You can find the magnitude of ∆v, because ∆v =
a∆t = (60 feet per second2)(0.1 seconds) = 6 feet per second.

But what about the angle of ∆v? If you look at Figure 4-10, you can see that ∆v
is at an angle of 90° to your present path, which is itself at an angle of 45°
from the positive X-axis; therefore, ∆v is at a total angle of 135° with respect
to the positive X-axis. Putting that all together means that you can resolve ∆v
into its components:

∆v = 6 fps = (∆v cos 135°, ∆v sin 135°) = (–4.2 fps, 4.2 fps)

x-axis

∆v = a∆t

vf = ?
vo = 30 fps

45° 135°

Figure 4-10:
You can use

acceleration
and change

in time to
find a

change in
velocity.
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You now have all you need to perform the vector addition to find your final
velocity:

vo + ∆v = vf = (21.2 fps, 21.2 fps) + (–4.2 fps, 4.2 fps) = (17.0, 25.4)

You’ve done it: vf = (17.0, 25.4). The Y component of your final velocity is
more than you need, which is 25.0 feet per second. Having completed your
calculation, you put your calculator away and swerve as planned. And, to
everyone’s amazement, it works — you evade the startled first baseman
and make it to first base safely without going out of the baseline (some tight
swerving on your part!). The crowd roars, and you tip your hat, knowing that
it’s all due to your superior knowledge of physics. After the roar dies down,
you take a shrewd look at second base. Can you steal it at the next pitch?
It’s time to calculate the vectors, so you get out your calculator again (not as
pleasing to the crowd).

That’s how you deal with the equations in terms of vectors for displacement,
velocity, and acceleration. You can turn all the equations that use these quan-
tities as scalars in Chapter 3 into vector equations like this:

s = v0(tf – to) + 1⁄2 a(tf – to)
2

Notice that total displacement is a combination of where velocity, as a vector,
takes you in the given time, added to the displacement you get from constant
acceleration.

Sliding Along on Gravity’s Rainbow:
A Velocity Exercise

Although you find out how to work with gravity in Chapter 6, you should take a
look here because gravity problems present good examples of working with
vectors in two dimensions. Imagine a golf ball traveling horizontally at 1.0 meter
per second is about to hurtle off a 5-meter cliff, as shown in Figure 4-11. The
question: How far away from the base of the cliff will it hit, and what will be its
total speed? First you must find out how long the golf ball will be flying.

1 meter per second

5 meters

Cliff

Figure 4-11:
A tumbling

golf ball
shows how
gravity and

vectors
relate.
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Time to gather the facts. You know that the golf ball has the velocity vector
(1, 0) and that it’s flying 5.0 meters off the ground. When it falls, it comes
down with a constant acceleration, g, the acceleration due to gravity, and
that’s 9.8 meters per second2.

So, how can you find out how far away from the base of the cliff the golf ball
will hit? One way to solve this problem is to determine how much time it will
have before it hits. Because the golf ball only accelerates in the Y direction
(straight down), the X component of its velocity, vx, doesn’t change, which
means that the horizontal distance at which it hits will be vxt, where t is the
time the golf ball is in the air. Gravity is accelerating the ball as it falls, so
the following equation, which relates displacement, acceleration, and time,
is a good one to use:

s = 1⁄2 at2

In this case, the distance to fall is 5.0 meters, and the magnitude of a is g, the
acceleration due to gravity (9.8 meters per second2), so the equation breaks
down to

5.0 meters = 1⁄2 gt2

which means that the time the golf ball takes to hit the ground is

t 9.8
2 5.0

=
^ h

seconds = 1.0 second

You find out that the golf ball will be flying for 1.0 second. Okay, that’s progress.
Because the X component of the ball’s velocity hasn’t varied during that time,
you can calculate how far it goes in the X direction like this:

x = vxt

Plugging in the numbers gives you

x = (1.0)(1.0) = 1.0 meter

The golf ball will hit 1.0 meter from the base of the cliff.

Time to figure out what the speed of the golf ball will be when it hits. You
already know half the answer, because the X component of its velocity, vx,
isn’t affected by gravity, so it doesn’t change. Gravity is pulling on the golf
ball in the Y direction, not the X, which means that the final velocity of the
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golf ball will look like this: (1.0, ?). So, you have to figure out the Y component
of the velocity, or the ? business in the (1.0, ?) vector. For that, you can use
the following equation:

vf – vo = at

In this case, vo = 0, the acceleration is g, and you want the final velocity of the
golf ball in the Y direction, so the equation looks like

vy = gt

Plugging in the numbers gives you

vy = gt = (9.8)(1.0) = 9.8 meters/second

But guess what? The acceleration due to gravity, g, is also a vector, g. That
makes sense, because g is an acceleration. This vector happens to point
to the center of the earth — that is, in the negative Y direction, and on the 
surface of the earth, its value is –9.8 meters per second2.

The negative sign here indicates that g is pointing downward, toward negative
Y. So, the real result is

vy = gt = (–9.8)(1.0) = –9.8 meters/second

The final velocity vector of the golf ball when it hits the ground is (1.0, -9.8)
meters per second. You still need to find the golf ball’s speed when it hits,
which is the magnitude of its velocity. You can figure that out easily enough:

vf 1.0 9.8 9.9 meters per second2 2= + =

You’ve triumphed! The golf ball will hit 1.0 meter from the base of the cliff,
and its speed at that time will be 9.9 meters per second. Not bad.
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May the Forces

of Physics
Be with You

09_554336 pt02.qxd  11/2/05  11:27 PM  Page 61



In this part . . .

Part II gives you the lowdown on famous laws like “For
every action, there is an equal and opposite reaction.”

The subject of forces is where Isaac Newton gets to shine.
His laws and the equations in this part allow you to predict
what will happen when you apply a force to an object.
Mass, acceleration, friction — all the forces are here.
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Chapter 5

When Push Comes to Shove: Force
In This Chapter
� Getting forceful

� Discovering Newton’s three takes on force

� Utilizing force vectors with Newton’s laws

This chapter is where you find Newton’s famous three laws of motion.
You’ve heard these laws before in various forms, such as “For every

action, there’s an equal and opposite reaction.” That’s not quite right; it’s
more like “For every force, there’s an equal and opposite force,” and this
chapter is here to set the record straight. In this chapter, I use Newton’s laws
as a vehicle to focus on force and how it affects the world.

Forcing the Issue
You can’t get away from forces in your everyday world; you use force to open
doors, type at a keyboard, drive a car, pilot a bulldozer through a wall, climb
the stairs of the Statue of Liberty (not every one, necessarily), take your
wallet out of your pocket — even to breathe or talk. You unknowingly take
force into account when you cross bridges, walk on ice, lift a hot dog to your
mouth, unscrew a jar’s cap, or flutter your eyelashes at your sweetie. Force is
integrally connected to making objects move, and physics takes a big interest
in understanding how it works.

Force is fun stuff. Like other physics topics, you may assume it’s difficult, but
that’s before you get into it. Like your old buddies displacement, speed, and
acceleration (see Chapters 3 and 4), force is a vector, meaning it has a magni-
tude and a direction (unlike, say, speed, which just has a magnitude).

Sir Isaac Newton was the first to put the interaction among force, mass, and
acceleration into equation form in the 17th century. (He’s also famous for
apples dropping off trees and the consequent mathematical expression of
gravity; see Chapter 6, where Newton also stars.)
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As with all advances in physics, Newton made observations first, modeled
them mentally, and then expressed those models in mathematical terms. If
you have vectors under your belt (see Chapter 4), the math is very easy.

Newton expressed his model by using three assertions, which have come to
be known as Newton’s laws. However, the assertions aren’t really laws; the
idea is that they’re “laws of nature,” but don’t forget that physics just models
the world, and as such, it’s all subject to later revision.

For His First Trick, Newton’s
First Law of Motion

Drum roll, please. Newton’s laws explain what happens with forces and motion,
and his first law states: “An object continues in a state of rest, or in a state of
motion at a constant speed along a straight line, unless compelled to change
that state by a net force.” What’s the translation? If you don’t apply a force to
an object at rest or in motion, it will stay at rest or in that same motion along a
straight line. Forever.

For example, when scoring a hockey goal, the hockey puck slides toward the
open goal in a straight line because the ice it slides on is nearly frictionless.
If you’re lucky, the puck won’t come into contact with the opposing goalie’s
stick, which would cause it to change its motion.

In everyday life, objects don’t coast around effortlessly on ice. Most objects
around you are subject to friction, so when you slide a coffee mug across
your desk, it glides for a moment and then slows and comes to a stop (or
spills over — don’t try this one at home). That’s not to say Newton’s first law is
invalid, just that friction provides a force to change the mug’s motion to stop it.
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Newton and the speed of light
Newton’s laws have been heavily revised by the
likes of Albert Einstein and his theory of relativity.
The theory of relativity shows how Newton’s laws
don’t play out the same when you’re moving at
speeds close to the speed of light. The idea of the
theory is that the speed of light is the fastest
speed possible, which means that any interaction
can take place only at that speed or less; there-
fore, when you’re getting close to that speed, you
have to take into account the fact that your speed

is going to affect those interactions. When you
measure the length of a rocketship from nose to
tail when it’s moving, for example, its tail will have
moved appreciably by the time you can measure
with your meter stick, so the length you measure
will be different than if the rocket ship were
standing still next to you. As you can see in
Chapter 21, Einstein’s theory of relativity ends up
amending Newton’s view of physics quite a bit.
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Saying that if you don’t apply a force to an object in motion, it will stay in
that same motion forever sounds awfully like a perpetual-motion machine.
However, you just can’t get away from forces that will ultimately affect an
object in motion, even if that object is in interstellar space. Even in the farthest
reaches of space, the rest of the mass in the universe pulls at you, if only very
slightly. And that means your motion is affected. So much for perpetual motion.

What Newton’s first law really says is that the only way to get something to
change its motion is to use force. In other words, force is the cause of motion.
It also says that an object in motion tends to stay in motion, which intro-
duces the idea of inertia.

Getting it going: Inertia and mass
Inertia is the natural tendency of an object to stay at rest or in constant
motion along a straight line. Inertia is a quality of mass, and the mass of an
object is really just a measurement of its inertia. To get an object to move —
that is, to change its current state of motion — you have to apply a force to
overcome its inertia.

Say, for example, you’re at your summer vacation house, taking a look at the
two boats at your dock: a dinghy and an oil tanker. If you apply the same force
to each with your foot, the boats respond in different ways. The dinghy scoots
away and glides across the water. The oil tanker moves away more slowly
(what a strong leg you have!). That’s because they both have different masses
and, therefore, different amounts of inertia. When responding to the same
force, an object with little mass — and a small amount of inertia — will acceler-
ate faster than an object with large mass, which has a large amount of inertia.

Inertia, the tendency of mass to preserve its present state of motion, can be a
problem at times. Refrigerated meat trucks, for example, have large amounts
of frozen meat hanging from their ceilings, and when the drivers of the trucks
begin turning corners, they create a pendulum motion they can’t stop in the
driver’s seat. Trucks with inexperienced drivers can end up tipping over
because of the inertia of the swinging frozen load in the back.

Because mass has inertia, it resists changing its motion, which is why you
have to start applying forces to get velocity and acceleration. Mass ties force
and acceleration together.

Measuring mass
The units of mass (and, therefore, inertia) depend on your measuring system.
In the meter-kilogram-second (MKS) system or International System of Units
(SI), mass is measured in kilograms (under the influence of gravity, a kilogram
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of mass weighs about 2.205 pounds). In the centimeter-gram-second (CGS)
system, the gram is featured, and it takes a thousand grams to make a 
kilogram.

What’s the unit of mass in the foot-pound-second system? Brace yourself: It’s
the slug. Under the influence of gravity, a slug has a weight of about 32 pounds.
It’s equal in mass to 14.59 kilograms.

Mass isn’t the same as weight. Mass is a measure of inertia; when you put that
mass into a gravitational field, you get weight. So, for example, a slug is a cer-
tain amount of mass. When you subject that slug to the gravitational pull on
the surface of the earth, it has weight. And that weight is about 32 pounds.

Ladies and Gentlemen, Newton’s
Second Law of Motion

Newton’s first law is cool, but it doesn’t give you much of a handle on any
math, so physicists need more. And Newton delivers with his second law:
When a net force, ΣF, acts on an object of mass m, the acceleration of that
mass can be calculated by using the formula ΣF = ma. Translation: Force
equals mass times acceleration. The Σ you see stands for “sum,” so ΣF = ma
in layman’s terms is “the sum of all forces on an object, or the net force,
equals mass times acceleration.”

Newton’s first law — a moving body stays in motion along a straight line
unless acted on by a force — is really just a special case of Newton’s second
law where ΣF = 0. This means that acceleration = 0, too, which is Newton’s
first law. For example, take a look at the hockey puck in Figure 5-1 and imag-
ine it’s sitting there all lonely in front of a net. These two should meet.

In a totally hip move, you decide to apply your knowledge of physics to this
one. You whip out your copy of this book and consult what it has to say on
Newton’s laws. You figure that if you apply the force of your stick to the puck
for a tenth of a second, you can accelerate it in the appropriate direction.
You try the experiment, and sure enough, the puck flies into the net. Score!
Figure 5-1 shows how you made the goal. You applied a force to the puck,
which has a certain mass, and off it went — accelerating in the direction you
pushed it.

Force

Mass

AccelerationFigure 5-1:
Accelerat-

ing a hockey
puck
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What’s its acceleration? That depends on the force you apply, because ΣF = ma.
But, to measure force, you have to decide on the units first.

Naming units of force
So what are the units of force? Well, ΣF = ma, so in the MKS or SI system, force
must have these units:

kg-meters/sec2

Because most people think this unit line looks a little awkward, the MKS units
are given a special name: Newtons (named after guess who). Newtons are
often abbreviated as simply N. In the CGS system, ΣF = ma gives you the fol-
lowing for the units of force:

g-centimeters/sec2

Again, it’s a little awkward to rattle of these units, so CGS units are also given
a special name: dynes. And 1.0 × 105 dynes = 1.0 Newton. In the foot-pound-
second system, the unit of force is easy — it’s just the pound. Because ΣF = ma,
the pound is the same as these units:

slug-foot/sec2

To give you a feeling for Newtons, a pound is about 4.448N.

Gathering net forces
Most books shorten ΣF = ma to simply F = ma, which is what I do, too, but I
must note that F stands for net force. An object you apply force to responds
to the net force — that is, the vector sum of all the forces acting on it. Take a
look, for example, at all the forces acting on the ball in Figure 5-2, represented
by the arrows. Which way will the golf ball end up getting accelerated?

Figure 5-2:
A ball in

flight faces
many forces
that act on it.
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Because Newton’s second law talks about net force, the problem becomes
easier. All you have to do is add the various forces together as vectors to get
the resultant, or net, force vector, ΣF, as shown in Figure 5-3. When you want
to know how the ball will move, you can apply the equation ΣF = ma.

Calculating displacement given a time and acceleration
Assume that you’re on your traditional weekend physics data-gathering expe-
dition. Walking around with your clipboard and white lab coat, you happen
upon a football game. Very interesting, you think. In a certain situation, you
observe that the football, although it starts from rest, has three players sub-
jecting forces on it, as you see in Figure 5-4.

In physics, Figure 5-4 is called a free body diagram. This kind of diagram
shows all the forces acting on an object, making it easier to determine their
components and find the net force.

Slipping intrepidly into the mass of moving players, risking injury in the name
of science, you measure the magnitude of these forces and mark them down
on your clipboard:

Fa = 150N

Fb = 125N

Fc = 165N

Fa

Fb45°
Fc

Figure 5-4:
A free body
diagram of

all the
forces

acting on a
football at
one time.

ΣF

Figure 5-3:
The net

force vector
factors in all

forces to
match the

ball’s flight.
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You measure the mass of the football as exactly 1.0 kilogram. Now you wonder:
Where will the football be in 1 second? Here are the steps to calculate the dis-
placement of an object in a given time with a given constant acceleration:

1. Find the net force, ΣF, by adding all the forces acting on the object,
using vector addition (see Chapter 4 for more on vector addition).

2. Use ΣF = ma to determine the acceleration vector.

3. Use s = v0(tf – to) + 1⁄2 a(tf – to)
2 to get the distance traveled in the speci-

fied time. (See Chapter 3 to find this original equation.)

Time to get out your calculator. Because you want to relate force, mass, and
acceleration together, the first order of business is to find the net force on the
mass. To do that, you need to break up the force vectors you see in Figure 5-4
into their components and then add those components together to get the net
force (see Chapter 4 for more info on breaking up vectors in components).

Determining Fa and Fb is easy, because Fa is straight up — along the positive
Y-axis — and Fb is to the right — along the positive X-axis. That means

Fa = (0, 150N)

Fb = (125N, 0)

Finding the components of Fc is a little trickier. You need the X and Y compo-
nents of this force this way:

Fc = (Fcx, Fcy)

Fc is along an angle 45° with respect to the negative X-axis, as you see in
Figure 5-4. If you measure all the way from the positive X-axis, you get an
angle of 180° + 45° = 225°. This is the way you break up Fc:

Fc = (Fcx, Fcy) = (Fc cos θ, Fc sin θ)

Plugging in the numbers gives you

Fc = (Fcx, Fcy) = (Fc cos θ, Fc sin θ) = (165N cos 225°, 165N sin 225°) =
(–117N, –117N)

Look at the signs here — both components of Fc are negative. You may not
follow that business about the angle of Fc being 180° + 45° = 225° without
some extra thought, but you can always make a quick check of the signs of
your vector components. Fc points downward and to the right, along the 
negative X- and negative Y-axes. That means that both components of this
vector, Fcx and Fcy, have to be negative. I’ve seen many people get stuck with
the wrong signs for vector components because they didn’t think to make
sure their numbers matched the reality.

69Chapter 5: When Push Comes to Shove: Force

10_554336 ch05.qxd  11/2/05  11:26 PM  Page 69



Always compare the signs of your vector components with their actual direc-
tions along the axes. It’s a quick check, and it saves you plenty of problems
later.

Now you know that

Fa = (0, 150N)

Fb = (125N, 0)

Fc = (–117N, –117N)

You’re ready for some vector addition:

Fa = (0, 150N)

+ Fb = (125N, 0N)

+ Fc = (–117N, –117N)

ΣF = (8N, 33N)

You calculate that the net force, ΣF, is (8N, 33N). That also gives you the
direction the football will move in. The next step is to find the acceleration
of the football. You know this much from Newton:

ΣF = (8N, 33N) = ma

which means that

ΣF / m = (8N, 33N) / m = a

Because the mass of the football is 1.0 kg, the problem works out like this:

ΣF / m = (8N, 33N) / 1.0 kg = (8 m/s2, 33 m/s2) = a

You’re making good progress; you now know the acceleration of the football.
To find out where it will be in 1 second, you can apply the following equation
(found in Chapter 3), where s is the distance:

s = v0(tf – to) + 1⁄2 a(tf – to)
2

Plugging in the numbers gives you

s = v0(tf – to) + 1⁄2 a(tf – to)
2 = 1⁄2 (8 m/s2, 33 m/s2)(1.0 sec)2 = (8 m, 33 m)

Well, well, well. At the end of 1 second, the football will be 8 meters along the
positive X-axis and 33 meters along the positive Y-axis. You get your stopwatch
out of your lab-coat pocket and measure off 1 second. Sure enough, you’re
right. The football moves 8 meters toward the sideline and 33 meters toward
the goal line. Satisfied, you put your stopwatch back into your pocket and put
a checkmark on the clipboard. Another successful physics experiment.
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Calculating net force given a time and velocity
In the previous section, you calculate the displacement of an object in a given
time with a given constant acceleration. But what if you want to go the other
way by finding out how much force is necessary in a specific time to produce
a particular velocity? Say, for example, that you want to accelerate your car
from 0 to 60 miles per hour in 10 seconds; how much force is necessary? You
start by converting 60 miles per hour to feet per second. First, you convert to
miles per second:

(60 miles per hour) × (1 hour / 60 minutes) × (1 minute / 60 seconds) =
1.67 × 10-2 miles per second

Notice that the hours and minutes cancel out to leave you with miles and sec-
onds for the units. Next, you take the result to feet per second:

1.67 × 10-2 miles per second × 5,280 feet per mile = 88 feet per second

You want to get to 88 feet per second in 10 seconds. If the car weighs
2,000 pounds, how much force do you need? First you find the accelera-
tion with the following equation from Chapter 3:

a = ∆v / ∆t = (vf – vo) / (tf – to)

Plugging in some numbers, you get

a = ∆v / ∆t = (vf – vo) / (tf – to) = 88 feet per second / 10 seconds =
8.8 feet per second2

You calculate that 8.8 feet/second2 is the acceleration you need. From
Newton’s second law, you know that

ΣF = ma

And you know that the weight of the car is 2,000 pounds. What’s that weight
in the foot-pound-second system of units, or slugs? In this system of units,
you can find an object’s mass given its weight by dividing by the acceleration
due to gravity — 32.17 feet/second2 (converted from 9.8 meters/second2 —
the number given to you in most physics problems):

2,000 pounds / 32 feet per second2 = 62.5 slugs

You have all you need to know. You have to accelerate 62.5 slugs of mass by
8.8 feet per second2; so, what force do you need? Just multiply to get your
answer:

ΣF = ma = (62.5 slugs)(8.8 feet/second2) = 550 pounds
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The car needs to supply a force of 550 pounds for those 10 seconds to accel-
erate you to the speed you want: 60 miles per hour.

Note that this solution ignores pesky little issues like friction and upward
grade on the road; you get to those issues in Chapter 6. Even on a flat surface,
friction would be large in this example, so you’d need maybe 30 percent more
than that 550 pounds of force in real life.

Newton’s Grand Finale:
The Third Law of Motion

Newton’s third law of motion is famous, especially in wrestling and drivers’
education circles, but you may not recognize it in all its physics glory:
Whenever one body exerts a force on a second body, the second body exerts
an oppositely directed force of equal magnitude on the first body.

The more popular version of this, which I’m sure you’ve heard many times, is
“For every action, there’s an equal and opposite reaction.” But for physics,
it’s better to express the originally intended version, and in terms of forces,
not “actions” (which, from what I’ve seen, can apparently mean everything
from voting trends to temperature forecasts).

For example, say that you’re in your car, speeding up with constant accelera-
tion. To do this, your car has to exert a force against the road; otherwise, you
wouldn’t be accelerating. And the road has to exert the same force on your
car. You can see what this tug-of-war looks like, tire-wise, in Figure 5-5.

If your car doesn’t exert the same force against the road as the road exerts
against your car, you would slip, as when the road is covered by ice and you
can’t get enough friction to make it exert as much force against your tires as
they exert against the road. In this case, the two forces balance out, but that

F
car

F
road

Figure 5-5:
The net
forces

acting on a
car tire
during

acceler-
ation.
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doesn’t mean no movement takes place. Because a force acts on your car, it
accelerates. That’s where the force your car exerts goes — it causes your car
to accelerate.

So why doesn’t the road move? After all, for every force on a body, there’s an
equal and opposite force, so the road feels some force, too. You accelerate . . .
shouldn’t the road accelerate in the opposite direction? Believe it or not, it
does; Newton’s law is in full effect. Your car pushes the earth, affecting the
motion of the earth in just the tiniest amount. Given the fact that the earth is
about 6,000,000,000,000,000,000,000 times as massive as your car, however,
any effects aren’t too noticeable.

Tension shouldn’t cause stiff necks:
Friction in Newton’s third law
When a hockey player slaps a puck, the puck accelerates away from the spot of
contact, and so does the hockey player. If hockey pucks weighed 1,000 pounds,
you’d notice this effect much more; in fact, the puck wouldn’t move much at
all, but the player would hurtle off in the opposite direction after striking it.
(More on what happens in this case in Part III of this book.)

For fantasy physics purposes, say that the hockey game ends, and you get
the job of dragging that 1,000-pound hockey puck off the rink. You use a rope
to do the trick, as shown in Figure 5-6.

Physics problems are very fond of using ropes, including ropes with pulleys,
because with ropes, the force you apply at one end is the same as the force
that the rope exerts on what you tie it to at the other end.

In this case, the 1,000-pound hockey puck will have some friction that resists
you — not a terrific amount, given that it slides on top of ice, but still, some.
So, the net force on the puck is

ΣF = Frope – Ffriction

Force
friction

Force
rope

1,000-pound
hockey puck

Ice rink

Figure 5-6:
Pulling a

1,000-pound
puck with a

rope to
exert equal

force on
both ends.
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Because Frope is greater than Ffriction, the puck will start to move. In fact, if you
pull on the rope with a constant force, the puck will accelerate, because the
net force equals its mass times its acceleration:

ΣF = Frope – Ffriction = ma

Because some of the force you exert on the puck goes into accelerating it and
some goes into overcoming the force of friction, the force you exert on the
puck is the same as the force it exerts on you (but in the opposite direction),
as Newton’s third law predicts:

Frope = Ffriction + ma

Take a look at a completely different situation. When you pull a rope in a
pulley system to lift an object, you lift the mass if you exert enough force
to overcome its weight, Mg, where g is the acceleration due to gravity at the
surface of the earth, 9.8 meters per second2 (see more discussion on this in
Chapter 6). Take a look at Figure 5-7, where a rope goes over a pulley and
down to a mass M.

The rope functions not only to transmit the force, F, you exert on the mass,
M, but also to change the direction of that force, as you see in the figure. The
force you exert downward is exerted on the mass upward, because the rope,
going over the pulley, changes the force’s direction. In this case, if F is greater
than Mg, you can lift the mass; in fact, if F is greater than Mg, the mass will
accelerate upward — F = M(g + a) = mass (net acceleration) in this case.

F

M

Figure 5-7:
Using a

pulley to
exert force.
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But this force-changing use of a rope and pulley comes at a cost, because you
can’t cheat Newton’s third law. Assume that you lift the mass and it hangs in the
air. In this case, F must equal Mg to hold the mass stationary. The direction of
your force is being changed from downward to upward. How does that happen?

To figure this out, consider the force that the pulley’s support exerts on the
ceiling. What’s that force? Because the pulley isn’t accelerating in any direc-
tion, you know that ΣF = 0 on the pulley. That means that all the forces on the
pulley, when added up, give you 0.

From the pulley’s point of view, two forces pull downward: the force F you
pull with and the force Mg that the mass exerts on you (because nothing is
moving at the moment). That’s 2F downward. To balance all the forces and
get 0 total, the pulley’s support must exert a force of 2F upward.

No force can be exerted without an equal and opposite opposing force (even
if some of that opposing force comes from making an object accelerate). In
the previous example, the rope changes the direction of the force you apply,
but not for free. In order to change the direction of your force from –F (that is,
downward) to +F (upward on the mass), the pulley’s support has to respond
with a force of 2F.

Analyzing angles and force
in Newton’s third law
In order to take angles into account when measuring force, you need to do a
little vector addition. Take a look at Figure 5-8. Here, the mass M isn’t moving,
and you’re applying a force F to hold it stationary. Here’s the question: What
force is the pulley’s support exerting, and in which direction, to keep the
pulley where it is?

You’re sitting pretty here. Because you know that the pulley isn’t moving, you
know that ΣF = 0 on the pulley. So, what are the forces on the pulley? You can
account for the force due to the mass’s weight, Mg. Putting that in terms of
vector components (see Chapter 4), it looks like this (keep in mind that the
Y component of Fmass has to be negative, because it points downward, which
is along the negative Y-axis):

Fmass = (0, –Mg)

You also have to account for the force of the rope on the pulley, which, because
you’re holding the mass stationary and the rope transmits the force you’re
applying, must be Mg to the right — along the positive X-axis. That force looks
like this:

Frope = (Mg, 0)
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You can find the force exerted on the pulley by the rope and the mass by
adding the vectors Fmass and Frope:

Fmass (0, –Mg) + Frope (Mg, 0) = Fmass + rope (Mg, –Mg)

(Mg, –Mg) is the force exerted by the mass and the rope. You know that

ΣF = 0 = Fmass + rope + Fsupport

where Fsupport is the force of the pulley’s support on the pulley. This means that

Fsupport = –Fmass + rope

Therefore, Fsupport must equal

–Fmass + rope = –(Mg, –Mg) = (–Mg, Mg)

As you can see by checking Figure 5-8, the directions of this vector make sense
(which you should always check) — the pulley’s support must exert a force
to the left and upward to hold the pulley where it is.

You can also convert Fsupport to magnitude and direction form (see Chapter 4),
which gives you the full magnitude of the force. The magnitude is equal to

F Mg Mg 2 Mg
2

support

2

= - + =_ _i i

F

45°

M

Figure 5-8:
Using a

pulley at an
angle to

keep a mass
stationary.
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Note that this magnitude is greater than the force you exert or the mass
exerts on the pulley, because the pulley support has to change the direction
of those forces.

What about the direction of Fsupport? You can see from Figure 5-8 that Fsupport

must be to the left and up, but you should see if the math bears this out. If θ
is the angle of Fsupport with respect to the positive X-axis, Fsupportx, the X compo-
nent of Fsupport must be

Fsupportx = Fsupportcosθ

Therefore,

θ = cos-1(Fsupportx / Fsupport)

You know that Fsupportx = –Mg to counteract the force you exert. Because

F 2 Mgsupport=

you can figure that

F Mg
2

F
xsupport

support
=- =

-

Now all you have to do is plug in numbers:
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The direction of Fsupport is –135° with respect to the positive X-axis — just as
you expected!

If you get confused about the signs when doing this kind of work, check your
answers against the directions you know the force vectors actually go in.
Pictures are worth more than a thousand words, even in physics!

Finding equilibrium
In physics, an object is in equilibrium when it has zero acceleration — when
the net forces acting on it are zero. The object doesn’t actually have to be at
rest — it can be going 1,000 miles per hour as long as the net force on it is
zero and it isn’t accelerating. Forces may be acting on the object, but they all
add up, as vectors, to zero.
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For example, take a look at Figure 5-9, where you’ve started your own grocery
store and bought a wire rated at 15N to hang the sign with.

The sign weighs only 8N, so hanging it should be no problem, right? Obviously,
you can tell from my phrasing that you have a problem here. Coolly, you get
out your calculator to figure out what force the wire, F1 in the diagram, has to
exert on the sign to support it. You want the sign to be at equilibrium, which
means that the net force on it is zero. Therefore, the entire weight of the sign,
Mg, has to be balanced out by the upward force exerted on it.

In this case, the only upward force acting on the sign is the Y component of
F1, where F1 is the tension in the wire, as you can see in Figure 5-9. Force
exerted by the horizontal brace, F2, is only horizontal, so it can’t do anything
for you in the vertical direction. Using your knowledge of trigonometry (see
Chapter 4), you can determine from the figure that the Y component of F1 is

F1y = F1 sin 30°

F1

Mg
Grocery

store
sign

F2

30°

60°

Figure 5-9:
Hanging

a sign
requires

equilibrium
from the
involved

forces.

78 Part II: May the Forces of Physics Be with You 

10_554336 ch05.qxd  11/2/05  11:26 PM  Page 78



To hold up the sign, F1y must equal the weight of the sign, Mg:

F1y = F1 sin 30° = Mg

This tells you that the tension in the wire, F1, must be

F1 = Mg / sin 30°

You know that the weight of the sign is 8N, so

F1 = Mg / sin 30° = 8N / 1⁄2 = 16N

Uh oh. Looks like the wire will have to be able to withstand a force of 16N,
not just the 15N it’s rated for. The moral of this tale? You need to get a
stronger wire.

Assume that you get a stronger wire. Now you may be worried about the
brace that provides the horizontal force, F2, you see diagrammed in Figure
5-9. What force does that brace have to be capable of providing? Well, you
know that the figure has only two horizontal forces: Fbrace and the X compo-
nent of F1. And you already know that F1 = 16N. You have all you need to
figure Fbrace. To start, you need to determine what the X component of F1 is.
Looking at Figure 5-9 and using a little trig, you can see that

F1x = F1 cos 30°

This is the force whose magnitude must be equal to Fbrace:

F1x = F1 cos 30° = Fbrace

This tells you that

F1x = F1 cos 30° = F1(.866) = 16N(.866) = 13.9N = Fbrace

The brace you use has to be able to exert a force of 13.9N.

To support a sign of just 8N, you need a wire that supports at least 16N and a
brace that can provide a force of 13.9N. Look at the configuration here — the
Y component of the tension in the wire has to support all the weight of the
sign, and because the wire is at a pretty small angle, you need a lot of tension
in the wire to get the force you need. And to be able to handle that tension,
you need a pretty strong brace.
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Chapter 6

What a Drag: Inclined Planes
and Friction

In This Chapter
� Jumping into gravity

� Examining angles on an inclined plane

� Adjusting for the forces of friction

� Measuring flight paths against gravity

G ravity is the main topic of this chapter. Chapter 5 shows you how much 
force you need to support a mass against the pull of gravity, but that’s

just the start. In this chapter, you find out how to handle gravity along ramps
and friction in your calculations. And you also see how gravity bends the tra-
jectory of objects flying through the air.

Don’t Let It Get You Down:
Dealing with Gravity

When you’re on the surface of the earth, the pull of gravity is constant and
equal to mg, where m is the mass of the object being pulled by gravity and g
is the acceleration due to gravity:

g = 9.8 meters per second2 = 32.2 feet per second2

Acceleration is a vector, meaning it has a direction and a magnitude (see
Chapter 4), so this equation really boils down to g, an acceleration straight
down if you’re standing on the earth. The fact that Fgravity = mg is important,
because it says that the acceleration of a falling body doesn’t depend on
its mass:

Fgravity = ma = mg
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In other words,

ma = mg

Therefore, a = g, no matter the object’s weight (a heavier object doesn’t fall
faster than a lighter one). Gravity gives any freely falling body the same accel-
eration downward (g near the surface of Earth).

This discussion sticks pretty close to the ground, err, Earth, where the accel-
eration due to gravity is constant. But Chapter 7 takes off into orbit, looking at
gravity from the moon’s point of view. The farther you get away from Earth,
the less its gravity affects you. For the purposes of this chapter, gravity acts
downward, but that doesn’t mean you can only use equations like Fgravity = mg
to watch what goes up when it must come down. You can also start dealing
with objects that go up at angles.

Leaning Vertical: An Inclined Plane
Plenty of gravity-oriented problems in introductory physics involve ramps,
so ramps are worth taking a look at. Check out Figure 6-1. Here, a cart is
about to roll down a ramp. The cart travels not only vertically but also along
the ramp, which is inclined at an angle θ.

Say, for example, that θ = 30° and that the length of the ramp is 5.0 meters. How
fast will the cart be going at the bottom of the ramp? Gravity will accelerate
the cart down the ramp, but not the full force of gravity. Only the component
of gravity acting along the ramp will accelerate the cart.

What’s the component of gravity acting along the ramp if the vertical force
due to gravity on the cart is Fg? Take a look at Figure 6-2, which details some
of the angles and vectors (see Chapter 4 for a detailed discussion of vectors).
To resolve the vector Fg along the ramp, you start by figuring out the angle
between Fg and the ramp. Here’s where having a knowledge of triangles

mg

θ

Figure 6-1:
Racing a

cart down
an inclined

ramp.
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comes into play (see Chapter 2) — a triangle’s angles have to add up to 180°.
The angle between Fg and the ground is 90°, and you know that the ramp’s
angle to the ground is θ. And from Figure 6-2, you know that the angle
between Fg and the ramp must be 180° – 90° – θ, or 90° – θ.

Figuring out angles the easy way
Physics instructors use a top-secret technique to figure out what the angles
between vectors and ramps are, and I’m here to let you in on the secret. The
angles have to relate to θ in some way, so what happens if θ goes to zero? In
that case, the angle between Fg from the example in the previous section and
the ramp from the previous section is 90°. What happens if θ becomes 90°?
In that case, the angle between Fg and the ramp is 90°.

Based on this info, you can make a pretty good case that the angle between
Fg and the ramp is 90° – θ. So, when you’re at a loss as how to figure out an
angle with respect to another angle, let the other angle go to 90° and then 0°
and see what happens. It’s an easy shortcut.

Finding the component of Fg along a ramp
Now you’re wondering, “What’s the component of Fg along the ramp?” Now
that you know that the angle between Fg and the ramp is 90° – θ (see the 
previous section), you can figure the component of Fg along the ramp (called
resolving Fg along the ramp):

Fg along the ramp = Fg cos (90° – θ)

If you love trigonometry as much as the normal person (see Chapters 2 and 4),
you may also know that (it isn’t necessary to know this; the previous equation
works just fine)

sin θ = cos (90° – θ)

Therefore,

Fg along the ramp = Fg cos (90° – θ) = Fg sin θ along the ramp

mg

Fgsinθ

90°−θ

θ

Figure 6-2:
A cart on 

a ramp with
a force
vector.
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This makes sense, because when θ goes to zero, this force goes to zero as well,
because the ramp is horizontal. And when θ goes to 90°, this force becomes Fg,
because the ramp is vertical. The force that accelerates the cart is Fg sin θ
along the ramp. What does that make the acceleration of the cart, if its mass is
800 kg? Easy enough:

Fg sin θ = ma

Therefore,

a = Fg sin θ / m

This becomes even easier when you remember that Fg = mg:

a = Fg sin θ / m = mg sin θ / m = g sin θ

At this point, you know that a = g sin θ of the cart along the ramp. This equa-
tion holds for any object gravity accelerates down a ramp, if friction doesn’t
apply. The acceleration of an object along a ramp at angle θ to the ground is g
sin θ in the absence of friction.

Figuring the speed along a ramp
All you speed freaks may be wondering: “What’s the speed of the cart at the
bottom of the ramp?” This looks like a job for the following equation (pre-
sented in Chapter 3):

vf
2 - vo

2 = 2as

The initial speed, vo, is 0, and the distance, s, is 5.0 meters here, so you get

vf
2 = 2as = 2(g sin θ)(5.0 meters) = 49 meter2 per second2

This works out to vf = 7.0 meters per second, or about 15 miles per hour.
Doesn’t sound too fast until you try to stop an 800-kg automobile at that
speed (don’t try it at home). Actually, this example is a little simplified,
because some of the motion goes into the angular velocity of the wheels
and so on. (More on this topic in Chapter 10.)

Playing with acceleration
Quick: How fast would an ice cube on the ramp from Figures 6-1 and 6-2 go at
the bottom of the ramp if friction weren’t an issue? Answer: the same speed
you figure in the previous section: 7.0 meters per second. The acceleration
of an object along a ramp, which is at an angle θ with respect to the ground,
is g sin θ. The mass of the object doesn’t matter — this simply takes into 
consideration the component of the acceleration due to gravity that acts
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along the ramp. And after you know the acceleration along the ramp’s sur-
face, which is a distance s, you can use this equation:

vf
2 = 2as

Mass doesn’t enter into it.

Getting Sticky with Friction
You know all about friction. It’s the force that holds objects in motion back —
or so it may seem. Actually, friction is essential for everyday living. Imagine a
world without friction: no way to drive a car on the road, no way to walk on
pavement, no way to pick up that ham sandwich. Friction may seem like an
enemy to the hearty physics follower, but it’s also your friend.

Friction comes from the interaction of surface irregularities. If you introduce
two surfaces that have plenty of microscopic pits and projections, you pro-
duce friction. And the harder you press those two surfaces together, the
more friction you create as the irregularities interlock more and more.

Physics has plenty to say about how friction works. For example, imagine that
you decide to put all your wealth into a huge, gold ingot, which you see in
Figure 6-3, only to have someone steal your fortune. The thief applies a force
to the ingot to accelerate it away, as the police start after him. Thankfully, the
force of friction comes to your rescue, because the thief can’t accelerate away
nearly as fast as he thought — all that gold drags heavily along the ground.

So, if you want to get quantitative here, what would you do? You’d say that the
pulling force, Fpull, minus the force due to friction, Ffriction, is equal to the net
force in the X-axis direction, which gives you the acceleration in that direction:

Fpull – Ffriction = ma

That looks straightforward enough. But how do you calculate Ffriction? You
start by calculating the normal force.

Ffriction Fpull

Fnormal

Ground

Figure 6-3:
The force of

friction
makes it
tough to

move large
objects.
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Calculating friction and the normal force
The force of friction, Ffriction, always acts to oppose the force you apply when
you try to move an object. Friction is proportional to the force with which an
object pushes against the surface you’re trying to slide it along.

As you can see in Figure 6-3, the force with which the gold ingot presses against
the ground is just its weight, or mg. The ground presses back with the same
force. The force that pushes up against the ingot is called the normal force, and
its symbol is N. The normal force isn’t necessarily the same as the force due to
gravity — it’s the force perpendicular to the surface an object is sliding on. In
other words, the normal force is the force pushing the two surfaces together,
and the stronger the normal force, the stronger the force due to friction.

In the case of Figure 6-3, because the ingot slides along the ground, the normal
force has the same magnitude as the weight of the ingot, so Fnormal = mg. You
have the normal force, which is the force pressing the ingot and the ground
together. But where do you go from there? You find the force of friction.

Conquering the coefficient of friction
The force of friction comes from the surface characteristics of the materials that
come into contact. How can physics predict those characteristics theoreti-
cally? It doesn’t. You see plenty of general equations that predict the general
behavior of objects, like ΣF = ma (see Chapter 5). But detailed knowledge of
the surfaces that come into contact isn’t something that physics can come up
with theoretically, so it wimps out on the theoretical part here and says that
the characteristics are things you have to measure yourself.

What you measure is how the normal force (see the previous section) relates
to the friction force. It turns out that to a good degree of accuracy, the two
forces are proportional, and you can use a constant, µ, to relate the two:

Ffriction = µ Fnormal

Usually, you see this equation written in the following terms:

FF = µ FN

This equation tells you that when you have the normal force, all you have to
do is multiply it by a constant to get the friction force. This constant, µ, is
called the coefficient of friction, and it’s something you measure for a particu-
lar surface — not a value you can look up in a book.

The coefficient of friction is in the range of 0.0 to 1.0. The value of 0.0 is only
possible if you have a surface that has absolutely no friction at all. The maxi-
mum possible force due to friction, FF, is FN, the normal force. Among other
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things, this means that if you rely solely on the force of friction to keep you in
place, you can’t push a car with any force greater than your weight. That’s
the maximum value, and it’s possible only if µ = 1.0. (If you dig yourself in
when pushing the car, that’s a different question, because you’re not just rely-
ing on the force of friction to keep you in place.)

FF = µ FN isn’t a vector equation (see Chapter 4), because the force due to fric-
tion, FF, isn’t in the same direction as the normal force, FN. As you can see in
Figure 6-3, FF and FN are perpendicular. FN is always at right angles to the sur-
faces providing the friction, because it’s the force that presses the two surfaces
together, and FF is always along those surfaces, because it opposes the direc-
tion of sliding.

The force due to friction is independent of the contact area between the two
surfaces, which means that even if you have an ingot that’s twice as long and
half as high, you still get the same frictional force when dragging it over the
ground. This makes sense, because if the area of contact doubles, you may
think that you should get twice as much friction. But because you’ve spread
out the gold into a longer ingot, you halve the force on each square centime-
ter, because less weight is above it to push down.

Okay, are you ready to get out your lab coat and start calculating the forces
due to friction? Not so fast — it turns out that you must factor in two differ-
ent coefficients of friction for each type of surface.

Understanding static and kinetic friction
The two different coefficients of friction for each type of surface are a coeffi-
cient of static friction and a coefficient of kinetic friction.

The reason you have two different coefficients of friction is that you involve
two different physical processes. When two surfaces are static, or not
moving, and pressing together, they have the chance to interlock on the
microscopic level, and that’s static friction. When the surfaces are sliding,
the microscopic irregularities don’t have the same chance to connect, and
you get kinetic friction. What this means in practice is that you must account
for two different coefficients of friction for each surface: a static coefficient
of friction, µs, and a kinetic coefficient of friction, µk.

Starting motion with static friction
Between static friction and kinetic friction, static friction is stronger, which
means that the static coefficient of friction for a surface, µs, is larger than the
kinetic coefficient of friction, µk. That makes sense, because static friction
comes when the two surfaces have a chance to fully interlock on the micro-
scopic level, and kinetic friction happens when the two surfaces are sliding,
so only the more macroscopic irregularities can connect.
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You create static friction when you’re pushing something that starts at rest.
This is the friction that you have to overcome to get something to slide.

For example, say that the static coefficient of friction between the ingot from
Figure 6-3 and the ground is 0.3, and that the ingot has a mass of 1,000 kg
(quite a fortune in gold). What’s the force that a thief has to exert to get the
ingot moving? You know from the section “Calculating friction and the normal
force” that

FF = µs FN

And because the surface is flat, the normal force — the force that drives the
two surfaces together — is in the opposite direction of the ingot’s weight and
has the same magnitude. That means that

FF = µs FN = µs mg

where m is the mass of the ingot, and g is the acceleration due to gravity on
the surface of the earth. Plugging in the numbers gives you

FF = µs FN = µs mg = (0.3)(1,000kg)(9.8 meters per second2) = 2,940N

The thief needs 2,940N just to get the ingot started, but what’s that measure-
ment in pounds? There are 4.448 Newtons to a pound, so that translates to
about 661 pounds of force. Pretty respectable force for any thief. What hap-
pens after the burly thief gets the ingot going? How much force does he need
to keep it going? He needs to look at kinetic friction.

Sustaining motion with kinetic friction
The force due to kinetic friction, which occurs when two surfaces are already
sliding, isn’t as strong as static friction, but that doesn’t mean you can pre-
dict what the coefficient of kinetic friction is going to be, even if you know the
coefficient of static friction — you have to measure both forces.

You can notice yourself that static friction is stronger than kinetic friction.
Imagine that a box you’re unloading onto a ramp starts to slide. To make it
stop, you can put your foot in its way, and after you stop it, the box is more
likely to stay put and not start sliding again. That’s because static friction,
which happens when the box is at rest, is greater than kinetic friction, which
happens when the box is sliding.

Say that the ingot (from Figure 6-3), which weighs 1,000 kg, has a coefficient of
kinetic friction, µk, of 0.18. How much force does the thief need to pull the ingot
along during his robbery? You have all you need — the kinetic coefficient of
friction:

FF = µk FN = µk mg
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Putting in the numbers gives you

FF = µk FN = µk mg = (0.18)(1,000 kg)(9.8 meters per second2) = 1,764N

The thief needs 1,764N to keep your gold ingot sliding while evading the
police. That converts to about 397 pounds of force (4.448N to a pound) — not
exactly the kind of force you can keep going while trying to run at top speed,
unless you have some friends helping you. Lucky you! Physics states that the
police are able to recover your gold ingot. The cops know all about friction —
taking one look at the prize, they say, “We got it back; you drag it home.”

Handling uphill friction
The previous sections of this chapter deal with friction on level ground, but
what if you have to drag a heavy object up a ramp? Say, for example, you
have to move a refrigerator.

You want to go camping, and because you expect to catch plenty of fish, you
decide to take your 100-kg refrigerator with you. The only catch is getting the
refrigerator into your vehicle, as shown in Figure 6-4. The refrigerator has to
go up a 30° ramp, which happens to have a static coefficient of friction of 0.2
and a kinetic coefficient of friction of 0.15 (see the previous two sections for
these topics). The good news is that you have two friends to help you move
the fridge. The bad news is that you can supply only 350N of force each, so
your friends panic.

“Don’t worry,” you say, pulling out your calculator. “I’ll check out the physics.”
Your two friends relax. The minimum force needed to push that refrigerator
up the ramp, Fpush, has to counter the component of the weight of the refriger-
ator acting along the ramp and the force due to friction. I tackle these one at
a time in the following sections.

mg

Ramp

Fpush
Fn

θ

Ff

Figure 6-4:
You must

battle
different
types of

force and
friction to

push an
object up a

ramp.
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Figuring out the component weight
To start figuring the component of the weight of the refrigerator acting along
the ramp, take a look at Figure 6-4. The weight of the refrigerator acts down-
ward. The angles in a triangle formed by the ground, the ramp, and the
weight vector must add up to 180°. The angle between the weight vector and
the ground is 90°, and the angle between the ground and the ramp is θ, so the
angle between the ramp and the weight vector is

180° – 90° – θ = 90° – θ

The weight acting along the ramp will be

mg cos(90° – θ) = mg sin θ

The minimum force you need to push the refrigerator up the ramp while
counteracting the component of its weight along the ramp and the force of
friction, Ff, is

Fpush = mg sin θ + Ff

Determining the force of friction
The next question: What’s the force of friction, Ff? Should you use the static
coefficient of friction or the kinetic coefficient of friction? Because the
static coefficient of friction is greater than the kinetic coefficient of friction,
it’s your best choice. After you and your friends get the refrigerator to start
moving, you can keep it moving with less force. Because you’re going to use
the static coefficient of friction, you can get Ff this way:

FF = µs FN

You also need the normal force, FN, to continue (see the section “Calculating
friction and the normal force” earlier in this chapter). FN is the component of
the weight perpendicular to (also called normal to) the ramp. You know that
the angle between the weight vector and the ramp is 90° – θ, as shown in
Figure 6-5.

mg

90° − θ

Fn

Figure 6-5:
The normal

and
gravitational

forces
acting on
an object.
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Using some trigonometry (see Chapter 2), you know that

FN = mg sin (90° – θ) = mg cos θ

You can verify this by letting θ go to zero, which means that FN becomes mg,
as it should. Now you know that

Fpull = mg sin θ + µs mg cos θ

All you have left is plugging in the numbers:

Fpull = mg sin θ + µs mg cos θ = (100)(9.8)(sin 30°) + (0.2)(100)(9.8)(cos 30°)

All this breaks down to

(100)(9.8)(sin 30°) + (0.2)(100)(9.8)(cos 30°) = 490N + 170N = 660N

You need 660N to push the refrigerator up the ramp. In other words, your two
friends, who can exert 350N each, are enough for the job. “Get started,” you
say, pointing confidently at the refrigerator. Unfortunately, as they chug their
way up the ramp, one of them stumbles. The refrigerator begins to slide
down the ramp, and they jump off, abandoning it to its fate.

Object on the loose: Calculating how far it will slide
Assuming that the ramp and the ground both have the same kinetic coefficient
of friction, how far will the refrigerator your friends drop in the previous sec-
tion slide? Take a look at Figure 6-6, which shows the refrigerator as it slides
down the 3.0-meter ramp. As you watch with dismay, it picks up speed. A car
is parked behind the ramp, only 7.5 meters away. Will the errant refrigerator
smash it? You have a tense moment as you pull out your calculator to check.

Figuring the acceleration
When an object slides downward, as you see in Figure 6-6, the forces acting
on it change. With the fridge, there’s no more Fpull force to push it up the
ramp. Instead, the component of its weight acting along the ramp pulls the

mg

Ff Fn

θ

Figure 6-6:
All the
forces

acting on an
object

sliding down
a ramp.
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refrigerator downward. And while it falls down, gravity opposes that force.
So, what force accelerates the refrigerator downward? You find in the section
“Figuring out the component weight” that the weight acting along the ramp is

mg cos(90° – θ) = mg sin θ

And the normal force is

FN = mg sin (90° – θ) = mg cos θ

which means that the kinetic force of friction is

FF = µk FN = µk mg sin (90° – θ) = µk mg cos θ

The net force accelerating the refrigerator down the ramp, Faccleration, is the 
following:

Faccleration = mg sin θ – FF = mg sin θ – µk mg cos θ

Note that you subtract FF, the force due to friction, because that force always
acts to oppose the force causing the object to move. Plugging in the numbers
gives you

Faccleration = (100)(9.8)(sin 30°) – (0.15)(100)(9.8)(cos 30°) = 
490N – 127N = 363N

The force pulling the refrigerator down the ramp is 363N. Because the refrig-
erator is 100 kg, you have an acceleration of 363N / 100 kg = 3.63 meters per
second2, which acts along the entire 3.0-meter ramp. You can calculate the
final speed of the refrigerator at the bottom of the ramp this way:

vf
2 = 2as

Plugging in the numbers, you get

vf
2 = 2as = 2(3.63 meters per second2)(3.0 meters) = 21.8 meters2 per second2

This finally gives you 4.67 meters per second as the final speed of the refrig-
erator when it starts traveling along the street toward the parked car.

Figuring the distance traveled
With your calculations from the previous section, do you know how far the
refrigerator will travel after your friends let go of it on a ramp? You start
entering numbers into your calculator as your friends watch tensely.
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You have a refrigerator heading down the street at 4.67 meters per second,
and you need to calculate how far it’s going to go. Because it’s traveling along
the pavement now, you need to factor in the force due to friction. And gravity
will no longer accelerate the object, because the street is flat. Sooner or later,
it will come to a stop. But how close will it come to a car that’s parked in the
street 7.5 meters away? As usual, your first calculation is the force acting on
the object. In this case, you figure the force due to friction:

FF = µk FN

Because the refrigerator is moving along a horizontal surface, the normal
force, FN, is simply the weight of the refrigerator, mg, which means the force
of friction is

FF = µk FN = µk mg

Plugging in the data gives you

FF = µk FN = µk mg = (0.15)(100)(9.8) = 147N

A force of 147N acts to stop the sliding refrigerator that’s now terrorizing the
neighborhood. So, how far will it travel before it comes to rest? Because the
force of friction in this case acts to decelerate the refrigerator, the accelera-
tion is negative:

a = FF / m= –147N / 100 kg = –1.47 meters per second2

You can find the distance through the equation

vf
2 – vo

2 = 2as

The distance the refrigerator slides is

s = (vf
2 – vo

2) / 2a

And in this case, you want the final velocity, vf, to be zero, so this equation
breaks down to

s = (vf
2 – vo

2) / 2a = (02 – 4.672) / 2(–1.47) = 7.4 meters

Whew! The refrigerator slides only 7.4 meters, and the car is 7.5 meters away.
With the pressure off, you watch the show as your panic-stricken friends hurtle
after the refrigerator, only to see it come to a stop right before hitting the car.
Just as you expected.
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Determining How Gravity Affects
Airborne Objects

Chapter 7 discusses gravity out in space, but I have topics to cover in this
chapter when it comes to gravity near the surface of Earth. You’ll come
across many physics problems that deal with gravity issues, and this section
is all about how what goes up must come down — the behavior of objects
under the influence of constant gravitational attraction. Think of this section
as a bridge between the friction and inclined plane information covered ear-
lier in this chapter, and the gravity information to come in Chapter 7.

