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Preface

The international conferences with the generic title of Integral Methods in
Science and Engineering (IMSE) are a forum where academics and other re-
searchers who rely significantly on (analytic or numerical) integration methods
in their investigations present their newest results and exchange ideas related
to future projects.

The first two conferences in this series, IMSE1985 and IMSE1990, were
held at the University of Texas at Arlington under the chairmanship of Fred
Payne. At the 1990 meeting, the IMSE consortium was created for the purpose
of organizing these conferences under the guidance of an International Steering
Committee. Subsequently, IMSE1993 took place at Tohoku University, Sendai,
Japan, IMSE1996 at the University of Oulu, Finland, IMSE1998 at Michi-
gan Technological University, Houghton, MI, USA, IMSE2000 in Banff, AB,
Canada, IMSE2002 at the University of Saint-Étienne, France, and IMSE2004
at the University of Central Florida, Orlando, FL, USA. The IMSE confer-
ences have now become recognized as an important platform for scientists
and engineers working with integral methods to contribute directly to the ex-
pansion and practical application of a general, elegant, and powerful class of
mathematical techniques.

A remarkable feature of all IMSE conferences is their socially enjoy-
able atmosphere of professionalism and camaraderie. Continuing this trend,
IMSE2006, organized at Niagara Falls, ON, Canada, by the Department of
Civil and Environmental Engineering and the Department of Applied Mathe-
matics of the University of Waterloo, was yet another successful event in the
history of the IMSE consortium, for which the participants wish to express
their thanks to the Local Organizing Committee:

Stanislav Potapenko (University of Waterloo), Chairman;

Peter Schiavone (University of Alberta);

Graham Gladwell (University of Waterloo);

Les Sudak (University of Calgary);

Siv Sivaloganathan (University of Waterloo).



x Preface

The organizers and the participants also wish to acknowledge the financial
support received from the Faculty of Engineering and the Department of Ap-
plied Mathematics, University of Waterloo and the Department of Mechanical
Engineering, University of Alberta.

The next IMSE conference will be held in July 2008 in Santander,
Spain. Details concerning this event are posted on the conference web page,
http://www.imse08.unican.es.

This volume contains 2 invited papers and 30 contributed papers accepted
after peer review. The papers are arranged in alphabetical order by (first)
author’s name.

The editors would like to record their thanks to the referees for their will-
ingness to review the papers, and to the staff at Birkhäuser-Boston, who have
handled the publication process with their customary patience and efficiency.
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M.E. Pérez (University of Cantabria)

S. Potapenko (University of Waterloo)

K. Ruotsalainen (University of Oulu)

P. Schiavone (University of Alberta, Edmonton)

S. Seikkala (University of Oulu)



List of Contributors

Mario Ahues
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Säıd Chergui
Entreprise Nationale des Travaux
aux Puits, Direction Engineering
BP 275
Hassi-Messaoud 30500, Algeria
sadchergui@yahoo.fr

Igor Chudinovich
University of Tulsa
600 S. College Avenue
Tulsa, OK 74104-3189, USA
igor-chudinovich@utulsa.edu

Christian Constanda
University of Tulsa
600 S. College Avenue
Tulsa, OK 74104-3189, USA
christian-constanda@utulsa.edu

Dale R. Doty
University of Tulsa
600 S. College Avenue
Tulsa, OK 74104-3189, USA
dale-doty@utulsa.edu

Liselott Flodén
Mittuniversitetet
Akademigatan 1
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1

Superconvergence of Projection Methods for
Weakly Singular Integral Operators

M. Ahues1, A. Largillier1, and A. Amosov2

1 Université de Saint-Étienne, France; mario.ahues@univ-st-etienne.fr,
largillier@univ-st-etienne.fr

2 Moscow Power Engineering Institute (Technical University), Moscow, Russia;
amossovandrey@yandex.ru

1.1 Introduction

In [AALT05], the authors proposed error bounds for the discretization er-
ror corresponding to the Kantorovich projection approximation πhT of a lin-
ear, compact, weakly singular integral operator T defined in the functional
Lebesgue space Lp(0, τ∗) for some p ∈ [1,+∞]. The equation to be solved is
ϕ = Tϕ + f , where f is a given function lying in the space Lp(0, τ∗). Here,
πh is a family of projections onto the piecewise constant function subspace of
Lp(0, τ∗) and it is pointwise convergent to the identity operator. The error es-
timates in that article were significant for sufficiently regular grids in the sense
that they grew to infinity if the ratio between the biggest and the smallest step
of the mesh went to zero. In this chapter, we discuss four numerical solutions
based on such a family of projections. We obtain accurate error estimates that
are independent of the length τ∗ of the interval where f and the solution ϕ
are defined, and we suggest global superconvergence phenomena in the sense
of [Sloa82]. Particular attention is given to the transfer equation occurring in
astrophysical mathematical models of stellar atmospheres. In that context, τ∗
represents the optical depth of the star’s atmosphere and the operator T has
a multiplicative factor ω0 representing the albedo. The error bounds are given
explicitly in terms of this parameter.

1.2 General Facts

We state the problem in the following terms: Given τ∗ > 0, ω0 ∈ [0, 1[, g such
that
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g(0+) = +∞,

g is continuous, positive and decreasing on ]0,∞[,

g ∈ Lr(R) ∩W 1,r(δ,+∞) for all r ∈ [1,∞[ and all δ > 0,

‖g‖L1(R+) ≤ 1
2 ,

and a function f , find a function ϕ such that

ϕ(τ) = ω0

∫ τ∗

0

g(|τ − τ ′|)ϕ(τ ′) dτ ′ + f(τ), τ ∈ [0, τ∗].

As an example, we consider the transfer equation

ϕ(τ) =
ω0

2

∫ τ∗

0

E1(|τ − τ ′|)ϕ(τ ′) dτ ′ + f(τ), τ ∈ [0, τ∗],

where

E1
(τ) :=

∫ 1

0

µ−1e−τ/µ dµ, τ > 0,

the source term f belongs to L1(0, τ∗), the optical depth τ∗ is a very large
number, and the albedo ω0 may be very close to 1. For details, see [Busb60].

The goal of this chapter is as follows: For a class of four numerical solutions
based on projections, find accurate error estimates that

1. are independent of the grid regularity,
2. are independent of τ∗,
3. depend on ω0 in an explicit way,
4. suggest global superconvergence phenomena in the sense of [Sloa82].

As an abstract framework for the subsequent development, we choose the
following: Set

(Λϕ)(τ) :=

∫ τ∗

0

g(|τ − τ ′|)ϕ(τ ′) dτ ′, τ ∈ [0, τ∗],

and let X and Y be suitable Banach spaces. The problem reads as follows:
For f ∈ Y , find ϕ ∈ X such that

ϕ = ω0Λϕ+ f.

We remark that

‖(I − ω0Λ)−1‖ ≤ γ0 :=
1

1 − ω0

,

where the equality is attained for X = Y = L2(0,∞).
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1.3 Projection Approximations

We consider a family of projections onto piecewise constant functions. Let be
a grid of n+ 1 points in [0, τ∗] :

0 =: τ0 < τ1 < . . . < τn−1 < τn := τ∗,

and define

hi := τi − τi−1, i ∈ [[1, n ]],

h := (h1, h2, . . . , hn),

Gh := (τ0, τ1, . . . , τn),

ĥ := max
i∈[[1,n ]]

hi,

Ii− 1
2

:= ]τi−1, τi[, i ∈ [[1, n ]],

τi− 1
2

:= (τi−1 + τi)/2, i ∈ [[1, n ]].

The approximating space P
h
0
(0, τ∗) is characterized by

f ∈ P
h
0
(0, τ∗) ⇐⇒ ∀i ∈ [[1, n ]], ∀τ ∈ Ii− 1

2
, f(τ) = f(τi− 1

2
).

In what follows,

p ∈ [1,+∞] := [1,+∞[ ∪ {+∞}

is arbitrary but fixed once for all.
The family of projections

πh : Lp(0, τ∗) → Lp(0, τ∗)

is defined as follows:
For all i ∈ [[1, n ]] and all τ ∈ Ii− 1

2
,

(πhϕ)(τ) :=
1

hi

∫ τi

τi−1

ϕ(τ ′) dτ ′.

Hence
πh(Lp(0, τ∗)) = P

h
0
(0, τ∗).

Four approximations based on πh are considered:

1. The classical Galerkin approximation ϕG
h , which solves

ϕG
h = ω0πhΛϕ

G
h + πhf.

2. The Sloan approximation ϕS
h (iterated Galerkin), which solves

ϕS
h = ω

0
Λπhϕ

S
h + f.
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3. The Kantorovich approximation ϕK
h , which solves

ϕK
h = ω0πhΛϕ

K
h + f.

4. The authors’ approximation ϕA
h (iterated Kantorovich), which solves

ϕA
h = ω0Λπhϕ

A
h + f + ω0Λ(I − πh)f.

Remark 1. The following relationships and facts are important and easy to
check:

ϕG
h ∈ P

h
0
(0, τ∗).

ϕG
h is computed through an algebraic linear system.

ϕS
h = ω0Λϕ

G
h + f.

If ψh = ω
0
πhΛψh + πhΛf, then ϕK

h = ω
0
ψh + f.

If φh = ω0Λπhφh + Λf, then ϕA
h = ω0φh + f.

1.4 Superconvergence

Superconvergence is understood with respect to dist(ϕ,Ph
0
(0, τ∗)).

Theorem 1. In any Hilbert space setting, there exists α such that

‖ϕ− πhϕ‖ ≤ ‖εGh ‖ ≤ α‖ϕ− πhϕ‖.

We now present some useful technical notions and the main result. Define

∆ǫg(τ) := g(τ + ǫ) − g(τ),

ωr(g, δ) := sup
0<ǫ≤δ

‖∆ǫg(| · |)‖Lr(R),

ω∞(g, δ) := essup
|τ−τ ′|≤δ

|g(τ) − g(τ ′)|,

and for α ∈ [0, 1] and i ∈ [[1, n ]]:

∆h
αf(τ) :=

{
∆αhi

f(τ) for τ ∈ [τi−1, τi − αhi],
0 for τ ∈ ]τi − αhi, τi],

ωp(f,Gh) := 2
1
p

[ ∫ 1

0

‖∆h
αf‖p

p
dα
] 1

p

,

ω̂p(g,Gh) := sup
0<τ ′<τ∗

ωp(g(| · −τ ′|,Gh) for p∈ [1,∞[,

ω∞(f,Gh) := max
i∈[[1,n ]]

essup
τ,τ ′∈ I

i−
1
2

|f(τ)−f(τ ′)|.

For N ∈ {G,K,S,A}, we consider the absolute discretization error

εNh := ϕN
h − ϕ.

The main result is as follows.
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Theorem 2. If 0 �= f ∈ Lp(0, τ∗) for some p ∈ [1,+∞], then a unique so-
lution ϕ exists and satisfies 0 �= ϕ ∈ Lp(0, τ∗). Moreover, the discretization
errors are such that

‖εKh ‖
p

‖ϕ‖
p

≤ 4 · 3
1
pω0γ0

∫ ĥ

0

g(τ) dτ,

‖εSh‖
p

‖ϕ‖
p

≤ 12 · 3− 1
pω0γ0

∫ ĥ

0

g(τ) dτ,

‖εAh ‖
p

‖ϕ‖
p

≤ 48ω2
0
γ0

[ ∫ ĥ

0

g(τ) dτ
]2
.

A proof of this result may be given considering four steps:

1. Establish the following estimate:
For all f ∈ Lp(0, τ∗),

‖(I − πh)f‖
p

≤ ω
p
(f,Gh).

The proof is technical.
Let f ∈ Lp(0, τ∗). For all i ∈ [[1, n ]] and τ ∈ Ii−1/2,

(I − πh)f(τ) =
1

hi

τi∫

τi−1

(f(τ) − f(τ ′)) dτ ′.

If p < ∞, then

τi∫

τi−1

|(I − πh)f(τ)|p dτ ≤
τi∫

τi−1

[ 1

hi

τi∫

τi−1

|f(τ ′) − f(τ)| dτ ′
]p
dτ

≤ 1

hi

τi∫

τi−1

[ τi∫

τi−1

|f(τ ′) − f(τ)|pdτ ′
]
dτ

=
2

hi

τi∫

τi−1

[ τi∫

τ

|f(τ ′) − f(τ)|pdτ ′
]
dτ

= 2

τi∫

τi−1

[ (τi−τ)/hi∫

0

|f(τ + αhi) − f(τ)|pdα
]
dτ

= 2

1∫

0

[ τi−αhi∫

τi−1

|∆αhi
f(τ)|pdτ

]
dα.

As a consequence,
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‖(I − πh)f‖p
p

≤ 2

n∑

i=1

1∫

0

[ τi−αhi∫

τi−1

|∆αhi
f(τ)|pdτ ′

]
dα = ωp(f,Gh)p.

If p = ∞, the proof is elementary.
2. Show that

‖εKh ‖
p

‖ϕ‖
p

≤ ‖(I − πh)Λ‖
p
,

‖εSh‖
p

‖ϕ‖
p

≤ ‖Λ(I − πh)‖
p
,

‖εAh ‖
p

‖ϕ‖
p

≤ ‖Λ(I − πh)Λ‖
p
.

3. Prove that

‖(I − πh)Λ‖
p

≤ ω1(g, ĥ)1− 1
p ω̂1(g,Gh)

1
p ,

‖Λ(I − πh)‖
p

≤ ω1(g, ĥ)
1
p ω̂1(g,Gh)1− 1

p ,

‖Λ(I − πh)Λ‖
p

≤ ω1(g, ĥ)ω̂1(g,Gh).

4. Demonstrate that

ω
1(g, ĥ) ≤ 4

∫ ĥ

0

g(τ) dτ,

ω̂1(g,Gh) ≤ 12

∫ ĥ

0

g(τ) dτ.

Remark 2. If the kernel is g := 1
2E1, then, as ĥ → 0+,

∫ ĥ

0

g(τ) dτ = O(ĥ ln ĥ).

1.5 Numerical Evidence

Let us consider the following data:

1. The kernel: g := 1
2E1.

2. The albedo: ω0 = 0.5.
3. The optical depth: τ∗ = 500.
4. A constant source term: f(τ) = 0.5 for all τ ∈ [0, τ∗].
5. The number of grid points: n = 1000.
6. The first 5 points equally spaced by 0.1.
7. The last 5 points equally spaced by 0.1.
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8. A uniform grid with 990 points between 0.5 and 499.5 so

ĥ = 0.504.

Figure 1.1 shows the residual functions

̺N
h := ϕN

h − ω0Λϕ
N
h − f, N ∈ {K,A},

in the subinterval [0, 5] of the whole atmosphere [0, 500].

Since in any normed linear context the relative residuals
‖̺N

h ‖
‖f‖ are of the

order of the relative errors
‖εNh ‖
‖ϕ‖ , the numerical results show that the theo-

retical majorizations are sharp enough.

0

0.5E-3

1.0E-3

1.5E-3
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•

•

•
•
•

•

•

•

•
• • • • •
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Fig. 1.1. Plotting residuals on [0, 5].
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2.1 Introduction

Let T be a compact integral operator on a Banach space X over the complex
scalars C. Consider the eigenvalue problem for T of finding a nonzero ϕ ∈ X
and a nonzero λ ∈ C such that Tϕ = λϕ. More generally, we may consider
the spectral subspace problem for T of finding linearly independent elements
ϕ1, . . . , ϕm in X and a nonsingular m × m matrix Θ with complex entries
such that

[Tϕ1, . . . , Tϕm] = [ϕ1, . . . , ϕm]Θ.

Here, Θ represents the restricted operator TM : M → M , x �→ Tx, where
M := Span [ϕ1, . . . , ϕm]. If M is the spectral subspace corresponding to a
isolated spectral value λ of T , then the spectrum of Θ is {λ} and m is the
algebraic multiplicity of λ.

If we let X = X1×m and ϕ = [ϕ1, . . . , ϕm] ∈ X, then the above equation
can be written as T ϕ = ϕΘ. Since finding exact solutions of such problems

is a tall order, one often finds an approximation T̃ of T and attempts to
solve the problem T̃ ϕ̃ = ϕ̃ Θ̃. If an approximate solution (ϕ̃, Θ̃) is not suf-
ficiently accurate, one may employ an iterative refinement technique or use
an acceleration technique as described in Chapter 3 of [ALL01] for improving
the accuracy. In this procedure, the question of implementation of these tech-
niques on a computer is of paramount importance. For this purpose, we must
be able to reduce this procedure to (finite-dimensional) matrix computations.

If the approximating operator T̃ is of finite rank, then the spectral subspace
problem T̃ ϕ̃ = ϕ̃ Θ̃ as well as iterative refinement and acceleration can in fact
be reduced to matrix computations (see Chapter 5 of [ALL01]).

If X := C0([0, 1],C), the space of all complex-valued continuous functions
on the interval [0, 1], and if the kernel of a compact integral operator T on X
is weakly singular, then one may resort to singularity subtraction (see [Ans81]
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and [ALL01].) Here one obtains a sequence (Tn) of the so-called Kantorovich–
Krylov approximations, which converges to T in the following manner:

(1) ‖Tnx− Tx‖ → 0 as n → ∞ for each x ∈ X,
(2) ‖(Tn − T )T‖ → 0 as n → ∞,
(3) ‖(Tn − T )Tn‖ → 0 as n → ∞

(see Proposition 4.18 and Theorem 4.19 of [ALL01]). The approximating op-
erator Tn in this case is not of finite rank. Yet in [AL04] it was shown that
the spectral subspace problem Tn ϕn = ϕnΘn for each Tn can be reduced to
finite-dimensional computations. In addition, in [ALL06] it was shown that
iterative refinement based on Tn can also be reduced to finite-dimensional
considerations. Two such iterative refinement schemes are known as “elemen-
tary iteration” and “double iteration” (see Chapter 3 of [ALL01]). However,
it turns out that the acceleration technique based on Tn is not in general
amenable to such a reduction. We, therefore, consider an approximate imple-
mentation of the acceleration technique.

2.2 Approximate Acceleration

Let T be a bounded operator on a complex Banach space X, and let a bounded
operator T̃ on X serve as an approximation of T . The acceleration technique
involves the following framework (see Section 3.2 of [ALL01]). Fix a posi-
tive integer q greater than 1, and let X := Xq×1 = {x = [x1, . . . , xq]

⊤ :
x1, . . . , xq in X} denote the product space of X consisting of the columns of

length q with entries in X. Define the operators T and T̃ from X to X by

Tx :=

⎡
⎢⎢⎢⎣

Tx1

x1

...
xq−1

⎤
⎥⎥⎥⎦ and T̃x :=

⎡
⎢⎢⎢⎣

∑q−1
k=0(T − T̃ )kT̃ xk−1

x1

...
xq−1

⎤
⎥⎥⎥⎦ for x =

⎡
⎢⎣
x1

...
xq

⎤
⎥⎦ in X.

They are represented by q × q matrices of operators on X as given below:

T =

⎡
⎢⎢⎢⎢⎢⎣

T O · · · · · · O
I O · · · · · · O
O I O · · · O
...

. . .
. . .

. . .
...

O · · · O I O

⎤
⎥⎥⎥⎥⎥⎦

and T̃ =

⎡
⎢⎢⎢⎢⎢⎣

T̃ (T − T̃ )T̃ · · · · · · (T − T̃ )q−1T̃
I O · · · · · · O
O I O · · · O
...

. . .
. . .

. . .
...

O · · · O I O

⎤
⎥⎥⎥⎥⎥⎦
.

The nonzero spectral values of T and T are the same. But this is not the case
in general for the nonzero spectral values of T̃ and T̃. In fact, if ‖(T − T̃ )T‖
and ‖(T − T̃ )T̃‖ are small, then the nonzero spectral values of finite type of T

are better approximated by the nonzero spectral values of finite type of T̃ as
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compared with those of T̃ . Also, a basis for a spectral subspace of T is better
approximated by the first components of a basis for the corresponding spectral
subspace of T̃. However, if X is infinite-dimensional, then T̃ is not of finite
rank (even if T̃ is of finite rank) and it may not be possible to implement the

spectral calculations for T̃ on a computer. This is the case, in general, when T
is a weakly singular integral operator on C0([0, 1],C) and T̃ is a Kantorovich–
Krylov approximation of T . In such a situation, we may attempt to employ
the iterative refinement technique based on the operator S̃ : X → X given by

S̃ :=

⎡
⎢⎢⎢⎢⎢⎣

T̃ O · · · · · · O
I O · · · · · · O
O I O · · · O
...

. . .
. . .

. . .
...

O · · · O I O

⎤
⎥⎥⎥⎥⎥⎦

to obtain approximations of spectral values and spectral subspaces of T̃. In
this connection, we prove the following result.

Theorem 1. Let Λ̃ be a spectral set of finite type for T̃ such that 0 �∈ Λ̃.
Assume that it is possible to implement an iterative refinement scheme based
on T̃ and Λ̃ to obtain approximation of spectral elements of operators defined
on X. Then it is possible to implement such an iterative refinement scheme
based on S̃ and Λ̃ to obtain approximations of spectral elements of operators
defined on X.

Proof. Let m denote the rank of the spectral projection associated with T̃
and Λ̃. Our assumption says that we can compute (using finite-dimensional
matrix calculations) (i) an ordered basis ϕ̃ of the spectral subspace associated

with T̃ and Λ̃, (ii) an adjoint basis ϕ̃∗ of the spectral subspace associated

with T̃ ∗ and Λ̃∗ satisfying ϕ̃, ϕ̃∗ = Im, and (iii) a solution of any Sylvester
equation of the following type:

T̃ x̃− x̃ Θ̃ = ỹ, subject to x̃, ϕ̃∗ = O,

where the nonsingular m×m matrix Θ̃ satisfies T̃ ϕ̃ = ϕ̃ Θ̃ and ỹ ∈ X satisfies

ỹ, ϕ̃ = O. Here T̃ ∗ denotes the adjoint of T̃ defined on the adjoint space

X∗ consisting of all conjugate-linear continuous functionals on X, Λ̃∗ is the
set of all complex conjugates of points in Λ̃, and x, f denotes the m × m
Gram matrix associated with x ∈ X and f ∈ X∗, whose (i, j)th element is
equal to the complex conjugate of fi(xj), 1 ≤ i, j ≤ m.

We note that Λ̃ is a spectral set for S̃ and the rank of the spectral projection
associated with S̃ and Λ̃ is equal to m (see part (b) of Proposition 3.9 of
[ALL01]). Let X := X1×m denote the product space of X consisting of the
rows of length m with entries in X. An element of X can be written as
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x = [x1, . . . ,xm], where x1, . . . ,xm are in X,

and also as
x = [x1, . . . , xq]

⊤, where x1, . . . , xq are in X.

First, it can be seen that

ϕ̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̃

ϕ̃ Θ̃−1

...

ϕ̃ Θ̃−q+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

forms an ordered basis for the spectral subspace associated with S̃ and Λ̃ and
S̃ ϕ̃ = ϕ̃ Θ̃. (See pages 168 and 169 of [ALL01].) Clearly, ϕ̃ is computable

since ϕ̃ and Θ̃ are given to be computable.
Second, if we let

ϕ̃
∗ :=

⎡
⎢⎢⎢⎢⎢⎣

ϕ̃∗

0
...
0

⎤
⎥⎥⎥⎥⎥⎦

∈ X∗,

then ϕ̃
∗ is an adjoint basis for the spectral subspace associated with S̃∗ and

Λ̃∗; that is, S̃
∗
ϕ̃

∗ = ϕ̃∗Θ̃∗ and ϕ̃, ϕ̃∗ = Im. This can be seen as follows:

S̃
∗
ϕ̃

∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

T̃
∗
I∗ O · · · O

O O I∗ · · · O
...

... O
. . . O

...
...

...
. . . I∗

O O O · · · O

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ϕ̃∗

0
...
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

T̃
∗
ϕ̃∗

0
...
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ϕ̃∗Θ̃∗

0
...
0

⎤
⎥⎥⎥⎦ = ϕ̃

∗Θ̃∗

and

ϕ̃, ϕ̃∗ = [ϕ̃, ϕ̃ Θ̃−1, . . . , ϕ̃ Θ̃−q+1]⊤, [ϕ̃∗, 0, . . . , 0]⊤

= ϕ̃, ϕ̃∗ + ϕ̃ Θ̃−1, 0 + · · · + ϕ̃ Θ̃−q+1, 0

= Im +O + · · · +O = Im.

Again, it is clear that ϕ̃
∗ is computable since ϕ̃∗ is given to be computable.

Finally, let ỹ ∈ X be such that ỹ, ϕ̃∗ = O. If ỹ = [ỹ
1
, . . . , ỹ

q
]⊤ with

ỹ
1
, . . . , ỹ

q
in X, then

ỹ, ϕ̃∗ = ỹ
1
, ϕ̃∗ + ỹ

2
, 0 + · · · + ỹ

q
, 0 = ỹ

1
, ϕ̃∗ .
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Hence ỹ
1
, ϕ̃∗ = O. By our assumption, we can compute x̃1 ∈ X such that

T̃ x̃1 − x̃1Θ̃ = ỹ
1

and x̃1, ϕ̃
∗ = O.

For i = 2, . . . , q, define

x̃i :=
(
x̃i−1 − ỹ

i

)
Θ̃−1,

so that x̃i−1 − x̃iΘ̃ = ỹ
i

for i = 2, . . . , q. If we let x̃ = [x̃1, . . . , x̃2]
⊤, then

S̃ x̃ − x̃Θ̃ =

⎡
⎢⎢⎢⎣

T̃ x̃1

x̃1
...

x̃q−1

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

x̃1Θ̃

x̃2Θ̃
...

x̃qΘ̃

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ỹ
1
ỹ
2
...
ỹ

q

⎤
⎥⎥⎥⎦ = ỹ.

Also,

x̃, ϕ̃∗ = x̃1, ϕ̃
∗ + x̃2, 0 + · · · + x̃q, 0 = O +O + · · · +O = O.

Thus, a solution x̃ of a Sylvester equation

S̃ x̃ − x̃ Θ̃ = ỹ, subject to x̃, ϕ̃∗ = O,

is also computable. This implies that an iterative refinement scheme based on
S̃ and Λ̃ is implementable for obtaining approximations of spectral elements
of operators defined on X, as described in Section 5.2 of [ALL01].

The above result allows us to compute approximately the nonzero spectral
values of finite type and the corresponding spectral subspaces of the acceler-
ation operator T̃ defined on X.

2.3 Numerics for a Weakly Singular Kernel

We consider a weakly singular kernel

g(t) := ln 2 − ln(1 − cos 2πt), t ∈ [0, 1],

and the corresponding integral operator T defined on X := C0([0, 1],C) by

(Tx)(s) :=

∫ 1

0

g(|s− t|)x(t)dt, x ∈ X, s ∈ [0, 1].

This operator has 2 ln 2 as a simple eigenvalue and 1, 1/2, 1/3, . . . as dou-

ble eigenvalues (see [Wan76] and [ALL06]). The approximating operator T̃ is
taken as a Kantorovich–Krylov approximation Tn built by considering
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gn(t) :=

{
g(hn) if 0 ≤ t ≤ hn,
g(t) otherwise,

where 0 < hn < 1, and by using a compound trapezoidal quadrature rule
with n nodes. Since we need to solve a spectral subspace problem for Tn

initially, the number n of nodes is kept moderate. On the other hand, since
evaluations involving the operator T are difficult, the operator T is replaced
by its Kantorovich–Krylov approximation TN of a very high order; that is, N
is taken to be much larger than n. Our computations use n = 40 and N = 625.

For approximate acceleration, we consider q = 2 and implement the itera-
tive refinement scheme known as the “double iteration” based on the operator

Sn :=

[
Tn O
I O

]

defined on X := X2×1 in order to obtain approximate spectral element of the
acceleration operator

Tn :=

[
Tn (T − Tn)Tn

I O

]
.

We consider the four double eigenvalues 1, 1/2, 1/3, and 1/4 of T and
their corresponding spectral subspaces of dimension 2. The natural logarithm
of the norm of the residual after each step of the iterative refinement is shown
in Figure 2.1.
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Fig. 2.1. Approximate acceleration convergence with double iteration for refine-
ment: k �→ ln(‖Residual of iterate number k‖).
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It is clear from Figure 2.1 that the convergence of the double iteration
for the double eigenvalue 1/4 is slower than the convergence for the other
three double eigenvalues 1, 1/2, and 1/3. The residuals considered here are
calculated with respect to the “final” operator Tn. The accuracy given by
this approximate acceleration cannot be better than the accuracy given by
the acceleration operator Tn itself. This is borne out in Figure 2.2, which
depicts the natural logarithms of the norms of the residuals calculated with
respect to the “final” operator T .
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Fig. 2.2. Natural logarithm of the norm of the residuals with respect to T .

In the case of the double eigenvalue 1 of T , the norms of the residuals are
stationary after the fifth iterate, and in the case of the double eigenvalue 1/4
of T they are stationary after the third iterate itself, whereas the accuracy
attained for the eigenvalue 1 of T is much better than the one for the eigenvalue
1/4 of T .

We remark that the implementation of the approximate acceleration tech-
nique requires a much larger amount of computation compared with the usual
iterative refinement technique. As such, the latter should be preferred when-
ever its stability is not in doubt.
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3.1 Introduction

Mathematical modeling of solidification and melting is important for many
technological applications [Dav01]. Numerical studies of moving interfaces be-
tween phases employ both finite-difference [JT96] and finite element [FO00]
approaches. However, these standard approaches have to address the difficult
issue of maintaining the accuracy of the method in situations when the do-
main shape is changing: This requires dealing with complicated deforming
meshes or some interface tracking algorithms for situations when the mesh
is fixed. To avoid these difficulties, alternative methods have been proposed.
Phase field methods treat interfaces as regions of rapid change in an auxiliary
order parameter, or phase field [AMc98]. The phase field takes two different
constant values in the two phases away from the interface. Evolution of the
phase field in time is followed in the simulation, as opposed to the evolution
of a free boundary. Another related approach used to avoid direct tracking of
the interface is the level-set method [OF01]. It involves solving an equation
for a level-set function; the information about the interface motion is then
recovered by following a zero contour of this function.

Integral equation methods have been used in several studies of solidifica-
tion and melting [Wro83], [BM92]. However, they are rarely applied to prac-
tical simulations, in part because in many situations competing approaches,
e.g., phase field methods, turn out to be more efficient. In recent years, sub-
stantial progress has been made in the development of fast boundary integral
methods for the heat equation [GL99], [Tau06]. Application of such methods
to problems in melting and solidification allows one to develop a new class of
efficient, accurate, and robust methods for numerical simulations of evolving
solid–liquid interfaces. The goal of this chapter is to discuss some numerical
issues in the development of fast methods for simulations of solidification and
melting in three-dimensional configurations. Computational examples are lim-
ited here to cases with spherical symmetry, but the approach can be extended
to a variety of more complicated situations.
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3.2 Model Formulation

Let us first formulate a general physical problem of interest for many appli-
cations of solidification. Consider a region of solid phase Ω surrounded by
the undercooled liquid, i.e., liquid at the temperature T∞ below the melting
temperature TM . The interface between the two phases is moving because the
two heat fluxes at the solid and liquid sides of the interfacial region do not
balance each other. We account for unsteady heat conduction in both phases,
but we neglect the flow in the liquid in the current model.

It is convenient to define nondimensional temperatures according to

ul =
Tl − T∞
TM − T∞

, us =
Ts − T∞
TM − T∞

,

where Tl and Ts are the dimensional temperatures in the liquid and solid
phases, respectively. We assume that the temperature at the solid-liquid in-
terface is equal to the melting temperature, which in nondimensional terms
implies that

us = ul = 1 on ∂Ω. (3.1)

The scaled equations for unsteady heat conduction in the two phases can be
then written in the form

∂tui = αi∆ui, i = s, l. (3.2)

Here the nondimensional coefficients αi are defined in terms of the thermal
diffusivities α∗

i of the two phases according to

αi = α∗
i tch/R

2,

where R is the length scale (e.g., the initial size of the domain of the solid
phase) and tch is the characteristic time scale. A convenient choice of an
expression for tch is based on the energy balance at the interface, which can
be written in the form

ρLR
tch

Vn =
TM − T∞

R

(
ks
∂us

∂n
− kl

∂ul

∂n

)
, (3.3)

where Vn is the scaled normal velocity of the interface, ρ is the liquid density,
L is the latent heat per unit mass, and ki are the thermal conductivities of the
two phases. Clearly, choosing tch = ρLR2/kl(TM − T∞) reduces the equation
to the form

Vn = k
∂us

∂n
− ∂ul

∂n
, (3.4)

where k is the ratio of the thermal conductivities. To complete the formulation,
we note that the nondimensional temperature approaches zero as the distance
from the solidified part of the material approaches infinity.
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For the case of melting, the scales, governing equations, and the boundary
conditions at the interface remain the same, but the interior of the finite
domain Ω is now the liquid phase, and the exterior is solid. In addition, heat
sources may need to be introduced inside Ω to model localized heating, as
discussed in more detail in Section 3.6.

3.3 Integral Equations

Depending on whether we consider the melting problem or the solidification
problem, the liquid phase is either inside or outside the interface. In what
follows, subscripts i and e will denote a quantity in the interior and exterior
phase, and subscripts l and s will denote the same quantity in the liquid and
solid phases.

By Green’s formula, the system of equations in the previous section can be
recast in the boundary integral form, resulting in the system of two integral
equations

1/2 = αeKe[1] − αeVe

[
∂ue

∂n
+

1

αe
Vn

]
+ Ae + Fe, (3.5)

1/2 = −αiKl[1] + αiVi

[
∂ui

∂n
+

1

αi
Vn

]
+ Ai + Fi, (3.6)

where Va is the single-layer and Ka is the double-layer heat potential in phase
a ∈ {i, e}, and Aa and Fa represent contributions from nonhomogeneous
initial conditions and source terms.

The heat potentials are defined by

Va[f ] =

∫ t

0

∫

S

Ga(x− y, t− τ)f(y, τ)dSydτ,

Ka[f ] =

∫ t

0

∫

S

∂

∂n
Ga(x− y, t− τ)f(y, τ)dSydτ,

Aa =

∫

Ba

∂

∂n
Ga(x− y, t)u0(y)d

3y,

where a ∈ {i, e}, S is the solid–liquid interface, Bi is the domain inside, Be

is the domain outside the initial interphase, u0 is the initial nondimensional
temperature, and Ga denotes the standard free-space Green’s function

Ga(z, δ) =
1

(4παaδ)3/2
exp

(
− |z|2

4αaδ

)
, a ∈ {e, i},

for the three-dimensional unsteady heat equation in each phase. Our focus is
on the case where the interface at time t is a sphere of radius r(t) and the



20 V.S. Ajaev and J. Tausch

density is independent of the spatial variable. Simple integration shows that
the heat potentials reduce to

Va[f ] =

∫ t

0

1√
t− τ

Kv
a(t− τ, r(τ))f(τ) dτ, (3.7)

Ka[f ] =

∫ t

0

1√
t− τ

Kd
a(t− τ, r(τ))f(τ) dτ, (3.8)

where the kernels Kv
a and Kd

a are defined by

Kv
a(t, τ) =

1√
4παa

[
exp

(
− (r −R)2

4αad

)
− exp

(
− (r +R)2

4αad

)]
R

r
,

Kd
a(t, τ) =

1√
4παa

[
exp

(
− (r −R)2

4αad

)(
−1 +

R(r −R)

2κd

)

+ exp

(
− (r +R)2

4αad

)(
1 +

R(r +R)

2κd

)]
1

r
,

where r = r(t), R = r(τ), and d = t− τ . If the radius is positive and a smooth
function of t, then both kernels are smooth functions as well. The normal
velocity is the time derivative of the radius; that is,

r′(t) = Vn; (3.9)

therefore, the problem at hand is to find the functions ∂ui

∂n (t), ∂ue

∂n (t), and r(t)
that satisfy (3.5), (3.6), and (3.3). These three equations constitute a nonlinear
initial value problem for the unknown radius. To make this relationship more
obvious, we define the functions

wa =
∂ua

∂n
+

1

αa
Vn, a ∈ {i, e}.

From (3.5) and (3.6), it follows that

Vewe = − 1

2αe
+ Ke[1] +

1

αe
Ae, (3.10)

Viwi =
1

2αi
− Ki[1] − 1

αi
Ai. (3.11)

For a given radius r(τ), 0 ≤ τ ≤ t, (3.10) and (3.11) are Volterra integral
equations of the first kind with unknowns we and wi. The derivative r′(t) can
be obtained from (3.9) and (3.3):

r′(t) = F (r(t)) :=

(
1 − k

αl
+

1

αs

)−1(
k

αl
wl − 1

αs
ws

)
. (3.12)

In this initial value problem, the function F depends on the complete time
history of r.
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3.4 Discretization Method

To integrate the initial value problem, we use the implicit Euler method. The
right-hand side in (3.12) involves two integral equations which are discretized
with the Nyström method. We discuss briefly the quadrature for the heat po-
tentials. Because of the singularity at t = τ , the convergence rate of standard
quadrature rules will be of low order. To overcome this problem, we subtract
the singularity:

∫ t

0

1√
t− τ

K(t− τ, r(τ))f(τ) dτ

=

∫ t

0

1√
t− τ

(
K(t− τ, r(τ))f(τ) −K(0, r(t))f(t)

)
dτ + 2

√
tK(0, r(t))f(t).

Here K is one of the kernels in (3.7) or (3.8). The singularity has been reduced
to O

(
(t− τ)1/2

)
, and therefore, the error of composite trapezoidal rule is

O(h3/2), where h is the stepsize. After some simplifications we obtain the rule

∫ t

0

1√
t− τ

K(t− τ, r(τ))f(τ) dτ

≈
i−1∑

j=0

wj√
ti − tj

K(ti − tj , r(tj))f(tj) + miK(0, r(ti))f(ti),

where tj = jh, w0 = wi = h/2, wj = h, and

mi = 2
√
ti −

i−1∑

j=0

wj√
ti − tj

.

Replacing the integrals in (3.10) and (3.11) by the above quadrature rule
results in a recurrence formula for the unknowns. Specifically, the ith timestep
involves the approximations ws

j , w
l
j , rj for 0 ≤ j ≤ i. Solving the resulting

equations for ws
i , w

l
i defines the discrete right-hand side Fh(ri, ri−1, . . . , r0)

of (3.12). Solving the discretized initial value problem with the implict Euler
method gives

ri = ri−1 + hFh(ri, ri−1, . . . , r0) .

To solve this equation, Newton’s method is employed.

3.5 Solidification Problem

We start with the classical problem of a spherical nucleus of a solid phase
growing into the undercooled liquid [Dav01]. The initial temperature distri-
bution is given by
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u0(r
′) =

{
1 r′ ≤ r(0),
0 r′ > r(0).

We note that the nucleus can become unstable when it is sufficiently large,
but investigation of such instability is beyond the scope of this work. In the
simulations here and below we use the values of the nondimensional parame-
ters αs = 65.31, αl = 40.82, and k = 1.47, calculated based on the material
properties of copper.

To test the validity of our approach, we compute the solution of the so-
lidification problem where the evolution of the radius as a function of time is
known analytically. The solution (sometimes referred to as a Frank sphere) is
based on the assumption of self-similarity, i.e., ul being a function of r/t1/2.
Then the radius of the growing sphere is given by

r(t) = S
√
t,

where S is a constant that depends on αl and is found from

αlSF (S) = 2F ′(S) (3.13)

and

F (S) =
1

S
e−S2/4 −

√
π

2
erfc

(
S

2

)
.

Because the velocity is singular at t = 0, we initialize the radius with a
small positive value r(0) and solve the initial value problem with a certain
stepsize ∆t. To improve the approximation, we then halve the initial radius
and the stepsize several times. Table 3.1 displays the exact discretization
values and the computed radius for t = 1. We observe that the convergence
with respect to the stepsize is rapid and that the initial radius has little
influence on the long-term solution. Figure 3.1 displays the normalized radii
r(t)/

√
t. We also verified that the radius at t = 1 is in good agreement with

the value S obtained by solving (3.13) in Matlab.

Table 3.1. Discretization parameters and radius data for the solidifying sphere.

# time steps r(0) r(1) Error

600 0.2 1.5758716 0.003732
1200 0.1 1.5739710 0.001830
2400 0.05 1.5731524 0.001012
4800 0.025 1.5727139 0.000574
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Fig. 3.1. Normalized radius of the interface as a function of time for the solidification
problem. The discretization parameters of the curves are those of Table 3.1.

3.6 Laser-Induced Melting

We consider a laser focused on the surface of an initially solid metal that
occupies the lower half-space (modeling a situation when the size of the sample
is large compared with other relevant length scales in the problem). Melting
of the solid material is a result of localized laser-induced heating. A simplified
treatment of this physical effect involves prescribing the normal derivative of
the temperature on the metal–air interface in the form of a delta-function. By
reflectional symmetry, the problem can be cast in the form (3.5,3.6), where
Fe = 0 and

Fi =
Q

4παlr

(
1 − erf

(
r√
4αlt

))
,

and Q measures the intensity of the laser. To obtain the initial condition,
we solve the heat equation in the solid phase without melting for some short
interval t ∈ [−T0, 0]. This problem has a closed-form solution. The initial
radius r(0) is the radius of the sphere with temperature above the melting
temperature.

Figure 3.2 shows the radius as a function of time for several initial radii.
The plot shows that the long-time propagation of the interface is insensitive
to the initial radius.

The time step has been varied over a wide range, resulting in different
curves shown in Figure 3.3.
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Fig. 3.2. Radius of the interface as a function of time for the melting problem. The
initial radius is r = 0.2 (top curve) r = 0.1, r = 0.05, and r = 0.025 (bottom curve).
The lowest three curves overlap.

Fig. 3.3. Radius of the interface as a function of time for the melting problem. The
initial radius is 0.025, and the curves are for the 600 timesteps (bottom) to 6400
timesteps (top).
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3.7 Conclusions

We have derived an integral formulation for melting and solidification prob-
lems. Because of spherical symmetry, the heat potentials appear as weakly
singular Volterra integral operators, which are discretized by a singularity
corrected quadrature rule. The resulting initial value problem was solved ef-
fectively using the Euler scheme. The computation times even for the finest
meshes are of order of only a few seconds. Numerical examples used to illus-
trate the approach include growth of a solid nucleus in the undercooled melt
and laser-induced melting of a solid material.

The methodology can be extended to interfaces with arbitrary shapes. In
this case surface integrals appear in addition to time convolutions, which dra-
matically increases the complexity of the heat potential approach. To speed up
computations, we will incorporate our recently-developed fast heat equation
solver [Tau06]. The results will be reported elsewhere.
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4.1 Introduction

The Eulerian approach for modeling the concentration of contaminants in
a turbulent flow as the planetary boundary layer (PBL) is widely used in
the field of air pollution studies. The simplicity of the K-theory of turbulent
diffusion has led to the frequent use of this theory as the mathematical basis
for simulating air pollution dispersion. Dry deposition refers to the transfer
of air pollution (gas and particles) to the ground, where it is removed. The
various transfer mechanisms leading to dry deposition are complex and involve
micrometeorological characteristics of the atmospheric surface layer [SP97].
The deposition flux is usually parameterized in terms of deposition velocity,
which is either specified empirically or estimated from appropriate theoretical
relations. Moreover, the integral mass conservation equation is modified to
account for the amount of material deposited on the surface.

The advection–diffusion equation can be written in finite-difference form,
thus paving the way to a wide variety of numerical solutions. When the gra-
dient transport (K-theory) is used, dry deposition is included by specifying
the deposition flux as the surface boundary condition. Therefore, numerical
solutions to the advection–diffusion equation with variable eddy diffusivities
are used in order to take into account the effects of dry deposition as well as
of gravitational settling for heavier particles [Ary99].

Analytic solutions of equations are of fundamental importance in under-
standing and describing physical phenomena [PS83]. Many operative models
(using an analytic formula for the air pollution concentration) adopt empir-
ical algorithms for describing dry deposition. The Gaussian plume equation
was modified to include source depletion models ([Cha53], [Ove76]) and sur-
face depletion model algorithms ([Hor77], [Hor84]). The solution proposed by
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[Erm77] and [Rao81] also retained the framework of invariant wind speed and
eddies with height (as the Gaussian approach). More recently, analytic solu-
tions of the advection–diffusion equation with dry deposition at the ground
have used height-dependent wind speed and eddy duffusivities (see [Chr92]
and [LH97]). However, these solutions are restricted to the specific case where
the source is located at the ground level and/or with restriction to the vertical
profiles of the wind speed and eddy diffusivities.

We present an analytic solution of the advection–diffusion equation ob-
tained by the GILTT (Generalized Integral Laplace Transform Technique)
method (see [Mor05] and [Wor05]), describing dry deposition with a bound-
ary condition of a nonzero flux to the ground and without any restriction to
the above profiles and the source position. Recently, the GILTT method has
been applied for the simulation of pollutant dispersion in the atmosphere by
solving analytically the multidimensional advection–diffusion equation. The
steps of this methodology are as follows: construction of an auxiliary Sturm–
Liouville problem, expansion of the contaminant concentration in a series in
terms of the obtained eigenfunctions, replacing of this equation in the original,
and finally taking moments. The result is a set of ordinary differential equa-
tions that are then solved analytically by the Laplace transform technique.
For more details, see [Wor05] and [Mor05].

In this chapter, a step forward is taken toward solving the two-dimensional,
steady-state advection–diffusion–deposition equation by the above methodol-
ogy. The novelty depends on the construction of the auxiliary Sturm–Liouville
problem. Indeed, for this type of problem, the eigenvalues and eigenfunctions
must be determined assuming boundary conditions of the third type, which
include the contaminant deposition speed. At this point it is worth noting that
the mentioned works ([Mor05] and [Wor05]) assume boundary conditions only
of the second type. To validate the results obtained, numerical comparison is
undertaken with results available in the literature.

4.2 The Analytic Solution

For a Cartesian coordinate system in which the x direction coincides with that
of the average wind, the steady-state, two-dimensional advection–diffusion
equation with dry deposition to the ground, valid for any variable vertical
eddy diffusivity coefficients and wind profile (without lateral dispersion), is
written as

u(z)
∂C(x, z)

∂x
=

∂

∂z

(
Kz(z)

∂C(x, z)

∂z

)
, (4.1)

subjected to the boundary conditions

Kz(z)
∂C(x, z)

∂z
= VgC(x, z), z = 0,
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Kz(z)
∂C(x, z)

∂z
= 0, z = h,

and a continuous source condition

u(z)C(0, z) = Qδ(z −Hs), x = 0.

Here C denotes the pollutant concentration, Kz is the turbulent eddy diffu-
sivity coefficient assumed to be a function of the variable z, u is the mean
wind oriented in the x direction, Vg is the deposition velocity, h is the height
of PBL, Q is the emission rate, Hs is the height of the source, and δ is the
Dirac delta distribution.

To solve this problem by the GILTT method, (4.1) is rewritten as

u(z)
∂C(x, z)

∂x
= Kz(z)

∂2C(x, z)

∂z2
+K ′

z(z)
∂C(x, z)

∂z
,

where it should be noted that the first term on the right-hand side satisfies
the Sturm–Liouville problem

ζ ′′
i (z) + λ2

i ζi(z) = 0, 0 < z < h,

−Kz(z)ζ
′
i(z) + Vgζi(z) = 0, z = 0, (4.2)

ζ ′
i(z) = 0, z = h.

The solution of (4.2) is a well-known set of orthogonal eigenfunctions
ζi(z) = cos(λi(h − z)), whose eigenvalues satisfy the ensuing transcendental
equation

λi tan(λih) = H1,

where H1 =
Vg

Kz
. The eigenvalues are calculated solving the transcendental

equation by the Newton–Raphson method.
It is now possible to apply the GILTT approach. For this purpose, the

pollutant concentration is expanded in the series ([Mor05], [Wor05])

C(x, z) =
∞∑

i=0

ci(x) ζi(z). (4.3)

Replacing the above equation in (4.1) and taking moments, the following
equation is obtained:

∞∑

i=0

[
ci(x)

∫ zi

0

K ′
z(z) ζ

′
i(z) ζj(z)dz − λ2

i ci(x)

∫ h

0

Kz(z) ζi(z) ζj(z)dz

− c′i(x)

∫ h

0

u(z) ζi(z) ζj(z)dz

]
= 0.

The above equation can be written in matrix form as
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Y ′(x) + F . Y (x) = 0, (4.4)

where Y (x) is the column vector whose components are ci(x), the matrix F
is defined as F = B−1E, and the matrices B and E are given by

bi,j = −
∫ h

0

u(z) ζi(z) ζj(z)dz,

ei,j =

∫ h

0

K ′
z(z) ζ

′
i(z) ζj(z)dz − λ2

i

∫ h

0

Kz(z)ζi(z)ζj(z)dz.

Following the procedure in [Wor05] and [Mor05], one obtains the following
solution for (4.4):

Y (x) = X .G(x) . ξ, (4.5)

where X is the eigenfunction matrix of F , G is the diagonal matrix whose
entries have the form e−dix, di are the eigenvalues of F , and ξ is the vector
given by ξ = X−1Y (0). Knowing the coefficients of the concentration series
expansion, the solution of problem (4.1) is well determined by (4.3), where
ci(x) is the solution of the transformed problem given by (4.5), and ζi(z)
comes from the solution of the Sturm–Liouville problem given in problem
(4.2), where ζi(z) = cos(λi(h− z)).

No approximations are made in the derivation of this solution and so,
the solution is analytic except for the round-off error. The number of terms
considered in the series summation is established so that a prescribed accuracy
is achieved. In this problem, 30 terms were sufficient to ensure the derived
percentage error of 0.5%.

4.3 Experimental Data Analysis

To show an example of the application of the obtained solution (4.3), the
dataset of the Hanford diffusion experiment was used. This experiment was
conducted in May–June 1983 on a semi-arid region of southeastern Washing-
ton on generally flat terrain. The detailed description of the experiment was
provided by Doran and Horst (1985). Data were obtained from six dual-tracer
releases located at 100, 200, 800, 1600, and 3200 m from the source during
moderately stable to near-neutral conditions. However, the deposition veloc-
ity was evaluated only for the last three distances. The release time was 30
min except in run five, when it was 22 min. The terrain roughness was 3 cm.

Two tracers, one depositing and one nondepositing, were released simulta-
neously from a height of 2 m. Zinc sulfide (ZnS) was chosen for the depositing
tracer, whereas sulfur hexafluoride (SF6) was the nondepositing tracer. The
lateral separation between the SF6 and ZnS release points was less than 1 m.
The near-surface release height and the atmospheric stability conditions were
chosen to produce differences between the depositing and nondepositing tracer
concentrations that could be measured easily. The data collected during the
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field tests were tabulated (as crosswind-integrated tracer concentration data)
and presented in Doran et al. (1984). The meteorological data and crosswind-
integrated tracer concentration data, normalized by the release rate Q, are
listed in Table 4.1. Note that in Table 4.1, Cd and Cnd are, respectively,
the crosswind-integrated concentrations of ZnS and SF6 normalized by the
emission rate Q. For more details about the way that the effective deposition
velocities and wind speed are calculated, see [DR85].

Table 4.1. Tracer and meteorological data for six dual-tracer releases. Tracer data
are normalized by the emission Q. L (m), u∗ (cm.s−1), and h (m) are the Monin–
Obukhov length scale, the friction velocity, and the PBL height, respectively. u is
the wind velocity, and Vg is the deposition velocity. Subscript d refers to depositing
material, and subscript nd refers to nondepositing material.

Arc ZnS/Q SF6/Q u Vg Cd/Cnd

Exp. (m) (s.m−2) (s.m−2) (m.s−1) (cm.s−1)

u∗ = 40 800 0.00224 0.00373 7.61 4.21 0.601
L = 166 1600 0.00098 0.00214 8.53 4.05 0.459
h = 325 3200 0.00059 0.00130 9.43 3.65 0.451

u∗ = 26 800 0.00747 0.0129 3.23 1.93 0.579
L = 44 1600 0.00325 0.00908 3.59 1.80 0.358
h = 135 3200 0.00231 0.00722 3.83 1.74 0.320

u∗ = 27 800 0.00306 0.00591 4.74 3.14 0.518
L = 77 1600 0.00132 0.00331 5.40 3.02 0.399
h = 182 3200 0.00066 0.00179 6.32 2.84 0.370

u∗ = 20 800 0.00804 0.0201 3.00 1.75 0.400
L = 34 1600 0.00426 0.0131 3.39 1.62 0.325
h = 104 3200 0.00314 0.00915 3.75 1.31 0.343

u∗ = 26 800 0.00525 0.0105 3.07 1.56 0.500
L = 59 1600 0.00338 0.00861 3.24 1.47 0.393
h = 157 3200 0.00292 0.00664 3.46 1.14 0.440

u∗ = 30 800 0.00723 0.0134 3.17 1.17 0.540
L = 71 1600 0.00252 0.00615 3.80 1.15 0.410
h = 185 3200 0.00125 0.00311 4.37 1.10 0.402

To use the above solution (4.3), it was necessary to select wind and eddy
coefficient vertical profiles. The reliability of each model strongly depends on
the way that turbulent parameters are calculated and related to the current
understanding of the PBL [SP97].

The vertical eddy diffusivity used in this work is given by [Deg00]:

Kz =
0.3(1 − z/h)u∗z

1 + 3.7(z/Λ)
,

where z is the height, u∗ is the friction velocity, Λ = L(1 − z/h)
5
4 , and L is

the Monin–Obukhov length.
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The wind velocity profile was described by a power law expressed as follows
[PD88]:

uz

u1
=

(
z

z1

)n

,

where uz and u1 are the mean wind velocity at the heights z and z1, whereas
n is an exponent that is related to the intensity of turbulence for rural terrain
[Irw79].

4.4 Numerical Results

The model was evaluated with the ratio Cd/Cnd, where Cd and Cnd are the
crosswind-integrated concentrations of ZnS and SF6 measured at 1.5 m above
the ground and normalized, respectively, by the emission rateQ. A comparison
of predicted and observed values Cd/Cnd are shown in Figure 4.1 for approach
(4.3), with vertical eddy diffusivity given by [Deg00] and power profile of wind
[PD88]. In this respect, it is possible to note that the model reproduce fairly
well the observed concentration.

Fig. 4.1. Scatter diagram of observed Cd/Cnd vs Cd/Cnd predicted data. Data
between lines correspond to a factor of two.

Doran and Horst (1985) presented four different models that evaluate the
dry deposition at the ground with four different approaches: the source deple-
tion approach of Chamberlain (1953), the corrected source depletion model of
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Horst (1983), the K model proposed by Ermak (1977) and Rao (1981), and
the corrected K model of Rao (1981). Finally, to compare the results with the
four models above, statistical parameters were calculated (used in the paper
[DR85]) described in [Fox81] and [Wil82]:

Mean bias (d) =
∑N

i=1 di/N .

Variance (S2) =
∑N

i=1(di − d)2/(N − 1).

Mean absolute error (MAE) =
∑N

i=1 |Cpi − Coi|/N .

Index of agreement (I) = 1 − [
∑N

i=1(P
′
i −O′

i)/
∑N

i=1(|P ′
i | + |O′

i|)2], where
di is the difference between observed (Coi) and predicted (Cpi) values, P ′

i =
Cpi − Coi, O

′
i = Coi − Coi, the overbar indicates an average, and 0 < I < 1

and N is the data number.

In Table 4.2, comparisons between the GILTT approach and the above
models ([Cha53], [Erm77], [Hor83], [Rao81]) are reported, and it is possible
to see the good performance of the solution.

Table 4.2. Statistical measures of model performance.