Going up: Maximum height
Using forces such as acceleration, gravity, and velocity, you can determine
how far an object can travel straight up in the air — a good skill to have at
any July 4th celebration.

Say, for example, that on your birthday, your friends give you just what
you’ve always wanted: a cannon. It has a muzzle velocity of 860 meters per
second, and it shoots cannonballs that weigh 10 kg. Anxious to show you
how it works, your friends shoot it off. The only problem: The cannon is
pointing straight up. Wow, you think, watching the cannonball. You wonder
how high it will go, so everyone starts to guess. Because you know your
physics, you can figure this one out exactly.

You know the initial velocity, vo, of the cannonball, and you know that gravity
will accelerate it downward. How can you determine how high the ball will
go? At its maximum height, its speed will be zero, and then it will head down
to earth again. Therefore, you can use the following equation at its highest
point, where its speed will be zero:

vf
2 – vo

2 = 2as

where s is the cannonball’s distance. This gives you

s = (vf
2 – vo

2) / 2a

Plugging in what you know — vf is 0, vo is 860 meters per second, and the
acceleration is g downward (g being 9.8 meters per second2, the acceleration
due to gravity on the surface of the Earth), or –g — you get this:

s = (vf
2 – vo

2) / 2a = (02 – 8602) / 2(–9.8) = 3.8 × 104 meters
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Whoa! The ball will go up 38 kilometers, or nearly 24 miles. Not bad for a
birthday present. Looking around at all the guests, you wonder how long it
will take the cannonball to reach its maximum height.

Floating on air: Hang time
How long would it take a cannonball shot 24 miles straight up (see the previ-
ous section) to reach its maximum height, where it’s hanging at 0 velocity?
You look at a somewhat similar problem in Chapter 4, where a golf ball falls
off a cliff; there, you use the equation

s = 1⁄2 at2

to determine how long the ball is in the air, given the height of the cliff. This
equation is one way to come to the solution, but you have all kinds of ways to
solve a problem like this. For example, you know that the speed of the can-
nonball at its maximum height is 0, so you can use the following equation to
get the time the cannonball will take to reach its maximum height:

vf = vo + at

Because vf = 0 and a = –g (9.8 meters per second2), it works out to this:

0 = vo – gt

In other words,

t = vo / g

You enter the numbers into your calculator as follows:

t = vo / g = 860 / 9.8 = 88 seconds

It takes 88 seconds for the cannonball to reach its maximum height. But what
about the total time for the trip?

Going down: Factoring the total time
How long would it take a cannonball shot 24 miles straight into the air to
complete its entire trip — up and then down, from muzzle to lawn — half of
which takes 88 seconds (to reach its maximum height; see the previous sec-
tions)? Flights like the one taken by the cannonball are symmetrical; the trip
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up is a mirror of the trip down. The speed at any point on the way up has
exactly the same magnitude as on the way down, but on the way down, the
velocity is in the opposite direction. This means that the total flight time is
double the time it takes the cannonball to reach its highest point, or

ttotal = 2(88) = 176 seconds

You have 176 seconds, or 2 minutes and 56 seconds, until the cannonball hits
the ground.

Firing an object at an angle
In the previous sections, you examine a cannonball shot straight into the air
with your new cannon you receive as a birthday present. Imagine now that
one of your devious friends decides to fire the cannonball at an angle in order
to hit a target, shown in Figure 6-7. The following sections cover the cannon-
ball’s motion when you shoot at an angle.

Breaking down a cannonball’s motion into its components
How do you handle the motion of a cannonball shot at an angle? Because you
can always break motion in two dimensions up into X and Y components, and
because gravity acts only in the Y component, your job is easy. All you have
to do is break the initial velocity into X and Y components (see Chapter 4 for
the basics of this task):

vx = vo cos θ

vy = vo sin θ

These velocity components are independent, and gravity acts only in the
Y direction, which means that vx is constant; only vy changes with time:

vy = vo sin θ – gt

θ

Figure 6-7:
Shooting a
cannon at

a particular
angle with
respect to

the ground.
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If you want to know the X and Y positions of the cannonball at any time, you
can easily find them. You know that X is simply

x = vxt = vo cos θ t

And because gravity accelerates the cannonball vertically, here’s what Y
looks like (the t2 here is what gives the cannonball’s trajectory in Figure 6-7
its parabolic shape):

y = vyt – 1⁄2 gt2

You figure out in previous sections the time it takes a cannonball to hit the
ground when shot straight up:

t = 2vy / g

Knowing that time also gives you the range of the cannon in the X direction,

s v t g
2v v

g
2v sin cosθ θ

x
x y o

2

= = =

So there you have it — now you can figure out the range of the cannon given
the speed of the cannonball and the angle at which it was shot.

Discovering the cannonball’s maximum range
What’s the range for your new cannon if you aim it at 45°, which will give you
your maximum range? The equation you use looks like this:

.9 8
2 860 45 45

s v t g
2v v

g
2v sin cos sin cosθ θ

2

x
x y o

2
c c

= = = =
^ h

= 75 kilometers

Your range is 75 kilometers, or nearly 47 miles. Not bad.
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Chapter 7

Circling around Circular
Motions and Orbits

In This Chapter
� Examining uniform motion

� Circling with angular acceleration

� Feeling the pull of centripetal force

� Incorporating displacement, velocity, and acceleration

� Orbiting with Newton’s laws and gravity

� Staying airborne with vertical circular motion

Circular motion can include rockets moving around planets, racecars
whizzing around a track, or bees buzzing around a hive. The previous

chapters discuss concepts like displacement, velocity, and acceleration;
now you can find out how these forces work when you’re moving in a circle.

You have circular equivalents for each of the forces I’ve mentioned, which
makes handling circular motion no problem at all — you merely calculate
angular displacement, angular velocity, and angular acceleration. Instead
of dealing with linear displacement here, however, you deal with angular 
displacement as an angle. Angular velocity indicates what angle you sweep
through in so many seconds, and angular acceleration gives you the rate of
change in the angular velocity. All you have to do is take linear equations
and substitute the angular equivalents: angular displacement for displace-
ment, angular velocity for velocity, and angular acceleration for acceleration.

Time to plunge into this chapter and get dizzy with circular motion.
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Staying the Course: Uniform
Circular Motion

An object with uniform circular motion travels in a circle with a constant
speed. Practical examples may be hard to come by, unless you see a racecar
driver with his accelerator stuck or a clock with a seconds-hand that moves
in constant motion. Take a look at Figure 7-1, where a golf ball tied to a string
is whipping around in circles. The golf ball is traveling at a uniform speed as
it moves around in a circle (not in a uniform velocity, because its direction
changes all the time), so you can say it’s traveling in uniform circular motion.

Any object that travels in uniform circular motion always takes the same
amount of time to move completely around the circle. That time is called
its period, designated by T. You can easily relate the golf ball’s speed to its
period, because you know that the distance the golf ball must travel each
time around the circle is the circumference of the circle, which, if r is the
radius of the circle, is 2πr. So, you can get the equation for finding an object’s
period by first finding its speed:

v = 2πr / T

If you switch T and v around, you get

T = 2πr / v

For example, say that you’re spinning a golf ball in a circle at the end of a 
1.0-meter string every half-second. How fast is the ball moving? Time to plug
in the numbers:

v = 2πr / T = [2(3.14)(1.0)] / 1⁄2 = 12.6 meters/second

The ball moves at a speed of 12.6 meters per second. Just make sure you
have a strong string!

a c

v

θ

Figure 7-1:
A golf ball
on a string

travels with
constant

speed, but it
never

makes it to
the green.
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Changing Direction: Centripetal
Acceleration

In order to keep an object moving in circular motion, its velocity constantly
changes direction, as you can see in Figure 7-2. Because of this fact, accelera-
tion is created, called centripetal acceleration — the acceleration needed to
keep an object moving in circular motion. At any point, the velocity of the
object is perpendicular to the radius of the circle.

This rule holds true for all objects: The velocity of an object in uniform circu-
lar motion is always perpendicular to the radius of the circle.

If the string holding the ball in Figure 7-2 breaks at the top, bottom, left, or
right moment you see in the illustration, which way would the ball go? If the
velocity points to the left, the ball would fly off to the left. If the velocity
points to the right, the ball would fly off to the right. And so on. That’s not
intuitive for many people, but it’s the kind of physics question that may come
up in introductory courses.

You must also bear in mind that the velocity of an object in uniform circular
motion is always at right angles to the radius of the object’s path. At any one
moment, the velocity points along the tiny section of the circle’s circumference
where the object is, so the velocity is called tangential to the circle.

Controlling velocity with 
centripetal acceleration
What’s special about circular motion is that when an object travels in it, its
speed is constant, which means that the magnitude of the object’s velocity
doesn’t change. Therefore, acceleration can have no component in the same
direction as the velocity; if it could, the velocity’s magnitude would change.

v

v

v

v

Figure 7-2:
Velocity

constantly
changes

direction to
maintain an

object’s
uniform
circular
motion.
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However, the velocity’s direction is constantly changing — it always bends so
that the object maintains movement in a constant circle. To make that happen,
the object’s centripetal acceleration is always concentrated toward the center
of the circle, perpendicular to the object’s velocity at any one time. It changes
the direction of the object’s velocity while keeping the magnitude of the veloc-
ity constant.

In the ball’s case (see Figures 7-1 and 7-2), the string exerts a force on the ball
to keep it going in a circle — a force that provides the ball’s centripetal accel-
eration. In order to provide that force, you have to constantly pull on the ball
toward the center of the circle (time for a good thought experiment: Picture
what it feels like, force-wise, to whip an object around on a string). You can
see the centripetal acceleration vector, ac, in Figure 7-1.

If you accelerate the ball toward the center of the circle to provide the cen-
tripetal acceleration, why doesn’t it hit your hand? The answer is that the
ball is already moving at a high speed. The force, and therefore the accelera-
tion, you provide always acts at right angles to the velocity and therefore
changes only the direction of the velocity, not its magnitude.

Finding the magnitude of the 
centripetal acceleration
You always have to accelerate an object toward the center of the circle to
keep it moving in circular motion. So, can you find the magnitude of the
acceleration you create? No doubt. If an object is moving in uniform circular
motion at speed v and radius r, you can find the centripetal acceleration with
the following equation:

ac = v2 / r

For a practical example, imagine you’re driving around curves at a high
speed. For any constant speed, you can see from the equation ac = v2 / r that
the centripetal acceleration is inversely proportional to the radius of the
curve, which you know from experience. On tighter curves, your car needs
to provide a greater centripetal acceleration.

Pulling Toward the Center:
Centripetal Force

When you’re driving a car, you create centripetal acceleration by the friction
of your tires on the road. How do you know what force you need to create
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to turn the car at a given speed and turning radius? That depends on the 
centripetal force — the center-seeking, inward force needed to keep an object
moving in uniform circular motion.

You may have an easy time swinging a ball on a string in a circle (see Figure 7-1),
but if you replace the small ball with a cannonball, watch out. You now have
to whip 10 kg around on the end of a 1.0-meter string every half second. As
you can tell, you need a heck of a lot more force.

Because force equals mass times acceleration, F = ma, and because centripetal
acceleration is equal to v2 / r (see the previous section), you can determine
the centripetal force needed to keep an object moving in uniform circular
motion with mass m, speed v, and radius r with the following equation:

Fc = mv2 / r

This equation tells you how much force you need to move a given object in a
circle at a given radius and speed. (Note: Objects moving in circles with the
same radius can have different speeds, but you need more force for faster
speeds.) For example, the ball from Figures 7-1 and 7-2 is moving at 12.6 meters
per second on a 1.0-meter string — how much force do you need to make a
10-kg cannonball move in the same circle at the same speed? Here’s what the
equation looks like:

Fc = mv2 / r = [(10)(12.6)2] / 1.0 = 1,590 Newtons

You need about 1,590N, or about 357 pounds of force (4.448 Newtons in a
pound; see Chapter 5 for more on Newtons). Pretty hefty, if you ask me; I just
hope your arms can take it.
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Is centripetal force actually 
centripetally-needed force?

Centripetal force isn’t some new force that
appears out of nowhere when an object travels
in a circle; it’s the force the object needs to keep
traveling in that circle. For that reason, it may be
better to refer to it as centripetal-needed force.
I’ve seen countless people confused because
they think centripetal force is a new force that
just magically happens. The confusion is under-
standable, because all the other forces that you
study — such as the force of gravity or friction —
are real forces that apply to various objects.

Centripetal force, on the other hand, is the force
you need to keep the object going in a circle —
and to keep it going, the vector sum of all the
other forces on that object must at least give you
the centripetal force that you need. In other
words, when you push an object with a force of
5.0N, that object feels a real force of 5.0N. But if
you want to make an object travel in a circle, and
it needs a force of 5.0N to perform the task, it
won’t travel in a circle until you apply the needed
force.
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Negotiating Curves and Banks:
Centripetal Force through Turns

Imagine that you’re driving a car, riding a bike, or jogging on a surface and
you come to a banked curve. The steeper the bank of the surface, the more
centripetal force you need to steer a car, a bike, or yourself around it at a
high speed. The force you need comes from the friction of the tires with the
surface or from the friction of your shoes against the ground; if the surface is
covered with a foreign substance such as ice, you produce less friction, and
you can’t turn as safely at high speeds.

For example, say you’re sitting in the passenger seat of the car, approaching
a tight turn with a 10.0-meter radius. You know that the coefficient of static
friction (see Chapter 6) is 0.8 on this road (you use the coefficient of static
friction because the tires aren’t slipping on the road’s surface) and that the
car has a mass of about 1,000 kg. What’s the maximum speed the driver can
go and still keep you safe? You get out your calculator as the driver turns to
you with raised eyebrows. The frictional force needs to supply the centripetal
force, so you come up with the following:

Fc = mv2 / r = µs mg

where m is the mass of the car, v is the velocity, r is the radius, µ is the coeffi-
cient of static friction, and g is the acceleration due to gravity, 9.8 meters per
second2. Solving for the speed on one side of the equation gives you

v grµ s=

This looks simple enough — you just plug in the numbers to get

perv gr 0.8 9.8 10.0 8.9 meters secondµ s= = =^ ^ ^h h h

You calculate 8.9 meters per second, or about 20 miles per hour. You look at
the speedometer and see a speed of 18 miles per hour. You can negotiate the
turn safely at your present speed. However, you can’t expect everyone to
slow dramatically when driving on a highway, which is why highway curves
are banked to make the turning easier. Some of your car’s weight helps pro-
vide some of the needed centripetal force.

Take a look at Figure 7-3, which shows your car banking around a turn.
What should the angle θ be if drivers go around the 200-meter-radius turn at
60 miles per hour? The engineers can make the driving experience enjoyable
if they bank the turn so that drivers garner the centripetal force needed to go
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around the turn entirely by the component of their cars’ weights acting
toward the center of the turn’s circle. That component is Fn sin θ (Fn is the
normal force; see Chapter 6), so

Fc = Fn sin θ = mv2 / r

To find the centripetal force, you need the normal force, Fn. If you look at
Figure 7-3, you can see that Fn is a combination of the centripetal force due
to the car banking around the turn and the car’s weight. The purely vertical
component of Fn must equal mg, because no other forces are operating verti-
cally, so

Fn cos θ = mg

or

Fn = mg / cos θ

Plugging this result into the equation for centripetal force gives you

Fc = Fn sin θ = (mg sin θ / cos θ) = mv2 / r

Because sin θ divided by cos θ = tan θ, you can also write this as

Fc = Fn sin θ = (mg sin θ) / cos θ = mg tan θ = mv2 / r

The equation finally breaks down to

θ = tan-1(v2 / gr)

mg

Fn

Fnsinθ

θ

θ
θ

Figure 7-3:
The forces
acting on a

car banking
around
a turn.
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You don’t have to memorize this result, in case you’re panicking. You can
always come up with the equation if you’re given some information. θ = tan-1

(v2 / gr) is the kind of equation used by highway engineers when they have
to bank curves (notice that the mass of the car cancels out, meaning that
it holds for vehicles regardless of weight). To solve the problem I present 
earlier, you can plug in the numbers; 60 miles per hour is about 27 meters
per second, and the radius of the turn is 200 meters, so:

θ = tan-1(v2 / gr) = tan-1(272 / [(9.8)(200)]) = 20°

The designers should bank the turn at about 20° to give drivers a smooth
experience. Good work; you’d make an excellent highway engineer!

Getting Angular: Displacement,
Velocity, and Acceleration

If you’re more of a point a to point b kind of person, you can describe circular
motion in a linear fashion, but it takes a little getting used to. Take a look at
the ball in Figure 7-1 — it doesn’t cover distance in a linear way. You can’t
chart the X-axis or Y-axis coordinate of the golf ball with a straight line, but
its path of motion provides one coordinate that you can graph as a straight
line in uniform circular motion — the angle, θ. If you graph the angle, the
total angle the ball travels increases in a straight line. When it comes to circu-
lar motion, therefore, you can think of the angle, θ, just as you think of the
displacement, s, in linear motion (see Chapter 3 for more on displacement).

The standard unit of measurement for the linear version of circular motion is
the radian, not the degree. A full circle is made up of 2π radians, which is also
360°, so 360° = 2π radians. If you travel in a full circle, you go 360°, or 2π radi-
ans. A half-circle is π radians, and a quarter-circle is π/2 radians.

How do you convert from degrees to radians and back again? Because 360° =
2π radians (or 2 multiplied by 3.14, the rounded version of pie), you have an
easy calculation. If you have 45° and want to know how many radians that
translates to, just use this conversion factor:

45 360
2 radians

4 radiansπ πc
c

=

You find out that 45° = π/4 radians. If you have, say, π/2 radians and want to
know how many degrees that converts to, you do this conversion:

π/2 radians (360° / 2π radians) = 90°
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You calculate that π/2 radians = 90°.

The fact that you can think of the angle, θ, in circular motion just as you think
of the displacement, s, in linear motion is great, because it means you have
an angular counterpart for each of the linear equations from Chapter 3. Some
such linear equations include

v = ∆s / ∆t

a = ∆v / ∆t

s = v0(tf – to) + 1⁄2 a(tf – to)
2

vf
2 – vo

2 = 2as

To find the angular counterpart of each of these equations, you just make
substitutions. Instead of s, which you use in linear travel, you use θ, the angu-
lar displacement. So, what do you use in place of the velocity, v? You use the
angular velocity, ω, or the number of radians covered in one second:

ω = ∆θ / ∆t

Note that the previous equation looks close to how you define linear speed:

v = ∆s / ∆t

Say, for example, that you have a ball tied to a string. What’s the angular
velocity of the ball if you whirl it around on the string? It makes a complete
circle, 2π radians, in 1⁄2 seconds, so its angular velocity is

ω = ∆θ / ∆t = 2π radians / 1⁄2 seconds = 4π radians/second

Can you also find the acceleration of the ball? Yes, you can, by using the angu-
lar acceleration, α. Linear acceleration is defined this way:

a = ∆v / ∆t

Therefore, you define angular acceleration this way:

α = ∆ω / ∆t

The units for angular acceleration are radians per second2. If the ball speeds
up from 4π radians per second to 8π radians per second in 2 seconds, for
example, what would its angular acceleration be? Work it out by plugging in
the numbers:

α = ∆ω / ∆t = (8π – 4π) / 2 = 4π / 2 = 2π radians per second2
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Now you have the angular versions of linear displacement, s, velocity, v, and
acceleration, a: angular displacement, θ, angular velocity, ω, and angular
acceleration, α. You can make a one-for-one substitution in velocity, accelera-
tion, and displacement equations (see Chapter 3) to get:

ω = ∆θ / ∆t

α = ∆ω / ∆t

θ = ω0(tf – to) + 1⁄2 α(tf – to)
2

ωf
2 – ωo

2 = 2αθ

If you need to work in terms of angle, not distance, you have the ammo to do
so. To find out more about angular displacement, angular velocity, and angu-
lar acceleration, see the discussion on angular momentum and torque in
Chapter 10.

Dropping the Apple: Newton’s
Law of Gravitation

You don’t have to tie objects onto strings to observe travel in circular motion;
larger bodies like planets move in circular motion, too. You don’t see many
strings extending from Earth to the moon to keep the moon circling around us;
instead, gravity provides the necessary centripetal force.

Sir Isaac Newton came up with one of the heavyweight laws in physics for
us: the law of universal gravitation. This law says that every mass exerts an
attractive force on every other mass. If the two masses are m1 and m2, and
the distance between them is r, the magnitude of the force is

F = (G m1m2) / r2

where G is a constant equal to 6.67 × 10-11 Nm2/kg2.

This equation allows you to figure the gravitational force between any two
masses. What, for example, is the pull between the Sun and the Earth? The
Sun has a mass of about 1.99 × 1030 kg, and the Earth has a mass of about
5.98 × 1024 kg; a distance of about 1.50 × 1011 meters separates the two bodies.
Plugging the numbers into Newton’s equation gives you

F = (G m1m2) / r2 = [(6.67 × 10-11)(1.99 × 1030)(5.98 × 1024)] / (1.50 × 1011)2 =
3.52 × 1022N

Your answer of 3.52 × 1022N converts to about 8.0 × 1020pounds of force
(4.448N in a pound).
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For an example on the land-based end of the spectrum, say that you’re out
for your daily physics observations when you notice two people on a park
bench, looking at each other and smiling. As time goes on, you notice that
they seem to be sitting closer and closer to each other each time you take a
glance. In fact, after a while, they’re sitting right next to each other. What
could be causing this attraction? If the two lovebirds weigh about 75 kg each,
what’s the force of gravity pulling them together, assuming they started out
1⁄2 meters away? Your calculation looks like this:

F = (G m1m2) / r2 = [(6.67 × 10-11)(75)(75)] / 1⁄22 = 1.5 × 10-6N

The force of attraction is roughly five millionths of an ounce. Maybe not
enough to shake the surface of the Earth, but that’s okay. The Earth’s surface
has its own forces to deal with.

Deriving the force of gravity
on the Earth’s surface
The equation for the force of gravity — F = (G m1m2) / r

2 — holds true no matter
how far apart two masses are. But you also come across a special gravitational
case (which most of the work on gravity in this book is about) — the force of
gravity on the surface of the Earth. Adding gravity to mass is where the differ-
ence between weight and mass comes in. Mass is considered a measure of an
object’s inertia, and its weight is the force exerted on it in a gravitational field.
On the surface of the Earth, the two forces are related by the acceleration due
to gravity: Fg = mg. Grams, kilograms, and slugs are all units of mass; dynes,
newtons, and pounds are all units of weight.

Can you derive g, the acceleration due to gravity on the surface of the Earth,
from Newton’s law of gravitation? You sure can. The force on an object of
mass m1 near the surface of the Earth is

F = m1g
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An apple a day . . .
You know the story — an apple supposedly fell
on Isaac Newton’s head, causing him to come up
with the law of universal gravitation. But did the
apple really fall? And did it actually land on his
head? Although it seems likely that a falling apple
set Newton off on the path of discovery, or at
least brought his attention back to the issue, it

apparently didn’t fall on his head according to
recent historical accounts. However, as far as
historians know, the apple tree was in Newton’s
mother’s garden in Woolsthorpe, near Grantham
in Lincolnshire. A tree grafted from the original is
still alive.
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By Newton’s third law (see Chapter 5), this force must also equal the following,
where re is the radius of the Earth:

F = m1g = (G m1m2) / re
2

The radius of the Earth, re, is about 6.38 × 106 meters, and the mass of the
Earth is 5.98 × 1024 kg, so you have

F = m1g = (G m1m2) / re
2 = [(6.67 × 10-11) m1 (5.98 × 1024)] / (6.38 × 106)2

Dividing both sides by m1 gives you

g = [(6.67 × 10-11)(5.98 × 1024)] / (6.38 × 106)2 = 9.8 meters/second2

Newton’s law of gravitation gives you the acceleration due to gravity on the
surface of the Earth: 9.8 meters per second2.

You can use Newton’s law of gravitation to get the acceleration due to gravity,
g, on the surface of the Earth just by knowing the gravitational constant G,
the radius of the Earth, and the mass of the Earth. (Of course, you can mea-
sure g by letting an apple drop and timing it, but what fun is that when you
can calculate it a roundabout way that requires you to first measure the mass
of the Earth?)

Using the law of gravitation
to examine circular orbits
In space, bodies are constantly orbiting other bodies due to gravity. Satellites
(including the moon) orbit the Earth, the Earth orbits the Sun, the Sun orbits
around the center of the Milky Way, the Milky Way orbits around the center of
its local group of galaxies. This is big time stuff. In the case of orbital motion,
gravity supplies the centripetal force that pushes the orbits. The force is quite
a bit different than small-time orbital motion — like when you have a ball on a
string — because for a given distance and two masses, the gravitational force
is always going to be the same. You can’t increase it to increase the speed of
an orbiting planet as you can with a ball. The following sections examine the
speed and period of orbiting bodies and Kepler’s laws for orbiting bodies.

Calculating a satellite’s speed
A particular satellite can have only one speed when in orbit around a particu-
lar body at a given distance because the force of gravity doesn’t change. So,
what’s that speed? You can calculate it with the equations for centripetal
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force and gravitational force. You know that for a satellite of a particular
mass, m1, to orbit, you need a corresponding centripetal force (see section
“Pulling Toward the Center: Centripetal Force”):

Fc = (m1v
2) / r

This centripetal force has to come from the force of gravity, so

F = (G m1m2) / r2 = (m1v
2) / r

You can rearrange this equation to get the speed:

v r
Gm2=

This equation represents the speed a satellite at a given radius must have in
order to orbit if the orbit is due to gravity. The speed can’t vary as long as the
satellite has a constant orbital radius — that is, as long as it’s going around in
circles. This equation holds for any orbiting object where the attraction is the
force of gravity, whether it’s a man-made satellite orbiting the Earth or the
Earth orbiting the Sun. If you want to find the speed for satellites that orbit
the Earth, for example, you use the mass of the Earth in the equation:

v r
GmE=

Man-made satellites typically orbit at heights of 400 miles from the surface of
the Earth (about 640 kilometers or so). What’s the speed of such a satellite?
All you have to do is put in the numbers:

v r
Gm

7.02 10
6.67 10 5.98 10

7.53 10 meters per secondE
6

11 24

3

#

# #
#= = =

-
_ _i i

This converts to about 16,800 miles per hour.

A few details you should note after reviewing the speed equation:

� The number you divide by in the previous equation, 7.02 × 106 meters,
isn’t the distance the satellite orbits above the Earth’s surface, which is
640 kilometers. This is because you have to use the distance from the
center of the Earth when you calculate gravitational attraction. Therefore,
the distance you use in the equation is the distance between the two
orbiting bodies. In this case, you add the distance from the center of the
Earth to the surface of the Earth, 6.38 × 106 meters, to the 640 kilometers.

� The equation assumes that the satellite is high enough off the ground
that it orbits out of the atmosphere. That assumption isn’t really true,
even at 400 miles, so satellites like this do feel air friction. Gradually, the
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drag of friction brings them lower and lower, and when they hit the
atmosphere, they burn up on re-entry. When a satellite is less than
100 miles above the surface, its orbit decays appreciably each time 
it circles the Earth. (Look out below!)

� The equation is independent of mass. If the moon orbited at 640 kilome-
ters rather than the man-made satellite, and you could ignore air friction
and collisions with the Earth, it would have to go at the same speed as
the satellite in order to preserve its close orbit (which would make for
some pretty spectacular moonrises).

You can think of a satellite in motion over the Earth as always falling. The only
thing that keeps it from falling straight to Earth is that its velocity points over
the horizon. The satellite is falling, which is why astronauts in a space station
are weightless, but its velocity takes it over the horizon — that is, over the
curve of the world as it falls — so it doesn’t get any closer to the Earth.

Sometimes, it’s more important to know the period of an orbit rather than the
speed, such as when you’re counting on a satellite to come over the horizon
before communication can take place.

Calculating the period of a satellite
The period of a satellite is the time it takes it to make one full orbit around an
object. If you know the satellite’s speed and the radius it orbits at (see the pre-
vious section), you can figure out its period. The satellite travels around the
entire circumference of the circle — which is 2πr if r is the radius of the orbit —
in the period, T. This means the orbital speed must be 2πr / T, giving you

v r
Gm

T
2 rπE= =

If you solve this for the period of the satellite, you get

T 2 Gm
rπ

E

3

=

You, the intuitive physicist, may be wondering: What if you want to examine a
satellite that simply stays stationary over the same place on the Earth at all
times? In other words, a satellite whose period is the same as the Earth’s 24-
hour period? Can you do it? As you may know, such satellites do exist. They’re
very popular for communications, because they’re always orbiting in the same
spot; they don’t disappear over the horizon and then reappear later. They also
allow for global positioning satellites, or GPS. In cases of stationary satellites,
the period, T, is 24 hours, or 86,400 seconds. Can you find the radius a station-
ary satellite needs to have? Using the equation for periods, you see that:

r3 = (T2GmE) / 4π2
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Plugging in the numbers, you get

r3 = (T2GmE) / 4π2 = [(8.64 × 104)2(6.67 × 10-11)(5.98 × 1024)] / 4π2 = 
4.23 × 107 meters

You get a radius of 4.23 × 107 meters. Subtracting the Earth’s radius of 6.38 ×
106 meters, you get 3.59 × 107 meters, which converts to about 22,300 miles.
This is the distance from the Earth geosynchronous satellites need to orbit.
At this distance, they orbit the Earth at the same speed the Earth is turning,
which means that they stay put over the same piece of real estate.

In practice, it’s very hard to get the speed just right, which is why geosyn-
chronous satellites have either gas boosters that can be used for fine-tuning
or magnetic coils that allow them to move by pushing against the Earth’s
magnetic field.

Looping the Loop: Vertical
Circular Motion

Maybe you’ve watched extreme sports on television and wondered how
bikers or skateboarders can ride into a loop on a track and go upside down at
the top of the loop without falling to the ground. Shouldn’t gravity bring them
down? How fast do they have to go? The answers to these vertical circular
motion questions lie in centripetal force and the force of gravity.
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Understanding Kepler’s laws of orbiting bodies
Johannes Kepler, a German national born in the
Holy Roman Empire, came up with three laws
that help explain a great deal about orbits
before Newton came up with his law of univer-
sal gravitation. Here are Kepler’s laws:

� Law 1: Planets orbit in ellipses. (Note that a
circle is also an ellipse.)

� Law 2: Planets move so that a line between
the Sun and the planet sweeps out the
same area in the same time, independent of
where they are in their orbits.

� Law 3: The square of a planet’s orbital
period is proportional to its distance from
the Sun cubed.

You can see how the third law was derived from
Newton’s laws by looking at the section
“Calculating the period of a satellite.” It takes
the form of this equation: r3 = (T2 G mE) / 4π2.
Although Kepler’s third law says that T2 is pro-
portional to r3, you can get the exact constant
relating these quantities by using Newton’s law
of gravitation.
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Take a look at Figure 7-4, where a ball is looping around a track resembling a
rollercoaster loop. A question you may come across in introductory physics
classes asks, “What speed is necessary so that the ball makes the loop safely?”
The crucial point is at the very top of the track — if the ball is going to peel
away from its circular track, the top is where it will fall. To answer the crucial
question, you must know what criterion the ball must meet to hold on. Ask
yourself: “What’s the constraint that the ball must meet?”

To travel in a loop, an object must have a net force acting on it that equals
the centripetal force it needs to keep traveling in a circle. At the top of its
path, as you can see in Figure 7-4, the ball barely stays in contact with the
track. Other points along the track will provide normal force (see Chapter 6)
because of the speed and the fact that the track is curved. If you want to find
out what minimum speed an object needs to have to stay on a loop, you need
to look at where the object is just barely in contact with the track — in other
words, on the verge of falling out of its circular path.

The normal force the track applies to an object at the top is just about zero.
The only force keeping the object on its circular track is the force of gravity,
which means that at the apex, the speed of the object has to match the cen-
tripetal force provided by gravity to keep it going in a circle whose radius is
the same as the radius of the loop. That means that if this is the centripetal
force needed:

Fc = (mv2) / r

The force of gravity at the top of the loop is

Fg = mg

v

v

mg

mg

Figure 7-4:
The force

and velocity
of a ball on

a circular
track.
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And because Fg must equal Fc,

(mv2) / r = mg

You can simplify this equation into the following form:

v rg=

The mass of any object traveling around a circular track, such as a motorcycle
or a racecar, drops out.

The square root of r times g is the minimum speed an object needs at the top
of the loop in order to keep going in a circle. Any object with a slower speed
will peel off the track at the top of the loop (it may drop back into the loop,
but it won’t be following the circular track at that point). For a practical
example, if the loop from Figure 7-4 has a radius of 20 meters, how fast does
the ball have to travel at the top of the loop in order to stay in contact with
the track? Just put in the numbers:

v rg 20.0 9.8 14.0 meters per second= = =^ ^h h

The golf ball has to travel 14.0 meters per second at the top of the track,
which is about 31 miles per hour.

What if you want to do the same trick on a flaming circular loop on a motor-
cycle to impress your pals? The same speed applies — you need to be going
about 31 miles per hour minimum at the top of the track, which has a radius
of 20 meters. If you want to try this at home, don’t forget that this is the speed
you need at the top of the track — you have to go faster at the bottom of the
track in order to travel at 31 miles per hour at the top, simply because you’re
twice the radius, or 40 meters, higher up in the air, much like having coasted
to the top of a 40-meter hill.

So, how much faster do you need to go at the bottom of the track? Check
out Part III of this book, where kinetic energy (the kind of energy moving
motorcycles have) is turned into potential energy (the kind of energy that
motorcycles have when they’re high up in the air against the force of gravity).
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In this part . . .

If you drive a car up a hill and park it, it still has energy —
potential energy. If the brake slips and the car rolls down

the hill, it has a different kind of energy at the bottom —
kinetic energy. This part alerts you to what energy is all
about and how the work you put into moving and stretching
objects becomes energy. Thinking in terms of work and
energy allows you to solve problems that Newton’s laws
don’t even let you attempt.
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Chapter 8

Getting Some Work out of Physics
In This Chapter
� Taking stock of the work force

� Working backward with negative work

� Evaluating kinetic energy at work

� Achieving your potential energy

� Walking the path of conservative and nonconservative forces

� Accounting for mechanical energy and power in work

You know all about work; it’s what you do when you have to do physics
problems. You sit down with your calculator, you sweat a little, and you

get through it. You’ve done your work. Unfortunately, that doesn’t count for
work in physics terms.

You do work in physics by multiplying a force by the distance over which it
acts. That may not be your boss’s idea of work, but it gets the job done in
physics. Along with the basics of work, I use this chapter to introduce kinetic
and potential energy, look at conservative and nonconservative forces, and
examine mechanical energy and power. Time to get to work.

Work: It Isn’t What You Think
Work is defined as an applied force over a certain distance. In physics jargon,
you do work by applying a constant force, F, over a distance, s, where the
angle between F and s is θ and is equal to Fs cos θ. In layman’s terms, if you
push a 1,000-pound hockey puck for some distance, physics says that the
work you do is the component of the force you apply in the direction of travel
multiplied by the distance you go.

To get a picture of the full work spectrum, you need to look across different
systems of measurement. After you have the measurement units down, you
can look at practical working examples, such as pushing and dragging.
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Working on measurement systems
Work is a scalar, not a vector (meaning it only has a magnitude, not a direc-
tion; more on scalars and vectors in Chapter 4). Because work is force times
distance, Fs cos θ, it has the units Newton-meter in the meters-kilograms-
seconds (MKS) system (see Chapter 2). Newton-meters are awkward to 
work with, so they have a special name — Joules. For conversion purposes, 
1 Newton multiplied by 1 meter = 1 Joule, or 1J.

In the centimeter-gram-second (CGS) system, Fs cos θ has the units dyne-
centimeter, which is also called the erg (a great name for a unit of work
because it sounds like what you would say when pushing a heavy weight).
For conversion purposes, 1 erg = 1 dyne-centimeter. What about the foot-
pound-second system? In this system, work has the units foot-pound.

Pushing your weight
Holding heavy objects — like, say, a set of exercise weights — up in the air
seems to take a lot of work. In physics terms, however, that isn’t true. Even
though holding up weights may take a lot of biological work, no physics work
takes place if the weights aren’t moving. Plenty of chemistry happens as your
body supplies energy to your muscles, and you may feel a strain, but if you
don’t move anything, you don’t do work in physics terms.

Motion is a requirement of work. For example, say that you’re pushing a
huge gold ingot home after you explore a cave down the street, as shown in
Figure 8-1. How much work do you have to do to get it home? First, you need
to find out how much force pushing the ingot requires.

Ffriction Fpull

Fnormal

Ground

Figure 8-1:
Pushing
requires
plenty of

work in
physics

terms when
the object is

in motion.
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The kinetic coefficient of friction (see Chapter 6), µk, between the ingot and
the ground is 0.25, and the ingot has a mass of 1,000 kg. What’s the force you
have to exert to keep the ingot moving without accelerating it? Start with this
equation from Chapter 6:

FF = µk FN

Assuming that the road is flat, the magnitude of the normal force, FN, is just
mg (mass times gravity). That means that

FF = µk FN = µk mg

where m is the mass of the ingot and g is the acceleration due to gravity on
the surface of the Earth. Plugging in the numbers gives you

FF = µk FN = µk mg = (0.25)(1,000 kg)(9.8 meters per second2) = 2,450N

You have to apply a force of 2,450 Newtons to keep the ingot moving without
accelerating. Say that your house is 3 kilometers away, or 3,000 meters. To
get the ingot home, you have to do this much work:

W = Fs cos θ

Because you’re pushing the ingot, the angle between F and s is 0°, and cos θ = 1,
so plugging in the numbers gives you

W = Fs cos θ = (2,450)(3,000)(1) = 7.35 × 106J

You need to do 7.35 × 106J of work to move your ingot home. Want some per-
spective? Well, to push 1 kilogram 1 meter, you have to supply a force of 9.8N
(about 2.2 pounds) over that distance, which takes 9.8J of work. To get your
ingot home, you need 750,000 times that. Put another way, 1 kilocalorie equals
4,186J. A kilocalorie is commonly called a Calorie (capital C) in nutrition,
which you see on candy bar labels, so to move the ingot home, you need to
expend about 1,755 calories. Time to get out the energy bars!

You can also do this conversion in terms of kilowatt-hours, which you may be
familiar with from electric bills. One kilowatt-hour (kWh) = 3.6 × 106J, so you
need about 2.0 kilowatt-hours of work to get the ingot home.

Taking a drag
If you have a backward-type personality, you may prefer to drag objects
rather than push them. It may be easier to drag heavy objects, especially if
you can use a tow rope, as shown in Figure 8-2. When you’re pulling at an
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angle θ, you’re not applying a force in the same direction as the direction of
motion. To find the work in this case, all you have to do is find the compo-
nent of the force along the direction of travel. Work properly defined is the
force along the direction of travel multiplied by the distance traveled:

W = Fpulls cos θ

Assume that the angle at which you’re pulling is small, so you’re not lifting
the ingot (which would lessen the normal force and therefore the friction).
You need a force of 2,450N along the direction of travel to keep the object in
motion (see the previous section for the calculation), which means that you
have to supply a force of

Fpull cos θ = 2,450N

Therefore,

Fpull = 2,450N / cos θ

If θ = 10°, you have to supply a force of

Fpull = 2,450N / cos 10° = 2,490N

Because only the work along the direction of travel counts, and because
you’re actually pulling on the tow rope at an angle of 10°, you need to provide
more force to get the same amount of work done, assuming the object travels
the same path to your house as the ingot in Figure 8-1.

Considering Negative Work
You’ve just gone out and bought the biggest television your house can
handle. You finally get the TV home, and you have to lift it up the porch

Ffriction
Fpull

Fnormal

Ground

θ

Figure 8-2:
Dragging an

object
requires

more force
due to the

angle.
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stairs. It’s a heavy one — about 100 kg, or 220 pounds — and as you lift
it up the first stair — a distance of about 1⁄2 meters — you think you should
have gotten some help because of how much work you’re doing (Note: F
equals mass times acceleration, or 100 times g, the acceleration due to 
gravity; and θ is 0° because you’re lifting upward, the direction the TV is
moving):

W1 = Fs cos θ = (100)(9.8)(1⁄2)(1.0) = 490J

However, as you get the TV to the top of the step, your back decides that
you’re carrying too much weight and advises you to drop it. Slowly, you let
it fall back to its original position and take a breather. How much work did
you do on the way down? Believe it or not, you did negative work on the TV,
because the force you applied (upward) was in the opposite direction of
travel (downward). In this case, θ = 180°, and cos θ = –1. This is what you
get when you solve for the work:

W2 = Fs cos θ = (100)(9.8)(1⁄2)(–1) = –490J

The net work you’ve done is W = W1 + W2 = 0, or zero work. That makes sense,
because the TV is right back where it started.

If the force moving the object has a component in the same direction as the
motion, the work that force does on the object is positive. If the force moving
the object has a component in the opposite direction of the motion, the work
done on the object is negative.

Getting the Payoff: Kinetic Energy
When you start pushing or pulling an object with a constant force, it starts to
move if the force you exert is greater than the net forces resisting you (such
as friction and gravity). And if the object starts to move at some speed, it will
acquire kinetic energy. Kinetic energy is the energy an object has because of
its motion. Energy is the ability to do work.

For example, say you come to a particularly difficult hole of miniature golf,
where you have to hit the ball through a loop. The golf ball enters the loop
with a particular speed; in physics terms, it has a certain amount of kinetic
energy. Assume that when it gets to the top of the loop, it stops dead. This
means it no longer has any kinetic energy at all. However, now that it’s at
the top of the loop, it sits higher than it was before, and when it drops back
down — assuming it stays on the track and there was no friction — it will
have the same speed when it gets to the bottom of the track as it had when
it first entered the track.
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If the golf ball has 20J of kinetic energy at the bottom of the loop, the energy
is due to its motion. At the top of the loop, it had no motion, so it had no
kinetic energy. However, it took some work to get the golf ball to the top, and
that work was 20J, so the golf ball at rest has 20J of what’s called potential
energy. The golf ball has potential energy because if it falls, that 20J of energy
will be available; if it falls and stays on the track, that 20J of potential energy,
which it had because of its height, will become 20J of kinetic energy again.
(For more on potential energy, see the section “Energy in the Bank: Potential
Energy” later in this chapter.)

At the bottom of the loop, the golf ball has 20J of kinetic energy and is moving;
at the top of the loop, it has 20J of potential energy and isn’t moving; and when
it comes back down, it has 20J of kinetic energy again, as shown in Figure 8-3.
The golf ball’s total energy stays the same — 20J at the bottom of the loop, 20J
at the top of the loop. The energy takes different forms — kinetic when it’s
moving and potential when it isn’t moving but is higher up — but it’s the
same. In fact, the golf ball’s energy is the same at any point around the loop,
and physicists who’ve measured this kind of phenomenon call this the princi-
ple of conservation of mechanical energy. I discuss this later in this chapter in
the section “Up, Down, and All Around: The Conversion of Mechanical Energy,”
so stay tuned.

Where does the kinetic energy go when friction is involved? If a block is slid-
ing along a horizontal surface and there’s friction, the block goes more and
more slowly until it comes to a stop. The kinetic energy goes away, and you
see no increase in potential energy. What happened? The block’s kinetic
energy dissipated as heat. Friction heated both the block and the surface.

You know the ins and outs of kinetic energy. So how do you calculate it?

v

All potential energy

All kinetic energy

Figure 8-3:
An object
circling a

loop without
friction has

the same
energy

throughout;
it just takes

different
forms.
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Breaking down the kinetic 
energy equation
The work that you put into accelerating an object — that is, into its motion —
becomes the object’s kinetic energy, KE. The equation to find KE is

KE = 1⁄2 mvf
2

Given a mass m going at a speed v, you can calculate an object’s kinetic energy.
Say, for example, that you apply a force to a model airplane in order to get it
flying and that the plane is accelerating. Here’s the equation for force:

F = ma

You know that force equals mass times acceleration, and you know from the
previous sections in this chapter that the work done on the plane, which
becomes its kinetic energy, equals the following:

W = Fs cos θ

Assume that you’re pushing in the same direction that the plane is going; in
this case, cos θ = 1, and you find that

W = Fs = mas

You can tie this equation to the final and original velocity of the object (see
Chapter 3 for that equation) to find a:

vf
2 – vo

2 = 2as

where vf equals final velocity and vo equals initial velocity. In other words,

a = (vf
2 – vo

2) / 2s

Plugging in for a in the equation for work, W = mas, you get:

W = 1⁄2 m(vf
2 – vo

2)

If the initial velocity is zero, you get

W = 1⁄2 mvf
2

This is the work that you put into accelerating the model plane — that is, into
the plane’s motion — and that work becomes the plane’s kinetic energy, KE:

KE = 1⁄2 mvf
2
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Putting the kinetic energy equation to use
You normally use the kinetic energy equation to find the kinetic energy of an
object when you know its mass and velocity. Say, for example, that you’re at a
pistol-firing range, and you fire a 10-gram bullet with a velocity of 600 meters
per second at a target. What’s the bullet’s kinetic energy? The equation to
find kinetic energy is

KE = 1⁄2 mv2

All you have to do is plug in the numbers, remembering to convert from
grams to kilograms first to keep the system of units consistent throughout
the equation:

KE = 1⁄2 mv2 = 1⁄2 (0.01)(6002) = 1,800J

The bullet has 1,800 Joules of energy, which is a lot of Joules to pack into a
10-gram bullet. However, you can also use the kinetic energy equation if you
know how much work goes into accelerating an object and you want to find,
say, its final speed. For example, say you’re on a space station, and you have
a big contract from NASA to place satellites in orbit. You open the station’s
bay doors and grab your first satellite, which has a mass of 1,000 kg. With a
tremendous effort, you hurl it into its orbit, using a force of 2,000N, applied in
the direction of motion, over 1 meter. What speed does the satellite attain rel-
ative to the space station? The work you do is equal to

W = Fs cos θ

Because θ = 0° here (you’re pushing the satellite straight on), W = Fs:

W = Fs = (2,000)(1.0) = 2,000J

Your work goes into the kinetic energy of the satellite, so

W = Fs = (2,000)(1.0) = 2,000J = 1⁄2 mv2

From here, you can figure the speed by putting v on one side, because m
equals 1000 kg and W equals 2000 Joules:

v 1000
2 2000

2 meters per second= =
^ ^h h

The satellite ends up with a speed of 2 meters per second relative to you —
enough to get it away from the space station and into its own orbit.
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Bear in mind that forces can also do negative work. If you want to catch a
satellite and slow it to 1 meter per second with respect to you, the force you
apply to the satellite is in the opposite direction of its motion. That means it
loses kinetic energy, so you did negative work on it.

You only have to worry about one force in this example — the force you apply
to the satellite as you launch it. But in everyday life, multiple forces act on an
object, and you have to take them into account.

Calculating kinetic energy
by using net force
If you want to find the total work on an object and convert that into its kinetic
energy, you have to consider only the work done by the net force. In other
words, you convert only the net force into kinetic energy. Other forces may be
acting, but opposing forces, such as a normal force and the force of gravity
(see Chapter 6), cancel each other out. For instance, when you play tug-of-war
against your equally strong friends, you pull against each other and nothing
moves. You have no net increase in kinetic energy from the two forces.

For example, take a look at Figure 8-4. You may want to determine the speed of
the 100-kg refrigerator at the bottom of the ramp, using the fact that the work
done on the refrigerator goes into its kinetic energy. How do you do that? You
start by determining the net force on the refrigerator and then finding out how
much work that force does. Converting that net-force work into kinetic energy
lets you calculate what the refrigerator’s speed will be at the bottom of the
ramp.

What’s the net force acting on the refrigerator? In Chapter 6, you find that the
component of the refrigerator’s weight acting along the ramp is

Fg ramp = mg cos(90° – θ) = mg sin θ

mg

Ramp

Fn

θ

Ff
Figure 8-4:

You find the
net force

acting on an
object to

find its
speed at 

the bottom
of a ramp.
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where m is the mass of the refrigerator and g is the acceleration due to grav-
ity. The normal force (see Chapter 6) is

FN = mg sin (90° – θ) = mg cos θ

which means that the kinetic force of friction (see Chapter 6) is

FF = µk FN = µk mg sin (90° – θ) = µk mg cos θ

where µk is the kinetic coefficient of friction. The net force accelerating the
refrigerator down the ramp, Fnet, therefore, is

Fnet = Fg ramp – FF = mg sin θ – µk mg cos θ

You’re most of the way there! If the ramp is at a 30° angle to the ground and
has a kinetic coefficient of friction of 0.15, plugging the numbers into this
equation results in the following:

Fnet = (100)(9.8)(sin 30°) – (0.15)(100)(9.8)(cos 30°) = 490N – 127N = 363N

The net force acting on the refrigerator is 363N. This net force acts over the
entire 3.0-meter ramp, so the work done by this force is

W = Fnet s = (363)(3.0) = 1,089J

You find that 1,089J goes into the refrigerator’s kinetic energy. That means
you can find the refrigerator’s kinetic energy like this:

W = 1,089J = KE = 1⁄2 mv2

You want the speed here, so solving for v gives you

v 100
2 1089

4.67 meters per second= =
^ ^h h

The refrigerator will be going 4.67 meters per second at the bottom of
the ramp.

Energy in the Bank: Potential Energy
There’s more to motion than kinetic energy — an object can also have potential
energy, which is the energy it has because of its position, or stored energy.
The energy is called potential because it can be converted back to kinetic or
other forms of energy at any time.

Say, for example, you have the job of taking your little cousin Jackie to the
park, and you put the little tyke on the slide. Jackie starts at rest and then

128 Part III: Manifesting the Energy to Work 

14_554336 ch08.qxd  11/2/05  11:32 PM  Page 128



accelerates, ending up with quite a bit of speed at the bottom of the slide.
You sense physics at work here. Taking out your clipboard, you put Jackie
higher up the slide and let go, watching carefully. Sure enough, Jackie ends
up going even faster at the bottom of the slide. You decide to move Jackie
even higher up. Suddenly, Jackie’s mother shows up and grabs him from you.
That’s enough physics for one day.

What was happening on the slide? Where did Jackie’s kinetic energy come
from? It came from the work you did lifting Jackie against the force of gravity.
Jackie sits at rest at the bottom of the slide, so he has no kinetic energy. If
you lift him to the top of the slide and hold him, he waits for the new trip
down the slide, so he has no motion and no kinetic energy. However, you did
work lifting him up against the force of gravity, so he has potential energy.
As Jackie slides down the (frictionless) slide, gravity turns your work, and
the potential energy you create, into kinetic energy.

Working against gravity
How much work do you do when you lift an object against the force of gravity?
Say, for example, that you want to store a cannonball on an upper shelf at
height h above where the cannonball is now. The work you do is

W = Fs cos θ

In this case, F equals force, s equals distance, and θ is the angle between
them. The force on an object is mg (mass times the acceleration due to 
gravity, 9.8 meters per second2), and when you lift the cannonball straight
up, θ = 0°, so

W = Fs cos θ = mgh

The variable h here is the distance you lift the cannonball. To lift the ball, you
have to do a certain amount of work, or m times g times h. The cannonball is
stationary when you put it on the shelf, so it has no kinetic energy. However,
it does have potential energy, which is the work you put into the ball to lift it
to its present position.

If the cannonball rolls to the edge of the shelf and falls off, how much kinetic
energy would it have just before it strikes the ground (which is where it
started when you first lifted it)? It would have mgh joules of kinetic energy at
that point. The ball’s potential energy, which came from the work you put in
lifting it, converts to kinetic energy thanks to the fall.

In general, you can say that if you have an object of mass m near the surface
of the Earth where the acceleration due to gravity is g, at a height h, the poten-
tial energy of that mass compared to what it would be if it were at height 0 is

PE = mgh
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And if you move an object vertically against the force of gravity from height
ho to height hf, its change in potential energy is

∆PE = mg (hf – ho)

The work you perform on the object changes its potential energy.

Converting potential energy
into kinetic energy
Objects can have different kinds of potential energy — all you need to do is
perform work on an object against a force, such as when an object is con-
nected to a spring and you pull the spring back. However, gravity is a very
common source of potential energy in physics problems. Gravitational poten-
tial energy for a mass m at height h near the surface of the Earth is mgh more
than it would be at height 0. (It’s up to you where you choose height 0.)

For example, say that you lift a 40-kg cannonball onto a shelf 3.0 meters from
the floor, and the ball rolls and slips off, headed toward your toes. If you
know the potential energy involved, you can figure out how fast the ball will
be going when it reaches the tips of your shoes. Resting on the shelf, the 
cannonball has this much potential energy with respect to the floor:

PE = mgh = (40 kg)(9.8 meters per second2)(3.0 meters) = 1,176J

The cannonball has 1,176 joules of potential energy stored by virtue of its
position in a gravitational field. What happens when it drops, just before it
touches your toes? That potential energy is converted into kinetic energy.
So, how fast will the cannonball be going at toe impact? Because its potential
energy is converted into kinetic energy, you can write the problem as the fol-
lowing (see the section “Getting the Payoff: Kinetic Energy” earlier in this
chapter for an explanation of the kinetic energy equation):

PE = mgh = (40)(9.8)(3.0) = 1,176J = KE = 1⁄2 mv2

Plugging in the numbers and putting velocity on one side, you get the speed:

v 40
2 1176

7.67 meters/second= =
^ ^h h

The velocity of 7.67 meters per second converts to about 25 feet per second.
You have a 40-kg cannonball — or about 88 pounds — dropping onto your
toes at 25 feet per second. You play around with the numbers and decide you
don’t like the results. Prudently, you turn off your calculator and move your
feet out of the way.
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Choose Your Path: Conservative versus
Nonconservative Forces

The work a conservative force does on an object is path-independent; the
actual path taken by the object makes no difference. Fifty meters up in the air
has the same gravitational potential energy whether you get there by taking
the steps or by hopping on a Ferris wheel. That’s different from the force of
friction, for example, which dissipates kinetic energy as heat. When friction is
involved, the path you take does matter — a longer path will dissipate more
kinetic energy than a short one. For that reason, friction isn’t a conservative
force; it’s a nonconservative force.

For example, you and some buddies arrive at Mt. Newton, a majestic peak
that soars h meters into the air. You can take two ways up — the quick way or
the scenic route. Your friends drive up the quick route, and you drive up the
scenic way, taking time out to have a picnic and to solve a few physics prob-
lems. They greet you at the top by saying, “Guess what? Our potential energy
compared to before is mgh greater.”

“Me too,” you say, looking out over the view. Note this equation (originally
presented in the section “Working against gravity,” earlier in this chapter):

∆PE = mg (hf – ho)

This equation basically states that the actual path you take when going 
vertically from ho to hf doesn’t matter. All that matters is your beginning
height compared to your ending height. Because the path taken by the
object against gravity doesn’t matter, gravity is a conservative force.

Here’s another way of looking at conservative and nonconservative forces.
Say that you’re vacationing in the Alps and that your hotel is at the top of
Mt. Newton. You spend the whole day driving around — down to a lake one
minute, to the top of a higher peak the next. At the end of the day, you end up
back at the same location: your hotel on top of Mt. Newton.

What’s the change in your gravitational potential energy? In other words,
how much net work did gravity perform on you during the day? Because
gravity is a conservative force, the change in your gravitational potential
energy is 0. Because you’ve experienced no net change in your gravitational
potential energy, gravity did no net work on you during the day.

The road exerted a normal force on your car as you drove around (see
Chapter 6), but that force was always perpendicular to the road, so it didn’t
do any work.
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Conservative forces are easier to work with in physics because they don’t
“leak” energy as you move around a path — if you end up in the same place,
you have the same amount of energy. If you have to deal with forces like 
friction, including air friction, the situation is different. If you’re dragging
something over a field carpeted with sandpaper, for example, the force of 
friction does different amounts of work on you depending on your path.
A path that’s twice as long will involve twice as much work overcoming 
friction. The work done depends on the path you take, which is why friction
is a nonconservative force.

Allow me to qualify the idea that friction is a nonconservative force. What’s
really not being conserved around a track with friction is the total potential
and kinetic energy, which taken together is mechanical energy. When friction
is involved, the loss in mechanical energy goes into heat energy. In a way, you
could say that the total amount of energy doesn’t change if you include that
heat energy. However, the heat energy dissipates into the environment
quickly, so it isn’t recoverable or convertible. For that and other reasons,
physics often works in terms of mechanical energy.

Up, Down, and All Around: The
Conservation of Mechanical Energy

Mechanical energy is the sum of potential and kinetic energy, or the energy
acquired by an object upon which work is done. The conservation of mechani-
cal energy, which occurs in the absence of nonconservative forces, makes
your life much easier when it comes to solving physics problems. Say, for
example, that you see a rollercoaster at two different points on a track —
point 1 and point 2 — so that the coaster is at two different heights and two
different speeds at those points. Because mechanical energy is the sum of the
potential (mass × gravity × height) and kinetic (1⁄2[mass × velocity2]) energies,
at point 1, the total mechanical energy is

W1 = mgh1 + 1⁄2 mv1
2

At point 2, the total mechanical energy is

W2 = mgh2 + 1⁄2 mv2
2
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What’s the difference between W2 and W1? If friction is present, for example,
or any other nonconservative forces, the difference is equal to the net work
the nonconservative forces do, Wnc (see the previous section for an explana-
tion of net work):

W2 – W1 = Wnc

On the other hand, if nonconservative forces perform no net work, Wnc = 0,
which means that

W2 = W1

or

mgh1 + 1⁄2 mv1
2 = mgh2 + 1⁄2 mv2

2

These equations represent the principle of conservation of mechanical energy.
The principle says that if the net work done by nonconservative forces is
zero, the total mechanical energy of an object is conserved; that is, it doesn’t
change.

Another way of rattling off the principle of conservation of mechanical energy
is that at point 1 and point 2,

PE1 + KE1 = PE2 + KE2

You can simplify that mouthful to the following:

E1 = E2

where E is the total mechanical energy at any one point. In other words, an
object always has the same amount of energy as long as the net work done
by nonconservative forces is zero.

Note that you can cancel out the mass, m, in the previous equation, which
means that if you know three of the values, you can solve for the fourth:

gh1 + 1⁄2 v1
2 = gh2 + 1⁄2 v2

2

Breaking apart the equation for mechanical energy allows you to solve for
individual variables, such as velocity and height.
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Determining final velocity 
with mechanical energy
“Serving as a roller coaster test pilot is a tough gig,” you say as you strap your-
self into the Physics Park’s new Bullet Blaster III coaster. “But someone has to
do it.” The crew closes the hatch and you’re off down the 400-meter, totally fric-
tionless track. Halfway down, however, the speedometer breaks. How can you
record your top speed when you get to the bottom? No problem; all you need
is the principle of conservation of mechanical energy, which says that if the net
work done by nonconservative forces is zero, the total mechanical energy of an
object is conserved. From the previous section, you know that

mgh1 + 1⁄2 mv1
2 = mgh2 + 1⁄2 mv2

2

You can make this equation a little easier. Your initial velocity is 0, your final
height is 0, and you can divide both sides by m, so you get

gh1 = 1⁄2 v2
2

Much nicer. Solving for v2 gives you

.9 8 400 2^ ^ ^h h h = 89 meters per second

The coaster travels at 89 meters per second, or about 198 miles per hour, at
the bottom of the track. Should be fast enough for most kids.

Determining final height
with mechanical energy
Besides determining variables such as final speed with the principle of con-
servation of mechanical energy, you can determine final height if you want to.
At this very moment, for example, Tarzan is swinging on a vine over a croco-
dile-infested river at a speed of 13.0 meters per second. He needs to reach the
opposite river bank 9.0 meters above his present position in order to be safe.
Can he swing it? The principle of conservation of mechanical energy gives
you the answer:

mgh1 + 1⁄2 mv1
2 = mgh2 + 1⁄2 mv2

2

At Tarzan’s maximum height at the end of the swing, his speed, v2, will be 0,
and assuming h1 = 0, you can relate h2 to v1 like this:

1⁄2 v1
2 = gh2
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This means that:

h2 = v1
2 / 2g = 13.02 / [(2)(9.8)] = 8.6 meters

Tarzan will come up 0.4 meters short of the 9.0 meters he needs to be safe, so
he needs some help.

Powering Up: The Rate of Doing Work
Sometimes, it isn’t just the amount of work you do but the rate at which you
do work that’s important, and rate is reflected in power. The concept of power
gives you an idea of how much work you can expect in a certain amount of
time. Power in physics is the amount of work done divided by the time it takes,
or the rate. Here’s what that looks like in equation form:

P = W / t

Assume you have two speedboats, for example, and you want to know which
one will get you to 120 miles per hour faster. Ignoring silly details like friction,
it will take you the same amount of work to get up to that speed, but what
about how long it will take? If one boat takes three weeks to get you to 120,
that may not be the one you take to the races. In other words, the amount of
work you do in a certain amount of time can make a big difference.

If the work done at any one instant varies, this represents the average power
over the entire time t. An average quantity in physics is often written with a
bar over it, like the following for average power:

P = W / t 

Before you can jump into your power trip, however, it helps to know what
units you’re dealing with and the various ways to get to your answer.

Common units of power
Power is work divided by time, so power has the units of Joules per second,
which is called the watt — a familiar term for just about anybody that uses
anything electrical. You abbreviate a watt as simply W, so a 100-watt light
bulb uses 100W of power.

You occasionally run across symbolization conflicts in physics, such as the
W for watts and the W for work. This conflict isn’t serious, however, because
one symbol is for units (watts) and one is for a concept (work). Capitalization
is standard, so be sure to pay attention to units versus concepts.
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Note also that because work is a scalar quantity (see Chapter 4) — as is time —
power is a scalar as well. Other units of power include the foot-pound per
second (ft-lbs/s) and the horsepower (hp). One hp = 550 ft-lbs/s = 745.7 W.

Say, for example, that you’re in a horse-drawn sleigh on the way to your
grandmother’s house. At one point, the horse accelerates the 500-kg sleigh
from 1 meter per second to 2 meters per second in 2.0 seconds. What power
does the move take? Assuming no friction on the snow, the total work done is

W = 1⁄2 mv2
2 – 1⁄2 mv1

2

Plugging in the numbers gives you

W = 1⁄2 mv2
2 – 1⁄2 mv1

2 = 1⁄2 (500)(22) – 1⁄2 (500)(12) = 1,000 – 250 = 750J

Because the horse does this work in 2 seconds, the power needed is

P = 750J / 2.0 seconds = 375 watts

One horsepower = 745.7 watts, so the horse moves at about one-half 
horsepower — not too bad for a one-horse open sleigh.

Alternate calculations of power
Because work equals force times distance, you can write the equation for
power the following way, assuming that the force acts along the direction
of travel:

P = W / t = Fs / t

where s is the distance traveled. However, the object’s speed, v, is just s
divided by t, so the equation breaks down to

P = W / t = Fs / t = Fv

That’s an interesting result — power equals force times speed? Yep, that’s
what it says. However, because you often have to account for acceleration
when you apply a force, you usually write the equation in terms of average
power and average speed:

P Fv=
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Chapter 9

Putting Objects in Motion:
Momentum and Impulse

In This Chapter
� Checking your impulse

� Gaining knowledge about momentum

� Intertwining impulse and momentum

� Utilizing the conservation of momentum

� Examining different types of collisions

This chapter is all about the topics you need to know for all your travels:
momentum and impulse. Both topics are very important to kinematics, or

the study of objects in motion. After you have these topics under your belt,
you can start talking about what happens when objects collide and go bang
(hopefully not your car or bike). Sometimes they bounce off each other (like
when you hit a tennis ball with a racket), and sometimes they stick together
(like a dart hitting a dart board), but with the knowledge of impulse and
momentum you pick up in this chapter, you can handle either case.

Looking at the Impact of Impulse
In physics terms, impulse tells you how much the momentum of an object will
change when a force is applied for a certain amount of time (see the following
section for a discussion on momentum). Say, for example, that you’re shoot-
ing pool. Instinctively, you know how hard to tap each ball to get the results
you want. The 9 ball in the corner pocket? No problem — tap it and there it
goes. The 3 ball bouncing off the side cushion into the other corner pocket?
Another tap, this time a little stronger.
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The taps you apply are called impulses. Take a look at what happens on a
microscopic scale, millisecond by millisecond, as you tap a pool ball. The
force you apply with your cue appears in Figure 9-1 — the tip of each cue has
a cushion, so the impact of the cue is spread out over a few milliseconds. The
impact lasts from the time when the cue touches the ball, to, to the time when
the ball loses contact with the cue, tf. As you can see from Figure 9-1, the
force exerted on the ball changes during that time; in fact, it changes drasti-
cally, and if you had to know what the force was doing at any one millisecond,
it would be hard to figure out without some fancy equipment.

Because the pool ball doesn’t come with any fancy equipment, you have to do
what physicists normally do, which is to talk in terms of the average force over
time: ∆t = tf – to. You can see what that average force looks like in Figure 9-2.
Speaking as a physicist, you say that the impulse — or the tap — provided by
the pool cue is the average force multiplied by the time that you apply the
force, ∆t = tf – to. Here’s the equation for impulse:

Impulse = F∆t

Force

Time

Average force

Figure 9-2:
The average

force
depends on
the amount
of time you

apply the
force.

Force

Time

Figure 9-1:
Examining

force versus
time gives

you the
impulse you

apply on
objects.
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Note that this is a vector equation, meaning it deals with both direction and
magnitude (see Chapter 4). Impulse is a vector, and it’s in the same direction
as the average force (which itself may be a net vector sum of other forces).

You get impulse by multiplying Newtons by seconds, so the units of impulse are
Newton-seconds in the meter-kilogram-second (MKS) system (see Chapter 2),
dyne-seconds in the centimeter-gram-second (CGS) system, and pound-seconds
in the pound-foot-second system.

Gathering Momentum
When you apply an impulse to an object, the impulse can change its motion
(see the previous section for more info on impulse). What does that mean? It
means that you affect the object’s momentum. Momentum is a concept most
people have heard of — in physics terms, momentum is proportional to both
mass and velocity, and to make your job easy, physics defines it as the prod-
uct of mass times velocity. Momentum is a big concept both in introductory
physics and in some advanced topics like high-energy particle physics, where
the components of atoms zoom around at high speeds. When they collide, you
can often predict what will happen based on your knowledge of momentum.

Even if you’re unfamiliar with the physics of momentum, you’re already famil-
iar with the general idea. Catching a runaway car going down a steep hill is a
problem because of its momentum. If a car without any brakes is speeding
toward you at 40 miles per hour, it may not be a great idea to try to stop it
simply by standing in its way and holding out your hand, unless you’re
Superman. The car has a lot of momentum, and bringing it to a stop requires
plenty of effort. Same thing for an oil tanker that you need to bring to a stop.
A load of oil sits in these tankers, and their engines aren’t strong enough to
make them turn or stop on a dime. Therefore, it can take an oil tanker 20 miles
or more to come to a stop. All because of the ship’s momentum.

139Chapter 9: Putting Objects in Motion: Momentum and Impulse 

Shouldn’t p stand for physics 
rather than momentum?

Why does physics use the symbol p to repre-
sent momentum? It doesn’t seem to fit (there’s
no “p” in “momentum”). I’ve never heard any
reason for it, and no physics gurus I’ve asked
have any idea either. The symbol is something
people go along with, without having any idea

why, like daylight savings time. Probably the
best reason you can give is that all the other let-
ters were taken when it came time to give one
to momentum — you can’t use m for momen-
tum, for example, because m stands for mass.
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The more mass that’s moving (think of an oil tanker), the more momentum
the mass has. The more velocity it has (think of an even faster oil tanker), the
more momentum it has. The symbol for momentum is p, so you can say that

p = mv

Momentum is a vector quantity, meaning that it has a magnitude and a 
direction (see Chapter 4), and the magnitude is in the same direction as the
velocity — all you have to do to get the momentum of an object is to multiply
its mass by its velocity. Because you multiply mass by velocity, the units for
momentum are kilograms-meters per second, kg-m/s, in the MKS system and
grams-centimeters per second in the CGS system.

The Impulse-Momentum Theorem:
Relating Impulse and Momentum

You can connect the impulse you give to an object — like striking a pool ball
with a cue — with the object’s change in momentum; all it takes is a little alge-
bra and the process you explore in this section, called the impulse-momentum
theorem. What makes the connection easy is that you can play with the equa-
tions for impulse and momentum (see the previous two sections) to simplify
them so you can relate the two topics. What equations does physics have in
its arsenal that connect these two? Relating force and velocity is a start. For
example, force equals mass times acceleration (see Chapter 5), and the defini-
tion of average acceleration is

a = ∆v / ∆t = (vf – vo) / (tf – to)

where v stands for velocity and t stands for time. Now you may realize that
after you multiply that by the mass, you get force, which brings you closer
to working with impulse:

F = ma = m(∆v / ∆t) = m([vf – vo] / [tf – to])

Now you have force in the equation. To get impulse, multiply that force by ∆t,
the time over which you apply the force:

F∆t = ma∆t = m(∆v / ∆t)∆t = m∆v = m(vf – vo)

Take a look at the final term, m(vf – vo). Because momentum equals mv (see
the section “Gathering Momentum” earlier in this chapter), this is just the dif-
ference in the object’s initial and final momentum: pf – po = ∆p. Therefore, you
can add that to the equation:

F∆t = ma∆t= m∆v = m(vf – vo) = mvf – mvo = pf – po = ∆p
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Now take a look at the term on the left, F∆t. That’s the impulse (see the sec-
tion “Looking at the Impact of Impulse” earlier in this chapter), or the force
applied to the object multiplied by the time that force was applied. Therefore,
you can write this equation as

Impulse = F∆t = ma∆t= m∆v = m(vf – vo) = ∆p

Getting rid of everything in the middle finally gives you

Impulse = ∆p

Impulse equals change in momentum. In physics, this process is called
the impulse-momentum theorem. The following two sections provide some
examples so you can practice this equation.

Shooting pool: Finding impulse
and momentum
With the equation Impulse = ∆p (see the previous section), you can relate the
impulse with which you hit an object to its consequent change in momentum.
How about putting yourself to work the next time you hit a pool ball? You line
up the shot that the game depends on. You figure that the end of your cue
will be in contact with the ball for 5 milliseconds (a millisecond is one one-
thousandth of second). How much momentum will the ball need to bounce
off the side cushion and end up in the corner pocket?

You measure the ball at 200 grams (or 0.2 kilograms). After testing the side
cushion with calipers, spectroscope, and tweezers, killing any chance of find-
ing yourself a date that night, you figure that you need to give the ball a
speed of 20.0 meters per second. What average force will you have to apply?
To find the average force, you can find the impulse you have to supply. You
can relate that impulse to the change in the ball’s momentum this way:

Impulse = ∆p = pf – po

So, what’s the change in the ball’s momentum? The speed you need,
20.0 meters per second, is the magnitude of the pool ball’s final velocity.
Assuming the pool ball starts at rest, the change in the ball’s momentum
will be

∆p = pf – po = m(vf – vo)

Plugging in the numbers gives you

∆p = pf – po = m(vf – vo) = (0.2)(20 – 0) = 4.0 kg-m/s
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You need a change in momentum of 4.0 kg-m/s, which is also the impulse you
need, and because Impulse = F∆t (see the section “Looking at the Impact of
Impulse”), this equation becomes

F∆t = ∆p = pf – po = m(vf – vo) = (0.2)(20 – 0) = 4.0 kg-m/s

Therefore, the force you need to apply works out to be

F = 4.0 kg-m/s / ∆t

In this equation, the time your cue ball is in contact with the ball is 5 millisec-
onds, or 5.0 x 10-3 seconds, so plugging in that number gives you your desired
result:

F = 4.0 kg-m/s / 5.0 × 10-3 s = 800N

You have to apply about 800N (or about 180 pounds) of force, which seems like
a huge amount. However, you apply it over such a short time, 5.0 × 10-3 seconds,
that it seems like much less.

Singing in the rain: An impulsive activity
After a triumphant evening at the pool hall, you decide to leave and discover
that it’s raining. You grab your umbrella from your car, and the handy rain
gauge on the top tells you that 100 grams of water are hitting the umbrella
each second at an average speed of 10 meters per second. The question is:
If the umbrella has a total mass of 1.0 kg, what force do you need to hold it
upright in the rain?

Figuring the force you usually need to hold the weight of the umbrella is no
problem — you just figure mass times the acceleration due to gravity, or
(1.0 kg)(9.8 m/s2) = 9.8N. But what about the rain falling on your umbrella?
Even if you assume that the water falls off the umbrella immediately, you
can’t just add the weight of the water, because the rain is falling with a speed
of 10 meters per second; in other words, the rain has momentum. What can
you do? You know that you’re facing 100 g of water, or 0.10 kg, falling onto
the umbrella each second at a velocity of 10 meters per second downward.
When that rain hits your umbrella, the water comes to rest, so the change
in momentum per second is

∆p = m∆v

Plugging in numbers gives you

∆p = m∆v = (0.1)(10) = 1.0 kg-m/s
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The change in momentum of the rain hitting your umbrella each second is
1.0 kg-m/s. You can relate that to force with the impulse-momentum theorem,
which tells you that

Impulse = F∆t = ∆p

Dividing both sides by ∆t to solve for the force (F) gives you

F = ∆p / ∆t

You know that ∆p = 1.0 kg-m/s in 1 second, so plugging in ∆p and setting ∆t to
1 second gives you

F = ∆p / ∆t = 1.0 kg-m/s / 1.0 second = 1.0 kg-m/s2 = 1.0 N

In addition to the 9.8N of the umbrella’s weight, you also need 1.0N to stand
up to the falling rain as it drums on the umbrella, for a total of 10.8N, or about
2.4 pounds of force.

The sticky part of finding force is measuring the small times that are involved
in collisions like a cue stick hitting a pool ball. You can remove the time, or
∆t, from the process to end up with something a little more useful, which I
discuss in the following section.

When Objects Go Bonk:
Conserving Momentum

The principle of conservation of momentum states that when you have an 
isolated system with no external forces, the initial total momentum of objects
before a collision equals the final total momentum of the objects after the col-
lision (pf = po). This people comes out of a bit of algebra and may be the most
useful idea I provide in this chapter.

You may have a hard time dealing with the physics of impulses because of the
short times and the irregular forces. The absence of complicated external
forces is what you need to get a truly useful principle. Troublesome items that
are hard to measure — the force and time involved in an impulse — are out of
the equation altogether. For example, say that two careless space pilots are
zooming toward the scene of an interplanetary crime. In their eagerness to get
to the scene first, they collide. During the collision, the average force exerted on
first ship by the second ship is F12. By the impulse-momentum theorem (see the
section “The Impulse-Momentum Theorem: Relating Impulse and Momentum”),
you know the following for the first ship:

F12 ∆t = ∆p1 = m1∆v1 = m1(vf1 – vo1)
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And if the average force exerted on the second ship by the first ship is F21,
you also know that

F21 ∆t = ∆p2 = m2∆v2 = m2(vf2 – vo2)

Now you add these two equations together, which gives you the resulting
equation

F12∆t + F21∆t = ∆p1 + ∆p2 = m1(vf1 – vo1) + m2(vf2 – vo2)

Rearrange the terms on the right until you get

F12∆t + F21∆t = (m1vf1 + m2vf2) – (m1vo1 + m2vo2)

This is an interesting result, because m1vo1 + m2vo2 is the initial total momentum
of the two rocket ships, p1o + p2o, and m1vf1 + m2vf2 is the final total momentum,
p1f + p2f, of the two rocket ships. Therefore, you can write this equation as 
follows:

F12 ∆t + F21 ∆t = (m1vf1 + m2vf2) – (m1vo1 + m2vo2) = (p1f + p2f) – (p1o + p2o)

If you write the initial total momentum as pf and the final total momentum as
po, the equation becomes

F12 ∆t + F21 ∆t = (m1vf1 + m2vf2) – (m1vo1 + m2vo2) = pf – po

Where do you go from here? You add the two forces together, F12 ∆t + F21, to
get the sum of the forces involved, ΣF:

ΣF∆t = pf – po

If you’re working with what’s called an isolated or closed system, you have no
external forces to deal with. Such is the case in space. If two rocket ships col-
lide in space, there are no external forces that matter, which means that by
Newton’s third law (see Chapter 5), F12 = –F21. In other words, when you have
a closed system, you get

0 = ΣF∆t = pf – po

This converts to

pf = po

The equation pf = po says that when you have an isolated system with no
external forces, the initial total momentum before a collision equals the final
total momentum after a collision, thus giving you the principle of conserva-
tion of momentum.
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Measuring velocity with the conservation
of momentum
You can use the principle of conservation of momentum to measure other
forces at work, such as velocity. Say, for example, that you’re out on a
physics expedition, and you happen to pass by a frozen lake where a hockey
game is taking place. You measure the speed of one player as 11.0 meters per
second just as he collides, rather brutally for a pick-up game, with another
player initially at rest. You watch with interest, wondering how fast the result-
ing mass of hockey players will slide across the ice. After asking a few friends
in attendance, you find out that the first player has a mass of 100 kg, and the
bulldozed player (who turns out to be his twin) also has a mass of 100 kg. So,
what’s the final speed of the player tangle?

You’re dealing with a closed system (see the previous section), because you
neglect the force of friction here, and although the players are exerting a
force downward on the ice, the normal force (see Chapter 6) is exerting an
equal and opposite force on them, so the vertical force sums to zero.

But what about the resulting horizontal speed along the ice? Due to the prin-
ciple of conservation of momentum, you know that

pf = po

Putting this into more helpful terms, you get the following, where you substi-
tute for the initial momentum, which is the momentum of the enforcer,
player 1, because the victim isn’t moving:

pf = po = m1vo1
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Taking the heat off the final total momentum
When two objects collide and stick together, is
the final total momentum really equal to the ini-
tial total momentum? Well, not exactly. If one
object rams another and the two stick together,
a lot of friction could be involved, which means
that some kinetic energy goes into heat. When
that happens, all bets are off, because the final
momentum may not exactly equal the initial
momentum. Sometimes in impacts the objects

become deformed, as when two cars crash and
produce dents. In that case, too, some energy
is used in deforming the materials, so the final
momentum may not equal the initial momentum.
For this reason, friction is usually ignored in
introductory physics classes. Otherwise, the
problems would get too sticky, because it’s very
hard to predict how much heat the collision
would generate.
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The final momentum, pf, must be equal to the combined mass of the two play-
ers multiplied by their velocity, (m1 + m2)vf, which gives you

pf = m1vo1 = (m1 + m2)vf

Solving for the final velocity, vf, gives you

vf = (m1vo1) / (m1 + m2)

Plugging in the numbers gives you

vf = (m1vo1) / (m1 + m2) = ([100][11]) / (100 + 100) = 1,100 / 200 = 5.5 meters
per second

The speed of the two players together will be half the speed of the original
player. That may be what you expected, because you end up with twice the
moving mass as before, and because momentum is conserved, you end up
with half the speed. Beautiful. You note the results down on your clipboard.

Measuring firing velocity with 
the conservation of momentum
The principle of conservation of momentum comes in handy when you can’t
measure velocity with a simple stopwatch. Say, for example, that you accept
a consulting job from an ammunition manufacturer that wants to measure the
muzzle velocity of its new bullets. No employee has been able to measure the
velocity yet, because no stopwatch is fast enough. What will you do? You
decide to arrange the setup shown in Figure 9-3, where you fire a bullet of
mass m into a hanging wooden block of mass M.

The directors of the ammunition company are perplexed — how can your
setup help? Each time you fire a bullet into a hanging wooden block, the
bullet kicks the block into the air. So what? You decide they need a lesson on
the principle of conservation of momentum. The original momentum, you
explain, is the momentum of the bullet:

po = mvo

Because the bullet sticks into the wood block, the final momentum is the
product of the total mass, m + M, and the final velocity of the bullet/wood
block combination:

pf = (m + M)vf
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Because of the principle of conservation of momentum and neglecting fric-
tion and other nonconservative forces, you can say that

pf = po

So,

vf = mvo / (m + M)

The directors start to get dizzy, so you explain how the kinetic energy of the
block when it’s struck goes into its final potential energy when it rises to
height h (see Chapter 8), so

1⁄2(m + M)vf
2 = (m + M)gh

Putting all the numbers together gives you

1⁄2(m + M)vf
2 = 1⁄2(m + M)(m2 vo

2 / [m + M]2) = (m + M)gh

With a flourish, you add that solving for the initial velocity, vo, gives you

v
m

2 m M gh
o 2

2

=
+^ h

v

Bullet

h

wooden
block

Bullet
wooden

block

Figure 9-3:
Shooting a

wooden
block on a

string
allows 
you to

experiment
with

velocity, but
don’t try it at

home!
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You measure that the bullet has a mass of 50 g, the wooden block has a mass
of 10 kg, and that upon impact, the block rises 50.0 cm into the air. Plugging
in those values gives you your result:

v
m

2 m M gh
629 meters per secondo 2

2

=
+

=
^ h

The initial velocity is 629 meters per second, which converts to about 2,060 feet
per second. “Brilliant!” the directors cry as they hand you a big check.

When Worlds (or Cars) Collide:
Elastic and Inelastic Collisions

Examining collisions in physics can be pretty entertaining, especially because
the principle of conservation of momentum makes your job so easy (see the
section “When Objects Go Bonk: Conserving Momentum” earlier in this chap-
ter to find out how). But there’s often more to the story when you’re dealing
with collisions than impulse and momentum. Sometimes, kinetic energy is
also conserved, which gives you the extra edge you need to figure out what
happens in all kinds of collisions, even across two dimensions.

You can run into all kinds of situations in physics problems where collisions
become important. Two cars collide, for example, and you need to find the
final velocity of the two when they stick together. You may even run into a
case where two railway cars going at different velocities collide and couple
together, and you need to determine the final velocity of the two cars.

But what if you have a more general case where the two objects don’t stick
together? Say, for example, you have two pool balls that hit each other at dif-
ferent speeds and at different angles and bounce off with different speeds and
different angles. How the heck do you handle that situation? You have a way
to handle these collisions, but you need more than just the principle of con-
servation of momentum gives you.

When objects bounce: Elastic collisions
When bodies collide in the real world, you can observe energy losses due to
heat and deformation. If these losses are much smaller than the other ener-
gies involved, such as when two pool balls collide and go their separate
ways, kinetic energy may be conserved in the collision. Physics has a special
name for collisions where kinetic energy is conserved: elastic collisions. In an
elastic collision, the total kinetic energy in a closed system (where the net
forces add up to zero) is the same before the collision as after the collision.

148 Part III: Manifesting the Energy to Work 

15_554336 ch09.qxd  11/2/05  11:32 PM  Page 148



When objects don’t bounce: 
Inelastic collisions
If you can observe appreciable energy losses due to nonconservative forces
(such as friction) during a collision, kinetic energy isn’t conserved. In this case,
friction, deformation, or some other process transforms the kinetic energy, and
it’s lost. The name physics gives to a situation where kinetic energy is lost after
a collision is an inelastic collision. The total kinetic energy in a closed system
isn’t the same before the collision as after the collision. You see inelastic colli-
sions when objects stick together after colliding, such as when two cars crash
and weld themselves into one.

Objects don’t need to stick together in an inelastic collision; all that has to
happen is the loss of some kinetic energy. For example, if you smash into a
car and deform it, the collision is inelastic, even if you can drive away after
the accident.

Colliding along a line
When a collision is elastic, kinetic energy is conserved. The most basic way
to look at elastic collisions is to examine how the collisions work along a
straight line. If you smash your bumper car into a friend’s bumper car along
a straight line, you bounce off and kinetic energy is conserved along the line.
But the behavior of the cars depends on the mass of the objects involved in
the elastic collision.

Bumping into a heavier mass
You take your family to the Physics Amusement Park for a day of fun and cal-
culation, and you decide to ride the bumper cars. You wave to your family as
you speed your 300-kg car up to 10 meters per second. Suddenly, BONK!
What happened? The person in front of you, driving a 400-kg car came to a
complete stop, and you rear-end him elastically; now you’re traveling back-
ward and he’s traveling forward. “Interesting,” you think. “I wonder if I can
solve for the final velocities of both bumper cars.”

You know that the momentum was conserved, and you know that the car in
front of you was stopped when you hit it, so if your car is car 1 and the other
is car 2, you get the following

m1vf1 + m2vf2 = m1vo1

However, this doesn’t tell you what vf1 and vf2 are, because there are two
unknowns and only one equation here. You can’t solve for vf1 or vf2 exactly
in this case, even if you know the masses and vo1. You need some other 
equations relating these quantities. How about using the conservation of
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kinetic energy? The collision was elastic, so kinetic energy was conserved,
which means that

1⁄2m1vf1
2 + 1⁄2m2vf2

2 = 1⁄2m1vo1
2

Now you have two equations and two unknowns, vf1 and vf2, which means you
can solve for the unknowns in terms of the masses and vo1. You have to dig
through a lot of algebra here because the second equation has many squared
velocities, but when the dust settles, you get

vf1 = [(m1 – m2)vo1] / (m1 + m2)

and

vf2 = 2m1vo1 / (m1 + m2)

Now you have vf1 and vf2 in terms of the masses and vo1. Plugging in the num-
bers gives you

vf1 = [(m1 – m2)vo1] / (m1 + m2) = [(300 – 400)(10)] / (300 + 400) = –1.43 m/s

and

vf2 = 2m1vo1 / (m1 + m2) = [2(300)(10)] / (300 + 400) = 8.57 m/s

The two speeds tell the whole story. You started off at 10.0 meters per second
in a bumper car of 300 kg, and you hit a stationary bumper car of 400 kg in
front of you. Assuming the collision took place directly and the second bumper
car took off in the same direction you were going before the collision, you
rebounded at –1.43 meters per second — backward, because this quantity is
negative and the bumper car in front of you had more mass — and the bumper
car in front of you took off at a speed of 8.57 meters per second.

Bumping into a lighter mass
After having a bad experience in a previous trip to the bumper car pit — where
your light bumper car rear-ended a heavy bumper car (see the previous sec-
tion for the calculation) — you decide to go back and pick on some poor light
cars in a monster bumper car. What happens if your bumper car has a mass
of 400 kg, and you rear-end a stationary 300-kg car? In this case, you use the
equation for conservation of kinetic energy, the same formula you use in the
previous section. Your final velocity comes out to

vf1 = [(m1 – m2)vo1] / (m1 + m2) = [(400 – 300)(10)] / (300 + 400) = 1.43 m/s

The little car’s final velocity comes out to

vf2 = 2m1vo1 / (m1 + m2) = [2(400)(10)] / (300 + 400) = 11.4 m/s
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In this case, you don’t bounce backward. The lighter, stationary car takes off
after you hit it, but not all your forward momentum is transferred to the
other car. Is momentum still conserved? Take a look at the following:

po = m1vo1

and

pf = m1vf1 + m2vf2

Putting in the numbers, you get

po = m1vo1 = (400)(10) = 4,000 kg-m/s

and

pf = m1vf1 + m2vf2 = (400)(1.43) + (300)(11.4) = 4,000 kg-m/s

Momentum is conserved in this collision, just as it is for your collision with a
heavier car.

Colliding in two dimensions
Collisions don’t always occur along a straight line. For example, balls on a
pool table can go in two dimensions, both X and Y, as they zoom around.
Collisions along two dimensions introduce variables such as angle and direc-
tion. Say, for example, your physics travels take you to the golf course, where
two players are lining up for their final putts of the day. The players are tied,
so these putts are the deciding shots. Unfortunately, the player closer to the
hole breaks etiquette, and they both putt at the same time. Their 45-g golf
balls collide! You can see what happens in Figure 9-4.

vo2

vo1

vf1

vf2

40°

30°

θ
1

A B C

1

1

2 2

2

Figure 9-4:
Before,

during, and
after a

collision
between
two balls

moving
in two

dimensions.
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You quickly stoop down to measure all the angles and velocities involved in the
collision. You measure the speeds: vo1 = 1.0 meter per second, vo2 = 2.0 meters
per second, and vf2 = 1.2 meters per second. You also get most of the angles,
as shown in Figure 9-4. However, you can’t get the final angle and speed of
golf ball 1.

Because the golf balls create an elastic collision, both momentum and kinetic
energy are conserved. In particular, momentum is conserved in both the X-axis
and Y-axis directions, and total kinetic energy is conserved as well. But using
all those equations in two dimensions can be a nightmare, so physics prob-
lems very rarely ask you to do that kind of calculation. In this case, all you
want is the final velocity — that is, the speed and direction — of golf ball 1,
as shown in Figure 9-4. To solve this problem, all you need is the conserva-
tion of momentum in two dimensions. Momentum is conserved in both the
X and Y directions, which means that

pfx = pox

and

pfy = poy

In other words, the final momentum in the X direction is the same as the orig-
inal momentum in the X direction, and the final momentum in the Y direction
is the same as the original momentum in the Y direction. Here’s what the
original momentum in the X direction looks like:

pfx = pox = m1vo1 cos40° + m2vo1

Setting that equal to the final momentum in the X direction gives you

pfx = pox = m1vo1 cos40° + m2vo2 = m1vf1x + m2vf2 cos30°

This tells you that

m1vf1x = m1vo1 cos40° + m2vo2 – m2vf2 cos30°

Dividing by m1 gives you

vf1x = vo1 cos40° + (m2vo2 – m2vf2 cos30°) / m1

Because m1 = m2, this breaks down even more:

vf1x = vo1 cos40° + vo2 – vf2 cos30°

Plugging in the numbers gives you

vf1x = vo1cos40° + vo2 – vf2 cos30° = (1.0)(.766) + 2.0 – [(1.2)(.866)] = 1.71 m/s

The final velocity of golf ball 1 in the X direction is 1.71 meters per second.
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Chapter 10

Winding Up with Angular Kinetics
In This Chapter
� Changing gears from linear motion to rotational motion

� Calculating tangential speed and acceleration

� Figuring angular acceleration and velocity

� Identifying the torque involved in rotational motion

� Maintaining rotational equilibrium

This chapter is the first of two (Chapter 11 is the other) on handling
objects that rotate, from space stations to marbles. Rotation is what

makes the world go round — literally — and if you know how to handle linear
motion and Newton’s laws (see the first two parts of the book if you don’t),
the rotational equivalents I present in this chapter and in Chapter 11 are
pieces of cake. And if you don’t have a grasp on linear motion, no worries.
You can get a firm grip on the basics of rotation here and go back for the
linear stuff. You see all kinds of rotational ideas in this chapter: angular accel-
eration, tangential speed and acceleration, torque, and more. But enough
spinning the wheels. Read on!

Going from Linear to Rotational Motion
You need to change equations when you go from linear motion to rotational
motion, particularly when angles get involved. Chapter 7 shows you the rota-
tional equivalents (or analogs) for each of these linear equations:

� v = ∆s / ∆t, where v is velocity, ∆s is the change in displacement, and ∆t
is the change in time

� a = ∆v / ∆t, where a is acceleration and ∆v is the change in velocity

� s = v0(tf – to) + 1⁄2a(tf – to)
2, where s is displacement, v0 is the original

velocity, tf is the final time, and to is the original time

� vf
2 – vo

2 = 2as, where vf is the final velocity
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Here’s how you convert these equations in terms of angular displacement, θ
(measured in radians — 2π radians in a circle), angular speed, ω, and angular
acceleration, α:

ω = ∆θ / ∆t

α = ∆ω / ∆t

θ = ω0(tf – to) + 1⁄2α (tf – to)
2

ωf
2 – ωo

2 = 2αθ

Understanding Tangential Motion
Tangential motion is motion that’s perpendicular to radial motion, or motion
along a radius. You can tie angular quantities like angular displacement, θ,
angular speed, ω, and angular acceleration, α, to their associated tangential
quantities — all you have to do is multiply by the radius:

s = rθ

v = rω

a = rα

Say you’re riding a motorcycle, for example, and the wheels’ final angular speed
is ωf = 21.5π radians per second (see the previous section for the full calcula-
tion). What does this mean in terms of your motorcycle’s speed? To determine
your motorcycle’s speed, you need to relate angular speed, ω, to linear speed,
v. The following sections explain how you can make such relations.

Finding tangential speed
Linear speed has a special name when you begin to deal with rotational
motion — it’s called the tangential speed. Tangential speed is the speed of a
point at a given radius r. The vector v shown in Figure 10-1 is a tangential
vector (meaning it has a magnitude and a direction; see Chapter 4), perpen-
dicular to the radius. 

Given an angular speed ω, the tangential speed at any radius is rω. This
makes sense, because given a rotating wheel, you’d expect a point at radius r
to be going faster than a point closer to the hub of the wheel.

Take a look at Figure 10-1, which shows a ball tied to a string. In this case, you
know that the ball is whipping around with angular speed ω.
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You can easily find the magnitude of the ball’s velocity, v, if you measure the
angles in radians. A circle has 2π radians; the complete distance around a
circle — its circumference — is 2πr, where r is the circle’s radius. And if you
go only halfway around, you cover a distance of πr, or π radians. In general,
therefore, you can connect an angle measured in radians with the distance
you cover along the circle, s, like this:

s = rθ

where r is the radius of the circle. Now, you can say that

v = s / t

where v is velocity, s is the displacement, and t is time. You can substitute for
s to get

v = s / t = rθ / t

ω = θ / t, which means

v = s / t = rθ / t = rω

In other words,

v = rω

Now you can find the magnitude of the velocity. The wheels of the motorcy-
cle are turning with an angular speed of 21.5π radians per second. If you can
find the tangential speed of any point on the outside edges of the wheels, you
can find the motorcycle’s speed. Say, for example, that the radius of one of
your motorcycle’s wheels is 40 cm. You know that

v = rω

v

Stri
ng

Golf ball

s

θ

Figure 10-1:
A ball in
circular

motion has
angular

speed with
respect to

the radius of
the circle.
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Just plug in the numbers!

v = rω = (0.40)(21.5π) = 27.0 m/s

Converting 27.0 meters per second to miles per hour gives you about 60 mph.

Finding tangential acceleration
Tangential acceleration is a measure of how the speed of a point at a certain
radius changes with time. This type of acceleration resembles linear accelera-
tion (see Chapter 3), with the exception that tangential acceleration is all about
circular motion. For example, when you start a lawn mower, a point on the tip
of one of its blades starts at a tangential speed of zero and ends up with a
pretty fast tangential speed. So, how do you determine the point’s tangential
acceleration? How can you relate the following equation from Chapter 3, which
finds linear acceleration (where ∆v is the change in velocity and ∆t is the
change in time)

a = ∆v / ∆t

to angular quantities like angular speed? You find in the previous section that
tangential speed, v, equals rω, so you can plug this information in:

a = ∆v / ∆t = ∆(rω) / ∆t

Because the radius is constant here, the equation becomes

a = ∆v / ∆t = ∆(rω) / ∆t = r∆ω / ∆t

However, ∆ω / ∆t = α, the angular acceleration, so the equation becomes

a = ∆v / ∆t = r∆ω / ∆t = rα

In other words,

a = rα

Translated into laymen’s terms, this says tangential acceleration equals angu-
lar acceleration multiplied by the radius.

Finding centripetal acceleration
Another kind of acceleration turns up in an object’s circular motion — 
centripetal acceleration, or the acceleration an object needs to keep going

156 Part III: Manifesting the Energy to Work 

16_554336 ch10.qxd  11/2/05  11:29 PM  Page 156



in a circle. Can you connect angular quantities, like angular speed, to cen-
tripetal acceleration? You sure can. Centripetal acceleration is given by the
following equation (for more on the equation, see Chapter 7):

ac = v2 / r

where v2 is velocity squared and r is the radius. This is easy enough to tie to
angular speed because v = rω (see the section “Finding tangential speed”),
which gives you

ac = v2 / r = (rω)2 / r

This equation breaks down to

ac = rω2

Nothing to it. The equation for centripetal acceleration means that you can
find the centripetal acceleration needed to keep an object moving in a circle
given the circle’s radius and the object’s angular speed. For example, say that
you want to calculate the centripetal acceleration of the moon around the
Earth. First, use the old equation:

ac = v2 / r

First you have to calculate the tangential velocity, or angular speed, of the
moon in its orbit. Using the new version of the equation, ac = rω2, is easier
because the moon orbits the Earth in about 28 days, so you can easily calcu-
late the moon’s angular speed.

Because the moon makes a complete orbit around the earth in about 28 days,
it travels 2π radians around the Earth in that period, so its angular speed is

ω = ∆θ / ∆t = 2π / 28 days

Converting 28 days to seconds gives you (28 days)(24 hours per day)(60 min-
utes per hour)(60 seconds per minute) = 2.42 × 106 seconds, so you get the
following angular speed:

ω = ∆θ / ∆t = 2π / 28 days = 2π / 2.42 × 106 = 2.60 × 10-6 radians per second

You now have the moon’s angular speed, 2.60 × 10-6 radians per second. The
average radius of the moon’s orbit is 3.85 × 108 m, so its centripetal accelera-
tion is

ac = rω2 = (3.85 × 108)(2.60 × 10-6)2 = 2.60 × 10-3 radians per second2
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Just for kicks, you can also find the force needed to keep the moon going
around in its orbit. Force equals mass times acceleration (see Chapter 5),
so you multiply by the mass of the moon, 7.35 × 1022 kg:

Fc = mac = (7.35 × 1022)(2.60 × 10-3) = 1.91 × 1020N

The force in Newtons you find, 1.91 × 1020N, converts to about 4.30 × 1019 pounds
of force needed to keep the moon going around in its orbit.

Applying Vectors to Rotation
The previous sections in this chapter examine angular speed and angular
acceleration as if they’re scalars — as if speed and acceleration have only a
magnitude and not a direction. However, these concepts are really vectors,
which means they have a magnitude and a direction (see Chapter 4 for more on
scalars and vectors). When you make the switch from linear motion to circular
motion, you make the switch from angular speed to angular velocity — and
from talking about only magnitudes to magnitudes and direction. You can see
the relation between the two in the following sections.

Angular velocity and angular acceleration are vectors that point at right
angles to the direction of rotation.

Calculating angular velocity
When a wheel is spinning, it has an angular speed, but it can have an angular
acceleration as well. Say, for example, that the wheel has a constant angular
speed, ω — which direction does its angular velocity, ω, point? It can’t point
along the rim of the wheel, as tangential velocity does, because its direction
would change every second. In fact, the only real choice for its direction is
perpendicular to the wheel.

This always takes people by surprise: angular velocity, ω, points along the
axle of a wheel (for an example, see Figure 10-2). Because the angular velocity
vector points the way it does, it has no component along the wheel. The wheel
is spinning, so the velocity at any point on the wheel is constantly changing
direction — except for the very center point of the wheel. The angular veloc-
ity vector’s base sits at the very center point of the wheel. Its head points up
or down, away from the wheel.

You can use the right hand rule to determine a vector’s direction. To apply
this rule to the wheel in Figure 10-2, wrap your right hand (left-handed people
often think that right-handed chauvinists invented this rule, and maybe
that’s true) around the wheel so that your fingers point in the direction of
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the tangential motion at any point — that is, the fingers on your right hand go
in the same direction as the wheel’s rotation. When you wrap your right hand
around the wheel, your thumb will point in the direction of the angular veloc-
ity vector, ω.

Now you can master the angular velocity vector. You know that its magnitude
is ω, the angular speed of an object in rotational motion. And now you can
find the direction of that vector by using the right hand rule. The fact that
the angular velocity is perpendicular to the plane of rotational motion (the
flat side of the wheel) takes some getting used to, but as you’ve seen, you
can’t plant a vector on a spinning wheel that has constant angular velocity
so that the vector has a constant direction, except at the very center of the
wheel. And from there, you have no way to go except up (or down, in the case
of negative angular velocity).

Figuring angular acceleration
If the angular velocity vector points out of the plane of rotation (see the pre-
vious section), what happens when the angular velocity changes — when the
wheel speeds up or slows down? A change in velocity signifies the presence
of angular acceleration. Like angular velocity, ω, angular acceleration, α, is a
vector, meaning it has a magnitude and a direction. Angular acceleration is
the rate of change of angular speed:

α = ∆ω / ∆t

For example, take a look at Figure 10-3, which shows what happens when
angular acceleration affects angular velocity.

In this case, α points in the same direction as ω in diagram A. If the angular
acceleration vector, α, points along the angular velocity, ω, as time goes on,
the magnitude of ω will increase, as shown in Figure 10-3, diagram B.

ω
Figure 10-2:

Angular
velocity

points in a
perpendicu-
lar direction
to the circle.
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You’ve calculated that the angular acceleration vector just indicates how the
angular velocity will change in time, which mirrors the relationship between
linear acceleration and linear velocity. However, you should note that the
angular acceleration doesn’t have to be in the same direction as the angular
velocity vector at all, as shown in Figure 10-4, diagram A. If the angular accel-
eration moves in the opposite direction of the angular velocity, it’s called 
negative angular acceleration.

As you may expect in this case, the angular acceleration will reduce the angu-
lar velocity as time goes on, which you can see in Figure 10-4, diagram B. Say,
for example, that you grab the spinning wheel’s axle in Figure 10-3 and tip the
wheel. The angular acceleration is at right angles to the angular velocity,
which changes the direction of the angular velocity.

Twisting and Shouting: Torque
You not only have to look at how forces work when you apply them to objects,
but also where you apply the forces. Enter torque. Torque is a measure of the
tendency of a force to cause rotation. In physics terms, the torque exerted on
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an object depends on where you exert the force. You go from the strictly
linear idea of force as something that acts in a straight line, such as pushing
a refrigerator up a ramp, to its angular counterpart, torque.

Torque brings forces into the rotational world. Most objects aren’t just point
or rigid masses, so if you push them, they not only move but also turn. For
example, if you apply a force tangentially to a merry-go-round, you don’t
move the merry-go-round away from its current location — you cause it to
start spinning. And spinning is the rotational kinematic you focus on this
chapter and in Chapter 11.

Take a look at Figure 10-5, which shows a seesaw with a mass m on it. If you
want to balance the seesaw, you can’t have a larger mass, M, placed on a sim-
ilar spot on the other side of the seesaw. Where you put the larger mass M
determines what results you get. As you can see in diagram A of Figure 10-5,
if you put the mass M on the pivot point — also called the fulcrum — of
the seesaw, you don’t create a balance. The larger mass exerts a force
on the seesaw, but the force doesn’t balance it.

As you can see in diagram B of Figure 10-5, as the distance you put the mass M
away from the fulcrum increases, the balance improves. In fact, if M = 2m, you
need to put the mass M exactly half as far from the fulcrum as the mass m is.

A

m

M

B

m M
Figure 10-5:

A seesaw
demon-
strates
torque

at work.
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Mapping out the torque equation
How much torque you exert on an object depends on the point where you
apply the force. The force you exert, F, is important, but you can’t discount
the lever arm — also called the moment arm — which is the distance from the
pivot point at which you exert your force. Assume that you’re trying to open
a door, as in the various scenarios in Figure 10-6. You know that if you push
on the hinge, as in diagram A, the door won’t open; if you push the middle of
the door, as in diagram B, the door will open slowly; and if you push the edge
of the door, as in diagram C, the door will open faster.

In Figure 10-6, the lever arm, l, is distance r from the hinge at which you exert
your force. The torque is the product of the force multiplied by the lever arm.
It has a special symbol, the Greek letter τ (tau):

τ = Fl

The units of torque are force multiplied by distance, which is Newtons-meters
in the MKS system, dynes-centimeters in the CGS system, and feet-pounds in
the foot-pound-second system (see Chapter 2 for more on these measurement
systems).

So, for example, the lever arm in Figure 10-6 is distance r, so τ = Fr. If you
push with a force of 200N, and r = 0.5 meters, what’s the torque you see in
the figure? In diagram A, you push on the hinge, so your distance from the
pivot point is zero, which means the lever arm is zero. Therefore, the torque
is zero. In diagram B, you exert the 200N of force at a distance of 0.5 meters
perpendicular to the hinge, so

τ = Fl = 200(0.5) = 100N-m

The torque here is 100 N-m. But now take a look at diagram C. You push with
200N of force at a distance of 2r perpendicular to the hinge, which makes the
lever arm 2r = 1.0 meter, so you get this torque:

τ = Fl = 200(1.0) = 200N-m

Now you have 200 N-m of torque, because you push at a point twice as far away
from the pivot point. In other words, you double your torque. But what would
happen if, say, the door were partially open when you exerted your force? Well,
you would calculate the torque easily, if you have lever-arm mastery.

Understanding lever arms
If you push a partially open door in the same direction as you push a closed
door, you create a different torque because of the non-right angle between
your force and the door.
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Take a look at Figure 10-7, diagram A, to see a person obstinately trying to
open a door by pushing along the door toward the hinge. You know this
method won’t produce any turning motion, because the person’s force has
no lever arm to produce the needed turning force. “Leave me alone,” the
person says; some people just don’t appreciate physics. In this case, the
lever arm was zero, so it’s clear that even if you apply a force at a given 
distance away from a pivot point, you don’t always produce a torque.
The direction you apply the force also counts, as you know from your 
door-opening expertise.

A

F

B

F

r

C

F

2r

Figure 10-6:
The torque

you exert on
a door

depends on
where you

push it.
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Figuring out the torque generated
Generating torque is how you open doors, whether you have to quickly pop a
car door or slowly pry open a bank-vault door. But how do you find out how
much torque you generate? First, you calculate the lever arm, and then you
multiply that lever arm by the force to get the torque.

Take a look at diagram B in Figure 10-7. You apply a force to the door at some
angle, θ. The force may open the door, but it isn’t a sure thing, because as
you can tell from the figure, you apply less of a turning force here. What you
need to do is find the lever arm first. As you can see in Figure 10-7, you apply
the force at a distance r from the hinge. If you apply that force perpendicu-
larly to the door, the lever arm would be r, and you’d get

τ = Fr

However, that’s not the case here, because the force isn’t perpendicular to
the door.

The lever arm is the effective distance from the pivot point at which the force
acts perpendicularly.