Parameter GILTT Source Corrected source K model Corrected
depletion depletion K model

Mean bias 0.02 0.11 0.01 0.21 0.07
MAE 0.04 0.11 0.05 0.21 0.07
S 0.06 0.05 0.06 0.08 0.05
COR 0.77 0.82 0.70 0.63 0.78
I 0.81 0.64 0.83 0.42 0.76

4.5 Final Remarks

A new exact general solution of the two-dimension steady-state advection–
diffusion equation has been presented, considering dry deposition to the
ground, which can be applied for describing turbulent dispersion of many
scalar quantities, such as air pollution, radioactive material, heat, and so on.
To show the performances of the solution in actual scenarios, a parameteriza-
tion of the PBL has been introduced, and the values predicted by the solutions
have been compared with the Hanford diffusion experiment dataset. The anal-
ysis of the results shows a reasonably good agreement between the computed
values against the experimental ones. The discrepancies with the experimen-
tal data do not depend on the solution of the advection–diffusion equation,
but on the equation itself, which is only a model of the reality. Moreover, a
source of discrepancies between the predicted and the measured values lies in
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the PBL parameterization used (i.e., vertical wind and eddy diffusivity pro-
files). Finally, the solution results were compared with those of four different
models.

Although models are sophisticated instruments that ultimately reflect the
current state of knowledge on turbulent transport in the atmosphere, the re-
sults they provide are subject to a considerable margin of error. This is due
to various factors, including in particular the uncertainty of the intrinsic vari-
ability of the atmosphere. Models, in fact, provide values expressed as an
average, i.e., a mean value obtained by the repeated performance of many
experiments, whereas the measured concentrations are a single value of the
sample to which the ensemble average provided by models refers. This is a
general characteristic of the theory of atmospheric turbulence and is a con-
sequence of the statistical approach used in attempting to parameterize the
chaotic character of the measured data.

In the light of the above considerations, an analytic solution is useful
for evaluating the performances of sophisticated numerical dispersion models
(which numerically solve the advection–diffusion equation), yielding results
that could be compared, not only against experimental data but, in an easy
way, with the solution itself, in order to check numerical errors without the
uncertainties presented above.
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5.1 Introduction

In the generalized integral transform technique (GITT) [Cot93], [Cot97], the
solution is expressed as a truncated series, in which the orthogonal function
basis are obtained by solving the associated Sturm–Liouville problem. The
expanded equation is transformed into an ordinary differential equation sys-
tem. Once the transformed problem solution is found, the inverse formula is
applied to compute the solution.

Application of the GITT to the atmospheric pollutant dispersion for one
dimensional problem has been addressed in [Mor06], [WVM00], [WVMB05],
and [WVCVS05].

The goal here is to apply the GITT approach to a two-dimensional (2D)
atmospheric pollutant dispersion problem, with the use of a mathematical fil-
ter for dealing with nonhomogeneous boundary conditions. The turbulence is
modeled by Taylor’s statistical approach. In the GITT approach, it is possible
to control the truncated error, computing the number of eigenfunctions for
the final solution, according to the desired accuracy.

5.2 Two-Dimensional Pollutant Dispersion Model

The stationary, two-dimensional diffusion–advection equation in the atmo-
sphere can be expressed as

u
∂C

∂x
+w

∂C

∂z
=

∂

∂x

(
Kxx

∂C

∂x

)
+
∂

∂z

(
Kzz

∂C

∂z

)
, (x, z) ∈ (0,∞)×(0, h), (5.1)
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where C(x, z) is the pollutant concentration, u(x, z) and w(x, z) are the hori-
zontal and vertical wind velocities, Kxx and Kzz are the eddy diffusivities in
the horizontal and vertical components, respectively, and h is the atmospheric
boundary layer height. The boundary conditions are given by

C(x, z) =
Qδ(z − hf )

u(x, z)
at x = 0,

∂C

∂x
= 0 as x → ∞,

∂C

∂z
= 0 at z = 0 and z = h,

where δ(z) is the delta distribution and hf is the height at which the pollutant
is released.

In (5.1), a first-order closure for turbulence transport was employed, where
〈u′

iφ
′〉 ≈ Kii∂φ/∂xi (i = x, z), with Φ = φ+φ′. In this approach, the Reynolds

turbulent flux 〈u′
iφ

′〉 is taken as the product between the gradient of the
Reynolds average quantity (φ = (1/∆t)

∫
Φdt) and the eddy diffusivity.

To solve (5.1) by GITT, a mathematical filter will be introduced.

5.3 Mathematical Filter Definition

The theory for the GITT is applied for problems with homogeneous bound-
ary conditions. The first boundary condition associated with the advection–
diffusion equation is nonhomogeneous. A mathematical filter will now be de-
fined to deal with this condition. Let us consider the function F (x, z), which
is a solution of a simplified version of (5.1), namely,

ū
∂F (x, z)

∂x
= K̄xx

∂2F (x, z)

∂x2
+ K̄zz

∂2F (x, z)

∂z2
(5.2)

with the same boundary conditions as for (5.1):

F (x, z) =
Qδ(z − hf )

u(x, z)
at x = 0,

∂F

∂x
= 0 at x → ∞,

∂F

∂z
= 0 at z = 0 and z = h,

where ū, K̄xx, and K̄zz are constant coefficients representingthe average val-
ues of u(x, z), Kxx, and Kzz, respectively. The classical integral transform
technique (CITT) [Ozi80] is now applied to (5.2). The first step of this tech-
nique is to choose a good auxiliary problem (in general, this means a well-
known one). For CITT and GITT, the auxiliary problem is a Sturm–Liouville
problem, which requires homogeneous boundary conditions. Hence, the trans-
formation is applied with respect to the z-coordinate, because the boundary
conditions in this direction are homogeneous. Performing the transformation
in this coordinate, the chosen variable of the Sturm–Liouville problem is also
the z-coordinate. Therefore, the selected auxiliary problem is
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dΨ2
r (z)

dz2
+ λ2

rΨr(z) = 0 at z ∈ [0, h];

dΨr(z)

dz
= 0 at z = 0 and z = h.

The auxiliary problem solution is

Ψr(z) =

{
1 λr = 0 for r = 0 ;
cos(λrz) λr = rπ/h for r = 1, 2, . . . .

The function F (x, z) is given by an expansion considering the solution
of the auxiliary problem. The expansion is defined by the Sturm–Liouville
eigenfunctions and its respective eigenvalues. The inverse transform formula
is just the expansion cited above. It is defined as follows:

F (x, z) =

∞∑

r=0

F r(x)Ψr(z)

N
1/2
r

, (5.3)

where F r(x) is the transformed potential and Nr is the norm, given by

Nr ≡
∫ h

0

Ψ2
r (z) dz .

The result of the CITT application is

ūF
′
r(x) = K̄xxF

′′
r (x) − λ2

rF r(x), (5.4)

where F
′
r(x) and F

′′
r (x) are the first and second derivatives, respectively. The

same procedure is applied to the boundary conditions

F r(0) =
Q

N
1/2
r

cos(λrhf )

u(0, hf )
;

F
′
r(x) = 0 as x → ∞ .

Equation (5.4) is solved, and the result is substituted in (5.3), completing the
solution for the mathematical filter.

5.4 Double GITT Application for 2D Dispersion Model

After computing the filter solution, a new variable (called filtered potential)
is defined, to produce a problem with homogeneous boundary conditions, as
follows:

Cf (x, z) ≡ C(x, z) − F (x, z) .

By analogy with (5.3), the filtered solution is given by the inverse formula
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Cf (x, z) =

∞∑

r=0

Cf,r(x)Ψr(z)

N
1/2
r

, (5.5)

where Cf,r(x) is the transformed potential. The associated Sturm–Liouville
problem for the variable Cf (x, z) is the same as that for F (x, z), because the
boundary conditions are identical. Substituting (5.5) and the filter function
in (5.1), we arrive at the differential equation

∞∑

i=0

[
Cf,i

(
Bij −Gij + λ2

iHij

)]
+

∞∑

i=0

[
∂Cf,i

∂x
(Aij − Eij)

]

−
∞∑

i=0

[
∂2Cf,i

∂x2
Jij

]
= Vj ,

where

Aij =

∫ h

0

u
ΨiΨj√
NiNj

dz ; Bij =

∫ h

0

w
ΨiΨj√
NiNj

dz ;

Hij =

∫ h

0

Kxx
ΨiΨj√
NiNj

dz ; Jij =

∫ h

0

Kzz
ΨiΨj√
NiNj

dz ;

Eij =

∫ h

0

(
∂Kxx

∂x

)
ΨiΨj√
NiNj

dz ; Gij =

∫ h

0

(
∂Kzz

∂z

)
ΨiΨj√
NiNj

dz ;

Vj =

∫ h

0

u
∂F

∂x

Ψj

N
1/2
j

dz −
∫ h

0

w
∂F

∂z

Ψj

N
1/2
j

dz +

∫ h

0

Kxx
∂2F

∂x2

Ψj

N
1/2
j

dz

+

∫ h

0

∂Kxx

∂x

∂F

∂x

Ψj

N
1/2
j

dz +

∫ h

0

Kzz
∂2F

∂z2

Ψj

N
1/2
j

dz +

∫ h

0

∂Kzz

∂z

∂F

∂x

Ψj

N
1/2
j

dz.

For computing Cf,r(x) in (5.5), GITT is applied again on the variable x,
and the associated Sturm–Liouville problem can be expressed as

d2φm(x)

dx2
+ β2

mφm(x) = 0 with x ∈ [0, xmax]; (5.6)

dφm(x)

dx

∣∣∣∣
x→∞

= 0 and φm(x)|x→0 = 0.

The solution of problem (5.6) is given by

φm(x) = sin(βmx), βm =
(2m− 1)π

2xmax
, (m = 1, 2, . . .).

For GITT transformation on the direction x, the following inverse formula
is used:
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Cf,r(x) =

∞∑

m=1

Cf,r,mφm(x)

N
1/2
m

, (5.7)

where Cf,r,m) is the double transformed potential. In matrix notation, this is
written as

PT = V, (5.8)

where

T =
[
Cf,r,m

]
; V =

[∫ xmax

0

Vj
φm(x)

N
1/2
m

dx

]
;

P =

∫ xmax

0

[(
Bij −Gij − λ2

iHij

)
+ β2

mJij + (Aij − Eij)
] φmφn√

Nm Nn

dx .

The matrix P has order (ηxηz) × (ηxηz). Parameters ηz and ηx are the trun-
cation order of the summation in (5.5) and (5.7), respectively. The algebraic
equation system (5.8) is solved by Gaussian elimination. The filtered potential
is calculated using the modified inverse formula. Such a formula was proposed
by Wortmann [Wo03] for obtaining better function approximations by trigono-
metric expansions (see related references for more details). The mathematical
expression for the modified inverse formula is [Cas06]

Cf (x, z) ≈
ηz∑

i=0

ηx∑

m=1

Cf,i,m
Ψi φm√
Ni Nm

− 1

2

ηz∑

i=0

Cf,i,ηx

Ψi φηx√
Ni Nηx

−1

2

ηx∑

m=1

Cf,ηz,m
Ψηz

φm√
Ni Nm

+
1

4
Cf,ηz,ηx

Ψηz
φηx√

Nηz
Nηx

. (5.9)

Finally, the expression C(x, z) = Cf (x, z) − F (x, z) is used to calculate the
original potential.

5.5 Experimental Data and Model Evaluation

A permanent feature in the atmospheric flow is the high Reynolds number,
indicating that turbulent regime can always be found. The turbulent fluxes
can be parameterized using the first-order closure, where such fluxes are rep-
resented by the product of the gradient of the average quantity and the eddy

diffusivity: 〈v′
i φ

′〉 = Kαα∂φ̄/∂xi, where 〈f〉 ≡ (1/∆t)
∫ t+∆t

t
f(τ) dτ , with

i = u, v, w and α = x, y, z. The Taylor statistical theory can be employed to
derive a model for the convective atmospheric boundary layer (see [DCVC97]
and [DACTCV00]):

Kzz

w∗ h
= 0.22Ψ1/3

[
1 − exp

(
−4z

h

)
− 3 × 10−4 exp

(
8z

h

)]
,

Kxx

w∗ h
= 0.12Ψ1/3,
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where Ψ is the dimensionless dissipation function [DCVC97]:

Ψ =
( z
h

)(
1 − z

h

)
.

For the simulation here, only the vertical diffusion coefficient will be consid-
ered. The wind velocity profile can be obtained from a meso-scale meteoro-
logical model or from the parameterization [BOT86]

u(x, z) =

{
ln(z/z0) − ψm(z/L) + ψm(z0/L) if z < zb,
u(zb) if z > zb,

where zb = min [|L|, 0.1h], L is the Monin–Obukhov length, κ = 0.4 is the
von Kármán constant, u∗ is the friction velocity, z0 is the roughness length,
and ψm is the stability function [Pau70]:

ψm = 2 ln

(
1 +A

2

)
+ ln

(
1 +A2

2

)
− 2 tan−1(A) +

π

2
,

A =
(
1 − 16

z

L

)
.

The performance of the model with the atmospheric boundary layer pa-
rameterization based on Taylor’s approach was evaluated using the Copen-
hagen experiment dataset [GL84]. The experiment dealt with the dispersion
of tracer SF6 carried out in the north of Copenhagen. The tracer was released
from a tower at 115 m height, and a set of ground-level data-collecting sen-
sors was spread on three crosswind arcs. The sampling units were positioned
2–6 km from the releasing point. The crosswind-integrated concentration val-
ues were normalized with the tracer releasing rate from [GHIS87]. The site was
placed on a residential area approximately 0.6 m long [TU97]. Table 5.1 shows
the mean wind speed, friction velocity, the Monin–Obukhov length, convec-
tive velocity scale, boundary layer height, relative pollutant-release height,
and relative Monin–Obukhov length.

Table 5.1. Meteorological values for the Copenhagen experiment.

Exp. u(zb) (ms−1) u∗ (ms−1) L w∗ h (m) hf/h h/|L|

1 3.4 0.36 -37 1.8 1980 0.06 53.51
2 10.6 0.73 -292 1.8 1920 0.06 6.57
3 5.0 0.38 -71 1.3 1120 0.10 15.77
4 4.6 0.38 -133 0.7 390 0.29 2.93
5 6.7 0.45 -444 0.7 820 0.14 1.85
6 13.2 1.05 -432 2.0 1300 0.09 3.01
7 7.6 0.64 -104 2.2 1850 0.06 17.78
8 9.4 0.69 -56 2.2 810 0.14 14.46
9 10.5 0.75 -289 1.9 2090 0.06 7.23



5 Analytic 2D Dispersion by Double GITT 43

The simulation is performed considering w(x, z) = 0 for the vertical wind
field. For computing the solution, it is necessary to identify the number of
terms in expansion (5.9). Figure 5.1 shows the convergence when the number
of eigenvalues applied for both directions x and z are taken into account.

(a) (b)

Fig. 5.1. Numerical convergence for the pollutant concentration: (a) direction x
(ηx) and (b) direction z (ηz).

The comparison between the experimental (observed) and computed con-
centrations can be carried out from a scatter diagram, which is shown in
Figure 5.2 and indicates good agreement. The comparison can be quantified
employing some statistical parameters, presented in Table 5.2. From this ta-
ble, a strong correlation between the observed and the computed values can
be seen. The statistical parameters used in the comparison are

Nmse (normalized mean square error): (CExp − C)/(CExp C) ;

Fa2: fraction of data (%) for 0.5 ≤ (C/CExp) ≤ 2 ;

Cor (correlation coefficient): (CExp − CExp) (C − C)/(σE σc) ;

Fb (fractional bias): (CExp − C)/[0.5(CExp + C)] ;

Fs (fractional standard deviations): (σE − σc)/[0.5(σE + σc)] .

Table 5.2. Model statistical evaluation for ground-level concentration.

Model Nmse Cor Fa2 Fb Fs

Double GITT 0.04 0.91 1.00 0.06 0.19
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Fig. 5.2. Scatter diagram for crosswind ground-level integrated concentration: ob-
served × computed (lines indicate a factor of two).

A fictitious example can be simulated, where the vertical component of
the wind is given by

w(x, z) = wa cos(wb x);

here wb = 2π/3000 and wa ranges from 0 to 4. Figure 5.3 displays the iso-
surface for the calculated concentration for two wa values, where the influence
of the vertical wind field can clearly be noted.

(a) (b)

Fig. 5.3. Iso-concentration lines for (a) wa = 0 and (b) wa = 4.
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5.6 Conclusion

The double GITT was derived and applied to the two-dimensional atmo-
spheric pollutant dispersion problem. The computed solution shows good
agreement with the experimental data from the Copenhagen experiment
[GHIS87], [GL84]. The statistical results indicate small values for the normal-
ized mean-square error (Nmse), fractional bias (Fb), and fractional standard
deviation (Fs) (zero is the ideal value). In addition, the correlation coefficient
(Cor) and factor of two (Fa2) are close to one.

It should be noted that other GITT schemes can be applied, such as stan-
dard GITT [Cot93], [Cot97] or GILTT (generalized integral and Laplace trans-
form technique) [WVCVS05]. However, the latter techniques make it difficult
to control the numerical error in the calculated solution. Also, GILTT cannot
be applied in the case of variable coefficients. Finally, the truncated numerical
error can be controled using the double GITT.
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6.1 Introduction

The work presented in this chapter is motivated by the desire to model the
transient interaction of a vibrating loudspeaker with the surrounding air. One
possible method for solving this problem is to employ a coupled finite element
and boundary element procedure, and one such procedure is being developed
as part of this work. However, before the method is used to solve the loud-
speaker problem, it will be tested on the simpler problem of acoustic radiation
from a thin spherical shell as this has an exact solution, the details of which
are given here.

Previous work has tended to concentrate on the case of plane wave scat-
tering [CD98], [GY02] and to use the exact solution of Huang [HH68] for com-
parison with numerical results. This solution uses the Laplace transformation
and expresses the transformed values of the quantities sought as sums of Leg-
endre functions multiplied by unknown coefficients. Applying this method to
spherical wave radiation simplifies the problem somewhat, since here only the
first term of these sums is required. Huang uses an inverse transformation to
obtain a solution for the transient shell displacement, but a solution for the
pressure is not given due to its complexity in the frequency domain. For our
simplified problem, however, a time-domain solution for both the pressure and
the velocity potential on the surface of the shell are obtained. This enables
us to check the accuracy of both the structural and the acoustic parts of the
numerical model.

In loudspeaker modeling, it is often assumed that the effect of the air
pressure acting on the loudspeaker cone can be neglected. This assumption
is investigated for several different fluid and structure combinations. Results
from an uncoupled numerical model will also be compared with both the
coupled and the uncoupled exact solution. This will enable us to see how
much of the error in the model can be attributed to coupling. A time-domain
Burton–Miller-type boundary element method is used for the acoustic model
as detailed in [DC06]. The structural data used as input to this is given by an
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undamped finite element method for thin shells. This is solved using explicit
time integration as detailed in [DH00].

6.2 Mathematical Formulation of the Problem

Consider a thin spherical shell with mid-surface radius a, thickness h, Young’s
modulus E, Poisson’s ratio ν, and density ρ. Suppose that this shell is sur-
rounded by a homogeneous compressible acoustic fluid of density ρf and sound
wave speed c. The shell is assumed to be radiating a small amplitude acoustic
wave permitting the use of linear wave theory to describe its propagation. A
spatially-constant pressure-forcing directed into the exterior field is applied
to the shell (from the interior) causing the radiation of a spherical wave. The
total pressure loading acting on the shell is therefore the sum of this applied
pressure and an exterior pressure loading due to the surrounding fluid. The
significance of omitting this second component of the pressure will be inves-
tigated later in this chapter.

The equation governing the transient motion of the shell due to a spatially-
constant pressure-loading may be derived from the Lagrangian equation of
motion for the shell as in [HH68]. This is given by

d2u(t)

dt2
+

2E

ρ(1 − ν)a2
u(t) =

p(a, t)

hρ
, (6.1)

where u(t) is the displacement of the shell in the normal direction and p(a, t)
is the total pressure loading on the shell, both evaluated at time t. Note that
the spherically symmetric pressure is given in spherical polar coordinates, so
it only depends on the radial distance from the origin and time. The shell is
assumed to be at rest and undisturbed at t = 0, which gives rise to the initial
conditions

u(0) = (d/dt)u(0) = 0.

For later use, note that the Laplace transform of (6.1) is given by

(
s2 +

2E

ρ(1 − ν)a2

)
ũ(s) =

p̃(a, s)

hρ
, (6.2)

where p̃(a, s), ũ(s) are the Laplace transforms of p(a, t), u(t), respectively, and
s is the transformation parameter.

The applied spherical wave pressure load can be written as pf (a, t) =
p0f(t), where p0 is p0 is a constant-magnitude term for the applied pressure
and f(t) governs the temporal behavior of the applied pressure. The pressure
in the surrounding fluid pe(r, t) at any distance r ≥ a from the origin is
governed by the wave equation. In spherical polar coordinates with pe(r, t)
assumed to be a spherical wave, this is given by
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1

r2
∂

∂r

(
r2
∂p

∂r

e)
=

1

c2
∂2p

∂t2

e

. (6.3)

The initial conditions are

pe(r, 0) = (d/dt)pe(r, 0) = 0,

as before. The Laplace transform of (6.3) is

1

r2
∂

∂r

(
r2
∂p̃

∂r

e)
=

s2

c2
p̃ e, (6.4)

where p̃ e is the Laplace transform of pe. Applying the Sommerfeld radiation
condition, the solution of (6.4) is simply

p̃ e(r, s) =
α

r
(sinh(rs/c) − cosh(rs/c)) , (6.5)

where α is some constant to be determined from the boundary condition at
the shell–fluid interface. This enforces the continuity of normal acceleration
and is given by

∂p̃

∂r

e

= −ρfs
2ũ at r = a.

Applying this boundary condition to (6.5) to determine α and then substitut-
ing back in for p̃ e yields

p̃ e(r, s) =
ρfs

2a2cũ (sinh(rs/c) − cosh(rs/c))

r(as+ c)(sinh(as/c) − cosh(as/c))
. (6.6)

Substituting (6.6) into the transformed structural equation (6.2), noting that
p(a, t) = pf (a, t) + pe(a, t), and solving for ũ leads to

ũ(s) =
p0a

2(1 − ν)(as+ c)f̃(s)

ρha3(1 − ν)s3 + ca2(1 − ν)(hρ+ aρf )s2 + 2Ehas+ 2Ehc
, (6.7)

where f̃(s) is the Laplace transform of f(t). The inverse Laplace transforma-
tion may be applied to (6.7) in order to obtain the transient solution u(t). It is
also possible to obtain frequency-domain expressions for the radiated pressure
and velocity potential. These expressions are in a form that is easy to invert
at points on the shell, i.e., at r = a, since the hyperbolic functions cancel.
The pressure is obtained by simply substituting (6.7) into (6.6). The velocity
potential ϕe may be obtained from the pressure since pe = −ρf (∂/∂t)ϕe, and
hence, its Laplace transform is given by ϕ̃ e = −p̃ e/(ρfs). We arrive at the
expression

ϕ̃ e(a, s) =
−cp0a

3(1 − ν)sf̃(s)

ρha3(1 − ν)s3 + ca2(1 − ν)(hρ+ aρf )s2 + 2Ehas+ 2Ehc
. (6.8)
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The inverse Laplace transforms of (6.7) and (6.8) may be computed in a
similar way because they share the same cubic polynomial denominator q(s).
Let us define the following common factor of these expressions:

g̃(s) :=
p0a

2(1 − ν)

q(s)
.

We denote its inverse Laplace transform by g(t). Applying the convolution
and derivative theorems for Laplace transforms, we deduce that the inverse
transforms are

u(t) =

(
c+ a

d

dt

)
f(t) ∗ g(t),

ϕe(t) = −acdf(t)

dt
∗ g(t).

The calculation of g(t) follows from the Bromwich inversion formula and
Cauchy’s residue theorem. This yields

g(t) =
∑

j

Res(g̃(s)est, sj),

where Res(F, x) denotes the residue of F at x and sj denotes the values of s
that are poles of g̃(s)est. The values sj are clearly just the roots of q(s).

The component of the pressure loading on the shell due to the exterior
fluid may be omitted by setting pe(a, t) = p̃ e(a, s) = 0 in the structural
equations (6.1), (6.2). This has the effect of changing the coefficient of s2 in
q(s) to ρhca2(1 − ν). In this case, the roots of q(s) are given by s1 = −c/a,
s2 =

√
2E/(a

√
ρ(ν − 1)), and s3 = −s2. In the coupled case, these roots do

not have such nice expressions but may be calculated easily by computer.

6.3 Example Problems

The numerical calculations are carried out for a spherical shell with a = 0.1
m and h = 0.75 mm, so the size of the problem is of similar order to the
loudspeaker problem. Three different fluid–structure interactions are consid-
ered. Air–steel and water–steel are examples in which the coupling would be
expected to be insignificant and significant, respectively. The third example
considered is air–paper, due to its similarity to the loudspeaker cone problem.
The material parameters are summarized in Table 6.1.

The forcing function f(t) is chosen to be a raised cosine, defined by f(t) =
(1 − cos(2πt/t0))H(t0 − t), where t0 is the period of the raised cosine pulse
and H is the Heaviside step function. The value of the constant p0 is taken
to be 105.

Figure 6.1 shows the results of solving both the coupled and the uncoupled
systems for the velocity potential ϕe on the surface of the shell, with each row
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Table 6.1. Material/fluid parameters.

Structure Materials ρ (kgm−3) E (Pa) ν

Steel 7800 209 × 109 0.3
Paper 500 3 × 109 0.333

Exterior Fluids ρf (kgm−3) c (ms−1)

Water 1000 1500
Air 1.21 342.4

showing one of the three fluid–structure combinations considered. In each
case, two values of t0 are considered: t0 = 0.001 s in the left column and
t0 = 0.0004 s in the right. The total duration of the solution in each case is
4t0, and the solutions are calculated at 1024 points in this interval. The results
show the expected trends of the coupling being most important in the steel–
water interaction and least important for steel–air. The coupling also tends to
be more significant for the smaller choice of t0, i.e., for higher frequencies. A
Fourier transform shows that for t0 = 0.0004, f(t) is essentially bandlimited
at 10000 Hz and for t0 = 0.001, f(t) is essentially bandlimited at 4000 Hz.
The coupling is more significant at these higher forcing frequencies as then
resonance frequencies of the structure become excited and the coupling acts
as a damping force on them.

The error when using an uncoupled numerical scheme to obtain the surface
velocity potential solution is now considered. The structural data are calcu-
lated using a time-domain finite-element procedure with thin shell elements.
The procedure is carried out using explicit time integration and is described
in [DH00]. These data are used as input for a time-domain Burton–Miller
boundary element method (BEM) to solve the acoustic part of the problem.
This technique is employed because of its superior stability properties com-
pared with other time-domain boundary element methods, and is detailed
in [DC06]. The error is calculated with respect to both the coupled and the
uncoupled exact solutions described above, and is given by

Error =
1

n

n∑

i=1

√√√√
∑N

j=1 |ϕe(a, tj) − ϕ̄e(xi, tj)|2
∑N

j=1 |ϕe(a, tj)|2
.

Here ϕe and ϕ̄e denote the exact and modeled values of the velocity potential,
respectively, xi, i = 1, . . . , n, denotes the n boundary elements, and tj , j =
1, . . . , N, denotes the jth time at which the solution is computed. The BEM
is a time-marching method with time-step ∆t and so tj = (j − 1)∆t. This
error is therefore an L2-relative error averaged over the n boundary elements.
Additional details of the numerical methods are omitted for brevity.

Figure 6.2 shows how the error in the uncoupled numerical method com-
pared with both the coupled and the uncoupled exact solutions varies with
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Fig. 6.1. Coupled vs. uncoupled surface velocity potential solution.

the number n of boundary elements. The cases considered are the same as be-
fore with the exception of the steel–water interaction, where the error for the
coupled exact solution would clearly be very large. The steel–air interaction
results are shown in the top row, and the paper–air results are in the second
row. The left column shows the errors for the lower frequency case, t0 = 0.001,
and the right column shows the higher frequency case, t0 = 0.0004, as before.
The solutions were computed at 320 time-points in the interval [0, 4t0], since
this gave a time-step for the BEM whose Nyquist frequency is ten times the
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essential band limit of f . Previous work has indicated this solution to be a
good choice for accurate results [DC06].

Fig. 6.2. Error in uncoupled modeled solution compared against both coupled and
uncoupled exact solutions.

The results show that the error decreases as n is increased and is greater
for the higher-frequency case, as expected. The coupling is more significant for
the paper–air interaction and as n is increased. The significance of the coupling
can be viewed in two ways. First, it can be regarded as the percentage of the
error with the coupled solution that arises due to the numerical method being
uncoupled, which may be calculated using (Ec −Eu)/Ec × 100, where Ec and
Eu are the errors with the coupled and uncoupled exact solutions, respectively.
This shows that for the steel–air case, the coupling becomes most significant
for the higher-frequency forcing when n = 32, where the coupling accounts for
just 2.15% of the total error. In contrast, for the paper–air interaction with
n = 34, the coupling accounts for 80.5% of the total error when t0 = 0.001 and
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for 76.9% when t0 = 0.0004. Clearly, the coupling is vastly more significant
in the paper–air interaction. Alternatively, the magnitude of the error with
the coupled solution may be considered on its own and the coupling may be
deemed insignificant if this error is reasonably small. This error is greatest
in the high-frequency paper–air case, where for n = 32 the error is 0.126,
or 12.6%. This may even be regarded as sufficiently accurate in loudspeaker
modeling, where errors due to lack of measurement precision and inaccurately
estimated material parameters generally dominate.

6.4 Conclusion

An exact solution for modeling transient acoustic radiation from a thin spheri-
cal elastic shell has been presented. The effect of omitting the pressure exerted
by the exterior fluid back on the shell (or coupling) from the solution has been
investigated for several different fluid–structure interactions. A raised cosine-
type forcing of varying pulse width has been used. For shorter pulses and thus
higher frequencies, the coupling has been shown to have a damping effect on
the resonant behavior of the shell. The coupling is therefore more significant in
this case than for wider pulses, which do not excite resonances of the shell to
the same degree. The effect of the coupling has also been observed to be most
pronounced in the steel–water interaction, where the fluid is relatively dense.
For lighter fluids like air, the coupling is less significant, although this may
vary depending on the material properties of the shell. A comparison with an
uncoupled numerical solution showed that the percentage of the error caused
by not coupling the numerical method was far greater for the paper–air in-
teraction than the steel–air interaction. However, reasonably accurate results
could be obtained in both cases with suitable refinement of the numerical
model.

Acknowledgement. The partial funding of this work by B&W Group Limited, Steyn-
ing, West Sussex, UK, is gratefully acknowledged.
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7.1 Introduction

A drilling mast is a thin, metallic spatial structure that generally consists of
tubular or straight-shaped uniform bars rigidly assembled together at their
ends, called elastic nodes. It can be of one of two types, A or U (see Figure 7.1).
The mast, erected above the opening of a well, enables the vertical motion
of the traveling block and has the following major functional roles: (i) to
sustain—by means of the hoisting system (drawworks, drilling line, crown
block, traveling block, hook, and swivel)—the drill string, the casing string,
and the tubing string, and to make possible their up-and-down operation;
(ii) to store the drill pipes, drill collars, and tubing; and (iii) to facilitate the
drilling and tool-running procedures. Consequently, the drilling mast is of vital
importance to a drilling rig. When in use, masts undergo strong vibrations,
caused by the motion of the tubular string, of the driving equipment of the
drilling machines, and of the floating platforms (in an offshore setup), and
by winds. Excessive vibrations of these structures can generate undesirable
effects and decrease significantly the lifetime of their parts. Such effects may
include the wear of pins and their housing or the fatigue and buckling of
certain bars. High-performance and economical design, and the rational use
of drilling masts, especially of those intended for very deep and ultra-deep
wells, require a rigorous theoretical and experimental investigation of their
dynamical behavior. The first and most important step in this research is the
determination of the eigenfrequencies and of the mode shapes of vibration.

7.2 Proposed Dynamical Model

In practical engineering, the mast strength is calculated by means of simple
equivalent patterns of the structures, which allow us to determine the stresses
and to compute the dimensions and principal elements of the mast. This type
of calculation gives satisfactory results. When performing it, we have to deal
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Fig. 7.1. Drilling masts of types A and U.

with the complex structural composition of the masts and of the acting load
mode. We must keep in mind that we should use a minimum amount of steel
to obtain a mast with a high technical and economic performance. In addition,
because of the importance of drilling masts in drilling rigs, the masts must
be designed using an adequate dynamical model and a rigorous method of
calculation based on the sophisticated software packages currently available.

The proposed dynamical model for a drilling mast is obtained [Ch90] by
applying the concentrated masses method. This method makes use of the fact
that the distributed masses of the structure bars are concentrated at their
junctions, called nodes; therefore, the total concentrated mass at each node
is equal to the sum of the nodal contribution of each bar joining at the cor-
responding node. Those masses are assumed to be connected by a massless
link. Figure 7.2 shows the dynamical models for masts of type A and U. Using
this model, we can regard a mast as a discrete system with a finite number of
degrees of freedom and with the same geometric configuration as the real struc-
ture. The number of degrees of freedom is equal to the number of independent
parameters specifying the translations and rotations of the nodes. Choosing
the node parameters as unknowns, we obtain the displacement method. This
method is the most recommended for the static and dynamic computation
of bar-assembled structures; hence, it can also be applied to drilling masts.



7 The Eigenfrequencies and Mode Shapes of Drilling Masts 57

The assumptions we make for the proposed dynamical model are as follows:
(i) the behavior of the structure is linear; (ii) the superposition principle is
applicable; (iii) the damping is viscous; and (iv) the translation forces are
acting only at the nodes of the mast.

Fig. 7.2. Dynamical models for masts of types A and U.

7.3 Formulation of the Equations of Motion for a
Drilling Mast

Each concentrated mass at the nodes of the structure has six unknowns: three
translations along the x-, y-, and z-axes and three rotations about the same
axes. Those unknowns represent the degrees of freedom for each concentrated
mass. The general system of equations is based on six degrees of freedom for
each concentrated mass of the mast. Starting from the proposed dynamical
model, considering the mast supports to be fixed, using the displacement
method, applying the d’Alembert principle to the concentrated mass mh at
node h, and aggregating the dynamic equilibrium for all concentrated masses
of the structure, we can write the system of equations governing the motion
of a drilling mast in the condensed matrix form
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[M ]{η̈(t)} + [B]{η̇(t)} + [R]{η(t)} = {F (t)},

where [M ] is the diagonal square matrix of inertia of order N , [B] is the
symmetric damping matrix of order N , [R] is the symmetric stiffness matrix
of order N , {η(t)} is the displacement vector of order N , {F (t)} is the vector
of order N of the excitation forces acting on the concentrated masses, N is
the total number of degrees of freedom (translations and rotations) of the
dynamical model, and t is the time variable.

This latter system of equations with six unknowns for each node is iden-
tical to the well-known classical set of differential equations of second order
describing the damped forced vibrations of a linear discrete spatial structure
(see [Me67], [Wa76], and [Cl75]). Analytically, this system is decomposed into
a set of N second-order differential equations. In the case of drilling masts,
where the dimensions of the concentrated masses are lowered, their rotatory
inertia may be neglected and the number of unknowns at each node reduces
to only three (three translations) instead of six. Hence, the general system of
equations of motion for drilling masts becomes

[M∆]{∆̈(t)} + [B∆]{∆̇(t)} + [R∆]{∆t} = {F∆(t)},

where [M∆], [B∆], and [R∆] are the matrices M , B, and R of concentrated
masses of order N∆ corresponding to translations only, {∆(t)} is the dis-
placement vector of order N∆ of the concentrated masses with respect to
translations, {F∆(t)} is the vector of order N∆ of the excitation forces acting
on the concentrated masses along the x-, y-, and z-axes, and N∆ is the total
number of degrees of freedom (translations only) of the dynamical model.

This system represents the equations of motion for the drilling mast when
the rotatory inertia of the concentrated masses is neglected; hence, it contains
only half of the unknowns of the general system of equations of motion based
on six unknowns for each node. Without any adverse effect on the results,
this represents an important reduction of computation time for the dynamical
analysis of a drilling mast. Analytically, this system may be decomposed into
a set of N∆ second-order differential equations.

7.4 The Eigenfrequencies and Mode Shapes of
Vibrations

It is obvious that the equations of free vibrations of a drilling mast when
damping is taken into account are

[M∆]{∆̈(t)} + [B∆]{∆̇(t)} + [R∆]{∆(t)} = {0},

where {0} is the zero vector of order N∆. As the influence of damping on
the eigenfrequencies of the vibrations of the structure is negligible, we may
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discard the damping effect. Therefore, the eigenfrequencies of a drilling mast
can be determined from the set of differential equations for free oscillations

[M∆]{∆̈(t)} + [R∆]{∆t} = {0}.

This means that the eigenfrequency equation is

∣∣[R∆] − p2[M∆]
∣∣ = 0,

that is, an algebraic equation of order N∆ in p2. The eigenfrequencies pα

of order α and their corresponding mode shapes of vibration can also be
determined. Knowing the mode shapes of vibration, we can obtain the free
vibrations of the drilling mast as a linear combination of the mode shapes,
that is,

{
∆free vib.(t)

}

= [{V1} cos (p1t− θ1) . . . {Vα} cos (pαt− θα) . . .] [C1 . . . Cα . . . CN∆]
T
,

where
{
∆free vib.(t)

}
is the column vector of the elongations of the discrete

masses in free vibration, Cα, θα are the constants of the eigenmodes, which
can be identified as the amplitudes and phase angles of order α, and {Vα} is
the column matrix of mode shapes of order α.

7.5 Numerical Application

Using the algorithm proposed in this chapter and the program version SAP
05, we have obtained the eigenfrequencies and mode shapes of vibration of a
working drilling mast for a drilling rig of type A designed for very deep wells
of up to 7000 m, with drill pipes of 4.5′′. The mast legs have rectangular cross
sections and consist of 539 tubular bars and 194 moving nodes. The distributed
masses of the bars of the structure are replaced by concentrated masses at the
nodes. Neglecting the rotatory inertia of the concentrated masses, we are left
to consider a dynamical model with 194×3 degrees of freedom. The dynamical
computation of the proposed model by means of the programme SAP 05 needs
the following data input: (i) the numerical labeling of the nodes and bars of
the mast starting from the base to the top; (ii) the coordinates of the nodes in
the Cartesian coordinate system of the dynamical model; (iii) the geometric
characteristics: the cross-sectional area and the axial moments of inertia of
each bar of the mast; and (iv) the physical characteristics E (longitudinal
modulus of elasticity), µ (Poisson ratio), and ρ (density) of the bars.

With this input in SAP 05, the computer calculates the stiffness matrix
for each bar of the mast, which is required for the dynamical computation of
the eigenfrequencies. In Table 7.1 we present only the values of the first six
eigenfrequencies of the mast.
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Table 7.1. The first six eigenfrequencies of a working mast.

Eigenfrequency p1 p2 p3 p4 p5 p6

[rad./s] 4.35 7.72 19.00 21.88 24.79 28.45

7.6 Interpretation of the Results

The analysis of the results obtained in this study allows us to draw several
conclusions.

(i) The eigenfrequencies are relatively low and close to each other. This
can be explained by the flexibility of the drilling masts. Also, certain eigen-
frequencies are included in the domain of angular velocities of the drill string
(in the case of rotatory drilling) during drilling operations. This last charac-
teristic is often noticed in the field during drilling for almost all masts, so
we should change the rotational speed of the drill string in order to avoid
excessive vibrations of the masts.

(ii) The mode shapes of the vibrations are normalized.

(iii) The first four mode shapes, exhibited only by the support leg of the
mast and the upper cross section on which the crown block is set, represent
bending in the (y, z)-plane, traction in the (x, y)-plane, and torsion about the
vertical y-axis.

(iv) Taking into account the energy needed for the excitation of the mast,
we assessed that during the tripping operations, which can put the mast out-
side the elastic equilibrium position, the dynamical deformation of the mast
is due to the bending generated by the contribution of the first two oscillation
modes.

7.7 Conclusions

(i) The dynamical model adopted here and the corresponding algorithm de-
signed in this chapter can be applied to evaluate the eigenfrequencies of any
type of mast.

(ii) It is evident that knowing the eigenfrequencies allows us to avoid the
resonance phenomenon in the drilling mast elements and other surface equip-
ment of a drilling rig, by changing the rotational speeds of the drill string.
But if the drilling program of a well requires angular velocities of the drill
string equal to certain eigenfrequencies of the drilling mast, then we must
drill at that speed to reduce the control timing of the drilling mast and of
other surface equipment.

(iii) Furthermore, it is easy to see that to determine the eigenfrequencies
and mode shapes of vibration of a mast in matrix-calculation theory means
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to establish the eigenvalues and eigenvectors of the dynamical stiffness matrix
corresponding to the degrees of freedom of the translations of the mast.
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8.1 Introduction

The static transverse shear deformation model of elastic plates (see, for ex-
ample, [Co90], [ChCo00], and [ChCo05]) was generalized to the thermoelastic
case in [ScTa93] and [ScTa95]. In this chapter, we solve the time-dependent
bending of a thin elastic plate subject to external forces, moments, inter-
nal heat sources, homogeneous initial conditions, and Dirichlet or Neumann
boundary conditions by reducing the governing equations to time-dependent
boundary integral equations with the help of layer potentials and showing the
unique solvability of these equations in a variational setting.

A full analysis when thermal effects are not present can be found in
[ChCo05] and in [ChCo99], [ChCo00a], [ChCo02], and [ChCo03]. The bound-
ary integral equations arising in the fundamental problems of three-dimension-
al thermoelasticity [KGBB78] were studied in [ChDu00].

In what follows, we consider a plate with zero initial data. This implies no
restriction on generality since homogeneous conditions can easily be achieved
by means of an “area” and some “initial” thermoelastic plate potentials (see
[ChCo04] and [ChCo06]).

8.2 Preliminaries

We consider a thin elastic plate of thickness h0 = const > 0, which occupies
a region S̄ × [−h0/2, h0/2] in R

3, where S is a domain in R
2 with bound-

ary ∂S. The displacement vector at a point x′ in this region at t ≥ 0 is
v(x′, t) = (v1(x

′, t), v2(x
′, t), v3(x

′, t))T , where the superscript T denotes ma-
trix transposition, and the temperature is θ(x′, t). We write x′ = (x, x3),
x = (x1, x2) ∈ S̄. We assume [Co90] that

v(x′, t) = (x3u1(x, t), x3u2(x, t), u3(x, t))
T .
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The temperature is best considered through its “moment” (see [ScTa93] and
[ScTa95])

u4(x, t) =
1

h2h0

h0/2∫

−h0/2

x3θ(x, x3, t)dx3, h2 = h2
0/12.

Then the vector-valued function

U(x, t) = (u(x, t)T , u4(x, t))
T , u(x, t) = (u1(x, t), u2(x, t), u3(x, t))

T ,

satisfies

B0(∂
2
tU)(x, t)+(B1∂tU)(x, t)+(AU)(x, t) = 0, (x, t) ∈ G = S×(0,∞), (8.1)

where B0 = diag{ρh2, ρh2, ρ, 0}, ∂t = ∂/∂t, ρ = const > 0 is the material
density,

B1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
η∂1 η∂2 0 χ−1

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

A
h2γ∂1

h2γ∂2

0
0 0 0 −△

⎞
⎟⎟⎠ ,

A =

⎛
⎝

−h2µ△ − h2(λ+ µ)∂2
1 + µ −h2(λ+ µ)∂1∂2 µ∂1

−h2(λ+ µ)∂1∂2 −h2µ△ − h2(λ+ µ)∂2
2 + µ µ∂2

−µ∂1 −µ∂2 −µ△

⎞
⎠ ,

∂α = ∂/∂xα, α = 1, 2, η, χ, and γ are positive physical constants, and λ and
µ are the Lamé coefficients of the material, satisfying λ+ µ > 0 and µ > 0.

As explained, the initial conditions are

U(x, 0) = 0, (∂tu)(x, 0) = 0, x ∈ S. (8.2)

Let Γ = ∂S×(0,∞). In problem (TD) with Dirichlet boundary conditions,
the boundary data are

U(x, t) = F (x, t) = (f(x, t)T , f4(x, t))
T , (x, t) ∈ Γ, (8.3)

where f(x, t) = (f1(x, t), f2(x, t), f3(x, t))
T .

We denote by T the boundary moment-stress operator, defined on ∂S by

T =

⎛
⎝
h2[(λ+ 2µ)n1∂1 + µn2∂2] h2(λn1∂2 + µn2∂1) 0

h2(µn1∂2 + λn2∂1) h2[(λ+ 2µ)n2∂2 + µn1∂1] 0
µn1 µn2 µ∂n

⎞
⎠ , (8.4)

where n(x) = (n1(x), n2(x))T is the outward unit normal to ∂S and ∂n =
∂/∂n. In problem (TN) with Neumann boundary conditions, the boundary
data are

(TU)(x, t) = G(x, t) = (g(x, t)T , g4(x, t))
T , (x, t) ∈ Γ, (8.5)
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where g(x, t) = (g1(x, t), g2(x, t), g3(x, t))
T and

(TU)(x, t) =

(
(Tu)(x, t) − h2γn(x)u4(x, t)

∂nu4(x, t)

)
=

(
(TeU)(x, t)
(TθU)(x, t)

)
. (8.6)

In (8.6) and below, n(x) also stands for the vector (n1(x), n2(x), 0)T .
Let S+ and S− be the interior and exterior domains bounded by ∂S, and

let G± = S± × (0,∞). The classical interior and exterior problems (TD±)
consist in finding U ∈ C2(G±) ∩ C1(Ḡ±) that satisfy (8.1) in G±, (8.2) in
S±, and (8.3). The classical interior and exterior problems (TN±) consist in
finding U ∈ C2(G±)∩C1(Ḡ±) that satisfy (8.1) in G±, (8.2) in S±, and (8.5),
which we write in the form

(TU)±(x, t) = (T±U)(x, t) = G(x, t), (x, t) ∈ Γ.

The superscripts ± denote the limiting values of the corresponding functions
as (x, t) → Γ from inside G±.

To solve the above initial-boundary value problems, we start by considering
their Laplace-transformed (with respect to t) versions (TD±

p ) and (TN±
p ).

8.3 The Laplace-Transformed Boundary Value Problems

Let L and L−1 be the direct and inverse Laplace transformations, and let
Û(x, p) be the Laplace transform of U(x, t), where p is the transformation
parameter.

The transformed problems (TD±
p ) consist in finding Û(x, p) ∈ C2(S±) ∩

C1(S̄±) such that

p2
B0Û(x, p) + p (B1Û)(x, p) + (AÛ)(x, p) = 0, x ∈ S±,

Û±(x, p) = F̂ (x, p), x ∈ ∂S.

In problems (TN±
p ), we search for Û(x, p) ∈ C2(S±) ∩ C1(S̄±) such that

p2
B0Û(x, p) + p (B1Û)(x, p) + (AÛ)(x, p) = 0, x ∈ S±,

(T±Û)(x, p) = Ĝ(x, p), x ∈ ∂S.

Our analysis requires the introduction of certain function spaces, which
we list below. Let m ∈ R and p ∈ C.

Hm(R2) : the standard Sobolev space of all v̂4(x), x ∈ R
2, with norm

‖v̂4‖m =

{∫

R2

(1 + |ξ|2)m|ṽ4(ξ)|2 dξ
}1/2

,

where ṽ4(ξ) is the Fourier transform of v̂4(x).
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Hm,p(R
2) : the space of all v̂(x) = (v̂1(x), v̂2(x), v̂3(x))T in the underlying set

of
[
Hm(R2)

]3
, with norm

‖v̂‖m,p =

{∫

R2

(1 + |ξ|2 + |p|2)m|ṽ(ξ)|2 dξ
}1/2

.

Hm,p(R
2) = Hm,p(R

2) ×Hm(R2), with norm ‖|V̂ ‖|m,p = ‖v̂‖m,p + ‖v̂4‖m.

Hm(S±), Hm,p(S
±): the spaces of the restrictions to S± of all v̂4 ∈ Hm(R2),

v̂ ∈ Hm,p(R
2), respectively, with norms

‖û4‖m;S± = inf
v̂4∈Hm(R2):v̂4|S± =û4

‖v̂4‖m,

‖û‖m,p;S± = inf
v̂∈Hm,p(R2):v̂|S± =û

‖v̂‖m,p.

Hm,p(S
±) = Hm,p(S

±) ×Hm(S±), with norm

‖|Û‖|m,p;S± = ‖û‖m,p;S± + ‖û4‖m;S± .

Hm(R2) = Hm,0(R
2) =

[
Hm(R2)

]3
, Hm(S±) = Hm,0(S

±) = [Hm(S±)]
3
.

Hm(R2) = Hm(R2) ×Hm(R2) =
[
Hm(R2)

]4
.

Hm(S±) = Hm(S±) ×Hm(S±) = [Hm(S±)]
4
.

The norms on
[
Hm(R2)

]n
and [Hm(S±)]

n
are denoted by the same sym-

bols ‖ · ‖m and ‖ · ‖m;S± for all n = 1, 2, . . . .

H̊m(S±), H̊m,p(S
±), H̊m,p(S

±) = H̊m,p(S
±) × H̊m(S±) : the subspaces of

Hm(R2), Hm,p(R
2), Hm,p(R

2) of all v̂4 ∈ Hm(R2), v̂ ∈ Hm,p(R
2), V̂ ∈

Hm,p(R
2) with supp v̂4 ⊂ S̄±, supp v̂ ⊂ S̄±, supp V̂ ⊂ S̄±.

H−m(S±), H−m,p(S
±), H−m,p(S

±) : the duals of H̊m(S±), H̊m,p(S
±),

H̊m,p(S
±) with respect to the dualities generated by the inner products in

L2(S±),
[
L2(S±)

]3
,
[
L2(S±)

]4
. In what follows, (· , ·)0;S± is the inner prod-

uct in
[
L2(S±)

]n
for all n = 1, 2, . . . .

We assume that the boundary contour ∂S is a simple, closed, C2-curve.

H1/2(∂S), H1/2,p(∂S) : the spaces of the traces on ∂S of all û4 ∈ H1(S
±),

û ∈ H1,p(S
±), equipped with the norms

‖ϕ̂4‖1/2;∂S = inf
û4∈H1(S+):û4|∂S =ϕ̂4

‖û4‖1,S+ ,

‖ϕ̂‖1/2,p;∂S = inf
û∈H1,p(S+):û|∂S =ϕ̂

‖û‖1,p;S± .

H1/2,p(∂S) = H1/2,p(∂S) ×H1/2(∂S), with norm
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‖|F̂‖|1/2,p;∂S = ‖ϕ̂‖1/2,p;∂S + ‖ϕ̂4‖1/2;∂S .

The continuous (uniformly with respect to p ∈ C) trace operators from
H1(S

±) to H1/2(∂S), from H1,p(S
±) to H1/2,p(∂S), and from H1,p(S

±) to
H1/2,p(∂S), are denoted by the same symbols γ±.

H−1/2(∂S), H−1/2,p(∂S), H−1/2,p(∂S) : the duals of H1/2(∂S), H1/2,p(∂S),
H1/2,p(∂S) with respect to the dualities generated by the inner products

in L2(∂S),
[
L2(∂S)

]3
,
[
L2(∂S)

]4
. In what follows, (· , ·)0;∂S is the inner

product in
[
L2(∂S)

]n
for all n = 1, 2, . . . . The norms of ĝ4 ∈ H−1/2(∂S),

ĝ ∈ H−1/2,p(∂S), Ĝ = (ĝT , ĝ4)
T ∈ H−1/2,p(∂S) are denoted by ‖ĝ4‖−1/2;∂S ,

‖ĝ‖−1/2,p;∂S , ‖|Ĝ‖|−1/2,p;∂S = ‖ĝ‖−1/2,p;∂S + ‖ĝ4‖−1/2;∂S .

H±1/2(∂S) = H±1/2,0(∂S) =
[
H±1/2(∂S)

]3
.

H±1/2(∂S) = H±1/2(∂S) ×H±1/2(∂S) =
[
H±1/2(∂S)

]4
.

The norms on
[
H±1/2(∂S)

]n
are denoted by the same symbols ‖ · ‖±1/2;∂S

for all n = 1, 2, . . . .
Let Û = (ûT , û4)

T , Ŵ = (ŵT , ŵ4)
T ∈ H1,p(S

±). We write

Υ±,p(Û , Ŵ ) = a±(û, ŵ) + (∇û4,∇ŵ4)0;∂S± + p2(B
1/2
0 û, B

1/2
0 ŵ)0;S±

+ χ−1p (û4, ŵ4)0;S± − h2γ(û4,div ŵ)0;S± + ηp (div û, ŵ4)0,S± ,

where B0 = diag {ρh2, ρh2, ρ}, a±(û, ŵ) = 2
∫

S±

E(û, ŵ) dx, and E is the

sesquilinear form of the internal static energy density [ChCo00].
Û ∈ H1,p(S

±) is called a weak (variational) solution of (TD±
p ) if

Υ±,p(Û , Ŵ ) = 0 ∀Ŵ ∈
[
H̊1(S

±)
]4
, γ±Û = F̂ .

Let Ĝ ∈ H−1/2,p(∂S). For any Ŵ ∈ H1/2,p(∂S), we write

L(Ŵ ) = (Ĝ, Ŵ )0;∂S = (ĝ, ŵ)0;∂S + (ĝ4, ŵ4)0;∂S .

The variational problems (TN±
p ) consist in finding Û ∈ H1,p(S

±) such that

Υ±,p(Û , Ŵ ) = ±L(Ŵ ) ∀Ŵ ∈
[
H1(S

±)
]4
.

Let Cκ = {p = σ + iζ ∈ C : σ > κ}. Below, we denote by c all positive
constants occurring in estimates, which are independent of the functions in
those estimates and of p ∈ Cκ but may depend on κ. Two following assertions
were proved in [ChCo05a].

Theorem 1. For all F̂ (x, p) ∈ H1/2,p(∂S), p ∈ Cκ, κ > 0, problems (TD±
p )

have unique solutions Û(x, p) ∈ H1,p(S
±). If the mapping F̂ : Cκ → H1/2(∂S)

is holomorphic, then so are Û : Cκ → H1(S
±).

Theorem 2. For all Ĝ(x, p) ∈ H−1/2,p(∂S), p ∈ Cκ, κ > 0, problems

(TN±
p ) have unique solutions Û(x, p) ∈ H1,p(S

±). If the mapping Ĝ : Cκ →
H−1/2(∂S) is holomorphic, then so are Û : Cκ → H1(S

±).
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8.4 Layer Potentials for the Laplace-Transformed
Problems

Let D(x, t) be a matrix of fundamental solutions for (8.1), which van-
ishes for t < 0, and let A(x, t) = (α(x, t)T , α4(x, t))

T , where α(x, t) =
(α1(x, t), α2(x, t), α3(x, t))

T , be a smooth function with compact support in
∂S × R, which is equal to zero for t < 0. We define the single-layer thermoe-
lastic plate potential (VA)(x, t) with density A(x, t) by

(VA)(x, t) =

∫

Γ

D(x− y, t− τ)A(y, τ) dsy dτ, (x, t) ∈ R
3.

Its Laplace transform is

(V̂pÂ)(x, p) =

∫

∂S

D̂(x− y, p)Â(y, p) dsy, x ∈ R
2, p ∈ C0.

Let Ck,α(S±) and Ck,α(∂S) be the spaces of functions whose derivatives
up to order k are Hölder continuous with index α ∈ (0, 1] in S± and on ∂S,
respectively. To simplify the notation, we use the symbols C, Ck,α, and Cm

for the appropriate spaces of both scalar and vector-valued functions.
(i) If Â ∈ C(∂S), then (V̂pÂ)(x, p) exists for any x ∈ R

2, the restrictions

of (V̂pÂ)(x, p) to S± belong to C∞(S±), and

p2
B0(V̂pÂ)(x, p) + p (B1(V̂pÂ))(x, p) + (A(V̂pÂ))(x, p) = 0, x ∈ S±.