A

F

B

F

r

r sin θ

θ

Figure 10-7:
You produce

a useful
angle of a

lever arm by
exerting

force in the
proper

direction.
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To see how this works, take a look at diagram B in Figure 10-7, where you can
draw a lever arm from the pivot point so that the force is perpendicular to
the lever arm. To do this, extend the force vector until you can draw a line
from the pivot point that’s perpendicular to the force vector. You create a
new triangle. The lever arm and the force are at right angles with respect to
each other, so you create a right triangle. The angle between the force and
the door is θ, and the distance from the hinge at which you apply the force is
r (the hypotenuse of the right triangle), so the lever arm becomes

l = r sin θ

When θ goes to zero, so does the lever arm, so there’s no torque (see diagram
A in Figure 10-7). You know that

τ = Fl

so you can now find

τ = Fr sin θ

where θ is the angle between the force and the door.

This is a general equation; if you apply a force F at a distance r from a pivot
point, where the angle between that displacement and F is θ, the torque you
produce will be τ = Fr sin θ. So, for example, if θ = 45°, F = 200N, and r = 1.0 meter,
you get

τ = Fr sin θ = (200)(1.0)(0.707) = 141N-m

This number is less than you’d expect if you just push perpendicularly to the
door (which would be 200 N-m).

Recognizing that torque is a vector
Looking at angles between lever arms and force vectors (see the previous
two sections) may tip you off that torque is a vector, too. And it is. In physics,
torque is a positive vector if it tends to create a counterclockwise turning
motion (toward increasingly positive angles) and negative if it tends to create
a clockwise turning motion (toward increasingly negative angles).

For example, take a look at Figure 10-8, where a force F applied at lever arm l
is producing a torque τ. Because the turning motion produced is toward
larger positive angles, τ is positive.
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No Wobbling Allowed:
Rotational Equilibrium

You may know equilibrium as a state of balance, but what’s equilibrium in
physics terms? When you say an object has equilibrium, you mean that the
motion of the object isn’t changing; in other words, the object has no acceler-
ation (it can have motion, however, as in constant velocity and/or constant
angular velocity). As far as linear motion goes, the sum of all forces acting on
the object must be zero:

ΣF = 0

In other words, the net force acting on the object is zero.

Equilibrium also occurs in rotational motion in the form of rotational 
equilibrium. When an object is in rotational equilibrium, it has no angular
acceleration — the object may be rotating, but it isn’t speeding up or slowing
down, which means its angular velocity is constant. When an object has rota-
tional equilibrium, there’s no net turning force on the object, which means
that the net torque on the object must be zero:

Στ = 0

This equation represents the rotational equivalent of linear equilibrium.
Rotational equilibrium is a useful idea, because given a set of torques operat-
ing on an object, you can determine what torque is necessary to stop the
object from rotating.

τ

l
F

Figure 10-8:
A turning

motion
toward

larger
positive
angles

indicates a
positive
vector.
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Hanging a flag: A rotational
equilibrium problem
The manager at the hardware store you work at asks you to help hang a flag
over the top of the store. The store is extra-proud of the flag, because it’s an
extra-big one (to check it out, see Figure 10-9). The problem is that the bolt
holding the flagpole in place seems to break all the time, and both the flag
and pole go hurtling over the edge of the building, which doesn’t help the
store’s image.

In order to find out how much force the bolt needs to provide, you start
taking measurements and note that the flag has a mass of 50 kg — much
more than the mass of the pole — and that the manager had previously
hung it 3.0 meters from the pivot point. The bolt is 10 cm from the pivot
point. To get rotational equilibrium, you need to have zero net torque:

Στ = 0

In other words, if the torque due to the flag is τ1 and the torque due to the
bolt is τ2,

Στ = 0 = τ1 + τ2

What are the torques involved here? You know that the flag’s weight provides
a torque around the pivot point, τ1, so

τ1 = mgl1

0.1
meters

3.0
meters

W

PivotBolt
FlagFigure 10-9:

Hanging a
heavy flag

requires
some heavy

torque.
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where m is the mass of the pole, g is the acceleration due to gravity, and l1 is
the lever arm for the flag. Plugging in the numbers gives you

τ1 = mgl1 = (50)(–9.8)(3.0) = –1,470N-m

Note that this is a negative torque because the acceleration due to gravity is
pointing down. What about the torque due to the bolt, τ2? As with any torque,
you can write τ2 as

τ2 = F2l2

Plugging in as many numbers as you know gives you

τ2 = F2l2 = F2(0.10)

Because you want rotational equilibrium, the following condition must hold:

Στ = 0 = τ1 + τ2

In other words, the torques must balance out, so

τ2 = –τ1

which means that

τ2 = –τ1 = 1,470N-m

Now you can finally get your answer:

τ2 = F2l2 = F2(0.10) = 1,470N-m

Putting F2 on one side and solving the equation gives you

F2(0.10) / 0.10 = 1,470N-m / 0.10 = 14,700N

The bolt needs to provide at least 14,700N of force, or about 330 pounds.

Ladder safety: Introducing friction
into rotational equilibrium
The hardware store owner from the previous section has come to you again for
help with another problem. A clerk has climbed near the top of a ladder to hang
a sign for the company’s upcoming sale. The owner doesn’t want the ladder to
slip — lawsuits, he explains — so he asks you if the ladder is going to fall.
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The situation appears in Figure 10-10. The question is, will the force of fric-
tion keep the ladder from moving if θ is 45° and the static coefficient of friction
(see Chapter 6) with the floor is 0.7?

You have to work with net forces to determine the overall torque. You write
down what you know (you can assume that the weight of the ladder is con-
centrated at its middle):

� FW = Force exerted by the wall on the ladder

� WC = Weight of the clerk = 450N

� WL = Weight of the ladder = 200N

� FF = Force of friction holding the ladder in place

� FN = Normal force (see Chapter 6)

2.0 m3.0 m4.0 m

F
Nθ

F
F

F
W

W
C

W
L

Figure 10-10:
Keeping a

ladder
upright

requires
friction and

rotational
equilibrium.
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You need to determine the needed force of friction here, and you want the
ladder to be in both linear and rotational equilibrium. Linear equilibrium tells
you that the force exerted by the wall on the ladder, FW, must be the same as
the force of friction in magnitude but opposite in direction, because those
are the only two horizontal forces. Therefore, if you can find FW, you know
what the force of friction, FF, needs to be, which is your goal here.

You know that the ladder is in rotational equilibrium, which means that

Στ = 0

To find FW, take a look at the torques around the bottom of the ladder, using
that point as the pivot point. All the torques around the pivot point have to
add up to zero. The torque due to the force from the wall against the ladder
(see the section “Figuring out the torque generated” for more on angles) is

–FW (4.0m) sin 45° = –2.83 FW

Note that FW is negative, because it tends to produce a clockwise motion.
The torque due to the clerk’s weight is

WC (3.0m) cos 45° = (450N)(3.0m)(0.707) = 954N-m

The torque due to the ladder’s weight is

WL (4.0m) cos 45° = (200N)(2.0m)(0.707) = 283N-m

Both of these torques are positive; because Στ = 0, you get the following
result when you add all the torques together:

Στ = 954 N-m + 283 N-m – 2.83 FW = 0

You can add 2.83 FW to each side and then divide by 2.83 to get

FW = (954 N-m + 283 N-m) / 2.83 = 437N

The force the wall exerts on the ladder is 437N, which is also equal to the 
frictional force of the bottom of the ladder on the floor, because FW and the fric-
tional force are the only two horizontal forces in the whole system. Therefore,

FF = 437N

You have the force of friction that you need. But what do you actually have?
The basic equation for friction (as outlined in Chapter 6) tells you that

FF actual = µs FN
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where µs is the coefficient of static friction and FN is the normal force of the
floor pushing up on the ladder, which must balance all the downward-pointing
forces in this problem because of linear equilibrium. This means that

FN = WC + WL = 450N + 200N = 650N

Plugging this into the equation for FF actual and using the value of µs, 0.7, gets
you the following:

FF actual = µs FN = (0.7)(650) = 455N

You need 437N of force, and you actually have 455N. Good news — the ladder
isn’t going to slip.
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Chapter 11

Round and Round with
Rotational Dynamics

In This Chapter
� Converting Newton’s linear thinking into rotational thinking

� Utilizing the moment of inertia

� Finding the angular equivalent of work

� Looking at the rotational kinetic energy caused by work

� Conserving angular momentum

This chapter is all about applying forces and seeing what happens in the
rotational world. You find out what Newton’s second law (force equals

mass times acceleration; see Chapter 5) becomes for rotational motion, you
see how inertia comes into play in rotational motion, and you get the story
on rotational kinetic energy, rotational work, and angular momentum. All that
rolls comes up in this chapter, and you get the goods on it.

Rolling Up Newton’s Second Law
into Angular Motion

Newton’s second law, force equals mass times acceleration (F = ma; see
Chapter 5), is a physics favorite in the linear world because it ties together
the vectors force and acceleration (see Chapter 4 for more on vectors). But if
you have to talk in terms of angular kinetics rather than linear motion, what
happens? Can you get Newton spinning?

Chapter 10 explains that there are equivalents (or analogs) for linear equa-
tions in angular kinetics. So, what’s the angular analog for F = ma? You may
guess that F, the linear force, becomes τ, or torque, after reading about
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torque in Chapter 10, and you’d be on the right track. And you may also
guess that a, linear acceleration, becomes α, angular acceleration, and you’d
be right. But what about m? What the heck is the angular analog of mass?
The answer is inertia, and you come to this answer by converting tangential
acceleration to angular acceleration. Your final conclusion is Στ = Iα, the 
angular form of Newton’s second law. But I’m getting ahead of myself.

You can start the linear-to-angular conversion process with a simple example.
Say that you’re whirling a ball in a circle on the end of a string, as shown in
Figure 11-1. And say that you apply a tangential force (along the circle) to the
ball, making it speed up (keep in mind that this is a tangential force, not one
directed toward the center of the circle, as when you have a centripetal force;
see Chapter 10).

Start by saying that

F = ma

To convert this into terms of angular quantities like torque, multiply by the
radius of the circle, r:

Fr = mra

Because you’re applying tangential force to the ball in this case, the force and
the circle’s radius are at right angles (see Figure 11-1), so you can say that Fr
equals torque:

Fr = τ = mra

You’re now partly done making the transition to rotational motion. Instead of
working with linear force, you’re working with torque, which is linear force’s
rotational analog.

r

String

F
Figure 11-1:

Tangential
force

applied to a
ball on a

string
moving in a

circle.
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Converting tangential acceleration 
to angular acceleration
To move from linear motion to angular motion, you have to convert a, tan-
gential acceleration, to α, angular acceleration. Great, but how do you make
the conversion? If you’ve pored over Chapter 10, you know that angular accel-
eration is a force you can multiply by the radius to get the linear equivalent,
which in this case is tangential acceleration:

a = rα

Substituting a = rα in the equation for the angular equivalent of Newton’s
second law (see the previous section), Fr = τ = mra, gives

τ = mr(rα) = mr2α

Now you’ve related torque to angular acceleration, which is what you need to
go from linear motion to angular motion. But what’s that mr2 in the equation?
It’s the rotational analog of mass, officially called the moment of inertia.

Factoring in the moment of inertia
To go from linear force, F = ma, to torque (linear force’s angular equivalent), you
have to find the angular equivalent of acceleration and mass. In the previous
section, you find angular acceleration. In this section, you find the rotational
analog for mass, known as the moment of inertia: mr2. In physics, the symbol
for inertia is I, so you can write the equation for angular acceleration as follows:

Στ = Iα

Σ means “sum of,” so Στ, therefore, means net torque. The units of moment of
inertia are kg-m2. Note how close this equation is to the equation for net force:

ΣF = ma

Στ = Iα is the angular form of Newton’s second law for rotating bodies: net
torque equals moment of inertia multiplied by angular acceleration. 

Now you can put the equation to work. Say, for example, that you’re whirling
the 45-g ball from Figure 11-1 in a 1.0-meter circle, and you want to speed it
up by 2π radians per second2, the official units of angular acceleration. What
kind of torque do you need? You know that

τ = Iα
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You can drop the symbol Σ from the equation when you’re dealing with only
one torque, meaning the “sum of” the torques is the only torque you’re deal-
ing with.

The moment of inertia equals mr2, so

τ = Iα = mr2α

Plugging in the numbers and using the meters-kilograms-seconds (MKS)
system gives you

τ = Iα = mr2α = (0.045)(1.0)2(2π) = 9π × 10-2 N-m

Your answer, 9π × 10-2 N-m, is about 0.28 Newton-meters of torque. Solving for
the torque required in angular motion is much like being given a mass and a
required acceleration and solving for the needed force in linear motion.

Examining Moments of Inertia
Calculating moments of inertia is fairly simple if you only have to examine the
motion of spherical objects, like golf balls, that have a consistent radius. For
the golf ball, the moment of inertia depends on the radius of the circle it’s
spinning in:

I = mr2

Here, r is the radius at which all the mass of the golf ball is concentrated.
Crunching the numbers can get a little sticky when you enter the non-golf ball
world, however, because you may not be sure of what radius you should use.
For example, what if you’re spinning a rod around? All the mass of the rod
isn’t concentrated at a single radius. The problem you encounter is that when
you have an extended object, like a rod, each bit of mass is at a different
radius. You don’t have an easy way to deal with this, so you have to sum up
the contribution of each particle of mass at each different radius like this:

I = Σmr2

Therefore, if you have a golf ball at radius r1 and another at r2, the total
moment of inertia is

I = Σmr2 = m(r1
2 + r2

2)

So, how do you find the moment of inertia of, say, a disk rotating around an
axis stuck through its center? You have to break the disk up into tiny balls
and add them all up. Trusty physicists have already completed this task for
many standard shapes; I provide a list of objects you’re likely to encounter,
and their moments of inertia, in Table 11-1.
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Table 11-1 Advanced Moments of Inertia
Object Moment of Inertia

Disk rotating around its center (like a tire) I = (1⁄2) mr2

Hollow cylinder rotating around its center (like a tire) I = mr2

Hollow sphere I = (2⁄3) mr2

Hoop rotating around its center (like a Ferris wheel) I = mr2

Point mass rotating at radius r I = mr2

Rectangle rotating around an axis along one edge I = (1⁄3) mr2

Rectangle rotating around an axis parallel to one edge 
and passing through the center I = (1⁄12) mr2

Rod rotating around an axis perpendicular to it 
and through its center I = (1⁄12) mr2

Rod rotating around an axis perpendicular to it
and through one end I = (1⁄3) mr2

Solid cylinder I = (1⁄2) mr2

Solid sphere I = (2⁄5) mr2

Check out the following examples to see advanced moments of inertia in
action.

CD players and torque: An inertia example
Here’s an interesting fact about compact disc players: They actually make the
CD rotate at different angular speeds to keep the section of the CD under the
laser head moving at constant linear speed. For example, say that a CD has
a mass of 30 grams and a diameter of 12 centimeters, and that it starts at
700 revolutions per second when you first hit play and winds down to about
200 revolutions per second at the end of the CD 50 minutes later. What’s the
average torque needed to create this deceleration? You start with the torque
equation:

τ = Iα

From Table 11-1, you know that

I = (1⁄2)mr2

177Chapter 11: Round and Round with Rotational Dynamics

17_554336 ch11.qxd  11/2/05  11:30 PM  Page 177



because the CD is a disk rotating around its center. The diameter of the CD is
12 cm, so the radius is 6 cm. Putting in the numbers gives you

I = (1⁄2)mr2 = (1⁄2)(0.030)(0.06)2 = 5.4 × 10-5 kg-m2

How about the angular acceleration, α? In Chapter 10, I give you the angular
equivalent of the equation for linear acceleration:

α = ∆ω / ∆t

For this problem, you need to find the final angular speed minus the initial
angular speed to get the angular acceleration:

α = (ωf – ωo) / ∆t

You can plug in the number for time:

∆t = 50 minutes = 1,500 seconds

So, what about ωf and ωo? You know that the initial angular velocity is 700 rev-
olutions per second, so in terms of radians per second, you get

ωo = 700 revolutions per second × 2π radians per revolution = 
1,400π radians per second

Similarly, you can get the final angular velocity this way:

ωf = 200 revolutions per second × 2π radians per revolution = 
400π radians per second

Now you can plug in the numbers:

α = ∆ω / ∆t = (ωf – ωo) / ∆t = (400π – 1,400π) / 1,500 = –1,000π / 1,500 = 
–2.09 rad per second2

You’ve found the moment of inertia and the angular acceleration, so now you
can find the torque:

τ = Iα = (5.4 × 10-5)(–2.09) = –1.13 × 10-4 N-m

The average torque is –1.13 × 10-4 N-m. How much force is this when applied to
the outer edge — that is, at a 6-cm radius? Torque = force times the radius, so

F = τ / r = –1.13 × 10-4 / 0.06 = 1.88 × 10-3 N

This converts to about 4.23 × 10-4 pounds, or about 6.77 × 10-4 ounces of force.
It doesn’t take much to slow down the CD.
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Angular acceleration and torque:
Another inertia example
You may not always look at an object in motion and think “angular motion,”
like you do when looking at a spinning CD. Take someone lifting up an object
with a rope on a pulley system, for example. The rope and the object are
moving in a linear fashion, but the pulley has angular motion. Here’s an exam-
ple to help you get a handle on how fast objects will spin up (or down) when
you apply a torque to them. Say that you’re pulling a 16-kg mass vertically,
using a pulley of mass 1 kg and radius 10 cm, as shown in Figure 11-2. You’re
pulling with a force of 200N; what’s the angular acceleration of the pulley?

You use the equation for torque, including the sum symbol, Σ, because you’re
dealing with more than one torque in this problem (you always use the net
torque in a problem, but many problems only have one torque, so the symbol
drops off):

Στ = Iα

where Στ means net torque. In this case, there are two torques, τ1 and τ2. So,

α = Στ / I = (τ1 + τ2) / I

The two forces act at radius 10.0 cm, so the two torques are

τ1 = Fr, with F as the force and r as the radius

τ2 = –mgr, with m as the mass and g as the acceleration due to gravity

r

mg

F

Figure 11-2:
You use the
torque you
apply and

the angular
motion of

the pulley to
lift objects
in a pulley

system.
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The pulley’s support goes through the axis of rotation, so no torque comes
from it. Plugging in the numbers gives you

τ1 = Fr = (200)(0.10) = 20 N-m

τ2 = –mgr = –(16)(9.8)(0.10) = –15.68 N-m

The net torque is 20 + –15.68 = 4.32 N-m. The result is positive, so the pulley
will rotate in a counterclockwise direction, toward larger angles, which
means the mass will rise.

To find the angular acceleration of the pulley, you need to know its moment of
inertia. From Table 11-1, you know that for a disk like a pulley, the moment is
I = (1⁄2)mr2, so

I = (1⁄2)mr2 = (1⁄2)[(1.0)(0.10)2] = 5.0 × 10-3 kg-m2

You have all you need to find the angular acceleration:

α = Στ / I = 4.32 / 5.0 × 10-3 = 864 radians per second2

Wrapping Your Head around Rotational
Work and Kinetic Energy

One major player in the linear-force game is work (see Chapter 8); the equation
for work is work = force times distance. Work has a rotational analog — but
how the heck can you relate a linear force acting for a certain distance with
the idea of rotational work? You convert force to torque, its angular equiva-
lent, and distance to angle. I show you the way in the following sections, and
I show you what happens when you do work by turning an object, creating
rotational motion — the same thing that happens when you do work in linear
motion: You produce energy.

Doing some rotational work
Imagine that an automobile engineer is sitting around contemplating a new,
fresh idea in car design. What she wants to create is something environmen-
tally responsible and daring — something never before seen in the industry.

In a burst of inspiration, the answer comes to her — not only the answer
to her automobile dreams, but also your answer on how to tie linear work to
rotational work. Take a look at Figure 11-3, where I’ve sketched out the whole
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solution. What she should do is tie a string around the car tire so the driver
can simply pull the string to accelerate the car! This allows her to give feed-
back to the drivers on how much work they’re doing.

Work is the amount of force applied to an object multiplied by the distance it’s
applied. In this case, the drivers apply a force F, and they apply that force with
the string. Bingo! The string is what lets you make the handy transition between
linear and rotational work. So, how much work is done? Use the equation

W = Fs

where s is the distance the driver applies the force over. In this case, the dis-
tance s equals the radius multiplied by the angle through which the wheel
turns, s = rθ, so you get

W = Fs = Frθ

However, the torque, τ, equals Fr in this case, because the string is acting at
right angles to the radius (see Chapter 10). So you’re left with

W = Fs = Frθ = τθ

The work done, W, by turning the wheel with a string and a constant torque is
τθ. This makes sense, because linear work is Fs, and to convert to rotational
work, you convert from force to torque and from distance to angle. The units
here are the standard units for work — Joules in the MKS system, for instance.

Note that you have to give the angle in radians for the conversion between
linear work and rotational work to come out right.

For example, say that you have a plane that uses propellers to fly, and you want
to determine how much work the plane’s engine does on a propeller when
applying a constant torque of 600 N-m over 100 revolutions. You start with

W = τθ

F

r

String tied around tire

Figure 11-3:
Exerting a

force to turn
a tire.
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A full revolution is 2π radians, so plugging the numbers into the equation
gives you

W = τθ = (600)(100 × 2π) = 3.77 × 105 J

The plane’s engine does 3.77 × 105 Joules of work. But what happens when
you put a lot of work into turning an object? The object starts spinning.
And, just as with linear work, the work you do becomes energy.

Tracking down rotational kinetic energy
When an object is spinning, all its pieces are moving, which means that kinetic
energy is at work. However, you have to convert from the linear concept of
kinetic energy to the rotational concept of kinetic energy. You can calculate
the kinetic energy of a body in linear motion with the following equation (see
Chapter 8):

KE = 1⁄2 mv2

where m is the mass of the object and v2 is the square of its speed. This applies
to every bit of the object that’s rotating — each bit of mass has this kinetic
energy.

To go from the linear version to the rotational version, you have to go from
mass to moment of inertia, I, and from velocity to angular velocity, ω.

You can tie an object’s tangential speed to its angular speed like this (see
Chapter 10):

v = rω

where r is the radius and ω is its angular speed. Plugging this into the previ-
ous equation gives you

KE = 1⁄2 mv2 = 1⁄2 m(r2ω2)

The equation looks okay so far, but remember that it holds true only for the
one single bit of mass under discussion — each other bit of mass may have a
different radius, for example, so you’re not finished. You have to sum up the
kinetic energy of every bit of mass like this:

KE = 1⁄2 Σ(mr2ω2)
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You may be wondering if you can simplify this equation. Well, you can start
by noticing that even though each bit of mass may be different and be at a
different radius, each bit has the same angular speed (they all turn through
the same angle in the same time). Therefore, you can take the ω out of the
summation:

KE = 1⁄2 Σ(mr2) ω2

This makes the equation much simpler, because the moment of inertia, I (see
the section “Rolling Up Newton’s Second Law into Angular Motion” earlier in
this chapter), equals Σ(mr2). Making this substitution takes all the dependen-
cies on the individual radius of each bit of mass out of the equation, giving you

KE = 1⁄2 Σ(mr2) ω2 = 1⁄2 Iω2

Now you have a simplified equation for rotational kinetic energy. The equation
proves useful, because rotational kinetic energy is everywhere. A satellite
spinning around in space has rotational kinetic energy. A barrel of beer rolling
down a ramp from a truck has rotational kinetic energy. The latter example (not
always with beer trucks, of course) is a common thread in physics problems.

Measuring rotational kinetic 
energy on a ramp
Objects can have both linear and rotational kinetic energy. This fact is an
important one, if you think about it, because when objects start rolling down
ramps, any previous ramp expertise you have goes out the window. Why?
Because when an object rolls down a ramp instead of sliding, some of its
gravitational potential energy (see Chapter 8) goes into its linear kinetic
energy, and some of it goes into its rotational kinetic energy.

Take a look at Figure 11-4, where you’re pitting a solid cylinder against a
hollow cylinder in a race down the ramp. Each object has the same mass.
Which cylinder is going to win?

You can rephrase this question as: Which cylinder will have the higher speed
at the bottom of the ramp? The acceleration of each cylinder will be constant,
so the one with the higher final speed will be the one that traveled the quickest.
When looking only at linear motion, you can handle a problem like this by set-
ting the final kinetic energy equal to the potential energy (assuming no friction!)
like this:

KE = PE (potential energy) = 1⁄2 mv2 = mgh
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where m is the mass of the object, g is the acceleration due to gravity, and h
is its height. This would let you solve for the final speed. But the situation is
different now because the cylinders are rolling, which means that the initial
gravitational potential energy becomes both linear kinetic energy and rota-
tional kinetic energy. You can now write the equation as

mgh = 1⁄2 mv2 + 1⁄2 Iω2

You can relate v and ω together with the equation v = rω, which means that
ω = v / r, so

mgh = 1⁄2 mv2 + 1⁄2 Iω2 = 1⁄2 mv2 + 1⁄2 I(v2 / r2)

You want to get v out of the equation, so try grouping things together:

mgh = 1⁄2 mv2 + 1⁄2 Iω2 = 1⁄2 mv2 + 1⁄2 I(v2 / r2) = 1⁄2(m + I / r2)v2

Isolating v, you get

v
m I/r
2mgh

2=
+

What’s this break down to when you substitute for the two different moments
of inertia? For a hollow cylinder, the moment of inertia equals mr2, as you can
see in Table 11-1. For a solid cylinder, on the other hand, the moment of iner-
tia equals (1⁄2) mr2. Substituting for I for the hollow cylinder gives you

v gh=

Substituting for I for the solid cylinder gives you

v 3
4gh

=

Hollow
cylinder

Solid
cylinder

Figure 11-4:
A solid

cylinder and
a hollow
cylinder

preparing
for a race

down a
ramp.
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Now the answer becomes clear. The solid cylinder will be going

3
4

times as fast as the hollow cylinder, or about 1.15 times as fast, so the solid
cylinder will win.

Does it make sense intuitively that the solid cylinder in this section wins the
race? It does, because the hollow cylinder has as much mass concentrated at
a large radius as the solid cylinder has distributed from the center all the way
out to that radius. With that large mass way out at the edge, the hollow cylin-
der won’t need to go as fast to have as much rotational kinetic energy as the
solid cylinder.

Can’t Stop This: Angular Momentum
Picture a 40-ton satellite rotating in orbit around the earth. You may want to
stop it to perform some maintenance, but when it comes time to grab it, you
stop and consider the situation. It takes a lot of effort to stop that spinning
satellite. Why? Because it has angular momentum.

In Chapter 9, I cover linear momentum, p, which equals the product of mass
and velocity:

p = mv

Physics also features angular momentum. Its letter, L, has as little to do with
the word “momentum” as the letter p does. The equation for angular momen-
tum looks like this:

L = Iω

where I is the moment of inertia and ω is the angular velocity.

Note that angular momentum is a vector quantity, meaning it has a magnitude
and a direction, that points in the same direction as the ω vector (that is, in
the direction the thumb of your right hand points when you wrap your fingers
around in the direction the object is turning).

The units of angular momentum are I multiplied by ω, or kg-m2/s in the
MKS system (see Chapter 2 for more on measurement systems).
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The important fact about angular momentum, much as with linear momentum,
is that it’s conserved.

Reviewing the conservation
of angular momentum
The principle of conservation of angular momentum states that angular momen-
tum is conserved if there are no net torques involved. This principle comes in
handy in all sorts of problems, often where you least expect it. You may come
across more obvious cases, like when two ice skaters start off holding each
other close while spinning but then end up at arm’s length. Given their initial
angular speed, you can find their final angular speed, because angular momen-
tum is conserved, which tells you the following is true:

I1ω1 = I2ω2

If you can find the initial moment of inertia and the final moment of inertia,
you’re set. But you also come across less obvious cases where the principle
of conservation of angular momentum helps out. For example, satellites don’t
have to travel in circular orbits; they can travel in ellipses. And when they do,
the math can get a lot more complicated. Lucky for you, the principle of con-
servation of angular momentum can make the problems childishly simple.

Satellite orbits: A conservation
of angular momentum example
Say, for example, that NASA planned to put a satellite into a circular orbit
around Pluto for studies, but the situation got a little out of hand, and the
satellite ended up with an elliptical orbit. At its nearest point to Pluto, 
6.0 × 106 meters, the satellite zips along at 9,000 meters per second.

The satellite’s farthest point from Pluto is 2.0 × 107 meters. What’s its speed
at that point? The answer is tough to figure out unless you can come up with
an angle here, and that angle is angular momentum. Angular momentum is
conserved here, because there are no external torques the satellite must deal
with (gravity always acts perpendicular to the orbital radius). Because angu-
lar momentum is conserved, you can say that

I1ω1 = I2ω2
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For a point mass like a satellite (it’s a point mass compared to the radius of
its orbit at any location), the moment of inertia, I, equals mr2 (see Table 11-1).
The angular velocity equals v / r, so the equation works out to be

I1ω1 = I2ω2 = mr1v1 = mr2v2

You can put v2 on one side of the equation by dividing by mr2:

v2 = (r1v1) / r2

You have your solution; no fancy math involved at all, because you can rely
on the principle of conservation of angular momentum to do the work for
you. All you need to do is plug in the numbers:

v2 = (r1v1) / r2 = [(6.0 × 106)(9,000)] / 2.0 × 107 = 2,700 meters per second

At its closest point to Pluto, the satellite will be screaming around at
9,000 meters per second, and at its farthest point, it will be moving
at 2,700 meters per second. Easy enough to figure out, as long as you have
the principle of conservation of angular momentum under your belt.
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Chapter 12

Springs-n-Things:
Simple Harmonic Motion

In This Chapter
� Closing the case on Hooke’s law

� Reviewing the basic notes of simple harmonic motion

� Hitting the advanced notes of simple harmonic motion

� Mustering up the energy for simple harmonic motion

� Predicting a pendulum’s motion and period

In this chapter, I shake things up with a new kind of motion: periodic motion,
which occurs when objects are bouncing around on springs or bungee

cords or are even swooping around on the end of a pendulum. This chapter
is all about describing their periodic motion. Not only can you describe their
motions in detail, but you can also predict how much energy bunched-up
springs have, how long it will take a pendulum to swing back and forth,
and more.

Hooking Up with Hooke’s Law
Objects, like springs, that you can stretch but that return to their original
shapes are called elastic. Elasticity is a valuable property — it means you can
use springs for all kinds of applications: as shock absorbers in lunar landing
modules, as timekeepers in clocks and watches, and even as hammers of jus-
tice in mousetraps.

As long ago as the 1600s, Robert Hooke, a physicist from England, undertook
the study of elastic materials. He created a new law, not surprisingly called
Hooke’s law, which states that stretching an elastic material gives you a force
that’s directly proportional to the amount of stretching you do. For example,
if you stretch a spring a distance x, you’ll get a force back that’s directly pro-
portional to x:

F = kx
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where k is the spring constant. In fact, the force F resists your pull, so it pulls
in the opposite direction, which means you should have a negative sign here:

F = –kx

Keeping springs stretchy
Hooke’s law is valid as long as the elastic material you’re dealing with stays
elastic — that is, it stays within its elastic limit. If you pull a spring too far, it
loses its stretchy ability, for example. In other words, as long as a spring
stays within its elastic limit, you can say that F = –kx, where the constant k is
called the spring constant. The constant’s units are Newtons per meter. When
a spring stays within its elastic limit, it’s called an ideal spring.

Say, for example, that a group of car designers knocks on your door and asks
if you can help design a suspension system. “Sure,” you say. They inform you
that the car will have a mass of 1,000 kg, and you have four shock absorbers,
each 0.5 meters long, to work with. How strong do the springs have to be?
Assuming these shock absorbers use springs, each one has to support, at a
very minimum, a weight of 250 kg, which is

F = mg = (250)(9.8) = 2,450 Newtons

where F equals force, m equals the mass of the object, and g equals the accel-
eration due to gravity, 9.8 meters per second2. The spring in the shock
absorber will, at a minimum, have to give you 2,450N of force at the maximum
compression of 0.5 meters. What does this mean the spring constant should
be? Hooke’s law says

F = –kx

Omitting the negative sign (look for its return in the following section),
you get

k = F / x

Time to plug in the numbers:

k = F / x = 2,450N / 0.5 m = 4,900 Newtons/meter

The springs used in the shock absorbers must have spring constants of at
least 4,900 Newtons per meter. The car designers rush out, ecstatic, but you
call after them: “Don’t forget, you need to at least double that in case you
actually want your car to be able to handle pot holes . . .”

190 Part III: Manifesting the Energy to Work 

18_554336 ch12.qxd  11/2/05  11:34 PM  Page 190



Deducing that Hooke’s law
is a restoring force
The negative sign in Hooke’s law for an elastic spring is important:

F = –kx

The negative sign means that the force will oppose your displacement, as you
see in Figure 12-1, which shows a ball attached to a spring.

As you see in Figure 12-1, if the spring isn’t stretched or compressed, it exerts
no force on the ball. If you push the spring, however, it pushes back, and if
you pull the spring, it pulls back.

The force exerted by a spring is called a restoring force. It always acts to
restore itself toward equilibrium.

Moving with Simple Harmonic Motion
An object undergoes simple harmonic motion when the force that tries to
restore the object to its rest position is proportional to the displacement of
the object. Simple harmonic motion is simple because the forces involved are
elastic, which means you can assume that no friction is involved. Elastic
forces insinuate that the motion will just keep repeating. That isn’t really
true, however; even objects on springs quiet down after a while as friction
and heat loss in the spring take their toll. The harmonic part of simple har-
monic motion means that the motion repeats — just like harmony in music,
where vibrations create the sound you hear.

A

B

C
F

F
Figure 12-1:

The
direction of
force from

a spring.
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Examining basic horizontal and vertical
simple harmonic motion
Take a look at the ball in Figure 12-1. Say, for example that you push the ball,
compressing the spring, and then you let go; the ball will shoot out, stretch-
ing the spring. After the stretch, the spring will pull back, and it will once
again pass the equilibrium point (where no force acts on the ball), shooting
backward past it. This event happens because the ball has inertia (see
Chapter 11), and when it’s moving, it takes some force to bring it to a stop.
Here are the various stages the ball goes through, matching the letters in
Figure 12-1 (and assuming no friction):

� Point A: The ball is at equilibrium, and no force is acting on it. This
is called the equilibrium point, where the spring isn’t stretched or 
compressed.

� Point B: The ball pushes against the spring, and the spring retaliates
with force F opposing that pushing.

� Point C: The spring releases, and the ball springs to an equal distance
on the other side of the equilibrium point. At this point, it isn’t moving,
but a force acts on it, F, so it starts going back the other direction.

The ball passes through the equilibrium point on its way back to point B.
At this equilibrium point, the spring doesn’t exert any force on the ball,
but the ball is traveling at its maximum speed. This is what happens when
the golf ball bounces back and forth; you push the ball to point B, it goes
through point A, moves to point C, shoots back to A, moves to B, and so on:
B-A-C-A-B-A-C-A, and so on. Point A is the equilibrium point, and both points
B and C are equidistant from point A.

What if the ball in Figure 12-1 wasn’t on a frictionless horizontal surface? What
if it were to hang on the end of a spring in the air, as shown in Figure 12-2?

In this case, the ball oscillates up and down. Like when the ball was on a sur-
face in Figure 12-1, it will oscillate around the equilibrium position; this time,
however, the equilibrium position isn’t the point where the spring isn’t
stretched.

The equilibrium position is defined as the position at which no net force acts
on the ball. In other words, the equilibrium position is the point where the
ball is at rest. When the spring is held vertically, the weight of the ball down-
ward is matched by the pull of the spring upward. If the y position of the ball
corresponds to the equilibrium point, yo, because the weight of the ball, mg,
must match the force exerted by the spring, F = kyo, you have

mg = kyo
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And you can solve for yo:

yo = mg / k

This equation represents the distance the spring will stretch because the ball
is attached to it. When you pull the ball down or lift it up and then let go, it
oscillates around the equilibrium position, as shown in Figure 12-2. If the
spring is completely elastic, the ball will undergo simple harmonic motion
vertically around the equilibrium position; the ball goes up a distance A and
down a distance A around that position (in real life, the ball would eventually
come to rest at the equilibrium position).

The distance A, or how high the object springs up, is an important one when
describing simple harmonic motion; it’s called the amplitude. You can describe
simple harmonic motion pretty easily by using some math, and the amplitude
is an important part of that.

Diving deeper into simple harmonic motion
Calculating simple harmonic motion can require time and patience when you
have to figure out how the motion of an object changes over time. Imagine
that one day you come up with a brilliant idea for an experimental apparatus.
You decide that a spotlight would cast a shadow of a ball on a moving piece
of photographic film, as you see in Figure 12-3. Because the film is moving,
you get a record of the ball’s motion as time goes on.

Equilibrium

A

-A

Figure 12-2:
A ball on a

spring,
influenced
by gravity.
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You turn the apparatus on and let it do its thing. The results are shown in
Figure 12-3 — the ball oscillates around the equilibrium position, up and
down, reaching amplitude A at its lowest and highest points. But take a look
at the ball’s track. Near the equilibrium point, it goes its fastest, because a lot
of force accelerates it. At the top and bottom, it’s subject to plenty of force,
so it slows down and reverses its motion.

You deduce that the track of the ball is a sine wave, which means that its
track is a sine wave of amplitude A. You can also use a cosine wave, because
the shape is the same. The only difference is that when a sine wave is at its
peak, the cosine wave is at zero, and vice versa.

Breaking down the sine wave
You can get a clear picture of the sine wave if you plot the sine function on an
X-Y graph like this:

y = sin(x)

Equilibrium

A

A

spotlig
ht

Figure 12-3:
Tracking a

ball’s simple
harmonic

motion over
time.
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You see the kind of shape you see in Figure 12-3 on the plot — a sine wave —
which may already be familiar to you from your explorations of math or from
other places, such as the screens of heart monitors in movies or on television.
Take a look at the sine wave in a circular way. If the ball from Figure 12-3 were
attached to a rotating disk, as you see in Figure 12-4, and you shine a spotlight
on it, you’d get the same result as when you have the ball hanging from the
spring: a sine wave.

The rotating disk is often called a reference circle, which you can see in
Figure 12-5. In the figure, the view is from above, and the ball is glued to
the turning disk. Reference circles can tell you a lot about simple harmonic
motion.

As the disk turns, the angle, θ, increases in time. What will the track of the ball
on the film look like as the film moves up out of the page? You can resolve the
motion of the ball yourself along the X-axis; all you need is the X component of
the ball’s motion. At any one time, the ball’s X position will be

x = A cos θ

spotlig
ht

Equilibrium

A

A

Figure 12-4:
An object

with circular
motion

becomes a
sine wave.
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This varies from positive A to negative A in amplitude. In fact, you can say
that you already know how θ is going to change in time, because θ = ω × t,
where ω is the angular speed of the disk and t is time:

x = A cos θ = A cos(ωt)

You can now explain what the track of the ball will be as time goes on, given
that the disk is rotating with angular speed ω.

Getting periodic
Each time an object moves around a full circle, it completes a cycle. The time
it takes to complete the cycle is called the period. The letter used for period
is T, and it’s measured in seconds.

Looking at Figure 12-5, in terms of the x motion on the film, during one cycle,
the ball moves from x = A to –A and then back to A. In fact, when it goes from
any point on the sine wave (see the previous section) back to the same point

sp
otl

igh
t

A

x
θ

Figure 12-5:
A reference
circle helps
you analyze

simple
harmonic

motion.
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on the sine wave later in time, it completes a cycle. And the time the ball
takes to move from a certain position back to that same position while
moving in the same direction is its period.

How can you relate the period to something more familiar? When an object
moves around in a circle, it goes 2π radians. It travels that many radians in
T seconds, so its angular speed, ω (see Chapter 10), is

ω = 2π / T

Multiplying both sides by T and dividing by ω allows you to relate the period
and the angular speed:

T = 2π / ω

Sometimes, however, you speak in terms of the frequency of periodic motion,
not the period. The frequency is the number of cycles per second. For instance,
if the disk from Figure 12-4 rotates at 1,000 full turns per second, the frequency,
f, would be 1,000 cycles per second. Cycles per second are also called Hertz,
abbreviated Hz, so this would be 1,000 Hz.

So, how do you connect frequency, f, to period, T? T is the amount of time
one cycle takes, so you get

f = 1 / T

You’ve found that ω = 2π / T, so you can modify this equation to get the 
following:

ω = (2π / T) × Tf = 2πf

So far, you’ve known ω only as the angular speed. But when you’re dealing
with springs, you don’t have a lot of angles involved, so you call ω the angular
frequency instead.

Remembering not to speed away without the velocity
Take a look at Figure 12-5, where a ball is rotating on a disk. In the section
“Breaking down the sine wave,” earlier in this chapter, you figure out that

x = A cos (ωt)

where x stands for the X coordinate and A stands for the amplitude of the
motion. But in that section, you don’t realize that other forces are at work.
At any point X, the ball also has a certain velocity, which varies in time also.
So, how can you describe the velocity mathematically? Well, you can relate
tangential velocity to angular velocity like this (see Chapter 10):

v = rω
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where r represents the radius. Because r = A, you get

v = rω = Aω

Does this equation get you anywhere? Sure, because the shadow of the ball on
the film gives you simple harmonic motion. The velocity vector (the direction
of the magnitude of the velocity; see Chapter 4) always points tangentially
here, perpendicular to the radius, so you get the following for the X component
of the velocity at any one time:

vx = –Aω sin θ

The negative sign here is important, because the X component of the velocity
of the ball in Figure 12-5 points to the left, toward negative X. And because
the ball is on a rotating disc, you know that θ = ωt, so

vx = –Aω sin θ = –Aω sin (ωt)

This equation describes the velocity of a ball in simple harmonic motion. Note
that the velocity changes in time — from –Aω to 0 and then to Aω and back
again. So, the maximum velocity, which happens at the equilibrium point, has a
magnitude of Aω. This says, among other things, that the velocity is directly
proportional to the amplitude of the motion; as amplitude increases, so does
velocity, and vice versa.

For example, say that you’re on a physics expedition watching a daredevil
team do some bungee jumping. You notice that the team members are starting
by finding the equilibrium point of their new bungee cords, so you measure
that point.

The team decides to let their leader go a few meters above the equilibrium
point, and you watch as he flashes past the point and then bounces back at
a speed of 4.0 meters per second as of the equilibrium point. Ignoring all 
caution, the team lifts its leader to a distance 10 times greater away from the
equilibrium point and lets go again. This time you hear a distant scream as
the costumed figure hurtles up and down. What’s his maximum speed?

You know that he was going 4.0 meters per second at the equilibrium point
before, the point where he achieves maximum speed; you know that he started
with an amplitude 10 times greater on the second try; and you know that the
maximum velocity is proportional to the amplitude. Therefore, assuming that
the frequency of his bounce is the same, he’ll be going 40.0 meters per second
at the equilibrium point — pretty speedy.

Including the acceleration
You can find the displacement of an object undergoing simple harmonic
motion with the following equation:

x = A cos (ωt)
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And you can find the object’s velocity with the equation

v = –Aω sin (ωt)

But you have another factor to account for when describing an object in simple
harmonic motion: its acceleration at any particular point. How do you figure it
out? No sweat. When an object is going around in a circle, the acceleration is
the centripetal acceleration (see Chapter 10), which is

a = rω2

where r is the radius and ω is the angular speed. And because r = A — the
amplitude — you get

a = rω2 = Aω2

This equation represents the magnitude of the centripetal acceleration. To go
from a reference circle (see the section “Breaking down the sine wave” earlier
in this chapter) to simple harmonic motion, you take the component of the
acceleration in one dimension — the X direction here — which looks like

a = –Aω2 cos θ

The negative sign indicates that the X component of the acceleration is
toward the left. And because θ = ωt, where t represents time, you get

a = –Aω2 cos θ = –Aω2 cos (ωt)

Now you have the equation to find the acceleration of an object at any point
while it’s moving in simple harmonic motion. For example, say that your
phone rings, and you pick it up. You hear “Hello?” from the earpiece.

“Hmm,” you think. “I wonder what g forces (forces exerted on an object due
to gravity) the diaphragm in the phone is undergoing.”

The diaphragm (a metal disk that acts like an eardrum) in your phone 
undergoes a motion very similar to simple harmonic motion, so calculating
its acceleration isn’t any problem. You pull out your calculator; measuring
carefully, you note that the amplitude of the diaphragm’s motion is about
1.0 × 10-4m. So far, so good. Human speech is in the 1.0-kHz (kilohertz, or
1,000 Hz) frequency range, so you have the frequency, ω. And you know that

amax = Aω2

Also, ω = 2πf, where f represents frequency, so plugging in the numbers
gives you

amax = Aω2 = (1.0 × 10-4)[(2π)(1,000)]2 = 3,940 m/s2
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You get a value of 3,940 meters per second2, which is about 402 g.

“Wow,” you say. “That’s an incredible acceleration to pack into such a small
piece of hardware.”

“What?” says the impatient person on the phone. “Are you doing physics
again?”

Finding the angular frequency
of a mass on a spring
If you take the information you know about Hooke’s law for springs (see the
section “Hooking Up with Hooke’s Law” earlier in this chapter) and apply it
to what you know about finding simple harmonic motion (see the section
“Moving with Simple Harmonic Motion”), you can find the angular frequencies
of masses on springs, along with the frequencies and periods of oscillations.
And because you can relate angular frequency and the masses on springs, you
can find the displacement, velocity, and acceleration of the masses.

Hooke’s law says that

F = –kx

where F is the force, k is the spring constant, and x is distance. Because of
Newton (see Chapter 5), you also know that Force = mass times acceleration,
so you get

F = ma = –kx

This equation is in terms of displacement and acceleration, which you see
in simple harmonic motion in the following forms (see the previous section in
this chapter):

x = A cos (ωt)

a = –Aω2 cos (ωt)

Inserting these two equations into the previous equation gives you

F = ma = –mAω2 cos (ωt) = –kx = –kA cos (ωt)

This equation breaks down to

mω2 = k
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Rearranging to put ω on one side gives you

ω m
k=

You can now find the angular frequency for a mass on a spring, and it’s tied
to the spring constant and the mass. You can also tie this to the frequency of
oscillation and to the period of oscillation (see the section “Breaking down
the sine wave) by using the following equation:

ω = 2π / T = 2πf

You can convert this to

f 2 m
kπ=

and

T 2
1

k
m

π=

Say, for example, that the spring in Figure 12-1 has a spring constant, k, of
1.0 × 10-2 Newtons per meter and that you attach a 45-g ball to the spring.
What’s the period of oscillation? All you have to do is plug in the numbers:

π πT 2
1

k
m

2
1

1.0 10
0.045 0.338 seconds2#

= = =-

The period of the oscillation is 0.34 seconds. How many bounces will you get
per second? The number of bounces represents the frequency, which you find
this way:

f = 1/ T = 2.96Hz

You get about 3 oscillations per second.

Because you can tie the angular frequency, ω, to the spring constant and the
mass on the end of the spring, you can predict the displacement, velocity,
and acceleration of the mass, using the following equations for simple har-
monic motion (see the section “Diving deeper into simple harmonic motion”
earlier in this chapter):

x = A cos (ωt)

v = –Aω sin (ωt)

a = –Aω2 cos (ωt)
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Using the previous example of the spring in Figure 12-1 — having a spring
constant of 1.0 × 10-2 Newtons per meter with a 45-g ball attached — you
know that

ω m
k 0.471 sec 1= = -

Say, for example, that you pull the ball 10.0 cm before releasing it (making the
amplitude 10.0 cm). In this case, you know that

x = (0.10) cos (0.471t)

v = –(0.10)(0.471) sin (0.471t)

a = –(0.10)(0.471)2 cos (0.471t)

Factoring Energy into Simple
Harmonic Motion

Along with the actual motion that takes place (or that you cause) in simple
harmonic motion, you can examine the energy involved. For example, how
much energy is stored in a spring when you compress or stretch it? The work
you do compressing or stretching the spring must go into the energy stored
in the spring. That energy is called elastic potential energy and is the force, F,
times the distance, s:

W = Fs

As you stretch or compress a spring, the force varies, but it varies in a linear
way, so you can write the equation in terms of the average force, F

–
:

W = F
–
s

The distance (or displacement), s, is just the difference in position, xf – xo,
and the average force is 1⁄2(Ff + Fo), which means

W = F
–
s = [1⁄2(Ff + Fo)](xf – xo)

Substituting Hooke’s law (see the section “Hooking Up with Hooke’s Law” ear-
lier in this chapter), F = –kx, for F gives you

W = F
–
s = [1⁄2(Ff + Fo)](xf – xo) = [–1⁄2(kxf + kxo)](xf – xo)

Simplifying the equation gives you

W = 1⁄2kxo
2 – 1⁄2kxf

2
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The work done on the spring changes the potential energy stored in the
spring. The following is exactly how you give that potential energy, or the
elastic potential energy:

PE = 1⁄2kx2

For example, if a spring is elastic and has a spring constant, k, of 1.0 × 10-2

Newtons per meter, and you compress it by 10.0 cm, you store the following
amount of energy in it:

PE = 1⁄2kx2 = 1⁄2(1.0 × 10-2)(0.10)2 = 5.0 × 10-5J

You can also note that when you let the spring go with a mass on the end of it,
the mechanical energy (the sum of potential and kinetic energy) is conserved:

PE1 + KE1 = PE2 + KE2

When you compress the spring 10.0 cm, you know that you have 5.0 × 10-5 J of
energy stored up. When the moving mass reaches the equilibrium point and
no force from the spring is acting on the mass, you have maximum velocity
and therefore maximum kinetic energy — at that point, the kinetic energy is
5.0 × 10-5 J, by the conservation of mechanical energy (see Chapter 8 for more
on this topic).

Swinging with Pendulums
Other objects move in simple harmonic motion besides springs, such as the
pendulum you see in Figure 12-6. Here, a ball is tied to a string and is swinging
back and forth.

L

s

θ

Figure 12-6:
A pendulum,
like a spring,

moves in
simple

harmonic
motion.
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Can you analyze this pendulum’s motion as you would a spring’s (see the sec-
tion “Moving with Simple Harmonic Motion”)? Yep, no problem. Take a look
at Figure 12-6. The torque, τ (see Chapter 10), that comes from gravity is the
weight of the ball, negative mg, multiplied by the lever arm, s (for more on
lever arms, see Chapter 10):

τ = –mgs

Here’s where you make an approximation. For small angles θ, the distance s
equals Lθ, where L is the length of the pendulum string:

τ = –mgs = –(mgL)θ

This equation resembles the form of Hooke’s law, F = –kx (see the section
“Hooking Up with Hooke’s Law”), if you treat mgL as you would a spring con-
stant. And you can use the rotational moment of inertia, I (see Chapter 11),
rather than the mass for the ball; doing so lets you solve for the angular fre-
quency of the pendulum in much the same way you solve for the angular 
frequency of a spring (see the section “Finding the angular frequency of a
mass on a spring” earlier in this chapter):

I
mgLω =

The moment of inertia equals mr2 for a point mass (see Chapter 11), which
you can use here, assuming that the ball is small compared to the pendulum
string. This gives you

ω L
g

=

Now you can plug this into the equations of motion for simple harmonic
motion. You can also find the period of a pendulum with the equation

ω = 2π / T = 2πf

where T represents period and f represents frequency. You end up with the
following for the period:

πT 2 g
L=

Note that this period is actually independent of the mass you’re using on the
pendulum!
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In this part . . .

How much boiling water does it take to melt a 200-
pound block of ice? Why would you freeze in space?

Why does metal feel cold to the touch? It all boils (or
freezes) down to thermodynamics, which is the physics
of heat and heat flow. The answers to your questions are
coming in this part in the form of useful equations and
explanations.
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Chapter 13

Turning Up the Heat with
Thermodynamics

In This Chapter
� Taking temperature with Fahrenheit, Celsius, and Kelvin

� Examining heat with linear expansion

� Transferring heat with volume expansion

� Following along with heat flow

� Accounting for specific heat capacity

� Meeting the requirements for phase change

You arrive at the scene of an emergency where an unexpected geothermal
event is ruining a garden birthday party. “It’s a geyser,” the unhappy 

parents say, pointing out a foaming pit in the backyard. “It sure is,” you
say. “Have you got a meter stick?” The parents pass you a meter stick and say,
“Could you hurry it up? The ice cream is melting.”

You swiftly measure the depth of the column of boiling water at 225 meters,
at an average width of 0.5 meters. “No problem,” you announce. “Physics has
given us the solution. You need 719 bags of ice.”

“Seven hundred nineteen bags of . . . ice?” the parents echo faintly.

“The bags will cool the geyser just enough for the birthday party to finish,
assuming you have exactly 120 minutes or fewer to go.”

“Seven hundred nineteen bags?” the parents ask, looking at each other. “Yep,”
you say. “I’ll send you my bill.”

This chapter is an exploration of heat and temperature. Physics has plenty to
say on the subjects, and it gives you plenty of power to predict what goes on.
I discuss different temperature measurements, linear expansion, volume
expansion, and how much of an object at one temperature will change the
temperature of another object when they’re put together.
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Getting into Hot Water
You always start a calculation or observation in physics by making mea-
surements; and when the physics topics you’re discussing are heat and 
temperature, you have several different scales at your disposal — most
notably, Fahrenheit, Celsius, and Kelvin.

When the thermometer says Fahrenheit
In the United States, the most common temperature scale is the Fahrenheit
scale. Like in other temperature scales, measurements in the Fahrenheit scale
are made in degrees. For example, the blood temperature of a healthy human
being is 98.6°F — the F means you’re using the Fahrenheit scale.