Also, V̂pÂ ∈ C0,α(R2) for any α ∈ (0, 1). Thus, the limiting values of

(V̂pÂ)(x, p), as x → ∂S from inside S±, coincide and we write

(V̂pÂ)+(x, p) = (V̂pÂ)−(x, p) = (V̂pÂ)(x, p), x ∈ ∂S.

Let Vp be the boundary operator defined by Â(x) �→ (V̂pÂ)(x, p), x ∈ ∂S,
which maps C(∂S) continuously to C0,α(∂S) for any α ∈ (0, 1).

(ii) If Â ∈ C0,α(∂S), α ∈ (0, 1], then V̂pÂ ∈ C1,β(S̄±), with β = α for
α ∈ (0, 1) and any β ∈ (0, 1) for α = 1.

Let x0 ∈ ∂S, and consider the vector-valued function (T(V̂pÂ))(x, p),
where x ∈ S+ or x ∈ S− and T is defined by (8.4) and (8.6) with n = n(x0).
Then

(T(V̂pÂ))(x, p) =

∫

∂S

TD̂(x− y, p)Â(y, p) dsy. (8.7)

By (8.7) and the properties of single-layer potentials in static problems
[Co90], we find that there exist limiting values (T(V̂pÂ))±(x0, p), x0 ∈ ∂S,

which are connected to the direct value (T(V̂pÂ))(0)(x0, p) of the correspond-
ing singular integral by the equalities
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(T(V̂pÂ))±(x0, p) = ± 1
2 Â(x0, p) + (T(V̂pÂ))(0)(x0, p), x0 ∈ ∂S.

Let B(x, t) = (β(x, t)T , β4(x, t))
T , β(x, t) = (β1(x, t), β2(x, t), β3(x, t))

T ,
be smooth and with compact support in ∂S×R, and equal to zero for t < 0. We
define the double-layer thermoelastic plate potential (WB)(x, t) with density
B(x, t) by

(WB)(x, t) =

∫

Γ

P(x, y, t− τ)B(y, τ) dsy dτ, (x, t) ∈ R
3, (8.8)

where P(x, y, t) =
[
T

′DT (x− y, t)
]T

,

T
′ =

⎛
⎜⎜⎝

Ty

ηn1(y)∂t

ηn2(y)∂t

0
0 0 0 ∂n(y)

⎞
⎟⎟⎠ ,

and Ty is the boundary differential operator defined by (8.4) in which n =
(n1(y), n2(y))

T and ∂α = ∂/∂yα, α = 1, 2. Its Laplace transform is

(ŴpB̂)(x, p) =

∫

∂S

P̂(x, y, p)B̂(y, p) dsy, (x, t) ∈ R
2, p ∈ C0, (8.9)

where B̂(y, p) = (β̂(y, p)T , β̂4(y, p))
T , P̂(x, y, p) =

[
T

′
p̄D̂T (x− y, p)

]T
, and

T
′
p̄ =

⎛
⎜⎜⎝

Ty

ηn1(y)p
ηn2(y)p

0
0 0 0 ∂n(y)

⎞
⎟⎟⎠ .

It can be verified that the double-layer potential (8.9) satisfies

p2
B0(ŴpB̂)(x, p) + p (B1(ŴpB̂))(x, p) + (A(ŴpB̂))(x, p) = 0, x ∈ S+ ∪ S−,

and, hence, that its inverse Laplace transform (8.8) satisfies (8.1) in G+ and
G−.

From the properties of the harmonic double-layer potential and those of
the static double-layer potential in the bending of plates with transverse shear
deformation [Co90], it follows that there exist limiting values (ŴpB̂)±(x0, p),

x0 ∈ ∂S, which are connected to the direct value (ŴpB̂)(0)(x0, p) of the cor-
responding singular integral by the formulas

(ŴpB̂)±(x0, p) = ∓ 1
2 B̂(x0, p) + (ŴpB̂)(0)(x0, p), x0 ∈ ∂S.

The following properties of the double-layer potential follow from the re-
sults in [Co90].
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(i) If B̂ ∈ C0,α(∂S), α ∈ (0, 1], then ŴpB̂ ∈ C∞(S+ ∪ S−).

(ii) In this case, ŴpB̂ may be extended from S± to S̄±, respectively, and
the extended vector-valued functions are of class C0,β(S̄±), with β = α for
α ∈ (0, 1) and any β ∈ (0, 1) for α = 1.

We define the operators

W±
p : B̂(x) → (ŴpB̂)±(x, p), x ∈ ∂S,

generated by the limiting values (ŴpB̂)± of the double-layer potential.

8.5 Solvability of the Time-Dependent Boundary
Integral Equations

A few more function spaces are necessary. Let κ > 0 and k, l ∈ R.

HL
1,k,κ(S±), HL

1,k,κ(S±) HL
±1/2,k,κ(∂S), HL

±1/2,k,κ(∂S) : the spaces of all

û(x, p), û4(x, p), x ∈ S±, p ∈ Cκ, ê(x, p), ê4(x, p), x ∈ ∂S, p ∈ Cκ, which de-
fine holomorphic mappings Cκ �→ H1(S

±), Cκ �→ H1(S
±) Cκ �→ H±1/2(∂S),

Cκ �→ H±1/2(∂S), with norms

‖û‖2
1,k,κ;S± = sup

σ>κ

∞∫

−∞

(1 + |p|2)k‖û(x, p)‖2
1,p;S± dζ,

‖û4‖2
1,k,κ;S± = sup

σ>κ

∞∫

−∞

(1 + |p|2)k‖û4(x, p)‖2
1;S± dζ,

‖ê‖2
±1/2,k,κ;∂S = sup

σ>κ

∞∫

−∞

(1 + |p|2)k‖ê(x, p)‖2
±1/2,p;∂S dζ,

‖ê4‖2
±1/2,k,κ;∂S = sup

σ>κ

∞∫

−∞

(1 + |p|2)k‖ê4(x, p)‖2
±1/2;∂S dζ.

HL
1,k,l,κ(S±) = HL

1,k,κ(S±) × HL
1,l,κ(S±), HL

±1/2,k,l,κ(∂S) = HL
±1/2,k,κ(∂S) ×

HL
±1/2,l,κ(∂S), with norms

‖|Û‖|1,k,l,κ;S± = ‖û‖1,k,κ;S± + ‖û4‖1,l,κ;S± ,

‖|Ê‖|±1/2,k,l,κ;∂S = ‖ê‖±1/2,k,κ;∂S + ‖ê4‖±1/2,l,κ;∂S .

Let Â ∈ HL
−1/2,k,l,κ(∂S), F̂ = (ϕ̂T , ϕ̂4)

T ∈ HL
1/2,k,l,κ(∂S), and Ĝ =

(ĝT , ĝ4)
T ∈ HL

−1/2,k,l,κ(∂S). We define operators V̂ and V̂−1 by setting

(V̂Â)(x, p) = (VpÂ)(x, p), (V̂−1F̂ )(x, p) = (V−1
p F̂ )(x, p), x ∈ ∂S, p ∈ Cκ.
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We now define operators K̂±, Ŵ±, and F̂ and their inverses by setting,
for x ∈ ∂S,

(K̂±Â)(x, p) = (K±
p Â)(x, p), ((K̂±)−1Ĝ)(x, p) = ((K±

p )−1Ĝ)(x, p),

(Ŵ±B̂)(x, p) = (W±
p B̂)(x, p), ((Ŵ±)−1F̂ )(x, p) = ((W±

p )−1F̂ )(x, p),

(F̂B̂)(x, p) = (FpB̂)(x, p), (F̂−1Ĝ)(x, p) = (F−1
p Ĝ)(x, p).

To derive the fundamental results of this chapter, we need to introduce
one last batch of function spaces. Again, let κ > 0 and k, l ∈ R.

HL−1

1,k,κ(G±), HL−1

1,l,κ(G±), HL−1

1,k,l,κ(G±) = HL−1

1,k,κ(G±)×HL−1

1,l,κ(G±) : the spaces

of the inverse Laplace transforms of all the elements of HL
1,k,κ(S±), HL

1,l,κ(S±),

HL
1,k,l,κ(S±) = HL

1,k,κ(S±) × HL
1,l,κ(S±). The norms of u(x, t) = L−1û(x, p),

u4(x, t) = L−1û4(x, p), and U(x, t) = L−1Û(x, p) = (u(x, t)T , u4(x, t))
T are

‖u‖1,k,κ;G± = ‖û‖1,k,κ;S± , ‖u4‖1,l,κ;G± = ‖û4‖1,l,κ;S± ,

‖|U‖|1,k,l,κ;G± = ‖|Û‖|1,k,l,κ;S± .

HL−1

±1/2,k,κ(Γ ), HL−1

±1/2,l,κ(Γ ), HL−1

±1/2,k,l,κ(Γ ) = HL−1

±1/2,k,κ(Γ ) × HL−1

±1/2,l,κ(Γ ) :

the spaces of the inverse transforms of all the elements of HL
±1/2,k,κ(∂S),

HL
±1/2,l,κ(∂S), HL

±1/2,k,l,κ(∂S) = HL
±1/2,k,κ(∂S) × HL

±1/2,l,κ(∂S). The norms

of e(x, t) = L−1ê(x, p), e4(x, t) = L−1ê4(x, p), E(x, t) = L−1Ê(x, p) =
(e(x, t)T , e4(x, t))

T are

‖e‖±1/2,k,κ;Γ = ‖ê‖±1/2,k,κ;∂S , ‖e4‖±1/2,l,κ;Γ = ‖û4‖±1/2,l,κ;∂S ,

‖|E‖|±1/2,k,l,κ;Γ = ‖|Ê‖|±1/2,k,l,κ;∂S .

In what follows, we extend the use of the symbols γ± to denote also the
trace operators from G± to Γ .

U = U(x, t), U = (uT , u4)
T ∈ HL−1

1,0,0,κ(G±), is called a weak solution of
the corresponding original problem (TD±) if

Υ±(U,W ) = 0, γ±U = F,

where

Υ±(U,W ) =

∞∫

0

{a±(u,w) + (∇u4,∇w4)0;S± − (B
1/2
0 ∂tu,B

1/2
0 ∂tw)0;S±

− χ−1(u4, ∂tw4)0;S± − h2γ(u4,divw)0;S± − η(divu, ∂tw4)0;S±} dt,

for all W = W (x, t), W = (wT , w4)
T ∈ C∞

0 (Ḡ±), that is, for all infinitely
smooth four-component vector-valued functions with compact support in Ḡ±

and satisfying γ±W = 0. Also, U ∈ HL−1

1,0,0,κ(G±) is called a weak solution of
(TN±) if
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Υ±(U,W ) = ±L(W ) ∀W ∈ C∞
0 (Ḡ±),

where

L(W ) =

∞∫

0

(G,W )0;∂S dt.

The solvability of all these problems was studied in [ChCo05a].
The single-layer and double-layer potentials (VA)(x, t) and (WB)(x, t),

(x, t) ∈ R
3, with densities vanishing for t < 0, may be defined as the inverse

Laplace transforms of (V̂Â)(x, p) and (ŴB̂)(x, p), respectively; that is,

(VA)(x, t) = L−1((V̂Â)(x, p)), (WB)(x, t) = L−1((ŴB̂)(x, p)).

These potentials generate boundary operators V,W±,K±, and F defined by

V = L−1V̂L, W± = L−1Ŵ±L, K± = L−1K̂±L, F = L−1F̂L.

We seek the solutions of (TD±), in turn, as a single-layer potential and a
double-layer potential; in other words,

U(x, t) = (VA)(x, t), U(x, t) = (WB)(x, t), (x, t) ∈ G±,

with unknown densities A and B. After passing to the limit as (x, t) → Γ ,
these representations lead to the systems of boundary integral equations

VA = F, W±B = F, (8.10)

respectively. The same representations for the solutions of (TN±) yield the
systems

K±A = G, FB = G. (8.11)

Theorem 3. For any κ > 0 and k ∈ R, systems (8.10) and (8.11) have unique
solutions.

Theorem 4. (i) If F ∈ HL−1

1/2,k+1,k+1,κ(Γ ) and A and B are the solutions

of (8.10), then U(x, t) = (VA)(x, t) and U(x, t) = (WB)(x, t) belong to

HL−1

1,k,k,.κ(G±) for any κ > 0, k ∈ R, and

‖|U‖|1,k,k,κ;G± ≤ c‖|F‖|1/2,k+1,k+1,κ;Γ .

(ii) If G ∈ HL−1

−1/2,k+1,k,κ(Γ ) and A and B are the solutions of (8.11), then

U(x, t) = (VA)(x, t) and U(x, t) = (WB)(x, t) belong to HL−1

1,k,k,κ(G±) for any
κ > 0, k ∈ R, and

‖|U‖|1,k,k,κ;G± ≤ c‖|G‖|−1/2,k+1,k,κ;Γ .

(iii) If k ≥ 0, then U(x, t) is the weak solution of (TD±) or (TN±), as
appropriate.

These assertions are proved by using the mapping properties of the bound-
ary operators and Theorems 1 and 2.
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boundary value problems for bending of thermoelasic plates with mixed
boundary conditions. J. Math. Anal. Appl., 311, 357–376 (2005).

[ChCo06] Chudinovich, I., Constanda, C., Coĺın Venegas, J.: On the Cauchy prob-
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9.1 The Mathematical Model

Consider a plate occupying a region S × [−h0/2, h0/2] in R
3, where S is a

domain in R
2 with a simple, closed C2-boundary ∂S and h0 = const > 0 is

the thickness.
We write G = S × (0,∞), Γ = ∂S × (0,∞), and x = (x1, x2), and assume

that the material is homogeneous and isotropic with Lamé constants λ and
µ, density ρ, and heat-related (positive) constants γ, η, and χ.

The displacements and thermal “moment” in the plate are denoted by

u(x, t) =
(
x3u1(x, t), x3u2(x, t), u3(x, t)

)T
,

u4(x, t) =
1

h2h0

h0/2∫

−h0/2

x3θ(x, x3, t) dx3, h2 =
h2

0

12
,

where U = (u1, u2, u3, u4)
T = (uT , u4)

T and θ(x, x3, t) is the temperature.
Applying the procedure of averaging over the thickness, we arrive at the

system of governing equations

B0∂
2
tU(x, t) + B1∂tU(x, t) + AU(x, t) = 0, (x, t) ∈ G, (9.1)

where B0 = diag {ρh2, ρh2, ρ, 0},

B1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
η∂1 η∂2 0 χ−1

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

A
h2γ∂1

h2γ∂2

0
0 0 0 −∆

⎞
⎟⎟⎠ ,

A =

⎛
⎝

−h2µ∆− h2(λ+ µ)∂2
1 + µ −h2(λ+ µ)∂1∂2 µ∂1

−h2(λ+ µ)∂1∂2 −h2µ∆− h2(λ+ µ)∂2
2 + µ µ∂2

−µ∂1 −µ∂2 −µ∆

⎞
⎠ ,
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∂t = ∂/∂t, and ∂α = ∂/∂xα, α = 1, 2.
Along with these equations we consider the boundary moment-stress op-

erator

T =

⎛
⎝
h2[(λ+ 2µ)n1∂1 + µn2∂2] h2(λn1∂2 + µn2∂1) 0

h2(µn1∂2 + λn2∂1) h2[(λ+ 2µ)n2∂2 + µn1∂1] 0
µn1 µn2 µ∂n

⎞
⎠ ,

where n = (n1, n2)
T is the outward unit normal to ∂S and ∂n = ∂/∂n.

To the governing equations, we adjoin either Dirichlet boundary conditions

U = F = (fT , f4)
T on Γ (9.2)

or Neumann boundary conditions

T U =

(
Tu− h2γnu4

∂nu4

)
= G = (gT , g4)

T on Γ , (9.3)

and (without loss of generality) homogeneous initial conditions

U(x, 0) = 0, (∂tu)(x, 0) = 0, x ∈ S. (9.4)

For the purpose of this discussion, we distinguish between the interior and
exterior domains with respect to the boundary ∂S, denoting the former by
S+ and the latter by S−. Obviously, we also write G± = S± × (0,∞).

Two classical initial-boundary value problems are considered here, as fol-
lows:

(TD±): find U ∈ C2(G±)∩C1(Ḡ±) satisfying (9.1) in G±, (9.2) on Γ , and
(9.3) in S±.

(TN±): find U ∈ C2(G±)∩C1(Ḡ±) satisfying (9.1) in G±, (9.3) on Γ , and
(9.4) in S±.

9.2 The Laplace-Transformed Problems

With the notation LU(x, t) = Û(x, p), we apply the Laplace transformation
L to our initial-value problems and reduce them to corresponding boundary
value problems:

(TD±
p ): Find Û ∈ C2(S±) ∩ C1(S̄±) such that

p2
B0Û + p (B1Û) + (AÛ) = 0 in S±,

Û = F̂ on ∂S.

(TN±
p ): Find Û ∈ C2(S±) ∩ C1(S̄±) such that

p2
B0Û + p (B1Û) + (AÛ) = 0 in S±,

T ±Û = Ĝ on ∂S.
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To study these problems, we adopt all definitions of functions spaces,
norms, inner products, and trace operators given in [ChCo1]. We also recall
the sesquilinear form for Û = (ûT , û4)

T , Ŵ = (ŵT , ŵ4)
T ∈ H1,p(S

±) defined
by

Υ±,p(Û , Ŵ ) = a±(û, ŵ) + (∇û4,∇ŵ4)0;∂S± + p2(B
1/2
0 û, B

1/2
0 ŵ)0;S±

+ χ−1p (û4, ŵ4)0;S± − h2γ(û4,div ŵ)0;S± + ηp (div û, ŵ4)0,S± ,

where B0 = diag {ρh2, ρh2, ρ}, a±(û, ŵ) = 2
∫

S±

E(û, ŵ) dx, and E is the

quadratic form of the internal static energy density.
For Ĝ ∈ H−1/2,p(∂S) and Ŵ ∈ H1/2,p(∂S), we define

L(Ŵ ) = (Ĝ, Ŵ )0;∂S = (ĝ, ŵ)0;∂S + (ĝ4, ŵ4)0;∂S .

We can now formulate the variational Laplace-transformed problems.

(TD±
p ): Find Û ∈ H1,p(S

±) such that

Υ±,p(Û , Ŵ ) = 0 ∀Ŵ ∈
[
H̊1(S

±)
]4
,

γ±Û = F̂ .

(TN±
p ): Find Û ∈ H1,p(S

±) such that

Υ±,p(Û , Ŵ ) = ±L(Ŵ ) ∀Ŵ ∈
[
H1(S

±)
]4
.

Let Cκ = {p = σ + iζ ∈ C : σ > κ}.

Theorem 1. (i) If F̂ (x, p) ∈ H1/2,p(∂S), p ∈ Cκ, κ > 0, then (TD±
p ) have

unique solutions Û(x, p) ∈ H1,p(S
±), and if F̂ : Cκ → H1/2(∂S) is holomor-

phic, then so are Û : Cκ → H1(S
±).

(ii) If Ĝ(x, p) ∈ H−1/2,p(∂S), p ∈ Cκ, κ > 0, then (TN±
p ) have unique

solutions Û(x, p) ∈ H1,p(S
±), and if Ĝ : Cκ → H−1/2(∂S) is holomorphic,

then so are Û : Cκ → H1(S
±).

9.3 The Analogs of Green’s Formulas in the Transform
Domain

Let

p ∈ Cκ, κ > 0,

Lp = p2
B0 + pB1 + A,

Û ∈ C2(S±) ∩ C1(S̄±), Ŵ ∈ C1(S±) ∩ C(S̄±), Φ̂ = γ±Ŵ .

In S−, suppose, for example, that
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|Û(x, p)| +

4∑

i=1

|∇ûi(x, p)| ≤ c

(1 + |x|)1+ε
,

|Ŵ (x, p)| +

4∑

i=1

|∇ŵi(x, p)| ≤ c

(1 + |x|)1+ε
,

where c = c(p) > 0 and ε > 0. Then the analog of Green’s first formula (Betti
formula) for Lp is written as

(LpÛ , Ŵ )0;S± = ∓(T ±
p Û , Φ̂)0;∂S + Υ±,p(Û , Ŵ ).

The formal adjoint to Lp is

L
′
p = p̄2

B0 + p̄B
′
1 + A

′,

where

B
′
1 =

⎛
⎜⎜⎝

0 0 0 −η∂1

0 0 0 −η∂2

0 0 0 0
0 0 0 χ−1

⎞
⎟⎟⎠ , A

′ =

⎛
⎜⎜⎝

A
0
0
0

0 0 0 −∆

⎞
⎟⎟⎠ .

Then the analog of Green’s second formula (reciprocity relation) takes the
form

(LpÛ , Ŵ )0;S± − (Û , L′
pŴ )0;S± = ∓

[
(T ±

p Û , Φ̂)0;∂S − (F̂ , (T ′
p )±Ŵ )0;∂S

]
,

where

T ′
p =

⎛
⎜⎜⎝

Ty

ηn1(y)p̄
ηn2(y)p̄

0
0 0 0 ∂n(y)

⎞
⎟⎟⎠

and F̂ = γ±Û .
Finally, the analog of Green’s third formula (Somigliana formula) is

Û(x) = ±
{∫

∂S

D̂(x− y, p)(T ±
p Û)(y) dsy −

∫

∂S

P̂(x, y, p)Û(y) dsy

}

+

∫

S±

D̂(x− y, p)(LpÛ)(y) dy,

where P̂(x, y, p) =
[
T ′

p̄ D̂T (x− y, p)
]T

and D̂(x, p) is the Laplace transform of
a matrix D(x, t) of fundamental solutions for (9.1).
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9.4 Layer Potentials

For densities A and B that are smooth and have compact support in ∂S × R

and vanish for t < 0, the single-layer and double-layer potentials and their
Laplace transforms are defined by

(VA)(x, t) =

∫

Γ

D(x− y, t− τ)A(y, τ) dsy dτ, (x, t) ∈ R
3,

(V̂pÂ)(x, p) =

∫

∂S

D̂(x− y, p)Â(y, p) dsy, x ∈ R
2, p ∈ C0,

(WB)(x, t) =

∫

Γ

P(x, y, t− τ)B(y, τ) dsy dτ, (x, t) ∈ R
3,

(ŴpB̂)(x, p) =

∫

∂S

P̂(x, y, p)B̂(y, p) dsy, (x, t) ∈ R
2, p ∈ C0.

The properties of these potentials in the spaces in the appropriate function
spaces are mentioned in [ChCo1].

For the transformed problems, we consider the Poincaré–Steklov operators
T ±

p : H1/2,p(∂S) → H−1/2,p(∂S) and the additional boundary operators

Vp : H−1/2,p(∂S) → H1/2,p(∂S), defined by

Â(x) �→ (V̂pÂ)(x, p), x ∈ ∂S, p ∈ C0,

K±
p = T ±

p Vp : H−1/2,p(∂S) → H−1/2,p(∂S), p ∈ C0,

W±
p : H1/2,p(∂S) → H1/2,p(∂S), defined by

B̂(x) �→ (ŴpB̂)±(x, p), x ∈ ∂S, p ∈ C0,

Fp = T +
p W+

p = T −
p W−

p : H1/2,p(∂S) → H−1/2,p(∂S), p ∈ C0,

V̂ : HL
−1/2,k+1,k,κ(∂S) → HL

1/2,k,k,κ(∂S), defined by

Â(x, p) �→ (VpÂ)(x, p), x ∈ ∂S, p ∈ Cκ,

K̂± : HL
−1/2,k+1,k,κ(∂S) → HL

−1/2,k−1,k−2,κ(∂S), defined by

Â(x, p) �→ (K±
p Â)(x, p), x ∈ ∂S, κ ∈ C0,

Ŵ± : HL
1/2,k,k,κ(∂S) → HL

1/2,k−2,k−2,κ(∂S), defined by
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B̂(x, p) �→ (W±
p B̂)(x, p), x ∈ ∂S, κ ∈ C0,

F̂ : HL
1/2,k,k,κ(∂S) → HL

−1/2,k−3,k−4,κ(∂S), defined by

B̂(x, p) �→ (FpB̂)(x, p), x ∈ ∂S, κ ∈ C0.

For the original problem, we consider the operators

V = L−1V̂L : HL−1

−1/2,k+1,k,κ(Γ ) → HL−1

1/2,k,k,κ(Γ ),

W± = L−1Ŵ±L : HL−1

1/2,k,k,κ(Γ ) → HL−1

1/2,k−2,k−2,κ(Γ ),

K± = L−1K̂±L : HL−1

−1/2,k+1,k,κ(Γ ) → HL−1

−1/2,k−1,k−2,κ(Γ ),

F = L−1F̂L : HL−1

1/2,k,k,κ(Γ ) → HL−1

−1/2,k−3,k−4,κ(Γ ).

9.5 The Variational Time-Dependent Problems

We formulate these problems as follows:

(TD±): Find U ∈ HL−1

1,0,0,κ(G±) such that

Υ±(U,W ) = 0 ∀W ∈ C∞
0 (Ḡ±),

γ±U = F,

where

Υ±(U,W ) =

∞∫

0

{
a±(u,w) + (∇u4,∇w4)0;S±

− (B
1/2
0 ∂tu,B

1/2
0 ∂tw)0;S± − χ−1(u4, ∂tw4)0;S±

− h2γ(u4,divw)0;S± − η(divu, ∂tw4)0;S±

}
dt.

(TN±): Find U ∈ HL−1

1,0,0,κ(G±) such that

Υ±(U,W ) = ±L(W ) ∀W ∈ C∞
0 (Ḡ±),

L(W ) =

∞∫

0

(G,W )0;∂S dt.

It is now obvious that the analogs of the Somigliana formulas in the original
domain can be written as

±U(x, t) = (V(T ±γ±U))(x, t) − (Wγ±U)(x, t), (x, t) ∈ G±.

Applying γ± and T ± to these equalities, we arrive at the corresponding
boundary integral equations: for (TD±),
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VA = W∓F, A = T ±F, (9.5)

and for (TN±),
FB = K∓G, B = (T ±)−1G. (9.6)

The main result, obtained by combining the mapping properties of the
boundary operators introduced above and Theorem 1, is contained in the
next assertion.

Theorem 2. Systems (9.5) and (9.6) have unique solutions for any κ > 0,
k ∈ R.

(i) If F ∈ HL−1

1/2,k+1,k+1,κ(Γ ), then

±U = VA − WF ∈ HL−1

1,k,k,κ(G±), κ > 0, k ∈ R,

‖|U‖|1,k,k,κ;G± ≤ c‖|F‖|1/2,k+1,k+1,κ;Γ .

(ii) If G ∈ HL−1

−1/2,k+1,k,κ(Γ ), then

±U = VG− WB ∈ HL−1

1,k,k,κ(G±), k > 0, k ∈ R,

‖|U‖|1,k,k,κ;G± ≤ c‖|G‖|−1/2,k+1,k,κ;Γ .

(iii) If k ≥ 0, then U is the (unique) weak solution of (TD±) or (TN±),
as appropriate.
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10.1 Prerequisites

We consider an elastic plate that occupies a region S ⊂ R
2 bounded by a

simple, closed, C2-contour ∂S. The extensional motion of the plate is charac-
terized by a displacement field of the form

u(x) =
(
u1(x), u2(x)

)T
,

where x = (x1, x2) and the superscript T denotes matrix transposition. When
the plate lies on an elastic foundation, the response of the latter is modeled by
the matrix K = diag{k, k}, where k > 0 is the foundation’s elastic coefficient.

The boundary value problem for prescribed displacements on ∂S in the
case of equilibrium under in-plane external forces

q(x) =
(
q1(x), q2(x)

)T

consists of the governing equations and Dirichlet boundary conditions:

Zu = Au−Ku = q in S,
u = f on ∂S,

(10.1)

where

A =

(
µ∆+ (λ+ µ)∂2

1 (λ+ µ)∂1∂2

(λ+ µ)∂1∂2 µ∆+ (λ+ µ)∂2
2

)

and ∂α = ∂/∂xα, α = 1, 2.
We introduce the Sobolev spaces Hm(S), H̊(S), and Hm(∂S), m ∈ R

[DuLi76]. For q ∈ H̊−1(S) and f ∈ H1/2(∂S), we can use standard functional
analysis methods [DuLi76] to prove that problem (10.1) has a unique weak
solution in H1(S). Without loss of generality, we focus on the case q = 0, since
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the nonhomogenous equation can be reduced to it by means of a Newtonian
potential.

In this chapter, we indicate two boundary integral equation techniques,
called direct and indirect, for solving (10.1), which are based, respectively, on
the Somigliana representation formula and the a priori choice of the form of
the solution as a double-layer potential. Numerical results from both methods
are obtained and compared graphically.

We point out that our conclusions remain valid if the conditions on the
smoothness of ∂S are relaxed, for example, by assuming that the boundary
curve ∂S is Lipschitz (in other words, of class C0,1) and consists of finitely
many Lyapunov arcs.

The question of unique solvability of a variety of boundary value and
initial-boundary value problems for bending of plates with transverse shear
deformation has been discussed in great detail in [Co90], [ChCo00], and
[ChCo05].

10.2 Layer Potentials

Through straightforward calculation, we find that a matrix D(x, y) of funda-
mental solutions for the operator Z is given by

D(x, y) = (adjZ)(∂x)[t(x, y)I2],

where (adjZ)(∂x) is the adjoint of Z that acts on t(x, y) with respect to x, I2
is the identity (2 × 2)-matrix,

t(x, y) = −
[
2πk(λ+ µ)

]−1[
K0(c1|x− y|) −K0(c2|x− y|)

]
,

c21 =
k

µ
, c22 =

k

λ+ 2µ
,

and K0 is the modified Bessel function of second kind and order zero [Co90].
An important role in what follows is also played by the matrix of singular
solutions P (x, y) = [T (∂y)D(y, x)]T , where T is the boundary stress operator

T =

(
(λ+ 2µ)ν1∂1 + µν2∂2 µν2∂1 + λν1∂2

λν2∂1 + µν1∂2 µν1∂1 + (λ+ 2µ)ν2∂2

)

acting on D(y, x) with respect to y and ν = (ν1, ν2)
T is the unit outward

normal to ∂S. We construct the single-layer and double-layer potentials with
densities ϕ and ψ defined on ∂S by

(V ϕ)(x) =

∫

∂S

D(x, y)ϕ(y) ds(y),

(Wψ)(x) =

∫

∂S

P (x, y)ψ(y) ds(y).
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If ϕ ∈ H−1/2(∂S) and ψ ∈ H1/2(∂S), then V ϕ, Wψ ∈ H1(S). Let γ be the
trace operator that maps H1(S) continuously onto H1/2(∂S). We can now
define boundary operators V + and W+ by

V +ϕ = γ(V ϕ),

W+ψ = γ(Wψ).

It is easily seen that V + is an integral operator with a weakly singular kernel,
and that

W+ = −1
2 I +W0,

where I is the identity operator and W0 is an integral operator with a sin-
gular kernel, which means that the integral in its definition is understood as
principal value.

Theorem 1. The operators

V + : H−1/2(∂S) → H1/2(∂S),

W+ : H1/2(∂S) → H1/2(∂S)

are bijective.

10.3 Boundary Integral Equations

10.3.1 The Indirect Method

We seek the solution of (10.1) in the form

u(x) = (Wψ)(x), x ∈ S,

with an unknown density ψ. As x tends to ∂S, we obtain the system of singular
integral equations

W+ψ = f (10.2)

or
−1

2 ψ +W0ψ = f.

Theorem 2. If f ∈ H1/2(∂S), then (10.2) has a unique solution ψ ∈
H1/2(∂S). In this case, u = Wψ ∈ H1(S) is the weak (variational) solution
of (10.1).
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10.3.2 The Direct Method

Adapting the procedure for deriving Green’s third formula for the Laplace
equation to our case, we obtain the so-called Somigliana formula. If u ∈
C2(S) ∩ C1(S̄) satisfies Zu = 0 in S, then

∫

∂S

[
D(x, y)(Tu)(y) − P (x, y)u(y)

]
ds(y) =

{
u(x), x ∈ S,
1
2 u(x), x ∈ ∂S.

(10.3)

According to the second equation in (10.1), γu = f , so representation
(10.3) implies that

V +ϕ−W+f = f

or
V +ϕ =

(
1
2 I +W0

)
f, (10.4)

where ϕ = Tu.
We remark that, in contrast to the indirect method, where the density ψ

has no physical significance, here ϕ is the boundary stress vector computed
from the solution of the Dirichlet problem. According to Theorem 1, we can
extend the operators in (10.4) by continuity to the corresponding Sobolev
spaces.

Theorem 3. If f ∈ H1/2(∂S), then system (10.4) has a unique solution ϕ ∈
H−1/2(∂S). In this case, u = V ϕ ∈ H1(S) is the weak (variational) solution
of (10.1).

10.4 Illustrative Example

We considered a square steel floor that occupies the region S̄ = [0, 1] × [0, 1],
for which

λ = 1.141 × 108, µ = 8.262 × 107,

with all units given in SI (kg, m, s). We assumed that this floor lies on top of
a flat foundation with elastic coefficient

k = 4 × 107.

We chose the boundary condition f = γu to be

u(x1, 0) =
(
0, 0.01 sin(πx1)

)T
,

u(x1, 1) =
(
0, −0.01 sin(πx1)

)T
,

u(0, x2) =
(

− 0.01 sin(πx2), 0
)T
,

u(1, x2) =
(
0.01 sin(πx2), 0

)T
.
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Fig. 10.1. Component u1 by the indirect method.

Fig. 10.2. Component u2 by the indirect method.

Fig. 10.3. Component u1 by the direct method.
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Fig. 10.4. Component u2 by the direct method.

Using MATEMATICA, we computed D(x, y) and P (x, y) symbolically and
employed Gaussian quadrature to calculate the Cauchy principal values, and
cubic splines to approximate the solutions of the boundary integral equations.

As Figures 10.1–10.4 show, the results yielded by both the direct and the
indirect methods are very good approximations, which means that from a
computational viewpoint, the choice of one over the other is not significant.
However, the practitioner might prefer the direct method because it is linked
to the physics of the model in that the unknown potential density represents
the stress vector on the boundary contour.
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11.1 Introduction

Mathematical homogenization theory deals with the question of finding effec-
tive properties and microvariations in heterogeneous materials. Usually, the
difficulty consists in handling the rapid periodic oscillations of coefficients gov-
erning some partial differential equation. Sometimes, though, there are also
many small periodically arranged holes in the material, i.e., the domain of
the equation. In this latter case we have to distinguish between the situa-
tions where the holes have Neumann (e.g., isolating holes) and Dirichlet (e.g.,
constant temperature) boundary conditions. The aim of this chapter is to in-
vestigate an intermediate case, where holes with constant zero temperature
are coated with a thin layer of a material with low heat-conduction number.

11.2 Some Concepts of Convergence

It is well known that a bounded sequence {uh} in a reflexive Banach space X
possesses a subsequence that converges weakly to some u ∈ X, i.e., as h → ∞

F (uh) → F (u)

for every F ∈ X ′. Analogously, a bounded sequence {Fh} of functionals in X ′,
where X is a separable Banach space, converges weakly* up to subsequence
to some F ∈ X ′; that is,

Fh(u) → F (u)

as h → ∞, for every u ∈ X.

In close connection with these concepts, convergence for operators has been
developed. In [Spa68], Spagnolo introduces G-convergence (see also [CD99]
and [Mur77]). Consider a sequence of well-posed elliptic equations
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−∇ · (Ah(x)∇uh(x)) = f(x) in Ω, (11.1)

uh(x) = 0 on ∂Ω.

G-convergence of {Ah} to B means that

uh ⇀ u in W 1,2
0 (Ω)

and
Ah∇uh ⇀ B∇u in L2(Ω)N ,

where u solves

−∇ · (B(x)∇u(x)) = f(x) in Ω,

u(x) = 0 on ∂Ω.

For the special case of periodic homogenization we have

Ah(x) = A
(x
ε

)
,

where A is a positive definite matrix that is periodic with respect to the unit
cube Y and ε = ε(h) → 0 for h → ∞. In this case, the limit operator B
is a constant matrix that can be computed by solving a partial differential
equation defined on a representative unit Y ; see [CD99].

All modes of convergence discussed above have the common feature that
the limit, whether a function or an operator, is of the same character as
the elements in the sequence converging to this limit. In 1986, an important
compactness result of a completely different kind was discovered by Nguetseng;
see [Ngu89]. He proved that a bounded sequence {uε} in L2(Ω) possesses a
limit in L2(Ω × Y ) in a certain weak sense. More precisely, for admissible
v : Ω×Y → R, that is, sufficiently smooth and periodic in the second variable,
and {ε} passing to zero, it holds, up to a subsequence, that

∫

Ω

uε(x)v
(
x,
x

ε

)
dx →

∫

Ω

∫

Y

u0(x, y)v(x, y) dydx. (11.2)

The most frequently used space of admissible test functions is L2(Ω;C♯(Y )).
This compactness result simplifies many homogenization procedures since it
enables us to characterize two-scale limits for gradients of bounded sequences
in W 1,2(Ω). This means that it is made precise how such two-scale limits
depend on the microscale variable y. For {uε} a bounded sequence in W 1,2(Ω)
and v admissible we get, still up to a subsequence, that, as ε → 0,

∫

Ω

∇uε(x)v
(
x,
x

ε

)
dx →

∫

Ω

∫

Y

(∇u(x) + ∇yu1(x, y))v(x, y) dydx, (11.3)

where u is the weak W 1,2(Ω)-limit to {uε} and u1 ∈ L2(Ω;W 1,2
♯ (Y )/R).
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In [Ngu89], this result is used to develop a very straightforward homog-
enization procedure for elliptic equations. The approach is simply to make
two suitable choices of test functions in the weak formulation of (11.1) and
to apply (11.3). One of the classes of test functions gives us the appropriate
homogenized problem and the other the corresponding local problem defined
on Y , the solution of which contains the necessary information to compute
the homogenized coefficient B.

11.3 Two-Scale Convergence for Perforated Domains

We have already given an example of one of the main difficulties in homog-
enization theory that consists in the analysis of partial differential equations
with rapidly oscillating coefficients. The second most common complication
encountered in the study of periodic structures is that of a domain perforated
by many small periodically arranged holes. This difficulty is usually overcome
by extending functions from the perforated domains, where they are originally
defined, to a somewhat larger domain, where the holes have been filled in. To
get rid of the irrelevant information provided by the functions’ extensions to
the holes, we need cutoff functions.

We introduce a class of smooth functions that approaches cutoff functions
in the limit. Let Y H be an open set in Y ⊂ R

2,

Y δ =
{
y ∈ Y − Y H

∣∣d(y, Y H) < δ
}

for fixed δ > 0, and
Y ∗ = Y − Y H − Y δ;

see Figure 11.1.

Fig. 11.1. The unit cube Y .

We define a sequence of functions kh ∈ C♯(Y ) such that

⎧
⎨
⎩
kh(y) = qh > 0 in Y H ,
qh < kh(y) < 1 in Y δ,
kh(y) = 1 in Y ∗.

Furthermore, kh is strictly increasing with d(y, Y H); e.g.,
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kh(y) = δ−h(1 − qh)d(y, Y H)h + qh,

within Y δ, and
kh → χY ∗ in Lp

♯ (Y )

for any p > 0 when h → ∞. Finally, we introduce the sets

Ωε = Ω ∩
{

x ∈ R
N

∣∣∣χY ∗

(x

ε

)
= 1

}
∪ Pε, (11.4)

Ω′
ε = Ω ∩

{
x ∈ R

N
∣∣∣χY ∗∪Y δ

(x

ε

)
= 1

}
∪ Pε,

Ωε,δ = Ω′
ε − Ωε,

where Pε simply means the part of the perforations
{
x ∈ R

N
∣∣χY ∗

(
x
ε

)
= 0

}

that cuts ∂Ω and lies within Ω. This is illustrated in Figure 11.2, where Ωε

is the white area, Ω′
ε is the white area together with the gray area, and Ωε,δ

is the grey area.

Fig. 11.2. The domain Ω.

Proposition 1. Let {uε} be a sequence in L2 (Ω) such that {
√

kh(x
ε )uε(x)}

and {uε} are bounded in L2 (Ω′
ε) and L2 (Ω − Ω′

ε), respectively. Then, up to

a subsequence,

∫

Ω′
ε

uε(x)kh

(x

ε

)
v

(
x,

x

ε

)
dx →

∫

Ω

∫

Y ∗

u0(x, y)v(x, y) dydx,

as h → ∞, for any admissible test function v, where u0 ∈ L2(Ω × Y ) is the

two-scale limit for a sequence of extensions of uε|Ωε
to Ω.

Proof. Obviously, uε|Ωε
is bounded in L2(Ωε), and thus, we can choose a

sequence {ũε} of extensions that is bounded in L2(Ω). Hence, for a suitable
subsequence,

∫

Ω

uε(x)χY ∗

(x

ε

)
v

(
x,

x

ε

)
dx →

∫

Ω

∫

Y

u0(x, y)χY ∗(y)v(x, y) dydx,
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as ε → 0, for any admissible test function v, where u0 is the two-scale limit
of ũε. Moreover, for any v ∈ D(Ω;C∞

♯ (Y )),

∣∣∣∣∣

∫

Ωε,δ

uε(x)kh

(x

ε

)
v
(
x,

x

ε

)
dx

∣∣∣∣∣

≤ C

∥∥∥∥
√

kh

(x

ε

)
uε(x)

∥∥∥∥
L2(Ωε,δ)

∥∥∥∥
√

kh

(x

ε

)∥∥∥∥
L2(Ωε,δ)

,

and hence, the contribution to

∫

Ω

uε(x)kh

(x

ε

)
v
(
x,

x

ε

)
dx

from Ωε,δ vanishes. This means that

∫

Ω

uε(x)kh

(x

ε

)
v
(
x,

x

ε

)
dx →

∫

Ω

∫

Y

u0(x, y)χY ∗(y)v(x, y) dydx

for any v ∈ D(Ω;C∞
♯ (Y )), as h → ∞. Since {kh(x

ε )uε(x)} is bounded in

L2 (Ω), the statement holds for any admissible test function v.

In Section 11.4, we will study sequences of functions defined on sequences
of perforated domains Ωε like those defined in (11.4). In this connection, we
sometimes need to extend the functions from Ωε to all of Ω. To be able to ap-
ply two-scale convergence, it is necessary that the extended sequence remains
bounded in the corresponding Lebesgue and Sobolev spaces of functions de-
fined on Ω. Such techniques have been developed by, e.g., Acerbi et al.; see
[ACDP92].

Theorem 1. Let Ω be some open, connected set with a Lipschitz boundary
and E some open, connected periodic subset of R

N with a Lipschitz boundary.
Then, for any u ∈ W 1,p (Ω ∩ Eε), there exists an extension ũ ∈ W 1,p

loc (Ω) and
constants k, C1 and C2 such that

‖ũ‖Lp(Ω(εk)) ≤ C1 ‖u‖Lp(Ω∩Eε) , (11.5)

‖∂xi
ũ‖Lp(Ω(εk)) ≤ C2 ‖∂xi

u‖Lp(Ω∩Eε) , (11.6)

where k, C1 and C2 depend only on E, N , and p but not on ε or u.

The proof can be found in [ACDP92].

Remark 1. For domains like Ωε defined in (11.4), where the perforations do
not cut the boundary of Ω, it is not necessary to remove a boundary layer
close to ∂Ω and hence Ω(εk) can be replaced with Ω on the left-hand side of
(11.5) and (11.6).
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Applying these extension techniques to a sequence of functions bounded
in W 1,2 (Ωε), we obtain the next assertion.

Proposition 2. Let {uε} be a sequence of functions in W 1,2
0 (Ω′

ε) such that

{
√

kh(x
ε )∇uε(x)} is bounded in L2 (Ω′

ε)
N

. Then there exists a sequence of
functions ũε in W 1,2 (Ω) such that ũε = uε in Ωε and, up to a subsequence,
∫

Ω

uε(x)kh

(x

ε

)
v
(
x,

x

ε

)
dx →

∫

Ω

∫

Y

u(x)χY ∗(y)v(x, y) dy dx (11.7)

and ∫

Ω

∇uε(x)kh

(x

ε

)
v
(
x,

x

ε

)
dx → (11.8)

∫

Ω

∫

Y

(∇u(x) + ∇yu1(x, y))χY ∗(y)v(x, y) dy dx,

as h → ∞, for any admissible test function v, where u is the weak W 1,2(Ω)-
limit to {ũε} and u1 ∈ L2(Ω;W 1,2

♯ (Y )/R).

Proof. Let

wh(x) =

√
kh

(x

ε

)
∇uε(x).

Then, up to a subsequence,
∫

Ω

wh(x)kh

(x

ε

)
v
(
x,

x

ε

)
dx →

∫

Ω

∫

Y

w0(x, y)χY ∗(y)v(x, y) dy dx,

as h → ∞, for any admissible v and some w0 ∈ L2(Ω×Y )N . It is obvious that

the restriction of wh to Ωε is equal to ∇uε and is bounded in L2 (Ωε)
N

. By
the assumptions on kh and the Poincaré inequality for periodically perforated
domains with homogeneous Dirichlet boundary conditions on the holes, we
obtain

‖uε‖L2(Ω) ≤ Cε ‖∇uε‖L2(Ω)N ≤ C
ε√
qh

∥∥∥∥
√

kh

(x

ε

)
∇uε(x)

∥∥∥∥
L2(Ω)N

≤ C

for ε = qh, and thus, {uε|Ωε
} is bounded in W 1,2 (Ωε). Hence, Proposition 1

and Theorem 1 are applicable and (11.7) and (11.8) follow. The loss of the
second scale in the two-scale limit in (11.7) is due to the strong convergence
of ũε in L2 (Ω).

11.4 Homogenization in Perforated Domains

Our aim in this section is to discuss the connection between homogenization
of mixed problems and pure Dirichlet problems in periodically perforated do-
mains. Let us first consider the homogenization of a mixed linear elliptic prob-
lem with homogeneous boundary data. This may be considered as a model for
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the heat distribution in a piece of a periodic composite material perforated
with many small nonconducting holes (Neumann data) and constant temper-
ature (Dirichlet data) on the boundary of Ω. This situation is governed by
the mixed problem

−∇ ·
(
A

(x

ε

)
∇uε (x)

)
= f (x) in Ωε,

uε (x) = 0 on ∂Ω, (11.9)

A
(x

ε

)
∇uε (x) · n = 0 on ∂Ωε − ∂Ω;

see [AMN93] and [All92]. If we instead imagine that the perforations are kept
at a constant zero temperature, we get the pure Dirichlet problem

−∇ ·
(
A

(x

ε

)
∇uε (x)

)
= f (x) in Ωε, (11.10)

uε (x) = 0 on ∂Ωε.

Now let us introduce the coefficient

Ãε(x) = A
(x

ε

)
kh

(x

ε

)

in (11.10) with Ωε replaced by Ω′
ε. We obtain

−∇ ·
(
Ãε(x)∇uε (x)

)
= f (x) in Ω′

ε, (11.11)

uε (x) = 0 on ∂Ω′
ε,

i.e., an intermediate case, where the cold holes are surrounded by a layer
with a low heat-conduction number. Depending on the relation between qh

and ε, we obtain either a limit problem of the same kind as for (11.9) or a
temperature distribution that passes to zero in the same way as for problems
of the type in (11.10). In mathematical terms, this means that we have found
a way to consider a mixed problem as equivalent, in some limiting sense, to
certain pure homogeneous Dirichlet problems, where the coefficients Ãε are
very small close to the perforation. It seems that we have found a natural
way to characterize the heat distribution in a material with a thin layer of a
material with very low heat conduction number surrounding perforations kept
at constant zero temperature. See also [MB04] or [MH04] for a treatment of
some related questions.

We carry out a homogenization procedure for (11.11).

Proposition 3. The solutions uε to (11.11) satisfy the a priori estimates

‖uε‖L2(Ω) ≤ C

and ∥∥∥∥
√

kh

(x

ε

)
∇uε(x)

∥∥∥∥
L2(Ω)N

≤ C

if ε =
√

qh.
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Proof. Choosing uε as a test function in the weak form of (11.11), we obtain

C1

∥∥∥∥

√
kh

(x

ε

)
∇uε(x)

∥∥∥∥
2

L2(Ω)N

=

∫

Ω

A
(x

ε

)
kh

(x

ε

)
∇uε(x)∇uε(x) dx =

∫

Ω

f(x)uε(x) dx ≤ C2 ‖uε‖L2(Ω) .

Hence, applying the Poincaré inequality for periodically perforated domains
with homogeneous Dirichlet conditions on the holes, it follows that

∥∥∥∥
√

kh

(x

ε

)
∇uε(x)

∥∥∥∥
2

L2(Ω)N

≤ C3ε ‖∇uε‖L2(Ω)N

≤ C3
ε√
qh

∥∥∥∥
√

kh

(x

ε

)
∇uε

∥∥∥∥
L2(Ω)N

= C3

∥∥∥∥
√

kh

(x

ε

)
∇uε

∥∥∥∥
L2(Ω)N

,

and the estimates are proven.

With these a priori estimates at hand, we are ready to prove a homoge-
nization result for (11.11).

Theorem 2. If ε =
√

qh, then (11.11) has the same local and homogenized
problems as (11.9).

Proof. For simplicity, we assume that the heat source is zero in Ω − Ωε, i.e.,
that it is of the type f(x)χY ∗(x

ε ). Let v ∈ D (Ω). We have

∫

Ω

A
(x

ε

)
kh

(x

ε

)
∇uε(x)∇v(x) dx →

∫

Ω

∫

Y ∗

A(y)(∇u(x) + ∇yu1(x, y))∇(x) dydx,

as h → ∞, and hence we obtain the homogenized equation
∫

Ω

∫

Y ∗

A(y)(∇u(x) + ∇yu1(x, y))∇v(x) dydx = µ(Y ∗)

∫

Ω

f(x)v(x) dx.

For the test functions
vε(x) = εv1(x)v2

(x

ε

)
,

where v1 ∈ D(Ω), v2 ∈ C∞
♯ (Y ), we get in the corresponding way the local

problem ∫

Y ∗

A(y)(∇u(x) + ∇yu1(x, y))∇yv2(y) dydx = 0.

Both of these equations agree with the corresponding homogenized and local
problems for (11.9).
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Dynamic Response of a Poroelastic Half-Space
to Harmonic Line Tractions
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12.1 Introduction

Studies of acoustic wave processes in porous media are motivated by applica-
tions in the fields of seismic prospecting in petrophysics, nondestructive testing
of systems such as soils and rocks, concrete, and other porous construction
materials, testing of surface coating by nanomaterials, and medicine. Depend-
ing on the major practical application involved, frequency bands may differ
greatly. For example, low-frequency seismic prospecting focuses on frequen-
cies of around 50 Hz, whereas medical applications allow for frequencies up
to approximately 3 MHz, and testing of nanomaterials requires frequencies of
approximately 100 MHz.

Modern mathematical approaches to acoustic wave propagation include
the classical Biot model [Bio56] or, alternatively, for example, Wilmanski’s
model [Wil96] and the linearized version of the so-called theory of porous
media (TPM) equations [deB05].

Boundary value problems for a poroelastic half-space in the framework
of Biot’s theory were considered, for example, in [HC86], [DD84], [Phi88],
[VTZ95], [STS90], [Mol02], [FJ83], [Pau76], and [MLC05]. Generally speaking,
two main types of problems arise: so-called steady-state problems (see [HC86],
[DD84], and [VTZ95]), when harmonic time-dependence is assumed for the
imposed tractions (and consequently for the stress and displacement fields),
and problems of transient response (see [Pau76], [FJ83], [STS90], [Mol02], and
[MLC05]), where impulsive tractions are applied. The latter class of problems
is more complicated; however, the value of the results obtained can hardly be
overestimated for many of the applications mentioned above.

A two-dimensional boundary value problem for a porous half-space, de-
scribed by the widely recognized Biot’s equations of poroelasticity is consid-
ered. In this poroelastic version of Lamb’s problem [Lam04], the surface of a
porous half-space is subjected to a prescribed line traction. A general analyt-
ical solution of the problem in the Fourier–Laplace space is obtained by the
application of the standard Helmholtz potential decomposition, which reduces
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the problem to a system of linear wave equations for three unknown poten-
tials. These potentials correspond to two dilatational waves (one of the first
kind, or P1-wave, and Biot’s slow wave of the second kind, or P2-wave, which
has no counterpart in elastic wave theory) and one shear wave, or S-wave
(see [Bio56], [Bou87], and [STS90]). The possibilities of, and procedure for,
obtaining analytic solutions in the physical space will be discussed in detail.

12.2 Model Description

Consider Biot’s set of equations [Bio56], [Bou87]:

(λ + µ)grad divu+µ∇2u+Y grad divU = ρ11ü+ρ12Ü+b
(
u̇ − U̇

)
, (12.1)

Y grad divu + Rgrad divU =ρ12ü + ρ22Ü − b
(
u̇ − U̇

)
, (12.2)

where u, U are the unknown solid and fluid displacement fields, respectively,
and

λ = λf + Mφ (φ − 2β) = λ0 + M (β − φ)
2
, Y = Mφ (β − φ) , R = Mφ2,

ρ11 = ρ + φρf (a − 2), ρ12 = φρf (1 − a), ρ22 = aφρf , b = ηf
φ2

k
.

In these equations, ρij are reference phase densities and λ, Y , and R are
generalized poroelastic parameters related to the porosity φ, bulk modulus
Ks of the solid, bulk modulus Kf of the fluid, bulk modulus Kb of the porous
drained matrix, and shear modulus µ of both the drained matrix and the
composite through the formulas

λ = Kb − 2

3
µ +

Kf

(
1 − φ − Kb

Ks

)2

φeff
, Y =

φKf

φeff

(
1 − φ − Kb

Ks

)
,

R =
φ2Kf

φeff
, φeff = φ +

Kf

Ks

(
1 − φ − Kb

Ks

)
.

An expression for the macroscopic stress tensor can be written in terms of the
components of the Cauchy strain tensor εij , ∇ · u, and ∇ · U [Bou87]:

σij = λf trεδij + 2µεij −Mβξδij = λf trεδij + 2µεij +Mβφ [∇ · (U − u)] δij ,

which can alternatively be written in the form

σij = (λf −Mβφ)(∇ · u)δij + 2µεij +Mβφ(∇ · U)δij

= (λ+ Y )(∇ · u)δij + 2µεij + (R + Y )(∇ · U)δij ,

where λ = λf +Mφ (φ− 2β) = λ0 +M (β − φ)
2
, Y = Mφ (β − φ) , R = Mφ2.
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12.2.1 Helmholtz Potential Decomposition

Expansion of the displacement field into irrotational and solenoidal parts
yields

u = gradΦ1 + curl
−→
Ψ1, curlΦ1 = 0, div

−→
Ψ1 = 0,

U = gradΦ2 + curl
−→
Ψ2, curlΦ2 = 0, div

−→
Ψ2 = 0,

(12.3)

and results in the following scalar and vector set of equations in Laplace space:

(λ + 2µ)∇2Φ1 + Y ∇2Φ2 = ρ11s
2Φ1 + ρ12s

2Φ2 + bs (Φ1 − Φ2) ,

Y ∇2Φ1 + R∇2Φ2 = ρ12s
2Φ1 + ρ22s

2Φ2 − bs (Φ1 − Φ2) ,

µ∇2−→Ψ1 = ρ11s
2−→Ψ1 + ρ12s

2−→Ψ2 + bs
(−→
Ψ1 − −→

Ψ2

)
,

0 = ρ12s
2−→Ψ1 + ρ22s

2−→Ψ2 − bs
(−→
Ψ1 − −→

Ψ2

)
.