When the thermometer says Celsius
The Fahrenheit system wasn’t very reproducible in its early days, so another
system was developed — the Celsius scale (formerly called the Centigrade
system). Using this system, pure water freezes at 0°C, and it boils at 100°C.
These measurements are easier to reproduce than Fahrenheit’s 32° and 212°
because pure water is easy to come up with. Here’s how you tie the two sys-
tems of temperature measurement together (these measurements are at sea
level; they change as you go up in altitude):

Freezing water = 32°F = 0°C

Boiling water = 212°F = 100°C
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Thirty-two degrees of Fahrenheit separation
Who came up with the Fahrenheit scale of tem-
perature? You may not be surprised at his last
name — Daniel Gabriel Fahrenheit manufac-
tured thermometers in Amsterdam in the 18th
century. For the zero point of his scale, he used
the temperature of a bath of ice in a solution of

salt (which was a common way of reaching low
temperatures in an 18th-century laboratory). He
chose 32°F as the temperature of melting ice
(going up) and freezing water (going down).
Using this scale of temperature, water boils
at 212°F.
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If you do the math, you find 180°F between the points of freezing and boiling
in the Fahrenheit system and 100°C in the Celsius system, so the conversion
ratio is 180 / 100 = 18 / 10 = 9 / 5. And don’t forget that the measurements are
also offset by 32 degrees (the 0-degrees point of the Celsius scale corre-
sponds to the 32-degrees point of the Fahrenheit scale). Putting these ideas
together lets you convert from Celsius to Fahrenheit or from Fahrenheit to
Celsius pretty easily; just remember these equations:

C = (5 / 9)(F – 32)

F = (9 / 5) C + 32

For example, the blood temperature of a healthy human being is 98.6°F. What
does this equal in Celsius? Just plug in the numbers:

C = (5 / 9)(F – 32) = (5 /9)(98.6 – 32) = 37.0°C

When the thermometer says Kelvin
William Thompson created a third temperature system, one now in common
use in physics, in the 19th century — the Kelvin system (he later became
Lord Kelvin). The Kelvin system has become so central to physics that the
Fahrenheit and Celsius systems are defined in terms of the Kelvin system —
a system based on the concept of absolute zero.

Analyzing absolute zero
Temperature is really a measure of molecular movement — how fast and how
much the molecules of whatever object you’re measuring are moving. The 
molecules move more and more slowly as the temperature lowers. At absolute
zero, the molecules stop, which means that you can’t cool them any more. No
refrigeration system in the world — or in the entire universe — can go any
lower.
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Crossing Fahrenheit and Celsius
The Fahrenheit and Celsius scales actually
cross at one point, where the temperature in
Fahrenheit and Celsius is the same. What’s that

temperature? If you call it t, you know that t = (9
/ 5) t + 32. Solving for t gives you t = –40. So,
–40°C = –40°F, a rather peculiar fact.
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The Kelvin system is based on absolute zero as its zero point, which makes
sense when you think about it. What’s a little odd is that you don’t measure
temperature in this scale in degrees; you measure it in kelvins (seems like
Lord Kelvin wanted to make sure you never forget his name). A temperature
of 100° in the Celsius system is 100°C, but a temperature of 100 is 100 kelvins
in the Kelvin scale. This system has become so widely adopted that the offi-
cial meters-kilograms-seconds (MKS) unit of temperature is the kelvin (in
practice, you see °C used more often in introductory physics).

Making Kelvin conversions
Each kelvin is the same size as a Celsius degree, which makes converting
between Celsius degrees and kelvins easy. On the Celsius scale, absolute zero
is –273.15°C. This temperature corresponds to 0 kelvins, which you also write
as 0K (not, please note, 0°K).

So, to convert between the Celsius and Kelvin scales, all you have to use is
the following formula:

K = C + 273.15

C = K – 273.15

And to convert from kelvins to Fahrenheit, you can use this formula:

F = (9 / 5)(K – 273.15) + 32 = (9 / 5)K – 459.67

What temperature does water boil at in kelvins? Well, pure water boils at
100°C, so

K = C + 273.15 = 100 + 273.15 = 373.15K

Water boils at 373.15K.

Helium turns to liquid at 4.2K; what’s that in °C? Use the formula:

C = K – 273.15 = 4.2 – 273.15 = –268.95°C

Helium liquefies at –268.95°C. Pretty chilly.

The Heat Is On: Linear Expansion
When you talk about the expansion of a solid in any one dimension under the
influence of heat, you’re talking about linear expansion. For example, some
screw-top jars can be tough to open, which is maddening when you really
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want some peanut butter or pickles. Maybe you remember your mom running
the lids of jars under hot water as a kid. She did this because the hot water
makes the lid expand, which usually makes the job of turning it much easier.
Physics takes an interest in this phenomenon, and artists draw figures of it,
like the one you see in Figure 13-1.

If you raise the temperature of an object a small amount:

Tf = To + ∆T

where Tf represents the final temperature, To represents the original tempera-
ture, and ∆T represents the change in temperature; linear expansion results
in an expansion in any linear direction of

Lf = Lo + ∆L

where Lf represents the final length of the solid, Lo represents its original
length, and ∆L represents the change in length. If the temperature goes
down a small amount:

Tf = To – ∆T

you get a linear contraction rather than an expansion:

Lf = Lo – ∆L

In other words, the change in length, ∆L, is proportional to the change in tem-
perature, ∆T.

This proportion isn’t true for all solids, however — just for most. Some solids
contract when you heat them. For example, ice actually contracts as you
raise its temperature from 0°C to 4°C as its molecules rearrange themselves
from the crystalline structure of ice.

Temperature = T

Length = L

A

Temperature = T + ∆Τ

Length = L + ∆L

B

Figure 13-1:
Linear

expansion
takes place

when you
apply heat
to solids in

most cases.
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Deconstructing linear expansion
On a molecular level, linear expansion happens because when you heat
objects up, the molecules bounce around faster, which leads to a physical
expansion. When you heat up a solid, it expands by a few percent, and that
percentage is proportional to the change in temperature, so you can write:

∆L/Lo (the fraction the solid expands) is proportional to ∆T
(the change in temperature)

The constant of proportionality depends on what material you’re working
with; therefore, in practice, the constant is something you measure, much
like the coefficient of friction (see Chapter 6). And like the coefficient of fric-
tion, the constant of proportionality is also a coefficient — the coefficient of
linear expansion, which is given by the symbol α (not to be confused with the
symbol for angular acceleration). You can write this relationship as an equa-
tion this way:

∆L / Lo= α∆T

You usually write the equation in this form:

∆L = αLo∆T

You usually measure α, the coefficient of linear expansion, in 1/°C (that is,
in °C-1).

Workin’ on the railroad: A linear
expansion example
Say that you’re called in to check out a new railroad. Given the power gener-
ated by the engine, the steepness of the grade, and the mass of the load, you
calculate that the engine should be able to make the climb at 1.0 meter per
second, no problem.

“Huh,” says the chief designer. “I could’ve told you everything was okay. No
need to bring in some high-priced physics specialist.” As his crew laughs, you
look closer at the 10.0-meter-long rails, noticing that they’re only 1 millimeter
apart at the ends. “How much hotter does it get around these parts during
the summer?”

“Hotter?” the designer guffaws. “You afraid the rails will melt?”

Everyone snickers at your ignorance as you check your almanac, which tells
you that you can expect the rails to get 50°C hotter during a normal summer.
The coefficient of linear expansion for the steel that the rails are made from is
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approximately 1.2 × 10-5 °C-1. (Don’t worry; you’ll always be given these coeffi-
cients when you need them to solve a problem. Just in case, here’s a useful
Web site that lists many of the coefficients: www.engineeringtoolbox.com/
linear-expansion-coefficients-24_95.html.) So, how much will the
typical rail expand during the hot part of summer? You know that

∆L = αLo∆T

Plugging in the numbers gives you

∆L = αLo∆T = (1.2 × 10-5)(10.0)(50) = 6.0 × 10-3 m

In other words, you can expect the rails to expand 6.0 × 10-3 meters in the
summer, or about 6 millimeters. However, the rails are only 1 millimeter
apart. The railroad company is in trouble.

You look at the chief designer and say, “You and I are about to have a nice
long talk about physics.”

Plenty of construction projects take linear expansion into account. You often
see bridges with “expansion joints” connecting the bridge to the road surface.

The Heat Continues On:
Volume Expansion

Linear expansion, as the name indicates, takes place in one dimension, but
the world isn’t always linear. It comes supplied with three dimensions. If an
object undergoes a small temperature change of just a few degrees, you can
say that the volume of the solid will change in a way proportionate to the
temperature change. As long as the temperature differences involved are
small, you get

∆V/Vo (the fraction the solid expands) is proportional to ∆T
(the change in temperature)

where ∆V represents the change in volume and Vo represents the original
volume. With volume expansion, the constant involved is called the coeffi-
cient of volume expansion. This constant is given by the symbol β, and like α,
it’s measured in °C-1. Using β, here’s how you can express the equation for
volume expansion:

∆V / Vo = β∆T

When you multiply both sides by Vo, you get

∆V = βVo∆T
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You’ve created the analog (or equivalent) of the equation ∆L = αLo∆T for
linear expansion (see the previous section).

If the distances involved are small and the temperature changes are small, you
usually find that β = 3α. This makes sense, because you go from one dimen-
sion to three. For example, α for steel is 1.2 × 10-5 °C-1, and β = 3.6 × 10-5 °C-1.
This may save you some time in the future.

Say, for example, you’re at the gasoline refinery when you notice that workers
are filling all the 5,000-gallon tanker trucks to the very brim before leaving the
refinery on a hot summer day.

“Uh oh,” you think as you get your calculator out. For gasoline, β = 9.5 × 10-4 °C-1,
and you figure that it’s 10°C warmer in the sunshine than in the building, so

∆V = βVo∆T = (9.5 × 10-4)(5,000)(10) = 47.5 gallons

Not good news for the refinery — those 5,000-gallon tankers of gasoline that
are filled to the brim have to carry 5,047.5 gallons of gasoline after they go
out in the sunshine. The gas tanks may also expand, but the β of steel is
much less than the β of gasoline. Should you tell the refinery workers? Or
should you ask for a bigger fee first?

Going with the Flow(of Heat)
What, really, is heat? When you touch a hot object, heat flows from the object
to you, and your nerves record that fact. When you touch a cold object, heat
flows from you to that object, and again, your nerves keep track of what’s
happening. Your nerves record why objects feel hot or cold — because heat
flows from them to you or from you to them.

So, what is heat in physics terms? Heat is energy that flows from objects of
higher temperatures to objects of lower temperatures. The unit of this energy
in the meters-kilograms-seconds (MKS) system is the Joule (J).
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Bundling into a blanket
Why does a blanket keep you warm? Aren’t you
transferring your heat through the blanket into
the outside air?

You certainly are, but when you warm up the
mass of the blanket and the air trapped in it, that

warm material transfers heat in all directions, not
just to the outside air. Some of the heat comes
back to you. The thicker the blanket, the more
heat that has a chance to transfer back to you as
it travels from layer to layer through the blanket.
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Where does this energy come from? Take a look at the molecular picture —
heat is a measure of the energy stored in the internal molecular motion of an
object. Heat stays in an object until it can leak out to the environment.

Different materials can hold different amounts of heat — if you warm up a
potato, it can hold its heat longer (as your tongue can testify) than a lighter
material like cotton candy. The measure of how much heat an object can hold
is called its specific heat capacity.

Physicists like to measure everything, so it shouldn’t be surprising that you
bust out your thermometer when you see someone making a cup of coffee.
You measure exactly 1.0 kg of coffee in the pot, and then you get down to the
real measurements. You find out that it takes 4,186 J of heat energy to raise
the temperature of the coffee by 1°C, but it takes only 840 J to raise 1.0 kg of
glass by 1°C. Where’s that energy going? It goes into the object being heated,
which stores it as internal energy until it leaks out again. Note: If it takes
4,186 J to raise 1.0 kg of coffee by 1°C, it takes double that, 8,372 J, to raise
2.0 kg of coffee by 1°C.

You can relate the amount of heat, Q (the common letter to use for heat; yep,
it makes no sense), it takes to raise the temperature of an object to the change
in temperature and the amount of mass involved:

Q = cm∆T

where Q is the amount of heat energy involved (measured in Joules if you’re
using the MKS system), m is the amount of mass, ∆T is the change in temper-
ature, and c is a constant called the specific heat capacity, which is measured
in J/(kg-°C) in the MKS system.

One calorie is defined as the amount of heat needed to heat 1.0 gram of water
1.0°C, so 1 calorie = 4,186 J. Nutritionists use the food-energy term Calorie
(capital C) to stand for 1,000 calories — 1.0 kcal — so 1.0 Calorie = 4,186 J.
Physicists use another unit of measurement as well — the British Thermal
Unit (Btu). One Btu is the amount of heat needed to raise 1 pound of water
1.0°F. To convert, you can use the relation that 1 Btu = 1,055 J.

Now that the 45 g of coffee in your cup is cold, you call over your host. “It’s
45°C,” you say, “but I like it at 65°C.” The host gets up to pour some more.

“Just a minute,” you say. “The coffee in the pot is 95°C. Wait until I calculate
exactly how much you need to pour.”

The following represents the heat lost by the new mass of coffee, m1:

∆Q1 = cm1 (Tf – T1o)

And here’s the heat gained by the existing coffee, mass m2:

∆Q2 = cm2 (Tf – T2o)
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Assuming you have a super-insulating coffee mug, the heat lost by the new
coffee is the heat that the existing coffee will gain, so

∆Q1 = –∆Q2

which means that

–cm1 (Tf – T1o) = cm2 (Tf – T2o)

Dividing both sides by the specific heat capacity and plugging in the numbers
gives you

–m1 (65 – 95) = –m1 (–30) = m1(30)

m2 (Tf – T2o) = (0.045)(65 – 45) = 0.9

m1(30) = 0.9

Dividing both sides by 30 gives you

[m1(30)] / 30 = 0.9 / 30 = m1 = 0.03 kg = 30 g

Satisfied, you put away your calculator and say, “Give me exactly 30.0 grams
of that coffee.”

Changing Phases: When Temperatures
Don’t Change

The equation of the moment is Q = cm∆T — used to find the amount of heat
energy with respect to the change in temperature — but you also come across
cases where adding or removing heat doesn’t change the temperature. For
example, imagine you’re calmly drinking your lemonade at an outdoor garden
party. You grab some ice to cool your lemonade, and the mixture in your glass
is now half ice, half lemonade (which you can assume has the same specific
heat as water; see the previous section), with a temperature of exactly 0°C.

As you hold the glass and watch the action, the ice begins to melt — but the
contents of the glass don’t change temperature. Why? The heat going into the
glass is melting the ice, not warming the mixture up. So, does this make the
equation for heat energy useless? Not at all. It just means that the equation
doesn’t apply for a phase change.

Phase changes occur when materials change state, from liquid to solid (as when
water freezes), solid to liquid (as when rocks melt into lava), liquid to gas (as
when you boil tea), and so on. When the material in question changes to a new
state — liquid, solid, or gas (you can also factor in a fourth state: plasma, a
superheated gas-like state) — some heat goes into or comes out of the process.
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You can even have solids that turn directly into gas, as when you have a
block of dry ice, frozen carbon dioxide. As the dry ice gets warmer, it turns
into carbon dioxide gas. This process is called sublimation.

Breaking the ice with phase changes
Imagine that someone has taken a bag of ice and thoughtlessly put it on the
stove. Before it hit the stove, the ice was at a temperature below freezing
(–5°C), but being on the stove is about to change that. You can see the
change taking place in graph form in Figure 13-2.

As long as no phase change takes place, the equation Q = cm∆T holds good
[the specific heat capacity of ice is around 2.0 × 10-3 J/(kg-°C)], which means
that the temperature of the ice will increase linearly as you add more heat to
it, as you see in the graph in Figure 13-2.

However, when the ice reaches 0°C, you start to get nervous. The ice is getting
too warm to hold its solid state, and it begins to melt, undergoing a phase
change. On a molecular level, however, it takes energy to make an object
change state. For example, when you melt ice, it takes energy to break up the
crystalline ice structure. The energy needed to melt the ice is supplied as
heat. This is why the graph in Figure 13-2 levels off in the middle — the ice is
melting. It takes heat to make the ice change phase to water, so even though
the stove adds heat, the temperature of the ice doesn’t change as it melts.

As you watch the bag of ice on the stove, however, you note that all the ice
eventually melts into water. Because the stove is still adding heat, the water
begins to heat up, which you see in Figure 13-2. The stove adds more and

Ice melts

Water boils
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changes of
water.
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more heat to the water, and in time, the water starts to bubble. “Aha,” you
think. “Another phase change.” And you’re right: The water is boiling and
becoming steam. The bag holding the ice seems pretty resilient, however,
and expands while the water turns to steam; but it doesn’t break.

You measure the temperature of the water. Fascinating — although the
water boils, turning into steam, the temperature doesn’t change, as shown
in Figure 13-2. Once again, you need to add heat to incite a phase change —
this time from water to steam. You can see in Figure 13-2 that as you add
heat, the water boils, but the temperature of that water doesn’t change.

What’s going to happen next, as the bag swells to an enormous volume? You
never get to find out, because the bag finally explodes. You pick up a few
shreds of the bag and examine them closely. How can you account for the
heat that’s needed to change the state of an object? How can you add some-
thing to the equation for heat energy to take into account phase changes?
That’s where the idea of latent heat comes in.

Understanding latent heat
Latent heat is the heat per kilogram that you have to add or remove to make an
object change its state; in other words, latent heat is the heat needed to make
a phase change happen. Its units are J/kg in the meters-kilograms-seconds
(MKS) system.

Physics recognizes three types of latent heat, corresponding to the changes
of phase between solid, liquid, and gas:

� The latent heat of fusion, Lf: The heat per kilogram needed to make the
change between the solid to liquid phases, as when water turns to ice.

� The latent heat of vaporization, Lv: The heat per kilogram needed to
make the change between the liquid to gas phases, as when water boils.

� The latent heat of sublimation, Ls: The heat per kilogram needed to make
the change between the solid to gas phases, as when dry ice evaporates.

For example, the latent heat of fusion of water, Lf, is 3.35 × 105 J/kg, and the
latent heat of vaporization of water, Lv, is 2.26 × 106 J/kg. In other words, it takes
3.35 × 105 Joules to melt 1 kilogram of ice at 0°C (just to melt it, not to change
its temperature). And it takes 2.26 × 106 Joules to boil 1 kilogram of water into
steam. These are the energies involved in making water change its phase.

Here is a Web site that lists some common numbers for fusion and vaporiza-
tion: www.physchem.co.za/Heat/Latent.htm#fusion
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Chapter 14

Here, Take My Coat: Heat Transfer
in Solids and Gases

In This Chapter
� Transferring heat through conduction, convection, and radiation

� Getting gassy with Avogadro’s Number

� Finding your ideal gas

� Keeping up with the molecules in ideal gases

You witness the transfer of heat and the chemical changes that result
every day. You cook some pasta, and you see currents of water cycling

the noodles in the pan. You pick up the pan without a hand towel, and you
burn your hand. You look to the sky on a summer day, and you feel your face
warming up. You give your coat to your dates, and you watch their feelings
for you warm up (through radiation, of course!).

In this chapter, I discuss the three primary ways by which heat is distributed.
I start by discussing the ways in which heat can be transferred, and then I
discuss how heat affects gases — which is where you find out all about moles
and how to predict how many molecules are present in certain liquids or
solids. You also find out how heat moves around, how many molecules you’re
dealing with in certain situations, and more. After you read this chapter,
you can startle people at parties by telling them how many molecules of
water they have in their glasses!

Boiling Water: Convection
Convection is one of the primary means by which heat is transferred from point
to point. It happens when a substance like air or water is heated; some of it
becomes less dense than what’s left, and the heated part rises. Take a look at
the pot of water heating up in Figure 14-1. How does the heat move around in
the water? As the water near the heating element heats up, it expands and
becomes less dense. The less-dense water rises toward the top, which starts a
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current. You can see convection at work if you add a few noodles to the pot
and watch how they circulate. Here, the heat transfer relies on a medium that
expands and moves around — water.

However, convection doesn’t need water; air and many other substances do
the trick. Maybe you’ve seen birds riding thermals (columns of rising hot air)
while circling and rising higher in the air — convective motion of the air that
was heated near the Earth’s surface created the thermals.

Many ovens work by using convection; you may hear the term convection
oven as opposed to, say, microwave oven (a microwave oven heats by using
microwaves to briefly polarize the molecules in food and make them oscillate;
so, believe it or not, the heating in a microwave actually comes from friction).
The air inside a convection oven gets hot, which makes air currents circulate.

You may have heard the maxim “heat rises,” which is all about convection.
Hot air expands and becomes less dense than the cool air around it, which
makes it rise. So, if you have a two- or three-story house with an open stair-
way, all your carefully heated air concentrates happily on the top floor during
the winter. The heat from radiators in a room also rises by convection, circu-
lating the air around to some extent. To increase the heat movement, people
sometimes use ceiling fans. You probably see convection on a daily basis,
and now you can recognize it in action; however, there are other heating
events taking place that you still haven’t discovered. Read on!

Too Hot to Handle: Conduction
Conduction transfers heat through material directly, without the need of cur-
rents to sustain the transfer (like convection; see the preceding section).
Take a look at the metal pot in Figure 14-2 and its metal handle; the pot has
been boiling for 15 minutes. Would you want to lift it off the fire by grabbing
the handle without an oven mitt? Probably not, unless you’re a thrill-seeker.

Figure 14-1:
You can see
convection
in action by

boiling a pot
of water.
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The metal handle is hot, but why? Not because of convection, because no
heat-driven currents of mass are at work here. The handle is hot because of
conduction.

On the molecular level, the molecules near the heat source are heated and
begin moving faster. They bounce off the molecules near them and cause
them to move faster (as anyone who’s played billiards can attest). That
increased bouncing is what heats a substance up.

Some materials, like most metals, conduct heat better than others, such as
porcelain, wood, or glass. The way substances conduct heat depends a great
degree on their molecular structures, so different substances react differently.

Examining the properties that affect 
conduction to find the conduction 
equation
You have to take different properties of objects into account when you want to
examine the conduction that takes place. If you have a bar of steel, for exam-
ple, you have to take into account the bar’s area and length, along with the
temperature at different parts of the bar. Take a look at Figure 14-3, where a bar
of steel is being heated on one end and the heat is traveling by conduction
toward the other side. Can you find out how fast the heat travels? No problem.

You can go a couple different routes in this situation. For example, as you
may expect, the greater the difference in temperature between the two ends
of the bar, the greater the amount of heat that’s transferred. It turns out that
the amount of heat transferred, Q, is proportional to the difference in temper-
ature, ∆T (∝ means “is proportional to”):

Q ∝ ∆T

Figure 14-2:
Conduction

heats the
pot that

holds the
boiling
water.
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On the other hand, as you may expect, a bar twice as wide conducts twice the
amount of heat. In general, the amount of heat conducted, Q, is proportional
to the cross-sectional area, A, like this:

Q ∝ A

And the longer the bar, the less the amount of heat that will make it all the
way through; in fact, the conducted heat turns out to be inversely propor-
tional to the length of the bar, L:

Q ∝ 1 / L

Finally, the amount of heat transferred, Q, depends on the amount of time
that passes, t — twice the time, twice the heat. Here’s how you express this
mathematically:

Q ∝ t

When you put it all together and nominate k as the constant that’s yet to be
determined, the heat transfer by conduction through a material is given by
this equation:

Q = (kA∆Tt) / L

This represents the amount of heat transferred by conduction in a given
amount of time, t, down a length L, where the cross-sectional area is A.
Here, k is the material’s thermal conductivity, measured in Joules/(s-m-°C).

Different materials (glass, steel, copper, bubble gum) conduct heat at differ-
ent rates, so the thermal conductivity constant depends on the material in
question. Lucky for you, physicists have measured the constants for various
materials already. Check out some of the calculations in Table 14-1.

A

L

Figure 14-3:
Conducting

heat in a bar
of steel.
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Table 14-1 Thermal Conductivities for Various Materials
Material Thermal Conductivity

Glass 0.80 J/(s-m-°C)

Steel 14.0 J/(s-m-°C)

Copper 390 J/(s-m-°C)

Styrofoam 0.01 J/(s-m-°C)

Brass 110 J/(s-m-°C)

Silver 420 J/(s-m-°C)

Applying the heat-transferred-by-
conduction equation
The thermal conductivity of the steel part of a pot handle is 14.0 Joules/(s-m-°C)
(see Table 14-1). Take a look at Figure 14-3. If that handle is 15 cm long, with a
cross sectional area of 2.0 cm2 (2.0 × 10-4 m2), and the fire at one end is 600°C,
how much heat would be pumped into your hand if you grabbed it? The equa-
tion for heat transfer by conduction is

Q = (kA∆Tt) / L

If you assume that the end of the cool end of the handle starts at about room
temperature, 25°C, you get

Q = (kA∆Tt) / L = [(14)(2.0 × 10-4)(600 – 25)t] / 0.15 = (10.7J)t
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Becoming a cooler engineer
Based on the thermal conducting or insulating
abilities of different materials, you can calculate
how to keep objects cold or hot, from drinks to
hot dogs to racks of meat; for example, imagine
you’ve been asked to design a frozen food stor-
age locker, and your first thought is to make it out
of copper, which has a thermal conductivity of
390J/(s-m-°C). However, copper would give dis-
appointing results, because it has a very high
thermal conductivity, which would let heat move

in or out of the locker easily. Better check the
thermal conductivities of different objects.
Styrofoam has a thermal conductivity of only 0.01
J/(s-m-°C), which is a much better choice; if ice
lasts a time t in the copper locker, it will last 390
/ .01 = 39,000 times longer if you build the cooler
with Styrofoam instead. (That’s just an estimate,
of course; the actual answer depends on the
thermal conductivity of the contents of the locker
as well).
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You find that 10.7 Joules (the unit of measure in question) of heat are being
transferred to the end of the handle each second. And as the seconds go by,
the Joules of heat will add up, making the handle hotter and hotter.

Emitting and Absorbing Light: Radiation
You get out of the shower soaking wet in the dead of winter, and you’re toasty
warm. Why? Because of a little physics, of course. In particular, the heat
lamp you have in your bathroom, which you can see in Figure 14-4. The
heat lamp beams out heat to you and keeps you warm through radiation.

Radiation is light that can transfer heat. Heat energy transferred through radi-
ation is as familiar as the light of day; in fact, it is the light of day. The sun is a
huge thermal reactor about 93 million miles away in space, and neither con-
duction nor convection (see the previous two sections in this chapter) would
produce any of the energy that arrives to Earth through the vacuum of space.
The sun’s energy gets to the Earth through radiation, which you can confirm
on a sunny day just by standing outside and letting the sun’s rays warm your
face. The only way you can actually see radiation, however, is through the
sunburn you later have to manage.

Figure 14-4:
A light bulb

radiates
heat into its

environ-
ment.
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You can’t see radiation, but it’s there
Every object around you is continually radiating, unless it’s at absolute zero
temperature, which is a little unlikely because you can’t physically get to a
temperature of absolute zero. A scoop of ice cream, for example, radiates.
Electromagnetic radiation comes from accelerating and decelerating electric
charges, and on a molecular level, that’s what happens as objects warm up —
their atoms move around faster and faster and bounce off other atoms hard.

Even you radiate all the time, but that light isn’t usually visible because it’s
in the infrared part of the spectrum. However, that light is visible to infrared
scopes, as you’ve seen in the movies or television. You radiate heat in all
directions all the time, and everything in your environment radiates heat
back to you. When you have the same temperature as your surroundings,
you radiate as fast and as much to your environment as it does to you.

If your environment didn’t radiate heat back to you, you’d freeze, which is
why space is considered so “cold.” There’s nothing cold to touch in space,
and heat isn’t lost through conduction or convection. All that happens is that
the environment doesn’t radiate back at you, which means that the heat you
radiate away is lost. And you can freeze very fast from the lost heat.

When an object heats up to about 1,000 kelvin, it starts to glow red (which
may explain why, even though you’re radiating, you don’t glow red in the visi-
ble light spectrum). As the object gets hotter, its radiation moves up in the
spectrum through orange, yellow, and so on up to white hot at somewhere
around 1,700K.

Radiant heaters with coils that glow red rely on radiation to transfer heat.
Convection takes place as air gets heated, rises, and spreads around the
room (and conduction can occur if you touch the heater on a hot spot by
mistake — not the most desirable of heat transfers). But heat transfer takes
place mostly through radiation. Many houses have heating wires buried in
walls, ceilings, or floors, which is called radiant heating — you don’t see any-
thing (which, architecturally, is the idea), but your face will feel warm as you
face the radiant heat source.

Humans understand heat radiation and absorption in the environment intu-
itively. For example, on a hot day, you may avoid wearing a black t-shirt,
because you know it will make you hotter. Why? Because it absorbs light
from the environment while reflecting less of it back than a white t-shirt.
The white t-shirt keeps you cooler, because it reflects more radiant heat
back to the environment. Which would you rather get into on a hot day: 
a car with black leather upholstery or one with white?
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Radiation and blackbodies
Some objects absorb more of the light that hits them than others. The objects
that absorb all the radiant heat that strikes them have a name — they’re called
blackbodies. A blackbody absorbs 100 percent of the radiant heat striking it,
and if it’s in equilibrium with its surroundings, it emits all the radiant heat
as well.

Most objects fall between mirrors, which reflect all light, and blackbodies,
which absorb all light. The middle-of-the-road objects absorb some of the light
striking them and emit it back into their surroundings. Shiny objects are shiny
because they reflect most of the light, which means they don’t have to emit as
much heat radiantly into the room as other objects. Dark objects appear dark
because they don’t reflect much light, which means they have to emit more as
radiant heat (usually lower down in the spectrum, where light is infrared and
can’t be seen).

You can find plenty of physics when it comes to blackbodies, starting with
the following question: How much heat does a blackbody emit when it’s at a
certain temperature? The amount of heat radiated is proportional to the time
you allow — twice as long, twice as much heat radiated, for example. So, you
can write the equation, where t is time, as follows:

Q ∝ t

And as you may expect, the amount of heat radiated is proportional to the
total area doing the radiating. So, you can also write the equation as follows,
where A is the area doing the radiating:

Q ∝ At
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Reflecting on cold metal
Why do metals feel cold to the touch? When
you pick up a metal object (even one you don’t
find in the refrigerator, such as a can of soda),
it feels cold to the touch. You probably take
this for granted in your everyday life. But why
is that?

The answer lies in radiant heat. Metals are
shiny, so they can reflect back the radiant heat
hitting them better than other objects in a room,
even white ones. So, if a spoon reflects back 90
percent of the radiant heat hitting it, and a book
reflects back just 10 percent, which feels cooler
to the touch? Metal, indeed.
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Temperature, T, has to be in the equation somewhere — the hotter an object,
the more heat radiated. Experimentally, it turns out that the amount of heat
radiated is proportional to T to the fourth power, T4. So, now you have

Q ∝ AtT4

To make the equation final, you need to add a constant, which is measured
experimentally. To find the heat emitted by a blackbody, you use the Stefan-
Boltzmann constant, σ, which goes in like this:

Q = σAtT4

The value of σ is 5.67 × 10-8 J(s-m2-K4). Note, however, that this constant works
only for blackbodies that are perfect emitters. Most objects aren’t perfect
emitters, so you have to add another constant most of the time — one that
depends on the substance you’re working with. The constant is called emis-
sivity, e. So, this equation — the Stefan-Boltzmann law of radiation — becomes

Q = eσAtT4

where e is an object’s emissivity, σ is the Stefan-Boltzmann constant 
(5.67 × 10-8 J[s-m2-K4]), A is the radiating area, t is time, and T is the 
temperature in kelvins.

For example, a person’s emissivity is about 0.8. At a body temperature of
37°C, how much heat does a person radiate each second? First, you have to
factor in how much area does the radiating. If you consider a person mathe-
matically as a 1.6-meter-high cylinder of radius 0.1m, the total surface area
would be

A = (area of a cylinder) = 2πrh + 2πr2 = 2π (0.1)(1.6) + 2π(0.1)2 = 1.07 m2

where r is the radius and h is height. To find the total heat radiated by
a person, plug the numbers into the Stefan-Boltzmann law of radiation 
equation:

Q = eσAtT4 = (0.8)(5.67 × 10-8)(1.07)(37 + 273.15)4t = 449t

You get a value of 449 Joules per second, or 449 watts. That may seem high,
because skin temperature isn’t the same as internal body temperature, but
it’s in the ballpark.
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Crunching Avogadro’s Number
Much of the info in this chapter deals with the effects of heat on solids and
liquids (as in pools of liquid metal, for example), but you can examine plenty
of physics when you heat up gases, too. It all starts by knowing how many
molecules of a substance you’re dealing with, which you can figure out by
using a little physics. For example, consider the scenario of a person who
finds a large diamond and brings it to you for examination.

“How many atoms are in my diamond?”

“That depends,” you say, “on how many moles you have.”

The person, offended, says, “I beg your pardon!”

A mole is the number of atoms in 12.0 grams of carbon isotope 12. Carbon
isotope 12 — also called carbon-12, or just carbon 12 — is the most common
version of carbon, although some carbon atoms have a few more neutrons in
them — carbon 13, actually — so the average works out to about 12.011. You
have to know how many moles of matter you have before you can know how
many atoms you have, and an atom-by-atom knowledge is essential when you
start working with heat and gases.

The number of atoms has been measured as 6.022 × 1023, which is called
Avogadro’s Number, NA. So, now you know how many atoms are in 12.0 grams
of carbon 12. Do you find the same number of atoms in, say, 12.0 grams of 
sulphur? Nope. Each sulpher atom has a different mass from each carbon
atom, so even if you have the same number of grams, you have a different
number of atoms.

How much more mass does sulphur have than carbon 12? If you check a peri-
odic table of elements hanging on the wall in a physics lab, you’ll find that the
atomic mass of sulphur (usually the number appearing right under the ele-
ment’s symbol, like S for sulphur) is 32.06. But 32.06 what? It’s 32.06 atomic
units, u, where each atomic unit is 1⁄12 of the mass of a carbon 12 atom. If a
mole of carbon 12 has a mass of 12.0 grams, therefore, and the mass of your
average sulphur atom is bigger than the mass of a carbon 12 atom by the 
following ratio:

Sulphur mass = 32.06

Carbon 12 mass = 12 u

a mole of sulphur atoms must have this mass:

(32.06 / 12 u)(12.0 g) = 32.06 g
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How convenient! Knowing that a mole of an element has the same mass in
grams as its atomic mass in atomic units proves helpful in your calculations.
You can read the atomic mass of any element in atomic units off any periodic
table. You can find that a mole of silicon has a mass of 28.09 grams, a mole of
sodium has a mass of 22.99 grams, and so on. And each of those moles con-
tains 6.022 × 1023 atoms.

Now you can determine the number of atoms in a diamond, which is solid
carbon (atomic mass = 12.01 u). A mole is 12.01 g of diamond, so when you
find out how many moles you have, you multiply that times 6.022 × 1023

atoms.

Not every object is made up of a single kind of atom. When was the last time
someone handed you a kilogram of 100 percent-pure sulphur on the street?
Most materials are composites, such as water, which is made up of two
hydrogen atoms for every one oxygen atom (H2O). In cases like these, instead
of the atomic mass, you look for the molecular mass (when atoms combine,
you have molecules), which is also measured in atomic mass units. For exam-
ple, the molecular mass of water is 18.0153 u, so 1 mole of water molecules
has a mass of 18.0153 g.

Forging the Ideal Gas Law
When you start working on an atom-by-atom and molecule-by-molecule level,
you begin working with gases from a physics point of view. For example, how
do moles factor into predicting what’s going to happen when you heat gases?
It turns out that you can relate the temperature, pressure, volume, and number
of moles together for a gas. The relation doesn’t always hold completely true,
but it always does for ideal gases. Ideal gases are very light, like helium, and
they’re the frictionless ramps of thermodynamics.

It’s an experimental fact that if you keep the volume constant and heat a gas,
the pressure will go up linearly, as you see in Figure 14-5. In other words, at a
constant volume, where T is the temperature measured in kelvins and P is
the pressure,

P ∝ T

You can let the volume vary as well, and if you do, you’ll find that the pres-
sure is inversely proportional to the volume — if the volume of a gas doubles,
its pressure will go down by a factor of two:

P ∝ T / V

229Chapter 14: Here, Take My Coat: Heat Transfer in Solids and Gases

21_554336 ch14.qxd  11/2/05  11:38 PM  Page 229



On the other hand, when the volume and temperature of an ideal gas are 
constant, the pressure is proportional to the number of moles of gas you
have — twice the amount of gas, twice the pressure. If the number of moles
is n,

P ∝ nT / V

Adding a constant, R — the universal gas constant, which has a value of 8.31
Joules(mole-K) — gives you the ideal gas law, which relates pressure,
volume, number of moles, and temperature:

PV = nRT

Ideal gases are those gases for which the ideal gas law holds. By using the ideal
gas law, you can predict the pressure of an ideal gas, given how much you have
of it, its temperature, and the volume you’ve enclosed it in.

You can also express the ideal gas law a little differently by using Avogadro’s
Number, NA (see the previous section), and the total number of molecules, N:

PV = nRT = (N / NA) RT

The constant R/NA is also called Boltzmann’s constant, k, and has a value of
1.38 × 10-23 J/K. Using this constant, the ideal gas law becomes

PV = NkT
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Gas pressure: An ideal gas law example
Say that you’re measuring a volume of 1 cubic meter filled with 600 moles of
helium (which is very close to an ideal gas) at room temperature, 27°C. What
would be the pressure of the gas? Using the following form of the ideal gas law:

PV = nRT

you can put P on one side by dividing by V. Now plug in the numbers:

P = nRT / V = [(600.0)(8.31)(273.15 + 27)] / 1.0 = 1.50 × 106 N/m2

The pressure on all the walls of the container is 1.50 × 106 N/m2. Notice the units
of pressure here — N/m2. The unit is used so commonly that it has its own
name in the MKS system: Pascals, or Pa. One Pa = 1.45 × 10-4 pounds per inch2.
Atmospheric pressure is 1.013 × 105 Pa, which is 14.70 lb/in2. The pressure
of 1 atmosphere is also given in torr on occasion, and 1.0 atmosphere =
760 torr. In this example, you have a pressure of 1.50 × 106 Pa, which is
about 15 atmospheres.

You may come across a special set of conditions sometimes used when talk-
ing about gases — Standard Temperature and Pressure, also called STP. The
STP pressure is 1 atmosphere, 1.013 × 105 Pa, and the STP temperature is 0°C.
You can use the ideal gas law to calculate that at STP, 1.0 mole of an ideal gas
occupies 22.4 liters of volume (1.0 liter is 1 × 10-3 m3).

Boyle’s Law and Charles’ Law: Alternative
expressions of the ideal gas law
You can often express the ideal gas law in different ways. For example, you
can express the relationship between the pressure and volume of an ideal gas
before and after one of those quantities changes at a constant temperature
like this:

PfVf = PoVo

This equation, called Boyle’s Law, says that, all factors being the same, the
product PV will be conserved. Similarly, at constant pressure, you can say that

Vf / Tf = Vo / To

This equation, called Charles’ Law, says that the ratio of V/T will be con-
served for an ideal gas, all factors being the same.
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Tracking Ideal Gas Molecules
You can examine certain properties of molecules of an ideal gas as they zip
around. For instance, you can calculate the average kinetic energy of each
molecule with a very simple equation:

KEavg = 3⁄2kT

where k is Boltzmann’s constant, 1.38 × 10-23 J/K, and T is the temperature.
And because you can determine the mass of each molecule if you know what
gas you’re dealing with (see the section “Crunching Avogadro’s Number” 
earlier in this chapter), you can figure out the molecules’ speeds at various
temperatures.

Predicting air molecule speed
Imagine you’re at a picnic with friends on a beautiful spring day. You have a
nice spread — potato salad, sandwiches, and drinks. But after a while, you
wonder if your friends forgot to bring any physics. You flop backward and
look up at the sky. It all seems a little boring, but then you remind yourself
that physics goes on everywhere, all the time, even if you can’t see direct
results.
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Measuring water and air pressure
Want a way to display your pressure expertise
in the real world? Well, you can determine the
pressure under fluids like water with a simple
equation:

P = ρgh

Here, ρ is the density of the fluid, g is the normal
acceleration due to gravity (9.8 meters per
second2), and h is the depth of the fluid you’re
measuring. For water, ρ is about 1,000 kilograms
per meter3, so you get

P = (1,000.0)(9.8)h = 9,800h

For every meter you go under water, you gain
about 9,800 Pa of pressure, or about 1⁄10 of an

atmosphere (see the section “Gas Pressure: An
ideal gas law example” for this conversion).

This equation works as long as the density of
the fluid doesn’t vary, which means that it’s hard
to predict what the pressure due to air will be,
because the density of air varies all the way out
to space. You often see physics problems that
ask how much the air pressure varies as you go
up a certain height; in other words, the prob-
lems give you a difference in height over which
ρ is constant and ask you to calculate the
change in pressure.
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For example, you can’t see the air molecules whizzing around you, but
you can predict their average speeds. You get out your calculator and ther-
mometer. You measure the air temperature at about 28°C, or 301 kelvin
(see Chapter 13 for this conversion). You know that for the molecules in
the air, you can measure their average kinetic energy with

KEavg = 3⁄2kT

Now plug in the numbers:

KEavg = 3⁄2kT = 3⁄2(1.38 × 10-23)(301) = 6.23 × 10-21 J

The average molecule has a kinetic energy of 6.23 × 10-21 Joules. On the other
hand, the molecules are pretty small — what speed does 6.23 × 10-21 Joules
correspond to? Well, you know from Chapter 8 that

KE = 1⁄2mv2

where m is the mass and v is the velocity, so

v m
2KE=

Air is mostly nitrogen, and each nitrogen atom has a mass of about 4.65 ×
10-26 kg (you can figure that one out yourself by finding the mass of a mole of
nitrogen and dividing by the number of atoms in a mole, NA). You can plug in
the numbers to get

/ ,v m
2KE 517 m s 1 150 miles per hour= = =

Yow! What an image; huge numbers of the little guys crashing into you at
1,150 miles per hour every second! Good thing for you the molecules are
so small. Imagine if each air molecule weighed a couple of pounds. Big 
problems.

Calculating kinetic energy in an ideal gas
It’s true that atoms have very little mass, but there are many, many of them in
gases, and because they all have kinetic energy, the total kinetic energy can
pile up pretty fast. How much total kinetic energy can you find in a certain
amount of gas? Each molecule has this average kinetic energy:

KEavg = 3⁄2kT
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To figure the total kinetic energy, you multiply by the number of molecules
you have, which is nNA, where n is the number of moles:

KEtotal = 3⁄2nNAkT

NAk equals R, the universal gas constant (see the section “Forging the Ideal
Gas Law” earlier in this chapter), so this equation becomes

KEtotal = 3⁄2nRT

If you have 600 moles of helium at 27°C, you have this much internal energy
wrapped up in thermal movement:

KEtotal = 3⁄2nRT = 3⁄2(600.0)(8.31)(273.15 + 27) = 2.24 × 106 J

This converts to a little less than 1 Calorie (the kind of energy unit you find
on food wrappers).
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Chapter 15

When Heat and Work Collide:
The Laws of Thermodynamics

In This Chapter
� Achieving thermal equilibrium

� Storing heat and energy under different conditions

� Revving up heat engines for efficiency

� Dropping close to absolute zero

If you’ve ever had an outdoor summer job, you know all about heat and
work, a relationship encompassed by the term thermodynamics. This 

chapter brings together those two cherished topics, which I cover in detail
in Chapter 8 (work) and Chapter 13 (heat). Thermodynamics has three laws,
much like Newton, but it does Newton one better — it also has a zeroth law
of thermodynamics. In this chapter, I cover thermal equilibrium through the
zeroth law, heat and energy conservation through the first law, heat flow
through the second law, and absolute zero with the third law. Time to throw
the book at thermodynamics.

Gaining Thermal Equilibrium: The Zeroth
Law of Thermodynamics

The laws of thermodynamics start with the zeroth law. You may think that odd,
because few other sets of everyday objects start off that way (“Watch out for
that zeroth step, it’s a doozy . . .”), but you know how physicists love their tra-
ditions. The zeroth law of thermodynamics says that two objects are in thermal
equilibrium if heat can pass between them, but no heat is doing so.

For example, if you and the swimming pool you’re in are at the same tempera-
ture, no heat is flowing from you to it or from it to you (although the possibility
is there). You’re in thermal equilibrium. On the other hand, if you jump into
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the pool in winter, cracking through the ice covering, you won’t be in thermal
equilibrium with the water. And you don’t want to be. (Don’t try this physics
experiment at home!)

To check on thermal equilibrium, especially in cases of frozen swimming
pools that you’re about to jump into, you should use a thermometer. You can
check the temperature of the pool with the thermometer and then check
your temperature. If the two temperatures agree — in other words, if you’re
in thermal equilibrium with the thermometer, and the thermometer is in ther-
mal equilibrium with the pool — you’re in thermal equilibrium with the pool.

What using a thermometer illustrates is that two objects in thermal equilibrium
with a third object are also in thermal equilibrium with each other — another
way to state the zeroth law.

Among other jobs, the zeroth law sets up the idea of temperature as a thermal
equilibrium indicator. The two objects mentioned in the zeroth law are in equi-
librium with a third, giving you what you need to set up a scale like the Kelvin
scale. From a physics point of view, the zeroth law sets a foundation by saying
that no net heat flows between two objects at the same temperature.

Conserving Heat and Energy: The First
Law of Thermodynamics

The first law of thermodynamics is a statement of energy conservation. It states
that energy is conserved. The internal energy in a system, Uo, changes to a
final value Uf when heat, Q, is absorbed or released by the system and the
system does work, W, on its surroundings (or the surroundings do work on
the system), such that

Uf – Uo = ∆U = Q – W

In Chapter 8, I present plenty of discussion about conserving energy —
mechanical energy, anyway. I show that the total mechanical energy — the
sum of the potential and kinetic energy — is conserved. To say that, you have
to work with systems where no energy is lost to heat — there could be no
friction, for example. All that changes now. Heat is allowed at last (as you can
gather from my mention of thermodynamics). Now you can break down the
total energy of a system, which includes heat, work, and the internal energy
of the system.

These three quantities — heat, work, and internal energy — make up all the
energy you need to consider, so their sum is conserved. When you add heat
transfer, Q, to a system, and that system doesn’t work, the amount of internal
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energy in the system, which is given by the symbol U, changes by Q. A system
can also lose energy by doing work on its surroundings, such as when an engine
lifts weight at the end of a cable. When a system does work on its surroundings
and gives off no waste heat, its internal energy, U, changes by W. In other words,
you’re in a position to think in terms of heat as energy, so when you take into
account all three quantities — heat, work, and the internal energy — energy is
conserved.

The first law of thermodynamics is a powerful one because it ties all the
quantities together. If you know two of them, you can find the third.

Calculating conservation
The quantity Q, representing heat transfer, is positive when the system
absorbs heat and negative when the system releases heat. The quantity W,
representing work, is positive when the system does work on its surround-
ings and negative when the surroundings do work on the system.

Too many people get confused trying to figure out the positive or negative
values of every mathematical quantity. Don’t confuse yourself. When working
with the first law of conservation, you can work from the idea of energy con-
servation instead. Say, for example, that a motor does 2,000 Joules of work on
its surroundings while releasing 3,000 Joules of heat. By how much does its
internal energy change? In this case, you know that the motor does 2,000 J of
work on its surroundings, so you know that its internal energy will decrease
by 2,000 J. And it also releases 3,000 J of heat while doing its work, so the
internal energy of the system decreases by an additional 3,000 J.

Think of values of work and heat flowing out of the system as negative. In the
previous example, thinking this way makes the total change of internal energy

∆U = –2,000 – 3,000 = –5,000 J

The internal energy of the system decreases by 5,000 J, which makes sense —
the system does 2,000 J of work on the surroundings and releases 3,000 J of
heat. On the other hand, what if the system absorbs 3,000 J of heat from the
surroundings while doing 2,000 J of work on those surroundings? In this case,
you have 3,000 J of energy going in and 2,000 J going out. The signs are now
easy to understand:

∆U = –2,000 [work going out] + 3,000 [heat coming in] = 1,000 J

In this case, the net change to the system’s internal energy is +1,000 J. You
can also see negative work when work is done on the system by the sur-
roundings. Say, for example, that a system absorbs 3,000 J at the same time
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that its surroundings perform 4,000 J of work on the system. You can tell that
both of these energies will flow into the system, so its internal energy goes
up by 3,000 J + 4,000 J = 7,000 J. If you want to go by the numbers, use this
equation:

∆U = Q – W

and then note that because the surroundings are doing work on the system,
W is considered negative. So, you get

∆U = Q – W = 3,000 – –4,000 = 7,000 J

Examining isobaric, isochoric, isothermal,
and adiabatic processes, oh my!
You come across a number of quantities floating around in this chapter —
volume, pressure, temperature, and so on — and the way in which these
quantities vary as you do work affects the results. For example, if a gas is
doing work while you keep its volume constant, the process is different than
when you keep its pressure constant.

There are four standard conditions under which work is performed in ther-
modynamics: Constant pressure, constant volume, constant temperature,
and constant heat.

Note that when anything changes in the processes in the following sections,
the change is assumed to be quasi-static, which means the change comes
slowly enough that the pressure and temperature are the same throughout
the system’s volume.

At constant pressure: Isobaric
When you have a process where the pressure stays constant, it’s called 
isobaric (“baric” means pressure). In Figure 15-1, you see a cylinder with a
piston being lifted by a quantity of gas as the gas gets hotter. The volume of
the gas is changing, but the weighted piston keeps the pressure constant.

What work is the system doing as the gas expands? Work equals F times s,
where F represents force and s represents distance, and Force equals P times
A, where P is the pressure and A is the area. This means that

W = F∆s = PA∆s
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But the area times the change in s equals ∆V, the change in volume, so you get

W = P∆V

Graphically, you can see what the isobaric process looks like in Figure 15-2,
where the volume is changing while the pressure stays constant. Because 
W = P∆V, the work is the area beneath the graph.
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Figure 15-2:
An isobaric

graph.
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Cylinder

Gas heat

Figure 15-1:
An isobaric
system may

feature a
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volume, but
the pressure

remains
constant.
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For example, say you have 60 m3 of an ideal gas at 200 Pa (Pascals; see
Chapter 2), and you heat it until it expands (PV = nRT, where n represents
the number of moles, R represents the gas constant, 8.31, and T represents
temperature; see Chapter 14) to a volume of 120 m3. How much work does
the gas do? All you have to do is plug in the numbers:

W = P∆V = (200)(120 – 60) = 12,000 J

The gas does 12,000 Joules of work as it expands under constant pressure.

At constant volume: Isochoric
What if the pressure in a system isn’t constant? After all, you don’t often come
across a setup with a weighted piston, as in Figure 15-1. You’re more likely to
see a simple closed container, as you see in Figure 15-3, where someone has
neglectfully tossed a spray can onto a fire. In this case, the volume is constant,
so this is an isochoric process. As the gas inside the spray can heats up, its
pressure increases, but its volume stays the same (unless, of course, the can
explodes).

Figure 15-3:
An isochoric

system
features a

constant
volume as

other
quantities

vary.
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How much work is done on the spray can? Take a look at the graph in Fig-
ure 15-4. In this case, the volume is constant, so Fs (force times distance)
equals zero. No work is being done — the area under the graph is zero.

At constant temperature: Isothermal
In an isothermal system, the temperature remains constant as other quantities
change. Take a look at the remarkable apparatus in Figure 15-5. It’s specially
designed to keep the temperature of the enclosed gas constant, even as the
piston rises. When you apply heat to this system, the piston rises or lowers
slowly in such a way as to keep the product, pressure times volume, constant.
Because PV = nRT (see Chapter 14), the temperature stays constant as well.

What does the work look like as the volume changes? Because PV = nRT, the
relation between P and V is

P = nRT / V

You can see this equation illustrated in the graph in Figure 15-6.

The work done shows up in the area underneath the graph. But what the heck
is that area? The work done is given by the following equation, where ln is the
natural log, R is the gas constant, 8.31, Vf represents the final volume, and Vo

represents the initial volume:

W = nRT ln(Vf / Vo)
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An isochoric
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Because the temperature stays constant in an isothermal process, and because
the internal energy for an ideal gas (see Chapter 14) equals (3⁄2)nRT, the internal
energy doesn’t change. So you have

∆U = 0 = Q – W

In other words,

Q = W

So, if you immerse the cylinder you see in Figure 15-5 in a heat bath, what
would happen? The heat, Q, would flow into the apparatus, and because the
temperature of the gas stays constant, all that heat would become work done
by the system. For example, say that you have a mole of helium to play around
with on a rainy day of temperature 20°C, and for fun you decide to expand it
from Vo = 0.010 m3 to Vf = 0.020 m3. What’s the work done by the gas in the
expansion? All you have to do is plug in the numbers:

W = nRT ln(Vf / Vo) = (1.0)(8.31)(273.15 + 20) ln(0.020 / 0.010) = 1,690 J

The work done by the gas is 1,690 Joules. The change in the internal energy
of the gas is 0 Joules, as always in an isothermal process. And because Q = W,
the heat added to the gas is also equal to 1,690 J.

At constant heat: Adiabatic
In an adiabatic process, the total heat in a system is held constant. Take a look
at Figure 15-7, which shows a cylinder surrounded by an insulating material.
The heat in the system isn’t going anywhere, so when a change takes place,
it’s an adiabatic change.