(12.4)

The first two equations (12.4) may be rewritten in the matrix form

∇2

(
Φ1

Φ2

)
= R̃−1Ñ

(
Φ1

Φ2

)
, (12.5)

where R̃−1 is the inverse of the rigidity matrix

R̃ =

(
λ + 2µ Y

Y R

)
, R̃−1 =

1

det R̃

(
R −Y

−Y λ + 2µ

)

and the components of Ñ are

Ñ = s2

(
ρ11 + b/s ρ12 − b/s
ρ12 − b/s ρ22 + b/s

)
.

Dilatational Waves (P-waves)

It can be shown (a similar approach was used in [HC86] and [STS90]) that
(12.5) decouples into two wave equations in an eigenvector reference system:

∇2Φ∗
1 =

s2z̄1

c2
Φ∗

1, ∇2Φ∗
2 =

s2z̄2

c2
Φ∗

2,

where z̄1,2 satisfy the quadratic equation

(q11q22−q2
12)z̄

2−(q11γ22+q22γ11−2q12γ12+b/ρs)z̄+(γ11γ22−γ2
12+b/ρs) = 0

and the following nondimensional quantities have been introduced:

γ11 = ρ11/ρ, q11 = (λ + 2µ)/H, c2 = H/ρ,

γ12 = ρ12/ρ, q12 = Y/H, ρ = ρ11 + ρ22 + 2ρ12,

γ22 = ρ22/ρ, q22 = R/H, H = λ + 2µ + R + 2Y.
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The above equations describe P1-wave and P2-wave behavior, respectively,
with phase velocities β1,2 given by

β1 =
c√
z̄1

, β2 =
c√
z̄2

.

The P1-wave corresponds to the case when the solid and liquid displacements
are in phase, whereas the P2-wave describes out-of-phase motion (see [Bio56]
and [Bou87]). Moreover, the first-kind waves propagate faster and attenuate
more slowly than the second-kind wave. The connection between the reference
systems is given by the eigenvector matrix Ṽ :

(
Φ1

Φ2

)
= Ṽ

(
Φ∗

1

Φ∗
2

)
, Ṽ =

(
v1
1 v2

1

v1
2 v2

2

)
=

(
1 1

M1 M2

)
,

where the components M1,2 can be found straightforwardly as

M1,2 =
q22γ11 − q12γ12 − (q11q22 − q2

12)z̄1,2 + (q22 + q12)b/ρs

q12γ22 − q22γ12 + (q22 + q12)b/ρs
,

so that, finally,

Φ1 = Φ∗
1 + Φ∗

2, Φ2 = M1Φ
∗
1 + M2Φ

∗
2. (12.6)

Shear Waves (S-waves)

The last two equations in (12.4) can be rewritten [STS90] using Biot’s nondi-
mensional parameters:

−→
Ψ2 = −ρ12 − b/s

ρ22 + b/s

−→
Ψ1 = −γ12 − b/ρs

γ22 + b/ρs

−→
Ψ1 = −M3

−→
Ψ1,

−→∇2−→Ψ1 =
1

µ
[ρ11 − ρ12M3 + (1 + M3) b/s] s2−→Ψ1,

where M3 = γ12−b/ρs
γ22+b/ρs .

In the end, we arrive at the wave equation

−→∇2−→Ψ1 = s2 H

µc2
[γ11 − γ12M3 + (1 + M3) b/s]

−→
Ψ 1,

which defines the shear wave phase velocity β3 in the following way [STS90]:

β3 =

√
µ

ρ11 − ρ12M3 + (1 + M3) b/s
=

√
µ

ρ

√
1

γ11 − γ12M3 + (1 + M3) b/ρs
.
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12.3 General Solution of the 2D Problem

Consider a poroelastic half-space with an open boundary occupying the region
z < 0. At time t = 0, the porous half-space is subjected to an impulsive
external line traction −P (x)δ(t) at the surface (instantaneous compression).
The boundary conditions for the governing equations (12.1),(12.2) and stress–
strain relation can be represented in the form (z = 0)

σzz(x, 0, t) = −P (x)δ(t),

σxz(x, 0, t) = 0, (12.7)

p(x, 0, t) = 0.

For the 2D problem, the introduction of the four scalar potentials Φ1, Φ2

and Ψ1, Ψ2 (Ψ1 and Ψ2 are linearly dependent) is sufficient, so the 2D problem
reduces to the solution of the wave equations in Laplace space:

β2
1∇2Φ∗

1 = s2Φ∗
1, β

2
2∇2Φ∗

2 = s2Φ∗
2, β

2
3∇2Ψ1 = s2Ψ1. (12.8)

Equations (12.8), written in Fourier space, become (here and below, trans-
formed solutions will be indicated by the arguments)

∂2Φ∗
1,2(k, z, s)

∂z2
=

(
k2 +

s2

β2
1,2

)
Φ∗

1,2(k, z, s),
∂2Ψ1(k, z, s)

∂z2
=

(
k2 +

s2

β2
3

)
Ψ1.

Taking into account the far-field conditions (at infinity), the solutions of the
above wave equations can be expressed in the form

Φ∗
1,2(k, z, s) = A1,2(k, s) exp [−z · ξ1,2(k, s)] ,

Ψ1(k, z, s) = B(k, s) exp [−z · ξ3(k, s)] ,
(12.9)

where ξi(k, s) =
√
k2 + s2

β2
i

(i = 1, 2, 3) and A1,2(k, s) and B(k, s) are unknown

coefficients to be determined from the boundary conditions (12.7).
In the Laplace–Fourier space, the expressions for the stress tensor and the

pressure in terms of the potentials (12.8) can be written as

σzz(k, z, s) = (λ+ Y )
[
−k2Φ∗

1 − k2Φ∗
2 + ξ2

1(k, s)Φ∗
1 + ξ2

2(k, s)Φ∗
2

]

−(R +Y )
[
k2M1Φ

∗
1 + k2M2Φ

∗
2 −M1ξ

2
1(k, s)Φ∗

1 −M2ξ
2
2(k, s)Φ∗

2

]

+2µ
[
ξ2
1(k, s)Φ∗

1 + ξ2
2(k, s)Φ∗

2 + ikξ3(k, s)Ψ1

]
,

σxz(k, z, s) = µ
(
−2ikξ1(k, s)Φ

∗
1 − 2ikξ2(k, s)Φ

∗
2 + ξ2

3(k, s)Ψ1+ k2Ψ1

)
, (12.10)

p(k, z, s) = − 1

φ
Y

[
−k2Φ∗

1 − k2Φ∗
2 + ξ2

1(k, s)Φ∗
1 + ξ2

2(k, s)Φ∗
2

]

− 1

φ
R

[
−k2M1Φ

∗
1 − k2M2Φ

∗
2 +M1ξ

2
1(k, s)Φ∗

1 +M2ξ
2
2(k, s)Φ∗

2

]
.
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Application of the boundary conditions (12.7) to the expressions (12.10)
yields a linear algebraic system that determines the three unknown coefficients
A1,2(k, s) and B(k, s) as

A1(k, s) =
P (k)

2µ

n2

(
2k2 + s2

β2
3

)

F (k, s)
, A2(k, s) = −P (k)

2µ

n1

(
2k2 + s2

β2
3

)

F (k, s)
,

B(k, s) = −2ik
P (k)

2µ

n1ξ2(k, s) − n2ξ1(k, s)

F (k, s)
, (12.11)

where

m1,2 =
λ + 2µ + Y M1,2

2µβ2
1,2

, n1,2 =
Y + RM1,2

2µβ2
1,2

,

and F (k, s) is the dispersion relation of the surface (Rayleigh) waves (see
[DR62], [HC86], and [STS90])

F (k, s) =

(
2k2 +

s2

β2
3

) [
n1(m2s

2 + k2) − n2(m1s
2 + k2)

]
−2k2ξ3(n1ξ2−n2ξ1).

(12.12)
As an example, consider the vertical component of solid displacement uz.

From (12.3) and (12.6) it follows that

uz =
∂Φ1

∂z
− ∂Ψ1

∂x
=

∂Φ∗
1

∂z
+

∂Φ∗
2

∂z
− ∂Ψ1

∂x
,

Using (12.9) and (12.11), we bring the above expression to the form

uz(k, z, s) = − ξ1(k, s)A1(k, s)e−z·ξ1(k,s) − ξ2(k, s)A2(k, s)e−z·ξ2(k,s)

− ikB(k, s)e−z·ξ3(k,s),

so that, finally, we get the solution in the Laplace space

uz(x, z, s) = − 1
2µ

√
2π

+∞∫
−∞

P (k)
F (k,s)

{(
2k2 + s2

β2
3

)[
n2ξ1(k, s)e−z·ξ1(k,s)

− n1ξ2(k, s)e−z·ξ2(k,s)
]

+ 2k2
[
n1ξ2(k, s) − n2ξ1(k, s)

]
e−z·ξ3(k,s)

}
eikxdk. (12.13)

The solution of Lamb’s problem for the perfectly elastic medium (see
[Lam04] and [STS90]) can be used as a benchmark solution: One can show
that the limiting case of the solution (12.13) recovers the perfectly elastic case.
Similarly, it is possible to obtain the exact analytical solutions for the stress
tensor components, as well as for the pressure and displacement fields.
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12.3.1 Harmonic Response

Despite the different form of the time dependence, it can be shown that the so-
lution (12.13) can be used to describe the solution for a harmonic line source.
In this particular case, we assume harmonic time-dependence for the dis-
placements as well as for the components of the total stress tensor and pore
pressure. Thus, the first equation in (12.7) reads as σzz(x, 0, t) = −P (x)eiωt

and one gets, for example, the following expression for the normal solid-phase
displacement at the surface (z = 0) in the physical domain:

uz(x, t,ω) =
1

µ
√

2π
Re

⎧
⎨
⎩eiωt

+∞∫

−∞

P (k)ω2

β2
3

n2ξ1(k, ω) − n1ξ2(k, ω)

F (k, ω)
eikxdk

⎫
⎬
⎭ ,

(12.14)

where ξi(k, ω) =
√
k2 − ω2

β2
i

(i = 1, 2, 3) and F (k, ω) is obtained from the

Rayleigh wave secular equation F (k, s) (12.12) by the substitution s = iω.
In the case of line traction, P (x) = Pδ(x), where P is a constant, so in

Fourier space we have P (k) = P√
2π

(P has the dimensions of force per unit

length).
The change of variable k = ωp

βS
in (12.14), where

βS =

√
µ

ρ

√
1

γ11 − γ2
12

γ22

,

and the introduction of the nondimensional quantities

x̃ =
ωx

βS
, z̃ =

ωz

βS
, t̃ = ωt, ω̃ =

ρω

b
=

ω

ωc
, β̃i =

βS

βi
(i = 1, 2, 3),

ũz =
4πµ

P
uz, Ũz =

4πµ

P
Uz, m̃1,2 = m1,2β

2
S , ñ1,2 = n1,2β

2
S ,

leads to expressions for the nondimensional vertical displacements in the form
(from now on we omit the tilde)

uz(x, t, ω) = Re

+∞∫

−∞

β2
3

n2ξ1(p) − n1ξ2(p)

F (p, ω)
ei(px+t)dp, (12.15)

Uz(x, t, ω) = −Re

+∞∫

−∞

1

F (p, ω)
{ n2ξ1(p)

[
2p2(M1 +M3) − β2

3M1

]
−

−n1ξ2(p)
[
2p2(M2 +M3) − β2

3M2

]
} ei(px+t)dp, (12.16)

where ξi(p) =
√
p2 − β2

i (i = 1, 2, 3) and F (p, ω) is the nondimensionalized
surface wave equation (12.12) [STS90]; that is,

F (p, ω) =
(
2p2 − β2

3

) [
n1

(
p2 −m2

)
− n2(p

2 −m1)
]
− 2p2ξ3 (n1ξ2 − n2ξ1) .
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12.3.2 Numerical Example

Expressions (12.15) and (12.16) represent multivalued, slowly decaying, and
highly oscillating convergent integrals, so that special care is required in their
numerical evaluation. Numerical results for the vertical solid and fluid dis-
placements according to (12.15) and (12.16) are presented in Figures 12.1–
12.3 for the poroelastic parameters of the Berea sandstone [CSD06] (see Table
12.1). At the point x = 0, where the traction is applied, an integrable singu-
larity can be observed; it can be shown that it will disappear in the case of
a uniformly distributed traction. The following frequencies are used in calcu-
lations: ω = 0.1ωc, 1.0ωc, 10ωc, where ωc is the characteristic (or roll-over)
frequency [Bio56] (see Table 12.1). Additional increase of the source frequency
gives results similar to Figure 12.3.
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Fig. 12.1. Normalized fluid and solid displacements. Source frequency ω = 0.1ωc.
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Fig. 12.2. Normalized fluid and solid displacements. Source frequency ω = ωc.
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Table 12.1. Physical properties of the Berea sandstone and the saturating fluid
(water).

Porosity φ 0.20
Permeability (mD) k 360.0
Tortuosity a 2.4
Frame bulk modulus (GPa) Kb 10.37
Shear modulus (GPa) µ 7.02
Grain bulk modulus (GPa) Ks 36.5
Liquid bulk modulus (GPa) Kf 2.25
Solid density (kg m−3) ρs 2644.0
Liquid density (kg m−3) ρf 1000.0
Liquid viscosity (mPa s) ηf 1.0
Characteristic frequency (kHz) ωc 48.0
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Fig. 12.3. Normalized fluid and solid displacements. Source frequency ω = 10ωc.

12.4 Conclusions

Unlike in previous studies (for example, [VTZ95] and [HC86]), the main focus
in this chapter is on the response at different source frequencies. Numerical re-
sults demonstrate that the character of spatial oscillations is dependent on the
source frequency. For relatively low frequencies, displacements are observed
to be in phase, with approximately the same amplitudes (see Figure 12.1).
Increasing the source frequency leads to a weakening of the viscous coupling
effect, and as a consequence, solid and fluid displacements can be of different
amplitude and phase, or, in fact, nearly out of phase in the high-frequency
range for certain materials. The numerical results are in agreement with Biot’s
conclusion [Bio56] that when the characteristic frequency lies near unity (see
Figure 12.2), the inertia and viscous forces are approximately of the same
order. Furthermore, our solution is in agreement with the results for solid-
phase displacements and filtration amplitudes obtained in [VTZ95] by means
of separation of variables and the fast Fourier transformation. We have ex-
tended our analysis to include the decomposition of the surface response into
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wave-train contour integrals for P1, P2, and S waves and a residue for the
Rayleigh wave response. In the far field, an asymptotic analysis analogous to
that in [Lam04] can subsequently be carried out. The results will be presented
elsewhere.
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Convexity Conditions and Uniqueness and
Regularity of Equilibria in Nonlinear Elasticity

S.M. Haidar

Grand Valley State University, Allendale, MI, USA; haidars@gvsu.edu

13.1 Introduction: Formulation of the Problem

In this chapter, we consider a nonhomogeneous, isotropic, hyperelastic body
that, in its reference configuration, occupies the open bounded subset Ω of
R

3 and has a stored-energy function

W : Ω × M3×3
+ → [0,∞).

We assume W to be frame-indifferent and isotropic. That is, W satisfies,
respectively [TN65],

W (x, RF ) = W (x, F ) and W (x, FR) = W (x, F )

for all x ∈ Ω, F ∈ M3×3
+ , and R proper orthogonal. With W satisfying

additional plausible growth and convexity conditions, we aim to study the
uniqueness and regularity of solutions to the equilibrium equations of nonlin-
ear elasticity in which the boundary of the elastic body under consideration
is subjected to homogeneous deformations. Our study is partly motivated by
the work of Ball [Bal82] and that of Knops and Stuart [KS84] regarding the
uniqueness and regularity of solutions to the pure displacement boundary
value problem of nonlinear elastostatics.

In the absence of external forces, the total stored energy associated with
a deformation u(·) of the body is given by

u → J(u, Ω) :=

∫

Ω

W (x,∇u(x))dx, (13.1)

and the equilibrium equations are given by the Euler–Lagrange equations

div

[
∂W

∂F
(x, F )

]
= 0, x ∈ Ω,
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where F ≡ ∇u(x). For a given positive real number λ, we mainly1 consider
the questions of uniqueness and regularity of solutions of

div

[
∂W

∂F
(x, F )

]
= 0 in Ω, (13.2)

u(x) = λx on ∂Ω. (13.3)

In what follows, we use the abbreviation (DBVP) to refer to the problem
consisting of equations (13.2) and (13.3). Generally, for the pure displace-
ment boundary value problem of nonlinear elasticity, it is sufficient [AB78] to
consider only those deformations for which the condition

det[∇u(x)] > 0

holds for each x in Ω. Following the terminology in [Bal82] and [Ada75], we
say that u ∈ W 1,1(Ω; R3) is a weak solution of (DBVP) if

det(∇u(x)) > 0 for a.e. x ∈ Ω

∂W

∂F
(·,∇u(·)) ∈ L′(Ω; R9), and

∫

Ω

∂W

∂ui
,α

φi
,αdx = 0 for all φ ∈ C∞

0 (Ω; R3).

In Section 13.2, the main section of this chapter, we present an answer to the
question posed by Ball [Bal82] of whether strong ellipticity of W implies the
existence of nontrivial equilibrium solutions passing through the origin O and
having finite energy. We also describe a class of stored-energy functions to
show that the uniqueness results of [Bal82] and [Hil57] do not carry over to
the nonhomogeneous case.

In the general theory of nonlinear elasticity, there are plenty of situations
when uniqueness of solutions to the equilibrium equations of elasticity can-
not be expected (see, for example, [Bal77a], [Hil57], [Joh72], and [TN65]).
Of course, a stored-energy function W that is strictly convex in F ensures
uniqueness. Such a property, however, is completely unrealistic [TN65] as,
among many other reasons, it violates the principle of frame-indifference. The
class of admissible stored-energy functions has been modified to ensure to
some extent the existence, uniqueness, and regularity of solutions for some
problems of nonlinear elasticity (more details are given in [Bal77b], [BM84],
[Eri83], [Mor52], and [Mor66]). This modification pertains to the generaliza-
tion of the (traditional) notion of convexity to such concepts as polyconvexity
(p.c.), quasiconvexity (q.c.), rank-one-convexity (r.1.c), etc. For homogeneous
materials and in the case of the pure displacement boundary value problem,
the first general uniqueness result that employs some of the above-mentioned
(weaker) notions of convexity is due to [KS84]. We remark that this result
does not require W to be isotropic.
1 Haidar [Hai00] presented a theorem of existence of energy-minimizing deforma-

tions for the variational problems associated with (13.2) and (13.3).



13 Convexity Conditions in Nonlinear Elasticity 111

Theorem 1 (Knops and Stuart [KS84]). Let Ω ⊂ R
3 be an open bounded

domain that is star-shaped with respect to the point x0 ∈ Ω, and whose bound-
ary ∂Ω is piecewise continuously differentiable. For any given F in M3×3

+ and
c in R

3, let u and ψ be solutions of (13.2) with u(x) = ψ(x) = Fx + c for
x ∈ ∂Ω, let W ∈ C2(M3×3

+ , R), and assume that W is rank-one-convex and
strictly quasiconvex at F . Then u(x) = ψ(x) = F (x) + c for all x ∈ Ω.

By restricting the geometrical structure of Ω to be the unit ball in R
3, Ball

[Bal82] discussed conditions other than rank-one-convexity and quasiconvexity
to ensure the uniqueness of homogeneous radial equilibria. In this case, the
admissible deformations are considered to be of the form

u(x) =
r(R)

R
x, (13.4)

where R = |x|. Before we state Ball’s uniqueness result, let us recall the
following well-known representation theorem due to [RE55] (see, also, [TN65],
pp. 28 and 317).

Theorem 2. W is isotropic and frame-indifferent if and only if there exists
a function φ : Ωx(0,∞)3 → R such that φ(x, ·, ·, ·) is symmetric and

W (x, F ) = φ(x, v1, v2, v3), for all F ∈ M3×3
+ ,

where the principal stretches v1, v2, v3 of F are the singular values of F .

For u ∈ W 1,1(Ω; R3), the weak derivatives of u in (13.4) are given by

∇u(x) =
r(R)

R
1 +

x ⊗ x

R2

[
r′(R) − r(R)

R

]
, for a.e. x ∈ Ω. (13.5)

Equation (13.5) implies that

v1 = r′, v2 = v3 = r/R.

The total energy functional J(u;Ω) in (13.1) now becomes J(u;Ω) = 4πI(r),
where

I(r) :=

∫ 1

0

R2φ(R; r′, r/R, r/R)dR. (13.6)

It is known ([Bal82], Theorem 4.2) that u(x) = (r/R)x ∈ W 1,1(Ω; R3) is
a weak equilibrium solution if and only if r′(R) > 0 a.e. in (0, 1), R2φ,1 (R)

and R2φ,2 (R) ∈ L1(0, 1), and R2φ,1 (R) = 2

∫ R

1

ρφ,2 (ρ)dρ + const., a.e. in

(0, 1), where φ,i (R) = φ,i

(
R; r′,

r(R)

R
,
r(R)

R

)
for i = 1, 2.
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Theorem 3 (for homogeneous materials, Ball [Bal82]). Assume that
(H1) φ ∈ C3((0,∞)3),
(H2) φ satisfies the Baker–Ericksen inequalities

viφ,i −vjφ,j
vi − vj

> 0, i �= j, vi �= vj , and φ,i = φ,i (v1, v2, v3); i, j = 1, 2, 3,

(H3)
φ,1 (v1, v2, v2)

v2
2

→ −∞ as v1, v2 → 0+, with v1 > v2,

(H4)
φ,1 (v1, v2, v2)

v2
2

→ +∞ as v1, v2 → +∞, with v1 < v2,

(H5) r ∈ C1(0, 1) is a solution of the equilibrium equations associated with
I(r) with r′ > 0 for all R ∈ (0, 1] and r(0) = lim

R→0+
r(R) = 0.

Then r(R) = λR, R ∈ [0, 1] for some λ > 0.

This result guarantees that the only radial equilibrium solutions with
r(0) = 0 are the trivial ones. In that work, Ball argued that the growth
hypotheses (H3) and (H4) are essential for every weak solution with r(0) = 0
to be trivial (i.e., homogeneous) by giving an example showing that strong
ellipticity is not a sufficient condition for the uniqueness of such solutions. He
considered

W (F ) = φ(v1, v2) = g(η, δ) = ηaδ−b, (13.7)

where η = v1 + v2, δ = v1v2, and a, b ∈ R
+, and showed the existence of

solutions of the form r(R) = λRγ for some positive real number γ �= 1. But
the total energy associated with such a solution is always infinite. Ball then
posed the following open question:

(BQ) “Does strong ellipticity imply that all solutions of the equilibrium equa-
tions which pass through the origin and have finite energy are trivial?” (see
Remark 2.2).

13.2 Uniqueness and Regularity of Radial Equilibria

To effect an extreme deformation, that is, to compress the body to zero volume
or to expand it to infinite volume, we require an infinite amount of energy.
This natural observation amounts to having the stored-energy function W
obey the following growth behavior2:

W (x, F ) → +∞ as detF → 0+ or + ∞. (13.8)

In terms of φ, (13.8) is equivalent to the following property:

2 Note that one cannot expect a convex function to be finite and yet exhibit this
type of singular behavior.
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lim
vi→0+

φ = lim
vi→+∞

φ = +∞, i = 1, 2, 3. (13.9)

From the preceding discussion we see that the smooth stored-energy function
φ must be chosen so that φ ≥ 0, φ(R; ·, ·, ·) is symmetric in v1, v2, and v3, and
satisfies properties (13.8) and (13.10).

Our first model shows that Theorem 1 and Theorem 3 do not carry over
to the nonhomogeneous case. Indeed, let f(R, r, r′) denote the integrand of
I(r) in (13.10), namely,

f(R, r, r′) = R2φ

(
R; r′,

r

R
,

r

R

)
. (13.10)

For some γ ∈ (0, 1) and for every ε > 0, we assume that f satisfies the
constitutive property

f(εR, εγr, εγ−1r′) = ε−1f(R, r, r′). (13.11)

This homogeneity property was used by [BM85] to study the regularity of
minimizers for one-dimensional variational problems in the calculus of varia-
tions. We have successfully applied it [Hai00] in modeling the onset of fracture
in nonhomogeneous elastic materials where we presented, for the first time,
a physical interpretation of this scale-invariance property (see Remark 2.2
below). Setting ε = 1

R in (13.11) yields

f(R, r, r′) = R−1f(1, rR−γ , r′R1−γ). (13.12)

Let
P (R, r′) = r′R1−γ and X(R, r) = rR−γ .

Relation (13.12) may now be rewritten as

f(R, r, r′) := R−1e(P, X), (13.13)

where
e(P, X) = f(1, X, P ).

Due to the symmetry property of φ(R; ·, ·, ·) in v1, v2, and v3, we observe that
φ(R; r′, r/R, r/R) is the restriction of φ(R; v1, v2, v3) to the plane v2 = v3 =
r/R. Equivalently, e(P, X) is the restriction to the plane X1 = X2 = X of
the symmetric quantity E(P, X1, X2) associated with φ(R; v1, v2, v3), where
Xi = vi+1R

1−γ for i = 1, 2. Moreover, the condition φ,11 (R; r′, r/R, r/R) ≥ 0
is equivalent to e,pp (P, X) ≥ 0.

For some λ ∈ (0,+∞), we observe that an r(·) of the form r(R) = λRγ

must be an absolute minimizer for I(·) in (13.10) because along such r(·) and
in the light of (13.13), one has

I(r) =

∫ 1

0

R−1 c(λγ, λ)dR,
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which will yield the value zero only if there is a zero of c of the form (λγ, λ) in
the PX-plane. So an r(·) of the form r(R) = λRγ corresponds to a point along
the line P = γX in the PX-plane or, equivalently, to an admissible solution
of the ordinary differential equation P = γX. We are now in a position to
present the first model. We must say that one generally would not expect that
solutions in the nonhomogeneous case are trivial. Nevertheless, the interesting
special feature of this model is to illustrate that (even) when W satisfies
favorable constitutive hypotheses such as those given in Theorems 1 and 3,
(DBVP) may still have nontrivial solutions.

Theorem 4 (Model 1). There exist positive numbers λ and C such that the
equilibrium equations associated with the total energy functional I(r) for

e(P, X) := (PX2)5/3 −2(PX2)2/3 +(PX2)−1/3 +(P −C)2(X −C)4 (13.14)

admit nontrivial solutions of the form r(R) = λRγ , R ∈ [0, 1].

Proof. By direct computation, one can easily verify that e,pp > 0 for all P and
X > 0. The function e satisfies the natural growth condition (13.9). From the
discussion that preceded the statement of this theorem, it is also clear that
e is the restriction to the plane X1 = X2 = X of the symmetric function E
given by

E(P, X1, X2)=(PX1X2 − 1)2(PX1X2)
−1/3 + (P − C)2(X1−C)2(X2−C)2.

More importantly, e satisfies the hypotheses of the uniqueness Theorem 3 for
the following reason:

e,p = X2/3(PX2 − 1)(PX2)−4/3(5PX2 + 1) + 2(P − C)(X − C)4.

As P, X → 0+, e,p /X2 behaves like −(PX2)−4/3. Thus, e,p /X2 → −∞
as P,X → 0+. On the other hand, as P, X → +∞, e,p /X2 behaves like
5
3 (PX2)1/3. Hence, e,p /X2 → +∞ as P, X → +∞. We have, therefore,
established the admissibility of e or, equivalently, that of φ. It remains for
us to establish the existence of solutions of the form r(R) = λRγ for some
λ ∈ (0,+∞).

Put X = t and P = γt. We want to show that for appropriate choices of
the numbers λ and C, there exists t0 > 0 such that e(γt0, t0) = 0. By (13.14),

e(γt, t) = γt3 − 1)2(γt3)−1/3 + (γt − C)2(t − C)4.

It is not difficult to see that for t0 = λ = C = γ−1/3, one obtains e(γt0, t0) = 0.

That is, φ(R; r0(R), r0(R)
R , r0(R)

R ) = 0, where

r0(R) = γ−1/3Rγ , R ∈ [0, 1]. (13.15)
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Remark 1. By considering the first three terms of e of (13.14), namely,

ê(P, X) = (PX2 − 1)2(PX2)−1/3, (13.16)

one obtains a model that also satisfies the conditions of the uniqueness Theo-
rem 1. Note that the stored-energy function W corresponding to ê is polycon-
vex as ê is convex in the quantity PX2. On the other hand, it is clear that the
unit ball Ω is star-shaped with respect to every point x0 ∈ Ω. However, for
each γ ∈ (0, 1), the equilibrium equation associated with ê has a solution of
the form given by (13.15). It is worth mentioning that, although ê of (13.16)
takes the value zero along the curve PX2 = 1, e vanishes at only one point of
the PX-plane.

Theorem 4 with e as in (13.14) or (13.16) is easily seen to remain valid in
the case of n-dimensional elasticity.

Remark 2. Equation (13.7), which represents Ball’s example ([Bal82], p. 591),
crucially depends on n, the number of elasticity dimensions. This dependence
is not so much in reference to the obvious difficulty of testing for the convexity
of W , especially for n > 2, but rather to the conclusion of the example.
According to Ball [Bal82], that example yields solutions of the form r(R) = Rα

with α > 0 if either α = 1 or

a �∈ [2b, 2(b + 1)], α = [a − 2(b + 1)]/(1 − 2b)(1 − b − 1). (13.17)

In n-dimensional elasticity with

φ(v1, . . . , vn) = (η)a(δ)−b,

one can simply verify by direct computation that the homogeneous deforma-
tion r(R) = λR is an equilibrium solution if and only if n = 3 or a = nb.
In terms of (13.17), this says that the case α = 1 is not possible, and conse-
quently, the deformations r(R) = λR and r(R) = λRα with α > 0 and �= 1
do not coexist as solutions of the equilibrium equations of (13.7).

Our next result provides a strongly elliptic model in which both the trivial
and nontrivial equilibria coexist. Furthermore, the energy associated with each
of these solutions is finite. In fact, a slight modification of this model yields
an example of genuine nonuniqueness in which these different solutions have
the same finite energy. This homogeneous model, which is the main result of
this chapter, represents an answer to (BQ). We now give the statement in the
case of plane elasticity.

Theorem 5 (Model 2-H). Let the positive odd integer a and the positive
real number b be given so that

1 + 2b ≤ a ≤ 2 + 2b. (13.18)

Then (i) the function φ given by
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φ(r′, r/R) = |r′ − r/R|a(r′r/R)−b (13.19)

is strongly elliptic, and (ii) the equilibrium equations associated with (13.19)
have nontrivial solutions of the form r0(R) = λRγ , R ∈ [0, 1], with I(r) <
+∞.

Proof. The proof of Theorem 5(i) is simply a verification by direct compu-
tation of a set of conditions on φ, which were developed by [AT80] and are
equivalent to the requirement that W be strongly elliptic (see [Hai89], Ch. 3).

The equilibrium equation associated with (13.19) is

d

dR

[
R2 ∂φ

∂r′

]
= R2 ∂φ

∂r

or, equivalently,

Rr′′φ,11 +(v1 − v2)φ,12 = φ,2 −2φ,1 , (13.20)

where φ,ij =
∂φ,i
∂vj

, i = 1, 2, v1 = r′, v2 =
r

R
.

Equation (13.20) has nontrivial weak solutions of the form r0(R) =
λRγ , γ ∈ (0, 1), as long as a and b are chosen so that

a − 2b − 3(1 − γ)−1 < 0. (13.21)

However, this condition is automatically satisfied by hypothesis (13.18) of the
above theorem.

For example, taking a = 7, b = 3, and γ = (135±
√

5553/132) gives rise to
weak equilibrium solutions of the form r0(R) = λRγ . Furthermore, the energy
associated with such solutions is I(r0) = [3 − (1 − γ)(1 − 2b)]−1, which, by
(13.21), is finite.

This model shows that strong ellipticity is not sufficient for solutions pass-
ing through the origin and having (13.19), and constructs weak equilibrium
solutions of the form r(R) = λRγ having the same energy value as the trivial
solution. In n-dimensional elasticity, the above model still corresponds to a
natural state and also yields nontrivial equilibrium solutions exactly like in
the case n = 2. The corresponding model (13.10) becomes

(n − 1)|r′ − r/R|a[r′(r/R)n−1]−b.

In the nonhomogeneous case, the answer to the analogous question to (BQ)
is also negative as can be seen from Theorem 4 and the discussion leading to it.
It is interesting to note that the nonhomogeneous version of model (refeqn:hai-
19) by itself does not yield the same conclusion as above. More specifically,
the function e given by

e(P, X) := |P − X|1(PX)−b (13.22)
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is strongly elliptic for 1 + b < a ≤ 2 + 2b. Moreover, the equilibrium equation
associated with (13.22), namely,

e,1 +R

[
e,22

dP

dR
+ e,12

dX

dR

]
= e,2 ,

has nontrivial weak solutions of the form r0(R) = λRγ , γ ∈ (0, 1), as long as
a = 2b. The value of the energy associated with such a solution, however, is
always infinite. While keeping it strongly elliptic, it is possible to modify e in
(13.22) in such a way that the corresponding value of the energy associated
with r0 is finite (in fact, equal to zero).

Additional results that supplement this work will be forthcoming in an-
other paper to be submitted to J. Nonlinear Anal. They have to do with the
fundamental question of regularity and with obtaining formulations of the
problem that are amenable to successful numerical treatments.
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14.1 Introduction

The work presented in this chapter is concerned with constructing a mathe-
matical model of the medical condition syringomyelia. This condition is char-
acterized by the formation of voids or cavities in the spinal cord. An MRI
scan of a typical patient is shown in Figure 14.1, where the void in the cord is
clearly visible. Although the condition is in its early stages, the patients may
not be aware of it, but as it worsens, they can progressively lose the feeling
in one or more limbs and may ultimately become paralyzed in the affected
limbs. Once a patient has the condition, it is often impossible to treat it, but
there are established surgical procedures that help with preventing the con-
dition from getting worse. However, why these procedures are so successful is
not fully understood. It is hoped that by mathematically modeling what is
happening in the spine, it will be possible to get some insight into the physical
processes that lead to the formation and worsening of the voids in the spinal
cord. In this study, we have devised a simple model of the spinal cord that
can be solved using the finite element method. Our initial studies were with
a simple linearly elastic model, but additional studies have been conducted
with a viscoelastic model that may prove to give a more realistic response of
biologic-type materials under different levels of external loading.

14.2 Description of Syringomyelia

The mechanics of syringomyelia formation and development has been the sub-
ject of considerable debate. One hypothesis is that the formation and growth
of these voids in the spinal cord is primarily due to the forces that result from
the changes in pressure in the fluid surrounding the spinal cord. It is known
that changes in the abdominal pressure cause a compression of the spinal du-
ral sac and its contents. In turn, this causes both an increase in the pressure
of the spinal fluid and a flow of the fluid from the spine into the fluid-filled
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sac that surrounds the brain inside the skull. In most people, when the ab-
dominal pressure relaxes and the spinal cord decompresses, the fluid can flow
back from the skull into the spine and the pressure levels return to normal.
However, in some people, who either have a malformation of the bones at the
back of the skull or have had some traumatic damage to the spine, the fluid
is prevented from flowing from the skull back into the spine, and so, when
the abdominal pressure relaxes, the pressure in the spinal fluid drops below
its equilibrium level. In turn, this allows the spinal cord to expand, and if the
resulting tensions in the spinal cord are large enough, then voids may form,
or get worse if they are already there.

Fig. 14.1. An MRI scan of a patient with syringomyelia.

14.3 Mathematical Model

The geometry of the human spine can be essentially considered as a number
of concentric circular cylinders (see Figure 14.2). The innermost cylinder is
the spinal cord itself, which can be considered as an elastic or viscoelastic
solid. It is surrounded by a layer of cerebral-spinal fluid, which is essentially
water. This layer, in turn, is surrounded by a relatively thin layer of soft
tissue containing the blood vessels and other elements that the spine needs.
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Fig. 14.2. Vertical cross section of the spine.

This layer also acts as the seal that keeps the cerebral-spinal fluid in place.
Finally, on the outside are the bones that make up the spine and can be
considered as rigid. Whilst the spinal cord is not exactly a circular cylinder
(it is not exactly circular in cross section, and the human spine is curved),
this is a good approximation and means that the cord can be modeled using
an axisymmetric model that greatly simplifies the analysis and reduces the
size of the computer model needed to solve the problem.

The initial model proposed here will consider only the spinal cord itself,
and assumes that the changes in the pressure in the fluid surrounding the cord
are a known function of time. The principal causes of pressure changes in the
fluid are the motion of various muscles in the lower abdomen and changes
in blood pressure in the soft tissues due to the heart pulse. The changes in
pressure due to either of these can be determined from experimental data.

The finite element method has become established as one of the main
mathematical tools for modeling the motion of a finite elastic structure. Dis-
cretizing the equations of motion of an elastic body using the finite element
method yields a matrix equation of the form

Mü + Ku = f, (14.1)

where K and M are the stiffness and mass matrices, respectively, u is the
vector of nodal displacements, f is the consistent load vector, and a super-
posed dot denotes differentiation with respect to time. The derivation of (14.1)
can be found in numerous textbooks, such as [OCZ91], and is not repeated
here. Given suitable initial conditions, it is possible to integrate this equation
through time.
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An alternative to the linear elastic model is the use of a viscoelastic model,
as this type of model can give a more realistic response of a biologic material
to external forces. In the work presented here, a viscoelastic stress–strain
relationship of the form

σ(x, t) = Dε(x, t) −
n∑

j=1

∫ t

0

φj

τj
De(s−t)/τjε(x, s) ds

is used, where σ(x, t) is the vector of the nonzero components of the stress
tensor at the point x and time t, ε is the vector of the nonzero components
of the strain tensor, and D is the linear stress–strain matrix. Applying the
standard finite element method using this stress–strain relationship leads to

∫

V

BTσ(x, t) dVx =

∫

V

BTDB dVx u(t)

−
n∑

j=1

φj

τj

∫

V

BTDB dVx ×
∫ t

0

e(s−t)/τju(s) ds

= Ku(t) −
n∑

j=1

φj

τj

∫ t

0

e(s−t)/τjKu(s) ds,

and hence, the finite element equations are

Ku(t) −
n∑

j=1

φj

τj

∫ t

0

e(s−t)/τjKu(s) ds+Mü(t) = f(t), (14.2)

where K and M are the usual elastic stiffness and mass matrices. The integrals
appearing in (14.2) can now be evaluated using a quadrature rule of the form

∫ t

0

e(s−t)/τjf(s) ds =

∫ t

0

e−u/τjf(t− u) du ≈
N∑

i=0

wjif(t− ih). (14.3)

We note that the integral in (14.2) can be truncated at an upper limit
max(t, t0) since for u > t0, e

−u/τj becomes small enough that its contribution
to the integral can be neglected. By using the quadrature rule given in (14.3),
we can write the finite element equations (14.2) as
⎛
⎝1 −

n∑

j=1

φj

τj
wj0

⎞
⎠Ku(t) +Mü(t) = f(t) +K

N∑

i=1

⎛
⎝

n∑

j=1

φj

τj
wjiu(t− ih)

⎞
⎠ .

(14.4)
The final finite element equation (14.4) can now be integrated through time
using any suitable numerical scheme. Here the trapezium method has been
used since it is known to be neutrally stable for solving elasticity and related
problems [KEA89].

Once the nodal displacements have been computed, it is possible to com-
pute the stresses in the cord. These will give an indication of where possible
future damage may occur.
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Fig. 14.3. Excess pressure in fluid surrounding the spinal cord.

Fig. 14.4. Volume of the void in the spinal cord.
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Fig. 14.5. Principal stress components in the spinal cord when the excess pressure
is at its minimum.

Fig. 14.6. A comparison of the principal stresses in a solid cord and a cord with a
void when the excess pressure is at its minimum value.
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14.4 Numerical Results

The results below are for computing the displacements in part of the spinal
cord using a simple linearly elastic model. Typically, the human spinal cord
is approximately 6 mm in radius, and the results are for a section of the cord
60 mm long. The cord section considered here has a single ellipsoidal void of
radius 1 mm and length 10 mm located at the center of the cord. The mate-
rial parameters for the spinal cord are Young’s modulus of 1.5 × 106 N m−2,
Poisson’s ratio of 0.49 (almost incompressible), and density 1500Kg m−3 (see
[LEB96] for further details).

Figure 14.3 shows the pressure values in the fluid surrounding the spinal
cord which are typical of the levels observed in a patient with syringomyelia.
Figure 14.4 shows the corresponding volume of the void in the cord.

Figure 14.5 shows the principal stress components in the spinal cord when
the excess pressure is at its lowest value. It can be seen that there are regions
of high tensile stresses around the ends of the hole, indicating that if damage
were to occur, then it is likely to be at the ends of the hole (i.e., the hole
will get bigger). Furthermore, the results in Figure 14.6 show that tensile
stresses occurring in a spinal cord that already has a void are greater than
those occurring in a solid cord under the same loading. These results seem
to indicate that the condition is more likely to get worse in a patient who
already has the condition rather than developing in an unaffected patient.

14.5 Conclusions

The work presented in this chapter shows how to use the finite element method
to model the deformations of the human spinal cord due to the pressure
changes in the surrounding fluid. Furthermore, the results of this early work
seem to support the hypothesis that it is the changes in the fluid pressure
that are responsible for development and/or worsening of syringomyelia in a
patient. Future work will develop the model further, to include crack or void
formation and growth effects so that it should be possible to fully simulate
what is happening in the spinal cord.
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15.1 Introduction

A class of first-kind integral equations that arise, for example, in problems of
image enhancement, feature kernels, or point spread functions (PSFs), which
are degraded versions of the Dirac delta function. Such PSFs depend on one
or more parameters whose value(s) derive from aperture size, incident wave-
length, and sensor geometry.

In problems Kf = g of this type, with f the unknown object, the image
g and any approximate regularized solution fα are blurred forms of the same
function f . It then makes sense to view fα as the image of a higher quality
sensor of similar type whose PSF has parameters altered to produce a narrower
width. This leads to the problem K2f = fα, which is approximately solved,
thereby defining one system iteration.

In this chapter, this idea is introduced and a possible improvement is
demonstrated. The parameter-choice problem is more complicated and oc-
curs in both directions. In the inverse direction, the parameter α controls
the amount of regularization. In the forward direction, the PSF parameter(s)
control PSF width, or sensor quality.

A class of first-kind integral equations of the form

∫ 1

0

KB(x − y)f(y)dy = g(y), 0 ≤ x ≤ 1, (15.1)

which arise in image enhancement, feature kernels, or PSFs, that are degraded,
or smoothed, versions of the Dirac δ-function. Two examples are considered
in this chapter: a Gaussian kernel and a sinc kernel. Formulas and graphs of
these are displayed in Section 15.2. A positive parameter controls the width
of the PSF. As B increases, the width of the PSF, and so the degree of image
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blur, decreases. As B → ∞, KB → δ (in some sense), implying that the sensor
becomes perfect since (15.1) then is

g(x) =

∫ 1

0

δ(x− y)f(y)dy = f(x).

In problems of this type, the image g(x) and any regularized approximate
solution fα of (15.1) are both blurred forms of the object function f0(y). The
function fα is then viewed as the image of a higher quality sensor of similar
type, meaning the same PSF with a larger value of B, B2 > B.

The new equation,
KB2f = fα, (15.2)

is then approximately solved in an effort to obtain an improved reconstruction
of the true object function f0(y).

To make this more precise, soppose that the PSF satisfies

(i) KB : L2 → L2 is completely continuous ∀B > 0,

(ii) ||KBf − f || → 0 as B → ∞ ∀f ∈ L2. (15.3)

The regularized solution to (15.1) will be taken as

fB,α = (K∗
BKB + αL∗L)−1K∗

B ḡ, (15.4)

where ḡ = KBf0 + ǫ and ǫ is an additive noise vector. Equation (15.4) is the
least square solution to (15.1) with Tikhonov regularization applied. L is the
regularization operator.

Then the algorithm represented by (15.2) is as follows:

(i) Input B, f0, ḡ, L. Let R = ḡ.

(ii) Compute fB,α via (15.4) (with ḡ = R). Choose

α = αopt to minimize ||fB,α − f0||. (15.5)

(iii) Choose γ = C to minimize ||Kγf0 − fB,αopt ||.
(iv) R ← fB,αopt , B ← C, go to (ii) (i.e., solve KCf = fB,αopt).

It is well known (see, for example, [Gro77], [HBR00], [HB04], [Mor84],
[Tik63], and [TA77]) that (15.5) exists when

||ǫ||
||g|| =

||ǫ||
||KBf0||

< 1. (15.6)

Inequality (15.6) defines the condition for just the first iteration. Thereafter,
(15.6) becomes

||ǫeff ||
||KCf0||

< 1, (15.7)

where ǫeff is the effective error when the right-hand side R, which is initially
ǫ, is set to fB,αopt . Thus, R = KCf0 + ǫeff = fB,αopt so that
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ǫeff = fB,αopt − KCf0. (15.8)

Using the triangle inequality, we find from (15.8) that

||ǫeff || ≤ ||fB,αopt − f0|| + ||f0 − KCf0||. (15.9)

The first term on the right-hand side of (15.9) is just the minimum error
achieved by the previous iterate. The second term should decrease to zero due
to (15.5(ii)). Thus, if (15.6) is true, it is very likely that (15.7) will follow in
subsequent iterations. This merely means that (15.5(ii)) can continue to be
executed, and it says nothing as to whether ||fB,αopt −f0|| really does decrease
with successive iterations. This will be discussed below. The norm in (15.5(iii))
may or may not have a finite minimum, and the infimum may occur as γ → ∞,
meaning that C = ∞ is possible. Define Q = ||Kγf0 − fB,αopt ||, and assume
that K|γ→0+f0 = 0 and that K|γ→∞f0 = f0. Then a plot of Q versus γ
may, in the expected case where ||f0 − fB,αopt || < ||fB,αopt ||, appear as in
Figure 15.1.

Fig. 15.1. inf Q obtained at C = ∞.

The value C = ∞ means, as above and in (15.3), that KC = I, in which
case, the next iterate by (15.4) belongs to the class

f∞,α = (I + αL∗L)−1 fB,αopt .

Observe that f∞,0 = fB,αopt , and so the algorithm reaches the fixed point
f∞,0 = fB,αopt . Note that if L = I, then α = 0 may indeed give the minimizer
in (15.5(i)). If f∞,α for α > 0 gives a minimizer in (15.5(ii)), then continue
the algorithm as defined. In the examples run to date, C = ∞ never occurred.
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15.2 Numerical Examples

We include four numerical examples featuring two kernels. The first of these is
a Gaussian kernel used in the first two cases: KB = B√

π
e−B2(x2−y2), with B =

1 and N = 100 subintervals on [−2, 2]. This kernel is shown in Figure 15.2.

Fig. 15.2. Kernel for Examples 1 and 2.

15.2.1 Example 1

For this example, f0 (the true answer) is a polynomial, ||ǫ||/||g|| (the noise-to-
signal ratio) is 0.085, and L (the regularization operator) is the Laplacian. Fig-
ure 15.3(a) shows the forcing function with and without noise. Figure 15.3(b)
contains the true solution, the Tikhonov solution, and one iteration of the
new method.

(a) (b)

Fig. 15.3. (a) g and ḡ. (b) f0, fαopt , and f2,αopt .

Comparison of results:
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||fαopt − f0|| = 448 for αopt = 0.5,

||f2,αopt − f0|| = 315 for αopt = 8.0, B2 = 18.

The improvement is 30%.

15.2.2 Example 2

In this example, the Gaussian kernel is used, and the Laplacian is the regu-
larizer. Here, the true solution f0 is two rectangles of different heights, and
the noise-to-signal ratio is ||ǫ||/||g|| = 0.068.

(a) (b)

Fig. 15.4. (a) g and ḡ. (b) f0, fαopt , and f2,αopt .

Comparison of results:

||fαopt − f0|| = 7.79 for αopt = 0.8,

||f2,βopt − f0|| = 7.53 for βopt = 256.0, B2 = 18.

The improvement is 3.3%.
The second kernel is the sinc kernel used in the last two cases:

KB =

{
sin B(x−y)

π(x−y) x �= y,
B
π x = y,

with B = 1 and N = 100 subintervals on [−4, 4]. This kernel is shown in
Figure 15.5.

15.2.3 Example 3

In this example, the sinc kernel is used, and the Laplacian is the regularizer.
Here, the true solution f0 is two rectangles of different heights, and the noise-
to-signal ratio is ||ǫ||/||g|| = 0.081.
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Fig. 15.5. Kernel for Examples 3 and 4.

(a) (b)

Fig. 15.6. (a) g and ḡ. (b) f0, αopt , and f2,αopt .

Comparison of results:

||fαopt − f0|| = 3.38 for αopt = 0.4,

||f2,βopt − f0|| = 3.28 for βopt = 2−8, B2 = 14.

The improvement is 3%.

15.2.4 Example 4

In this example, the sinc kernel is used, and the derivative operator is the
regularizer. Here, the true solution f0 is a polynomial, and the noise-to-signal
ratio is ||ǫ||/||g|| = 0.019.

||fαopt − f0|| = 12864 for αopt = 4 × 10−3,

||f2,βopt − f0|| = 7982 for βopt = 2−6, B2 = 50.

The improvement is 38%.
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(a) (b)

Fig. 15.7. (a) g and ḡ. (b) f0, fαopt , and f2,αopt .

15.3 Remarks and Conclusions

1. An algorithm is defined that can significantly improve the quality of reg-
ularized solutions to certain first-kind integral equations. In this chapter,
the true solution f0 is used in the computations. Approximating algorithm
(15.5) in real computations that do not reference f0 is left for future work.

2. In this chapter, all examples illustrate just a single iteration of (15.5).
Other cases run previously have shown improvements through three or
four iterations, after which a fixed point of (15.5) is achieved.

3. The method of this chapter is most effective when ||ǫ||/||g|| is large and/or
when f0 does not satisfy boundary conditions forced on fα by the regu-
larization operator L. In these cases, significant improvement in fα is
possible, and as the examples show, (15.5) can achieve this improvement.

4. In the examples, the second iteration always used the same regularization
operator L as the first. But the original error ǫ and the subsequent ǫeff are
quite different, both in norm and in composition. ǫeff is very smooth with
none of the randomness inherent in ǫ. Very different αopt values result, and
different L operators should be tried. This is left for future work [HBR00].
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16.1 Introduction

We consider the following integral over the finite range [a,b]:

I =

∫ b

a

f(x)dx,

where f(x) is a given smooth function.
The arithmetic operations and functions of Taylor series can be defined

in Fortran 90, C++ [ES90], and C# programming languages. In addition,
functions that consist of arithmetic operations, predefined functions, and con-
ditional statements can quickly be expanded in Taylor series.

Using this procedure, we can expand f(x) at x = c as follows:

f(x) = f0 + f1(x − c) + f2(x − c)2 + f3(x − c)3 + · · · + fn(x − c)n. (16.1)

If we integrate the Taylor series in (16.1), that is,

F (x) = f0(x − c) +
f1

2
(x − c)2 +

f2

3
(x − c)3 + · · · + fn

n + 1
(x − c)n+1, (16.2)

then the integral over the interval [a,b] near x = c may be evaluated using
(16.2).

The method outlined above provides us with an effective and fast numerical
integration technique.

16.2 Arithmetic of Taylor Series

In this section, we briefly explain the basic idea of how to expand functions
into Taylor series. The reader is referred to Rall [Ral81], Henrici [Hen74], and
Hirayama [Hir02] for more details.
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The arithmetic program for Taylor series can be developed without any
difficulty. The following relations are valid not only at the origin but also at
any point of the interval [a,b]. The series can be defined in the form

f(x) = f0 + f1x + f2x
2 + f3x

3 + f4x
4 + · · · , (16.3)

g(x) = g0 + g1x + g2x
2 + g3x

3 + g4x
4 + · · · , (16.4)

h(x) = h0 + h1x + h2x
2 + h3x

3 + h4x
4 + · · · (16.5)

and possess the following important properties.

(i) Addition and subtraction. If h(x) = f(x) ± g(x), then the coefficients
of f , g, and h satisfy

hi = fi ± gi.

(ii) Multiplication. If h(x) = f(x)g(x), then the coefficients of f , g, and h
satisfy

hn =

n∑

k=0

fign−i.

(iii) Division. If h(x) = f(x)/g(x), then the coefficients of f , g, and h
satisfy

h0 =
f0

g0
, hn =

1

g0

(
fn −

n−1∑

k=0

hkgn−k

)
, (n ≥ 1).

(iv) Exponential function. If h(x) = ef(x), then dh/dx = hdf/dx. Substi-
tuting (16.3)–(16.5) into this differential equation and comparing the coeffi-
cients of the Taylor series, we arrive at the relations

h0 = ef0 , hn =
1

n

n∑

k=1

khn−kfk, (n ≥ 1).

We can get similar differential equations and similar relations between
the coefficients of the Taylor series for any other elementary transcendental
function.

16.3 Numerical Integration Method

In this section, we explain a numerical integration method using Taylor series.
We consider the following integral over a finite interval [a, b]:

I =

∫ b

a

f(x)dx, (16.6)

where f(x) is a given smooth function. We expand the function f(x) at x = c
in a Taylor series as
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f(x) = f0 + f1(x − c) + f2(x − c)2 + f3(x − c)3 + · · · + fn(x − c)n. (16.7)

The indefinite integral F (x) can be obtained by integrating the Taylor series
derived in (16.7) as

F (x) = f0(x − c) +
f1

2
(x − c)2 +

f2

3
(x − c)3 + · · · + fn

n + 1
(x − c)n+1. (16.8)

If F (x) obtained in (16.8) converges sufficiently fast, then we can obtain the
value of the integral by computing F (b) − F (a). If this is not the case, then
we introduce the function h = x − c and from (16.8) we have

F (c + h) = f0h +
f1

2
h2 +

f2

3
h3 + · · · +

fn

n + 1
hn+1. (16.9)

Letting h be sufficiently small, the series in (16.9) becomes a fast convergent
Taylor series.

The function h should be chosen so that the absolute value of the last term
in (16.9) is less than the error ǫ of computation; i.e.,

∣∣∣∣
fn

n + 1
hn+1

∣∣∣∣ ≤ ǫ. (16.10)

From (16.10) we have

h ≤ n+1

√
(n + 1)ǫ

|fn| . (16.11)

If h satisfies inequality (16.11), we can compute the numerical value of the
integral with error ǫ in the interval [c − h, c + h]. As the degree of the Taylor
series increases, the error of the computation tends to zero.

The numerical integral method described above can be summarized as
follows.

(i) Expand f(x) at the center c of the interval [a, b] into a Taylor series.
(ii) Integrate the series.
(iii) Compute h using (16.10) and divide the integral (16.6) into three

integrals:

∫ b

a

f(x)dx =

∫ c−h

a

f(x)dx +

∫ c+h

c−h

f(x)dx +

∫ b

c+h

f(x)dx.

(iv) The integral over [c − h, c + h] can be computed using the Taylor
series. The other integrals can be computed using this integration method
recursively.

16.4 Numerical Example

Let us consider a numerical example.
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16.4.1 Simple Example

We consider the following simple integral with tolerance ǫ = 10−10:

I =

∫ 1

0

exdx = 1.71828182845904523 · · · . (16.12)

We expand ex at x = 0.5 into a Taylor series up to degree 9 and integrate it:

∫
exdx = 1.64872(x − 0.5) + 0.824361(x − 0.5)2

+ 0.274787(x − 0.5)3 + 0.0686967(x − 0.5)4

+ 0.0137393(x − 0.5)5 + 0.00228989(x − 0.5)6

+ 0.000327127(x − 0.5)7 + 4.08909 × 10−5(x − 0.5)8

+ 4.54343 × 10−6(x − 0.5)9 + 4.54343 × 10−7(x − 0.5)10.

(16.13)

We have h = 0.387707 from the above Taylor series. Therefore, the integral
can be divided into

I =

∫ 1

0

exdx =

∫ 0.112293

0

exdx +

∫ 0.887707

0.112293

exdx +

∫ 1

0.887707

exdx. (16.14)

The second integral on the right-hand side of (16.14) is obtained by evaluating
the Taylor series in (16.13), and is equal to 1.310713. The first and third
integrals on the right-hand side of (16.14) can be evaluated similarly. This
first integral can be expanded at x = 0.0561465 as follows:

∫
exdx = 1.05775(x − 0.0561465) + 0.528876(x − 0.0561465)2

+ 0.176292(x − 0.0561465)3 + 0.044073(x − 0.0561465)4

+ 0.0088146(x − 0.0561465)5 + 0.0014691(x − 0.0561465)6

+ 0.000209872(x − 0.0561465)7

+ 2.62339 × 10−5(x − 0.0561465)8

+ 2.91488 × 10−6(x − 0.0561465)9

+ 2.91488 × 10−7(x − 0.0561465)10.

(16.15)

From the above Taylor series, we have h = 0.405304. Because h is greater
than the length of the interval of integration in the first integral in (16.14),
we can evaluate the first integral by substituting lower and upper limits into
(16.15). Applying this method to the third integral, we obtain the values of
the first and the third integrals as the follows:

∫ 0.112293

0

exdx = 0.118840,

∫ 1

0.887707

exdx = 0.288729.
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Evaluating the right-hand side of (16.15) gives

I =

∫ 1

0

exdx = 1.718281828456585.

The first 12 digits of this result agree with the exact value in (16.12). If we use
a Taylor series of order higher than 13, we can compute this integral without
a split of the interval of integration.

16.4.2 Kahaner’s Test Problems

Kahaner-type test problems [HH03] are usually considered to illustrate the
effectiveness of a computational method. These problems deal with discontin-
uous and singular functions, but in this chapter, we use a slightly different
approach to validate our method.

In this work, the calculation times of the numerical integration using Tay-
lor series and AQE11D are compared. The integral routine AQE11D is coded
based on the eleventh order adaptive Newton–Cotes method [EU96], which is
one of the fastest numerical integration routines.

The comparison performance on a Pentium 4 2.0 GHz is shown in Table
16.1.

Table 16.1. Comparison of performance on Pentium 4 2.0 GHz of the quadrature
routine based on Taylor series with error tolerance 1.0E-09.

No. a b Integrand Taylor AQE11D Ratio
µs µs

1 0.0 1.0 ex 1.02 3.06 3.40
4 -1.0 1.0 0.92 cosh x − cos x 3.52 7.50 2.40
5 -1.0 1.0 1/(x4 + x2 + 0.9) 5.70 8.54 1.70
8 0.0 1.0 1/(x4 + 1) 4.57 6.25 1.50
9 0.0 1.0 2/(2 + sin 3.14159x) 99.60 86.70 0.98

10 0.0 1.0 1/(1 + x) 1.60 3.12 2.20
11 0.0 1.0 1/(ex + 1) 1.77 4.23 2.70
12 0.0 1.0 1/(ex − 1) 1.44 7.53 5.90
13 0.0 1.0 sin(314.1592x)/(3.141592x) 185.81 255.00 1.60

14 0.0 10.0
√

(50)e503̇.14159x2

656.20 59.60 0.09
15 0.0 10.0 25e−25x 63.90 26.20 0.47
16 0.0 10.0 50/(3.14159(2500x2 + 1)) 23.24 29.80 1.40

17 0.01 1.0 sin(503̇.14159x)/(50(503̇.14159x)2) 103.751 227.00 2.40
18 0.0 π cos(cos x + 3 sin x + 2 cos 2x

+ 3 sin 2x + 3 cos 3x) 156.08 81.80 2.40
20 0.0 -1.0 1/(x2 + 1.005) 2.38 9.06 4.30
21 0.0 1.0 1

cosh2(10(x−0.2))
+ 1

cosh4(100(x−0.4))

+ 1
cosh6(1000(x−0.6))

11927.20 - N/A
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It may be observed from Table 1 that the method introduced in this chap-
ter gives better results than AQE11D for many test problems, except for
the case when the integrated function decays rapidly or oscillates at high
frequency. Lower-order Taylor series cannot give a good approximation for
rapidly decaying functions over a wide range because, by (16.11), the error of
integration in this case is large. For such functions, a polynomial bounded at
both ends of the interval gives a better approximation than the Taylor series
method.

16.5 Conclusion

The numerical integration method based on Taylor series is one of the fastest
for most functions. However, this method does not give good results for rapidly
decaying and high-frequency oscillating functions. The method can easily be
applied using the C++, C#, or Fortran 90 programming languages.

This method can also be applied, with slight modifications, to the integra-
tion of singular and discontinuous functions.
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17.1 Introduction

In this chapter, we discuss the boundary integral solution of the fractional
diffusion equation

∂α

t
Φ − ∆Φ = 0 in QT = Ω × (0, T ),

B(Φ) = g on ΣT = Ω × (0, T ), (17.1)

Φ(x, 0) = 0 x ∈ Ω,

where the boundary operator B(Φ) = ΦΣT
and ∂α

t
is the Caputo time deriva-

tive of the fractional order 0 < α ≤ 1. For α = 1, we get the ordinary diffusion
equation, and for α = 0, we have the Helmholtz equation.

Hilbert space methods to study the initial boundary value problems are
well known for the heat and wave equations (see [LM721] and [LM722]).

The boundary integral equation method for elliptic, parabolic, and hyber-
bolic equations has been extensively studied by several authors (see [Cos92]
and the references therein). The idea to represent the solution of these equa-
tions as boundary potentials has been used for decades (centuries). This
method converts the problem to an equivalent integral equation on the bound-
ary of the domain. The method has been well studied, for example, in [Cos92],
[Cos04], and [HS89]. The functional framework has been the interpretation of
the boundary integral operators as anisotropic pseudodifferential operators
acting on anisotropic Sobolev spaces[Cos01]. In this way, the boundary inte-
gral method is closely connected with the Hilbert space approach to the initial
boundary value problems studied in [LM721] and [LM722].

In this chapter, we construct a fundamental solution by means of the Fox
H-functions and represent the solution of (17.1) as a single-layer potential.
Using the jump relations of the potential, we derive the appropriate bound-
ary integral operator and compute its principal symbol. By analyzing the
properties of the principal symbol, we can then give the detailed mapping
properties of the single-layer operator in anisotropic Sobolev spaces, which
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yield the unique solvability of the boundary integral equation, and thus, also
the unique solvability of the initial-boundary value problem.

17.2 Boundary Integral Formulation of the Problem

17.2.1 The Fundamental Solution

The fundamental solution E(x, t) of the fractional diffusion equation is con-
structed by taking the Laplace transform in the time variable and the Fourier
transform in the spatial variable of the fractional diffusion equation

(∂α
t − ∆)E(x, t) = δ(x, t),

where δ(x, t) is the Dirac delta distribution. The transformed equation is then

(|ξ|2 + sα) ̂̃E(ξ, s) = 1,

where the two-dimensional Fourier transform is defined by

û(ξ, t) =

∫

R2

e−i〈x,ξ〉u(x, t)dx

and the Laplace transform by

ũ(x, s) =

∫ ∞

0

e−stu(x, t)dt.

Hence, the Fourier–Laplace transform of the fundamental solution is

̂̃E(ξ, s) =
1

|ξ|2 + sα
.

Using the Laplace transform of the Mittag–Leffler functions [KS04]

∫ ∞

0

e−sttµk+β−1E
(k)
µ,β(−atµ)dt =

k!sµ−β

a+ sµ
,

we find out that the Fourier transform of the fundamental solution is

Ê(ξ, t) = F(E)(ξ, t) = tαE(0)
α,α(−|ξ|2tα).

By computing the inverse Fourier transform of the Mittag–Leffler function,
we notice that the fundamental solution is the Fox H-function (see [KS04] and
[PBM90])

E(x, t) = tα−1|x|−2H20
12 (|x|2t−α|α,α

(1,1),(1,1)).

For later use, we need to compute the Laplace transform of the fundamen-
tal solution. We have
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Ẽ(x, s) =

∫ ∞

0

e−stE(x, t)dt =
1

2π

∫

R2

ei〈ξ,x〉 1

|ξ|2 + sα
dξ.

Since the Fourier–Laplace transform of the fundamental solution is radial, i.e.,
̂̃E(ξ, t) = ̂̃E(|ξ|, t), its inverse transform is radial as well:

Ẽ(x, s) = Ẽ(|x|, s).

On the other hand, the Fourier transform of Ẽ(|x|, s) can be written as

̂̃E(ξ, s) =

∫ ∞

0

r
[ ∫ π

−π

e−ir|ξ| cos(φ)dφ
]
Ẽ(r, s)dr = 2π

∫ ∞

0

rJ0(r|ξ|)Ẽ(r, s)dr,

by changing integration to polar coordinates. Now, by formula 6.576 (7) in
[GR96] for the Bessel functions, we have

∫ ∞

0

rJ0(|ξ|r)K0(s
α
2 r)dr =

1

|ξ|2 + sα
, Re(s) > 0.

Hence, the Laplace transform of the fundamental solution E(x, t) is

Ẽ(x, s) = 2πK0(|x|s
α
2 ). (17.2)

17.2.2 The Boundary Integral Equation

We now define the boundary potential

Φ(x, t) = Sσ(x, t) =

∫

Γ

∫ t

0

σ(y, τ)E(x− y, t− τ)dsydτ, x ∈ Ω, t ∈ (0, T )

for a given boundary distribution σ(x, t) ∈ C∞(ΣT ). The potential is the solu-
tion of the fractional diffusion equation both in the interior domain Ω× (0, T )
and in the exterior domain [Rn \ Ω] × (0, T ), with the zero initial condition.
We denote the direct value of Sσ on the boundary by V σ.

The single-layer potential Sσ(x, t) is continuous up to the boundary due
to the asymptotic properties of the fundamental solution. This leads to the
boundary relation

γ(Sσ) = γ(Φ) = V σ(x, t),

where γ : u → u|Γ is the trace operator. In other words, we have converted
the initial-boundary value problem for the fractional diffusion equation (17.1)
to the boundary integral equation

V σ(x, t) = γ(Φ)(x, t) = g(x, t), (x, t) ∈ ΣT .

Furthermore, the normal derivative of the single-layer potential experi-
ences a jump across the boundary [KR]:

[∂nSσ]ΣT
= σ.
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17.3 Function Spaces

Let s ∈ R and m ≥ 1. The anisotropic Sobolev space Hs
m(Rn+1) contains

those distributions u ∈ S′(Rn+1) for which the norm

‖u‖s,m = (2π)− n+1
2

( ∫

Rn+1

[(1 + |ξ|2)m + |η|2] s
m |û(ξ, η)|2dξdη

) 1
2

is finite [Cos01]. Here the length of the vector ξ = (ξ1, ξ2, . . . , ξn) is denoted
as usual by |ξ|2 = ξ2

1 + ξ2
2 + · · · + ξ2

n.
Anisotropic Sobolev spaces on the cylinder T

n ×R are defined in the same
way as the anisotropic Sobolev spaces on R

n+1:

‖u‖s,m = (2π)− n
2

( ∑

k∈Zn

∫

Rη

(
(1 + |2πk|2)m + |η|2

) s
m |û(k, η)|2dη

) 1
2

Here û(k, η) for (k, η) ∈ Z
n × R are defined as the Fourier coefficients in the

space variables and the Fourier transform in the time variable, i.e.,

û(k, η) =

∫

[0,1]n

∫

R

e−i(2π(k,x)+tη)u(x, t)dx dt,

with the scalar product (k, x) =
∑n

l=1 klxl.

Finally, let us introduce the anisotropic Sobolev space H̃s
m(Rn+1), which

takes the vanishing initial condition at t = 0 into account; that is,

H̃s
m(Rn+1) = {u ∈ Hs

m(Rn+1 : supp(u) ⊂ Rx × [0,∞[}.

For a finite time-interval, we write R
n+1
T = R

n
x × (0, T ), T > 0, and set

H̃s
m(Rn+1

T ) = {u = U |Rn
x×(−∞,T ) : U ∈ H̃s

m(Rn+1)},

equipped with the norm

‖u‖s,m;T = inf{‖U‖s,m : u = U |Rn
x×(−∞,T )}.

As above, we define H̃s
m(Tn × R) as the space of functions vanishing on

the negative time-axis and H̃s
m(ΣT ) as the space of the restrictions to ΣT =

Γ × (0, T ).

17.4 The Mapping Properties

In this section, we present the main results concerning the mapping properties
of the single-layer operator

VΓuΓ (x, t) =

∫

Γ

∫ T

0

E(x− y, t− τ)u(y, τ)dsydτ.
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Since, by our assumption, the boundary curve Γ has a smooth parametric
representation θ → x(θ), we may identify every boundary distribution with
the 1-periodic distribution in the space variable u(θ, t) = uΓ (x(θ), t). Hence,
the single-layer operator can be written as

V u(θ, t) =

∫ t

0

∫ 1

0

E(x(θ) − x(φ), t − τ)u(φ, τ)dφdτ. (17.3)

We will see from the properties of the fundamental solution that the single-
layer operator is of Volterra type [KR]; i.e., if u(θ, τ) = 0 for τ < t, then
V u(θ, τ) = 0.

We will consider the single-layer operator as an anisotropic pseudodiffer-
ential operator, and compute its principal symbol, whose properties yield the
mapping properties in the anisotropic Sobolev spaces defined above.

Applying the Laplace transformation and using (17.2), we get

L(V u)(x, s) =
1

2π

∫ 1

0

ũ(φ, s)K0(|x(θ) − x(φ)|sα
2 )|x′(φ)|dφ.

Since we assumed that u(φ, t) = 0, t < 0, we obtain the Fourier transform by
putting s = iη:

V̂ u(θ, η) =
1

2π

∫ 1

0

û(φ, η)K0(|x(θ) − x(φ)|(iη)α
2 )|x′(φ)|dη.

We define the function κ(θ, φ) by setting

κ(θ, φ) =
|x(θ) − x(φ)|

2 sin(π(θ − φ))
.

Hence, the kernel of the integral operator V can be written as

K0(|x(θ) − x(φ)|(iη)α
2 ) = K0(2κ(θ, φ)(iη)

α
2 sin(θ − φ)),

which is 1-periodic in θ−φ and has the Fourier series representation ([Obe73],
(4.32))

K0(|x(θ) − x(φ)|(iη)α
2 ) =

∑

p∈Z

I|p|(κ(θ, φ)(iη)
α
2 )K|p|(κ(θ, φ)(iη)

α
2 )e2πpi(θ−φ).

Replacing the kernel of the single-layer operator by the Fourier series, we
obtain the following representation of the operator:

V u(θ, t) =
1

2π

∑

p∈Z

∫ 1

0

∫

Rη

a(θ, φ, p, η)û(φ, η)e2πpi(θ−φ)+iηtdφdη,

where the amplitude of the pseudodifferential operator is



146 J. Kemppainen and K. Ruotsalainen

a(θ, φ, p, η) =
1

2π
I|p|(κ(θ, φ)(iη)

α
2 )K|p|(κ(θ, φ)(iη)

α
2 )|x′(φ)|.

As in [Cos01] (Theorems 3.4 and 4.3), from the asymptotic expansion of the
amplitude we now get the leading term by inserting φ = θ:

a(θ, p, η) = a(θ, θ, p, η) =
1

2π
I|p|(κ(θ)(iη)

α
2 )K|p|(κ(θ)(iη)

α
2 )|x′(θ)|,

where κ(θ) = |x′(θ)|
2π .

From the asymptotic properties of the Bessel functions ([AS71], (9.7.7),
(9.3.9), and (9.7.8)), we find (for p �= 0) the asymptotic behavior

I|p|(κ(θ)(iη)
α
2 )K|p|(κ(θ)(iη)

α
2 ) ∼ 1

2
√
|p|2 + κ(θ)(iη)α

.

Hence, the single-layer operator admits the Fourier representation

V u(θ, t) =
1

2π

∑

p∈Z

∫

Rη

a(θ, p, η)û(p, η)ei2πpθ+iηtdη +Bu(θ, t)

= V0u(θ, t) +Bu(θ, t),

where B is an operator of Volterra type, which is a bounded operator between
the anisotropic Sobolev spaces H̃s

γ(QT ) and H̃s+2
γ (QT ), γ = 2

α . The principal
part V0 has the the anisotropic symbol

a(θ, p, η) =
1

2
([

2πp

|x′(θ)| ]
2 + (iη)α)− 1

2 .

Here and in the sequel we set γ = 2
α , 0 < α ≤ 1. The principal symbol

satisfies the following conditions when the anisotropic distance is

ρ(m, η) = |m| + |η| 1
γ ≥ ρ0 > 0.

1. a ∈ C∞(R3), and it is 1-periodic in θ.
2. The symbol is quasi-homogeneous of order β = −1:

a(θ, λp, λ
2
α η) = λ−1a(θ, p, η), λ ≥ 1.

3. The mapping η → a(θ, p, η) has a polynomially-bounded analytic contin-
uation into the domain {z ∈ C| z = η − iσ, σ > 0} and is continuous for
σ ≥ 0.

From the previous properties, we deduce the next assertion.

Theorem 1. The single-layer operator V : H̃s
γ(ΣT ) → H̃s+1

γ (ΣT ) is bounded
for all s ∈ R.
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Proof. The statement follows directly from the estimate

|a(θ, m, η)| ≤ C(|m| + |η|α
2 )−1,

whenever |m| + |η|α
2 ≥ ρ0 > 0, and the definition of the anisotropic Sobolev

spaces.

To discuss whether the operator is positive, we need the following lemma,
which is proved by elementary complex analysis.

Lemma 1. For all 0 < α ≤ 1, there exists a positive constant C(ρ, α) > 0
such that

Re{ 1√
|m|2 + (iη)α

} ≥ C(|m| + |η|α
2 )−1

whenever |m|2 + |η|α ≥ ρ > 0.

With this lemma we can prove the G̊arding inequality [KR].

Theorem 2. For the single-layer operator, there exist positive constants C0

and C1 such that

Re(V u, u) ≥ Co‖u‖2
− 1

2 ,γ;T − ‖u‖2
− 3

2 ,γ;T

for all u ∈ H̃
− 1

2
m (ΣT ).

Coerciveness follows from the following assertion [KR]:

Lemma 2. For all σ ∈ H̃− 1
2 ,γ(ΣT ), we have

Re(V σ, σ) > 0, if σ �= 0.

As in [HS89], we obtain the strong coerciveness of the single-layer operator
and can state our main result [KR].

Theorem 3. The single-layer operator V : H̃
− 1

2
γ (ΣT ) → H̃

1
2
γ (ΣT ) is an iso-

morphism. Furthermore, it is coercive; i.e., there exists a positive constant c
such that

Re(V σ, σ) ≥ c‖σ‖2
− 1

2 ,γ

for all σ ∈ H̃
− 1

2
γ (ΣT ).

Corollary 1. For every g ∈ H̃
1
2
γ (ΣT ), the fractional diffusion equation admits

a unique solution Φ(x, t) ∈ H̃1
γ(Ω × (0, T )), which is given by the single-layer

potential
Φ(x, t) = Sσ(x, t),

where σ ∈ H̃
− 1

2
γ (ΣT ) is the unique solution of the boundary integral equation

V σ = g.
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About Traces, Extensions, and Co-Normal
Derivative Operators on Lipschitz Domains

S.E. Mikhailov

Brunel University West London, Uxbridge, UK; sergey.mikhailov@brunel.ac.uk

18.1 Introduction

For a second-order partial differential equation (PDE)

Lu(x) := L(x, ∂x) u(x) :=

n∑

i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
= f(x), x ∈ Ω,

acting on a function u from the Sobolev space Hs(Ω), 1
2 < s < 3

2 , the function
derivatives do not generally exist on the boundary in the trace sense, but a co-
normal generalized derivative operator can be defined with the help of the first
Green identity. However, this definition is related to an extension of the PDE
operator and the PDE right-hand side from the domain Ω, where they are
prescribed, to the domain boundary, where they are not. Since the extensions
are not unique, the generalized co-normal derivative appears to be a nonunique
operator, which is also nonlinear in u unless a linear relation between u and
the PDE right-hand side extension is enforced. However, for functions u from
Hs(Ω), 1

2 < s < 3
2 , that are mapped by the PDE operator into the space

H̃t(Ω), t ≥ −1
2 , one can define a canonical co-normal derivative operator,

which is unique, linear in u, and coincides with the co-normal derivative in
the trace sense if the latter exists. These notions were developed in [Mik05]
and [Mik06] for a PDE with an infinitely smooth coefficient on a domain
with an infinitely smooth boundary, and a right-hand side from Hs−2(Ω),

1 ≤ s < 3
2 , or extendable to H̃t(Ω), t ≥ −1/2.

In Section 18.3 of this chapter, we generalize the above analysis to the
co-normal derivative operators on Lipschitz domains for a PDE with a Hölder
coefficient and right-hand side from H̃s−2(Ω), 1

2 < s < 3
2 . This needs a

number of auxiliary facts provided in Section 18.2, some of which might be
new for Lipschitz domains. Particularly, we prove Lemma 1 on unboundedness
of the trace operator, Lemma 2 on boundedness of extension operators from
boundary to the domain, Theorem 1 on characterization of the Sobolev space
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Hs
0(Ω) = H̃s(Ω) on the (larger than usual) interval 1

2 < s < 3
2 , Lemma 4

on characterization of the space Ht
∂Ω , t > − 3

2 , and Lemma 5 on existence of

a bounded linear extension operator Ẽs : Hs(Ω) → H̃s(Ω), − 3
2 < s < 1

2 ,
s �= − 1

2 .
An analysis of boundary–domain integral and integro-differential equa-

tions extending the corresponding results of [Mik05] and [Mik06] to Lipschitz
domains, Hölder coefficients, and a wider range of Sobolev spaces, and based
on the results of this chapter, will be published elsewhere.

18.2 Sobolev Spaces, Trace Operators, and Extensions

Suppose that Ω is a bounded, open, n-dimensional region of R
n, n ≥ 2, whose

boundary ∂Ω is a simply connected, closed, Lipschitz surface.
In what follows, D(Ω) = C∞

comp(Ω) denotes the space of Schwartz test
functions and D∗(Ω) the space of Schwartz distributions; Hs(Rn) = Hs

2(Rn),
Hs(∂Ω) = Hs

2(∂Ω) are the Bessel potential spaces, where s ∈ R is an arbitrary

real number. We denote by H̃s(Ω) the subspace of Hs(Rn), H̃s(Ω) := {g :
g ∈ Hs(Rn), supp g ⊂ Ω}, and by Hs(Ω) the space of restrictions to Ω of
distributions from Hs(Rn), Hs(Ω) := {g|

Ω
: g ∈ Hs(Rn)}, where g|

Ω
denotes

restriction to Ω and Hs
0(Ω) is the closure of D(Ω) in Hs(Ω). We recall that

Hs coincide with the Sobolev–Slobodetski spaces W s
2 for any nonnegative s.

We denote by Hs
∂Ω

the subspace of Hs(Rn) (and H̃s(Ω)) whose elements have
compact support on ∂Ω; i.e., Hs

∂Ω
:= {g : g ∈ Hs(Rn), supp g ⊂ ∂Ω}.

To introduce generalized co-normal derivatives in the next section, we
will need several facts about traces and extensions in Sobolev spaces on a
Lipschitz domain. First of all, it is well known [Cos88, Lemma 3.7] that the

trace operators τ : Hs(Rn) → Hs− 1
2 (∂Ω) and τ+ : Hs(Ω) → Hs− 1

2 (∂Ω) are
continuous for 1

2 < s < 3
2 on any Lipschitz domain Ω. We will also use the

notation u+ := τ+ u.
Since the space Hs(Rn) is dense in H

1
2 (Rn) for s > 1

2 , the trace operator

is well defined on the set D =
⋃

1
2 <s≤1 H

s(Rn), which is dense in H
1
2 (Rn).

Lemma 1. For a Lipschitz domain Ω, the norm of the trace operator τ :
Hs(Rn) → Hs− 1

2 (∂Ω) tends to infinity as s → 1
2 , s > 1

2 , whereas the operator

τ : H
1
2 (Rn) → L2(∂Ω) is unbounded.

Proof. It suffices to show that there exists a function v ∈ L2(∂Ω) and a
sequence w′

k ∈ D such that ‖w′
k‖H

1
2 (Rn)

≤ C < ∞, but

|〈v, τw′
k〉| → ∞, k → ∞. (18.1)

Let us first find such a sequence for the half-space Ω = R
n
+ = {x ∈ R

n : xn >
0}, where x = {x′, xn}. For a nonzero function v ∈ L2(∂Ω) and w ∈ D, we
have
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〈v, τw〉 = 〈v, δnw〉 = 〈v ⊗ δn, w〉,
where δn = δ(xn) is the one-dimensional Dirac distribution. However, the
Fourier transform satisfies Fx→ξ{v(x′)δ(xn)} = v̂(ξ′) := Fx′→ξ′{v(x′)}, and
for s > 1

2 we have (see the proof of Theorem 3.39 in [McL00])

‖v ⊗ δ(xn)‖H−s(Rn) =

∫

Rn

(1 + |ξ|2)−s|v̂(ξ′)|2dξ = Cs‖v‖2

H
1
2

−s(Rn−1)
,

where Cs =
∫∞

−∞(1 + η2)−sdη and the substitution ξn = (1 + |ξ′|2) 1
2 η was

used. Since ‖v‖2

H
1
2

−s(Rn−1)
→ ‖v‖2

L2(Rn−1) �= 0 and Cs → ∞ as s → 1
2 , we

have

sup
‖w‖Hs(Ω)=1

|〈v ⊗ δn, w〉| = ‖v ⊗ δ(xn)‖H−s(Rn) → ∞, s → 1

2
.

This implies that there exists a sequence wk ∈ D such that ‖wk‖
H− 1

2 (Rn)
≤ 1,

but |〈v ⊗ δ(xn), wk〉| → ∞ as k → ∞, which proves the lemma for Ω = R
n
+ if

we take w′
k = wk.

Let now Ω be a half-space bounded by a Lipschitz hypograph, Ω = {x ∈
R

n : xn > ζ(x′)}, where ζ is a Lipschitz function. Then the sequence w′
k(x) =

wk(x′, xn− ζ(x′)) will have the necessary properties since Hs(Rn) is invariant
under a Lipschitz change of coordinates if 0 ≤ s ≤ 1.

If Ω is a general Lipschitz domain, then (generally after a rigid rotation
of coordinates) it has a part of the boundary Γ1 ⊂ ∂Ω that is a Lipschitz
hypograph and can be extended to the boundary of a half-space. Choosing
v so that v = 0 on ∂Ω\Γ1, ‖v‖L2(Γ1) �= 0, and then w′

k as in the previous
paragraph, we obtain property (18.1), which completes the proof.

Lemma 2. For a bounded Lipschitz domain Ω, there exists a linear bounded
extension operator e : Hs− 1

2 (∂Ω) → Hs(Rn), 1
2 ≤ s ≤ 3

2 , which is the right

inverse to the trace operators τ±; i.e., τ±eg = g for any g ∈ Hs− 1
2 (∂Ω).

Moreover, ‖e‖
Hs− 1

2 (∂Ω)→Hs(Rn)
≤ C, where C is independent of s.

Proof. For Lipschitz domains and 1
2 < s ≤ 1, the boundedness of the extension

operator is well known (see, e.g., [McL00, Theorem 3.37]).
To prove it for the whole range 1

2 ≤ s ≤ 3
2 , let us consider the classical

single-layer potential V∆ϕ with a density ϕ = V−1
∆ g ∈ Hs− 3

2 (∂Ω), solving
the Laplace equation in Ω+ with the Dirichlet boundary data g, where V∆

is the direct value of the operator V∆ on the boundary. The operators V−1
∆ :

Hs− 1
2 (∂Ω) → Hs− 3

2 (∂Ω) and V∆ : Hs− 3
2 (∂Ω) → Hs

loc(R
n) are continuous

for 1
2 ≤ s ≤ 3

2 , as stated in [JK81b], [JK81a], [JK82], [Ver84], and[Cos88].

Thus, it suffices to take e = χV∆V−1
∆ , where χ ∈ D(Rn) is a cutoff function

such that χ = 1 in Ω̄+. The estimate ‖e‖
Hs− 1

2 (∂Ω)→Hs(Rn)
≤ C, where C is

independent of s, then follows by interpolation.
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Note that for s = 1
2 , the trace operator τ+ is understood in the nontan-

gential sense, and that the continuity of the operators τ± was not needed in
the proof.

To characterize the space Hs
0(Ω) = H̃s(Ω) for 1

2 < s < 3
2 , we will need

the following statement.

Lemma 3. If Ω is a Lipschitz domain and u ∈ Hs(Ω), 0 < s < 1
2 , then

∫

Ω

dist(x, ∂Ω)−2s|u(x)|2dx ≤ C‖u‖2
Hs(Ω). (18.2)

Proof. Note first that the lemma claim holds true for u ∈ D(Ω) (see [McL00,
Lemma 3.32]). To prove it for u ∈ Hs(Ω), let first the domain Ω be such that

dist(x, ∂Ω) < C0 < ∞ (18.3)

for all x ∈ Ω, which holds true particularly for bounded domains. Let
φk ∈ D(Ω) be a sequence converging to u in Hs(Ω). If we write w(x) =
dist(x, ∂Ω)−2s, then w(x) > C−2s

0 > 0. Since (18.2) holds for functions from
D(Ω), the sequence φk ∈ D(Ω) is fundamental in the weighted space L2(Ω,w),
which is complete, implying that φk ∈ D(Ω) converges in this space to a func-
tion u′ ∈ L2(Ω,w). Since both L2(Ω,w) and Hs(Ω) are continuously imbed-
ded in the nonweighted space L2(Ω), the sequence φk converges in L2(Ω),
implying that the limiting functions u and u′ belong to this space and thus
coincide.

If condition (18.3) is not satisfied, let χ(x) ∈ D(Rn) be a cutoff function
such that 0 ≤ χ(x) ≤ 1 for all x, χ(x) = 1 near ∂Ω, and w(x) < 1 for
x ∈ supp (1 − χ). Then (18.3) is satisfied in Ω

⋂
suppχ(x) and

∫

Ω

w(x)|u(x)|2dx =

∫

Ω

(1 − χ(x))w(x)|u(x)|2dx+

∫

Ω

χ(x)w(x)|u(x)|2dx

≤ ‖u‖2
L2(Ω) +

∫

Ω

w(x)|
√
χ(x)u(x)|2dx

≤ ‖u‖2
Hs(Ω) + C‖

√
χ(x)u‖2

Hs(Ω) ≤ C1‖u‖2
Hs(Ω),

due to the previous paragraph.

Lemma 3 allows us to extend the following statement, known for 1
2 < s ≤ 1

[McL00, Theorem 3.40(i)], to a wider range of s.

Theorem 1. If Ω is a Lipschitz domain and 1
2 < s < 3

2 , then Hs
0(Ω) =

H̃s(Ω) = {u ∈ Hs(Ω) : τ+u = 0}.

Proof. The first equality, Hs
0(Ω) = H̃s(Ω), is well known for 1

2 < s < 3
2 (see,

e.g., [McL00, Theorem 3.33]). The theorem claim for 1
2 < s ≤ 1 is stated

in [McL00, Theorem 3.40(i)]. If u ∈ H̃s(Ω), then evidently τ+u = 0, since
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D is dense in H̃s(Ω) and the trace operator τ+ is bounded in Hs(Rn) for
1
2 < s < 3

2 . To prove the theorem for 1 < s < 3
2 , it remains to prove that the

extension of any u ∈ H̃s(Ω) by zero outside Ω, ũ, belongs to Hs(Rn). To do
this, we remark first of all that ũ ∈ H1(Rn), due to [McL00, Theorem 3.40(i)],
and then make estimates similar to those in the proof there; that is,

‖u‖2
H̃s(Ω)

= ‖ũ‖2
Hs(Rn) ∼ ‖ũ‖2

W 1
2 (Rn) +

∫

Rn

∫

Rn

|∇ũ(x) −∇ũ(y)|2
|x− y|2(s−1)+n

dx dy

= ‖u‖2
W 1

2 (Ω) +

∫

Ω

∫

Ω

|∇u(x) −∇u(y)|2
|x− y|2(s−1)+n

dx dy

+

∫

Rn\Ω

∫

Ω

|∇u(x)|2
|x− y|2(s−1)+n

dx dy +

∫

Ω

∫

Rn\Ω

|∇u(y)|2
|x− y|2(s−1)+n

dx dy

= ‖u‖2
W s

2 (Ω) + 2

∫

Ω

|ws−1(x)∇u(x)|2 dx,

where

ws−1(x) :=

∫

Rn\Ω

dy

|x− y|2(s−1)+n
, x ∈ Ω,

and W s
2 (Ω) is the Sobolev–Slobodetski space. Introducing polar coordinates

with x as an origin, we obtain, ws−1(x) ≤ C dist(x, ∂Ω)−2(s−1) for x ∈ Ω.
Then, taking into account that ∇u ∈ Hs−1(Ω) and ‖∇u‖Hs−1(Ω) ≤ ‖u‖Hs(Ω),
we have by Lemma 3,

‖u‖2
H̃s(Ω)

≤ ‖u‖2
W s

2 (Ω) + 2C‖u‖2
Hs(Ω) ≤ Cs‖u‖2

Hs(Ω) .

Lemma 4. Let Ω be a Lipschitz domain in R
n.

(i) If t ≥ −1
2 , then Ht

∂Ω = {0}.
(ii) If −3

2 < t < − 1
2 , then Ht

∂Ω is the set of distributions g on R
n of the

form
〈g, w〉Rn = 〈v, τw〉∂Ω ∀ w ∈ H−t(Rn), (18.4)

where τ is the trace operator, v ∈ Ht+ 1
2 (∂Ω), and ‖v‖

Ht+ 1
2 (∂Ω)

≤ C‖g‖Ht(Rn)

with C independent of t.

Proof. We will follow an idea in the proof of Lemma 3.39 in [McL00], extending
it from a half-space to a Lipschitz domain Ω.

Let Ω+ = Ω and Ω− = R
n\Ω̄. For any φ ∈ D(Rn), let us define

φ±(x) =

{
φ(x) if x ∈ Ω±,

0 otherwise.

Let t > − 1
2 . Then φ± ∈ H̃−t(Ω±) (see, e.g., [McL00, Theorems 3.33, 3.40]

for − 1
2 < t ≤ 0; for greater t, it then follows by embedding), ‖φ − φ+ −

φ−‖H−t(Rn) = 0, and there exist sequences φ±
k ∈ D(Ω±) converging to φ±
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in H̃−t(Ω±) as k → ∞. Hence, 〈g, φ〉 = limk→∞〈g, φ+
k + φ−

k 〉 = 0 for any
g ∈ Ht

∂Ω , t > − 1
2 , proving (i) for such t.

Let us prove (ii). For g ∈ Ht
∂Ω , −3

2 < t < − 1
2 , let us define v ∈ Ht+ 1

2 (∂Ω)
by

〈v, φ〉∂Ω := 〈g, eφ〉Rn ∀ φ ∈ H−t− 1
2 (∂Ω),

where e : H−t− 1
2 (∂Ω) → H−t(Ω) is a bounded extension operator whose

existence is proved in Lemma 2. Observe that

|〈v, φ〉| ≤ ‖g‖Ht(Rn)‖φ‖H−t− 1
2 (∂Ω)

‖e‖
H−t− 1

2 (∂Ω)→H−t(Rn)
,

so ‖v‖
Ht+ 1

2 (∂Ω)
≤ ‖e‖

H−t− 1
2 (∂Ω)→H−t(Rn)

‖g‖Ht(Rn) ≤ C‖g‖Ht(Rn), where, by

Lemma 2, C is independent of t. We also have that

〈g, w〉Rn − 〈v, τw〉∂Ω = 〈g, ρ〉Rn ∀ w ∈ H−t(Rn),

where
ρ = w − eτw ∈ H−t(Rn).

Then we have τρ = 0, which, by Theorem 1, means that ρ ∈ H̃−t(Ω±); thus,

there exist sequences φ±
k ∈ D(Ω±) converging to ρ in H̃−t(Ω±), implying that

〈g, ρ〉Rn = 0, since g ∈ Ht
∂Ω , and, hence, confirming ansatz (18.4).

It remains for us to deal with the case t = −1
2 in (i). Let g ∈ H

− 1
2

∂Ω . Since

H
− 1

2

∂Ω ⊂ Ht
∂Ω for t < −1

2 , ansatz (18.4) is valid for g. However, owing to

Lemma 1, the norm of the trace operator τ : H−t(Rn) → H−t− 1
2 (∂Ω) tends

to infinity as t → − 1
2 , which means that v should be zero.

Lemma 5. Let Ω be a Lipschitz domain, and let − 3
2 < s < 1

2 , s �= − 1
2 . There

exists a bounded linear extension operator Ẽs : Hs(Ω) → H̃s(Ω).

Proof. If 0 ≤ s < 1
2 , then H̃s(Ω) = Hs(Ω) (see, e.g., [McL00, Theorems 3.33

and 3.40]), which implies that Ẽs can be taken as the identity operator.

Let − 1
2 < s < 0. Since H̃−s(Ω) = H−s(Ω) as in the above paragraph, we

have Hs(Ω) = [H̃−s(Ω)]∗ = [H−s(Ω)]∗ = H̃s(Ω). The asterisk denotes the

dual space. This implies that Ẽs can be taken as the identity operator.
Let now −3

2 < s < − 1
2 . For s in this range, by [Cos88, Lemma 3.6] (see

also [McL00, Theorem 3.38]), the trace operator τ+ : H−s(Ω) → H−s− 1
2 (∂Ω)

is bounded and there exists a bounded extension operator e : H−s− 1
2 (∂Ω) →

H−s(Ω) (see Lemma 2). Then, by Theorem 1, (I−eτ+) is a bounded projector

from H−s(Ω) to H−s
0 (Ω) = H̃−s(Ω). Thus, any functional v ∈ Hs(Ω) can be

mapped continuously to a functional ṽ ∈ H̃s(Ω) such that ṽu = v(I − eτ+)u

for any u ∈ H−s(Ω). Since ṽu = vu for any u ∈ H̃−s(Ω), we conclude that

Ẽs = (I − eτ+)∗ : Hs(Ω) → H̃s(Ω) is a bounded extension operator.
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Note that Lemma 4 implies uniqueness of the extension operator Ẽs :
Hs(Ω) → H̃s(Ω) for −1

2 < s < 1
2 , which coincides in this case with the

identity operator and will be called the canonical extension operator . For
−3

2 < s < − 1
2 , on the other hand, the extension operator e : H−s− 1

2 (∂Ω) →
H−s(Ω) in the proof of Lemma 5 is not unique, implying nonuniqueness of

Ẽs : Hs(Ω) → H̃s(Ω).

18.3 Partial Differential Operator Extensions and
Co-Normal Derivatives

For u ∈ Hs(Ω), s > 3
2 , and a ∈ C0,α(Ω), α > 1

2 , we can denote by T+ the
corresponding co-normal derivative operator on ∂Ω in the sense of traces, that
is,

T+(x, n+(x), ∂x) u(x) :=

n∑

i=1

a+(x) n+
i (x)

(
∂u(x)

∂xi

)+

,

where n+(x) is the outward (to Ω) unit normal vector at the point x ∈ ∂Ω,
∂x = (∂1, ∂2, ..., ∂n), and ∂j := ∂/∂xj (j = 1, 2, ..., n).

For simplicity, from now on we will consider only bounded Lipschitz do-
mains. We will need the following particular case of a statement from [Gri85,
Theorem 1.4.1.1].

Theorem 2. Let Ω be a bounded Lipschitz domain and v ∈ Ck,α(Ω) with
k+α ≥ |s| when s is an integer, and k+α > |s| when s is not an integer. Then
vu ∈ Hs(Ω) for every u ∈ Hs(Ω), and there exists a constant K = K(v, s)
such that

‖vu‖Hs(Ω) ≤ K‖u‖Hs(Ω).

For u ∈ Hs(Ω) and v ∈ H2−s(Ω), 1
2 < s < 3

2 , a ∈ C0,α(Ω), α > |s − 1| if
s �= 1 and α = 0 if s = 1, we define the bilinear form

E(u, v) :=

3∑

i=1

〈a∂iu, ∂iv〉Ω ,

where 〈 · , · 〉Ω denotes the duality brackets between the spaces Hs−1(Ω) and
H1−s(Ω).

Let u ∈ Hs(Ω), 1
2 < s < 3

2 . Then Lu is understood as the distribution

〈Lu, v〉Ω := −E(u, v) ∀v ∈ D(Ω). (18.5)

Since the set D(Ω) is dense in H̃2−s(Ω), the above formula defines a

bounded operator L : Hs(Ω) → Hs−2(Ω) = [H̃2−s(Ω)]∗, 1
2 < s < 3

2 ,

〈Lu, v〉Ω := −E(u, v) ∀v ∈ H̃2−s(Ω).
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Let us consider also the operator L̂ : Hs(Ω) → H̃s−2(Ω) = [H2−s(Ω)]∗,
1
2 < s < 3

2 , defined by

〈L̂u, v〉Ω := −E(u, v) ∀v ∈ H2−s(Ω),

which is evidently bounded. For any u ∈ Hs(Ω), the functional L̂u belongs

to H̃s−2(Ω) and is an extension of the functional Lu ∈ Hs−2(Ω) from the

domain of definition H̃2−s(Ω) to the domain of definition H2−s(Ω).
The extension is not unique, and any functional of the form

L̂u + g, g ∈ H2−s
∂Ω (18.6)

provides another extension. On the other hand, any extension of the domain
of definition of the functional Lu from H̃2−s(Ω) to H2−s(Ω) has evidently
the form (18.6). The existence of such extensions is provided by Lemma 5.

Now we can extend the definition from [McL00, Lemma 4.3] of the gener-
alized co-normal derivative to a range of Sobolev spaces.

Lemma 6. Let Ω be a bounded Lipschitz domain, 1
2 < s < 3

2 , a ∈ C0,α(Ω),

α > |s − 1| if s �= 1 and α = 0 if s = 1, u ∈ Hs(Ω), and Lu = f̃ |
Ω

in Ω

for some f̃ ∈ H̃s−2(Ω). Let us define the generalized co-normal derivative

T̃+(f̃ , u) ∈ Hs− 3
2 (∂Ω) as

〈
T̃+(f̃ , u) , w

〉
∂Ω

:= 〈f̃ , e+w〉Ω + E(u, e+w)

= 〈f̃ − L̂u, e+w〉Ω ∀ w ∈ H
3
2 −s(∂Ω), (18.7)

where e+ : H
3
2 −s(∂Ω) → H2−s(Ω) is a bounded extension operator. Then

T̃+(f̃ , u) is independent of e+,

‖T̃+(f̃ , u)‖
Hs− 3

2 (∂Ω)
≤ C1‖u‖Hs(Ω) + C2‖f̃‖H̃s−2(Ω),

and the first Green identity holds in the form

〈
T̃+(f̃ , u) , v+

〉
∂Ω

= 〈f̃ , v〉Ω + E(u, v) = 〈f̃ − L̂u, v〉Ω ∀ v ∈ H2−s(Ω).

(18.8)

The proof of this lemma can be found in [McL00, Lemma 4.3] for s = 1.
Taking into account that Lemma 2 provides existence of a bounded extension
operator e+ : H

3
2 −s(∂Ω) → H2−s(Ω) in the whole range 1

2 < s < 3
2 , the

proof from [McL00, Lemma 4.3] works verbatim (with the appropriate change
of the Sobolev space indices and invoking Theorem 1 and Lemma 4) for all s
in this range.

Note that because of the involvement of f̃ , the generalized co-normal
derivative T̃+(f̃ , u) is generally nonlinear in u. It becomes linear if a linear
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relation is imposed between u and f̃ (including behavior of the latter on the

boundary ∂Ω), thus fixing an extension of f̃ |
Ω

into H̃s−2(Ω). For example, f̃ |
Ω

can be extended as f̂ = L̂u �= f̃ . Then, obviously, T̃+(f̂ , u) = T̃+(L̂u, u) = 0.
In fact, for a given function u ∈ Hs(Ω), 1

2 < s < 3
2 , any distribution

t+ ∈ Hs− 3
2 (∂Ω) may be nominated as a co-normal derivative of u through

an appropriate extension f̃ of the distribution Lu ∈ Hs−2(Ω) into H̃s−2(Ω).
This extension is again given by the second Green formula (18.8) rewritten as

〈f̃ , v〉Ω :=
〈
t+, τ+v

〉
∂Ω

−E(u, v) = 〈τ+∗t++L̂u, v〉Ω ∀ v ∈ H2−s(Ω). (18.9)

Here the operator τ+∗ : Hs− 3
2 (∂Ω) → H̃s−2(Ω) is dual to the trace opera-

tor, 〈τ+∗t+, v〉Ω := 〈t+, τ+v〉∂Ω for all t+ ∈ Hs− 3
2 (∂Ω) and v ∈ H2−s(Ω).

Evidently, the distribution f̃ defined by (18.9) belongs to H̃s−2(Ω) and is an

extension of the distribution Lu into H̃s−2(Ω) since τ+v = 0 for v ∈ H̃2−s(Ω).

To analyze another case, different from T̃+(L̂u, u), where the co-normal
derivative operator becomes linear, let us consider a subspace Hs,t(Ω;L∗) of
Hs(Ω).

Definition 1. Let s ∈ R, and let L∗ : Hs(Ω) → D∗(Ω) be a linear op-
erator. For t ≥ −1

2 , we introduce the space Hs,t(Ω;L∗) := {g : g ∈
Hs(Ω), L∗g|Ω = f̃g|Ω , f̃g ∈ H̃t(Ω)} endowed with the norm ‖g‖Hs,t(Ω;L∗) :=

‖g‖Hs(Ω) + ‖f̃g‖H̃t(Ω).

The distribution f̃g ∈ H̃t(Ω), t ≥ −1
2 , in the above definition is an exten-

sion of the distribution L∗g|Ω ∈ Ht(Ω), and the extension is unique (if it does
exist), due to Lemma 4. The uniqueness implies that the norm ‖g‖Hs,t(Ω;L∗)

is well defined. Note that another subspace of this kind, where L∗g|Ω belongs
to Lp(Ω) instead of Ht(Ω), was presented in [Gri85, p. 59].

If s, p ∈ R, L∗ : Hs(Ω) → Hp(Ω) is a bounded linear operator, t ≤ p, and
−1

2 < t < 1
2 , then, evidently, Hs,t(Ω;L∗) = Hs(Ω) since Hp(Ω) ⊂ Ht(Ω)

and H̃t(Ω) = Ht(Ω).

Lemma 7. Let s, p ∈ R. If the linear operator L∗ : Hs(Ω) → Hp(Ω) is
continuous, then the space Hs,t(Ω;L∗) is complete for any t ≥ −1

2 .

Proof. Let gk be a Cauchy sequence in Hs,t(Ω;L∗). Then there exists a

Cauchy sequence f̃gk
in H̃t(Ω) such that f̃gk

|Ω = L∗gk|Ω . Since Hs(Ω) and

H̃t(Ω) are complete, there exist elements g0 ∈ Hs(Ω) and f̃0 ∈ H̃t(Ω) such
that ‖gk − g0‖Hs(Ω) → 0, ‖f̃gk

− f̃0‖H̃t(Ω) → 0 as k → ∞. On the other hand,

‖L∗gk − L∗g0‖Hp(Ω) → 0, since L∗ is continuous. Taking into account that

L∗gk|Ω = f̃gk
|Ω , we obtain

‖f̃0 − L∗g0‖Hp(Ω) ≤ ‖f̃0 − f̃gk
‖Ht(Ω) + ‖f̃gk

− L∗g0‖Hp(Ω) → 0 k → ∞

if p ≤ t, and
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‖f̃0 − L∗g0‖Ht(Ω) ≤ ‖f̃0 − f̃gk
‖Ht(Ω) + ‖f̃gk

− L∗g0‖Hp(Ω) → 0 k → ∞

if t ≤ p. That is, L∗g0|Ω = f̃0|Ω ∈ Ht(Ω) in both cases, which implies that
g0 ∈ Hs,t(Ω;L∗).

We return to the operator L from (18.5) and define the canonical (or
internal) co-normal derivative operator (cf. [Cos88, Lemma 3.2], where a co-
normal derivative operator acting on functions from H1,0(Ω;L) was defined).

Definition 2. Let u ∈ Hs,t(Ω;L), s ∈ R, t ≥ −1
2 . Then the distribution

Lu ∈ Ht(Ω) can be extended uniquely to a distribution in H̃t(Ω), which we
will call the canonical extension and denote by L0u or still use the notation
Lu if this will not lead to confusion.

Definition 3. For u ∈ Hs,− 1
2 (Ω;L), 1

2 < s < 3
2 ; a ∈ C0,α(Ω), α > |s − 1|

if s �= 1 and α = 0 if s = 1, we define the canonical (or internal) co-normal

derivative T+u ∈ Hs− 3
2 (∂Ω) by

〈
T+u , w

〉
∂Ω

:= 〈L0u, e+w〉Ω + E(u, e+w)

= 〈L0u − L̂u, e+w〉Ω ∀ w ∈ H
3
2 −s(∂Ω), (18.10)

where e+ : Hs− 1
2 (∂Ω) → Hs(Ω) is a bounded extension operator. The

canonical co-normal derivative T+u is independent of e+, the operator T+ :
Hs,− 1

2 (Ω;L) → Hs− 3
2 (∂Ω) is continuous, and the first Green identity holds

in the form

〈
T+u , v+

〉
∂Ω

=
〈
T̃+(L0u, u) , v+

〉
∂Ω

= 〈L0u, v〉Ω + E(u, v)

= 〈L0u − L̂u, v〉Ω ∀ v ∈ H2−s(Ω). (18.11)

The independence of e+ and the continuity of the operator T+, as well as
identity (18.11), are implied by the definition of the generalized co-normal
derivative in Lemma 6 and Definition 1. Unlike the generalized co-normal
derivative, the canonical co-normal derivative is defined uniquely by the func-
tion u and operator L only, uniquely fixing an extension of the latter on the
boundary.

Definitions (18.7) and (18.10) imply that the generalized co-normal deriva-

tive of u ∈ Hs,− 1
2 (Ω;L), 1

2 < s < 3
2 , for any other extension f̃ ∈ H̃s−2(Ω) of

the distribution Lu|Ω ∈ Ht(Ω) can be expressed as
〈
T̃+(f̃ , u) , w

〉
∂Ω

=
〈
T+u , w

〉
∂Ω

+ 〈f̃ − L0u, e+w〉Ω ∀ w ∈ H
3
2 −s(∂Ω).

Note that the distributions f̃ − L̂u, L0u − L̂u and f̃ − L0 belong to
H2−s

∂Ω , since L0u, L̂u, f̃ ∈ H̃2−s(Ω), whereas L0u|Ω = L̂u|Ω = f̃ |Ω = Lu|Ω ∈
Hs−2(Ω).

The following lemma and corollary give conditions when the canonical
co-normal derivative coincides with the classical co-normal derivative T+u =
a+( ∂u

∂n )+ if the latter exists in the trace sense.
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Lemma 8. Let a ∈ C0,α(Ω), α > 1
2 , u ∈ Hs,− 1

2 (Ω;L), 1
2 < s < 3

2 ,
and uk ∈ H2(Ω) be a sequence such that ‖uk − u‖

Hs,− 1
2 (Ω;L)

→ 0. Then

‖∑n
j=1(a∂juk)+nj − T+u‖

Hs− 3
2 (∂Ω)

→ 0 as k → ∞.

Proof. Using the canonical first Green identity (18.11) for u and the classical
first Green identity (which follows, e.g., from Lemma 4.1 in [McL00]) for uk,

we deduce that for any w ∈ H
3
2 −s(∂Ω),

〈
T+u, w

〉
∂Ω

= E(u, e+w) + 〈L0u, e+w〉Ω
= E(u − uk, e+w) + E(uk, e+w) + 〈L0u, e+w〉Ω

= E(u − uk, e+w) +

∫

∂Ω

n∑

j=1

(a∂juk)+njwdΓ − 〈L0uk, e+w〉Ω + 〈L0u, e+w〉Ω

= E(u − uk, e+w) +

〈
n∑

j=1

(a∂juk)+nj , w

〉

∂Ω

+ 〈L0(u − uk), e+w〉Ω

→
〈

n∑

j=1

(a∂juk)+nj , w

〉

∂Ω

,

as k → ∞. We took into account that a∂juk ∈ Hp(Ω), 1
2 < p < α, p ≤ 3

2 , by
Lemma 2. Since T+u is uniquely determined by u, this implies the existence
of the limit on the right-hand side and its independence of the sequence uk.

The sequence uk mentioned in Lemma 8 always exists, due to the following
statement.

Lemma 9. D(Ω) is dense in Hs,t(Ω;L), s ∈ R, − 1
2 < t < 1

2 .

Proof. We modify appropriately the proof from [Gri85, L. 1.5.3.9] given for
another space of this kind.

For every continuous linear functional l on Hs,t(Ω;L), there exist f̃ ∈
H̃−s(Ω) and g ∈ H−t(Ω) such that

l(u) = 〈f̃ , u〉Ω + 〈g, Lu〉Ω .

To prove the lemma claim, it suffices to show that any l vanishing on D(Ω)
will also vanish on any u ∈ Hs,t(Ω;L). Indeed, if l(φ) = 0 for any φ ∈ D(Ω),
then

〈f̃ , φ〉Ω + 〈g, Lφ〉Ω = 0. (18.12)

Extending g outside Ω by zero to g̃ ∈ H̃−t(Ω) (see the proof of Lemma 5),
equation (18.12) can be rewritten as

〈f̃ , φ〉Rn + 〈g̃, Lφ〉Rn = 0.
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This means that Lg̃ = −f̃ in R
n in the sense of distributions. Then the

ellipticity of L implies that g̃ ∈ H2−s(Rn), and, consequently, g̃ ∈ H̃2−s(Ω).

Let now gk ∈ D(Ω) be a sequence converging to g̃ in H̃q(Ω), q =

max{−t, s − 2}, and thus in H̃−t(Ω) and H̃s−2(Ω), as k → ∞. Then for
any u ∈ Hs,t(Ω;L),

l(u) = lim
k→∞

{〈−Lgk, u〉Ω + 〈gk, Lu〉Ω} = 0.

Thus, l is identically zero.

Corollary 1. If a ∈ C0,α(Ω), α > 1
2 , and u ∈ Hq(Ω), q > 3

2 , then T+u =
(a∂ju)+nj.