Examining the work done during an adiabatic process, you can say Q = 0, so
∆U (the internal energy change) = –W. Because the internal energy of an ideal
gas is U = (3⁄2)nRT (see Chapter 14), the work done is

W = (3⁄2)nR(To – Tf)

where To represents the initial temperature and Tf represents the final temper-
ature. So, if the gas does work, it comes from a change in temperature — if the
temperature goes down, the gas does work on its surroundings. You can see
what a graph of pressure versus volume looks like for an adiabatic process in
Figure 15-8. The adiabatic curve in this figure, called an adiabat, is different
from the isothermal curves, called isotherms. The work done when the total
heat in the system is constant is the area under the adiabat, as shown in
Figure 15-8.
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Figuring out specific heat capacities
You can relate the initial pressure and volume to the final pressure and
volume this way:

PoVo
γ = Pf Vf

γ

What’s γ? It’s the ratio of the specific heat capacity of an ideal gas at constant
pressure divided by the specific heat capacity of an ideal gas at constant
volume, cp / cv. (The measure of how much heat an object can hold is called
its specific heat capacity; see Chapter 13 for more.) Allow me to get out the
old blackboard and chalk. To figure out specific heat capacities, you need to
relate heat, Q, and temperature, T: Q = cm∆T, where c represents specific
heat, m represents the mass, and ∆T represents the change in temperature.
In this case, however, it’s easier to talk in terms of molar specific heat capacity,
which is given by C and whose units are Joules/(mole-K). You use a number
of moles, n, for molar specific heat capacity rather than the mass, m:

Q = Cn∆T

How can you solve for C? You must account for two different quantities, Cp

(constant pressure) and Cv (constant volume). The first law of thermodynam-
ics (see the previous section in this chapter) states that Q = ∆U + W, so if
you can get ∆U and W in terms of T, you’re set. The work done is P∆V, so at
constant volume, W = 0. And the change in internal energy of an ideal gas is
(3⁄2)nR∆T (see Chapter 14), so Q at constant volume is

Qv = (3⁄2)nR(Tf – To)

At constant pressure, W isn’t 0, because it’s P∆V. And because PV = nRT, you
can say W = P(Vf – Vo) = nR(Tf – To), so Q at constant pressure is

Qp = (3⁄2)nR(Tf – To) + nR(Tf – To)

So, how do you get the molar specific heat capacities from this? You’ve
decided that Q = Cn∆T, so C = Q / n∆T. Dividing the above two equations
by n∆T gives you

Cv = (3⁄2)R

Cp = (3⁄2)R + R = (5⁄2)R

Now you have the molar specific heat capacities of an ideal gas. The ratio you
want, γ, is the ratio of these two equations:

γ = Cp / Cv = 5 / 3
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You can connect pressure and volume at any two points along an adiabat
(see the section “At constant heat: Adiabatic”) this way:

PoVo
5/3 = PfVf

5/3

For example, if you start with 1 liter of gas at 1 atmosphere and end up after
an adiabatic change (where no heat is gained or lost) with 2 liters of gas,
what would the new pressure, Pf, be? Putting Pf on one side of the equation
gives you

Pf = PoVo
5/3 / Vf

5/3

Plugging in the numbers gives you

Pf = PoVo
5/3 / Vf

5/3 = [(1.0)(1.0)5/3] / (2.0)5/3 = 0.314 atmospheres

The new pressure would be 0.314 atmospheres.

When Heat Flows: The Second Law 
of Thermodynamics

The second law of thermodynamics says, formally speaking, that heat flows 
naturally from an object at a higher temperature to an object at a lower tem-
perature, and it doesn’t flow of its own accord in the opposite direction. The
law is certainly born out of everyday observation — when was the last time
you noticed an object getting colder than its surroundings by itself unless
another object was doing some kind of work on it? You can force heat to flow
away from an object when it would naturally flow into it if you do some work —
as with refrigerators or air conditioners — but it won’t happen by itself.

Putting heat to work: Heat engines
You have many ways to turn heat into work. You may have a steam engine,
for example, that has a boiler and a set of pistons, or you may have an atomic
reactor that generates superheated steam that can turn a turbine. Engines
that rely on a heat source to do work are called heat engines; you can see
how one works by referring to Figure 15-9. A heat source provides heat to the
engine, which does work. And the waste heat left over is sent to a heat sink.
The heat sink could be the surrounding air, or it could be a water-filled radia-
tor, for example. As long as the heat sink is at a lower temperature than the
heat source, the heat engine can do work — at least theoretically.
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Evaluating heat’s work: 
Heat engine efficiency
Heat supplied by a heat source is given the symbol Qh (for the hot source),
and heat sent to a heat sink (see the previous section) is given the symbol Qc

(for the cold heat sink). With some calculation, you can find the efficiency of
a heat engine. It’s the ratio of the work the engine does, W, to the input amount
of heat — the fraction of the input heat that it converts to work:

Efficiency = Work / Heat Input = W / Qh

If all the input heat is converted to work, the efficiency will be 1.0. If no input
heat is converted to work, the efficiency is 0.0. Often, the efficiency is given
as a percentage, so you express these values as 100 percent and 0 percent.
Because total energy is conserved, the heat into the engine must equal the
work done plus the heat sent to the heat sink, which means that

Qh = W + Qc

This means that you can rewrite the efficiency in terms of just Qh and Qc:

Efficiency = W / Qh = (Qh – Qc) / Qh = 1 – (Qc / Qh)

Heat source

Engine Work

Heat sink

Figure 15-9:
A heat

engine turns
heat into

work.
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Say, for example, that you have a heat engine that’s 78 percent efficient and
can produce 2.55 × 107 Joules to clear off a roadway of water. How much heat
does it use, and how much does it reject? Well, you know that W = 2.55 × 107

J, and that

Efficiency = W / Qh = 2.55 × 107 J / Qh = 0.78

That means that

Qh = 2.55 × 107 J / 0.78 = 3.27 × 107 J

The amount of input heat is 3.27 × 107 Joules. So, how much heat gets left
over and sent into the heat sink, Qc? You know that

Qh = W + Qc

so

Qh – W = Qc

Plugging in the numbers gives you

Qh – W = 3.27 × 107 – 2.55 × 107 = 0.72 × 107 = Qc

The amount of heat sent to the heat sink is 0.72 × 107 Joules.

Carnot says you can’t have it all
Given the amount of work a heat engine does and its efficiency, you can calcu-
late how much heat goes in and how much comes out (along with a little help
from the law of conservation of energy, which ties work, heat in, and heat out
together; see Chapter 8). But what about creating 100-percent-efficient heat
engines? It would be nice for efficiency if you could convert all the heat that
goes into a heat engine into work, but it doesn’t work out that way. Carnot
says so. Heat engines have some inevitable losses in the real world, such as
through friction on the pistons in a steam engine. In the 19th century, an engi-
neer named Sadi Carnot studied this problem, and he came to the conclusion
that the best you can do, effectively, is to use an engine that has no such
losses.

If the engine experiences no losses, the system will return to the same state it
was in before the process took place. This is called a reversible process. For
example, if a heat engine loses energy overcoming friction, it doesn’t have a

248 Part IV: Laying Down the Laws of Thermodynamics 

22_554336 ch15.qxd  11/2/05  11:40 PM  Page 248



reversible process, because it doesn’t end up in the same state when the
process is complete. So, when do you have the most efficient heat engine?
When the engine operates reversibly (that is, when the system has no losses).
Today, physicists call this Carnot’s principle. Carnot’s principle says that no
engine that isn’t reversible can be as efficient as a reversible engine, and all
reversible engines that work between the same two temperatures have the
same efficiency.

Building Carnot’s engine
Carnot came up with his own idea of an engine — the Carnot engine. His engine
operates reversibly, which no real engine can do, so he created a kind of ideal
engine. In Carnot’s engine, the heat that comes from the heat source is sup-
plied at a constant temperature, Th. And the rejected heat goes into the heat
sink, which is at a constant temperature, Tc. Because the heat source and the
heat sink are always at the same temperature, you can say that the ratio of
the heat provided and rejected is the same as the ratio of those temperatures
(expressed in Kelvins):

Qc/Qh = Tc/Th

And because the efficiency of a heat engine is:

Efficiency = 1 – (Qc/Qh)

the efficiency of a Carnot engine is

Efficiency = 1 – (Qc/Qh) = 1 – (Tc/Th)

This equation represents the maximum possible efficiency of a heat engine.
You can’t do any better than that. And as the third law of thermodynamics
states (see the final section in this chapter), you can’t reach absolute zero,
which means that Tc is never 0, so you can never have a 100-percent-efficient
heat engine.

Using the equation for a Carnot engine
Applying the equation for maximum possible efficiency (see the previous sec-
tion) is easy. For example, say that you come up with a terrific new invention:
a Carnot engine that uses a plane to connect the ground (27°C) as a heat source
to the air at 33,000 feet as the heat sink (about –25°C). What’s the maximum
efficiency you can get for your heat engine? After converting temperatures to
Kelvin, plugging in the numbers gives you

Efficiency = 1 – (Qc/Qh) = 1 – (Tc/Th) = 1 – (248.15 / 300.15) = 0.173
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Your Carnot engine can be only 17.3 percent efficient — not too impressive. On
the other hand, assume you can use the surface of the sun (about 5,800 kelvin)
as the heat source and interstellar space (about 3.4 kelvin) as the heat sink
(such is the stuff science-fiction stories are made of). You’d have quite a dif-
ferent story:

Efficiency = 1 – (Qc/Qh) = 1 – (Tc/Th) = 1 – (3.4 / 5,800) = 0.999

You get a theoretical efficiency for your Carnot engine — 99.9 percent.

Going Cold: The Third (and Absolute
Last) Law of Thermodynamics

The third law of thermodynamics is pretty straightforward — it just says that
you can’t reach absolute zero through any process that uses a finite number
of steps. Which is to say, you can’t get down to absolute zero at all. Each step
in the process of lowering an object’s temperature to absolute zero can get
the temperature a little closer, but you can’t get all the way there, unless you
use an infinite number of steps, which isn’t possible.
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The strange rewards of near-zero
Although you can’t get down to absolute zero
with any known process, you can get closer and
closer, and if you have some expensive equip-
ment, you discover more and more strange facts
about the near-zero world. I have a pal who dis-
covered how liquid helium works at very, very

low temperatures. For example, the helium
becomes so offbeat that it will climb entirely out
of containers by itself if you get it started. For
these and some other observations, he and some
friends got the Nobel Prize, the lucky dogs.
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In this part . . .

Two of the most powerful forces in your environment —
electricity and magnetism — are invisible. People take

them for granted, and if you ask people basic questions
about these forces, you see them nod their heads and con-
template how to get away from you. That’s what Part V is
for — clearing up all the mysteries surrounding electric-
ity and magnetism. You get the full story here, including
how the product of electricity and magnetism together —
light — behaves with mirrors and lenses.
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Chapter 16

Zapping Away with Static
Electricity

In This Chapter
� Evaluating charge and force in electricity

� Scanning the electric field

� Dotting the electric field with point charges

� Simplifying the electric field with parallel plate capacitors

� Finding electric potential in the form of voltage

� Matching up electric potential with point charges

Electricity is built into everything around you. Each atom has its own
charges moving around at incredible speeds. Sometimes, those charges

become apparent when you least expect it, like when you get zapped on a dry
day by touching a metal doorknob or by closing your car door. Other times,
you expect those charges to be around, like when you turn on a light and you
know electricity is flowing.

The atmosphere starts getting electric in this chapter, which is about the zap
kind of charges — reactions that build up because you have an excess of
charge (for example, when you have extra electrons sitting around). That’s
static electricity. This chapter (and the next) is all about when those charges
start moving, which is what you normally think of as electricity. Where
you’ve got electrons, you’ve got zap, and this chapter features plenty of elec-
trons. I discuss electric charges, electric potential, electric fields, the forces
between charges, and plenty more. It all starts with electrons.

Plus and Minus: Electron
and Proton Charges

Atoms primarily consist of a nucleus containing charged protons, neutral
neutrons, and lightweight electrons that orbit the nucleus at high speeds.
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The charged particles — electrons and protons — have the same magnitude
of charge, which is

e = 1.6 × 10-19 C

where C is the Coulomb, the MKS unit of charge (see Chapter 2). The charge
of a proton is +1.6 × 10-19 C and the charge of an electron is –1.6 × 10-19 C (the
electron’s negative charge is just convention). The electrons, however, are
the particles that give you static electricity and the standard electricity that
flows through wires. So, if you have 1 entire Coulomb of charge, how many
electrons do you have? Because each electron has a charge of magnitude of
1.6 × 10-19 C, you have

Total number of electrons = 1 / 1.6 × 10-19 = 6.25 × 1018 electrons

You need 6.25 × 1018 electrons to make up 1 Coulomb. But interesting things
happen when you get huge numbers of electrons together. Like relatives scat-
tering at the end of a tiresome family reunion, they fly apart.

Push and Pull: Electric Forces
Electric charges exert a force on each other, and if you had 6.25 × 1018 elec-
trons, for example, you’d have a tough time keeping them together. All matter
has electric charges, but if an object has an excess number of electrons, it
will have a net negative charge. And if an object has a deficit of electrons,
it will have a net positive charge.

As you may know from playing around with magnets, like charges repel, and
unlike charges attract. Take a look at Figure 16-1, where some balls on strings
have somehow acquired electric charges. The like-charged pairs of balls 
(++ or – –) will repel each other, but the unlike pairs of charges (+– or –+)
will attract each other.

−− − + ++

Figure 16-1:
Attractive or

repellant
forces

between
charges.
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Charging it to Coulomb’s law
Charge isn’t all positive or negative talk; you have to get numbers involved.
How strong are the forces between charged objects? It all depends on how
much charge is involved and on how far apart the charges are. In Chapter 5,
you see another force that acts between objects — the gravitational force:

F = –Gm1m2 / r
2

where F is the force, G is the universal gravitational constant, m1 is the mass
of one object, m2 is the mass of the second, and r is the distance between
them. After you do all the measuring in the lab, the electric force looks like

F = kq1q2 / r
2

In this case, q1 and q2 are the two charges acting on each other, measured in
Coulombs, and r is the distance between them. So, what does k represent? A
constant whose value is 8.99 × 109 N-m2/C2 (you’ll always be given this value,
so don’t worry about memorizing it).

F = kq1q2 / r
2 is called Coulomb’s law. It gives you the magnitude of the

force between charges. Note that when charges have the same sign, the force
between them is positive, which means the charges repel each other; when
charges have opposite signs, the force between them is negative, which
means the force attracts the two charges.

You sometimes see Coulomb’s law written in terms of a constant εo, which is
called the permittivity of free space (the constant has to do with how easily
the electric field generated by a charge can extend through space):

F = (q1q2) / 4πεor
2

The constant εo has a value of 8.854 × 10-12 C2/(n-m2).

Bringing objects together
The distance between objects is an important part of charge and Coulomb’s
law (see the previous two sections). Say, for example, that you separate two
balls 1 meter apart and manage to give each ball 1 Coulomb of charge — one
negative, one positive. Now you need to hold them apart — but what’s the
force pulling them together? Add the numbers to Coulomb’s law:

F
r

kq q

1.0

8.99 10 1.0 1.0
8.99 10 N2

1 2
2

9

9
#

#= =
-

= -
^

_ ^ ^

h

i h h
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You need 8.99 × 109 Newtons of force to hold the balls apart. That’s an unrea-
sonably large number of Newtons — it converts to about 1.1 billion pounds
or 560,000 tons, roughly the weight of 10 full oil tankers. You better rethink
putting a whole Coulomb of charge on each ball. As you can see, electric
forces can get pretty big when you toss whole Coulombs of charge around.

Calculating the speed of electrons
You can relate electrostatic force and centripetal force (see Chapter 10) by
looking at the circular orbit of an electron. Imagine that you’re sitting around
during a physics lecture messing around with a bunch of hydrogen atoms. You
know that each atom is made up of a single electron circling a single proton. It’s
too small to see, but you know the electron is zipping around the proton pretty
fast. This realization gets you to thinking — how fast is the electron moving?
You know that the electrostatic force is between the electron and the proton,
and assuming that the electron’s orbit is a circle, the electrostatic force equals
the centripetal force (see Chapter 10), so you have Coulomb’s law equaling the
equation for centripetal force:

F = (kq1q2) / r2 = mv2 / r

The mass of an electron is 9.11 x 10-31 kg, and the radius of its orbit is 5.29 ×
10-11 m. So, plugging in numbers for the electrostatic force — the constant k
and the charges of the electron and proton — gives you

F
r

kq q

5.29 10

8.99 10 1.6 10 1.6 10
8.22 10 N2

1 2

11 2

9 19 19

8

#

# # #
#= =

-
=

-

- -

-

_

_ _ _

i

i i i

You’ve found the force between the electron and the proton, and that force
has to equal the centripetal force, so

F = mv2 / r = (9.11 × 10-31)v2 / (5.29 × 10-11) = 8.22 × 10-8 N

Solving for v gives you 2.18 × 106 meters per second, or about 4.86 million miles
per hour. Try to picture that speed sometime; it’s approaching 1 percent of
the speed of light.

Looking at forces between
multiple charges
Not every charge problem you come across features two charges acting on
each other. Whenever you have more than two charges affecting each other,
you need to use vectors to find the net force on any one charge. (For more
information on vectors, see Chapter 4.)
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Take a look at Figure 16-2, which features three charges, all acting on each
other — two negative charges and one positive. What’s the net force on the
positive charge?

The forces on the positive charge, Q, due to the two negative charges, Q1 and
Q2, are shown in Figure 16-2 as F1 and F2. The two forces sum up to give you
Fnet. Assuming Q1 = Q2 = –1.0 × 10-8 C, Q = 3.0 × 10-8 C, and the charges are at
1.0 cm on the X- and Y-axes, as shown in the figure, what’s Fnet? Using the
Pythagorean theorem (see Chapter 2), you know that θ = 45°. In magnitude,
F1 = F2, so

F 2F cos 45 2 Fnet 1 1c= =^ h

What’s the magnitude of F1?

F
r

kQ Q
0.10

8.99 10 1.0 10 3.0 10
8.99 10 N1 2

1
2
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F1 equals 8.99 × 10-5N, which means you can find the net force on the positive
charge:

F 2F cos 45 2 F 1.27 10 Nnet 1 1
4#c= = = -

^ h

The magnitude of the net force on the positive charge, found as a vector sum
(see Chapter 4), is 1.27 × 10-4 N.

+

− −

F1

Q1 Q2

1.0 cm

1.0 cm 1.0 cm

Fnet

F2

Q

θθ

Figure 16-2:
The

magnitude
of the force

between
multiple

charges is a
vector sum.
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Influence at a Distance: Electric Fields
To find the force between charges, you have to know the magnitude (or size) of
both charges. But if you have an array of charges, you have an array of magni-
tudes. What if someone else wants to add a charge to the array? You don’t
know how much charge the person will add — will the person bring a charge of
1.0 Coulomb to your array? How about 1.0 × 10-8 C or 1.0 × 103 C? Who knows? 

That’s why physicists created the concept of the electric field — to describe
how your array of charges will work with some other charge. All other people
have to do to work with your array of charges is to multiply the electric field
at any point (after you tell them what the electric field from your array is) by
the charges they have. You express an electric field in Newtons per Coulomb
and use the symbol E. (Note that an electric field is a vector quantity, meaning
it has a direction and a magnitude; see Chapter 4.) Here’s how you define an
electric field:

E = F / q

where F represents force and q represents electric charge. In other words,
electric field is the force per Coulomb at any particular point. The direction
of the electric field at any one point is the force felt by a positive charge.

Say, for example, that you’re out walking your pet 1.0-Coulomb charge. It’s a
sunny day, and you’re both enjoying the weather, but suddenly and unaccount-
ably, you find yourself in a 5.0-Newton-per-Coulomb electric field pointing in
the direction from which you came. You can see the picture in Figure 16-3.

What would happen? Your pet 1.0-C charge would suddenly experience a
force opposite to your direction of travel:

F = qE = (1.0)(5.0) = 5.0 Newtons

Force
+ 1.0C

Figure 16-3:
Force acting
on a foreign

charge in an
electric

field.
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If you and your pet 1.0-C charge turn around, the force will be in your new
direction of travel. That’s how electric fields work — someone tells you what
the electric field is, and you can explain how much force would be exerted
on a particular charge in that field. The force is in the same direction as the
electric field at a particular point if the charge is positive, but if the charge is
negative, the force is in the opposite direction.

Because the electric field at any point is a vector (meaning it has a direction
and a magnitude), you can find it through vector addition (see Chapter 4 for
the specifics of vector addition). You can see this illustrated in Figure 16-4,
where two electric fields, one horizontal and one vertical, exist in the same
area. The net electric field is their sum.

Coming from all directions: Electric fields
from point charges
Not all electric fields you encounter look nice and even (like the one you see
in Figure 16-3). For example, what’s the electric field from a point charge look
like? A point charge is just a tiny charge. You know that if you have a charge
Q, it will create an electric field, but what’s that electric field going to be?
Well, the equation for an electric field, E = F / q, makes this question fairly
easy to figure out. Say, for example, that you have a test charge (a charge you
use to measure forces with), q, and you measure the force from the charge Q
at a variety of points. The following is the force you get (using the equation I
discuss in the section “Push and Pull: Electric Forces” earlier in this chapter):

F = (kqQ) / r2

So, what’s the electric field? You divide by the magnitude of your test charge, q:

E = F / q = kQ / r2

+ =

Figure 16-4:
Adding
electric

fields
produces a
net electric

field.
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The magnitude of the electric field from a point charge is E = kQ / r2. The elec-
tric field is a vector (see Chapter 4), so which direction does it point? To
determine the direction of the electric field, go back to your test charge, q,
and say that q is a positive charge (remember, an electric field is defined as
the force per Coulomb on a positive charge).

Anywhere in the electric field, the force on q from Q is radial, or along a line
connecting the two charges’ centers. When Q is positive, the force on q, which
is also positive, will be directed away from Q; therefore, the electric field at
any point will also be directed away from Q. You can see this point illustrated
in Figure 16-5, which shows an electric field as a collection of electric-field
lines, an idea first pioneered by Michael Faraday in the 19th century.

Looking at electric-field lines can give you a good idea of what an electric
field looks like qualitatively (not quantitatively, in terms of numbers). When
the electric-field lines are close together at a point A compared to another
point B, the electric field is stronger at A than at B. Note also that the electric
field points outward from positive charges and inward toward negative
charges, as shown in Figure 16-5.

What if you’re asked to examine the electric field from more than one charge?
You have to add the electric field as vectors at every point. For example, if
you have two point charges — a positive charge and a negative charge — you
end up with the electric field you see in Figure 16-6.

Field lines (like the ones you see in Figure 16-6) start from a positive charge
and keep going until they end on a negative charge; they don’t just start or
stop in empty space.

+ −Figure 16-5:
Positive
electric

fields point
away from

point
charges.
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Charging nice and steady: Electric fields
in parallel plate capacitors
When dealing with vectors (see Chapter 4), an electric field between multiple
point charges isn’t the easiest concept to come to grips with (see the previ-
ous section for a discussion of multiple point charges). To make your life
easier, physicists came up with the parallel plate capacitor. A capacitor is an
object that stores charge in the way that a parallel plate capacitor does — by
holding charges separate so that they attract each other, but with no way for
them to go from one plate to the other by themselves.

Take a look at Figure 16-7. Here, a charge +q is spread evenly over one plate,
and a charge –q is spread evenly over another. That’s great for your purposes,
because the electric field from all the point charges on these plates cancels
out all components except the ones pointing between the plates. In other
words, parallel plate capacitors give you constant electric fields, all in the
same direction, which are easier to work with than fields from point charges.

+ −

Figure 16-6:
Adding
electric

fields from
two point
charges.
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If you do a lot of math, you can figure out that the electric field, E, between
the plates is constant (as long as the plates are close enough together), and
in magnitude, it’s equal to

E = q / εo A

where εo is the permittivity of free space, 8.854 × 10-12 C2/(n-m2) (see the section
“Charging it to Coulomb’s law” earlier in this chapter), q is the total charge on
either of the plates (one plate has charge +q and the other has –q), and A is the
area of each plate. You can also write the equation in terms of the charge density,
σ, on each plate, where σ = q / A (the charge per square meter). Here’s what
including the charge density makes the equation look like:

E = q / εo A = σ / εo

Working with a parallel plate capacitor makes life a little easier because the
electric field has a constant value and a constant direction (from the positive
plate to the negative plate), so you don’t have to worry about where you are
between those plates to find the electric field.

Electric Potential: Cranking Up
the Voltage

Electric fields (see the previous section) are only part of the electric story;
you have other concepts to take into account. You’re dealing with forces in
electricity, so you have to address the idea of potential energy, or the energy
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+

−
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Figure 16-7:
A parallel

plate
capacitor
generates

an even
electric

field.
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stored in an object or system. Mixing force and potential energy is a natural
fit; for example, when you lift a weight in a gravitational field, you end up
with potential energy, the energy stored in the object because of its new 
position:

PE = mghf – mgho

where m represents mass, g represents the acceleration due to gravity, hf rep-
resents the final height, and ho represents the initial height. Because a force
acts on the charges in an electric field, you can also speak about potential
energy in electric fields. Such potential energy is electric potential energy, and
a change in electric potential energy creates a new quantity called voltage, or
the driving force of electric current.

Calculating electric potential energy
Electric potential energy is the potential energy stored in electric fields.
Introducing the concept of energy also introduces the concept of work (see
Chapter 8). Assume that you’re moving the positive charge in Figure 16-8
toward the positively charged plate to the left. Which way would the force
be on that charge? You can think of the electric field as coming from positive
charges and going to negative charges, so the charge in the figure is facing a
whole sheet of positive charges. And because the charge itself is positive, the
force on it will push it away from the other positive charges, so the charge
will be directed toward the right. The sheet of negative charge behind the
positive charge will also be pulling it to the right.
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Figure 16-8:

A positive
charge in a

parallel
plate

capacitor.
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So, how much potential energy does a positive charge acquire as it moves
between the plates — going from right to left and opposing the force that
would pull it back? The work you do on the charge must be equal to its gain
in potential energy, and that work equals

W = Fs

where F represents force and s represents distance. The force on the positive
charge is qE, where q is the magnitude of the charge and E is the electric field
the charge is in. So, the equation becomes

W = qEs

This equation gives you the magnitude of the potential energy the charge
acquires. When the electric field is constant in direction and strength, you
can say that

Potential Energy = qEs

If you set the potential energy of the charge as 0 at the negative plate (as you
may set the gravitational potential energy of a ball to 0 when it’s resting on
the ground), the change, ∆, in its potential energy as you move toward the
positive plate is

∆PE = qE∆s

As you define electric field as the force per Coulomb (see the section “Influence
at a Distance: Electric Fields” earlier in this chapter), so physicists like to define
a new quantity for electric potential energy, which is the potential energy per
Coulomb. The new quantity created by the change in electric potential energy
is voltage.

Realizing the potential in voltage
Physically speaking, voltage is called electric potential (as opposed to electric
potential energy). You can also call it just potential. It’s the quantity created
by a change in potential energy; you measure it in volts, with the symbol V
(volts are the same as Joules per Coulomb; see Chapter 2). The electric
potential, V, at a particular point is the electric potential energy of a test
charge divided by the magnitude of the test charge:

V = PE / q

In other words, voltage is the potential energy per Coulomb. The work to
move a charge, q, from a negative plate to a distance, s, toward a positive
plate in a parallel plate capacitor (see the section “Charging nice and steady:
Electric fields in parallel plate capacitors”) is

W = qEs
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That work becomes the charge’s potential energy, so the potential at that
location is

V = PE / q = Es

Say, for example, that you happen to drive by a car pulled over on the side of
the road with its hood up. You stop and ask what’s wrong. “Darn car won’t go,”
the driver says.

That doesn’t exactly pinpoint the problem, you think, as you get out your
voltmeter and test the car’s battery — 12.0 volts, so no problem there. Given
that 12.0 volts is the change in potential energy per Coulomb going from one
terminal of the battery to the other, how much work does it take to move
one electron between those terminals? You know that

V = W / q

so

W = qV

You get out your calculator as the stranded driver watches with interest.
Remembering that the magnitude of the charge of an electron is 1.6 × 10-19 C
(see the section “Plus and Minus: Electron and Proton Charges” earlier in this
chapter), you plug in the numbers:

W = qV = (1.6 × 10-19)(12.0) = 1.92 × 10-18 J

“It takes,” you say proudly, “1.92 × 10-18 Joules to move one electron between
the terminals of your battery.”

The driver loses the hopeful expression and looks at you strangely.

Discovering that electric 
potential is conserved
When it comes to working with kinetic and potential energy (check out a dis-
cussion of these topics in Chapter 8), you can always rely on the conservation
of total energy:

E1 = PE1 + KE1 = PE2 + KE2 = E2

You may be happy to find out that energy is conserved in electric potential
energy, too. Say, for example, that an unfortunate piece of dust, mass 1.0 ×
10-5 kg, hits the negative plate in a parallel plate capacitor (see the section
“Charging nice and steady: Electric fields in parallel plate capacitors”) and
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gets a charge of –1.0 × 10-5 C. Negatively charged, the dust piece finds that it
can’t resist the pull from the positive plate and starts drifting toward it.

The voltage difference between the two plates is 30 V — how fast will the
speck of dust be traveling when it hits the positive plate (neglecting air resis-
tance)? Because energy is conserved, the potential energy the charge has on
the negative plate will be converted into kinetic energy (KE = 1⁄2mv2) when it
hits the positive plate. You find the magnitude of the potential energy the
dust mote has to start with the equation

PE = qV

Plugging in the data gives you

PE = qV = (1.0 × 10-5)(30) = 3.0 × 10-4 J

This energy turns into kinetic energy, so you get

KE = 1⁄2mv2 = 3.0 × 10-4 J

Plugging the numbers into this equation gives you

KE = 1⁄2(1.0 × 10-5)v2 = 3.0 × 10-4 J

Solving for v, the dust mote ends up with the following speed:

v = 7.75 m/s

Which means the dust mote will impact the positive plate at a speed of about
7.75 meters per second, or about 17 miles per hour.

Finding the electric potential
of point charges
The electric potential, or voltage (V; see the preceding section), between the
plates of a capacitor depends on how far you are from the negative plate
toward the positive plate, s (see the section “Charging nice and steady:
Electric fields in parallel plate capacitors” for more on capacitors):

V = Es

Now think about a point charge (a tiny charge) Q — the electric field isn’t as
constant as it is between the plates of a capacitor. How can you figure out the
potential at any distance from the point charge? The force on a test charge, q,
is equal to

F = kQq / r2
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where k represents a constant whose value is 8.99 × 109 N-m2/C2 and r repre-
sents distance. You also know from the section “Coming from all directions:
Electric fields from point charges” that the electric field at any point around
a point charge, Q, is equal to

E = kQ / r2

So, how do you find the electric potential for point charges? At an infinite 
distance away, the potential is zero. As you bring a test charge closer, to a
point r away from the point charge, you simply have to add up all the work
you do and then divide by the size of the test charge. The result turns out to
be gratifyingly easy; here’s what the equation looks like:

V = q
w = kQ / r

This is the potential, measured in volts, at any point a distance r from a point
charge of charge Q, where zero potential is at r = ∞. This makes sense if you
keep in mind that potential is the work it takes to get a test charge to a certain
location divided by the size of the test charge. For example, say you have a
proton, Q = +1.6 × 10-19C, at the center of a hydrogen atom, and that the typical
orbit of an electron is 5.29 × 10-11 meters away from the proton. What’s the
voltage from the proton at that distance? You know that

V = kQ / r

Plugging in the numbers gives you

V r
kQ

5.29 10
8.99 10 1.6 10

27.2 volts11

9 19

#

# #
= = =-

-
_ _i i

The electric potential at that distance to the proton is a full 27.2 volts. Not
bad for a tiny point charge.

You can also represent electric potential graphically, just as you can represent
electric fields with field lines. You can display potential by using equipotential
surfaces — surfaces where the potential on each surface is the same. For
example, because the potential from a point charge depends on distance (or
the radius of a sphere), the equipotential surfaces due to a point charge are
spheres around that point charge, as you see in Figure 16-9.

What about equipotential surfaces between the plates of a parallel plate
capacitor? If you start at the negatively charged plate and move a distance s
toward the positively charged plate, you know that

V = Es
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In other words, the equipotential surfaces depend only on how far you are
between the two plates, as you can see in Figure 16-10, where two equipoten-
tial surfaces are between the plates.

−
−

−

−
−

−

−
−

−

+
+

+

+
+

+

+
+

+

Figure 16-10:
Equipoten-

tial surfaces
between the

plates of a
parallel

plate
capacitor.

+

Figure 16-9:
Equipoten-

tial surfaces
as spheres

around a
point

charge.
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Getting fully charged with capacitance
A capacitor stores charge by holding charges separate so that they attract each
other but don’t have a way to go from one plate to the other by themselves.

How much charge is stored? That depends on the capacitance, C, of the
capacitor. The amount of charge that appears on both plates of the capacitor
is equal (the charges are opposite in sign) and depends on the voltage
between those plates, as given by the following equation, where C is the
capacitance:

q = CV

where q is an electric charge. For a parallel plate capacitor, the electric field, E,
equals the following (see the section “Influence at a Distance: Electric Fields”):

E = q / εo A

where ε is a constant and A represents the area of the plates. And the voltage
between the plates separated by a distance s is

V = Es

Therefore,

V = qs / εo A

Because q = CV, you can solve the preceding equation for q / v to get

C = q / V = εo A / s

The equation C = q / V = εo A / s allows you to find the capacitance for a paral-
lel plate capacitor whose plates each have area A and are a distance s apart.
The MKS unit for capacitance is Coulombs per volt, also called the Farad, F.

Good stuff, but you’re not done yet. Most capacitors don’t depend on just air
between the plates — they use a dielectric between the plates. A dielectric is
a semi-insulating material that increases how much charge the capacitor can
hold by its dielectric constant, κ. So, when the space between the plates of a
parallel plate capacitor is filled with a dielectric of dielectric constant κ, the
capacitance increases to

C = κεo A / s
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For example, the dielectric constant of mica (a mineral commonly used in
capacitors) is about 5.4, so it increases the capacitance of a capacitor to
5.4 times that of the same capacitor with a vacuum between the plates,
because a vacuum has a dielectric constant of 1.0.

Because a capacitor is filled with charges that you’ve separated from each
other, it has some energy associated with it. When you charge a capacitor,
you assemble the final charge, q, in an average electric potential, Vavg (you
use the average potential because the potential increases as you add more
charge, so over time, each bit of charge you bring to the plates interacts with,
on average, the average potential), so the energy stored is

Energy = qVavg

What’s Vavg? Because the voltage is proportional to the amount of charge on
the capacitor (q = CV), Vavg is half the final charge:

Vavg = 1⁄2V

Plugging this equation for Vavg into the previous equation for energy and 
substituting q = CV finally gives you

Energy = 1⁄2CV2

You can now find the energy stored in a capacitor: E = (1⁄2) CV2. When you plug
values into this equation, the results come out in Joules, J.
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Chapter 17

Giving Electrons a Push
with Circuits

In This Chapter
� Following the movement of electrons in current

� Calculating voltage and resistance with Ohm’s law

� Feeling the power of wattage

� Picking at the circuitry of parallel and series circuits

� Introducing Kirchoff’s rules into electricity

Static electricity occurs when you have an excess or deficit of electrons
hanging around, which means you have negatively or positively charged

objects. In the normal kind of electricity — the kind that flows through elec-
trical circuits — you don’t have an excess of charge, which means no net
charge. Instead, voltage, like the voltage you may get from a battery or wall
outlet, provides an electric field in conductive wires, and electrons flow in
response to that electric field. (For more on voltage, see Chapter 16.)

This chapter is all about electrons in motion in circuits — the kind of circuits
you’re familiar with. Chapter 16 discusses static electricity, and this chapter
is all about standard electricity. Here, I explore the differences through dis-
cussions of currents, Ohm’s law, electrical power, and finally, circuits.

Electrons on the March: Current
When electrons are flowing, a current exists. But how do you get electrons to
start moving to create electrical current? You have to provide an electromo-
tive force, or an EMF. An EMF gives you a difference in potential (or voltage),
which means that the electrons will feel a force.

So, what exactly is an EMF? A battery. Or a wall socket. An EMF is anything
that can provide a voltage, because a voltage is all it takes to create an elec-
tric field in a wire, and that electric field gets the electrons moving (you find

25_554336 ch17.qxd  11/2/05  11:37 PM  Page 271



out in Chapter 16 that Electric field = F [force] / q, [electric charge]). Like the
idea of voltage from Chapter 16, there may be a lot about current that’s famil-
iar to you.

In physics, electric current is given the symbol I, and its units are amperes, or
just plain amps. The symbol for amps is A.

Defining current
How do you actually define current? It’s the amount of charge passing through
part of a circuit in a certain amount of time. Here’s how that explanation looks
in equation form:

I = q / t

where q is electric charge and t is time. If you have 1 Coulomb of charge pass-
ing per second, you have 1 amp of current.

Calculating the current in batteries
You can calculate the current flowing through a battery if you know the amount
of charge in the circuit and the time, I = q / t. Take a look at Figure 17-1; the two
vertical lines at the top represent a battery (the lines are supposed to be remi-
niscent of metal plates of various kinds, which were alternated with chemicals
and stacked to create the early forms of batteries).

6V

Rest of the circuit

Battery

+ −

I

Figure 17-1:
A battery at

work.
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The battery provides 6.0 volts of electromotive force (EMF), which drives the
current around the circuit. If you have 19.0 Coulombs of charge flowing around
the circuit in 30 seconds, what’s the current?

I = q / t = 19.0 / 30 = 0.633 amps

In this case, you have 0.633 amps flowing in the circuit. Note that the current,
I, comes out of the positive side of the battery, which is the longer line in a
battery symbol. If you have only one battery providing the electromotive
force in a circuit, the current will flow out of its positive side (the long side)
and into its short side (the negative side).

It helps if you think of a battery in a circuit as a voltage step; in other words,
the current that arrives at the negative side of the battery is given a lift up by
the battery — 6.0 volts in the case of Figure 17-1 — and then starts flowing
through the circuit again.

Although current is always shown traveling through a circuit from the positive
to the negative signs of a battery, the truth shows that the electrons actually
flow in the opposite direction. Why the difference? Historically, early
researchers thought that positive charges flowed around a circuit, but the
opposite turns out to be true. That’s not a problem, however, as long as
you’re consistent about what you do and always have current flowing out
of the positive side of a battery (unless you have another battery or voltage
source around that overpowers the first battery).

Giving You Some Resistance: Ohm’s Law
Resistance is what ties together the amount of voltage you apply to the current
you actually get. One equation ties voltage, current, and resistance together:

V = IR

where V is voltage, I is current, and R is resistance. Resistance is measured in
ohms, and the symbol for ohms is the Greek letter omega: Ω. So, if you apply
a certain voltage, V, across a certain resistance, R, you get a current, I. This
is called Ohm’s Law, after its discoverer, Georg Simon Ohm (he made the 
discovery in the 19th century).

Determining current flow
Using Ohm’s law, you can determine how much current will be flowing from
the positive to the negative terminal of a battery. Take a look at the circuit
you see in Figure 17-2, where a battery of 6.0 V is providing the current that
flows through a resistor, R, of 2.0 Ω.
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Using Ohm’s law, you know that

I = V / R

Putting in the numbers gives you

I = 6.0 / 2.0 = 3.0 A

You get a current of 3.0 amps, flowing counterclockwise around the circuit.

Examining resistivity
In your electric travels, you may come across a quantity called resistivity, ρ,
whose units are Ω-m. If you have a current flowing through a material, the
resistivity of that material tells you how much resistance you’ll have.
Physicists have calculated the resistivities of many common materials
for you, and I’ve laid some of them out in Table 17-1.

You can find the resistance by multiplying the resistivity by the length, L,
of the material (the longer it is, the more resistance it causes) and dividing
by the material’s cross-sectional area, A (the more area the current has for
flow, the lower the resistance):

Resistance = ρL / A

6V
+ −

I

R

Figure 17-2:
A battery
providing

the current
that flows
through a

resistor.
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Table 17-1 Resistivities of Common Materials
Material Resistivity

Copper 1.72 x 10-8 Ω-m

Rubber 1.0 x 1015 Ω-m

Aluminum 2.82 x 10-8 Ω-m

Gold 2.44 x 10-8 Ω-m

Wood 3.0 x 1010 Ω-m

Carbon 3.5 x 10-5 Ω-m

Powering Up: Wattage
Some household items, like light bulbs or hair dryers, use electrical power.
Power is measured in watts. How do you calculate electrical power? The
amount of work done to move a charge, q, around a circuit is qV, where V is
the electromotive force. If you divide that work by time, you get power:

P = W / t = qV / t

However, the charge, q, divided by the time, t, equals the current, I, so

P = W / t = qV / t = IV

The power provided to the circuit by an EMF source, like a battery, is P = IV.
For example, assume a battery provides 0.5 amps to a light bulb at 10 volts.
What’s the power of the bulb? P = IV, so the power is (0.5)(10) = 5 watts.
However, because I = V / R, you can get variations. The power supplied to a
circuit by a particular voltage is

P = IV = V2 / R = I2R

Flowing from One to the Other:
Series Circuits

In the previous sections in this chapter, you deal with current flow in a single
resistor; however, you can have two resistors in a circuit, too, as shown in
Figure 17-3.
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Two resistors can be connected in series, where the current in the circuit
flows through one and then the other on its way back to the electromotive
force (EMF; see the first section in this chapter). How do you handle a case
where you have two resistors in series where the current has to flow through
both, R1 and R2, before going back to the battery? The total resistance, RT,
must be the sum of the two resistances:

RT = R1 + R2

To get the total resistance of two resistors in series, R1 and R2, you add them
together. For example, if R1 = 10 Ω and R2 = 20 Ω, and the battery is 6.0 V, what’s
the current flowing in the circuit? The total resistance must be 30 Ω, so

I = V / R = 6.0 / 30 = 0.2 amps

Splitting the Current: Parallel Circuits
If multiple resistors work in the same circuit, they don’t have to be series
resistors (see the previous section) where the current goes from one to the
other. Two resistors, R1 and R2, can be connected so the current splits, as in
Figure 17-4. Some of the current goes through one resistor, and the rest goes
through the other.

The resistors in Figure 17-4 are parallel, which means that they have the same
voltage applied across them, not the same current going through them.

6V
+ −

I

R1 R2

Figure 17-3:
Current
flowing

through two
resistors
in series.
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The voltage across each parallel resistor is the same — the 6.0 V of the 
battery — which is the difference between series and parallel resistors.
When the resistors are in series, the same current flows through them. When
they’re parallel, they have the same voltage across them.

So, what’s the total resistance when R1 and R2 are parallel? The total current,
IT, is the current that flows through both resistors, I1 + I2:

IT = I1 + I2

And because I = V / R (see the section “Giving You Some Resistance:
Ohm’s Law”), you can write

IT = I1 + I2 = V1 / R1+ V2 / R2

The whole trick to parallel circuits is that V1 = V2, so if you call the voltage V,
you can say that

IT = I1 + I2 = V1 / R1 + V2 / R2 = V(1 / R1 + 1 / R2)

This has the form IT = V / RT, so you finally find that

1 / RT = 1 / R1 + 1 / R2

6V
+ −

I

R1

R2

Figure 17-4:
Resistors in

a parallel
circuit split

the current.
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This equation tells you how to calculate the total resistance of two resistors
in a parallel circuit. If you continue the derivation for any number of resis-
tors, you get the following way of calculating the total resistance:

1 / RT = 1 / R1 + 1 / R2 + 1 / R3 + 1 / R4 . . .

For example, if R1 = 10 Ω and R2 = 30 Ω in Figure 17-4, and the battery is 6.0 V,
what’s the current that’s flowing? The total resistance in the circuit is

RT = 1 / 10 + 1 / 30 = 4 / 30

To find total resistance in parallel circuits, you add the reciprocals of the
resistances and take the reciprocal of the result. Therefore, total resistance
is 30⁄4 Ω, making the current (6.0) / (30⁄4) = 0.8 A.

Looping Together Electricity
with Kirchoff’s Rules

Unfortunately, you can’t always break circuits down into series and parallel
components, which is why Kirchoff’s rules, named after their inventor, Gustav
Kirchoff, are important. His rules allow you to analyze circuits of varying
complexity by applying two simple principles:

� The junction rule: The total current going into any point in a circuit
must equal the total current going out of that point.

� The loop rule: Around any closed loop in a circuit, the sum of the poten-
tial rises (from a battery, for example) must equal the sum of the potential
drops (from a resistor, for example).

The junction rule is pretty easy to understand — the current into any particu-
lar point must equal the current out of that point. But what about the loop
rule, which says that the rises in potential around any closed loop must equal
the drops in potential?

The loop rule means that the electrons going around the circuit are lifted up
as far as they drop, and they end where they started. Batteries, for example,
can be potential rises — when an electron enters the negative side and comes
out of the positive side, the voltage of the battery has raised it. On the other
hand, when an electron enters a resistor, it takes some effort to get it through
the resistor (which is why a resistor is called a resistor), so there’s a drop in
potential when the electron comes out the other side.
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Implementing the loop rule
You can see an example that illustrates the loop rule in Figure 17-5. You see
two resistors and two batteries. What’s the current flowing in this loop?

Kirchoff’s loop rule says

ΣV = 0 around a loop

where ΣV is the sum of the voltages around a loop. How can you put this rule
to work?

To attack this kind of problem, choose a current direction by drawing an
arrow for I, as you see in Figure 17-5. The actual current may end up going in
the other direction, but that’s okay, because then the value of the current you
get will be negative, showing you that the actual current flows the other way.
After you decide on the direction of the current — counterclockwise in this
example — it helps to draw + signs where the current goes into a resistor
and – signs were it goes out (these steps aren’t part of Kirchoff’s rules; I’m
just providing technique that I’ve found helpful).

You know that ΣV = 0 around the loop and that the potential drop across a
resistor is V = IR, so you’re all set. Just go around the loop in one direction
(clockwise or counterclockwise, it doesn’t matter), and when you encounter
a + or – sign (either on a resistor or a battery), put that sign down, followed
by the potential drop or rise. For example, starting at the 6-volt battery and
going clockwise, you get the following equation from Kirchoff’s loop rule:

+6 – 4I – 12 – 6I = 0

+ −

I

4Ω

12V
+ −

+−

6Ω

6V
+ −

Figure 17-5:
A loop with

two
resistors
and two

batteries
carrying a

current.
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When you combine terms, you get

6 – 12 = –6

–4I + –6I = –10I

so

–6 – 10I = 0

or

I = –6 amps / 10

The current is –0.6 amps.

The fact that the current is negative indicates that it actually goes in the
opposite direction of the arrow I choose in Figure 17-4.

Using multiple-loop circuits
Kirchoff’s rules seem wasted to me when used on only one-loop circuits. Take
a look at the new challenge you see in Figure 17-6.

A

+ −+ −

2Ω

+−

4Ω

6V
+ −

+−

6Ω

12V
+ −

I1

I3

I2
Figure 17-6:
Resistors in

parallel
share a

common
voltage.
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The figure shows three branches of this circuit and three different currents —
I1, I2, and I3. Can you find these currents? Sure, but you need both of Kirchoff’s
rules here. The junction rule says that ΣI = 0 at any point, where ΣI is the sum
of currents flowing into and out of that point, so take a look at point A at the
left in Figure 17-6. I1 and I2 flow into it, and I3 flows out of it, so

I1 + I2 = I3

Now for the loop rule, which says ΣV = 0. The example has three loops: the
two internal loops and the external, overall loop. Because there are three
unknowns — I1, I2, and I3 — all you need are three equations, and the ΣI = 0
rule has already given you one. So, you go around the two internal loops to
get these equations. From the top loop, you get

+6 – 2I3 – 4I2 = 0

And from the bottom loop, you get

+12 – 6 + 4I2 – 6I1 = 0

There you have it; three equations in three unknowns:

I1 + I2 = I3

+6 – 2I3 – 4I2 = 0

+12 – 6 + 4I2 – 6I1 = 0

If you substitute the top equation for I3 into the second equation, you get

+6 – 2(I1 + I2) – 4I2 = 0

+12 – 6 + 4I2 – 6I1 = 0

or

+6 – 2I1 – 6I2 = 0

+12 – 6 + 4I2 – 6I1 = 0

You can solve for I1 in terms of I2 by using the first equation here:

I1 = 3 – 3I2

You can substitute this value of I1 in the second equation to get

+12 – 6 + 4I2 – 6(3 – 3I2) = 0
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or

–12 + 22I2 = 0

So,

I2 = 12⁄22 = 6⁄11 amps

You now have one of the currents: I2 = 6⁄11 amps. Now you can plug this frac-
tion into

+6 – 2I3 – 4I2 = 0

to get

+6 – 2I3 – 4(6⁄11) = 0

Or, dividing by 2,

+3 – I3 – 12⁄11 = 0

For I3, you get

I3 = 21⁄11 amps

Now you have I2 and I3. How about I1? You know that

I1 + I2 = I3

which means that

I1 = I3 – I2

Easy math from here on:

I1 = 21⁄11 – 6⁄11 = 15⁄11

You have all the currents now, thanks to Kirchoff’s rules. I1 = 15⁄11 amps, 
I2 = 6⁄11 amps, and I3 = 21⁄11 amps.

Finding the currents for this type of problem takes plenty of work and a fair
amount of math, but if you can master this, you’re all set for loop circuits.
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Conquering Capacitors in Parallel
and Series Circuits

Resistors aren’t the only objects you can place in series or parallel circuits.
You can do the same with other electrified pals known as capacitors (see
Chapter 16). A capacitor is an object that stores charge in the way that a 
parallel plate capacitor does — by holding charges separate so that they
attract each other, but with no way for them to go from one plate to the
other by themselves. To add capacitors together in parallel circuits, you
just add the capacitance of each capacitor to get the total capacitance:

CT = C1 + C2 + C3 + . . .

Capacitors in parallel circuits
In a situation where the capacitors are parallel, the battery supplies the volt-
age, and that voltage is the same across both capacitors. Take a look at the
situation in Figure 17-7, which shows two capacitors in a parallel circuit.

How do you handle a situation like this? Examine the total charge, Q, stored
on those two capacitors, C1 + C2, which is the sum of the charge stored on
each capacitor:

Q = C1V + C2V

C1

C2

V

Figure 17-7:
Summing

the charge
of two

capacitors
in a parallel

circuit.
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Because the battery supplies the same voltage, V, across both capacitors, the
voltage across the capacitors is equal, so you can rewrite the equation in
terms of a single capacitor whose capacitance is C1 + C2:

Q = (C1 + C2)V

In other words, if you think in terms of one capacitor, CT, of capacitance C1 +
C2, you get the same picture:

Q = (C1 + C2)V = CTV

Capacitors in series circuits
When capacitors are parallel, a battery supplies the voltage, and that voltage
is the same across both capacitors. In a series circuit, the charge is the same
for each capacitor. Take a look at Figure 17-8, which features two capacitors
in a series circuit. How do you handle this situation?

As you see in Figure 17-8, the right-most plate of C1 and the left-most plate
of C2 are connected to each other but not to the rest of the circuit. In other
words, the two plates are isolated from the rest of the circuit, and they start
out electrically neutral (total net charge = 0).

Any negative charge, –q, that ends up on the right-most plate of C1 must be
equal in magnitude to any positive charge, q, that ends up on the left-most
plate of C2, because the total charge over these two plates has to be zero.
And because the total charge over the two plates of a single capacitor must

C1 C2

V

Figure 17-8:
Capacitors

in series
have the

same
charge.
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also be zero, the right-most plate of C1 must have charge q, and the right-most
plate of C2 must have charge q. Therefore, every plate has the same magnitude
of charge (whether it’s positive or negative), q.

Okay, so each capacitor has the same amount of charge. Where does that get
you? You now know the total voltage across the two capacitors is equal to

V = q / C1 + q / C2

Because the charge on each capacitor is the same, the equation becomes

V = q / C1 + q / C2 = q(1 / C1 + 1 / C2)

Writing the equation in terms of a single total capacitance, CT, gives you

V = q / C1 + q / C2 = q(1 / C1 + 1 / C2) = q / CT

In other words, to add capacitances in series, you add them like you add 
parallel resistors (see the section “Splitting the Current: Parallel Circuits”) —
by adding the reciprocals and taking the reciprocal of the result:

1 / CT = 1 / C1 + 1 / C2

If you have to deal with more capacitors, you add them together the same way:

1 / CT = 1 / C1 + 1 / C2 + 1 / C3 + . . .

Putting Together Resistors and
Capacitors: RC Circuits

I deal with resistors (an electronic component that impedes the flow of current
in an electric circuit) and capacitors (objects that store charge by holding
charges separate so that they attract each other, but with no way for them to
go from one plate to the other by themselves) as separate entities in the pre-
vious sections of this chapter — now comes the time to put them together.
Take a look at the resistor and capacitor in Figure 17-9. An electronics crew
has charged up the capacitor so that it has a voltage, Vo, across it. When the
electronics crew closes the switch, they expect a steady current to flow.

However, the current the crew actually gets looks like the graph you see in
Figure 17-10. The current starts off at Vo / R as it should (where R represents
the resistance), but then it tapers off. What’s happening?
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The charge is draining off the capacitor in time, so the current diminishes. A
capacitor isn’t a battery, despite what the electronics crew may want. It can
supply current, but only while it still has some charge left. The current starts
off at a value of Vo / R, because the capacitor has voltage Vo, and the current
it creates flows through a resistor R. But in time, that current decays follow-
ing this equation:

I = Ioe
-t/RC = (Voe

-t/RC) / R

Here, I is the current, e is the natural log base, 2.71828 (you can probably find
a key for ex on your calculator), t is time, R is the resistance, and C is the capac-
itance. The charge on the capacitor also follows the same kind of curve:

q = qoe
-t/RC

t

Io = Vo/R

I

Figure 17-10:
Discharging
a capacitor.