Proof. If u ∈ Hq(Ω), q > 3
2 , then u ∈ Hq,t(Ω) ⊂ Hs,t(Ω;L) ⊂ Hs,− 1

2 (Ω;L)
for any t ∈ (− 1

2 ,min{α, q − 1} − 1) and any s ∈ ( 1
2 , 3

2 ). Hence, a sequence

uk ∈ D(Ω) such that ‖uk − u‖Hq(Ω) → 0 as k → ∞ satisfies the hypothesis of

Lemma 8 for any s ∈ ( 1
2 , 3

2 ). On the other hand, by Theorem 2,

‖
n∑

j=1

[a∂j(uk − u)]+nj‖
Hs− 3

2 (∂Ω)
≤ ‖

n∑

j=1

[a∂j(uk − u)]+nj‖L2(∂Ω)

≤ max |a| ‖(uk − u)‖Hp(Ω) ≤ max |a| ‖(uk − u)‖Hq(Ω) → 0, k → ∞.
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On the Extension of Divergence-Free Vector
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19.1 Statement of the Problem

A function ϕ : R
2 → R is called Lipschitz if there exists M > 0 such that

|ϕ(x) − ϕ(y)| ≤ M |x − y| for all x, y ∈ R
2. We say that a bounded open

set Ω ⊂ R
3 is Lipschitz provided ∂Ω locally coincides with the graph of a

Lipschitz function after an appropriate rotation and translation. By Bp,q
s (R2),

0 < p, q ≤ ∞, s ∈ R, we shall denote the scale of Besov spaces in R
2, whose

definition can be found in, e.g., [Tr92] and [RS96].
Assume next that 0 < s < 1 and that 1 < p, q < ∞. In this context, the

Besov space Bp,q
s (∂Ω) is defined as the collection of all functions f : ∂Ω → R

with the property that, locally,

R
2 ∋ x �→ f(x, ϕ(x)) ∈ R belongs to Bp,q

s (R2)

whenever ϕ : R
2 → R is a Lipschitz function that describes ∂Ω. Furthermore,

we let W s,p(Ω) denote the scale of Lp-based Sobolev spaces of smoothness
s ∈ R in Ω. Recall that for s ∈ R and 1 < p < ∞,

W s,p(R3) = (I −∆)−s/2Lp(R3),

W s,p(Ω) = {u|Ω : u ∈ W s,p(R3)}. (19.1)

As is well known, if k is a nonnegative integer, then

W k,p(Ω) := {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), ∀ |α| ≤ k},

where α = (α1, α2, α3) with αj ∈ N ∪ {0} and |α| := α1 + α2 + α3.
For a bounded Lipschitz domain Ω, the trace operator

Tr∂Ω : W s,p(Ω) → Bp,p
s−1/p(∂Ω)

is bounded whenever 1 < p < ∞ and 1
p < s < 1 + 1

p .
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The main result in this chapter addresses the issue of extending a diver-
gence-free vector field defined in a Lipschitz domain Ω and exhibiting a cer-
tain amount of smoothness (measured on the Sobolev scale) and whose trace
is zero on a portion Γ ⊆ ∂Ω, across ∂Ω \ Γ , to a larger bounded domain
while retaining the smoothness condition, the divergence-free property, and
demanding that the extension has zero trace on the boundary of the larger
domain. The precise statement is as follows.

Theorem 1. Let Ω1, Ω2 be two bounded, disjoint, relatively compact Lipschitz
domains in R

3 and such that the domain Ω := Ω1 ∪ Ω2 ∪ Γ is a relatively
compact bounded Lipschitz domain in R

3, where Γ := ∂Ω1 ∩ ∂Ω2. Then for
each 1 < p < ∞ and each vector field

⎧
⎪⎨
⎪⎩

#u ∈ W 1,p(Ω1, R
3),

div ũ = 0 in Ω1,

Tr∂Ω1 #u = 0 on ∂Ω1 \ Γ,

(19.2)

there exists an extension #U satisfying

⎧
⎪⎪⎨
⎪⎪⎩

#U ∈ W 1,p(Ω, R3),

div Ũ = 0 in Ω,

Tr∂Ω
#U = 0 on ∂Ω,

#U = #u in Ω1,

(19.3)

plus a natural estimate.

The existence of an extension as stated in Theorem 1 is important for nu-
merical applications. For example, in [CCF06], a Gelfan frame is constructed
for the space

V 1(Ω) := {#v ∈ W 1,2(Ω, R3), div ṽ = 0, Tr∂Ωṽ = 0}.

This is done by starting with divergence-free wavelet bases {Ψi} for V 1(Ωi),
where Ωi, i = 1, . . . , M , are overlapping Lipschitz subdomains of Ω such that
Ω = ∪M

i=1Ωi. The collection of extensions of each wavelet in {Ψi} to a vector
field in V 1(Ω) then proves to be a Gelfan frame for V 1(Ω).

The proof of Theorem 1 is given in Section 19.3. One main ingredient in the
proof is a result from [MMM06], which is stated in Section 19.2 as Theorem 2.
Given its potential for applications, the version of Theorem 2 corresponding
to the higher smoothness case is also stated in Section 19.2 as Theorem 3.
One more application of Theorem 2 is discussed in Section 19.4. This latter
application relates to Maxwell’s equations. Even though in this chapter we
state Theorem 1 for the case when the domains considered are in R

n with
n = 3, a similar result is actually valid when n ≥ 2.
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19.2 The Poisson Problem for the Divergence, the Curl,
and the Gradient Operators

Fix Ω, a bounded Lipschitz domain in R
3 with arbitrary topology and outward

unit normal #ν = (ν1, ν2, ν3) that is well defined almost everywhere with respect
to the surface measure dσ on ∂Ω. Consider the Poisson problem with Dirichlet
boundary condition: {

Du = f in Ω,

Tr∂Ω u = g on ∂Ω,
(19.4)

where D is one of the following first-order differential operators: divergence,
curl, or gradient.

In [MMM06], we have identified the natural context in which problem
(19.4) has a solution satisfying an appropriate estimate. This was done by
using scales of Sobolev and Besov spaces. Recall the Sobolev spaces W s,p(Ω)
from (19.1). The Besov scale Bp,p

s (Ω) can be obtained from Sobolev spaces
via real interpolation; that is,

Bp,p
s (Ω) := (W s0,p(Ω), W s1,p(Ω))θ,p,

for s = (1−θ)s0 +θs1 and 1 < p < ∞. Since in this section we shall work with
both Besov and Sobolev scales, as a way of referring to them simultaneously,
the notation Ap

s will be used, with the understanding that

Ap
s(Ω) :=

{
W s,p(Ω) if A = W,

Bp,p
s (Ω) if A = B.

There are two types of issues associated with the problem (19.4): issues of
analytical nature, such as those due to the low regularity assumptions on the
domain and the compatibility conditions the data must satisfy, and issues
of a topological nature. As seen in Theorems 2 and 3, in order to ensure the
solvability of (19.4), one is led to considering the Betti numbers of the domain
Ω. Denote by bℓ(Ω) = 0 the ℓ-th Betti number of Ω, where ℓ ∈ {0, 1, 2, 3}.
It is known that b0(Ω), b1(Ω), and b2(Ω) equal the number of connected
components, of holes, and of handles, respectively, of the domain Ω.
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Let ∇tan denote the tangential gradient on ∂Ω, and let Div, the surface di-
vergence, denote its formal adjoint. Then the result concerning the solvability
of (19.4) when the smoothness index s is close to zero is stated as follows.

Theorem 2. [MMM06] Suppose that Ω is a bounded Lipschitz domain in R
3

and that 1 < p < ∞, −1 + 1
p < s < 1

p . Then the following are true.

(a) For all f ∈ Ap
s(Ω) and #g ∈ Bp,p

s+1−1/p(∂Ω, R3) verifying the compatibility

condition

(CC1)

∫

G

f dx =

∫

∂G

#ν · #g dσ

for each connected component G of Ω, there exist #u ∈ Ap
s+1(Ω, R3) and

C > 0 (independent of #u, f , #g) such that

(P1)

{
div ũ = f in Ω,

Tr∂Ω#u = #g on ∂Ω,

and
‖#u‖Ap

s+1(Ω,R3) ≤ C‖f‖Ap
s(Ω) + C‖#g‖Bp,p

s+1−1/p
(∂Ω,R3).

(b) b1(Ω) = 0 if and only if for all #f ∈ Ap
s(Ω, R3) and #g ∈ Bp,p

s+1−1/p(∂Ω, R3)

verifying the compatibility conditions

(CC2)

{
div f̃ = 0 in Ω,

#ν · #f = −Div(ν̃ × g̃) on ∂Ω,

there exist #u ∈ Ap
s+1(Ω, R3) and C > 0 (independent of #u, #f , #g) such that

(P2)

{
curl ũ = f̃ in Ω,

Tr∂Ω#u = #g on ∂Ω,

and
‖#u‖Ap

s+1(Ω,R3) ≤ C‖#f‖Ap
s(Ω,R3) + C‖#g‖Bp,p

s+1−1/p
(∂Ω,R3).

(c) b2(Ω) = 0 if and only if for all #f ∈ Ap
s(Ω, R3) and g ∈ Bp,p

s+1−1/p(∂Ω)

verifying the compatibility conditions

(CC3)

{
curl f̃ = 0 in Ω,

#ν × #f = #ν × (∇tang) on ∂Ω,

there exist u ∈ Ap
s+1(Ω) and C > 0 (independent of u, #f , g) such that

(P3)

{
∇u = #f in Ω,

Tr∂Ωu = g on ∂Ω,

and
‖u‖Ap

s+1(Ω) ≤ C‖#f‖Ap
s(Ω,R3) + C‖g‖Bp,p

s+1−1/p
(∂Ω).
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Next we state the analog of Theorem 2 when the smoothness index s is
away from zero. The special triplets (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) will be
denoted by (0), e1, e2, and e3, respectively.

Theorem 3. [MMM06] Suppose Ω is a bounded Lipschitz domain in R
3 and

1 < p < ∞, −1+ 1
p < s−k < 1

p , for some k ∈ N. Then the following are true.

(a) For each f ∈ Ap
s(Ω) and each family #gα ∈ Bp,p

s+1−1/p(∂Ω, R3), α ∈ N0 with

|α| ≤ k, verifying the compatibility conditions

(CC4)

⎧
⎪⎪⎨
⎪⎪⎩

(νj∂l − νl∂j)#gα = νj#gα+el
− νl#gα+ej

∀α : |α| ≤ k − 1, ∀j, l = 1, 2, 3
∫

G
f dx =

∫
∂G

#ν · #g(0) dσ,

for each connected component G of Ω, there exist #u ∈ Ap
s+1(Ω, R3) and

C > 0 (independent of #u, #f , #gα) such that

(P4)

{
div ũ = f in Ω,

Tr∂Ω [∂α#u] = #gα on ∂Ω, ∀ |α| ≤ k,

and

‖#u‖Ap
s+1(Ω,R3) ≤ C‖f‖Ap

s(Ω) + C
∑

|α|≤k

‖#gα‖Bp,p
s+1−1/p

(∂Ω,R3).

(b) b1(Ω) = 0 if and only if for each #f ∈ Ap
s(Ω, R3) and each family

#gα ∈ Bp,p
s+1−1/p(∂Ω, R3), α ∈ N0 with |α| ≤ k, verifying the compatibility

conditions

(CC5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

div f̃ = 0 in Ω,

(νj∂l − νl∂j)#gα = νj#gα+el
− νl#gα+ej

∀α : |α| ≤ k − 1, ∀ j, l = 1, 2, 3

Tr∂Ω [∂α #f ] = −
3∑

j=1

#gα+ej × ej , ∀ |α| ≤ k − 1,

there exist #u ∈ Ap
s+1(Ω, R3) and C > 0 (independent of #u, #f , #gα) such

that

(P5)

{
curl ũ = f̃ in Ω,

Tr∂Ω [∂α#u] = #gα on ∂Ω, ∀ |α| ≤ k,

and

‖#u‖Ap
s+1(Ω,R3) ≤ C‖#f‖Ap

s(Ω,R3) + C
∑

|α|≤k

‖#gα‖Bp,p
s+1−1/p

(∂Ω,R3).
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(c) b2(Ω) = 0 if and only if for each #f ∈ Ap
s(Ω, R3) and each family gα ∈

Bp,p
s+1−1/p(∂Ω), α ∈ N0 with |α| ≤ k, verifying the compatibility conditions

(CC6)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl f̃ = 0 in Ω,

(νj∂l − νl∂j)gα = νjgα+el
− νlgα+ej

∀α : |α| ≤ k − 1, ∀ j, l = 1, 2, 3

Tr∂Ω [∂αfj ] = gα+ej , ∀ j = 1, 2, 3, ∀ |α| ≤ k − 1,

there exist u ∈ Ap
s+1(Ω) and C > 0 (independent of u, #f , gα) such that

(P6)

{
∇u = #f in Ω,

Tr∂Ω [∂αu] = gα on ∂Ω, ∀ |α| ≤ k,

and
‖u‖Ap

s+1(Ω) ≤ C‖#f‖Ap
s(Ω,R3) + C

∑

|α|≤k

‖gα‖Bp,p
s+1−1/p

(∂Ω).

Theorems 2 and 3 are particular cases of the more general setting of the
Poisson problem for the exterior derivative operator with Dirichlet boundary
condition on Lipschitz subdomains of a manifold M , considered in [MMM06].
For proofs, see [MMM06].

19.3 Proof of Theorem 1

Fix #u as in (19.2), and define #w by

#w =

{
#u in Ω1,

0 in R
3 \ Ω̄.

Then clearly #w ∈ Lp(R3\Ω̄2, R
3) and supp #w ⊆ Ω̄1. In addition, #w ∈ W 1,p(R3\

Ω̄2, R
3) and for each 1 ≤ j ≤ n,

∂j #w =

{
∂j#u in Ω1,

0 in R
3 \ Ω̄,

where the derivatives are taken in the distributional sense. Indeed, if 〈·, ·〉
denotes the pairing between a distribution and a test function, for each #ϕ ∈
C∞

0 (R3 \ Ω̄2,R
3), the properties of #u and integration by parts imply that

〈∂j #w, #ϕ〉 = −〈#w, ∂jϕ〉 = −
∫

R3\Ω̄2

#w · ∂j #ϕ = −
∫

Ω1

#u · ∂j #ϕ

=

∫

Ω1

(∂j#u) · #ϕ−
∫

∂Ω1

Tr∂Ω1#u · #ϕ ν1
j dσ =

∫

Ω1

(∂j#u) · #ϕ, (19.5)
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where ν1
j is the jth component of the outward unit normal ν1 to Ω1. The last

equality in (19.5) is true since supp(Tr∂Ω1 #u) ⊆ Γ and supp #ϕ ∩ Γ = ∅.
Next, define #f := Tr∂(R3\Ω̄2) #w. From the properties of #w we can conclude

that #f ∈ Bp,p

1− 1
p

(∂Ω2,R
3), supp #f ⊆ Γ and Tr∂(R3\Ω̄2)

#f = Tr∂Ω1#u on Γ . Hence,

if ν2 denotes the outward unit normal to Ω2, it follows that
∫

∂Ω2

ν2 · #f dσ = −
∫

Γ

ν1 · #f dσ = −
∫

∂Ω1

ν1 · Tr∂Ω1#u dσ

= −
∫

Ω1

div ũ = 0.

An application of part (a) in Theorem 2 gives the existence of a vector field
⎧
⎪⎪⎨
⎪⎪⎩

#v ∈ W 1,p(Ω2,R
3),

div ṽ = 0 in Ω2,

Tr∂Ω2#v = #f ∈ Bp,p

1− 1
p

(∂Ω2,R
3).

The claim we make is that the vector field

#U :=

{
#u in Ω1,

#v in Ω2,

verifies (19.3). Clearly, #U ∈ Lp(Ω,R3). Fix #ϕ ∈ C∞
0 (Ω,R3) and 1 ≤ j ≤ n.

Then, the properties of #U and integration by parts yield

〈∂j
#U, #ϕ〉 = −〈#U, ∂j #ϕ〉 = −

∫

Ω

#U · ∂j #ϕ = −
∫

Ω1

#u · ∂j #ϕ−
∫

Ω2

#v · ∂j #ϕ

=

∫

Ω1

(∂j#u) · #ϕ−
∫

∂Ω1

Tr∂Ω1#u · #ϕ ν1
j dσ

+

∫

Ω2

(∂j#v) · #ϕ−
∫

∂Ω2

Tr∂Ω2#v · #ϕ ν2
j dσ

=

∫

Ω1

(∂j#u) · #ϕ+

∫

Ω2

(∂j#v) · #ϕ. (19.6)

The last equality in (19.6) is a consequence of the fact that the two boundary
integrals cancel each other since ν1

j = −ν2
j on Γ and Tr∂Ω1#u = Tr∂Ω2#v on Γ

while being zero on the rest of their domains. The conclusion is that, ∀ j,

∂j
#U :=

{
∂j#u in Ω1,

∂j#v in Ω2,

and hence, #U ∈ W 1,p(Ω,R3). Furthermore,
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(div #U)|Ω1 = div(#U |Ω1) = div #u = 0,

(div #U)|Ω2 = div(#U |Ω2) = div#v = 0,

so div Ũ = 0 in Ω. We are left with checking that Tr∂Ω
#U = 0. This, however,

is true since

(Tr∂Ω
#U)|∂Ω2\Γ = (Tr∂Ω2#v)|∂Ω2\Γ = #f |∂Ω2\Γ = 0,

(Tr∂Ω
#U)|∂Ω1\Γ = (Tr∂Ω1#u)|∂Ω1\Γ = #f |∂Ω1\Γ = 0.

Finally, that #U satisfies a natural estimate is implicit in the above construc-
tion.

19.4 Another Application of Theorem 2

In this section, we discuss the structure of vector fields that play an important
role in Maxwell’s equations.

Theorem 4. Let Ω be a bounded, convex, Lipschitz domain in R
3. Then,

for any 1 < p ≤ 2, and any vector field #u ∈ Lp(Ω, R3) satisfying curl ũ ∈
Lp(Ω, R3), div ũ ∈ Lp(Ω) and #ν · #u = 0 on ∂Ω can be written in the form

#u = #v + curl ω̃, (19.7)

#v ∈ W 1,p(Ω,R3), Tr∂Ω#v = 0, #ω ∈ W 1,p(Ω,R3), (19.8)

div ω̃ = 0 in Ω, ∆ ω̃ ∈ Lp(Ω,R3), and ν̃ × ω̃ = 0 on ∂Ω. (19.9)

Moreover, for some C = C(Ω, p) > 0,

‖#v‖W 1,p(Ω,R3) + ‖∆#ω‖Lp(Ω,R3) + ‖#ω‖W 1,p(Ω,R3)

≤ C
(
‖#u‖Lp(Ω,R3) + ‖curl #u‖Lp(Ω,R3) + ‖div #u‖Lp(Ω)

)
.

Proof. Since #ν ·#u = 0, by the Divergence Theorem, the compatibility condition
(CC1) is satisfied for f := div ũ and #g = 0. Hence, by Theorem 2 part (a),
there exists #v ∈ W 1,p

0 (Ω,R3), with div ṽ = div ũ in Ω. Thus, if we set #w :=
#u− #v, then

#w ∈ Lp(Ω,R3), div w̃ = 0 in Ω, and ν̃ · w̃ = 0 on ∂Ω.

Apply part (b) in Theorem 2 to obtain

#ω′ ∈ W 1,p
0 (Ω,R3), curl ω̃′ = w̃ in Ω.

At this point, we recall a result contained in [Ad93], to the effect that
there exists ϕ ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω), such that ∆ϕ = div ω̃′. With this
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function at hand, define #ω := #ω′ − ∇ϕ. Clearly, #ω ∈ W 1,p(Ω,R3). Also,
div ω̃ = div ω̃′ − ∆ϕ = 0 in Ω. In addition, #ν × #ω = 0. The latter follows
if we prove that #ν × #ω′ = 0 and #ν ×∇ϕ = 0.

Fix an arbitrary, smooth, compactly supported vector field #ξ in Ω. By the
definition of #ν×, write

〈#ν × #ω′, #ξ|∂Ω〉 =

∫

Ω

〈curl(ω̃′), ξ̃〉 −
∫

Ω

〈ω̃′, curl ξ̃〉, (19.10)

〈#ν ×∇ϕ, #ξ|∂Ω〉 =

∫

Ω

〈curl(∇ϕ), #ξ〉 −
∫

Ω

〈∇ϕ, curl #ξ〉

= −
∫

Ω

〈∇ϕ, curl ξ̃〉 (19.11)

Moreover, since #ω′ ∈ W 1,p
0 (Ω,R3) and ϕ ∈ W 1,p

0 (Ω), there exist two sequences

{#ψj}j and {ϕj}j of smooth, compactly supported vector fields and functions,

respectively, such that, as j → ∞, #ψj → #ω′ in W 1,p(Ω,R3) and ϕj → ϕ in
W 1,p(Ω). As such, also using integration by parts, we have that

∫

Ω

〈curl(#ω′), #ξ〉 = lim
j→∞

∫

Ω

〈curl(#ψj), #ξ〉 = lim
j→∞

∫

Ω

〈#ψj , curl #ξ〉 (19.12)

=

∫

Ω

〈#ω′, curl ξ̃〉, (19.13)

∫

Ω

〈∇ϕ, curl #ξ〉 = lim
j→∞

∫

Ω

〈∇ϕj , curl #ξ〉 = 0. (19.14)

A combination of (19.10)–(19.14) now yields #ν × #ω = 0.
The vectors #v and #ω constructed so far satisfy (19.7)–(19.9). Indeed,

#u = #v + #w = #v + curl ω̃′ = ṽ + curl ω̃ in Ω; thus, (19.7) holds. The only
condition from (19.9) left to check is that ∆#ω ∈ Lp(Ω,R3). Observe that
since div ω̃ = 0, the decomposition of #u from (19.7) implies that −∆#ω =
curl curl ω̃ = curl ṽ − curl ũ, which, based on the properties of #u and #v, is in-
deed in Lp(Ω,R3). This concludes the proof of Theorem 4.
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20.1 Introduction

Transport and diffusion models of air pollution are based either on simple tech-
niques, such as the Gaussian approach, or on more complex dynamics, such as
the K-theory. The Gaussian equation is an easy method that cannot properly
simulate complex non homogeneous conditions, whereas the K-theory can ac-
cept any complex meteorological input, but in general requires tedious numer-
ical integration. Gaussian models are still widely used by the environmental
agencies all over the world for regulatory applications. Because of their well-
known intrinsic limits, the reliability of a Gaussian model depends strongly on
the determination of dispersion parameters based on the turbulence structure
of the PBL. The Gaussian model needs completion by empirically determined
standard deviations, whereas some commonly measurable turbulent exchange
coefficient has to be introduced into the advection–diffusion equation. Ana-
lytical solutions to the complete advection–diffusion equation cannot be given
but in a few specialized cases [Tir03], and numerical solutions cannot be easily
“interpreted” as the simple Gaussian model. As a consequence, the major part
of applications to practical problems are currently done by using the Gaussian
model, and a great deal of empirical work has been done do determine the
sigmas appropriate for the PBL under various meteorological conditions and
to extend the basic formulation of this model and its range of applicability
[Zan90].

The advection–diffusion equation is believed to give a better representation
of the effects due to the vertical stratification of the atmosphere. To relate to
previous types of models, we employ an analytical solution of the advection–
diffusion equation that accepts height-independent wind and eddy diffusivity
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coefficients, and subdivide the PBL into several layers, in which the eddy
diffusivity and wind speed are considered with their average values. The hybrid
model then represents conditions of a height-structured PBL [Vil98].

20.2 The Advection–Diffusion Equation

The advection–diffusion equation for air pollution in the atmosphere is essen-
tially a statement of conservation of the suspended material:

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= −∂u′c′

∂x
− ∂v′c′

∂y
− ∂w′c′

∂z
+ S,

where C denotes the average concentration, u, v, w are the Cartesian compo-
nents of the wind, and S is the source term. The terms u′c′, v′c′, and w′c′

represent the turbulent fluxes of contaminants in the longitudinal, crosswind,
and vertical directions. The concentration turbulent fluxes are assumed to be
proportional to the mean concentration gradient, which is known as Fick the-
ory u′c′ = −Kx

∂C
∂x , v′c′ = −Ky

∂C
∂y , w′c′ = −Kz

∂C
∂z , where Kx, Ky, Kz are the

Cartesian components of eddy diffusivity and z is the height. This assump-
tion, combined with the continuity equation, leads to the advection–diffusion
equation. The crosswind integration yields with C̄ =

∫ ∞
−∞ C(x, y, z) dy the

crosswind integrated concentration

∂C̄

∂t
+ u

∂C̄

∂x
+ w

∂C̄

∂z
=

∂

∂x

(
Kx

∂C̄

∂x

)
+

∂

∂z

(
Kz

∂C̄

∂z

)
+ S.

Before applying the Laplace transformation, we perform a stepwise ap-
proximation of these coefficients. To this end, we discretize the height zi

of the PBL into N subintervals such that inside each subregion, K and
u assume average values given by Kn = (zn+1 − zn)−1

∫ zn+1

zn
Kz(z) dz and

un = (zn+1 − zn)−1
∫ zn+1

zn
uz(z) dz for n = 1, . . . , N. In scenarios where the

vertical eddy diffusivity depends on x and z, one proceeds in a similar fashion,
first determining the average in z followed by averaging in x, so that Km,n

is double-indexed with n for the vertical segments and m = 1, . . . , M for the
longitudinal ones. The solution may now be determined for each segment.

20.3 The Laplace Transformation Solution

The one-dimensional time-dependent advection–diffusion equation is ∂C̄
∂t =

∂
∂z

(
Kz

∂C̄
∂z

)
for 0 < z < zi and t > 0, subject to the boundary conditions

Kz
∂C̄
∂z = 0 at z = 0, zi and with initial condition C̄(z, 0) = Qδ(z − Hs) at

t = 0, where Hs is the source height and Q is the emission rate. Assuming that
the nonhomogeneous turbulence is modeled by an eddy diffusivity depending
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on the z-variable, the Laplace transformation is applied, which changes the

advection-diffusion equation ∂C̄n

∂t = Kzn
∂2C̄n

∂z2 for each interval zi < z < zi+1

and n = 1, . . . , N to the form

∂2

∂z2
C̃n(z, s) − s

Kzn
C̃(z, s) = − 1

Kzn
C̄n(z, 0).

Here C̃n(z, s) = L{C̄n(z, t); t → s} denotes the Laplace transform of C̄n(z, t)
with respect to the t-variable, which has the well-known solution

C̃n(z, s) = Ane−Rnz + BneRnz − Q

Ra
cosh (Rn(z − Hs))H(z − Hs), (20.1)

where H(z−Hs) is the Heaviside function, Rn =
√

s/Kzn, and Ra =
√

Kzns.
Note that at this stage there are 2N integration constants, which are reduced
by the (2N − 2) interface conditions, namely, the continuity of concentration

C̄n = C̄n+1 and flux concentration at the interface: Kzn
∂c̄n

∂z = Kzn+1
∂c̄n+1

∂z ,
for n = 1, . . . , N − 1. Then, by (20.1), we obtain the system

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 M12 0 0 0 0 . . . 0
M21 M22 M23 M24 0 0 . . . 0
M31 M32 M33 M34 0 0 . . . 0
0 0 M43 M44 M45 M46 . . . 0
0 0 M53 M54 M55 M56 . . . 0
...

...
...

...
...

...
...

...
0 0 0 . . . Mn−1,n−3 Mn−1,n−2 Mn−1,n−1 Mn−1,n

0 0 0 0 0 . . . Mn,n−1 Mn,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A1

B1

A2

B2

...

...
An

Bn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
...
0

Dn∗

D′

n∗

0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where the Mij are given by
M11=R1, M2n,2n+1=−eRnzn , M2n+1,2n+1=−Kn+1Rn+1e

Rn+1zn ,
M12=−R1, M2n,2n+2=−e−Rnzn , M2n+1,2n+2=Kn+1Rn+1e

−Rn+1zn ,
M2n,2n−1=eRnzn , M2n+1,2n−1=KnRneRnzn , Mn,n−1=RNeRN zN ,
M2n,2n=e−Rnzn , M2n+1,2n=−KnRne−Rnzn , Mn,n=−RNe−RN zN ,

and in the sublayer of contaminant emission, Dn∗ = − Q
Ra

cosh (Rn(z − Hs))
and D′

n∗ = −Q cosh (Rn(z − Hs)). Solving this linear system and inverting
the transformed concentration by the Gaussian quadrature scheme, we finally
get the solution

C̄n(z, t) =

k∑

i=1

ai
pi

t

[
Ane−Rnz + BneRnz − Q

Ra
cosh (Rn(z − Hs))H(z − Hs)

]
,

(20.2)
where k is the number of quadrature points, Rn =

√
pi/(tKzn), and Ra =√

Kznpi/t. Here ai and pi are the Gaussian quadrature parameters (see
[Str66]).

The two-dimensional steady-state advection–diffusion equation is of the

form u∂C̄
∂x = ∂

∂z

(
Kz

∂C̄
∂z

)
for 0 < z < zi and x > 0, subject to the
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boundary conditions Kz
∂C̄
∂z = 0 at z = 0, zi and the source condition

C̄(0, z) = Q
u δ(z − Hs) at x = 0. Here Hs is the height source and Q is the

continuous contaminant emission rate. Proceeding as in the previous section,
we perform the stepwise approximation of the parameters, apply the Laplace
transformation with respect to the x-variable, solve the resulting set of ordi-
nary differential equations, and apply the boundary and interface conditions
to determine the integration constants. This procedure leads to the solution

C̄n(x, z) =

m∑

i=1

ai
pi

x

[
Ane

−Rnz +Bne
Rnz − Q

Ra
cosh (Rn(z −Hs))H(z −Hs)

]
,

(20.3)

where m is the number of quadrature points, Rn =
√

unpi

Kznx , and Ra =
√
unKzn

pi

x .
The two-dimensional steady-state equation with longitudinal diffusion is

u∂C̄
∂x = ∂

∂x

(
Kx

∂C̄
∂x

)
+ ∂

∂z

(
Kz

∂C̄
∂z

)
for 0 < z < zi and x > 0, subject

to the boundary conditions Kz
∂C̄
∂z = 0 at z = 0, zi and the source con-

dition C̄(0, z) = Q
u δ(z − Hs) at x = 0. A procedure similar to the one

above yields solution (20.3) if this time we substitute Q
Ra

→ QRb

Ra
, where

Rn =
√
Rbpiun/(xKzn), Ra =

√
unKznpi/x, and Rb = 1 − pi/Pe. Here

Pe = unx/Kxn is the Peclet number, which essentially represents the ra-
tio between the advective and diffusive transport terms. Small values of this
number are related to a weak wind, which turns the downwind diffusion impor-
tant and the region of interest (i.e., region of height concentrations) remains
close to the source. On the other hand, for large values of the Peclet number,
the downwind diffusion may be neglected when compared with the transport
advective term. This corresponds to a large distance to the source. The so-
lution reduces to (20.3) when the longitudinal eddy diffusivity tends to zero
(Kx → 0).

The two-dimensional time-dependent advection–diffusion equation is ∂C̄
∂t +

u∂C̄
∂x = ∂

∂z

(
Kz

∂C̄
∂z

)
for 0 < z < zi, x > 0, and t > 0, subject to the boundary

conditions Kz
∂C̄
∂z = 0 at z = 0, zi, the source condition C̄(0, z, t) = Q

u δ(z−Hs)
at x = 0, and the initial condition C̄(x, z, 0) = 0 at t = 0. The solution of this
system is

C̄n=

k∑

i=1

ai
pi

t

m∑

j=1

aj
pj

x

[
Ane

−Rnz+Bne
Rnz−QRb

Ra
cosh (Rn(z−Hs))H(z−Hs)

]
,

(20.4)

where Rn =
√

pi

tKzn
+

unpj

Kznx and Ra =
√

pi

t Kzn + unKzn
pj

x . Solution (20.4)

reduces to (20.3) as time tends to infinity.
Consider the advection–diffusion equation including a decaying contami-

nant (i.e., a radioactive contaminant) emission as source term (S = −λC̄).
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The dynamical equation is

∂C̄

∂t
+ u

∂C̄

∂x
+ w

∂C̄

∂z
=

∂

∂x

(
Kx

∂C̄

∂x

)
+

∂

∂z

(
Kz

∂C̄

∂z

)
− λC̄

for 0 < z < zi, x > 0, and t > 0, with λ the decay constant, and subject
to the boundary conditions Kz

∂C̄
∂z = 0 at z = 0, zi, the source condition

C̄(0, z, t) = Q
u δ(z −Hs) at x = 0, and the initial condition C̄(x, z, 0) = 0 at

t = 0. Application of the previous procedure leads to solution (20.4), but with

Rn = wn

2Kzn
± 1

2

√(
wn

2Kzn

)2

+ 4
Kzn

[
p− α+ sun

(
1 − Kxns

un

)]
, Rb = 1− pj

Pe
, and

Ra =

√
w2

n + 4Kzn

[
p− α+ sun

(
1 − Kxns

un

)]
. This solution reduces to (20.3)

as Kx → 0, t → ∞, and α = w = 0.

20.4 Advection–Diffusion Considering Non-Fickian
Turbulence Closure

The downgradient transport hypothesis is often inconsistent with observed
features of turbulent diffusion in the upper portion of the mixed layer, where
countergradient material fluxes are known to occur [Dea75]. In the sequel, we
report the solution of the advection–diffusion equation considering nonlocal
effects in the turbulence closure.

The one-dimensional time-dependent equation reads as ∂C̄
∂t = −∂w′c′

∂z for
0 < z < zi and t > 0, assuming the non-Fickian closure of turbulence[
1 +
(

SkTLw σw

2

)
∂
∂z + τ ∂

∂t

]
w′c′ = −Kz

∂C̄
∂z proposed by van Dop and Verver

[Van03]. Here Sk is the skewness, TLw is the vertical Lagrangian time scale,
σw is the vertical turbulent velocity variance, and τ is the relaxation time.
Then the resulting dynamics is

τ
∂2C̄

∂t2
+
∂C̄

∂t
+

(
SkTLwσw

2

)
∂2C̄

∂t∂z
=

∂

∂z

(
Kz

∂C̄

∂z

)
,

subject to the boundary conditions Kz
∂C̄
∂z = 0 at z = 0, zi and the initial

condition C̄(z, 0) = Qδ(z − Hs) at t = 0. The solution of this system uses
H = H(z −Hs) and is given by

C̄n=

k∑

i=1

aj
pi

t
eF ∗

N (z−Hs)

[
Ane

R∗
nz+Bne

−R∗
nz−τPjQ

R∗
a

cosh (R∗
n(z−Hs))H

]
,

(20.5)

where R∗
n =

√
β2

np2
i +4Kznpi(τpi+t)

2Kznt , R∗
a =

√
β2

np
2
i + 4Kznpi(τpi + t), F ∗

n =
βpi

2Kznt , and βn =
SkσwTLw

2 . Solution (20.5) reduces to (20.2) as βn and τ
tend to zero.
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Finally, we analyze the solution of u∂C̄
∂x = −∂w′c′

∂z , assuming the non-
Fickian closure of turbulence as in the preceding case but with τ = 0:

u
∂C̄

∂x
+

∂

∂z

(
uSkTLw

2

∂C̄

∂x

)
=

∂

∂z

(
Kz

∂C̄

∂z

)

for 0 < z < zi and x > 0, subject to the boundary conditions Kz
∂C̄
∂z = 0

at z = 0, zi and the source condition C̄(0, z) = Q
u δ(z − Hs) at x = 0. The

solution is

C̄n=

m∑

i=1

ai
pi

x
eF ∗

nz

[
Ane

R∗
nz+Bne

−R∗
nz−Q

R∗
a

cosh (R∗
n(z−Hs))H(z−Hs)

]
,

(20.6)

where R∗
n = 1

2

√(
βnpi

Kznx

)2
+ 4unpi

Kznx , R∗
a =

√
β2

np
2
i + 4Kznpi(τpi + t), F ∗

n =

βpi

2Kznt , and βn =
unSkσwTLw

2 . Here solution (20.6) reduces to (20.3) as βn → 0.

20.5 Model Performance Evaluation Against
Experimental Data

In order to illustrate the aptness of the discussed formulation to simulate
contaminant dispersion in the PBL, we evaluate the performance of solution
(20.4) against experimental crosswind ground-level concentration using tracer
SF6 data from two different dispersion experiments. The first one, carried out
in the northern part of Copenhagen, is described in [Gry87]. The tracer was
released without buoyancy from a tower at a height of 115 m and was collected
at the ground-level positions at a maximum of three crosswind arcs of tracer
sampling units. The sampling units were positioned at 2 to 6 km from the
point of release. The site was mainly residential with a roughness length of
0.6 m. The PBL was parameterized assuming the eddy diffusivity proposed by
[Deg01], that is, Kz = 0.55σwz/(4(f∗

m)w), where (f∗
m)w is the vertical normal-

ized frequency of spectral peak and σw is the vertical wind velocity variance.
The wind speed profile has been parameterized following the similarity the-
ory of Monin–Obukhov [Ber86]: u(z) = u∗

k [ln(z/z0) − Ψm(z/L) + Ψm(z0/L)]
if z ≤ zb, u(z) = u(zb) if z > zb, where zb = min[|L|, 0.1h], Ψm is a stability
function given by Ψm = 2 ln((1+A)/2)+ln((1+A2)/2)−2 tan−1 A+π/2 with
A = (1− 16z/L)1/4, k = 0.4 is the Von Karman constant, z0 is the roughness
length, u∗ is the friction velocity, and L is the Monin–Obukhov length.

Figure 20.1 (left) shows the scatter diagrams between the measured and
predicted crosswind integrated concentrations using the above parameteriza-
tions for wind and eddy diffusivities profiles. A good agreement is observed
between the results.

The modulus of the real part of the root of the Gaussian quadrature
scheme for the Laplace transform inversion increases with N (the order of
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Fig. 20.1. The scatter diagram for the semi-analytical solution (20.4) for the Copen-
hagen experiment (left) and the Kinkaid experiment (right): observed (Co) and pre-
dicted (Cp) crosswind ground-level integrated concentration (k = 2, m = 8, ∆z = 40
m). Points between lines diverge by less than a factor of 2.

the approximation). The solution for the Laplace-transformed concentration
has exponential terms; we observed from numerical simulation the appearance
of overflows for a positive argument of the exponential and underflow for a
negative argument when k and m assume values larger than 8 (on a PC with
32-bit precision). With this restriction, we get results with good statistical
accuracy.

One observes that the curves for concentrations in Figure 20.2, especially
for the lower time values with the increase of the quadrature points, present
a nonphysical oscillatory behavior except for k = 2. In Figure 20.3, we show
the dimensionless ground-level concentration C = C̄uzi/Q as a function of
the dimensionless time t∗ = tw∗/zi for the source distances x = 1000 m and
x = 3000 m, considering k = 2 and m = 8; we observed that the steady-state
concentration field is obtained as t∗ tends to infinity.

In Figure 20.4, we present an analysis of the influence of the number of
quadrature points on the solution. Figure 20.4(a) shows the result for the sta-
tionary problem (20.3) as a function of the number of quadrature points with
its numerical convergence of the results encountered for dimensionless ground-
level concentration as a function of the quadrature points m. In Figure 20.4(b),
we display the results for problem (20.4) for a steady-state condition. Finally,
note the small oscillations of the concentration in Figure 20.4(b), caused by
overflow and underflow. The behavior of the solution can be improved by
using multiple precision methods.
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Fig. 20.2. Analysis of the number of quadrature points for the time-dependent
equation (20.4). Concentration as a function of source distance C = Cuzi/Q, X =
xw∗/uzi.

Fig. 20.3. Plot of nondimensional concentration as a function of dimensionless time
(C = C̄uzi/Q, t∗ = tw∗/zi).

20.6 Conclusions

We semi-analytically solved the Eulerian advection–diffusion equation in the
PBL using the Laplace transformation technique. No approximation is made
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(a) (b)

Fig. 20.4. Analysis of the number of quadrature points: (a) for (20.3); (b) steady-
state condition in (20.4).

in its derivation except for the stepwise approximation of the parameters and
the Laplace numerical inversion by the Gaussian quadrature scheme. It is well
known that the results obtained by the Gaussian quadrature scheme of order
N are exact when the transformed function is a polynomial of degree 2N − 1.
On the other hand, from the Weierstrass approximation theorem, it is known
that a continuous function can be approximated by a polynomial, and that
the approximation improves with the increase of the degree of the polynomial.
This means that increasing k and m in the Gaussian quadrature schemes for
the concentration solution, one expects the numerical results to converge to
the exact result. The error estimation from numerical results with k + 1 and
k points of quadrature and for m + 1 and m points permits us to control the
error in the Gaussian quadrature scheme by properly choosing k and m, in
order to reach a prescribed accuracy.

According to the Lax equivalence theorem for linear problems [Kyt97],
the convergence of the numerical schemes demands stability and consistency.
To accomplish the stability conditions, the numerical methods impose a large
number of step calculations, performing the time integration for most times.
Our solution allows us to perform the calculation at any time. This fact justi-
fies the smaller computational time as well as the smaller round-off error influ-
ence in the accuracy of the results when compared with the numerical ones.
The above arguments and the good agreement between the semi-analytical
results and experimental data make us confident that our hybrid method is a
robust approach for simulating the pollutant dispersion in the PBL.

Acknowledgement. The authors thank CNPq and FAPERGS for the partial financial
support of this work.



180 D.M. Moreira et al.

References

[Ber86] Berkovicz, R.R., Olesen, H.R., Torp, U.: The Danish Gaussian air pollu-
tion model (OML). In: Proceedings 15th Internat. Tech. Meeting on Air
Pollution Modeling and Its Applications V, Plenum, St. Louis, MO (1986).

[Dea75] Deardoff, J.W., Willis, G.E.: A parameterization of diffusion into the mixed
layer. J. Appl. Meteorol., 14, 1451–1458 (1975).

[Deg01] Degrazia, G.A., Moreira, D.M., Vilhena, M.T.: Derivation of an eddy dif-
fusivity depending on source distance for vertically inhomogeneous turbu-
lence in a Convective Boundary Layer. J. Appl. Meteorol., 40, 1233–1240
(2001).

[Gry87] Gryning, S.E., Holtslag, A.A.M., Irwin, J.S., Siversteen, B.: Applied dis-
persion modelling based on meteorologing scaling parameters. Atmos. En-
viron., 21, 79–89 (1987).

[Han89] Hanna, S.R., Paine, R.J.: Hibrid plume dispersion model (HPDM) devel-
opment and evaluation, J. Appl. Meteorol., 28, 206–224 (1989).

[Kyt97] Kythe, P.K., Puri, P., Schferkotter, M.R.: Partial Differential Equations
and Mathematics. CRC Press, Boca Raton, FL (1997).

[Mor99] Moreira, D.M., Degrazia, G.A., Vilhena, M.T.: Dispersion from low sources
in a convective boundary layer: an analytical model. Il Nuovo Cimento,
22C, 685–691 (1999).

[Str66] Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Prentice Hall,
Englewood Cliffs, NJ (1966).

[Tir03] Tirabassi, T.: Operational advanced air pollution modeling. Pure Appl.
Geophys., 160, 5–16 (2003).

[Van03] van Dop, H., Verver, G.: Countergradient transport revisited. J. Atmos.
Sci., 58, 2240–2247 (2001).

[Vil98] Vilhena, M.T., Rizza, U., Degrazia, G.A., Mangia, C., Moreira, D.M.,
Tirabassi, T.: An analytical air pollution model: development and eval-
uation. Control Atmos. Phys., 71, 315–320 (1998).

[Zan90] Zanetti, P.: Air Pollution Modeling. Computational Mechanics Publica-
tions, Southampton (1990).



21

On Quasimodes for Spectral Problems Arising
in Vibrating Systems with Concentrated
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21.1 Introduction

Quasimodes for positive, symmetric, and compact operators on Hilbert spaces
arise often in the literature in the description of behavior at high-frequency
vibrations (see, for example, [Arn72], [BB91], [Laz99], and [Per03]). Roughly
speaking, the quasimodes u can be defined as functions approaching a certain
linear combination of eigenfunctions associated with eigenvalues in “small
intervals” [λ − r, λ + r]. Their usefulness in describing asymptotics for low
frequency vibrations in certain singularly-perturbed spectral problems has
been made clear recently in many papers (see [LP03], [Per04], [Per05], [Per06],
and [Per07]).

In this chapter, we consider a vibrating system with concentrated masses.
Namely, we consider the vibrations of a body occupying a domain Ω of R

n,
n = 2, 3, that contains many small regions (Bε) of high density—so-called
concentrated masses—near the boundary. The small parameter ε deals with
the size of the masses, their number, and their densities. The asymptotic
behavior, as ε → 0, of the eigenelements (λε, uε) of the corresponding spectral
problem, namely problem (21.3), when λε = O(εm−2), has been treated in
[Per04] (see [LP03] for a substantial list of references on the subject). Here,
considering the hyperbolic problem (21.15), we provide estimates for the time
t in which certain standing waves approach time-dependent solutions when the
initial data are quasimodes. Also, precise bounds for the discrepancies between
the solutions and standing waves in suitable Hilbert spaces are provided. The
results can be extended to high-frequency vibrations.

It should be mentioned that in certain problems arising in spectral per-
turbation theory, the eigenfunctions associated with low frequencies give rise
to vibrations of the system that are concentrated asymptotically in a certain
region, and that it is possible to construct quasimodes associated with high
frequencies that give rise to other kinds of vibrations. This is the case, for in-
stance, with spectral stiff problems [LP97] or vibrating systems with a single
concentrated mass (see [GLP99] and [Per03]).
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Nevertheless, when the low frequencies converge toward the same positive
value µ (see [LP03], [Per05], and [Per07]), it can be difficult to describe the
asymptotic behavior, as ε → 0, of the individual eigenfunctions and to obtain
asymptotics for the first eigenfunction. In some of these problems, quasimodes
ũε that provide an approach to linear combinations of eigenfunctions associ-
ated with all the eigenvalues in intervals [µ−δε, µ+δε], with δε → 0 as ε → 0,
can be constructed. These quasimodes could concentrate asymptotically their
support or their energy at points or thin layers. This happens, for example,
when describing vibrations of systems with many concentrated masses near
the boundary (see [LP03], [Per05], and [Per06]), or in models from geophysics
([BI06] and [Per07]).

For these vibrating systems, given the quasimode as an initial data, the
solution of the evolution problem behaves as a standing wave affecting only
small regions for a long period of time, which we determine in this chapter.
Here we prove that, when considering the evolution problem (21.15), for a
long time, namely, for t ∈ [0, O((δε)−δ)] with some positive δ, the solutions of
(21.15) are approached through standing waves of the type ei

√
µtũε. It turns

out that the results hold for any eigenvalue µ of the local problem (21.4).
We emphasize that the results in this chapter can be stated in a more

general abstract framework and extend to low-frequency and high-frequency
vibrations of other vibrating systems (see [LP01], [LP03], [Per03], [Per04], and
[Per06]). We also note that these results are very different from those in [LP93]
and [LP95b], where the evolution problem (21.15) is used to derive results on
spectral convergence for low frequencies, which are much weaker than those
in Theorem 2.

Section 21.2 contains preliminary results on quasimodes for problem (21.3).
Proofs of these results can be found in [Per04], [Per05], and [Per06]. Section
21.3 contains new results on the ε-dependent evolution problem (21.15) (see
Theorem 3 and Remark 1). For brevity, we sketch only an idea of the proof.

21.2 The Spectral Problem

Let A : H −→ H be a linear, self-adjoint, positive, and compact operator on
a separable Hilbert space H. Let {λ−1

i }∞
i=1 be the set of positive eigenvalues

with the usual convention for repeated eigenvalues, λi → ∞ as i → ∞. Let
{ui}∞

i=1 be the set of eigenfunctions, which form an orthonormal basis for H.
A quasimode with remainder r > 0 for the operator A is a pair (u, µ) ∈

H × R, with ||u||H = 1 and µ > 0, such that ||Au− µu||H ≤ r. If there is no
ambiguity, u is also referred to as a quasimode.

The following result establishes the closeness in the space H × R of the
eigenelements of the operator A to a given quasimode of A (see, for example,
[OSY92] for a proof, and [Laz99] for a more general statement).
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Theorem 1. Given a quasimode (u, µ) with remainder r for A, in each in-
terval [µ − r∗, µ + r∗] containing [µ − r, µ + r], there are eigenvalues of the
operator A, {λ−1

i(r∗)+k}k=1,2,...,I(r∗) for some index i(r∗) and number I(r∗) ≥ 1.

In addition, there is u∗ ∈ H, ‖u∗‖H = 1, u∗ =
∑I(r∗)

k=1 αkui(r∗)+k for certain
constants αk, and satisfying

‖u − u∗‖H = ‖u −
I(r∗)∑

k=1

αkui(r∗)+k‖H ≤ 2r

r∗ . (21.1)

From the literature on spectral perturbation problems it appears that,
when Theorem 1 is applied, the spaces and operators under consideration
often depend on a small parameter ε that converges to 0. Also, the function
u and the numbers λ and r arising in the definition of a quasimode depend
on this parameter. This is the case of the operators associated with vibrating
systems with concentrated masses, namely, problem (21.3), which we study
in this chapter. For the sake of completeness, in Subsection 21.2.1 we gather
certain results on quasimodes for this problem (21.3), used subsequently in
the proof of the results in Section 21.3.

21.2.1 The Spectral Perturbation Problem

Let Ω be a bounded domain of R
n, n = 2, 3, with a Lipschitz boundary ∂Ω.

Let Σ and ΓΩ be nonempty parts of the boundary such that ∂Ω = Σ̄ ∪ Γ̄Ω ;
Σ is assumed to be in contact with {xn = 0}. Let ε and η be two small
parameters such that ε ≪ η and η = η(ε) → 0 as ε → 0.

For n = 2, let B be the semicircle B = {(y1, y2) / y2
1 + y2

2 < 1, y2 < 0}
in the auxiliary space R

2 with coordinates y1, y2. For n = 3, let B be the
half-ball B = {(y1, y2, y3) / y2

1 +y2
2 +y2

3 < 1, y3 < 0} in the auxiliary space R
3

with coordinates y1, y2, y3. Let ∂B be the boundary of B, ∂B = T̄ ∪ Γ̄ , where
T is the part lying on {yn = 0}. Let Bε (and, similarly, T ε, Γ ε) denote its
homothetic εB (εT , εΓ ). Let Bε

k (and, similarly, T ε
k , Γ ε

k ) denote the domain
obtained by the translation of the previous Bε (T ε, Γ ε) centered at the point
x̃k of Σ at distance η between them. Here k is a parameter ranging from 1 to
N(ε), k ∈ N. N(ε) denotes the number of Bε

k contained in Ω; N(ε) is O(η−1)
for n = 2 and O(η−2) for n = 3. The parameter α denotes the value

α = lim
ε→0

−1

η ln ε
for n = 2 and α = lim

ε→0

ε

η2
for n = 3. (21.2)

We consider the eigenvalue problem
⎧
⎪⎨
⎪⎩

−∆uε = ρελεuε in Ω,

uε = 0 on ΓΩ ∪⋃T ε,
∂uε

∂n = 0 on Σ −⋃T ε,

(21.3)

where ρε = ρε(x) is the density function defined by
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ρε(x) =
1

εm
if x ∈

⋃
Bε, ρε(x) = 1 if x ∈ Ω −

⋃
Bε,

the symbol
⋃

is extended, for fixed ε, to all the regions Bε
k contained in Ω, and

the parameter m is a real number, m > 2 (see [LP93]–[LP95b] for different
values of the parameter m, boundary conditions, and domain shapes).

As is well known, problem (21.3) has a discrete spectrum. For fixed ε,
let {λε

i}∞
i=1 be the sequence of eigenvalues of (21.3), converging to ∞, with

the classical convention for repeated eigenvalues. It has been proved (see
[LP93]–[LP95b]) that they satisfy the estimates Cεm−2 ≤ λε

i ≤ Ciε
m−2,

where C is a constant independent of ε and i and Ci is a constant inde-
pendent of ε. Let {uε

i}∞
i=1 be the corresponding sequence of eigenfunctions,

which is an orthogonal basis for the space Vε, where Vε is the completion of
{u ∈ D(Ω̄) / u = 0 on ΓΩ ∪ ⋃

T ε} in the topology of H1(Ω).
Convergence results for the low frequencies, the eigenvalues of order

O(εm−2) of (21.3), and the associated eigenfunctions can be found in [Per04],
[Per05], and [Per06]. Also, the limit behavior of the eigenelements for se-
quences of eigenvalues of order O(1), the so-called high frequencies, is in
[LP93], [LP95a], [LP95b], and [LP01]. As in the case of a single concentrated
mass, in general, low frequencies are associated with the local vibrations of the
concentrated masses, each one independent of the others. We have found only
one exception: For n = 3 and α > 0, these frequencies also give rise to global
vibrations affecting the whole structure ([LP03]). Apart from this exception,
the low frequencies and the corresponding eigenfunctions are asymptotically
described, in a certain way, by a so-called local eigenvalue problem (21.4).

The local problem is posed in R
n− = {y ∈ R

n / yn < 0} as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆yU = λU in B,

−∆yU = 0 in R
n− − B̄,

[U ] = [ ∂U
∂ny

] = 0 on Γ,

U = 0 on T , ∂U
∂yn

= 0 on {yn = 0} − T̄ ,

U(y) → c, as |y| → ∞ , yn < 0 when n = 2,

U(y) → 0, as |y| → ∞ , yn < 0 when n = 3 ,

(21.4)

where the brackets denote the jump across Γ , n̄y is the unit outward normal
to Γ , and c is some unknown but well-defined constant. The variable y is the
local variable:

y =
x − x̃k

ε
.

Problem (21.4) can be written as a standard eigenvalue problem with a

discrete spectrum in the space Ṽ, where Ṽ is the completion of {U ∈
D(Rn−) / U = 0 on T} in the Dirichlet norm ‖∇yU‖L2(Rn−) (see [LP93] and
[LP95b]).
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Theorem 2 allows us to assert that there are at least l0N(ε) values
λε

i(ε)/εm−2 converging to each eigenvalue λ0 of (21.4), with l0 being the multi-

plicity of λ0. The corresponding eigenfunctions Uε [cf. (21.5)] are approached

in the space Ṽε by the eigenfunctions of (21.4) associated with λ0, concentrat-
ing their support asymptotically in neighborhoods of the concentrated masses
as stated in Theorem 2.

Also, the results in Theorem 2 along with the results on comparison of
spectra for perturbed domains in [Per05] allow us to obtain an important
difference for the asymptotic behavior of the low frequencies between the
dimensions n = 2 and n = 3 of the space. Namely, for n = 2, and for each
i = 1, 2, . . . , λε

i /εm−2 → λ0
1, as ε → 0, where λ0

1 is the first eigenvalue of
(21.4). This does not hold for n = 3 and the value of α in (21.2) strictly
positive (see [Per05] and [Per06] for further explanations). Let us refer to
[GLP99], [OSY92], and [SS89] to compare with the stronger results on the
approach for the eigenfunctions in the case of a single concentrated mass, the
case where the convergence of the rescaled spectrum of (21.3) to that of (21.4)
with conservation of multiplicity holds.

Let us change the variable in (21.3) by setting y = x/ε. We obtain:

∫

Ωε

∇yUε.∇yV ε dy =
λε

εm−2

∫

Ωε

βε(y)UεV ε dy, ∀V ε ∈ Ṽε, (21.5)

with Ωε being the domain { y / εy ∈ Ω } and βε(y) in (21.5) defined as

βε(y) = 1 if y ∈
⋃

τyB
ε, and βε(y) = εm if y ∈ Ωε −

⋃
τyBε, (21.6)

where τyB
ε denote the transformed domains of the regions Bε to the y vari-

able. Ṽε is the functional space {U = U(y) /U(εy) ∈ Vε}. We assume that
the eigenfunctions {Uε

i }∞
i=1, in the local variable, satisfy ‖Uε‖

Ṽε = 1.

Let us introduce the self-adjoint positive and compact operator Aε on Ṽε,
Aε defined by the right-hand side of (21.5), namely,

〈AεU, V 〉
Ṽε =

∫
⋃

τyBε

UV dy + εm

∫

Ωε−
⋃

τyBε

UV dy, ∀U, V ∈ Ṽε, (21.7)

with eigenelements {(εm−2/λε
i , U

ε
i )}∞

i=1.
Let us consider λ0 an eigenvalue of (21.4) of multiplicity l0, and let U0

1 ,

U0
2 , . . . , U

0
l0

be the corresponding eigenfunctions, orthogonal in Ṽ and satisfy-
ing ‖∇yU

0
i ‖L2(Rn−) = 1.