C

R
switch

Figure 17-9:
A resistor

and a
capacitor in
series, with

a switch.
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Chapter 18

Magnetism: 
More than Attraction

In This Chapter
� Running through the magnetic field

� Catching up with moving charges

� Identifying forces due to magnetic fields

� Examining charged particles in a magnetic field

� Flowing with the current in magnetic fields

� Using solenoids to achieve a uniform magnetic field

You can observe a strong connection between electricity and magnetism
in the form of moving charges that can create magnetic fields (as in elec-

tromagnets and electric motors) and moving magnets that can create electric
current (as in electric generators). Even electrons, in their speedy orbits in
the atoms of an object, generate magnetic fields. You have plenty more cool
stuff to discover, because this chapter is all about magnetism. I start with
permanent magnets and go on to discuss the forces due to magnetic fields
and what happens to charges in magnetic fields.

Satellites that need to be oriented in real time to point to stars, the moon, or
to locations on Earth are often steered by magnetic coils that push against
the Earth’s magnetic field instead of relying on gas jets. Magnetism is even
a force in space!
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Finding the Source of Attraction
If you’ve ever held two magnets in your hand, you know that there can
be forces between them, pulling them together or pushing them apart.
Those forces are the result of magnetic fields created at the microscopic
level.

Usually, all the atoms in an object aren’t oriented in any particular way, so
all the little magnetic fields that the atoms generate cancel each other out.
However, with some materials, like iron, you can orient the atoms so that a
significant number of their tiny magnetic fields point in the same direction,
making the object magnetic. When an object is magnetic without the applica-
tion of an external current, it’s called a permanent magnet. You can see two
permanent magnets in Figure 18-1. As you can see, the magnets exert a force
on each other.

Magnetism is like electricity in that it features some positive and negative
aspects, too, in the form of magnetic poles. Just as electric fields go from 
positive to negative charges, magnetic fields go from one pole to the other.
The poles in magnetism are called the north pole and the south pole.

The names of the poles come from the use of permanent magnets in compasses,
because the north pole orients in a northerly direction in the Earth’s magnetic
field.

Magnetic fields go from the north pole to the south pole, as you can see
in Figure 18-2, which shows the magnetic field of a permanent bar magnet.
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Figure 18-1:
Forces

exerted by
permanent

magnets.
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Forcing a Moving Charge
Magnets have an effect on electrical current — they exert a force on the
charges moving in the currents. However, the charge has to be moving.
A magnetic field doesn’t exert a force on a motionless charge.

You can see how this works in Figure 18-3, where a moving charge has, to its
surprise, started moving through a magnetic field given by the vector B in the
figure. (Why does B stand for magnetic field? The only reason I can think of is
that all the other letters must have been used up.) (See Chapter 4 for more on
vectors.) The magnetic field creates a force on the moving charge. Which way
does the force go? You can see the answer in Figure 18-3, and there’s a new
right-hand rule that lets you determine that answer for yourself.

N SMagnet

Figure 18-2:
Magnetic

field going
from the

north to the
south pole

in a
permanent

magnet.
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A new right-hand rule operates for moving charges, and there are two versions
of it — use whichever one you find easier:

� Version 1: If you place the fingers of your open right hand along the
magnetic field — the vector B in Figure 18-3 — and your right thumb in
the direction of the charge’s velocity, v, the force on a positive charge
extends out of your palm. For a negative charge, reverse the direction
of the force.

� Version 2: Place your fingers in the direction of the velocity of the charge,
v, and then wrap those fingers by closing your hand through the smallest
possible angle (less than 180°) until your fingers are along the direction
of the magnetic field, B. Your right thumb will point in the direction of the
force.

Working with these rules may remind you of working with torque (see Chap-
ter 10). The force vector is out of the plane formed by the v and B vectors.
Whichever right-hand rule you choose will work. You can now find out the
direction the force acting on a moving charge. But how big is that force?
It’s time to get quantitative.

Figuring the Quantitative Size
of Magnetic Forces

Knowledge of the forces of magnetism comes in handy when you’re working
with magnets. For example, you can determine the actual force, in Newtons,
on a charged particle in motion though a magnetic field. That force turns out
to be proportional to both the magnitude of the charge and the magnetic field,
which makes sense.

q

F

B

v
Figure 18-3:

The force on
a moving

positive
charge.
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The magnetic force is also proportional to the component of the velocity per-
pendicular to the magnetic field. In other words, if the charge is moving along
parallel to the magnetic field direction, no force will act on that charge. If the
charge is moving at right angles to the magnetic field, maximum force will act
on the charge. Putting this information about charges together gives you the
equation to find the magnitude of the force on a moving charge, q, where θ is
the angle (between 0° and 180°) between the v and B vectors:

F = qvB sin θ

Actually, this equation is a little backward. It turns out that in physics, mag-
netic field is actually defined in terms of the strength of the force it exerts on
a positive test charge. So, here’s the formal definition of magnetic field, from
a physics point of view:

B = F / (qvB sin θ)

for a force, F, on a positive test charge, q, moving at velocity, v, such that θ is
the angle (between 0° and 180°) between the velocity and the field.

The units of magnetic field, in the (MKS) system (see Chapter 2), are the
Tesla, T. In the (CGS) system (also see Chapter 2), the units are the gauss, G.
You can relate the two units of measure like this:

1.0 G = 1.0 × 10-4 T

Say, for example, that you’re taking your pet electron for a walk, and a mag-
netic field of 12.0 Teslas appears (a huge magnetic force, given that the
earth’s magnetic field on its surface is about 0.6 gauss, or 6.0 × 10-5 T). What
force acts on your pet electron if it’s zipping around at a speed of 1.0 × 106

meters per second in a direction perpendicular to the field? The magnitude
of the force is given by

F = qvB sin θ

so all you have to do is plug in the numbers:

F = qvB sin θ = (1.6 × 10-19)(1.0 × 106)(12.0) sin 90° = 1.92 × 10-12 N

The force acting on your pet electron is 1.92 × 10-12 N, which doesn’t sound like
a whole lot, but remember: Pet electrons are real lightweights at 9.11 × 10-31 kg.
So, what’s the acceleration of the electron? Using the equation Force = mass
times acceleration, you get

a m
F

9.11 10
1.92 10 2.11 10 m/s31

12
18 2

#
#

#= = =-

-
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That’s an acceleration of about 210,000,000,000,000,000 g, where g is the
acceleration due to gravity on the Earth’s surface, which is pretty stiff, even
for an electron. On the other hand, if your pet electron decided to travel
along the magnetic field, no force would act on it at all.

Moving in Orbits: Charged Particles
in Magnetic Fields

When you have a positive charge in an electric field, like inside a parallel
plate capacitor (see Chapter 17), the charge will be pushed in the opposite
direction that the field lines are going, because the field lines come from the
charges on the positive plate, which will repel a positive charge. The story is
different when the field in question is a magnetic field, however, because
there are more right angles involved. Take a look at Figure 18-4, which shows
the path of a positive charge moving in a magnetic field.

See all the Xs in the figure? The Xs are the ways physics shows that in this
case, the magnetic field goes into the page. Physics intends them to be the end
of vector arrows, seen tail-on (picture looking down the end of a real arrow,
with the tail toward you). The positive charge travels along in a straight line
until it enters the magnetic field, when a force appears on the charge. As you
can verify with the right-hand rule, the force points up and will make the path
of the charged particle bend, as you see in the figure.

Magnetic fields do no work . . .
Because you’re a physicsmeister, you’re probably asking some questions about
charged particles. You know a force acts on a charged particle in a magnetic
field, but how much work does the magnetic field do on this charge? That’s a

v

B

+q

Figure 18-4:
The path of

positive
charge in a

magnetic
field bends
as shown.
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good question. When a charge moves in an electric field, the field does work on
it, which introduces the concept of potential, or the work done on the charge,
W, divided by the magnitude of the charge, q (work per Coulomb):

V = W / q

So, what work is done by a magnetic field on a charge? You can calculate
work this way (introduced in Chapter 6):

W = Fs cos θ

where s is distance. Uh oh. Have you spotted the problem? θ is the angle
between the force and the displacement over which that force acts. But, as
you can verify with the right-hand rule, θ is always equal to 90° for charges
in magnetic fields, and cos 90° = 0, which means that the work done by a 
magnetic field on a moving charge is zero.

Work is another case where electric fields act in a different manner than mag-
netic fields. An electric field most definitely does work on charges. Because a
magnetic field doesn’t do any work on a moving charge, it can’t change that
charge’s kinetic energy.

. . . but they still affect moving
charged particles
For all its opposition to do work on a moving charged particle, a magnetic
field can, and does, change the direction of a moving charge’s motion. In fact,
a magnetic field will always change a moving charge’s direction if that direction
is free to change, because the force on the charge is always perpendicular to
the charge’s motion.

Happen to recall any other type of motion where the direction of motion is
perpendicular to the force being applied? Yep, circular motion, which I fea-
ture in Chapter 7. You can see that the motion of the charge in Figure 18-4
bends when it moves through a magnetic field. Because the way magnetic
fields work makes the force on the charge perpendicular to the direction of
motion, you can get circular motion for charges traveling entirely inside mag-
netic fields.

Take a look at Figure 18-5, where a positive charge is moving to the left in a
magnetic field. The B field is moving up and out of the page. How can you
tell? See all those dots with circles around them? Just as an X represents the
arrow of a vector seen from behind, a dot with a circle represents an arrow
coming at you. So, in this case, the B field is coming at you, up and out of
the page.
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So, the B field is coming out of the page, and the positive charge is moving to
the left. Using your right hand, you can tell that the resulting force is upward
(see the section “Forcing a Moving Charge” for more on the right-hand rules).
The charge reacts to the upward force by moving upward. And because the
force due to the magnetic field is always perpendicular to the direction of
travel, the force changes direction, too. Here’s the magnitude of the force:

F = qvB sin θ

Because v is perpendicular to B in this case, θ = 90°, so sin θ = 1.0, which
means you get

F = qvB

Because the force is always perpendicular to the motion, you get circular
motion. In other words, the force provides the centripetal force needed to
give you circular motion (see Chapter 7):

F = mv2 / r

where m is the mass and r is the radius of the orbit. So, you get

qvB = mv2 / r

Solving for the radius of the orbit is easy enough:

r = mv / qB

r

v

B

F

+q

Figure 18-5:
Circular

motion of a
positive
charge.
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You can now solve for the radius of circular motion for a charge q of mass m
traveling in a magnetic field of magnitude B at speed v. The stronger the mag-
netic field, the tighter the radius. And the faster the charge, and the more
mass it has, the wider the radius.

Pushing and Pulling Currents
All the info about charges in this chapter up to this point is great, you may be
thinking, but how often do you deal with charges in motion? A long time may
have passed since you last worked with electrons moving in a vacuum, but in
fact, you deal with charges in motion every day as electric currents.

Forces on currents
Take a look at the equation for the force on a moving charge:

F = qvB sin θ

where q is charge, v is speed, and B is magnetic field. Because you’re a clever
physicsmeister, you can shake up the equation, both dividing by time, t, and
multiplying by it so you don’t actually change the equation:

F = q / t (vt)B sin θ

Note that q / t is the charge passing a particular point in a certain amount of
time, a characteristic you know by another name — electric current. And vt is
just the length that the charges travel in that time, so you can rewrite the
equation as

F = ILB sin θ

That’s the force on a wire of length L carrying current I in a magnetic field of
strength B, where the L is at angle θ with respect to B. For example, take a
look at Figure 18-6, where a wire carrying current I is in a magnetic field B.

Because you think of currents as streams of positive charges in physics, it’s
easy to find the force on the wire. Say that I = 2.0 amps and B = 10 T. How much
force per meter would the wire experience? Because the wire is perpendicular
to the magnetic field, you have

F = ILB
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You know that the force per meter is

F/L = IB

so plugging in the numbers gives you

F/L = IB = (2.0)(10) = 20.0 N/m

Twenty Newtons per meter converts to about 4.5 pounds of force per meter —
pretty hefty.

Torques on currents
Electric motors usually have permanent magnets built into them, and the
fields they create cut through electric coils that can rotate. The coils are
the objects that turn in an electric motor, which works because the force
on the electric coil generates a torque (see Chapter 11). You can see this 
rotation in action in Figure 18-7.
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Figure 18-6:
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Take a look at diagram A in Figure 18-7. A loop of current is embedded in a mag-
netic field, and that field creates forces on the loop, as you can see from above
in diagram B. Those forces create two torques around the center pivot. As you
can see in diagram B, the moment arm (see Chapter 11) of each torque is

moment arm = 1⁄2 d sin θ

where d is the diameter of the loop. Each torque is the force — F = electric 
current, I, times the force on the length of coil, L, times a magnetic field of
strength B — multiplied by the moment arm, and because there are two
torques, corresponding to the two sides of the loop, you get the total torque, τ:

τ = ILB (1⁄2 d sin θ + 1⁄2 d sin θ) = ILBd sin θ

You get an interesting result, because the product dL equals the area of the
coil. So, for a coil of cross-sectional area A and angle θ as shown in diagram B,
the total torque is equal to

τ = IAB sin θ

Usually, however, coils are made of multiple wires, not just a single current-
carrying loop. For example, if a coil is made up of N loops of wire, you have
to multiply the current in a single loop by N to get the total torque, which
gives you

τ = NIAB sin θ
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Figure 18-7:
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current.
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Now you can find the total torque on a coil of N loops of wire, each carrying
current I, of cross-sectional area A, in a magnetic field B, at angle θ. Whew.

A physics problem may ask you to find the maximum torque a coil of N loops
will feel in a magnetic field. To find the maximum possible torque, consider
the case where θ = 90°, which makes sin θ = 1.0. In this case, you get the fol-
lowing maximum torque

τ = NIAB

If you have a coil with 2,000 turns, a current of 5.0 amps, a cross-sectional
area of 1.0 m2, and a magnetic field of 10.0 T, for example, what’s the maximum
possible torque? Easy enough:

τ = NIAB = (2,000)(5.0)(1.0)(10.0) = 1.0 × 105 N-m

You get a maximum torque of 1.0 × 105 N-m, which is very large — an effect
of having so many loops of wire. If you have only a single loop of wire, the
maximum torque would be only 50 N-m, which is the reason you see so many
turns of wire in the rotating parts of electric motors.

Identifying the Magnetic Field
from a Wire

Moving charges feel the effects of magnetic fields (such as by changing direc-
tion; see the section “Moving in Orbits: Charged Particles in Magnetic Fields”),
but they also create magnetic fields. Currents are made up of moving charges,
so they’re handy ways to create magnetic fields.
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As a student, I did some studies at the National
Magnet Lab at Massachusetts Institute of
Technology, working around some very thick
cables carrying some large currents — 1,000 A
and more. One day, I tripped on one of those
wires and dropped a wrench next to it. When I
picked up the wrench, I could feel the powerful

magnetic field generated by the cable. Moving
the wrench around and at different distances
from the cable, I could verify the magnetic field
was indeed circular. “This is neat!” I thought to
myself. The professor I was working with, how-
ever, told me to knock it off and get back to
work.
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You can examine the creation of magnetic fields by discussing the magnetic
field generated by a single wire, as shown in Figure 18-8. When you can identify
the magnetic field that comes from a single wire, you’re in business, because
you can break down complex currents into single wires and then add the mag-
netic fields from each one of them.

The magnetic field dies off the farther you get from the wire. It decreases lin-
early, in inverse proportion to the distance r you are away from the center of
the wire, so you have

B ∝ 1 / r

The current is proportional to the current I — twice the current, twice the
magnetic field. So now you have

B ∝ I / r

The constant of proportionality, for historical reasons, is written as µo / 2π,
which means you finally get the following result for the magnetic field:

B = µoI / (2πr)  

Here, I is the current in the wire, and r is the radial distance from the 
center of the wire. The constant µo, part of the constant of proportionality, 
is 4π × 10-7 T-m/A. This constant is called the permeability of free space.
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Figure 18-8:
A single
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shown.
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Which way does the magnetic field go? You have to use another right-hand
rule. If you put the thumb of your right hand in the direction of the current,
your fingers will wrap around in the direction of the magnetic field. At any
one point, the direction your fingers point is the direction of the magnetic
field, as shown in Figure 18-8.

Say, for example, that you have a current of 1,000 A, and you’re 2.0 cm from
the center of a wire. How big is the magnetic field? You know that

B = µoI / (2πr)

So, plugging in the numbers gives you

π π
π

B 2 r
I

2 0.02
4 10 1000

0.01 T 100 gauss
µ o

7#
= = = =

-

^

_ ^

h

i h

The field would be about 100 gauss.

As another example, say you have two wires parallel to each other, each car-
rying the same current, I, a distance r apart. What’s the force on wire 1 from
wire 2? You know that the force on wire 1, which is carrying current I in mag-
netic field B, is

F = ILB

What’s B? Well, the magnetic field at wire 1 from wire 2 is

B = µoI / (2πr)  

so

F = µoI
2L / (2πr)

You can check with the right-hand rule to see that wires with current in the
same direction will experience a force toward each other and wires with cur-
rent in the opposite direction will experience a force directly away from each
other.

Centering on Current Loops
“Okay,” says the design team, “we need your help. Take a look at the strange
setup in Figure 18-9. Ever seen anything like that before?”
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“Sure,” you say, “That’s a current loop.”

“We know that,” says the design team, “but what we want to do is to figure
out the magnetic field at the very center of that loop.”

“The very center?” you ask.

“The very center,” they say.

“And I’ll get my fee?” you ask.

“Sure thing,” they say.

I

R

Wire loop

Figure 18-9:
Magnetic

field from a
wire loop.
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“Okay,” you tell them — here’s what the magnetic field looks like at the very
center of a current loop; N is the number of turns in the loop, I is the current
in the loop, and R is the radius of the loop:

B = N (µoI) / (2R)

When you wrap the fingers of your right hand in the direction of the current,
your thumb points in the direction of the generated B field.

Say, for example, that you have 2,000 turns of wire in a loop, the current is
10.0 amps, and the radius of the loop is 10.0 cm. What’s the magnitude of
the magnetic field in the center of the loop? Just plug in the numbers:

π
B 2R

N I
2 0.10

2000 4 10 10.0
0.126 T

µ o
7#

= = =

-

^

^ _ ^

h

h i h

The magnetic field would be 0.126 T.

Achieving a Uniform Magnetic Field
with Solenoids

What if you want a uniform magnetic field, just as parallel plate capacitors
give you a uniform electric field (see Chapter 17)? You put a whole bunch of
current loops together, as you see in Figure 18-10.

When you put multiple loops next to each other, as you see in diagram A,
you get a uniform magnetic field inside the tunnel of loops (as you see in 
diagram B).

This new arrangement is called a solenoid, and it gives you a uniform mag-
netic field. A solenoid is just multiple loops next to each other that give you a
uniform magnetic field.

What’s the strength of the generated magnetic field? If the length of the sole-
noid is large compared to its radius, you get this equation for the magnetic
field:

B = µonI

Use the right-hand rule for current loops (see the previous section) to deter-
mine the direction of the magnetic field. Here, n is the number of wire loops
in the solenoid per meter — or the number of turns per meter — and I is the
current in each turn.
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For example, if you want to get a 1.0-T uniform magnetic field in your lab for
your experiments, and you have a solenoid of 1,000 turns per centimeter,
what current would you need? Just plug in the numbers:

π
I n

B
4 10 1.0 10

1.0 7.96 Aµ o 7 5# #
= = =-

_ _i i

You need about 8 amps to get the uniform magnetic field you desire.
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Chapter 19

Keeping the Current 
Going with Voltage

In This Chapter
� Moving conductors to induce the EMF voltage

� Examining the magnetic flux in a magnetic field

� Being negative with Lenz’s Law

� Inducting and capacitating with alternating currents

� Keeping up with RCL circuits

In this chapter, currents start getting wavy as you begin to study alternating
current. Alternating current produces impedance, sort of a frequency-based

resistance. But impedance is only one of the juicy topics coming up in this
chapter. I also discuss inductance, capacitors, and inductors, all topics that
that are central to physics and all things circuit-related.

Inducing EMF (Electromagnetic
Frequency)

EMF, or electromagnetic frequency, is the rate at which energy is drawn from a
source that supplies the flow of electricity in a circuit. The electricity flow is
expressed in volts. If the magnetic flux (see Chapter 18) in a circuit changes
for any reason, then an electric field will be generated in the circuit. This gen-
erated field is an induced EMF. 

Magnetic flux measures the number of magnetic field lines that pass through
a surface perpendicularly.

You can find the induced EMF of a conducting bar moving through a magnetic
field. This voltage is induced in the bar by its motion through the magnetic
field. If a circuit is present that charges can flow through, as in Figure 19-1,
the charges will indeed flow, producing a current. For example, say that you
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have a metal bar 1.0 meter in length, moving at 60 miles per hour — about
27.0 meters per second — through a magnetic field of 1.0 T. How much volt-
age would appear across that bar if it travels at right angles to the magnetic
field? Just plug in the values:

V = vBL = (27.0)(1.0)(1.0) = 27.0 V

At right angles, 27.0 volts would appear across the bar. Confusing? The exam-
ples in the next two sections should help clear things up.

Moving a conductor in a magnetic field
to cause voltage
Take a look at the situation you see in Figure 19-1. A conducting metal bar is
moving to the right on metal rails, and the whole bar is immersed in a mag-
netic field going into the paper. What kind of physics is going on here?

The charges in the metal bar are moving in an electric field at speed v, so
they experience a force of this magnitude:

F = qvB

I

B

V

M
et

al
 b

ar

Metal rails

Paper

Figure 19-1:
Inducing

some EMF.
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where q is electric charge and B is magnetic field. The force is enough to
make the charges move, which means a voltage is generated, or an EMF 
(electromagnetic force). In other words, an electric field will be acting along
the bar. The force generated on each charge in the bar due to the magnetic
field will be

F = Eq

where E is the electric field. If the bar is L meters long, the electric field is
equal to V / L, where V is the voltage difference between the two ends of the
bar. So, you can also write the equation as

F = Eq = Vq / L

The force found in this equation is the force on the charges due to their
motion in a magnetic field, so the two equations you’ve calculated for force
are equal:

qvB = Vq / L

So, if you solve for the generated voltage from the top to the bottom of the
bar, you get

V = vBL

Inducing voltage over a certain area
The change in area is another factor to consider when looking at induced EMF.
If a metal bar travels a distance x in a time t through a magnetic field, for
example, you can say that v = x / t, giving you this equation:

V = vBL = (x / t)BL

Now consider the product of xL — the distance the bar goes in a certain time
multiplied by the length of the bar. If you take a look at Figure 19-2, you see
that xL equals the area that the bar sweeps out as it’s moving (the area
appears shaded).

So, if the area is A, and the distance the bar goes in time t is x, the change in
the enclosed area, ∆A, in time t is x / t, so you can write the equation for the
EMF this way:

V = B(∆A / ∆t)
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Factoring In the Flux with Faraday’s Law
The quantity BA in the equation to find EMF — V = B(∆A / ∆t) — is called
magnetic flux. Flux is a measure of how much of a magnetic field goes through
a certain area — double the magnetic field, for example, and you double the
flux. Magnetic flux, which has units of T-m2 in the MKS system, is given the
symbol Φ. So, the equation for EMF:

V = B(∆A / ∆t)

becomes

V = ∆Φ / ∆t

The equation tells you that the generated EMF is equal to the change in flux
per second. But that’s not the final equation. You usually see it written with a
negative sign (see the next section for more information on this negative sign,
which appears due to Lenz’s Law):

V = – (∆Φ / ∆t)

The negative sign tells you that the generated EMF acts in such a way to
create a current that will oppose the change in magnetic flux. This equation
is called Faraday’s Law. You usually see the law given in terms of magnetic
flux going through a coil of N loops, as you see in Figure 19-3, where the mag-
netic field, B, is increasing through the coil.
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Sweeping

out an area
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a magnetic
field.
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If you have a coil of N loops and a changing amount of flux through that coil,
Faraday’s Law says the EMF induced, measured in volts, in that coil is

V = –N(∆Φ / ∆t)

How does the magnetic flux change in a coil if the coil doesn’t change size?
The magnetic field strength can change — as in Figure 19-3, where B is
increasing — or the area that the coil presents to the magnetic field can
change — as you see in Figure 19-4, which shows the coil from above.

As the angle θ changes, the amount of flux through the coil becomes

Φ = Φmax cos θ

Other examples with this equation occur throughout this chapter.

I

B is increasing 

Induced current

Figure 19-3:
A coil in a
changing
magnetic

field.
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A coil has two ways to generate EMF: if the magnetic field changes or if the
angle of the coil with respect to the magnetic field changes.

Getting the Signs Right with Lenz’s Law
When a magnetic field starts going through a coil of wire, an EMF appears
around the coil, and it takes some energy to establish that magnetic field.
And when that magnetic field is established at full strength, the whole system
resists any changes.

Playing around in your lab one day, say, for example, that you have a huge
magnetic field going through a coil of wire, and you’re taking measurements
when the lights go out. However, you notice that the magnetic field through
the coil doesn’t disappear immediately — it diminishes slowly. Why does that
happen? Because the induced EMF makes current flow in such a way that it
keeps the status quo going — that is, it keeps the magnetic field unchanged.

When the lights went out, you stopped supplying the magnetic field that goes
through the coil. However, the EMF exists in such a way that it tends to keep
the magnetic field unchanged, although it will die away in time. That is the

B

θ

Coil —
 view from above

Figure 19-4:
A coil in a
magnetic
field seen

from above.
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essence of Lenz’s Law: An induced EMF will act so that the resulting current
creates an induced magnetic field that opposes the change in flux. For exam-
ple, take a look at Figure 19-3. The magnetic field being applied to the coil is
increasing in time. The induced EMF will act in such a way to keep the situation
as is, so it will create an induced magnetic field that counters the increasing
magnetic field, as you can see in Figure 19-5.

Note the direction of the induced current in the coil. If you wrap the fingers of
your right hand around the coil in the direction of the current, your right thumb
will point in the direction of the induced magnetic field (see Chapter 18 for
more on the right-hand rule). And that induced magnetic field will oppose the
increasing magnetic field being applied to the coil.

I

B is increasing 

Induced current

Induced
magnetic field

Figure 19-5:
An induced

magnetic
field that

counters an
increasing

magnetic
field.
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If you keep Lenz’s Law in mind, you can always figure out which way an induced
current goes — it acts in a way to keep the status quo. If the magnetic flux is
increasing, the induced current creates an induced magnetic field that tries to
stop the flux from increasing. If the magnetic flux is decreasing, the induced
current flows in such a way to increase the flux.

Test your newfound knowledge with Figure 19-5. Can you correctly predict the
direction in which the current will flow, given that the flux through the coil
from external sources is increasing in time? Bear in mind that the induced 
current will die away gradually, so it won’t be able to permanently oppose the
change in flux. You can see how the actual current flows shown in the figure. 

Figuring out Inductance
How strong an ability does a coil have to oppose the change in magnetic flux
through itself? That’s a measure of the coil’s inductance. Inductance is com-
pletely different from the concept of induced current, discussed earlier in
this chapter. This being physics and all, a discussion of coils and inductance
requires you to get numeric. But how can you get numeric on a coil creating
an induced current? All you have to do is rewrite Faraday’s Law (see the section
“Factoring In the Flux: Faraday’s Law”) where the induced electromagnetic
force is proportional to the change in current that flows through the coil.
Faraday’s Law says

V = –N(∆Φ / ∆t)

You can change this equation if you introduce the concept of inductance,
which has the symbol L and is measured in Henries (symbol H) in the MKS
system.

The total induced flux through all N loops of the coil, N∆Φ, is proportional
to the current flowing through the coil. The constant of proportionality is L.
In other words,

N∆Φ = LI

So, Faraday’s Law becomes

V = –L (∆I / ∆t)

L has become the self-inductance, because it’s a measure of how strongly a
coil will react to changes in the flux. If you have a current flowing through
a coil and you change that current, the flux in the coil will change — the larger
L is, the better equipped the coil will be to resist the change in the current by
generating its own current. This means that a coil can resist sudden changes
in the current through it because its self-inductance acts to resist any change
in the flux. For this reason, coils are called inductors in electrical circuits.
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As you find out in Chapter 16, the circuit element that works with electric
fields is the capacitor. Now you know that the circuit element for magnetic
fields is the inductor. Each inductor has a special quality that makes it useful
in circuits. The charge in a capacitor can’t change instantaneously, which
means that the voltage across it can’t change instantaneously. And the cur-
rent through an inductor can’t change instantaneously, either, which means
you have to examine alternating currents.

Examining Alternating Current Circuits
The unique behavior of capacitors and resistors in circuits really comes
into play when currents and voltages are changing in time — in other words,
when you have alternating current, or A/C. The current that you get from a
house outlet is alternating current, for example. In A/C, the direction of both
the current and the voltage reverse periodically. You can see an example in
Figure 19-6, which shows an A/C circuit.

The circle at the bottom with the squiggle is the symbol for an A/C voltage
source; you can see the alternating voltage it creates at the top of Figure 19-6.

+V

0

-V

switch

R

Figure 19-6:
An A/C
circuit,

where the
direction of
the current

and voltage
reverse.
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Picturing alternating voltage
What does alternating voltage look like? Circuits provide many different ways
to alternate voltage, but the most common looks like the sine wave you see in
Figure 19-6, which shows the voltage you get from a standard wall socket.

Borrowing some concepts from circular motion (see Chapter 7), here’s how
you express the voltage mathematically:

V = Vosin2πft

where Vo is the maximum voltage, f is the frequency with which the voltage
cycles (60 Hz for wall current in the United States), and t is time. What’s the
current that flows as a result of that voltage when the switch is closed?
The only circuit element (besides the switch, which doesn’t count) is the
resistor (see Chapter 17), and the resistor doesn’t react to changing voltage
as capacitors and inductors do (by trying to keep the voltage or the current
constant). For a resistor, V = IR (where I is current and R is resistance), no
matter how the voltage is changing, so the current in the circuit is

I = (Vo / R)sin2πft

What about the power dissipated in a circuit (power dissipated by the resistor
as heat)? Chapter 17 tells you that Power (P) = IV, but because the current and
voltage change in time, you can’t say that P = IoVo. On average, in fact, you get

P = 1⁄2 IoVo

You often see the equation written like this:

P
2

I
2

V I Vo o
rms rms= =

The quantities Irms and Vrms are called the root mean square current and root
mean square voltage — the maximum current divided by the square root of
two and the maximum voltage divided by the square root of two.

Unearthing root mean square current
and voltage
Using the root mean square values for current and voltage, you can give the
power dissipated in the resistor of a circuit by using any of the following
expressions (which follow the ways of finding the dissipated power for con-
stant currents and voltages):

P = Irms Vrms = Irms
2 R = (Vrms

2) / R
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A resistor deals with alternating current with the equation V = IR, which is
always true when V is the voltage across the resistor and I is the current
through it. Therefore, if the voltage across the resistor is

V = Vosin2πft

that means this is the current through that resistor:

I = (Vo / R)sin2πft

So, if the voltage across the resistor appears at the top in Figure 19-7, the cur-
rent through the resistor appears at bottom in the figure.

That’s simple enough, but how do capacitors and inductors react to changing
voltages and currents?

Leading with capacitors
Take a look at the capacitor from an A/C circuit in Figure 19-8.

+V

0

-V

+I

0

-I

Resistor

Figure 19-7:
Voltage and
current in a

resistor.
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You find in the previous sections that Vrms = IrmsR for resistors in an A/C circuit.
How can you relate the voltage across a capacitor to the current flowing
through it? With the following equation:

Vrms = Irms XC

The equation has the same form as Vrms = IrmsR, but what on earth is XC?
That’s the capacitive reactance of a capacitor, which gives you an measure
of how much a capacitor can actually act like a resistor when the frequency
changes. You measure it in ohms, just like resistance for a resistor, and it’s
been measured experimentally to equal

XC = 1 / (2πfC)

where f is frequency and C is capacitance.

Measuring currents through capacitors
You can figure out the magnitude of currents through capacitors given the
applied voltage. For example, say the capacitor in Figure 19-8 is 1.00 µF
(1.00 × 10-6F — you measure capacitance in Farads; see Chapter 16), and the
root mean square voltage of the voltage source is 12 V. What’s the current
that flows when the frequency is 1.0 Hz and when it’s 10,000 Hz? Putting
together the equations you just saw, you know that

Irms = 2πfCVrms

So, for 10 Hz, you get

Irms = 2πfCVrms = 2π(10.0)(1.00 × 10-6)(12) = 7.54 × 10-4 A

And for 10,000 Hz, you get

Irms = 2πfCVrms = 2π(104)(1.00 × 10-6)(12) = 0.754 A

C

switch

Figure 19-8:
A capacitor

in an A/C
circuit.
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Quite a difference, and all because the frequency changes. As you can see,
you really have to keep track of the frequency when it comes to capacitors
(unlike resistors).

Reviewing real values
The root mean square current and voltage let you deal with quantities that
vary in time. A capacitor alternately absorbs and discharges power — none is
lost to heat — so a capacitor uses no net energy in an A/C circuit (a resistor
does, however). Because current and voltage vary with time, the time-averaged
value (that’s the root mean square value, as introduced in the sidebar “Sine
and cosine waves” earlier in this chapter) is a good indication of what’s hap-
pening, which is why the 110 volts you hear about for wall-socket voltage is
so standard. But what if you don’t want a time-averaged value? What if you
want the real value, time dependent and all? Say, for example, that the voltage
generated by the source in Figure 19-8 is as shown in Figure 19-9. What hap-
pens to the current?

As you can see in the figure, the current follows the same shape as the voltage,
but it’s offset a little to the left. Because the X-axis represents time, you can see
that the current reaches a peak before the voltage — in physics, you say that
the current leads the voltage. In fact, the current peaks one-quarter cycle ahead
of the voltage, which means that the current gets to a particular height, such as
its peak value, before the voltage does. So, if (note that I’m substituting ω for
2πf here, as you saw when discussing angular motion in Chapter 7) 

V = Vosin (ωt)

you can say that

I = Iosin (ωt + π/2)

Capacitor

I V

Figure 19-9:
Voltage and
current in a

capacitor.
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Here’s how you can think of this relationship. Say, for example, that the cur-
rent peaks and starts going down. Even after the current peaks and decreases
in magnitude, it’s still positive, meaning it’s dumping more charge on the
capacitor. And because the voltage across the capacitor is V = Q / C, where Q
is charge and C is capacitance, the voltage keeps going up while the current
is positive. Only when the current goes negative (crossing the X-axis) and
charge is coming off the capacitor does the voltage start to decrease.

In physics terms, the fact that the current leads the voltage means that the cur-
rent and the voltage are out of phase. In a resistor, V = IR, and there’s no time
dependence — the voltage and current are always in phase. In a capacitor, the
current leads the voltage by a quarter cycle — which is π/2, or 90° — so the
current and voltage are out of phase by 90°. You can express this for a capaci-
tor by saying that the current leads the voltage by 90° or that the voltage lags
the current by 90°.

The amplitude of the voltage and current is usually different in a capacitor —
I just draw them with the same amplitude in Figure 19-8 to make the phase
difference clear.

Numerically, if the following is the voltage supplied to the capacitor:

V = Vosin (ωt)

you know that

I = Iosin (ωt + π/2)

In trig, sin (ωt + π/2) = cos (ωt), so you get

I = Iocos (ωt)

This equation makes the phase difference between voltage and current in
a capacitor very clear: One varies as the sine of ωt, the other varies as the
cosine of ωt, and sine and cosine are out of phase by 90°.

You can rewrite this equation for current in terms of Vo like this:

I = (Vo / XC)cos (ωt)

Lagging with inductors
Take a look at Figure 19-10, which shows a squiggly thing that looks like a
spring. The squiggly object is an inductor, which, like capacitors, react to
alternating voltage, and the squiggly symbol is meant to look like a coil.
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How does an inductor react to an alternating voltage placed across it? Just as
with capacitance, which gives you

Vrms = Irms XC

You have a root mean square equation for inductors, which looks like

Vrms = Irms XL

What’s XL? It’s the inductive reactance of an inductor, which is a measure of
how much the inductor will resist the voltage across it, much as resistance
works for a resistor. It’s measured in ohms and has been measured to equal

XL = 2πfL

where L is the inductance of the inductor, measured in Henries, H. The induc-
tive reactance is directly proportional to the inductance, and the capacitive
reactance is inversely proportional to the capacitance:

XL ∝ L

XC ∝ 1/C

Like a capacitor, an inductor alternately absorbs and discharges power, so it
uses no net energy in an A/C circuit. If the voltage source supplies a voltage
with the following time dependency:

V = Vosin (ωt)

what does the current look like in the inductor? You can see the answer in
Figure 19-11 — this time, the current lags the voltage, and the voltage leads
the current, the reverse situation that you have with a capacitor.

switch

Figure 19-10:
Voltage and

current in
an inductor.

319Chapter 19: Keeping the Current Going with Voltage

27_554336 ch19.qxd  11/3/05  12:04 AM  Page 319



Why are the current and voltage out of phase — in the opposite direction
from capacitors? Take a look at the graph in Figure 19-11. When the current is
at its maximum or minimum values, it isn’t changing very fast. Consequently,
the induced voltage, which counters any changes in the flux in the inductor,
is zero at that point, which is why the current and voltage are out of phase.
If the applied voltage is

V = Vosin (ωt)

because the current lags the voltage, you have the following for the current:

I = Iosin (ωt - π/2)

The current in an inductor lags the voltage by a quarter cycle, which means
that the current gets to a particular height, such as its peak value, after the
voltage does.

You can also write the equation as

I = –Iocos (ωt)

The equation makes the phase difference between voltage and current in a
capacitor very clear: One varies as the sine of ωt, the other varies as the
cosine of ωt, and sine and cosine are out of phase by 90°.

You can rewrite this equation for current in terms of Vo like this:

I = (Vo / XC)cos (ωt)

Inductor

V I
Figure 19-11:

Voltage
leads the
current in

an inductor.
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Handling the Triple Threat: RCL Circuits
Figure 19-12 shows you a triple threat: a resistor, a capacitor, and an inductor,
all in the same circuit.

How the heck do you handle a circuit like this? Now you have a resistance
(see Chapter 17), a capacitive reactance (see “Leading with Capacitors” in
this chapter), and an inductive reactance (see “Lagging with Inductors”
in this chapter), all in the same circuit. Can you just say the following?

Vrms = Irms (R + XC + XL)

No, unfortunately, you can’t, because the capacitor and inductor don’t vary
the same way in time, so you can’t sum their voltages. Instead, you have to
introduce a new quantity — impedance — which has the symbol Z:

Vrms = Irms Z

What’s Z? Here’s how you express it in terms of R, XC, and XL:

Z R X X2
L C

2
= + -^ h

For example, say that at a particular frequency, XL = 16.0 Ω, XC is 12.0 Ω, R is
3.0 Ω, and Vrms = 10 V. What would the root mean square current be? You
know that

Z 3.0 16.0 12.0 5.0 Ω2 2
= + - =^ h

C
R L

Figure 19-12:
An RCL
circuit.
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so, using the equation Vrms = Irms Z, you get

Vrms / Z = I = 10.0 / 5.0 = 2.0 A

You get 2.0 amps.

You can also determine whether the current leads or lags by determining the
angle between the current and the voltage, Φ. Here’s how you determine the
tangent of that angle:

tan Φ = (XL - XC) / R
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Chapter 20

Shedding Some Light on Mirrors 
and Lenses

In This Chapter
� Reviewing the basics of mirrors

� Observing light as it bends

� Examining the behavior of flat, concave, and convex mirrors

� Looking through converging and diverging lenses

This chapter illuminates light and what happens to it under various 
conditions. I discuss the behavior of light as it passes through the water

(the light gets bent, as you can tell when you go fishing), goes through a
lens (the light can get concentrated, as when you start paper burning with
focused sunlight, or gets diverged, as in glasses for nearsighted people),
and reflects off a mirror.

All about Mirrors(srorriM tuoba llA)
Light reflects from mirrors, and physics has a lot to say about how that
works. Take a look at the unusual situation you see in Figure 20-1. Light is
coming in from the left and bouncing off a mirror. As you can see, the light
comes in at a certain angle with respect to the normal (the normal is the line
drawn perpendicular to the mirror), called the angle of incidence, θi. And it
bounces off at the angle of reflection, θr.

The Law of Reflection says that the angle of incidence and the angle of reflec-
tion are equal:

θi = θr

In other words, if the light comes in at a 30-degree angle, it’ll bounce off at a
30-degree angle.
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When Light Gets Bendy
Take a look at the situation in Figure 20-2. Light is striking a block of glass at
a certain angle, θ1, with respect to the normal (see the previous section) and
enters the glass, ending up at an angle of θ2 with respect to the normal.

Refracting light with Snell’s Law
How do you handle, physics-wise, light that bends after it enters a block of
glass? You can relate the before and after angles, θ1 and θ2, this way:

n1 sin θ1 = n2 sin θ2

What are n1 and n2? They’re called indexes of refraction. When light bends as
it passes through the boundary between different substances, refraction takes
place, and you can measure the index of refraction for various materials.

The law that describes how light bends is called Snell’s Law. Snell’s Law says
that when a light ray travels from a material that has the index of refraction
n1 at angle θ1 with respect to the normal into a material that has the index of
refraction n2, the refracted ray will be traveling at angle θ2 with respect to the
normal such that n1 sin θ1 = n2 sin θ2. For example, the index of refraction for
air is just about the same as it is for a vacuum: 1.0. The index of refraction for
glass is approximately 1.5 in most cases, so you can say that if θ1 = 45° for the
situation in Figure 20-2, you have

1.0 sin 45° = 1.5 sin θ2

θi θr

Mirror

Lig
ht

Figure 20-1:
Light

hits and
bounces off

a mirror at
measurable

angles.
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or

sin θ2 = (1.0 sin 45°) / 1.5

The latter equation allows you to solve for θ2:

θ2 = sin-1(1.0 sin 45° / 1.5) = 28.1°

You find that θ2 equals 28.1°. In other words, the light is refracted toward the
normal, as you see in Figure 20-2.

Examining water at apparent depths
Take a look at Figure 20-3, which shows a spear fisherman taking aim at a fish
in the water. Light reflecting off the fish hits the water/air boundary and is
refracted. The fisherman assumes that the light is coming straight from the
fish, so he believes the fish is really at the apparent depth shown in the
figure, not at its real depth.

θ1

θ2

Glass block

Figure 20-2:
Light

entering a
block of

glass bends
as shown.
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If the angles involved are small — as when the fisherman is practically over
the fish — you can relate the apparent depth and the actual depth with the
following equation (keep in mind that n1 is the index of refraction of the mate-
rial where the light is coming from — water in this case — and n2 is the index
of refraction of the material where the light ends up — air in this case):

Apparent depth = (Actual depth)(n2 / n1)

For example, if the fisherman believes the fish appears to be 2.0 meters
underwater, the angles involved are small, and because the index of refrac-
tion for water is about 1.33 (and air is 1.00), you get

Actual depth = (Apparent depth)(1.33 / 1.00)

Apparent depth

Actual depth

Figure 20-3:
Apparent
depth is a
refracted

vision of an
object’s real

depth.
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Refraction and the speed of light
The index of refraction of a material is actually
the ratio of the speed of light in a vacuum
divided by the speed of light in the material:

n = Speed of light in a vacuum / Speed of
light in the material

So, saying that the index of refraction of glass
is 1.5 is saying that light travels more slowly
through glass by a factor of 1.5.
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So plugging in the numbers gives you:

Actual depth = (2.00)(1.33 / 1.00) = (2.0)(1.33) = 2.66 m

The actual depth of the fish is 2.66 meters.

All Mirrors and No Smoke
You’ve seen any number of mirrors at work in the real world. What goes on
when you look at them (or in them)? You can see a flat mirror in Figure 20-4.
An object is in front of the mirror, and light from the object bounces off the
mirror into your eye. From your eye’s point of view, however, it looks like
the light is coming from an object behind the mirror — a distance behind the
mirror equal to the distance that the actual object is in front of the mirror.
You won’t find an actual object behind the mirror, however, so you say that
the image is a virtual image of the actual object.

So far, so good. But what happens when mirrors start to get curvy?

Expanding with concave mirrors
When mirrors get curvy, physicists have plenty to think about. Examine the
mirror in Figure 20-5. The mirror is concave, meaning that it looks like part of
the inside of a sphere.

Object

Mirror

Virtual image

Figure 20-4:
A flat mirror
produces a

virtual
image to
your eye.
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An easy way to identify a concave mirror is to remember that it’s cupped,
forming a “cave.”

So, what happens when you place an object near a concave mirror?

Two points are important for concave mirrors: the center of curvature, C, and
the focal point, F. C is a distance equal to the radius of curvature of the sphere
from which the mirror is made. F is where light coming into the mirror parallel
to (and not far from) the horizontal axis is focused. For a concave mirror, F =
C / 2. In Figure 20-5, you see an object between the center of curvature of the
mirror. So how do you deal with that? Where will the image of this object
appear? You need some more equations, your physics ammo.

Shining light on ray diagrams
You can use the three rays of light — labeled 1, 2, and 3 — you see in Figure 20-5
to find out where an object placed between the center of curvature and the
focal point will appear. These three rays of light come from the object, bounce
off the mirror, and come together in the image of the object. Here’s how you
construct these rays for a mirror:

� Ray 1 leaves the object, bounces off the mirror, and goes through the
center of curvature.

� Ray 2 leaves horizontally from the object to the mirror, bounces off, and
goes through the focal point.

� Ray 3 travels from the object through the focal point, bounces off the
mirror, and ends up going parallel to the horizontal axis.

The point where the three rays meet is the location of the image. In Figure 20-5,
you can see that the image location is past the center of curvature; it’s an
inverted (upside-down), enlarged image. Because the image is on the same
side of the mirror as the object, it’s called a real image. A real image allows you
to place a screen so the physical light from the object will focus there, creating
the image.

Object

Concave mirror

Real image

C

F

1
2

3

Figure 20-5:
A concave
mirror with

an object
between the

center of
curvature

and the
focal point.
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Now take a look at a situation where the information is reversed — the object
is past the center of curvature, as shown in Figure 20-6. Where does the image
end up this time? You can use the same three rays, as shown in Figure 20-6.
In this case, the image ends up between the center of curvature and the focal
point; it’s an inverted image compared to the object, reduced in size, and also
a real image.

Do you have to watch out for any other placement possibilities? Yes, the object
can appear even closer to the mirror, between the focal point and the mirror
(as you see in Figure 20-7). You can apply the same three rays here, but when
you do, they don’t come together in front of the mirror; they come together
behind the mirror, as you see in the figure, because the image is virtual — no
actual light comes together to form this image. Instead, when you look at the
mirror from the front, the rays that bounce off the mirror seem to be coming
from a virtual image behind the mirror.

Crunching numbers on ray diagrams
You can calculate where an image will form with respect to a concave mirror
if you have the right equation. Take a look at Figure 20-8, where you see two
views of an object being reflected in a mirror.

Concave mirror

Object Virtual
image

C

F

1

2

3

Figure 20-7:
A concave
mirror with

an object
between the

mirror and
the focal

point.

Concave mirror

Object

Real
image

C

F

1
2

3

Figure 20-6:
A concave
mirror with

an object
past the

center of
curvature.
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Here, the vital distances are

� ho: Height of the object

� hi: Height of the image

� do: Distance to the object

� di: Distance to the image

You can create an equation that ties all these quantities together by noticing
that each of the triangles in diagrams A and B in Figure 20-8 are similar trian-
gles, which means they have the same angles and therefore the same ratios
of sides.

F

d i

d o

A

Image

F

h i

d i

d o

B

Object

h o

Object
Concave

mirror
h o

Image

h i

Figure 20-8:
Triangles

needed to
derive the

mirror
equation.
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Diagram A is an application of the law of reflection — that the angle of inci-
dence equals the angle of reflection — and it gives you this relation:

ho / hi = do / di

And from diagram B, you get

ho / hi = (do - f) / f 

Setting these two equations equal to each other gives you

do / di = (do - f) / f 

In other words,

1 / do + 1 / di = 1 / f

This equation is known as the mirror equation; it relates the distance the
object is from the mirror and the focal length to the distance the image will
form from the mirror. If the image is virtual (forming behind the mirror), di

will be negative.

Say, for example, a cosmetics company comes to you and wants you to design
a bathroom mirror that lets people see their images, only larger. And the com-
pany doesn’t want the image to be upside down.

You get right on the job, deciding that Figure 20-7 will do the trick. If you
place your face closer than the focal length to the mirror, you see an enlarged,
upright, virtual image. Calculating swiftly, you decide that if people put their
faces 12.0 cm from the mirror, you should give the mirror a focal length of
20.0 cm, which means the radius of curvature will be 40.0 cm. Where will the
image form? You know that

1 / do + 1 / di = 1 / f

Plugging in the numbers gives you

1 / 12.0 + 1 / di = 1 / 20.0

Solving for di gives you –30.0 cm.

You tell the company that using a mirror with a radius of curvature of 40 cen-
timeters will produce an image at –30.0 centimeters.

The cosmetics executives look at each other and say, “But what’s the magnifi-
cation?” “Hm,” you think. “Good question.”
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Figuring the magnification
The magnification of a mirror is the ratio of the height of the image divided by
the height of the object, ho/hi; such a magnification might be of interest to
people who want to use the mirror to apply cosmetics, for example You’ve
found that

ho / hi = do / di

which tells you that

m = –di / do

The negative sign is used because the magnification is positive if the image is
upright and negative if the image is inverted. So, what’s the magnification for
the cosmetics mirror you worked on in the previous section? Well, the image
forms at –30.0 cm when the object is at 12.0 cm, so the magnification is

m = 30.0 / 12.0 = 2.5

The magnification is 2.5 when someone’s face is 12.0 cm from the mirror.

Contracting with convex mirrors
A convex mirror is likened to a mirrored section of a sphere seen from the
outside. You can see a convex mirror in Figure 20-9. How do you handle this
in physics?

Convex mirror

Object Virtual
image

CF

1

2

3Figure 20-9:
Deriving the

convex
mirror

equation.
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No problem. You can use the three rays you use for a concave mirror in the
previous section — the only difference is that the image in a convex mirror
will always be virtual, and you always place the focal point and center of cur-
vature on the other side of the mirror from the image.

Take a look at the rays in Figure 20.9; as you can see, the image created is 
virtual (behind the mirror), upright, and reduced. You can verify these char-
acteristics with a metal salad bowl. If you look at yourself in the bowl from
the outside, you get a smaller (and somewhat distorted) image of yourself.

You can use the mirror equation for convex mirrors as well (see the section
“Crunching numbers on ray diagrams” earlier in this chapter) — if you keep
in mind that because the focal point is considered to be behind the mirror, f
is negative. For example, say that you have a convex mirror of focal length 
–20 cm, and you place an object 35 cm in front of it. Where will the image
form? Just plug the numbers into the mirror equation:

1 / do + 1 / di = 1 / f = 1 / 35.0 + 1 / di = 1 / –20

Solving for di gives you

di = –12.7 cm

The image will appear to be 12.7 cm on the other side of the mirror. Can you
also find the magnification? Sure. From the previous section, you know that

m = –di / do = 12.7 / 35.0

so

m = 0.36

The virtual image will be upright and reduced by a factor of 0.36 and will
appear to be 12.7 cm on the other side of the mirror. Now you’ve conquered
mirrors, as any good physicsmeister has to.

Seeing Clearly with Lenses
Besides mirrors, the other optical elements you come across every day are
lenses. Lenses are specially built to bend the light that goes through them,
focusing the light and creating images. And like mirrors, lenses can produce
real images or virtual images.

You can zoom in on two types of lenses: converging and diverging lenses.
I bring both into focus in the following sections.
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Expanding with converging lenses
A converging lens bends light toward the horizontal axis. This kind of lens can
focus light from an object on one side of the lens into a real image on the other
side of the lens. Want to see an insect more clearly using a magnifying glass?
That’s a converging lens you’re using.

Relating lenses and ray diagrams
You can apply ray diagrams to lenses much like you can with mirrors. Take
a look at the lens in Figure 20-10. The shape of the lens tells you that it’s 
converging lens.

You can create a ray diagram by using the three rays that you see in
Figure 20-10:

� Ray 1 leaves the object and goes through the center of the lens.

� Ray 2 leaves horizontally from the object to the lens and then goes
through the focal point.

� Ray 3 goes from the object through the focal point, through the lens,
and ends up going parallel to the horizontal axis.

You can now construct the ray diagram for the case in Figure 20-10, where the
object is past c, the radius of curvature. The radius of curvature is assumed
to be 2f, where f is the focal length (the radius of curvature isn’t exactly 2f,
because lenses are really parabolic, not spherical, but it’s close enough for
small lenses). In this case, you get a reduced real image, which is inverted. 

But what if the object is between the focal point and the radius of curvature,
as you see in Figure 20-11? You can see what the three rays tell you here; you
get an enlarged real image, which is also inverted.