Let us introduce a function ϕ̃ε(y) that depends on n. For n = 2, we consider

Rε =
√

ε+η/4
ε and define ϕ̃ε(y) = 0 if |y| ≥ R2

ε,

ϕ̃ε(y) = 1 if |y| ≤ Rε, ϕ̃ε(y) = 1 − ln |y| − lnRε

lnRε
if Rε ≤ |y| ≤ R2

ε. (21.8)
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For n = 3, we consider ϕ̃ε as a smooth function that takes the value 1 in
the semi-ball of radius ((ε+ η/8)/ε), B((ε+ η/8)/ε), and is 0 outside the
semi-ball of radius ((ε+ η/4)/ε), B((ε+ η/4)/ε):

ϕ̃ε(y) = ϕ

(
2
|εy| − ε

η

)
, (21.9)

where ϕ ∈ C∞[0, 1], 0 ≤ ϕ ≤ 1, ϕ = 1 in [0, 1/4], and Supp(ϕ) ⊂ [0, 1/2].

Obviously, the elements of Ṽε extended by zero in R
n− −Ωε are elements

of Ṽ. Moreover, we have (see [LP93] and [LP95b]) that U0
p ϕ̃

ε ∈ Ṽε, and, as

ε → 0, U0
p ϕ̃

ε −→ U0
p in Ṽ.

For each k = 1, 2, . . . , N(ε), p = 1, 2, . . . , l0, we introduce the function

Zε
k,p(y) =

U0
p (y − x̃k

ε )ϕ̃ε(y − x̃k

ε )

‖∇y(U0
p ϕ̃

ε)‖L2(Rn−)
. (21.10)

The following estimates hold (see [Per04] and [Per06] for a proof):

‖AεZε
k,p − 1

λ0
Zε

k,p‖Ṽε ≤ oε , ∀k, p, (21.11)

where oε does not depend on k and p and tends to 0 as ε → 0,

oε = C

(
ln
ε+ η/4

ε

)−1/2

for n = 2, (21.12)

oε = C max{
(
ε

η

)1/2

, εm−2} for n = 3, (21.13)

with the constant C independent of ε.

Theorem 2. Let us consider λ0 an eigenvalue of (21.4) of multiplicity l0,
and let U0

1 , U
0
2 , . . . , U

0
l0

be the corresponding eigenfunctions, assumed to be

orthonormal in Ṽ. For any K > 0, there is ε∗(K) such that, for ε < ε∗(K),
K < l0N(ε), and the interval [λ0 −dε, λ0 +dε] contains eigenvalues of (21.5),
λε

i(ε)/ε
m−2, with total multiplicity greater than, or equal to, K; dε is a certain

sequence, dε → 0 as ε → 0 and the interval [λ0 − dε, λ0 + dε] does not contain
other eigenvalues of (21.4) different from λ0.

In addition, for any β such 0 < β < 1, and for dε = (oε)
β, there are l0N(ε)

functions, {Uε
k,p}p=1,l0

k=1,N(ε), U
ε
k,p ∈ Ṽε, such that ‖Uε

k,p‖Ṽε = 1, Uε
k,p belongs to

the eigenspace associated with all the eigenvalues in [λ0 − dε, λ0 + dε], and

‖Uε
k,p − Zε

k,p‖Ṽε ≤ 2(oε)
1−β . (21.14)

In (21.14), oε(1) is given by (21.12) when n = 2 ((21.13) when n = 3),
Zε

k,p is defined by (21.10), and ϕ̃ε(y) is defined by (21.8) when n = 2 ((21.9)

when n = 3). These functions, {Uε
k,p}p=1,l0

k=1,N(ε), satisfy the property that for

any extracted subset of K functions {Uε
j1
, Uε

j2
, . . . , Uε

jK
}, they are linearly in-

dependent.
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Let us observe that formula (21.11) shows that (Zε
k,p, 1/λ0) is a quasimode

of remainder oε for the operator Aε defined in (21.5)–(21.7). In the same way,
according to (21.1), the width of the interval dε = (oε)

β in Theorem 2 and the
bound in (21.14) provide the closeness of these quasimodes and eigenlements
of Aε. Theorem 2 has been proved in [Per04] (see also [Per06]) by applying
Theorem 1 and results on almost orthogonality for the quasimodes.

21.3 The Evolution Problem

Let us consider the set of functional spaces Ṽε and Hε, where Ṽε is introduced
in Subsection 21.2.1 with the norm ‖∇yu‖L2(ε−1Ω) and Hε = {U(y) /U(εy) ∈
L2(Ω) with the norm ‖(βε)1/2u‖L2(ε−1Ω), βε being defined by (21.6). Let Aε

be the operator associated with the form on Ṽε arising on the left-hand side
of (21.5). Let (Zε

k,p, 1/λ0) be the quasimodes constructed in Subsection 21.2.1,

for k = 1, 2, . . . , N(ε), p = 1, 2, . . . , l0, from the eigenelement (λ0, U0
p ) of the

local problem (21.4).
Let us consider the hyperbolic problem associated with (21.5):

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2Uε

dt2
+ AεUε = 0

Uε(0) = ϕε

dUε

dt
(0) = ψε

(21.15)

For initial data (ϕε, ψε) ∈ Ṽε × Hε, problem (21.15) has a unique solution,

Uε ∈ L∞(0,∞, Ṽε), dUε

dt ∈ L∞(0,∞,Hε) , satisfying Uε(0) = ϕε , and, for
any fixed T > 0,

∫ T

0

(∫

ε−1Ω

∇yU
ε.∇yΦ dy −

∫

ε−1Ω

βε(y)
dUε

dt

dΦ

dt
dy

)
dt =

∫

ε−1Ω

βε(y)ψεΦ(0) dy

for any test function Φ of the form Φ = φ(t)V , where V ∈ Ṽε, and φ ∈
C1([0, T ]) / φ(T ) = 0 (cf. [SS89] and [S80], for instance).

Because of the conservation of energy, for each t ∈ R we have

‖Uε(t)‖
Ṽε +

∥∥∥∥
dUε

dt
(t)

∥∥∥∥
Hε

= ‖ϕε‖
Ṽε + ‖ψε‖Hε . (21.16)

According to the Fourier expansion of Uε(t) in terms of the eigenfunc-
tions of (21.5), for a given ϕε = aUε

i(ε) and ψε = bUε
i(ε), with a and b any

constants and Uε
i(ε) any eigenfunction of (21.5) associated with the eigenvalue

λε
i(ε)/ε

m−2, the solution of (21.15) is the standing wave
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Uε(t) =

⎛
⎝a cos

(√
λε

i(ε)

εm−2
t

)
+ b

√
εm−2

λε
i(ε)

sin

(√
λε

i(ε)

εm−2
t

)⎞
⎠ Uε

i(ε).

Similarly, for any given data, the functions Uε
k,p arising in Theorem 2, namely,

ϕε =
∑l0N(ε)

j=1 aj U
ε
i(ε)+j and ψε =

∑l0N(ε)
j=1 bj U

ε
i(ε)+k with aj and bj constants,

the solution of (21.15) is

Uε(t) =

l0N(ε)∑

j=1

(
aj cos

(√
λε

i(ε)+j

εm−2
t

)

+ bj

√
εm−2

λε
i(ε)+j

sin

(√
λε

i(ε)+j

εm−2
t

))
Uε

i(ε)+j .

By contrast, in the case where the initial data are the quasimodes of the op-
erator Aε arising in Theorem 2, namely, the Zε

k,p associated with the eigenele-

ment (λ0, U0
p ) of (21.4), for k = 1, 2, . . . , N(ε) and p = 1, 2, . . . , l0, approaching

the functions Uε
k,p (see (21.14)), the solutions of the evolution problem (21.15)

are not standing waves or sums of standing waves.
Nevertheless, the following theorem establishes the range of t where

the standing wave cos(
√
λ0 t)Zε

k,p (
√

(λ0)−1sin(
√
λ0 t)Zε

k,p, respectively) ap-
proaches the solution Uε(t) of (21.15) for the initial data (ϕε, ψε) = (Zε

k,p, 0)
((ϕε, ψε) = (0, Zε

k,p), respectively).

Theorem 3. Let (λ0, U0
p ) be an eigenelement of (21.4), and let Zε

k,p be defined
by (21.10) for k = 1, 2, . . . , N(ε) and p = 1, 2, . . . , l0. Let us consider problem
(21.15) for (ϕε, ψε) = (Zε

k,p, 0). Then, for t > 0 and sufficiently small ε
(namely, ε < ε0 with ε0 independent of t), the unique solution Uε(t) of (21.15)
satisfies

∥∥∥∥cos(
√
λ0 t)Zε

k,p − Uε(t)

∥∥∥∥
Ṽε

≤ C1 max
(
(oε)

1−β , (oε)
β/2t
)
, (21.17)

∥∥∥∥
√
λ0 sin(

√
λ0 t)Zε

k,p +
dUε

dt
(t)

∥∥∥∥
Hε

≤ C2 max
(
(oε)

1−β ,
(
(oε)

β/2t+ (oε)
β/2
)
,

(21.18)
where C1 and C2 are constants that may depend on λ0 but are independent of
ε and t, oε is defined by (21.12) when n = 2 and by (21.13) when n = 3, and
β is the constant appearing in (21.14), 0 < β < 1.

In the same way, for (ϕε, ψε) = (0, Zε
k,p), the following estimates hold:

∥∥∥∥
sin(

√
λ0 t)√
λ0

Zε
k,p − Uε(t)

∥∥∥∥
Ṽε

≤ C1 max
(
(oε)

1−β , (oε)
β/2t
)
, (21.19)

∥∥∥∥cos(
√
λ0 t)Zε

k,p − dUε

dt
(t)

∥∥∥∥
Hε

≤ C2 max
(
(oε)

1−β ,
(
(oε)

β/2t+ (oε)
β/2
)
.

(21.20)
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The proof of Theorem 3 is based on (21.16), on the precise bounds (21.11)–
(21.14), and on the inequality ‖u‖Hε ≤ C‖u‖

Ṽε ∀u ∈ Vε, where C is a
constant independent of u and ε. For the sake of brevity, we omit the proof,
which will be provided in a future publication.

Remark 1. In fact, approaches (21.17)–(21.20) in Theorem 3 hold uniformly
for t ∈ [0, (oε)

−ββ′/2] for any constant β′ satisfying 0 < β′ < 1. Then the
bounds on the right-hand side of (21.17)–(21.20) are C∗(oε)

min(1−β, β(1−β′)/2),
where C∗ is a constant independent of ε.
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[LP01] Lobo, M., Pérez, E.: The skin effect in vibrating systems with many con-
centrated masses. Math. Methods Appl. Sci., 24, 59–80 (2001).
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22.1 Introduction

In this communication we anticipate some results of a research in progress
[DR07], whose purpose is to find necessary conditions and sufficient conditions
for local energy minima in finite elasticity. Although our analysis includes
both compressible and incompressible continua, this account is restricted to
the compressible case.

Consider a three-dimensional continuous body, occupying a region Ω in
the reference configuration. Assume that the body is hyperelastic and homo-
geneous; in other words, assume that there is a strain energy density w which is
the same at all points of Ω. The function w is assumed to be frame-indifferent

w(F ) = w(QF ) for all orthogonal Q ∈ R
3×3, (22.1)

and to satisfy the growth conditions

lim
det F→0+

w(F ) = lim
‖F‖→+∞

w(F ) = +∞ . (22.2)

It is also assumed that there are no body forces, and that no surface tractions
act on the free portion ∂2Ω of the boundary. Then the strain energy

E(f) =
∫
Ω

w(∇f(X)) dX .

is in fact the total energy of the body subject to a deformation f . On the
constrained portion ∂1Ω of the boundary, we prescribe a continuous family
t �→ f̂t of boundary conditions, and we consider continuous families t �→ ft

of deformations of Ω, such that each ft satisfies the corresponding boundary
condition

ft(X) = f̂t(X) ∀X ∈ ∂1Ω. (22.3)

We say that ft is an equilibrium configuration if it is a stationary point for
the energy over the set of all deformations that obey the boundary condition
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(22.3), and that it is a minimizing configuration if it is a local energy mini-
mizer over the same set. Continuous paths made of equilibrium configurations
are called equilibrium paths, and continuous paths made of minimizing config-
urations are called minimizing paths. The largest minimizing path containing
a given minimizing configuration ft is the minimizing path from ft.

In the paper [DR07] we look for necessary and sufficient conditions for a
local minimum, with the purpose of establishing two-sided estimates for min-
imizing paths. For the specific problem of the axial stretching of an isotropic
cylinder made of a Blatz–Ko material, we indeed obtain good improvements
of the existing estimates.

Preliminary to our analysis are the choice of a function space as the do-
main of definition for E , and the choice of a metric giving a precise meaning
to the notions of a continuous path and of a local minimum. A natural regu-
larity assumption for the deformations of a continuum seems to be Lipschitz
continuity, which requires that the ratio between the distance before and after
deformation be bounded in Ω. The same requirement imposed on the inverse
deformation leads to the additional condition that the same ratio be bounded
from below by a positive number c1, and the two conditions together result
in the double inequality

c1 |X2 − X1| ≤ |f(X2) − f(X1)| ≤ c2 |X2 − X1| ∀X1, X2 ∈ Ω ,

which defines the set of all bi-Lipschitz functions from Ω. This set is denoted
by BLip(Ω) and is a proper subset of the Sobolev space W 1,∞(Ω). It is proved
in [DR07] that BLip(Ω) is open in the topology of W 1,∞(Ω); this allows one to
use a basic tool of the calculus of variations, that is, the expansion of a func-
tional along line segments in W 1,∞(Ω), to obtain conditions for a minimum.
It also suggests as a natural norm the W 1,∞-norm

‖f‖W 1,∞ = sup
X∈Ω

| f(X) | + sup
X∈Ω

| ∇f(X) | ,

with the suprema taken to within sets of measure zero. This norm defines the
weak minima in the standard sense of the calculus of variations.

22.2 Two-Sided Estimates for a Minimizing Path

Consider a deformation f0 in BLip(Ω) obeying the boundary condition (22.3),
and let F0 be the gradient of f0. The first and second derivatives of the energy
density w at F0 define the Piola stress tensor S(F0) and the elasticity tensor
A(F0), respectively. It is known that necessary conditions for a (local or global)
minimum are the vanishing of the first variation of E and the non-negativeness
of the second variation

∫
Ω

S(F0) · ∇v dX = 0 ,
∫
Ω

A(F0)∇v · ∇v dX ≥ 0 , (22.4)
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for all v in W 1,∞(Ω) with v(X) = 0 on ∂1Ω, whereas the vanishing of the first
variation and the uniform Hadamard inequality

∫
Ω

A(F0)∇v · ∇v dX ≥ ε
∫

Ω
|∇v|2 dX , ε > 0 , (22.5)

form a sufficient condition for a local minimum.1

In our study, we found it convenient to write the expression of the energy
in the current configuration ω = f0(Ω). To do this, we set

x = f0(X) , v(X) = u(f0(X)) = u(x) ,

and we use the stress tensor and the elasticity tensor in the current configu-
ration

T (F0) = (detF0)
−1 (I ⊠ F0)S(F0),

B(F0) = (detF0)
−1(I ⊠ F0) A(F0) (I ⊠ FT

0 ),

where A ⊠ B is the fourth-order tensor such that (A ⊠ B)H = AHBT for
all second-order tensors H, and T (F0) is the Cauchy stress tensor. Conditions
(22.4) and (22.5) then take the form

∫
ω
T (F0) · ∇u dx = 0 ,

∫
ω

B(F0)∇u· ∇u dx ≥ c
∫

ω
|∇u|2 dx . (22.6)

The equation defines an equilibrium configuration, and the inequality with
c = 0 is a necessary condition for a minimum. Therefore, an equilibrium
configuration F0 is a local minimizer only if all roots of the eigenvalue problem

u ∈ W 1,∞(ω) : u
∣∣
∂1ω

= 0,
∫

ω
B(F0)∇u·∇u dx = 0

are nonnegative. Using the Gauss–Green formula

∫
ω

B(F0)∇u·∇u dx = −
∫

ω
div

(
B(F0)∇u

)
· u dx+

∫
∂ω

(
B(F0)∇u

)
n· u dx

we transform the problem into

u ∈ W 1,∞(ω) : u
∣∣
∂1ω

= 0, div
(
B(F0)

)
= 0 ,

∫
∂2ω

(
B(F0)∇u

)
n· u dx = 0 .

(22.7)
Necessary conditions and sufficient conditions for a minimum are then ob-
tained from upper and lower estimates of the smallest eigenvalue of problem
(22.7), respectively. Namely, upper bounds are obtained by restricting the
problem to properly chosen classes of functions,2 and lower bounds are ob-
tained from any inequality that implies (22.6)2 for some positive c.

One possible way to get a lower bound inequality is to exploit the restric-
tions on the derivatives of w induced by the indifference assumption (22.1).3

1 See, e.g., [GH95], Section 4.1.1.
2 Simpson and Spector [SS84a, SS84b].
3 A procedure based on this fact was introduced by Holden [Ho64] and systemati-

cally used by Beatty [Be71].
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The consequences of this assumption are that T (F0) is symmetric and that
the fourth-order tensor B(F0) admits the decomposition

B(F0) = C(F0) + I ⊠ T (F0) ,

with I⊠T (F0) a tensor with the major symmetry and C(F0) a tensor with the
two minor symmetries. If we denote by cs

C(F0) the smallest eigenvalue of C(F0)
restricted to the symmetric tensors and by cT (F0) the smallest eigenvalue of
I ⊠ T (F0),

4 we have that

B(F0)H · H ≥ cs
C(F0) |Hs|2 + cT (F0) |H|2 ,

where Hs is the symmetric part of H. After setting

c̄s
C = inf

X∈Ω
cs

C(F0(X)) , c̄T = inf
X∈Ω

cT (F0(X)) ,

we see that inequality (22.6)2 is satisfied if

c̄s
C

∫
ω
|∇su|2 dx + c̄T

∫
ω
|∇u|2 dx ≥ c

∫
ω
|∇u|2 dx . (22.8)

Making use of the algebraic inequality |Hs| ≤ |H| and of Korn’s inequality

cK

∫
ω
|∇su|2 dx ≥

∫
ω
|∇u|2dx ,

we see that (22.8) holds if c̄T ≥ 0 and c̄s
C + c̄T > 0, and if c̄T < 0 and

c̄s
C + cK c̄T > 0. The two conditions can be collected in the single inequality

c̄s
C > −c̄+

T + cK c̄−
T , (22.9)

with c̄+
T = max {0, c̄T} and c̄−

T = max {0,−c̄T}.
Condition (22.9) has a global character, since c̄s

C and c̄T are obtained by
minimization over the whole body. A more efficient local condition proposed
in [Ho64] has the form

cs
C(F0(X)) + cKT (F0(X)) ≥ c for a.e. X in Ω , (22.10)

with the constant cKT depending on the punctual values of T (F0) and on the
Korn constant cK . The expression of cKT given in [Ho64] was improved in
[Dp80], and an additional improvement obtained in [DR07] yields

cKT (F0) = min
i∈{1,2,3}

sup
η∈A

{
2 Ti(F0) − (cK−1) η+− (τi(F0) (2Ti(F0) + η))+

2Ti(F0) − τi(F0) + η

}
,

(22.11)
where Ti are the eigenvalues of T (F0), τi are the differences

T1 − T2, T2 − T3, T3 − T1 ,

4 The eigenvalues of I⊠T(F0) coincide with those of T(F0); see [DR07], Appendix B.
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and A is the set of all η such that

2 Ti(F0(X)) − τi(F0(X)) + η > 0

for all i in {1, 2, 3} and for a.e. X in Ω. In what follows, explicit necessary
conditions based on restrictions of the eigenvalue problem (22.7) and suffi-
cient condition based on inequality (22.10) are given for the problem of the
stretching of an isotropic cylinder.

22.3 Stretching of an Isotropic Cylinder

Let Ω be a cylinder of arbitrary cross section. At all points X located on the
bases, we prescribe the normal displacements

(f̂t(X) −X) · e = (t− 1) (X −X0) · e , t > 0 , (22.12)

where e is the direction of the axis, X0 is a fixed point, and the parameter t
measures the stretch of the cylinder, with t > 1 corresponding to extension
and t < 1 corresponding to contraction. We focus our attention on the two-
parameter family of deformations

ft,λ(X) = X0 +
(
t e⊗ e+ λ(I − e⊗ e)

)
(X −X0) ,

where t is again the stretch, and λ is a uniform dilatation of the cross section
if λ > 1 and a uniform contraction if λ < 1. Each ft,λ is a homogeneous
deformation, with deformation gradient

Ft,λ = t e⊗ e+ λ (I − e⊗ e) , (22.13)

and obeys the boundary condition (22.12) for the corresponding t.
From this family it is possible to extract an equilibrium path if, for each t,

there is a λ(t) such that ft,λ(t) is an equilibrium configuration. We recall that
if the cylinder is isotropic and if the deformation gradient is as in (22.13), the
Cauchy stress is a linear combination of e⊗ e and I

Tt,λ = σt,λ e⊗ e+ τt,λI ,

with constant coefficients σt,λ, τt,λ. 5 It is easy to verify that Tt,λ is equilibrated
with null body forces, null surface tractions on the lateral surface, and null
tangential tractions on the bases, if and only if τt,λ = 0. Moreover, it is known
that, if the energy density satisfies the growth conditions (22.2), for each t > 0
there is a unique λ(t) for which τt,λ(t)= 0.6 The deformations ft = ft,λ(t) then
form an equilibrium path, with deformation gradient Ft = Ft,λ(t) and Cauchy
stress

5 See [TN65], Sect. 47.
6 Simpson and Spector [SS84a], Theorem 3.1.
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Tt = σt e⊗ e , σt = σt,λ(t) . (22.14)

Assume that the configuration ft with t = 1 is a local minimizer. Then the
the minimizing interval from ft is the largest interval (ta, tb) with ta ≤ 1 ≤ tb,
in which all eigenvalues of problem (22.7) are positive. An upper bound for
ta and a lower bound for tb are obtained from inequality (22.9), where now
c̄T = min {σt, 0} = −σ−

t due to (22.14), and c̄ s
C = c s

C(Ft) due to the fact that
the deformation is homogeneous. The inequality then takes the form

cs
C(Ft) > cK,t σ−

t . (22.15)

For the local condition (22.10), it is proved in [DR07] that it takes the same
form as (22.15), with cKT replaced by

c∗
K,t = 1

2 cK,t + (cK,t − 1)1/2.

In particular, all configurations Ft with σ−
t = 0 are minimizing configurations

if C
s(Ft) is positive definite. The absence of bifurcation in tension observed

by several authors in various circumstances7 is then, in fact, a property of all
materials for which C

s is positive definite.
As a specific example, we consider a Blatz–Ko material, whose energy

density is
w(F ) = α

(
1
2 (F · F − 3) + γ−1((detF )−γ − 1)

)
,

with α and γ positive constants. For it, we find that the equilibrium condition
τt,λ(t) = 0 is satisfied by

λ(t) = t1−δ/2 , δ = 2+3γ
1+γ . (22.16)

For ft = ft,λ(t), we have

Ft = t e⊗ e+ t1−δ/2(I − e⊗ e) , detFt = t3−δ , (22.17)

and after some computation, we find that

σt = α t−1
(
tδ − 1

)
, csC(Ft) = 2α t−1.

We observe that σt is positive for t > 1 and negative for t < 1, and that csC(Ft)
is positive for all t > 0. Then inequality (22.15) is always verified in tension,
and the upper extreme of the minimizing interval is tb = +∞. In compression,
the same inequality takes the form 2 > cK,t (1 − tδ). An upper bound for the
lower extreme ta of the minimizing interval is then provided by the equation

cK,t (1 − tδ) = 2 . (22.18)

This equation always admits solutions in (0,1). Indeed, it is generally true
that cK,t ≥ 2, the value 2 being attained only if ∂1Ω = ∂Ω. Then the left-hand

7 See [Sp84] and the papers cited therein.
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side of (22.18) is not less than 2 for t = 0 and is zero for t = 1. Because cK,t

depends continuously on t, the value 2 must be attained somewhere in (0,1).
The same equation with cK,t replaced by c∗

K,t provides the upper bound for
ta according to the local condition (22.10). Since c∗

K,t > cK,t for all cK,t > 2,
one sees that the new bound improves the one provided by equation (22.18).

22.4 Numerical Results for Circular Cylinders

In this section, we give some estimates for circular cylinders made of a Blatz–
Ko material. Since for such a material the minimizing intervals are of the form
(ta,+∞), our task reduces to finding upper and lower bounds for ta.

Let Ω be a circular cylinder of height H1 and radius R1, and let t �→ ft be
the equilibrium path (22.17). Then every ft is a map of Ω into the cylinder
ωt of height Ht = tH1 and radius Rt = t1−δ/2R1. To get a lower bound for ta,
for each t we evaluate the smallest eigenvalue of problem (22.7) restricted to
suitable subspaces of W 1,∞(ωt). In particular, we take two subspaces made of
all functions u of the form 8

u =

⎧
⎪⎨
⎪⎩

x1ϕ(r) cos nπx3

Ht

x2ϕ(r) cos nπx3

Ht

ψ(r) sin nπx3

Ht

⎫
⎪⎬
⎪⎭
, u =

⎧
⎪⎨
⎪⎩

0

ϕ(x2) cos nπx3

Ht

ψ(x2) sin nπx3

Ht

⎫
⎪⎬
⎪⎭
, (22.19)

where n is an integer, {O, x1, x2, x3} is a Cartesian coordinate system with
origin O at the center of one of the bases of the cylinder, x3 is the direction
of the axis, r = (x2

1 + x2
2)

1/2 is the distance from the axis, and ϕ and ψ are
functions in W 1,∞(−Rt, Rt). The functions u in the first subspace represent
displacements of the barreling type, whereas those in the second subspace rep-
resent displacements of the buckling type in the (x2, x3) plane. The functions
of the first type are required to obey the regularity conditions at the origin

ϕ(0) = 0 , (rϕ′)(0) = 0 ,

and those of the second type are restricted by the normalization conditions

ϕ(0) = 1 , ψ(0) = 0 .

Both satisfy the boundary condition (22.12). The condition div
(
B(F0)

)
= 0

reduces to the system of differential equations

(2 + γ)(rϕ′′ + 3ϕ′) + (1 + γ)nπ
Ht

ψ′ − tδ n2π2

H2
t
rϕ = 0,

rψ′′ + ψ′ − (1 + γ)nπ
Ht

(r2ϕ′ + 2 rϕ) − (1 + γ + tδ) n2π2

H2
t
rψ = 0

(22.20)

8 The lower bounds corresponding to functions of the barreling type were deter-
mined in [SS84a] and [SS84b], and those corresponding to functions of the buck-
ling type were determined in [DR07].
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for the functions of the first type, and to the system

(2 + γ)ϕ′′ + (1 + γ)ψ′ − tδ n2π2

H2
t
ϕ = 0 ,

ψ′′ − (1 + γ)nπ
Ht

ϕ′ − (1 + γ + tδ) n2π2

H2
t
ψ = 0

(22.21)

for the functions of the second type. The solutions of system (22.20) are the
linear combinations of the modified Bessel functions of the first kind

I0
(nπrtδ/2

Ht

)
, I0

(nπrtδ/2
∗

Ht

)
, I1

(nπrtδ/2

Ht

)
, I1

(nπrtδ/2
∗

Ht

)
,

where γ and δ are the constants in (22.16), and

tδ∗ =
γ + 1 + tδ

γ + 2
.

The eigenvalues of (22.7) are the roots of the equation

4 ν(nπ/ρ∗
1) −

(1 + tδ)2

tδ∗
ν(nπ/ρ1) + 2 tδ = 2 , (22.22)

where ρ1 = H1/R1 is the slenderness ratio in the reference configuration t = 1,
and

ρ∗
1 =

( t

t∗

)δ/2

ρ1 , ν(z) = z
I0(z)

I1(z)
.

For displacements of the buckling type, the solutions of system (22.21) are
the linear combinations of the exponentials

exp
(nπx2t

δ/2

Ht

)
, exp

(
− nπx2t

δ/2

Ht

)
, exp

(nπx2t
δ/2
∗

Ht

)
, exp

(
− nπx2t

δ/2
∗

Ht

)
,

and the corresponding eigenvalues are the roots of the equation

(3 + tδ)2
( t
t∗

)δ/2
I1

(2nπ

ρ1

)
I1

(2nπ

ρ∗
1

)

=
((

2 tδ/2 +
1 + tδ

t
δ/2
∗

)
I1

(nπ
ρ1

+
nπ

ρ∗
1

)
−

(
2 tδ/2 − 1 + tδ

t
δ/2
∗

)
I1

(nπ
ρ1

− nπ

ρ∗
1

))2

.

(22.23)
The lower bounds for ta obtained from the solutions of (22.22) and (22.23)

are plotted in Figure 22.1 as functions of the slenderness ratio ρ1 at t = 1.
The barreling modes provide better bounds for small ρ1, and the buckling
modes provide better bounds for large ρ1. The optimal value of n is n=1 for
the buckling modes, whereas for the barreling modes the optimal n increases
with ρ1. The figure also shows the lower bound given by the Euler–Bernoulli
buckling displacement field, obtained from (22.19)2 by approximating ϕ(x2)
and ψ(x2) with 1 − π2x2

2/2H
2
t and πx2/Ht, respectively. As expected, this

approximation is accurate only for large values of ρ1. An upper bound for ta
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Fig. 22.1. Upper and lower bounds for the compressive stretching ta for circular
cylinders made of a Blatz–Ko material.

is provided by (22.18) with cK,t replaced by c∗
K,t. In it, a major problem is the

determination of the exact value, or at least of an upper bound, for the Korn
constant cK appearing in the expression (22.11) of cK,t. This is still an open
problem. We use Bernstein and Toupin’s approximated formula [BT60]9

cK ≈ 2 +
4 Jmax

Jmed + Jmin
,

in which Jmax ≥ Jmed ≥ Jmin are the principal moments of inertia of the
cylinder. For a circular cylinder with slenderness ratio ρt = Ht/Rt = tδ/2ρ1,
one has

cK,t ≈ 2 + max
{ 12

3 + tδρ2
1

,
2

3
tδρ2

1

}
,

and substituting into (22.18), one finds that an approximate upper bound for
ta is provided by the solutions of

ρ 2
1 t 2δ+ 9 t δ = 6 for ρ2

1 < 6 , ρ 2
1 (1 − t δ) = 3 for ρ2

1 > 6 ,

the approximation being due to the uncertainty about the expression used for
the Korn constant. This bound is represented by a curve in Figure 22.1. For
comparison, the same figure also shows the estimate given in [Be71], obtained

9 This is neither an upper bound nor a lower bound for cK . It is not an upper
bound because it is obtained solving a minimum problem over a strict subclass
of the admissible deformation gradient fields, and it is not a lower bound because
it refers to boundary conditions less restrictive than (22.12).



200 G. Del Piero and R. Rizzoni

using the Bernstein and Toupin approximation for the Korn constant, and a
less refined expression for the constant cK,t.

We see that the two curves representing the overall upper and (approxi-
mate) lower bounds are similar in shape, since both consist of two segments,
one corresponding, roughly, to deformations of the buckling type and one cor-
responding to deformations of the barreling type. The gap between the two
curves, as it comes from the results available in the literature (light gray area
in Figure 22.1) has been substantially reduced by the present study (dark gray
area). The gap is narrow for large values of ρ1 but still important for small val-
ues. This reveals the need for a deeper study of the minimizing displacement
modes for thick cylinders.
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atici per la Scienza dei Materiali” and by the Research Project “Nano & Nano” of
the University of Ferrara.
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23.1 Introduction

The theory of micropolar (Cosserat) elasticity [Er66] has been developed to
account for discrepancies between the classical theory and experiments when
the effects of material microstructure were known to affect significantly the
body’s overall deformation, for example, in the case of granular bodies with
large molecules (e.g., polymers) or human bones (see [Lak95], [Lak91], and
[Lak82]). Significant progress has been achieved in this direction for the last 30
years (see [Now86] for a review of works in this area and an extensive bibliog-
raphy), but investigations have been confined mainly to the problems of elas-
tostatics. A dynamic problem of wave propagation in the three-dimensional
elastic micropolar space was formulated by Kupradze in [Kup79]. However, a
rigorous treatment of the corresponding boundary value problems in the an-
tiplane case when waves propagate in an infinite cylinder of any arbitrary cross
section in the direction of the generators of the cylinder or in the unbounded
antiplane space is, to the author’s knowledge, still absent from the litera-
ture. The main difficulties arising here are when we try to apply Helmholtz’s
theorem to a solution of the governing equations in the exterior domain. The
decomposition is not as straightforward as in classical elasticity. Only one part
satisfies a Helmholtz equation, and so we can impose only one Sommerfeld-
type radiation condition.

In this chapter, we introduce time dependency into the theory of antiplane
micropolar elasticity presented in [PSM05] by considering the case where all
applied forces, and hence, displacement, strain, and stress components are
periodic functions of time. Furthermore, we find that uniqueness is guaranteed,
provided that the frequency of oscillation is greater than a fixed constant
multiple of the speed of longitudinal waves in an infinite micropolar medium.
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23.2 Preliminaries

In what follows, Greek and Latin indices take the values 1,2 and 1,2,3, respec-
tively, the convention of summation over repeated indices is understood, and
a superscript T indicates matrix transposition.

Let S be a domain in R
2 bounded by a closed C2-curve ∂S and occupied by

a homogeneous and isotropic linearly elastic micropolar material with elastic
constants λ, µ, α, β, γ, and κ. The state of micropolar antiplane shear is char-
acterized by a displacement field U (x′, t) = (U1 (x′, t) , U2 (x′, t) , U3 (x′, t))T

and a microrotation field φ (x′, t) = (φ1 (x′, t) , φ2 (x′, t) , φ3 (x′, t))T of the
form Uα (x′, t) = 0, U3(x

′, t) = U3 (x, t) , φ3 (x′, t) = 0, φα(x′, t) = φα (x, t) ,
where x′ = (x1, x2, x3) and x = (x1, x2) are generic points in R

3 and R
2,

respectively. In the absence of body forces and moments, we find that the
equations of motion of micropolar antiplane shear written in terms of dis-
placements and microrotations are

L(∂x)U(x, t) = F (x, t), x ∈ S, (23.1)

Here U(x, t) = (U1(x, t), U2(x, t), U3(x, t))T , where the Uα have replaced the
φα, and the matrix partial differential operator L(∂x) = L (∂/∂xα) is defined
by

L (ξ) = L (ξα)

=

⎛
⎝

(γ + κ)∆ − 4α + (β + γ − κ)ξ2
1 (β + γ − κ)ξ1ξ2 2αξ2

(β + γ − κ)ξ1ξ2 (γ + κ)∆ − 4α + (β + γ − κ)ξ2
2 −2αξ1

−2αξ2 2αξ1 (µ + α)∆

⎞
⎠,

with ∆ = ξαξα.
Together with L, we consider the boundary stress operator T (∂x) =

T (∂/∂xα) defined by

T (ξ) = T (ξα)

=

⎛
⎝

(2γ + β) ξ1n1 + (γ + κ) ξ2n2 (γ − κ)ξ2n1 + βξ1n2 2αn2

(γ − κ)ξ1n2 + βξ2n1 (γ + κ) ξ1n1 + (2γ + β) ξ2n2 2αn1

0 0 (µ + α)ξαnα

⎞
⎠,

where n = (n1, n2)
T is the unit outward normal to ∂S,

F (x, t) =

(
J

∂2U1

∂t2
, J

∂2U2

∂t2
, ρ

∂2U3

∂t2

)T

,

ρ is the mass density, and J is the moment of inertia.
Furthermore, we assume that the time dependency is periodic, that is, the

waves are monochromatic; consequently, U(x, t) may be represented in the
form
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U(x, t) = Re[u(x)e−iωt], (23.2)

where ω ∈ R is the frequency of oscillation and u(x) = (u1(x), u2(x), u3(x))T

is some real-valued function.
Substituting (23.2) in (23.1), we find that in terms of u(x) = (u1, u2, u3)

T ,
system (23.1) becomes

⎡
⎣L(∂x) +

⎛
⎝
Jω2 0 0
0 Jω2 0
0 0 ρω2

⎞
⎠
⎤
⎦u(x) = 0. (23.3)

Throughout what follows, we assume the following restrictions on the elas-
tic constants of the material [PSM05]:

2γ + β > 0, κ, α, γ, µ > 0. (23.4)

23.3 Expansion of a Regular Solution

To obtain the analytical solution of (23.3), we have to prove the following
theorem.

Theorem 1. Any regular solution of system (23.3) admits in the domain of
regularity a representation

u(x) =

(
∂Φ

∂x1
− ∂Ψ

∂x2
,
∂Φ

∂x2
+

∂Ψ

∂x1
, u3

)

such that
(∆+ k2

1)(∆+ k2
2)Ψ = 0 (i),

(∆+ k2
1)(∆+ k2

2)u3 = 0 (ii),
(∆+ k2

3)Φ = 0 (iii),

where
k2
1 + k2

2 = 4α2+Jω2−4α+ρω2(γ+ε)
(µ+α)(γ+ε) ,

k2
1k

2
2 = ρω2(Jω2−4α)

(µ+α)(γ+ε) , k2
3 = (Jω2−4α)

2γ+β .

This assertion can be proved by direct verification, following the procedure
discussed in [SC93].

23.4 Radiation Conditions

Let S+ ≡ S and S− ≡ R2\(S+ ∪ ∂S). We now consider solutions of (23.3) in
the domain S−. Clearly, since the domain of interest now extends to infinity,
we must consider the behavior of any solution of (23.3) at infinity.

In the history of uniqueness theorems for oscillation problems, a impor-
tant role was played by the Sommerfeld-type radiation conditions for the
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Helmholtz equation. They were later generalized for the elastodynamic prob-
lem by Kupradze [Kup65]. To proceed, we establish suitable radiation condi-
tions and asymptotic estimates for the functions Ψ(x), Φ(x), and u3(x).

Definition 1. Let x ∈ S−. If, as |x| = R → ∞,

Ψ(x) = o(R−1/2),
∂Ψ

∂xα
(x) = O(R−1), (23.5)

Φ(x) = O(R−1/2),
∂Φ

∂R
(x) − ik3Φ(x) = o(R−1/2), (23.6)

u3(x) = o(R−1/2),
∂u3

∂xα
(x) = O(R−1), (23.7)

we say that the regular solution u(x) = ( ∂Φ
∂x1

− ∂Ψ
∂x2

, ∂Φ
∂x2

+ ∂Ψ
∂x1

, u3) satisfies the
radiation conditions.

23.5 Boundary Value Problems

Let f and g be continuous (3 × 1) matrices prescribed on ∂S. Consider the
following Dirichlet and Neumann boundary value problems in the exterior
domain S−.

(D−) Find a regular solution u of (23.3) in the domain S−, satisfying the
radiation conditions (23.5)–(23.7) and the boundary condition

u(x) = f(x), x ∈ ∂S.

(N−) Find a regular solution u of (23.3) in the domain S− satisfying the
radiation conditions (23.5)–(23.7) and the boundary condition

T (∂x, n)u(x) = g(x), x ∈ ∂S,

where n is the unit outward normal to ∂S.

23.6 Uniqueness Theorem

Theorem 2. If ω2 > 4α/J , then (D−) and (N−) have at most one solution.

Proof. To verify this, it is enough to show that in the case of homogeneous
Dirichlet or Neumann boundary conditions the solution is identically zero.
Consider system (23.3). As stated above, it is clear that finding an analytical
solution to (23.3) is equivalent to determining functions Φ and Ψ that satisfy
(23.4).

Let Ω = (∆+k2
2)Ψ. Then, by Theorem 1(i), (∆+k2

1)Ψ = 0 in S−. Consider
the integral
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∫

∂KR

|Ω|2 dS,

where ∂KR is the circumference of a circle, radius R, sufficiently large to
enclose ∂S. Using the asymptotic estimates (23.5) for Ψ , it is a straightforward
exercise to show that

lim
R→∞

∫

∂KR

|Ω|2 dS = 0. (23.8)

Since Ω solves a Helmholtz equation with k2
1 > 0, we can use (23.8) and

Rellich’s lemma citeKupradze2 to deduce that Ω = 0 in S−; that is,

(∆ + k2
2)Ψ = 0 in S−.

As above, (23.5) gives us that

lim
R→∞

∫

∂KR

|Ψ |2 dS = 0.

Rellich’s Lemma with k2
2 > 0 then leads us to

Ψ = 0 in S−. (23.9)

Similarly, starting from (ii), we obtain

u3 = 0 in S−. (23.10)

Applying the reciprocity relation for the elastostatic antiplane shear deforma-
tions of Cosserat solids [PSM05] to a regular solution of (23.3) in the bounded
region S− ∩ KR, we obtain

∫

∂S+KR

[
uT Tu − uT Tu

]
dS = 0. (23.11)

Next, following standard procedures for uniqueness proofs in the theory of
boundary value problems, we impose zero Dirichlet or Neumann conditions
on ∂S, so that (23.11) becomes

∫

KR

[
uT Tu − uT Tu

]
dS = 0. (23.12)

Furthermore, substituting the representation of u(x) given in Theorem 1 into
(23.12), taking into account (23.6) and the conditions (23.4) imposed on the
elastic constants, and following exactly the procedure described in [SC93] to
prove the uniqueness theorems for oscillations of plates, we obtain, as R → ∞,

lim
R→∞

∫

∂KR

|Φ|2 dS = 0. (23.13)

Theorem 1(ii), (23.13), and Rellich’s lemma now imply that
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Φ = 0 in S−. (23.14)

Hence, in view of (23.9), (23.10), and (23.14),

u(x) = 0 in S−,

which completes the proof.

Remark 1. The condition ω2 > 4α/J is necessary to ensure that k2
i > 0 and

hence the use of Rellich’s Lemma.
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24.1 Statement of the Problems

In this chapter, we propose a new way of understanding the classical exte-
rior Dirichlet and Neumann problems for the Helmholtz equation as limiting
situations of transmission problems, and study the stability of this limiting
process under discretization. This kind of problems appear in the study of the
scattering of time-harmonic acoustic and thermal waves.

We assume that Ωint ⊂ R
d, d = 2 or 3, is a bounded, simply connected,

open set with smooth boundary Γ . If the obstacle is impenetrable, then the
scattering amplitude of a time-harmonic wave with wavenumber λ2 solves
an exterior Dirichlet or Neumann problem for the Helmholtz equation ∆u +
λ2u = 0 in Ωext := R

d \ Ωint. It satisfies the Sommerfeld radiation condition
at infinity

lim
r→∞

r
d−1
2 (∂ru − ıλu) = 0,

uniformly in all directions x/|x| ∈ R
d, r := |x| (see [CK83]). When waves can

propagate through Γ , that is, when the obstacle is penetrable, and the physical
properties in both media are different, the problem in Ωint is modeled by
∆u + µ2u = 0. Both Helmholtz equations are coupled through two continuity
conditions of the form

uint − uext = f, on Γ ,

α ∂nuint − β ∂nuext = β g, on Γ .

Typically, f = uinc and g = ∂nuinc are the Cauchy data on Γ of an incident
wave, a known solution to the exterior Helmholtz equation. In acoustics, µ2 is
proportional to ρ/α2, where ρ is the density and α the velocity of transmission
in Ωint. For thermal waves, µ2 is proportional to ıρ/α, where ρ is the density
multiplied by the specific heat capacity and α is the conductivity. General
conditions on the parameters λ, µ, α, and β guaranteeing uniqueness can be
found in [RS06a] and the references therein.



208 M.-L. Rapún and F.-J. Sayas

Dirichlet, Neumann, and transmission problems have been studied suc-
cessfully from both the analytical and the numerical points of view in a wide
number of works with a special emphasis on the study of acoustic waves (see
for instance [CK83], [CS85], [KM88], [KR78], and [TW93]). More recently,
Helmholtz transmission problems have also appeared in the study of scatter-
ing of thermal waves (see [Man01], [RS06a], and [TSS02]).

When studying the behavior of the solution to the transmission problem
depending on the interior parameters, physical experiments as well as numeri-
cal simulations seem to point out that, for a fixed interior wave number, when
the parameter α tends to zero, the solution to

(Pα)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆uα + λ2uα = 0, in Ωext,

∆uα + µ2uα = 0, in Ωint,

uint
α − uext

α = f, on Γ ,

α ∂nuint
α − β ∂nuext

α = β g, , on Γ ,

lim
r→∞

r
d−1
2 (∂ruα − ıλuα) = 0,

tends to the solution to the exterior Neumann problem

(PN )

∣∣∣∣∣∣∣∣

∆uN + λ2uN = 0, in Ωext,

∂nuN = −g, on Γ ,

lim
r→∞

r
d−1
2 (∂ruN − ıλuN ) = 0,

whereas if α goes to infinity, the solution (Pα) converges to the solution of the
exterior Dirichlet problem

(PD)

∣∣∣∣∣∣∣∣

∆uD + λ2uD = 0, in Ωext,

uD = −f, on Γ ,

lim
r→∞

r
d−1
2 (∂ruD − ıλuD) = 0.

This can also be seen by taking limits formally. The aim of this work is to
give a rigorous proof of these facts, providing the corresponding convergence
rates. We want to point out that we are restricting ourselves to a particular
family of transmission problems where only one of the two interior parameters
varies. In this case we will show linear convergence. To improve our estimates,
both interior parameters would have to converge to zero in the Neumann case
or to infinity in the Dirichlet one. In view of numerical experiments in the
two-dimensional setting, we believe that for the case of the Dirichlet problem,
the faster the modulus of the interior wavenumber increases, the higher the
convergence rate is, although we cannot predict any rate in terms of it. On the
other hand, for the Neumann problem, we have not observed any substantial
improvement by making the interior wavenumber tend to zero. At the current
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stage of our research, we cannot prove the results when both parameters vary,
since our study is based on the very simple fact that all the integral operators
involved in the boundary formulation do not depend on α. Taking into account
that the fundamental solution depends on the wavenumber, our study cannot
be adapted easily to the case of a family of transmission problems depending
on both interior parameters.

24.2 Boundary Integral Formulations

Since we are dealing with exterior problems, a suitable way of inspecting them
is by using boundary integral formulations. We introduce the fundamental
solution to the Helmholtz equation ∆u + ρ2u = 0,

φρ(x,y) :=

{
ıH

(1)
0 (ρ |x − y|)/4, if d = 2,

exp(ı ρ|x − y|)/(4π|x − y|), if d = 3,

and the single-layer potential

Sρϕ :=
∫

Γ
φρ( · ,y)ϕ(y) dγy : R

d −→ C.

We also define the boundary integral operators

V ρϕ :=
∫

Γ
φρ( · ,y)ϕ(y) dγy : Γ −→ C,

Jρϕ :=
∫

Γ
∂n( · )φρ( · ,y)ϕ(y) dγy : Γ −→ C.

We recall some well-known properties of the integral operators above (see
[McL00]): (i) the bounded operator V ρ : H−1/2(Γ ) → H1/2(Γ ) is invertible if
and only if −ρ2 is not a Dirichlet eigenvalue of the Laplace operator in Ωint;
(ii) the bounded operator − 1

2I + Jρ : H−1/2(Γ ) → H−1/2(Γ ) is invertible;

and (iii) the bounded operator 1
2I + Jρ : H−1/2(Γ ) → H−1/2(Γ ) is invertible

if and only if −ρ2 is not a Neumann eigenvalue of the Laplace operator in
Ωint.

We will use indirect formulations in terms of single-layer potentials that
can fail if either −µ2 or −λ2 are Dirichlet eigenvalues of the Laplace operator
in Ωint and if −µ2 is a Neumann eigenvalue of the Laplacian in Ωint. To avoid
these particular cases, we can adapt our results to the indirect formulation
proposed in [RS06b] and based on Brakhage–Werner potentials.

The solution to the Dirichlet problem (PD) can be represented as uD =
SλψD, where ψD is the unique solution to

V λψD = −f. (24.1)

The solution to the Neumann problem (PN ) is uN = SλψN , where ψN is the
unique solution to
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( 1
2I − Jλ)ψN = g. (24.2)

Finally, the solution to the transmission problem (Pα) can be obtained as
uα = Sλψα in Ωext and uα = Sµϕα in Ωint, with (ψα, ϕα) solving

Hα

[
ϕα

ψα

]
:=

[
V µ −V λ

α( 1
2I + Jµ) β( 1

2I − Jλ)

][
ϕα

ψα

]
=

[
f

β g

]
. (24.3)

The proof of these results can be found in [CZ92, Chap. 7] and [RS06a].

24.3 Convergence Analysis

We start by noticing that if x ∈ Ωext, then

|uα(x)−u∗(x)| = |Sλ(ψα−ψ∗)(x)| = |〈ψα−ψ∗, φλ(x, · )〉| ≤ Cx‖ψα−ψ∗‖−1/2,

where the subscript “∗” stands for either D or N . Therefore, the study of
pointwise convergence in Ωext can be carried out by analyzing the convergence
of the densities in H−1/2(Γ ). Indeed, here we use the natural H−1/2(Γ )-norm,
but when using a weaker or stronger norm, one obtains the same convergence
rate in terms of α. The only difference is the constant appearing in the esti-
mate. In any case, it does not depend on α, but depends on x. It only blows
up when we are close to Γ and it is uniformly bounded in the exterior of any
ball containing Γ when λ �∈ R, whereas for λ ∈ R, uniform boundedness is
only assured in compact sets.

Proposition 1. Consider the operators

A := (1
2I + Jµ)(V µ)−1 : H1/2(Γ ) → H−1/2(Γ ),

D := β−1( 1
2I − Jλ)−1AV λ : H−1/2(Γ ) → H−1/2(Γ ),

Hα := β( 1
2I − Jλ) + αAV λ : H−1/2(Γ ) → H−1/2(Γ ).

Then

(a) If |α| < ‖D‖−1, then Hα is invertible. Moreover,

‖H−1
α ‖ ≤ C, ∀ |α| ≤ α0 < ‖D‖−1.

(b) If |α| > ‖D−1‖, then Hα is invertible. Moreover,

‖H−1
α ‖ ≤ C |α|−1, ∀ |α| ≥ α0 > ‖D−1‖.

(c) If either |α| < ‖D‖−1 or |α| > ‖D−1‖, then

ψα = H−1
α (−αAf + β g) . (24.4)
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Proof. First, we assume that |α| < ‖D‖−1 and decompose

Hα = β( 1
2I − Jλ)(I + αD). (24.5)

Applying the geometric series theorem (see [AH01, Theorem 2.3.1]), we deduce
that Hα is invertible. Furthermore, for all |α| ≤ α0 < ‖D‖−1,

‖H−1
α ‖ ≤ ‖β−1( 1

2I − Jλ)−1‖‖(I + αD)−1‖ ≤ C

1 − |α|‖D‖ ≤ C ′.

For |α| > ‖D−1‖, the proof is completely analogous: We now decompose

Hα = αAV λ(I + α−1D−1), (24.6)

to deduce the invertibility of Hα and the uniform bound

‖H−1
α ‖ ≤ |α|−1‖(V λ)−1A−1‖‖(I + α−1D−1)−1‖ ≤ C |α|−1

1−|α|−1‖D−1‖ ≤ C ′|α|−1,

for all |α| ≥ α0 > ‖D−1‖. Finally, to show (c), we remark that

Hα =

[
I 0

αA I

][
V µ −V λ

0 Hα

]
,

with Hα being the operator introduced in (24.3). By (a) and (b), the operator
Hα is invertible for the considered values of α, and

H−1
α =

[
(V µ)−1 (V µ)−1V λH−1

α

0 H−1
α

][
I 0

−αA I

]

=

[
(V µ)−1(I − αV λH−1

α A) (V µ)−1V λ H−1
α

−α H−1
α A H−1

α

]
.

Finally, the result follows readily from (24.3).

Proposition 2. (a) For all |α| ≤ α0 < ‖D‖−1 ,

‖ψα − ψN‖−1/2 ≤ C |α|.

(b) For all |α| ≥ α0 > ‖D−1‖ ,

‖ψα − ψD‖−1/2 ≤ C |α|−1.

Proof. (a) From (24.2) and (24.4) it follows that

ψα − ψN = −α H−1
α Af +

(
β H−1

α − ( 1
2I − Jλ)−1

)
g,

and, by (24.5), we can write
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β H−1
α − ( 1

2I − Jλ)−1 = β H−1
α − β(I + αD)H−1

α = −αβDH−1
α .

Applying Proposition1(a), we now easily deduce the result. To prove (b), we
proceed likewise: by direct computation using (24.1) and (24.4), we see that

ψα − ψD =
(
−αH−1

α A + (V λ)−1
)
f + βH−1

α g,

and, by (24.6), we have

−αH−1
α A + (V λ)−1 = −αH−1

α A + (α I + D−1)H−1
α A = D−1H−1

α A.

The result is now a consequence of Proposition1(b).

Corollary 1. (a) The solution of (Pα) converges to the solution of (PN ) in
Ωext as α → 0. Moreover, for all |α| ≤ α0 < 1/‖D‖,

|uα(x) − uN (x)| ≤ Cx|α|, x ∈ Ωext.

(b) The solution of (Pα) converges to the solution of (PD) in Ωext as α → ∞.
Moreover, for all |α| ≥ α0 > ‖D−1‖,

|uα(x) − uD(x)| ≤ Cx|α|−1, x ∈ Ωext.

24.4 Convergence at the Discrete Level

In this section, we describe briefly how the previous study applies when dealing
with numerical approximations to (PD), (PN ), and (Pα) obtained by an ab-
stract class of discretizations sharing some common features. The hypotheses
we will specify shortly are satisfied by a wide number of numerical methods;
in particular, all the abstract Petrov–Galerkin schemes analyzed in [RS06a]
fall into that setting, along with the quadrature methods studied in [DRS06].

We will assume that all the densities involved in the numerical solution
to the corresponding boundary integral equations are approximated in a dis-
crete space Xm of dimension m. In principle, Xm could not be a subspace
of H−1/2(Γ ) as happens when using quadrature methods where the discrete
space is formed by Dirac delta distributions. As in the continuous case, the
considered norm does not add any difficulty as indicated at the beginning of
Section 24.3. We also assume that in order to compute the coordinates of the
approximate densities in a basis of Xm, one has to solve linear systems of
equations of the form

V λ
mψm

D = −fm, (24.7)

(1
2Im − Jλ

m)ψm
N = gm, (24.8)

[
V µ

m −V λ
m

α( 1
2Im + Jµ

m) β( 1
2Im − Jλ

m)

][
ϕm

α

ψm
α

]
=

[
fm

β gm

]
, (24.9)
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for (PD), (PN ), and (Pα), respectively, where the matrices V λ
m, Im, Jλ

m, V µ
m,

and Jµ
m do not depend on α. Obviously, to have a unique solution in (24.7)–

(24.9), the corresponding matrices have to be invertible. Then, with the same
arguments as in Propositions 1 and 2, the following bounds can be proven:

‖ψα − ψN‖ ≤ C |α|, ∀ |α| ≤ α0,

‖ψα − ψD‖ ≤ C |α|−1, ∀ |α| ≥ α1,

where ‖ · ‖ is any norm in C
m. From here one deduces the same kind of

bounds for the densities in the norm of Xm. If the approximate solutions to
(PD), (PN ), and (Pα) are defined by simply introducing the discrete densities
obtained in (24.7)–(24.9) in the definition of the single-layer potentials, then
results analogous to those in Corollary 1 can be derived straightforwardly.

24.5 Numerical Examples

This last section is devoted to numerical illustrations in the two-dimensional
setting. The numerical method we use here is an easy-to-implement quadra-
ture method proposed in [DRS06].

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−3

−2.5

−2

−1.5

−1

−0.5

0

Fig. 24.1. Geometry of the problem.