You have one last possibility to consider: What if the image is placed closer
to the lens than the focal point? You can see this illustrated in Figure 20-12.
In this case, you can use rays 1 and 2, as shown in Figure 20-12, to determine

Converging lens

Object

Real image

C

1

2

3
F

CF

Figure 20-10:
A con-

verging lens
with an

object past
the radius of

curvature.
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that what you get is a virtual image, upright and enlarged (which is the way
magnifying glasses work). As with all ray diagrams, you see where the rays
come together to form an image.

As is typical with virtual images, no actual light rays converge where the vir-
tual image is. If you put a screen there, you wouldn’t see an image. The image
is virtual, which means you have to look though the lens to see it — you see
the apparent image through the lens.

Bringing the lens equation into focus
How can you calculate the actual location of an image through a lens? You
can use the thin-lens equation, which is the same as the mirror equation and
can be derived in the same way:

1 / do + 1 / di = 1 / f

where di is the distance of the image from the lens, do is the distance of the
object, and f is the focal length.

Converging lens

Object

Virtual image

1

2

F
Figure 20-12:

A con-
verging lens

with an
object

placed
closer than

the focal
point.
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Figure 20-11:
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with an
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curvature
and the

focal point.
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This equation holds for thin lenses (otherwise, the shape of the lens, which is
assumed to be a sphere for this equation, gives you what’s called spherical
aberration; in practice, lenses are slightly parabolic). Note that if the image
is virtual, di will be negative.

For example, if someone hands you a converging lens of focal length 5.0 cen-
timeters to use as a magnifying glass on a postage stamp 3.0 cm away from
the lens, where will the virtual image appear? All you have to do is plug in the
numbers:

1 / do + 1 / di = 1 / f = 1 / 3.0 + 1 / di = 1 / 5.0

Solving for di gives you di = –7.5 cm. A negative image distance means a vir-
tual image, and as you can see in Figure 20-12, the image will be upright and
enlarged.

Because you’re working with a magnifying glass, you also have to find the
actual magnification.

Calculating magnification
Finding the magnification of converging lenses is the easy part. As with mir-
rors, you can calculate the magnification this way:

m = –di / do

If the magnification is negative, the image is inverted with respect to the
object. If the magnification is positive, the image is upright compared to
the object.

What’s the magnification of the lens I introduce in the example from the pre-
vious section? You know that do = 3.0 cm and di = –7.5 cm, so

m = –di / do = 7.5 / 3.0 = 2.5

The magnification you get for the stamp under the magnifying glass at 3.0 cm
away from the lens is 2.5.

Here’s another example. Say that you want a real, enlarged image, one you
can put onto a screen. For example, you may have a slide projector with an
illuminated slide that you want to project onto a screen 1.0 meter away. In
this case, you should use the setup you see in Figure 20-11, where the object
is placed at a location between the radius of curvature (which equals 2f) and
the focal point (f).

Assume that the slide is at 10 cm from the lens — what focal length should
the lens have? You know that the thin lens equation tells you

1 / do + 1 / di = 1 / f
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Plugging in the values gives you

1 / do + 1 / di = 1 / 0.10 + 1 / 1.00 = 1 / f

In other words,

10.0 + 1.00 = 11.0 = 1 / f

So, the focal length of the lens you need is 1 / 11.0 meters, or about 9.09 
centimeters.

Contracting with diverging lenses
Converging lenses focus light toward the horizontal axis; diverging lenses
focus light away from the horizontal axis. You can see what a diverging lens
looks like in Figure 20-13. In this case, you can see that the ray diagram is
giving you a virtual image, upright and reduced.

A diverging lens always produces a virtual image, upright and reduced in size
compared to the object.

Can you apply the thin lens equation here, as you did with converging lenses?
Sure can, except that you have to realize that for a diverging lens, the focal
length is negative — just like a convex mirror.

For example, say that you have a diverging lens with focal length of –10.0 cm,
and you place an object 4.0 cm from it. Where will the image form? Use your
pal the thin lens equation for this one:

1 / do + 1 / di = 1 / f

Diverging lens

Object Virtual image

1

2

F

Figure 20-13:
Using a

diverging
lens to

create a
virtual
image.

337Chapter 20: Shedding Some Light on Mirrors and Lenses

28_554336 ch20.qxd  11/2/05  11:39 PM  Page 337



Putting in your data gives you

1 / 4.0 + 1 / di = –1 / 10.0

After a little rearrangement to put di on one side, you get

di = –2.85 cm

Note that this image forms closer to the lens than the focal length, as shown in
Figure 20-13, and that the distance to the image is negative, which means that
the image is virtual. What’s the magnification of this lens? Using the same mag-
nification equation you use for converging lenses (see the previous section),

m = –di / do

Plugging in numbers gives you

m = 2.85 / 4.0 = 0.713

The positive magnification tells you that the image is upright compared to the
object, and because the magnification is less than 1.00, you know that the image
will be reduced in size compared to the object.
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In this part . . .

I let physics off the leash in Part VI, and it goes wild.
You discover 10 Einsteinian topics, like time dilation,

length contraction, and E = mc2. You also take a look at
10 far-out physics facts spanning from the Earth to the
far reaches of space — everything from black holes and
the Big Bang to wormholes.
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Chapter 21

Ten Amazing Insights on Relativity
In This Chapter
� Observing the behavior of light at high speeds

� Examining time and length in space

� Reviewing Einstein’s views on matter and energy

� Shining light on the sun and the speed of light

� Relating Einstein and Newton

This chapter contains 10 amazing physics facts about Einstein’s Theory of
Special Relativity. Well, sort of. The pieces of info I include aren’t really

“facts,” because as with everything in physics, the information may yet be
disproved someday. But the Theory of Special Relativity has been tested in
thousands of ways, and so far it has been on the money. The theory gives you
many spectacular insights, such as the one that states that matter and energy
can be converted into each other, as given by perhaps the most famous of
physics equations:

E = mc2

You also find out that time dilates and that length shrinks near the speed of
light. It’s all coming up in this chapter. After you read what Albert Einstein
has to say, time and space will never be the same.

Nature Doesn’t Play Favorites
Einstein stated long ago that the laws of physics are the same in every iner-
tial reference frame. In an inertial reference frame, if the net force on an
object is zero, the object either remains at rest or moves with a constant
speed. In other words, an inertial reference frame is a reference frame with
zero acceleration. Newton’s law of inertia (a body at rest stays at rest, and
a body in constant motion stays in constant motion) applies.
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Two examples of noninertial reference frames are spinning frames that have a
net centripetal acceleration or otherwise accelerating frames.

What Einstein basically said is that any inertial reference frame is as good
as any other when it comes to the laws of physics — nature doesn’t play
favorites between reference frames. For example, you may be doing a set of
physics experiments when your cousin rolls by on a railroad car, also doing
a set of experiments, as you see in Figure 21-1.

Neither of you will see any difference in the laws of physics. No experiment
allows you to distinguish between an inertial reference frame that’s at rest
and one that’s moving.

The Speed of Light Is Constant,
No Matter How Fast You Go

Comparing speeds while you’re in motion is hard enough to do with cars on
the highway, let alone comparing speeds that include the speed of light. For
most people, finding out that the speed of light is constant, no matter how
fast you go, is unexpected. Say, for example, that your cousin, who’s riding
on a railroad car, finishes a drink and thoughtlessly throws the empty can
overboard in your direction. It may not be traveling fast with respect to
your cousin — say, 5 mph — but if your cousin’s inertial reference frame
(see the previous section) is moving with respect to you at a speed of 60 mph,
the can will hit you with that speed added on — 65 mph. Ouch. But light will
always hit you at about 670,616,629 mph.

Your cousin’s physics lab

Your physics lab

Figure 21-1:
Moving

physics labs
are as

accurate for
the laws of
physics as
stationary

labs.
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Time Dilates at High Speeds
Imagine that you’re looking up at a starry night as an astronaut hurtles past
in a rocket, as you see in Figure 21-2. You think you can faintly hear the
words, “Get me down, I don’t care about the World Series!” coming from the
rocket, but you’re not sure. Einstein’s Special Theory of Relativity says that
the time you measure for events occurring on the rocket ship happen more
slowly than events measured by the astronaut. In other words, time dilates,
or “expands,” from your point of view on the Earth.

To see how this works, take a look at Figure 21-2, diagram A. In that diagram, a
special clock bounces light back and forth between two mirrors mounted on
the inside walls of the rocket at distance D apart. The astronaut can measure
time intervals based on how long it takes the light to bounce back and forth.
From your perspective, however, the time appears different. You see the rocket
ship hurtling along, so the light doesn’t just have to travel the distance s — it
also has to take into account the distance the rocket travels horizontally.

Space Travel Ages You Less
Don’t go telling this to your beauty-obsessed, wealthy aunt, but if you’re trav-
eling in space, you may age less than someone on the ground. For example,
say that you observe an astronaut who’s moving at a speed of 0.99c, where
c equals the speed of light. For the astronaut, tics on the clock last, say,
1.0 second. For each second that passes on the rocket as measured by the
astronaut, you measure 7.09 seconds.

Observer

s s

A

B

∆ toD

D

v∆ t v∆ t

∆ t  = ?

Figure 21-2:
Time dilating

for
observers

on earth
looking at

rockets.
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This effect even takes place at smaller velocities, such as when a friend boards
a jet and takes off at about 520 miles per hour. The plane’s speed is so slow
compared to the speed of light, however, that relativistic effects aren’t really
noticeable — it would take about 100,000 years of jet travel to create a time 
difference of 1 second between you and your friend’s watches. However, physi-
cists conducted this experiment with jets and super-sensitive, cesium-based
atomic clocks, capable of measuring time differences down to 1.0 × 10-9 sec-
onds. And the results agreed with the Theory of Special Relativity.

Length Contracts at High Speeds
Not only can you measure time for events on spaceships as longer (see the
previous section), but also the very length of rockets. The length of the rocket
an astronaut is on is different according to his measurements than to your
measurements taken from Earth. Take a look at the situation in Figure 21-3 to
see how this works.

The length, Lo, of an object measured by a person at rest with respect to that
object will be measured as L, a shorter length, by a person moving at velocity
v with respect to that object. In other words, the object shrinks.

Observer

Lo

L

L = ?

Long rocket

Short
rocket

A

BFigure 21-3:
Length

contracts
for rocket

ships in
space.
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Note that shrinking only takes place in the direction of motion. As you can see
in Figure 21-3, the rocket ship appears to contract in the direction of motion
when you measure it (diagram B), but not from the astronaut’s point of view.

E = mc2: The Equivalence of Matter
and Energy

Einstein’s most famous contribution is the about the equivalence of matter
and energy — that a loss or gain in mass can also be considered a loss or
gain in energy. (I’m going to resist putting in that tired physics joke about
how for a dieter, a loss of mass results in an increase in energy.) What was
Einstein’s result? E = mc2? Actually, no. It was

E
1

c
v

mc

2

2

2

=

-

As a special case, the object you’re converting to energy may be at rest,
which means that v = 0. In such a case, and only in that case, you do indeed
find that E = mc2.

You’ve seen Einstein’s famous equation before, but what does it really mean?
In a way, you can almost think of mass as “condensed” energy, and this formula
gives you the conversion factor between kilograms and Joules, which is c2, the
speed of light squared.

Matter Plus Antimatter Equals Boom
You can get a complete conversion of mass into energy when you have both
matter and antimatter. Antimatter is just like standard matter but sort of
reversed. Rather than electrons in the atoms of antimatter, you have positively
charged positrons. And in place of positively charged protons, you have nega-
tively charged antiprotons. Science fiction aficionados may recognize antimatter
as the driving force in the Starship Enterprise’s engines in Star Trek.

But the weird thing is that antimatter actually exists. Scientists can locate it in
the universe, and in fact, the sun is making it all the time. When a standard
hydrogen atom (electron and proton) and an antimatter hydrogen atom
(positron and antiproton) come together, they both get converted entirely,
100 percent, into energy. What happens to that energy? It streaks out as high-
powered photons (which, please note, can transfer heat as radiant energy).
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The Sun Is Radiating Away Mass
Most of the energy we get from the sun comes from fusion, the combination
of atomic nuclei into other nuclei. The sun is radiating away a heck of a lot of
light every second, and for that reason, it’s actually losing mass. Although the
sun is losing mass as it gets converted into radiant energy, however, you have
nothing to worry about; there’s plenty more where that came from.

The Speed of Light Is the Ultimate Speed
Not counting Star Trek and other science fiction shows and books, you can’t
go faster than the speed of light, which is why c is the same in all inertial ref-
erence frames (see the first section of this chapter), even if the light you see
is coming from an inertial reference frame coming at you. Here’s what the
Special Theory of Relativity says about the total energy of an object:
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For an object at rest, Erest = mc2. So, the relativistic kinetic energy of an object
of mass m must be
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Don’t make plans for the end of the sun
The sun radiates power at 3.92 x 1026 Watts. So,
in one second, it radiates 3.92 x 1026 Joules of
energy. This translates into the sun losing about
4.36 billion kilograms of mass per second —
whoa! That’s about 4.79 million tons of matter
lost every second. You can almost hear solar
scientists going nuts. Surely, at that rate, there
will be no more sun left in a few weeks. They cry
out, “Our mortgages! We’ll have to get new jobs

when the sun goes out!” What they shouldn’t
forget is that the sun has a mass of 1.99 x 1030

kg. Even at 4.36 x 109 kg of mass lost per second,
it will still last for a while. How long? If radiating
away mass were the only physical mechanism
at work, the sun would last 1.99 x 1030 / 4.36 x 109

= 4.56 x 1020 seconds. That’s about 1.44 x 1013

years, or 144 billion centuries.
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Note that as the velocity of the object gets larger and larger, the term in
parentheses above gets bigger and bigger, moving toward the infinite. So, as
the velocity of the object gets infinitesimally close to c, the kinetic energy
of the object becomes nearly infinite. And this is where, sadly, the science 
fiction part breaks down. As the velocity gets closer to c, you get closer to
an infinite kinetic energy. Although that sounds impressive for rocket ships,
what it really means is that you can’t do it — at least not according to the
Special Theory of Relativity.

Newton Is Still Right
After all the discussion about Einstein, where have physicists left Newton?
What about the good old equations for momentum and kinetic energy? These
equations are still right, but only at lower speeds. For example, take a look
at the relativistic equation for momentum (see Chapter 9 for more on
momentum):
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where p is momentum, m is mass, and v is velocity. Notice this part:
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You only see a difference when you start getting near the speed of light —
this factor only changes things by about 1 percent when you get up to speeds
of about 4.2 × 107 meters per second, which would have been pretty big for
Newton’s day. At lower speeds, you can neglect the relativistic factor to get

p = mv

Newton would be happy with this result.

How about the equation for kinetic energy (see Chapter 8)? Here’s how it
looks in relativistic terms:
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where KE is kinetic energy. Take a look at this term:
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You can expand this by using the binomial theorem (from Algebra class) 
this way:
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When the term v2 ÷ c2 is much less than 1, this breaks down to

1
c
v

1 1
2c
1v

2

2 2

2

-

= +

Putting that into the equation for relativistic kinetic energy gives you —
guess what? Your old favorite, the nonrelativistic version (see Chapter 8):

KE = 1⁄2mv2

As you can see, Newton isn’t left in the dust when discussing relativity.
Newtonian mechanics still apply, as long as the speeds involved are signifi-
cantly less than the speed of light, c (you start seeing relativistic effects at
about 14 percent of the speed of light, which is probably why Isaac Newton,
in the horse-and-buggy days, never noticed them).
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Chapter 22

Ten Wild Physics Theories
In This Chapter
� Pinpointing the smallest distance and smallest time

� Getting comfortable with uncertainty

� Exploring space for physics facts

� Uncovering the truth about microwave ovens

� Coming to grips with your bearings in the physical world

This chapter gives you ten outside-the-box physics facts that you may not
hear or read about in a classroom. As with anything in physics, however,

you shouldn’t really consider these “facts” as actual facts — they’re just the
current state of many theories. And in this chapter, some of the theories get
pretty wild, so don’t be surprised to see them superceded in the coming
years.

You Can Measure a Smallest Distance
Physics now has a theory that there’s a smallest distance, the Planck length,
named after the physicist Max Planck. The length is the smallest division that,
theoretically, you can divide space into. However, the Planck length — about
1.6 × 10-35 m, or about 10-20 times the approximate size of a proton — is really
the smallest amount of length with any physical significance, given our current
understanding of the universe. When you measure smaller than this length,
you need quantum physics, and that means that any precise measurements
are impossible. Therefore, the Planck length is the smallest length that makes
physical sense with our current view of physics.
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There Might Be a Smallest Time
In the same sense that Planck length is the smallest distance (see the previ-
ous section), Planck time is the smallest amount of time. The Planck time is
the time it takes for light to travel 1 Planck length, or 1.6 × 10-35 m. If the speed
of light is the fastest possible speed, you can easily make a case that the short-
est time you can measure is the Planck length divided by the speed of light.
The Planck length is very small, and the speed of light is very fast, which gives
you a very, very short time for the Planck time:

Planck time = 1.6 × 10-35 m / (3.0 × 108 m/s) = 5.3 × 10-44 seconds

The Planck time is about 5.3 × 10-44 seconds, and times smaller than this have
no real meaning as physicists understand the laws of physics right now.

Some people say that time is broken up into quanta of time, called chronons,
and that each chronon is a Planck time in duration.

Heisenberg Says You Can’t Be Certain
You may have heard of the uncertainty principle, but you may not have
known that a physicist named Heisenberg first suggested it. Of course, that
explains why it’s called the Heisenberg Uncertainty Principle, I suppose. The
principle comes from the wave nature of matter, as suggested by Louis de
Broglie. Matter is made up of particles, like electrons. But small particles
also act like waves when they travel at fast speeds, much like light waves.
(Whoa, you’re getting into some deep water here.)
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Is the Planck length really
the smallest possible distance?

Many scholars have maintained that the Planck
length is where space breaks down and that
you can’t get any distances smaller. Is this the
truth? The Planck length basically states that
when you get to smaller distances, quantum
effects take over. Such effects aren’t suscepti-
ble to measurement, only predictions based on
probability. So, is the Planck length really the

smallest possible length? Or are physicists
trying to impose rules on the universe just
because we don’t know how forces work at
those small distances? In other words — is the
Planck length the smallest possible distance
that we can explain, or is it the smallest possi-
ble distance that can exist? Perhaps you can
find the answer in your physics explorations.
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Because particles in motion act as though they’re made up of waves, the
more precisely you measure their momentum, the less precisely you know
where they are. You can also say the more precisely you measure their loca-
tions, the less precisely you know their locations.

Black Holes Don’t Let Light Out
Black holes are created when particularly massive stars use up all their fuel
and collapse inwardly to form super-dense objects, much smaller than the
original stars. Only very large stars end up as black holes. Smaller stars don’t
collapse that far; they often end up as neutron stars instead. A neutron star
occurs when all the electrons, protons, and neutrons have been smashed
together by gravity, creating, effectively, a single mass of neutrons at the 
density of an atomic nucleus.

Black holes go even further than that. They collapse so far that not even light
can escape their intense gravitational pulls. How’s that? The photons that
make up light aren’t supposed to have any mass. How can they possibly be
trapped in a black hole?

Photons are indeed affected by gravity, a fact predicted by Einstein’s General
Theory of Relativity (a much larger body of work than the Special Theory of
Relativity (see Chapter 21), and one that took Einstein eight years to com-
plete). Tests have experimentally confirmed that light passing next to heavy
objects in the universe is bent by their gravitational fields. Gravity affects
photons, and the gravitational pull of a black hole is so strong that they can’t
escape it.

Gravity Curves Space
Isaac Newton gave physicists a great theory of gravitation, and from him
comes the famous equation

F = Gm1m2 / r
2

where F represents force, G represents the universal gravitational constant,
m1 represents one mass, m2 represents another mass, and r represents the
distance between the masses. Newton was able to show that what made
an apple fall also made the planets orbit. But Newton had one problem he
could never figure out: how gravity could operate instantaneously at a 
distance.
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Enter Einstein, who created the modern take on this problem. Instead of think-
ing in terms of gravity being a simple force, Einstein suggested in his General
Theory of Relativity that gravity actually curves space. In other words, gravity
is one of the influences that actually define what we think of as “space.”

Einstein’s idea is that gravity curves space (and ultimately, that’s where
the idea of wormholes in space comes from). In fact, to be more true to the
General Theory of Relativity, you should say that gravity curves space and
time. Mathematically, you treat time as the fourth dimension when working
with relativity — not as a fourth spatial dimension. The vectors (see Chapter 4)
you use have four components: three for the X-, Y-, and Z-axes, and one for
time, t.

What’s really happening when a planet orbits the sun is that it’s simply follow-
ing the shortest path through the curved spacetime through which it travels.
The sun curves the spacetime around it, and the planets follow that curvature.

Matter and Antimatter Destroy
Each Other

One of the coolest things about high-energy physics, also called particle
physics, is the discovery of antimatter. Antimatter (see Chapter 21) is sort of
the reverse of matter. The counterparts of electrons are called positrons
(positively charged), and the counterparts of protons are antiprotons 
(negatively charged). Even neutrons have an antiparticle: antineutrons.

In physics terms, matter is sort of on the plus side and antimatter sort of on
the negative side. When the two come together, they destroy each other, leav-
ing pure energy — light waves of great energy, called gamma waves. And like
any other radiant energy, gamma waves can be considered heat energy, so if
you have a pound of matter and a pound of antimatter coming together, you’ll
have quite a bang.

As I discuss in Chapter 21, that bang, pound for pound, is much stronger than a
standard atomic bomb, where only 0.7 percent of the fissile material is turned
into energy. When matter hits antimatter, 100 percent is turned into energy.

If antimatter is the opposite of matter, shouldn’t the universe have as much
antimatter as it does matter? That’s a puzzler, and the debate is continuing.
Where’s all the antimatter? The jury is still out. Some scientists say that there
could be vast amounts of antimatter around that people just don’t know about.
Immense antimatter clouds could be scattered throughout the galaxy, for exam-
ple. Others say that the way the universe treats matter and antimatter is a
little different — but different enough so that the matter we know of in the
universe can survive.
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Supernovas Are the Most
Powerful Explosions

What’s the most energetic action that can happen anywhere, throughout the
entire universe? What event releases the most energy? What’s the all-time
champ when it comes to explosions? Your not-so-friendly neighborhood
supernova. A supernova occurs when a star explodes. The star’s fuel is used
up, and its structure is no longer supported by an internal release of energy.
At that point, it collapses in on itself. But not just any star can supernova.
Normally, if a star explodes, it creates a nova. But once in a while, a star
supernovas, creating a practically unimaginable star explosion. Among the
100 billion stars in our galaxy, for example, the last known supernova occurred
nearly 400 years ago. (I say known because light takes quite a while to reach
Earth; a star could have gone supernova 100 years ago, but if it’s far enough
from Earth, we wouldn’t know it yet.)

Most of the star that supernovas is exploded at speeds of about 10,000,000
meters per second, or about 22,300,000 miles per hour. By comparison, even
the highest of explosives on Earth detonate at speeds of 1,000 to 10,000 meters
per second.

The Universe Starts with the Big Bang
and Ends with the Gnab Gib

Many physicists believe that the universe started, physically speaking, with the
Big Bang. The idea is that the physical world all began at one location with an
unimaginably huge explosion about 13.7 billion years ago. Physicists have the-
orized about what went on after the Big Bang, but it isn’t so easy to theorize
what went on before it. In fact, you can only go back to one Planck time after
the Big Bang (see the section “You Can Clock a Smallest Time” earlier in this
chapter for more on Planck time), because at times smaller than that, standard
physics theories, including Einstein’s General Theory of Relativity, break down.

Microwave Ovens Are Hot Physics
You can find plenty of physics going on in microwaves — everyday items you
may have taken for granted in your pre-physics life. What really happens in
a microwave oven? A device called a magnetron generates light waves in the
part of the light spectrum called microwaves, and their wavelength is close to
the size of water molecules.
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When the microwaves hit the water molecules in food, they polarize them.
In other words, the electrical field in light alternates back and forth, and
microwaves have just about the right wavelength and frequency to charge
one side of a water molecule and then the other, making that molecule oscil-
late like mad. The oscillation creates heat through friction, the oscillations of
water molecules are heating your food. (For more info on electrical fields, see
Chapter 16.)

Microwave ovens were invented by accident, during the early days of radar. A
man named Percy Spencer put his chocolate bar in the wrong place — near a
magnetron used to create radar waves — and it melted. “Aha,” thought Percy.
“This could be useful.” And before he knew it, he had invented not only
microwave ovens, but also microwave popcorn (no kidding).

Physicists May Not Have Physical
Absolute Measures

Perhaps the most profound “discovery” to come out of physics is that physi-
cists have found no true physical absolute measures.

Long ago, people saw everything in terms of absolutes. Space was fixed in
place. The sun and stars rotated around the Earth. Light traveled through the
aluminiferous ether, which stayed stationary. However, the study of physics
has debunked all these beliefs, at least as far as many years of observation go.
No fixed frame of reference has been found. No aluminiferous ether, either.
Not even a fixed universal time frame. All the measurements you make are
with respect to some measuring stick or inertial frame of reference that you
yourself define.

Although absence of proof isn’t proof of absence, the fact that physicists
have found no physical absolutes could be the most important contribution
that physics makes to our understanding of the universe. Perhaps, ultimately,
the lesson of physics is that you’re so much a part of the universe that you
don’t need external physical absolutes and absolute physical measures to
get your bearings. You decide your own measures. And in that sense, you’re
already at home in the universe in which you live.
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Glossary

Here’s a glossary of common physics terms you come across in this
book:

acceleration: The rate of change of velocity per second, expressed as a vector.

adiabatic: Without releasing heat into, or absorbing heat from, the 
environment.

alternating current: Electrical current that changes the direction of flow peri-
odically in time.

alternating voltage: Electrical potential that changes polarity periodically
in time.

ampere: The MKS unit of measurement of current — one Coulomb per second.

angular acceleration: The rate of change of angular velocity per second,
expressed as a vector.

angular displacement: The angle between the initial and final angular posi-
tions after a specified time.

angular momentum: The angular momentum of an object around a certain
point is the product of the distance it is from that point and its momentum
measured with respect to the point.

angular velocity: The rate of change of angular displacement per second.

Avogadro’s Number: The number of items in a mole, 6.022 × 1023.

blackbody: A body that absorbs all radiation and radiates it all away.

Boltzmann’s constant: A thermodynamic constant with a value of 
1.38 × 10-23 Joules per Kelvin.

capacitance: How much charge a capacitor can store per volt.

capacitor: An electric component that stores charge.

centripetal acceleration: The acceleration of an object, directed toward the
center of the circle, needed to keep that object in circular motion.
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centripetal force: The force, directed toward the center of the circle, that
keeps an object going in circular motion.

CGS system: The measurement system that uses centimeters, grams, and 
seconds.

concave mirror: A mirror that has an inwardly curved surface.

conduction: The transmission of heat or electricity through a material.

conservation of energy: The law of physics that says the energy of a closed
system doesn’t change unless external influences act on the system.

convection: A mechanism for transporting heat through the motion of a
heated gas or liquid.

converging lens: A lens that makes light rays come together.

convex mirror: A mirror that has an outwardly curved surface.

Coulomb: The MKS unit of charge.

current: The measurement of electric charge flowing per second.

density: A quantity divided by a length, area, or volume, such as mass per
length, mass per volume, charge per area, or charge per volume.

direct current: The kind of electrical current that moves in one direction,
such as current induced by a battery.

displacement: The change in an object’s position.

diverging lens: A lens that causes light rays to spread apart.

elastic collision: A collision where kinetic energy is conserved.

electric field: The force on a positive test charge per Coulomb due to other
electrical charges.

electromotive force: In a circuit, the potential difference that causes charges
to flow.

electrostatic potential: The energy per positive charge needed to move a
charge from one point to another.

emissivity: A property of a substance showing how well it radiates.

energy: The ability of a system to do work.
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farad: The MKS unit of capacitance.

FPS system: The system of measurement that uses feet, pounds, and seconds.

frequency: The number of cycles of a periodic occurrence per second.

heat capacity: The amount of heat needed to raise the temperature of an
object by one degree.

henry: The MKS unit of measurement of inductance.

hertz: The MKS unit of measurement of frequency — one cycle per second.

impulse: The product of the amount of force on an object and the time during
which the force is applied.

index of refraction: A measure of the speed of light in a vacuum divided by
the speed of light in a substance.

inelastic collision: A collision in which kinetic energy isn’t conserved.

inertial frame: A frame of reference that isn’t undergoing acceleration.

isobaric: At constant pressure.

isochoric: At constant volume.

isothermal: At constant temperature.

Joule: The MKS unit of energy — one Newton-meter.

Kelvin: The MKS unit of temperature, starting at absolute zero.

kilogram: The MKS unit of mass.

kinetic energy: The energy of an object due to its motion.

kinetic friction: Friction that resists motion of an object that’s already in
motion.

kinematics: Branch of mechanics concerned with motion without reference
to force or mass.

latent heat: The heat needed to cause a change in phase per kilogram.

law of conservation of momentum: A law stating that the momentum of a
system doesn’t change unless externally influenced.

linear momentum: The product of mass times velocity, a vector.
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magnetic field: The force on a moving positive test charge, per Coulomb,
from magnets or moving charges.

magnitude: The size or length associated with a vector (vectors are made up
of a direction and a magnitude).

mass: The property that makes matter resist being accelerated.

MKS system: The measurement system that uses meters, kilograms, and 
seconds.

moment of inertia: The property of matter that makes it resist rotational
acceleration.

Newton: The MKS unit of force — one kilogram-meter per second2.

normal force: The force a surface applies to an object, in a direction perpen-
dicular to that surface.

ohm: The MKS unit of electrical resistance.

oscillate: Move or swing side to side regularly.

pascal: The MKS unit of pressure — 1 Newton per meter2.

period: The time it takes for one complete cycle of a repeating event.

photon: A quantum of electromagnetic radiation. An elementary particle that
is its own antiparticle.

polarize: Cause to vibrate in a definite pattern.

potential energy: An object’s energy because of its position when a force is
acting on it or its internal configuration.

power: The rate of change in a system’s energy.

pressure: Force applied to an object divided by the area over which the
force acts.

radians: The MKS unit of angle — 2π radians in a circle.

radiation: A physical mechanism that transports heat and energy as electro-
magnetic waves.

ray diagram: A drawing that shows how light rays travel through lenses or
mirrors.
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RC circuit: An electric circuit that contains both a resistor (or resistors) and
a capacitor (or capacitors).

real image: An image that you can see on a physical screen.

refraction: The process that occurs when light crosses the boundary
between two substances and bends.

resistance: The ratio of voltage to current for an element in an electric circuit.

resistor: An element in an electric circuit that resists the passage of current.

resultant: A vector sum.

rotational inertia: An object’s moment of inertia.

scalar: A simple number (without a direction, which a vector has).

series: Elements arranged so the current that flows through one also flows
through the other.

simple harmonic motion: Repetitive motion where the restoring force is pro-
portional to the displacement.

solenoid: A wire coil.

special relativity: Albert Einstein’s theory that gives explanations for the
behavior of objects near the speed of light, such as time dilation and length
contraction.

specific heat capacity: A material’s heat capacity per kilogram.

standard pressure: One atmosphere — 1.0 × 105 Pascals.

standard volume: Defined as 22.4 liters.

static friction: Friction on an object that resists making it move.

thermal conductivity: A property of a substance showing how well or how
poorly heat moves through it.

thermal expansion: The expansion of a material as it gets hotter.

thermodynamics: The section of physics covering heat and matter.

torque: A force around a turning point multiplied by the distance to that
turning point.
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uncertainty principle: A principle that says it’s impossible to know an
object’s exact momentum and position.

vector: A mathematical construct that has both a magnitude and a direction.

velocity: The rate of change of an object’s position, expressed as a vector
whose magnitude is speed.

virtual image: An apparent image that isn’t real — it can’t appear on a physical
screen.

volt: The MKS unit of electrostatic potential — one Joule per Coulomb.

weight: The force exerted on a mass by a gravitational field.

work: Force multiplied by the distance over which that force acts.
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• A •
absolute measures physics

theory, 354
absolute zero, 209–210, 250
absorbing energy, 9–10
acceleration

about, 33, 66–67, 355
average, 36
circular motion, 106–108
friction, 91–92
gravity, 84–85
inertia, 179–182
instantaneous, 36
negative, 35–36
nonuniform, 37
positive, 35–36
simple harmonic motion,

198–200
speed, 40–41
tangential, 156
torque, 179–182
uniform, 37
units, 33–35
vectors, 55–57

addition, 22
adiabatic, 243–244, 355
advanced moments of

inertia, 175–177
air molecule speed, 232–233
air pressure measurement,

232
airborne objects gravity,

94–97
algebra, 23
alternate calculations, power,

136
alternating current (A/C)

about, 313, 355
capacitors, 315–318
inductors, 318–320
RCL circuits, 321–322
real values, 317–318

root mean square current
and voltage, 314–315

viewing, 314
alternating voltage, 355
aluminum resistivity, 275
ampere, 355
analogs, 174
angle of incidence, 323
angle of reflection, 323
angles

gravity, 83–84
third law of motion, 75–77
vectors, 51–53

angular acceleration
about, 159–160, 355
converting tangential

acceleration to, 175
angular displacement, 355
angular frequency of mass of

spring, 200–202
angular momentum

about, 355
conservation, 186
rotational motion, 173–176
satellite orbits, 186–187

angular velocity, 158–159, 355
antimatter, 345–346
antimatter destroying each

other, physics theory,
352

arrows, 44–45
atomic units, 228
atoms, 253–254
attraction source,

magnetism, 288–289
average acceleration, 36
average motion speed, 31–32
average speed, 31
Avogadro’s Number

about, 355
heat transfer, 228–229

axes displacement, 27–28

• B •
battery current, 272–273
Big Bang physics theory, 353
black holes physics theory,

351
blackbodies

about, 355
radiation, 226–227

blanket heat, 214
Boltzmann’s constant, 230,

355
bounce, 149
Boyle’s law, 231
brass thermal conductivity,

223

• C •
calculating

electric potential energy,
263–264

energy conservation,
237–238

kinetic energy with net
force, 127–128

capacitance
about, 355
electric potential energy,

269–270
capacitors

about, 283, 355
alternating current (A/C),

315–318
electric potential energy,

269–270
parallel circuits, 283–284
series circuits, 284

carbon resistivity, 275
Carnot engine, 248–250
Carnot’s principle, 249
Celsius scale, 208–209
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centering current loops,
magnetism, 300–302

centimeter-gram-second
(CGS) system
measurement, 15–16,
19–20

centripetal acceleration,
about, 156–158, 355
controlling velocity,

101–102
magnitude, 102

centripetal force, 102–103,
356

CGS system, 356
charged particles in

magnetic fields,
magnetism, 292–295

Charles’ law, 231
circular motion

about, 99–100
acceleration, 106–108
centripetal acceleration,

101–102
centripetal force, 102–103
circular orbits, 110–113
curves and banks, 104–106
displacement, 106–108
gravity, 109–110
Kepler’s laws of orbiting

bodies, 113
Newton’s law of gravitation,

108–113
satellite period, 112–113
turns, 104–106
uniform, 100
velocity, 106–108
vertical, 113–115

closed system, 144
coefficient of friction, 86–87
cold, 10
collisions

along lines, 149–151
heavier mass, 149–150
lighter mass, 150–151
two dimensions, 151–152

component weight friction, 90
components, vectors, 49–53
concave mirrors, 327–332,

356

conduction
about, 220, 356
equation, 221–223
thermal conductivity,

222–223
conservation

angular momentum, 186
electric potential energy,

265–266
energy, 356
mechanical energy, 132

conservative force versus
nonconservative force,
work, 131–132

constant heat, 243–244
controlling velocity,

centripetal acceleration,
101–102

convection, 219–220, 356
convective motion, 220
converging lenses, 334–337,

356
conversions

Kelvin system, 210
kinetic energy into

potential energy, 130
measurement units, 17–20
tangential acceleration to

angular acceleration, 175
convex mirrors, 332–333, 356
copper

resistivity, 275
thermal conductivity, 223

cosine, 24
Coulomb’s law, 254, 255, 356
current, 272, 356
current flow, 273–274
curves and banks, circular

motion, 104–106

• D •
deceleration, 33
deconstructing linear

expansion, 212
density, 356
direct current, 356
directions. See vectors

displacement
about, 26, 37–40, 356
axes, 27–28
calculating, 68–71
circular motion, 106–108
speed, 40–41
speed measurement, 28–29
vectors, 54

distance, friction, 92–93
diverging lenses, 337–338, 356
division, 21
drag, work, 121–122

• E •
Einstein, Albert, 11, 64,

341–348, 351
elastic collisions, 148, 356
elastic limit, periodic motion,

190
elastic potential energy,

202–203
elasticity, periodic motion,

189–191
electric fields

about, 258–259, 356
point charges, 259–260
positive charges, 258–259
test charges, 259–260

electric forces, 254–257
electric potential energy

calculating, 263–264
capacitance, 269–270
conservation, 265–266
point charges, 266–268
static electricity, 262–270
voltage, 264–265

electricity, 10–11
electromagnetic frequency

(EMF)
about, 305–308
alternating current (A/C),

313–320
Faraday’s law, 308–310
inducing voltage, 307–308
inductance, 312–313
Lenz’s law, 310–312
magnetic flux, 308–310
moving conductor in

magnetic field, 306–307
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electromotive force, 271–272,
356

electron charges
Coulomb’s law, 255
electron speed, 256
multiple charges, 256–257
static electricity, 253–254

electrons
about, 271
battery current, 272–273
capacitors, 283–285
current, 272
electromotive force,

271–272
Kirchoff’s rules, 278–282
Ohm’s law, 273–275
parallel circuits, 276–278
RC circuits, 285–286
series circuits, 275–276
speed, 256
wattage, 275

electrostatic potential, 356
emissivity, 356
energy

about, 356
absorbing, 9–10

energy conservation
calculating, 237–238
thermodynamics, 236–246

equal vectors, 45
equation

conduction, 221–223
kinetic energy, 125–127
torque, 162

equilibrium
about, 166
third law of motion, 77–79

equilibrium point, 192–193
equivalence of matter and

energy, 345
estimating accuracy,

measurement, 22

• F •
factoring energy into simple

harmonic motion,
202–203

Fahrenheit, Daniel Gabriel,
208

Fahrenheit scale, 208–209
farad, 357
Faraday’s law, 308–310
firing object at angles,

gravity, 96–97
firing velocity, momentum,

146–148
first law of thermodynamics

adiabatic, 243–244
isobaric, 238–240
isochoric, 240–241
isothermal, 241–243
molar specific heat

capacity, 245–246
specific heat capacities,

245–246
thermodynamics, 236–246

force
about, 63–64
calculating displacement,

68–71
calculating net force, 71
on currents, 295–296
friction, 90–91
inertia and mass, 65–66
naming units, 67
net force, 67–72

FPS system, 357
frequency, 357
friction

acceleration, 91–92
coefficient, 86–87
component weight, 90
distance, 92–93
force, 90–91
gravity, 85–93
kinetic, 87–89
normal force, 86
rotational equilibrium,

168–171
static, 87–89
third law of motion, 73–75
uphill, 89–93

fulcrum torque, 161

• G •
gamma waves, 352
gas pressure, 231

General Theory of Relativity,
351

generated torque, 164–165
glass thermal conductivity,

223
gold resistivity, 275
gravity

about, 81–82
acceleration, 84–85
airborne objects, 94–97
angles, 83–84
circular motion, 109–110
firing object at angles,

96–97
friction, 85–93
hang time, 95
inclined planes, 82–85
maximum height, 94–95
potential energy, 129–130
total time, 95–96
vectors, 57–59

gravity curves space physics
theory, 351–352

• H •
hang time, gravity, 95
heat, 10, 214–216
heat capacity, 357
heat conductivity, 232–234
heat engines, 246–248
heat transfer

about, 219
Avogadro’s Number,

228–229
conduction, 220–224
convection, 219–220
convective motion, 220
ideal gas law, 229–232
radiation, 224–227
thermals, 220

heavier mass collisions,
149–150

height, mechanical energy,
134–135

Heisenberg Uncertainty
Principle physics theory,
350–351

henry, 357
hertz, 357
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Hooke’s law
about, 189
elastic limit, 190
elasticity, 189–191
ideal spring, 190
restoring force, 191

horizontal simple harmonic
motion, 192–193

• I •
ideal gas law

Boyle’s law, 231
Charles’ law, 231
gas pressure, 231
heat transfer, 229–232

ideal gas molecules
about, 232
air molecule speed, 232–233
kinetic energy, 233–234

ideal gases, 229
ideal spring periodic motion,

190
impulse, 137–139, 357
impulse-momentum theorem

about, 140
equation, 141–142

inclined planes, gravity, 82–85
index of refraction, 357
induced EMF, 305
induced magnetic field, 311
inducing voltage,

electromagnetic
frequency (EMF),
307–308

inductance, electromagnetic
frequency (EMF),
312–313

inductors, alternating
current (A/C), 318–320

inelastic collisions, 148, 357
inertia

acceleration and torque,
179–182

advanced moments of,
175–177

force, 65–66
rotational kinetic energy,

182–183

rotational motion, 175–182
torque, 177–178

inertial frame, 357
inertial reference frame,

Theory of Special
Relativity, 341–342

instantaneous acceleration,
36

instantaneous speed, 30
inverse sine, 24
isobaric, 238–240, 357
isochoric, 240–241, 357
isolated system, 144
isothermal, 241–243, 357
isotherms, 243

• J •
Joules, 120, 357
junction rule, 278

• K •
Kelvin system

conversions, 210
thermodynamics, 209–210

Kelvins, 210, 357
Kepler’s laws of orbiting

bodies, 113
kilograms, 357
kinematics, 137, 357
kinetic energy

about, 9, 357
calculating with net force,

127–128
converting into potential

energy, 130
equation, 125–127
ideal gas molecules,

233–234
rotational motion, 180–185
work, 123–128

kinetic friction, 87–89, 357
Kirchoff’s rules

about, 278
junction rule, 278
loop rule, 278–280
multiple-loop circuits,

280–282

• L •
latent heat

about, 357
thermodynamics, 218
Web sites, 218

law of conservation of
momentum, 357

law of motion, 64–66
law of reflection, 323
length contracts at high

speeds, 344–345
lenses

about, 333
converging, 334–337
diverging lenses, 337–338
magnification, 336–337

Lenz’s law, 310–312
lever arm, torque, 162–164
light

radiation, 224–227
refracting, 324–325
Snell’s law, 324–325
speed, 64, 326–327, 342,

346–347
lighter mass collisions,

150–151
linear expansion

about, 210–211
deconstructing, 212
example, 212–213

linear momentum, 357
linear motion to rotational

motion, 153–154
lines, collisions along,

149–151
loop rule, 278–280

• M •
magnetic fields

about, 358
from wire, 298–300

magnetic flux,
electromagnetic
frequency (EMF),
308–310

magnetic poles, 288
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magnetism
about, 10–11, 287
attraction source, 288–289
centering current loops,

300–302
charged particles in

magnetic fields, 292–295
forces on currents, 295–296
magnetic field from wire,

298–300
magnetic poles, 288
moving charge, 289–290
moving in orbits, 292–295
north pole, 288
permanent magnets, 288
pushing and pulling

currents, 295–298
quantitative size of

magnetic forces, 290–292
south pole, 288
torques on currents,

296–298
uniform magnetic field with

solenoids, 302–303
magnification

lenses, 336–337
mirrors, 332

magnitudes
about, 358
centripetal acceleration,

102
vectors, 43, 49–53

mass
about, 358
force, 65–66

math, physics, and, 14
matter

destroy each other physics
theory, 352

Theory of Special Relativity,
345–346

maximum height, gravity,
94–95

measure smallest distance
physics theory, 349–350

measurement
about, 15–16
centimeter-gram-second

(CGS) system, 15–16,
19–20

converting units, 17–20
estimating accuracy, 22
meter-kilogram-second

(MKS) system, 15–16,
19–20

precision, 21–22
scientific notation, 20
significant digits, 21–22
units, 15–16
work, 120

measurment
air pressure, 232
water pressure, 232

mechanical energy
conservation, 132
height, 134–135
velocity, 134

metal radiant heating, 226
meter-kilogram-second

(MKS) system, 15–16,
19–20, 358

mgh, 130
microwave ovens physics

theory, 353–354
mirrors

about, 323–324, 327
concave, 327–332
convex, 332–333
magnification, 332

models, 14
molar specific heat capacity,

245–246
mole, 228
molecular mass, 229
moment arm, torque, 162
moment of inertia, 358
momentum

about, 139–140
final total, 145
firing velocity, 146–148
rain, 142–143
velocity, 145–146

movement
displacement, 26–29
distance, 26–29
objects, 8–9

moving charge, 289–290

moving conductor in
magnetic field,
electromagnetic
frequency (EMF),
306–307

moving in orbits, magnetism,
292–295

multiple charges, 256–257
multiple-loop circuits,

280–282
multiplication, 21

• N •
naming units force, 67
National Magnet Lab, MIT,

298
near-zero, 250
negative

acceleration, 35–36
work, 122–123

negative angular
acceleration, 160

net force
about, 66, 67–72
calculating, 71

net negative charge, 254
net positive charge, 254
neutron star physics theory,

351
Newton, Isaac

about, 63–64, 347–348, 351,
358

law of gravitation, 108–113
law of motion, 64–66
second law of motion,

66–72, 173–176
third law of motion, 72–79

nonconservative forces
versus conservative
forces, 131–132

nonuniform acceleration, 37
nonuniform speed, 30
normal force

about, 358
friction, 86

north pole, magnetism, 288
numerical vectors, 47–49
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• O •
objects in motion, 8–9
ohm, 358
Ohm’s law

about, 273–275
current flow, 273–274
resistivity, 274–275

oscillate, 358

• P •
p symbol, 139
parallel circuits

capacitors, 283–284
electrons, 276–278

parallel plate capacitors,
261–262

pascal, 358
pendulums, simple harmonic

motion, 203–204
period, 358
periodic motion

about, 189
elastic limit, 190
elasticity, 189–191
Hooke’s law, 189–191
ideal spring, 190
restoring force, 191
simple harmonic motion,

191–202
periodic simple harmonic

motion, 196–197
permanent magnets, 288
permittivity of free space,

255
phase changes, 216–218
photons, 351, 358
physics

about, 7–8
history, 7
math and, 14

physics theories
about, 349
absolute measures, 354
Big Bang, 353
black holes, 351
gravity curves space,

351–352

Heisenberg Uncertainty
Principle, 350–351

matter and antimatter
destroy each other, 352

measure smallest distance,
349–350

microwave ovens, 353–354
neutron star, 351
Planck, Max, 349–350
smallest time, 350
supernova explosions, 353
time as fourth dimension,

352
pivot point, torque, 161
Planck, Max, 349–350
plus-minus fad, 22
point charges

electric fields, 259–260
electric potential energy,

266–268
polarize, 358
positive acceleration, 35–36
positive charges, 258–259
potential energy,

about, 9, 358
converting into kinetic

energy, 130
gravity, 129–130
work, 128–130

power
about, 135, 358
alternate calculations, 136
units, 135–136
watts, 135–136

precision measurement,
21–22

pressure, 358
principle of conservation of

momentum, 143–148
problem-solving skills, 15
proton charges, 253–254
pushing and pulling currents,

magnetism, 295–298
pushing weight, work,

120–121

• Q •
quantitative size of magnetic

forces, 290–292

• R •
radians, 358
radiant heating, 225
radiation

about, 358
blackbodies, 226–227
light, 224–227
visibility, 225–226

rain, momentum, 142–143
ray diagrams, 328–331, 358
RC circuits

about, 359
electrons, 285–286

RCL circuits, 321–322
real image, 359
real values, 317–318
refracting light, 324–325
refraction, 359
resistance, 359
resistivity, Ohm’s law,

274–275
resistors, 359
restoring force, periodic

motion, 191
resultant, 359
resultant vectors, 45–46
reversible process, 248
root mean square, current

and voltage, 314–315
rotation, 153
rotational equilibrium,

166–171
rotational inertia, 359
rotational kinetic energy,

182–183
rotational motion

about, 173
angular momentum,

185–187
angular motion, 173–176
converting tangential

acceleration to angular
acceleration, 175

inertia, 175–182
kinetic energy, 180–185
from linear motion, 153–154
Newton’s second law,

173–176
rubber resistivity, 275
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• S •
satellite orbits, angular

momentum, 186–187
satellite period, circular

motion, 112–113
scalar work, 120
scalars, 44–45, 359
scientific notation, 20
second law of motion, 66–72
second law of

thermodynamics
about, 246
Carnot engine, 248–250
heat engines, 246–248

series, 359
series circuits

capacitors, 284
electrons, 275–276

significant digits,
measurement, 21–22

silver thermal conductivity,
223

simple harmonic motion
about, 191, 359
acceleration, 198–200
angular frequency of mass

of spring, 200–202
elastic potential energy,

202–203
equilibrium point, 192–193
factoring energy into,

202–203
horizontal, 192–193
pendulums, 203–204
periodic, 196–197
sine wave, 194–196
velocity, 197–198
vertical, 192–193

sine wave, 194–196
slug, 66
smallest time physics theory,

350
Snell’s law, 324–325
solenoids, 302–303, 359
south pole, magnetism, 288
space travel aging, 343–344
special relativity, 359
specific heat capacities, 215,

245–246, 359

speed
about, 25, 29
acceleration, 40–41
average, 31
average versus uniform

motion, 31–32
displacement, 40–41
instantaneous, 30
light, 64, 326–327, 342,

346–347
measurement

displacement, 28–29
nonuniform, 30
uniform, 30

Spencer, Percy, 354
spherical aberration, 336
standard pressure, 359
Standard Temperature and

Pressure, 231
standard volume, 359
static electricity

about, 253
atoms, 253–254
electric fields, 258–262
electric forces, 254–257
electric potential energy,

262–270
electron charges, 253–254
parallel plate capacitors,

261–262
proton charges, 253–254

static friction, 87–89, 359
steel thermal conductivity,

223
styrofoam thermal

conductivity, 223
subtracting vectors, 46–47
subtraction, 22
sun’s mass, Theory of Special

Relativity, 346
supernova explosions

physics theory, 353

• T •
tangent, 24
tangential acceleration

about, 156
converting to angular

acceleration, 175

tangential motion
about, 154–156
acceleration, 156
centripetal, 156–158

test charges, electric fields,
259–260

Theory of Relativity, 11
Theory of Special Relativity

equivalence of matter and
energy, 345

inertial reference frame,
341–342

length contracts at high
speeds, 344–345

matter and antimatter,
345–346

Newton’s theories, 347–348
space travel, aging, 343–344
speed of light, 342, 346–347
sun’s mass, 346
time dilation, 343

thermal conductivity
about, 359
conduction, 222–223
materials, 223

thermal equilibrium, 235–236
thermal expansion, 359
thermals, 220
thermodynamics

about, 10, 207, 235, 359
absolute zero, 209–210
Celsius scale, 208–209
energy conservation,

236–246
Fahrenheit scale, 208–209
first law of

thermodynamics,
236–246

heat, 214–216
Kelvin system, 209–210
latent heat, 218
linear expansion, 210–213
phase changes, 216–218
second law of

thermodynamics,
246–250

thermal equilibrium,
235–236

third law of
thermodynamics, 250
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thermodynamics (continued)
volume expansion, 213–214
zeroth law of

thermodynamics,
235–236

thin-lens equation, 335
thin lenses, 336
third law of motion

about, 72
angles, 75–77
equilibrium, 77–79
friction, 73–75

third law of thermodynamics,
250

time, 37–40
time as fourth dimension

physics theory, 352
time-averaged value, 317
time dilation theory, 343
torque

about, 160–161, 359
currents magnetism,

296–298
equation, 162
fulcrum, 161
generated, 164–165
inertia, 177–178, 179–182
lever arm, 162–164
moment of inertia, 162
pivot point, 161
vector, 165–166

torr, 231
total time, gravity, 95–96
triangles, 24
trigonometry, 23–24
turns, circular motion,

104–106
two dimensions, collisions,

151–152

• U •
Uncertainty Principle, 360
uniform acceleration, 37
uniform circular motion, 100

uniform magnetic field with
solenoids, 302–303

uniform motion versus
average speed, 31–32

uniform speed, 30
units

measurement, 15–16
power, 135–136

universal gas constant, 230
unmasking identities,

vectors, 53–57
uphill friction, 89–93

• V •
vectors

about, 43, 360
acceleration, 55–57
adding, 45–46
angles, 51–53
arrows, 44–45
components, 49–53
displacement, 54
equal, 45
gravity, 57–59
magnitudes, 43, 49–53
numerical, 47–49
resultant, 45–46
scalars, 44–45
subtracting, 46–47
torque, 165–166
unmasking identities, 53–57
velocity, 50, 54–55, 57–59

velocity
about, 360
circular motion, 106–108
mechanical energy, 134
momentum, 145–146
simple harmonic motion,

197–198
vectors, 50, 54–55, 57–59

vertical circular motion,
113–115

vertical simple harmonic
motion, 192–193

virtual image, 360
visibility, radiation, 225–226
volt, 360
voltage, 264–265
volume expansion, 213–214

• W •
water pressure, 232
wattage, 275
watts, 135–136
weight, 360
wood resistivity, 275
work

about, 119–120, 360
conservative force versus

nonconservative force,
131–132

drag, 121–122
kinetic energy, 123–128
measurement systems, 120
mechanical energy, 132–135
negative, 122–123
potential energy, 128–130
power, 135–136
pushing weight, 120–121
scalar, 120

• Z •
zeroth law of

thermodynamics,
235–236
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