We have considered the nonconvex domain represented in Figure 24.1,
whose boundary is smooth. The physical parameters are λ = µ = 1 + ı and
β = 1, which correspond to a problem of scattering of thermal waves. We
have taken uinc(x1, x2) := exp(−ıλx2) as incident wave and have computed
the total wave

uinc + uα in Ωext, uα in Ωint,
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for some different values of α. In Figure 24.2, we represent the modulus of the
total wave for five transmission problems with decreasing values of α as well
as the modulus of the total wave that solves the exterior Neumann problem.
Notice that the solution for α = 1 is the planar incident wave.

α = 1 α = 0.5 α = 0.25

α = 0.125 α = 0.0625 Neumann

Fig. 24.2. α = 1, 1/2, 1/4, 1/8, 1/16, and the Neumann exterior problem.

α = 1 α = 3 α = 9

α = 27 α = 81 Dirichlet

Fig. 24.3. α = 1, 3, 9, 27, 81, and the Dirichlet exterior problem.
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In Table 24.1, we write the errors EN
abs := maxi |uα(xi) − uN (xi)| and

EN
rel := maxi (|uα(xi)− uN (xi)|/|uN (xi)|), where xi are the 50× 50 points in

the rectangle [−2, 1.5]× [−3, 0] represented in Figure 24.1. The corresponding
estimated convergence rates (ecr) are computed by comparing errors for con-
secutive values of α in the usual way. It is clear that these numerical results
fit with the theoretical ones.

We now solve the same problem for increasing values of α. In Figure 24.3,
we represent the modulus of the total wave solution for the transmission and
Dirichlet problems. Relative and absolute errors at the points xi are written on
the right of Table 24.1. Notice that in this case, although absolute errors have
almost the same size as in the Neumann case, relative errors are now really
large. This is not surprising, since the total wave in the Dirichlet problem is
almost zero in the shadow of the obstacle.

Acknowledgement. The authors are partially supported by MEC/FEDER Project
MTM-2004-01905, Gobierno de Navarra Project Ref. 18/2005, and by DGA-Grupo
Consolidado PDIE.

Table 24.1. Absolute and relative errors for the Neumann and Dirichlet problems.

α EN
abs ecr EN

rel ecr

10−1 5.95 ·10−2 1.24 ·10−1

10−2 6.33 ·10−3 0.97 1.34 ·10−2 0.96
10−3 6.37 ·10−4 0.99 1.35 ·10−3 0.99
10−4 6.37 ·10−5 0.99 1.35 ·10−4 0.99
10−5 6.37 ·10−6 0.99 1.35 ·10−5 0.99

α ED
abs ecr ED

rel ecr

101 2.30 ·10−1 5.00 ·102

102 2.77 ·10−2 -0.91 7.01 ·10 -0.85
103 2.82 ·10−3 -0.99 7.25 -0.98
104 2.82 ·10−4 -0.99 7.28 ·10−1 -0.99
105 2.82 ·10−5 -0.99 7.28 ·10−2 -0.99
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25.1 Introduction

The history of boundary element methods (BEMs) for elliptic boundary value
problems is the result of a combination of many different approaches. The ori-
gins of the method, from a purely theoretical point of view, can be traced back
to the first studies of integral equations and, hence, to the birth of functional
analysis. It was the development of Fredholm theory that first gave an impulse
to numerical methods that reformulate a boundary value problem (BVP) on
the boundary of the domain and then solve an integral equation by any method
available. These first essays are centered on the use of integral equations of
the second kind. Later on, when the ellipticity of some important boundary
integral operators was proved, the type of boundary integral equation of inter-
est changed drastically to integral equations of the first kind. In addition, the
ellipticity of the equations proved the adequacy of using Galerkin methods. It
was back then that a main bifurcation happened between the mathematical
and the engineering literature on BEM. The gap is now much deeper than the
well-known duplication of efforts in the finite element world.

A priori, theorists in the mathematical community and some practitioners
in the realm of physics have preferred boundary integral formulations that
lead to equations where Galerkin methods can be employed. In part because
of the additional integration process that Galerkin methods impose, there has
been a preference for indirect formulations. In these, a potential is proposed as
a solution of the partial differential equation. Imposition of boundary condi-
tions leads to boundary integral equations. The unknown is a density without
a clear physical meaning, if it has any at all. On the side of advantages, equa-
tions are simpler, data do not appear under the action of integral operators
and there is a clear knowledge of how the numerical methods converge, with
some well-understood superconvergence phenomena in weak norms. However,
in addition to the fact that we are computing something that has no physical
interpretation (it is the numerical input of a function that gives the approx-
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imate solution of the BVP), these equations fail to be well posed in some
relevant situations.

It has been advocated by the more practically-oriented community of
boundary element developers to insist in using direct formulations. These arise
from taking Green’s third formula (actually, its adaptation to the particular
elliptic operator) and substituting the data in it. Then the unknowns are the
remaining Cauchy data. Even when the operator involved in the equation is
not invertible, the equation is always solvable and all possible solutions are
valid from the point of view of reconstructing the solution of the BVP. We
are nevertheless faced with having the data under the action of an integral
operator. Typically, practitioners have preferred collocation methods to par-
tially compensate for this problem, even though there is no strong theoretical
support for their general convergence.

There is, however, an additional aspect of the practical literature on BEM
that is usually ignored by theorists. Even the most elementary texts treat the
equations as if all the boundary data were unknown and discretizing all the
integral operators. Only in a final step, data are plugged into the equation.
This approach further simplifies the need of approximating integrals in the
practical implementation of the method and makes these implementations
more reusable for different boundary value problems.

In this paper we are going to explain, with a collection of very simple
examples, how to profit from this idea in the context of Galerkin or Petrov-
Galerkin methods. In some cases, we will construct methods that preprocess
data before inputting them in the discrete equations. In some other cases, we
will develop methods based on the theory of a mixed finite element method
(FEM), where this projection of data and the computation of the unknowns
are done simultaneously.

To fix the language of Petrov-Galerkin methods for operator equations (or
variational problems), we refer to Section 25.4, where we will shortly review
some important results. Proofs thereof, albeit in a very different language,
can be found in [K99]. Results on inf-sup conditions and problems with mixed
structure can be found in [BF91]. For theoretical aspects on boundary inte-
gral operators, we refer the reader to [M00] and its extensive bibliography. A
very thorough exposition of the basic theory of Sobolev spaces on Lipschitz
boundaries can be found in the same monograph.

From among the many, and sometimes conflicting, notations for potentials
and integral operators, we will be using those of George Hsiao (see Section 25.2
and [GH95], for example). The angled bracket 〈 · , · 〉 will be used to denote
the H−1/2(Γ ) × H1/2(Γ )-duality product that arises from identifying L2(Γ )
with its dual space. The norm on Hr(Γ ) will be denoted simply by ‖ · ‖r.
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25.2 Model Problem, Potentials, and Operators

As a very simple model problem, where we can concentrate on the boundary
operators avoiding some unimportant technicalities, we will consider Yukawa’s
equation in an exterior domain. Let then Γ be the boundary of a Lipschitz
domain (connectedness of this domain is not necessary), and let Ω be the
exterior of this domain. We then consider the problem

u ∈ H1(Ω), −∆u + u = 0 in Ω, (25.1)

together with Dirichlet or Neumann boundary conditions on Γ . The domain
Ω being unbounded, the hypothesis u ∈ H1(Ω) requires a certain behavior at
infinity. Because of the ellipticity of the problem, we do not need to impose
any kind of radiation condition.

Let Φ be the fundamental solution (Green’s function in free space) of the
Yukawa operator:

Φ(x,y) :=

⎧
⎪⎨
⎪⎩

1
2π K0(|x − y|) in two dimensions,

exp(−|x − y|)
4π|x − y| in three dimensions.

In connection with it, we define the single-layer and double-layer potentials
on Γ by

Sλ :=

∫

Γ

Φ( · , y)λ(y)dγ(y),

Dϕ :=

∫

Γ

∂ν(y)Φ( · , y)ϕ(y)dγ(y).

The four (generalized) integral operators

V λ :=

∫

Γ

Φ( · , y)λ(y)dγ(y),

Ktλ :=

∫

Γ

∂ν( · )Φ( · , y)λ(y)dγ(y),

Kϕ :=

∫

Γ

∂ν(y)Φ( · , y)ϕ(y)dγ(y),

Wϕ := −∂ν( · )

∫

Γ

∂ν(y)Φ( · , y)ϕ(y)dγ(y)

enable us to write the trace and normal derivative of these potentials (see
[M00] for these limits and the corresponding mapping properties in Sobolev
spaces). We recall that compactness of K : H1/2(Γ ) → H1/2(Γ ) requires some
degree of smoothness of Γ : It is sufficient to assume Lyapunov regularity,
which excludes polygonal or polyhedral boundaries.
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Green’s third formula states that any solution of (25.1) satisfies

u = Dϕ− Sλ in Ω, where ϕ := γu, λ := ∂νu. (25.2)

Because of the expression for the limits of the layer potentials (they are some-
times referred to as the jump properties of the potentials), the Cauchy data
(ϕ, λ) ∈ H1/2(Γ ) ×H−1/2(Γ ) of any solution of (25.1) satisfy

V λ+ (1
2I −K)ϕ = 0, (25.3)

( 1
2I +K ′)λ+Wϕ = 0. (25.4)

The operators V and W are elliptic; i.e., there exist positive constants CV

and CW such that

〈λ, V λ〉 ≥ CV ‖λ‖2
−1/2 ∀λ ∈ H−1/2(Γ ),

〈Wϕ,ϕ〉 ≥ CW ‖ϕ‖2
1/2 ∀ϕ ∈ H1/2(Γ ).

25.3 Exterior Boundary Value Problems

25.3.1 The Dirichlet Problem and the First Formula

Consider the Dirichlet problem, composed by joining (25.1) and

u = g0 in Γ . (25.5)

Recall the representation formula (25.2) for u in terms of its Cauchy data.
A direct boundary integral formulation for (25.1), (25.5) can be deduced by
considering (25.3) as an integral equation with λ ∈ H−1/2(Γ ) as unknown,
after plugging g0 in place of ϕ and moving that term to the right-hand side.
This is obviously equivalent to the following integral system with a trivial
upper triangular structure:

⎡
⎢⎢⎣

(λ, ϕ) ∈ H−1/2(Γ ) ×H1/2(Γ ),

V λ+ (1
2I −K)ϕ = 0,

ϕ = g0.

Now take three sequences of finite-dimensional spaces

X
−1/2
h , Z

−1/2
h ⊂ H−1/2(Γ ), Y

1/2
h ⊂ H1/2(Γ )

(henceforth the numerical superscript ±1/2 will be used to recall in which
of H±1/2(Γ ) the discrete space is imbedded). We then consider the Petrov–
Galerkin scheme
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⎡
⎢⎢⎢⎣

(λh, ϕh) ∈ X
−1/2
h × Y

1/2
h ,

〈µh, V λh〉 + 〈µh, (
1
2I −K)ϕh〉 = 0 ∀µh ∈ X

−1/2
h ,

〈ξh, ϕh〉 = 〈ξh, g0〉 ∀ξh ∈ Z
−1/2
h .

(25.6)

Note that testing the first equation with the same space where we look for the
first unknown is suggested by the ellipticity of V . Then, to square the system,

we need that dimZ
−1/2
h = dimY

1/2
h . The second group of equations is equiv-

alent to preprocessing the datum g0 before substituting it under the action of
the integral operator K. From a practical point of view, this operation is done
beforehand. The following result follows from some standard manipulations
at the discrete level. For the language on stability and convergence, as well as
to see the meaning of the symbol �, see Section 25.4.

Theorem 1. Stability of the method is equivalent to

sup
0 �=ξh∈Z

−1/2
h

|〈ξh, ϕh〉|
‖ξh‖−1/2

� ‖ϕh‖1/2 ∀ϕh ∈ Y
1/2
h . (25.7)

For instance, if Y
1/2
h ⊂ H1(Γ ) and the following conditions hold:

sup
0�=ξh∈Z

−1/2
h

|〈ξh, ϕh〉|
‖ξh‖−r

� ‖ϕh‖r ∀ϕh ∈ Y
1/2
h , r ∈ {0, 1}

(these ones are a priori simpler to verify, since they do not involve fractional
Sobolev norms), then (25.7) follows by interpolation.

The simplest example is taking Z
−1/2
h := TY

1/2
h , where T : H1/2(Γ ) →

H−1/2(Γ ) is the operator associated with the Riesz–Fréchet representation of
the dual of H1/2(Γ ) as itself; that is, for ξ ∈ H1/2(Γ ), 〈Tξ, · 〉 := 〈ξ, · 〉1/2.

This is equivalent to using the nonlocal H1/2(Γ )−inner product in the pre-

processing step of (25.6). A second simple option is taking Z
−1/2
h = Y

1/2
h .

Then (25.7) is the H1/2(Γ )-stability of the L2(Γ )-orthogonal projection onto

Y
1/2
h , which is related to some traditional problems in the field of parabolic

problems. This property is satisfied by spectral-type spaces, like trigonometric
polynomials in two dimensions and spherical harmonics in three, or by piece-
wise polynomial spaces on quasiuniform meshes. In fact, in all those cases, the
result is a consequence of the following lemma.

Lemma 1. Assume that there exists ε(h) such that limh→0 ε(h) = 0 and

inf
ϕh∈Y

1/2
h

(
ε(h)‖ϕ− ϕh‖1/2 + ‖ϕ− ϕh‖0

)
� ε(h)‖ϕ‖1/2 ∀ϕ ∈ H1/2(Γ ),

‖ϕh‖1/2 � ε(h)−1‖ϕh‖0 ∀ϕh ∈ Y
1/2
h .

Then (25.7) holds with Z
−1/2
h = Y

1/2
h .

More general choices of spaces satisfying (25.7) usually involve the use of
dual/staggered meshes as in [S03] or [RS06].
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25.3.2 The Neumann Problem and the First Formula

The Neumann problem, i.e., (25.1) and

∂νu = g1 in Γ ,

can be approached with the same formula (25.3), using ϕ as unknown. How-
ever, the situation is very different. The equation is formally one of the second
kind, but Fredholm theory works if K is compact, which calls for additional
regularity of Γ . Note that 1

2I −K is a Fredholm operator even for Lipschitz
boundaries, but its principal part is not 1

2I but something else, when Γ is not
Lyapunov. We thus restrict our attention to these boundaries. The boundary
integral formulation is

⎡
⎢⎢⎣

(λ, ϕ) ∈ H−1/2(Γ ) ×H1/2(Γ ),

V λ+ (1
2I −K)ϕ = 0,

λ = g1.

(25.8)

The approach of Subsection 25.3.1 can be applied here. Although we do not
need to use the ellipticity of V , the reasonable thing to do is still to use
a Galerkin scheme for it. A possibility is then to take two subspaces, with

dimX
−1/2
h = dimY

1/2
h , and do as follows:

⎡
⎢⎢⎢⎣

(λh, ϕh) ∈ X
−1/2
h × Y

1/2
h ,

〈µh, V λh〉 + 〈µh, (
1
2I −K)ϕh〉 = 0 ∀µh ∈ X

−1/2
h ,

〈λh, ρh〉 = 〈g1, ρh〉 ∀ξh ∈ Y
1/2
h .

(25.9)

If we wrote the second group of discrete equations in the first place, we would
easily notice the lower-triangular structure of the system: The data are prepro-
cessed to create a discrete copy λh and are then plugged into the discretization
of (25.3).

Theorem 2. Assuming compactness of K, convergence of (25.9) is attained
provided that

sup
0�=µh∈X

−1/2
h

|〈µh, ϕh〉|
‖µh‖−1/2

� ‖ϕh‖1/2 ∀ϕh ∈ Y
1/2
h , (25.10)

and that the sequences X
−1/2
h and Y

1/2
h are approximating in H−1/2(Γ ) and

H1/2(Γ ), respectively.

The structure of (25.9), as we have written it, recalls, however, also the
theory of mixed problems. Apart from the compact perturbation K and a
factor 1/2 in the first equation, the operator equation (25.8) is one of mixed
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type with elliptic diagonal operator. We can then try (25.9) by dropping the
condition of equality of dimensions of the subspaces. Theorem 2 still holds.

For (25.10), it is necessary that dimX
−1/2
h ≥ dimY

1/2
h . The system cannot

be understood anymore as preprocessing the data and substituting, although
Uzawa-type iterations can be applied to avoid working with the full system.
These methods can be rewritten as a sequence of preprocesses for the data and
substitutions, only in reverse order (solving a sequence of Dirichlet problems
instead of the Neumann one).

25.3.3 Use of the Second Formula

The use of (25.4) as the basic boundary integral equation reverses the roles of
the unknowns in the considerations above. The Neumann problem is now an
elliptic one (W is the associated operator) and works with a simple prepro-
cessing of the incoming datum, not needing the hypothesis on compactness of
K. The Dirichlet problem now leads to an equation of the second kind, and
everything works as above, assuming that K is compact.

25.3.4 Mixed Boundary Conditions

A similar approach can easily be applied to the mixed BVP. We will sim-
ply sketch how the method works. Assume that Γ is subdivided into two
nonoverlapping, nontrivial parts ΓD and ΓN , and that we have the boundary
conditions

u = g0 in ΓD, ∂νu = g1 in ΓN ,

for (25.1). We first create any extension of g0 to H1/2(Γ ), say g̃0. Let H :=
{ρ ∈ H1/2(Γ ) | ρ ≡ 0, in ΓD}. Using (25.3), we can deal with the problem
by writing the system

⎡
⎢⎢⎢⎢⎢⎣

(λ,ϕ0, ρ) ∈ H−1/2(Γ ) ×H ×H1/2(Γ ),

V λ+ (1
2I −K)ϕ0 + (1

2I −K)ρ = 0,

〈λ, χ〉 = 〈g1, χ〉 ∀χ ∈ H,

ρ = g̃0.

Then ϕ = ϕ0+g̃0 is the full Dirichlet datum and λ is the full Neumann datum.
The compactness of K becomes relevant again at the numerical level. We can

use two spaces X
−1/2
h and Y

1/2
h , assuming that dimX

−1/2
h = dimY

1/2
h , and a

third space Hh := Y
1/2
h ∩H. The associated Petrov–Galerkin method

⎡
⎢⎢⎢⎢⎢⎢⎣

(λh, ϕ
0
h, ρh) ∈ X

−1/2
h ×Hh × Y

1/2
h ,

〈µh, V λh〉 + 〈µh, (
1
2I −K)ϕ0

h〉 + 〈µh, (
1
2I −K)ρh〉 = 0 ∀µh ∈ X

−1/2
h ,

〈λh, χh〉 = 〈g1, χh〉 ∀χh ∈ Hh,

〈ηh, ρh〉 = 〈ηh, g̃0〉 ∀ηh ∈ X
−1/2
h ,



224 F.-J. Sayas

preprocesses the extended Dirichlet datum and then works the whole method
in the sense of Subsection 25.3.2.

Theorem 3. Assuming the compactness of K, approximation properties for
all the discrete spaces, and the inf-sup condition

sup
0 �=ξh∈Hh

|〈λh, χh〉|
‖χh‖1/2

� ‖λh‖−1/2 ∀λh ∈ X
−1/2
h ,

the above method converges.

25.3.5 Other

Very similar ideas apply very naturally in transmission problems, be they
treated with systems of boundary integral operators or with coupled interior-
boundary problems, ready for the application of BEM–FEM coupling tech-
niques. Such ideas appear in the background of the analytical and computa-
tional tools developed in [RS06], [RS07], and related work.

25.4 Appendix: Petrov–Galerkin Methods

Consider two Hilbert spaces H1 and H2 and a linear variational problem

[
u ∈ H1,

a(u, v) = ℓ(v) ∀v ∈ H2,
(25.11)

where a : H1 × H2 → R is a continuous bilinear form and ℓ is any element
of the dual of H2. The well posedness of the problem is characterized by the
invertibility of the operator A : H1 → H ′

2

Au := a(u, · ) : H2 → R,

and means that (25.11) is uniquely solvable for any ℓ, and that the solution
operator is bounded. Let Hh

α ⊂ Hα (α ∈ {1, 2}) be two sequences of finite-
dimensional spaces, directed on the parameter h → 0, with the restriction
dimHh

1 = dimHh
2 . A Petrov–Galerkin method for (25.11), associated with

the spaces Hh
1 and Hh

2 , is a scheme of the form

[
uh ∈ Hh

1 ,

a(uh, vh) = ℓ(vh) ∀vh ∈ Hh
2 .

(25.12)

Equations (25.12) are equivalent to a square linear system with the same
dimension as that of the discrete spaces. The concept of stability of the scheme
is that of unique solvability of the equations together with a uniform bound
(for all h and all u)
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‖uh‖ � ‖u‖,
where the expression ah � bh (we will also use the reversed symbol �) means
that there exists a positive constant C > 0, independent of h and of the quan-
tities it multiplies, such that ah ≤ C bh. Stability is equivalent to a uniform
Babuška–Brezzi condition

sup
0�=vh∈Hh

2

|a(uh, vh)|
‖vh‖

� ‖uh‖ ∀uh ∈ Hh
1 . (25.13)

Notice that (25.13) already implies unique solvability of the associated sys-
tem. Because of the Céa–Polski estimate, convergence (i.e., convergence for
arbitrary right-hand sides) is equivalent to stability plus the approximation
property

inf
χh∈Hh

1

‖u − χh‖ h→0−→ 0 ∀u ∈ H1. (25.14)

The sequence of spaces Hh
1 is said to be approximating in H1 if (25.14) holds.

Sometimes stability is only considered in an asymptotic way, that is, beginning
with h small enough. The sense of this is the fact that the equations could be
noninvertible for h large, or that the inherent constant in (25.13) could evolve
to a stable regime as h decreases and the values for h large are nonoptimal.

Proposition 1 (Discrete Fredholm property). Convergence is preserved
under compact perturbations of the operator A; namely, if K is compact, A+K
is one-to-one, and the Petrov–Galerkin method with spaces Hh

1 and Hh
2 is

convergent for A, then the method is convergent for A + K.

Finally, note that if dimHh
1 = dimHh

2 , as we have assumed, then the role
of these spaces in condition (25.13) can be reversed. When the dimensions do
not coincide, the condition ceases to be symmetrical. It is then equivalent to
the injectivity of the discrete operator Ah : Hh

1 → (Hh
2 )′ defined by

Ahuh := a(uh, · ) : Hh
2 → R,

together with the uniform boundedness of its Moore–Penrose pseudoinverse.
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26.1 Introduction

The reciprocity principle put forward in 1864 by Maxwell [Max64] essen-
tially dealt with the application of the principle to structural systems that
involved forces, moments, and their kinematic counterparts. In 1872, Enrico
Betti [Bet72] put forward a more general statement of the theorem of reci-
procity, which is recognized as one of the most significant results in the classi-
cal theory of elasticity. An important discussion of Betti’s reciprocal theorem
given by Truesdell [Tr63] shows that reciprocity in elastomechanics is consis-
tent with the existence of a strain energy function. The most important fea-
ture of the reciprocity property is the ability to link two states through their
corresponding traction and displacement fields governing analogous boundary
value problems. This presents a significant advantage; Betti’s reciprocal theo-
rem continues to be the key identity in development of the boundary element
method in elasticity. The theorem can also be applied successfully in situations
where results of global interest are sought. Examples of these situations in-
clude contact, inclusion, and crack problems in elasticity, where compliances,
stiffness, and stress intensity factors are of interest. Shield [Sh67] and Shield
and Anderson [Sh66] have applied the reciprocal theorem to determine load–
displacement relationships, and examples of the application of the principle
to contact and inclusion problems are given by Selvadurai [Sel00, Sel07].

Here we illustrate the use of Betti’s reciprocal theorem to examine a con-
tact problem, where the conventional formulations of the associated mixed
boundary value problems in elasticity yield a class of integral equations that
are amenable to solution only through numerical techniques. The application
of Betti’s reciprocal theorem on the other hand leads to the development of ei-
ther exact closed form solutions or much simpler integral results for estimates
of engineering interest.
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26.2 A Contact Problem for a Half-Space

The problem involving the direct axisymmetric loading of the rigid circular
punch was examined by Boussinesq [Bou85] using the analogy with potential
theory and later by Harding and Sneddon [Har45], who formulated the mixed
boundary value problem as a set of dual integral equations, reducing them to a
single integral equation of the Abel-type, which was solved in an exact fashion.
As a special case, we restrict attention to the situation where the contact
between a rigid circular indentor with a flat smooth base initiated by the load
P is perturbed by a concentrated normal load Q∗ that acts at an exterior
location on the surface of the half-space (Figure 26.1(a)). The objective is

(a) (b)

Fig. 26.1. Interaction of a rigid indentor and an externally placed load. (a) The
contact problem. (b) The reduced mixed boundary value problem.

to determine the additional axial displacement and rotation of the smooth
indentor as a result of this external load. Since the classical elasticity problem
is linear, we can superimpose the effects of P and Q∗, provided there is no
separation at the smoothly indenting interface. We restrict attention to the
analysis of the interaction between a smoothly interacting rigid indentor with a
flat base with a bilateral contact (i.e., capable of sustaining tensile tractions)
and the externally placed force Q∗. If the contact is bilateral, the smooth
indentor will experience a rigid body translation and a rigid body rotation
during the application of the external load Q∗. We now apply corrective force
resultants in the form of an axial force Q̄ and a moment M̄ , such that the
displacement of the indentor is suppressed (Figure 26.1(b)). The resulting
mixed boundary value problem can be formulated in relation to the half-space
region z ≥ 0, as follows:

uz(r, θ, 0) = 0, 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, (26.1)

σzz(r, θ, 0) = −p(r, θ), 0 ≤ θ ≤ 2π, a < r < ∞, (26.2)

σrz(r, θ, 0) = 0, 0 ≤ θ ≤ 2π, 0 < r < ∞, (26.3)
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where p(r, θ) is an even function of θ.
To solve the mixed boundary value problem, we make use of the Han-

kel transformation-based solutions of the equations of elasticity presented by
Muki [M60]. It can be shown that when the condition (26.3) pertaining to
zero shear tractions is satisfied on z = 0, the displacement uz(r, θ, 0) and the
normal stress σzz(r, θ, 0) can be expressed in the following forms:

[c]uz(r, θ, 0) = 2(1 − ν)

∞∑

m=0

Hm[ξ−2 Ψm(ξ); r] cos mθ,

σzz(r, θ, 0) = −2µ

∞∑

m=0

Hm[ξ−1 Ψm(ξ); r] cos mθ,

where

Hm[Φ(r); ξ] =

∫ ∞

0

r Φ(r) Jm(ξr) dr

is the mth order Hankel operator and Ψm(ξ) are unknown functions to be
determined by satisfying the mixed boundary conditions (26.1) and (26.2).
Assuming that p(r, θ) admits a representation of the form

p(r, θ) = 2µ
∞∑

m=0

gm(r) cos mθ,

we see that the mixed boundary conditions (26.1) and (26.2) yield the follow-
ing sets of dual integral equations for the unknown functions Ψm(ξ):

Hm[ξ−2 Ψm(ξ); r] = 0, 0 ≤ r ≤ a, (26.4)

Hm[ξ−1 Ψm(ξ); r] = gm(r), a < r < ∞. (26.5)

The solution of the dual systems indicated by (26.4) and (26.5) is given by
several authors including Noble [N58] and Sneddon and Lowengrub [Sn69], and
the details will not be repeated. It is sufficient to note that for the concentrated
external loading of the half-space

[g0(r); gm(r)] =
Q∗ a δ(r − λa)

8π2 µ r
[1; 2],

where δ(r − λa) is the Dirac delta distribution and the contact stress distri-
bution at the interface region 0 ≤ r ≤ a is given by

σzz(r, θ, 0) =
2Q∗

π2

∞∑

m=0

( r

λa

)m

cosmθ

∫ ∞

a

tH(λa− t) dt√
λ2a2 − t2 (t2 − r2)3/2

and H(λa− t) is the Heaviside step function. The explicit expression for σzz

in the contact region of the indentor is given by
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σzz(r, θ, 0) =
Q∗ √λ2 − 1

a2π2
√
ρ2 − 1 [λ2 + ρ2 − 2λρ cos θ]

, (26.6)

where ρ = r/a. The result (26.6) can be used to determine the force Q̄ and
the resultant moment M̄ that should be applied to the indentor in order to
maintain the axial displacements zero within the indentor region. It can be
shown that

Q̄ =
2Q∗

π
sin−1

(
1

λ

)
, M̄ = Q∗λa

[
1 − 2

π

{
tan−1

√
λ2 − 1 +

√
λ2 − 1

λ2

}]
.

It remains now to apply equal and opposite force resultants directly to the
rigid punch to render the rigid punch free of force resultants. This aspect
will be discussed in detail in the next section, but it is sufficient to note here
that the displacement of the rigid punch in bilateral smooth contact with the
elastic half-space region under the action of an external surface load Q∗ is
given by

uz(r, θ, 0) =
Q∗(1 − ν)

4µa

[
2

π
sin−1

(
1

λ

)

+
3

2
λ ρ cos θ

{
1 − 2

π
tan−1

√
λ2 − 1 − 2

π

√
λ2 − 1

λ2

}]
, 0 ≤ r ≤ a.

26.3 Solution of the Contact Problem via Betti’s
Reciprocal Theorem

We now apply Betti’s reciprocal theorem of the solution to the nonclassical
contact problem shown in Figure 26.2(a). The auxiliary solution required to
apply Betti’s theorem relates to the problem of a smoothly indenting circular
punch with a flat base, which is subjected to an eccentric load Q∗ acting at
a distance ζa from the center of the indentor (Figure 26.2(b)). The eccentric
loading induces a rigid body displacement w0 at the center of the circular
punch and a rotation ϑ0 within the indentor area. If there is no separation
within the contact region, the displacement boundary conditions associated
with the eccentric loading are

uz(r, θ, 0) = w0, 0 ≤ r ≤ a, (26.7)

uz(r, θ, 0) = ϑ0r cos θ, 0 ≤ r ≤ a. (26.8)

In addition, the traction boundary conditions applicable to problems are

σzz(r, θ, 0) = 0, 0 ≤ θ ≤ 2π, a < r < ∞, (26.9)

σrz(r, θ, 0) = 0, 0 ≤ θ ≤ 2π, 0 ≤ r < ∞. (26.10)
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(a) (b)

Fig. 26.2. The reciprocal states. (a) The contact problem. (b) The auxiliary solu-
tion.

Considering a Hankel transformation development of the governing equations,
the conditions (26.7)–(26.10) yield a set of dual integral equations of the forms

H0[ξ
−1 A1(ξ); r] = w0, 0 ≤ r ≤ a,

H0[A1(ξ); r] = 0, a < r < ∞,

and

H1[ξ
−1 A2(ξ); r] = ϑ0, 0 ≤ r ≤ a,

H1[A2(ξ); r] = 0, a < r < ∞,

where A1(ξ) and A2(ξ) are unknown functions.
The solution of these dual systems is standard, and details are given by

Sneddon [Sn75]. The result of interest to the application of the reciprocal
theorem involves the displacements of the indentor and the region exterior to
the indentor due to the eccentric loading; these can be expressed as follows:

uz(r, θ, 0) =
Q(1 − ν)

4µa

[
1 +

3ζr cos θ

2a

]
, 0 ≤ r ≤ a, (26.11)

uz(r, θ, 0) =
Q(1 − ν)

4µa

[
2

π
sin−1

(a
r

)
+

3ζr cos θ

2a

×
{

1 − 2

π
tan−1

(√
r2 − a2

a

)
− 2a

π

√
r2 − a2

r2

}]
, a ≤ r ≤ ∞.

(26.12)

Consider now the following reciprocal states. The first involves the eccentric
displacement w∗ of the rigid circular indentor at a point within it (ζa, 0, 0), due
to the action of an external normal load Q∗ acting at the location (λa, 0, 0)
(Figure 26.2(a)). The value of w∗ can be obtained from (26.11). The sec-
ond considers the displacement w at an external point on the surface of the
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traction-free half-space (λa, 0, 0) due to the application of an eccentric load
that acts at a point (ζa, 0, 0) within the indentor region (Figure 26.2(b)). The
value of w∗ can be obtained from (26.12). In both cases, the smooth contact is
assumed to be bilateral and it is assumed that no separation takes place at the
contact zone. Furthermore, the choice of θ = 0 is simply to illustrate the reci-
procity relationship and the result can be generalized to include any arbitrary
location both within the indentor region and exterior to it. By comparing
these results, we clearly see that

Q∗ w = Q w∗.

We can generalize the result to include the point of application of Q∗ as
(λa, φ, 0) and the point within the rigid indentor where the displacement is
sought by (ρa, 0, 0). The reciprocal relationship gives the result

w0 =
Q∗(1 − ν)

4µa

[
2

π
sin−1

(
1

λ

)
+

3λρ

2
cos (θ − φ)

×
(

1 − 2

π

{
tan−1

√
λ2 − 1 +

√
λ2 − 1

λ2

})]
.

26.4 The Cable Jacking Test

The cable jacking test refers to an indentation problem where a test plate
resting on the surface of a geologic medium is subjected to loading via a
self-stressing system of reaction points located within the medium. The in-
terpretation of the test results is made through the results of a Boussinesq
indentation problem applicable to the test configuration, void of any influences
of the reaction forces located within the geologic medium. The conventional
method of providing a reaction is to consider an axisymmetric load that is
located along the axis of the indenting plate. (See, e.g., Zienkiewicz and Stagg
[Z67].) The studies by Selvadurai [Sel78], [Sel79] extended the axisymmetric
problem in the theory of elasticity to explicitly evaluate the influence of the
location of the internal axisymmetric equilibrating force. The solution for the
displacement of a smoothly indenting rigid circular plate of radius a that is
subjected to an external axial force and an internal axial force located at a
distance from the rigid plate and acting in a direction opposite to a is given
by

w0 =
P (1 − ν)

4aµ

(
1 − PM

P

{
2

π
tan−1

(a
c

)
+

ac

π(1 − ν)(a2 + c2)

})
.

The extension of the analysis of the cable jacking test to include other forms
of internal load distributions is nonroutine. Consider the test arrangement
shown in Figure 26.3, where the reactive loads are provided by concentrated
equilibrating forces that are located at the interior of the half-space region.
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Fig. 26.3. The cable jacking test in geomechanics.

In this case, the direct formulation of the problem can be performed by
making use of the general approach presented in Section 26.2, except that
the function p(r, θ) is a much more complicated function, associated with the
interior loading of the half-space region by a pair of symmetrically placed
concentrated forces. In contrast, Betti’s reciprocal theorem can be applied
quite conveniently to determine the resulting displacement of the test plate
under the self-stressing loading system shown in Figure 26.3.

Fig. 26.4. Indentation of the half-space by a smooth rigid indentor.

The contact stress distribution at the interface of a rigid smooth plate of
radius a resting on the surface of a half-space and subjected to an axisym-
metric load P ∗ is given by

σzz(r, 0) =
P ∗

πa
√
a2 − r2

.

Integrating this result (see Figure 26.4), we can determine the axial displace-
ment at the interior of the half-space region due to the indentor as follows:

w∗(l, c) =
P ∗(1 − ν)

4µa

[
1

π2

∫ a

0

[∫ 2π

0

1

φ
√
a2 − r2

{
1 +

c2

2(1 − ν)φ2

}
dθ

]
ξdξ

]
,



234 A.P.S. Selvadurai

where
φ = [c2 + l2 + ξ2 − 2cξ cos θ]1/2.

The required solution is the axial displacement w̃ of the rigid circular indentor
due to the action of the reactive concentrated forces P̃ acting at the interior
of the half-space region (Figure 26.5). If smooth bilateral contact is main-

Fig. 26.5. Displacement of the rigid punch in bilateral contact-action of internal
loads.

tained during the application of the reactive loads, then we can apply Betti’s
reciprocal theorem to the two states indicated in Figures 26.4 and 26.5, which
gives w̃ P ∗ = 2P̃ w∗. The net axial displacement of the rigid circular plate
of radius a due to a directly applied load of magnitude P and internal loads
of magnitude P/2 located at the Cartesian coordinate distances (l, 0, c) and
(−l, 0, c) is given by

w =
P (1 − ν)

4µa

(
1 −

[
2

π2

∫ a

0

[∫ 2π

0

1

φ
√
a2 − ξ2

{
1 +

c2

2(1 − ν)φ2

}
dθ

]
ξdξ

])
.

(26.13)
The result (26.13) for the net displacement of the rigid indentor is in an explicit
form that can be evaluated through a numerical integration technique.

26.5 Conclusions

The reciprocity principle proposed by Betti is a powerful tool for the devel-
opment of compact results for problems in classical elasticity. The examples
provided in this chapter deal with specific contact problems. The direct formu-
lation of the contact problems usually involve integral equations that are diffi-
cult to solve analytically; recourse must invariably be made to computational
techniques for their solution. Consequently, using the direct approach, the re-
sult for the load–displacement relationship for a nonclassical contact problem
can be evaluated only as a numerical result. The application of the reciprocal
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theorem, however, enables the development of the load-displacement result
in either a compact integral form or in an exact closed form. In the above
examples, where the external load is located at the surface of the half-space,
the systems of dual integral equations governing the problem involving the
direct formulation can be solved in a convenient way. If the external load-
ing is located at an arbitrary point within the half-space region, the solution
is not as straightforward and can be developed only through the numerical
technique that converts the dual integral equations to either an Abel-type
or a Fredholm-type integral equation of the second kind. The application of
the reciprocal theorem is a more convenient way of developing solutions to
the external load-rigid indentor interaction problem. The main reason for the
ease of application of Betti’s reciprocal theorem stems from the fact that the
auxiliary solutions associated with these problems can be obtained in compact
forms through the solution of a set of dual integral equations. The method-
ologies described in this chapter can be extended to include other classes of
reciprocal relationships associated with inhomogeneous media, elastodynamic
problems, and poroelasticity problems.
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27.1 Introduction

Since its invention in 1986 [BQG86], the atomic force microscope (AFM) has
evolved as a major tool for characterizing materials. Of the several operational
modes of the AFM, the noncontact mode is normally used to determine the
sample surface charge distribution. In this range of tip–sample separation,
the Coulombic interaction between the tip and the sample dominates over
magnetic and van der Waal forces. Despite the simple and explicit expression
of Coulomb’s law, mapping AFM images to sample charge distributions cannot
be done in a straightforward way because of the finite size of the AFM tip
and the roughness of the sample. Thus, researchers have been approaching
this inverse problem from the opposite direction by making efforts to predict
AFM measurements based on assumed sample properties. Numerous models
have been proposed to tackle this electrostatic problem.

For the case in which both the tip and the sample are conductors, some
previous approaches treat the surfaces of these two objects as two equipoten-
tials due to an assumed distribution of source and image charges relative to the
sample surface, for example, a single charge [HXOS95], a series of point charges
[BGL97], or a uniformly charged line [HBS91]. Another approach replaces the
tip with a geometrical object and either solves the Laplace equation in a
closed form (e.g., the spherical-tip model [TSRM89] and the hyperboloidal-
tip model [PSPCM94]) or approximates the electric field lines using circular
arcs and straight lines (e.g., the models that treat the tip as a cone with a
spherical apex [HJGB98] or a parabolic apex [CGB01]). In all of these models,
a geometrical approximation error of the tip is introduced.

On the other hand, numerical schemes have also been developed to com-
pute the tip–sample interaction in which the tip shape information is fully
taken into account (up to the mesh error). Belaidi et al. [BLGLP98] proposed
a finite element setup for this external Dirichlet problem in which the infi-
nite domain (the vacuum outside the tip and the sample) was truncated to
a finitely large cylindrical domain, but this truncated domain still required
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a three-dimensional mesh. In contrast, Strassburg et al. [SBR05] employed a
boundary element method to reconstruct the images of a conductive sample
in which only the tip surface had to be meshed, while the sample surface with
vanishing boundary value was accommodated by an image term in the Green’s
function. However, in [SBR05], the sample is restricted to be conductive.

Independently, we have developed a boundary integral equation approach
similar to that of [SBR05], but our formulation applies not only to conductive
samples but also to dielectric ones, with arbitrary distributions of surface
and/or volumetric charges that can be taken into account; thus, our work is
applicable to a wider range of problems.

27.2 Conductive Sample

27.2.1 Boundary Value Problem

In our model, only the Coulombic interaction between the AFM tip and the
sample is taken into account, whereas both the van der Waal and the magnetic
interactions are ignored, resulting in a classical electrostatic problem. Because
the AFM cantilever only contributes a constant shift to the tip–sample inter-
action (see, e.g., [CGB01]), and the interpretation of AFM images primarily
relies only on the contrast between regions rather than on the actual magni-
tudes of interactions, it seems reasonable that the cantilever not be included
in our model. Furthermore, the tip is truncated to have a height of 100 nm,
assuming that such a height is enough to capture the variation in tip–sample
interaction relative to a homogeneous sample, as the tip scans the sample
while maintaining a constant separation.

The AFM tip is almost always manufactured to be conductive, whereas
the sample may be either conductive or dielectric. If the sample is also con-
ductive, the electrostatic problem becomes an exterior Dirichlet problem with
a single homogeneous domain Ω (the vacuum or air between the tip and the
sample), over which Laplace’s equation (∇2φ = 0) holds, as shown in Figure
27.1. Dirichlet boundary conditions are imposed on both the tip surface Stip

(φ = φ0) and the sample surface Ssam(φ = 0). For simplicity, throughout this
chapter, the sample is assumed to be flat and semi-infinite.

27.2.2 Boundary Integral Equation

Classical potential theory (see, e.g., [JS77]) yields the boundary integral equa-
tion

∫

Stip

G(#r; #r′)σ(#r)dS(#r) = φ0, ∀#r′ ∈ Stip, (27.1)

where
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Fig. 27.1. Schematic of the exterior Dirichlet problem that describes the electro-
static interaction between an AFM tip and a conductive sample.

G(#r; #r′) := Φ(#r − #r′) − Φ(#r − #r′im),

which is the Green’s function that vanishes at the sample surface, Φ(#r− #r′) :=

(4πǫ0|#r − #r′|)−1 being the fundamental solution to the Laplace equation in

free space (ǫ0 = 8.854× 10−12 F/m is the permittivity of vacuum). #r′im is the

image position of the source point #r′ with respect to the sample plane; and

σ(#r) := ǫ0
∂φ(#r)

∂#n�r
,

which is the unknown charge density on the tip surface; #nr is the unit outward
normal of Ω, thus pointing inward on the tip.

27.2.3 Numerical Analysis and Postprocessing

Equation (27.1) is a Fredholm boundary integral equation of the first kind, the
unknown of which is the moment of a single-layer potential. The boundary ele-
ment method was employed to solve it. First, the tip surface was meshed into
either four-node quadrilaterals or eight-node serendipity elements [Beer01,
Chapter 3], and the associated interpolation functions were used to represent
the unknown surface charge density σ(#r) on the tip. Then, the point collo-
cation approach was used to deduce the matrix equation, the unknowns of
which are all the nodal σ values. Thereafter, a biconjugate gradient solver
was employed to solve for these unknowns. We adopted the boundary element
code given in [Beer01] for the assembly and equation-solving processes.

Upon obtaining σ(#r), the tip–sample capacitance C is, by definition, ready
to compute as

C =
1

φ0

∫

Stip

σ(#r)dS(#r).

To calculate the net tip–sample force #f , we integrate the traction associ-
ated with the Maxwell stress over the tip surface as
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fi = −
∫

Stip

σ(#r)2

2ǫ0
n�ridS(#r), (27.2)

where i = 1, 2, 3, denoting the axial directions in the Cartesian coordinate
frame, of which x3 is chosen so as to parallel the tip axis and to point outward
from the flat sample.

To compute the force gradient component ∂fi/∂xtip
j , where #xtip denotes

the tip apex position, we take the derivative of (27.2) with respect to xtip
j and

have
∂fi

∂xtip
j

= −
∫

Stip

σ(#r)

ǫ0

∂σ(#r)

∂xtip
j

nidS(#r), (27.3)

where ∂σ(#r)/∂xtip
j can be computed by taking the derivative of (27.1) with

respect to xtip
j and rearranging the terms to have

∫

Stip

G(#r; #r′)
∂σ(#r)

∂xtip
j

dS(#r) = −
∫

Stip

∂G(#r; #r′)

∂xtip
j

σ(#r)dS(#r), ∀#r′ ∈ Stip. (27.4)

The matrix equation associated with (27.4) has the same coefficient matrix as
that for (27.1) since they have the same integral operator on the unknowns.

27.2.4 Convergence Study

To verify the numerical scheme proposed above, a benchmark problem with
an exact analytical solution is useful. We chose the sphere–plane capacitance
system, and looked up and completed the solution by [Smythe68, Chapter V].
The complete solution is also provided in the Appendix.

We applied the boundary element method to a sphere–plane capacitance
problem corresponding to a typical experimental setup: a sphere with a radius
of 20 nm and a sphere-plane separation of 5 nm. The potential difference
between the sphere and the plane is set to 1 V.

The absolute errors for the different mesh types and mesh sizes in terms of
nodal σ values, capacitance, force, and force gradient are listed in Table 27.1.
The exact solutions for those global quantities are provided in the last row of
Table 27.1. Thus, the relative errors can be obtained by dividing the absolute
errors by the corresponding exact solutions. The average number of iterations
was obtained by averaging the number of iterations in solving the matrix
equations associated with (27.1) and (27.4) using the biconjugate gradient
solver. The convergence criterion was that the elemental relative difference
between two successive steps is less than 10−4. If the resolution of the force is
1 pN, we can deduce the critical mesh parameters to be 2 nm for four-node
quadrilaterals and 8 nm for eight-node serendipity elements. The serendipity
element is favored for less cost in assembly time and better approximation to
the curved tip surface.
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Subsequent results for the tip-sample interaction are, accordingly, based
on the 8 nm serendipity element.

Table 27.1. Convergence study of the sphere–plane capacitance system.

Mesh type A B C D E F G H

10 76 10 5×10−1 1×102 5 1 2
8 108 9.5 3×10−1 8×10 4 6×10−1 2

Four-node 6 165 11.5 2×10−1 5×10 2 1×10−1 1
quadrilateral 4 370 10 1×10−1 2×10 1 9×10−2 5×10−1

2 1406 12 3×10−2 6 3×10−1 1×10−2 1×10−1

1 5480 13.5 7×10−3 2 8×10−2 2×10−3 3×10−2

20 44 11 1 9×10 7 1 3
Eight-node 10 86 11.5 3×10−1 2×10 1 8×10−1 6×10−1

serendipity 8 323 14.5 5×10−2 2 5×10−2 2×10−2 5×10−2

6 485 10 7×10−2 8×10−1 3×10−3 1×10−2 2×10−2

4 1124 12.5 5×10−2 1×10−1 8×10−3 1×10−3 3×10−3

2 4136 16.5 4×10−2 4×10−2 6×10−3 3×10−4 1×10−3

Exact – – – – 3957.47 −84.683 0 46.080
solutions

The designation of the columns in Table 27.1 is as follows:

A: Mesh size (nm).
B: Number of degrees of freedom.
C: Average number of iterations.
D: Nodal L2-error (10−3 C/m2).
E: Error in C (10−21 F).
F: Error in f3 (pN).
G: Error in f12 (pN).

H: Error in ∂f3/∂xtip
3 (pN/nm).

27.3 Dielectric Sample with Arbitrary Surface and/or
Volumetric Charges

27.3.1 Formulation

A dielectric sample is generally no longer an equipotential. It may also have
distributions of surface charge s(#r) and volumetric charge ρ(#r). The partial
differential equations that govern the problem are Laplace’s equation in the
air Ω and Poisson’s equation in the interior of the sample Ωsam, namely:

∇2φ(#r) =

{
0, if #r ∈ Ω,

−ρ(#r)/K, if #r ∈ Ωsam,
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where K denotes the sample’s dielectric constant.
The continuity equation for the sample surface is

∂φ

∂#n
(#r)

∣∣∣∣
Ω

− K
∂φ

∂#n
(#r)

∣∣∣∣
Ωsam

= s(#r) ∀#r ∈ Ssam,

where #n points inward of the sample.
Now, the counterpart of the boundary integral equation (27.1) is
∫

Stip

Ḡ(#r; #r′)σ(#r)dS(#r) = φ0 −
2

1 + K

∫

Ssam

Φ(#r − #r′)s(#r)dS(#r)

− 2

1 + K

∫

Ωsam

Φ(#r − #r′)ρ(#r)dV (#r), ∀#r′ ∈ Stip,

(27.5)

where

Ḡ(#r; #r′) := Φ(#r − #r′) − K − 1

K + 1
Φ(#r − #r′im) ∀#r, #r′ ∈ Ω̄,

which is the Green’s function for the dielectric sample.

27.3.2 Predicted Images for a Test Case

If both s(#r) and ρ(#r) are known, (27.5) can also be solved using the boundary
element method, as in the case for a conductive sample. Furthermore, the
tip-sample forces and their gradients can be obtained via (27.2) and (27.3),
respectively.

Thus, using this framework, we can predict AFM images as the tip scans
a sample with a constant separation. To exemplify this capability, we use
zirconia as a model sample material with a dielectric constant K = 40. This
sample is assumed to have no volumetric charge (ρ(#r) = 0), but only a surface
charge of density

s(#r) = s(x, y) =
s0

3

{
cos

[
k

(
x − y√

3

)]
+ cos

2ky√
3

+ cos

[
k

(
x +

y√
3

)]}
,

where 2π/k = 20 nm, the periodicity of the surface charge and s0 = 17.49
e/nm2, corresponding to the maximum surface charge density of a (111) oxy-
gen lattice plane of zirconia. Such a surface charge may be due to surface
segregation of ions. A contour plot of s(#r) is presented in Figure 27.2. The
AFM tip is assumed to be a cone (with a total cone angle of 30◦) with a
spherical apex (with a radius of 20 nm). The height of the cone is truncated
to be 100 nm. Here we use sizes of serendipity elements finer than 8 nm to
better resolve the sample spatial charge variation (2 nm for the apex and 6
nm for the rest of the tip). In the case of zero DC bias between the tip and the
sample, predicted images in terms of force and force gradient at the separation
of 5 nm are plotted in Figures 27.3 and 27.4, respectively. If the resolution of
the force difference as the tip scans the sample is 1 pN, we can conclude that
such variation in surface charge can be detected by the AFM.
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Fig. 27.2. Assumed sample surface charge density relative to s0.

Fig. 27.3. Predicted image in terms of force component f3 (in pN).

Fig. 27.4. Predicted image in terms of force gradient component ∂f3/∂xtip
3 (in

pN/nm).

27.4 Conclusions

A unified formulation for the AFM tip–sample electrostatic interaction has
been developed in terms of boundary integral equations. To the authors’
knowledge, these are the first such computations for dielectric samples with
charge distributions. The sample in this chapter is restricted to be semi-infinite
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and with a flat surface; however, the extension to a finite-sized, nonflat sample
is not difficult to achieve.

With the Maxwell stress tensor, the AFM image due to electrostatic in-
teraction can be predicted based on the knowledge of the sample and the
experimental condition.

Acknowledgement. This work has been funded by the Global Climate & Energy
Project, Grant No. 33453.

Appendix: Exact Solution for the Sphere–Plane
Capacitance System

In the sphere–plane capacitance system, we assume that the plane (and thus
also the semi-infinite conductor) is grounded and that the sphere of radius a
is at potential φ0. The distance between the sphere center and the plane is
denoted by d.

According to Smythe [Smythe68], the electric field between the sphere and
the plane can be represented by two sets of image charges, one set of which
located inside the spherical conductor and the other set inside the semi-infinite
conductor.

If we establish a Cartesian coordinate frame so that the origin coincides
with the sphere center and the z-axis is normal to the plane, then the equation
of the plane is given by z = −d, without loss of generality.

Smythe’s two sets of image charges are {qn} at {(0, 0,−sn)} and {−qn}
at {(0, 0,−2d + sn)}, n = 1, 2, 3, ..., where

qn := 4πǫ0φ0a sinhαcschnα, sn := a sinh(n− 1)αcschnα,

and α := cosh−1(d/a).
Thus, the axisymmetric potential outside the two conductors, φ(ρ, z),

where ρ := (x2 + y2)1/2, is given by

φ(ρ, z) =
1

4πǫ0

∞∑

n=1

{
qn

[ρ2 + (z + sn)2]1/2
− qn

[ρ2 + (z + 2d− sn)2]1/2

}
.

And the surface charge density on the sphere follows as

σ(ρ, z) = ǫ0 sinhα

∞∑

n=1

cschnα

{
a2 + zsn

[a2 + 2zsn + s2n]3/2

− a2 + 2zd− zsn

[a2 + 2z(2d− sn) + (2d− sn)2]3/2

}
.

The capacitance can be obtained by summing one set of the charges as
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C =
1

φ0

∞∑

n=1

qn = 4πǫ0a sinhα

∞∑

n=1

cschnα.

The force component fz and force gradient component ∂fz/∂d can be
evaluated by taking the first and second derivatives of the capacitance with
respect to d, respectively, as

fz = −1

2
φ2

0

∂C

∂d
= 2πǫ0φ

2
0

∞∑

n=1

cschnα(cothα− n cothnα)

and

∂fz

∂d
=

2πǫ0φ
2
0 sinhα

a

×
∞∑

n=1

cschnα
{
n2csch 2nα− csch 2α+ n cothnα(n cothnα− cothα)

}
.
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28.1 Introduction

The theory of micropolar elasticity (also known as Cosserat or asymmetric
theory of elasticity) was introduced by Eringen [Er66], to eliminate discrepan-
cies between the classical theory of elasticity and experiments in cases when
effects of material microstructure were known to contribute significantly to the
body’s overall deformation, for example, materials with granular microstruc-
ture such as polymers or human bones (see Lakes [Lak95], [Lak82], Lakes et
al. [LNB90], and Nakamura and Lakes [NL88]). These cases are becoming in-
creasingly important in the design and manufacture of modern-day advanced
materials as small-scale effects become very important in the prediction of the
overall mechanical behavior of these materials.

Several studies relating to investigations of stress distributions around a
crack have been undertaken under assumptions of a simplified theory of plane
Cosserat elasticity by Mühlhaus and Pasternak [MP02], Atkinson and Lep-
pington [AtL02], experimentally by Lakes et al. [LNB90], and using the finite
element method (see Nakamura and Lakes [NL88]).

Recently, Chudinovich and Constanda [CC00] used the boundary integral
equation method in a weak (Sobolev) space setting to obtain the solution for
fundamental boundary value problems in a theory of bending of classical elas-
tic plates. This approach has wide practical applicability because it also covers
domains with reduced boundary smoothness. In addition, it provides an an-
swer to the fundamental question of existence and uniqueness of the solution,
and gives an opportunity to employ an effective numerical procedure for con-
structing a numerical solution, which can be very useful for practical purposes.
Furthermore, Chudinovich and Constanda [CC00] extended their method to
accommodate several problems relating to the investigation of stress concen-
trations around a crack in classical plates.
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In several very recent works by Shmoylova et al. (see [SPR06], [SPRa], and
[SPRb]), the authors performed a rigorous analysis of interior and exterior
Dirichlet and Neumann boundary value problems in plane Cosserat elasticity
and obtained the solution to the crack problem arising in this theory in the
form of modified integral potentials with unknown distributional densities.
Unfortunately, it is very difficult, if not impossible, to find these densities
analytically. In this work we apply the boundary element method to obtain a
numerical approximation of the solution. This method has been developed by
Brebbia [Br78] and has become very popular among researchers in different
areas, including fracture mechanics (see, for example, [AlB93] for references
on applications of the boundary element method in science and engineering).

In this chapter, we use the boundary element method to find the solution
for an infinite domain weakened by a crack in plane Cosserat elasticity, when
stresses and couple stresses are prescribed along both sides of the crack (Neu-
mann boundary value problem). To illustrate the effectiveness of the method
for applications, we consider a crack in a human bone that is modeled under
assumptions of plane micropolar elasticity. We find the numerical solution for
the stresses around the crack and show that the solution may be reduced to
the classical one if we set all micropolar elastic constants equal to zero. We
come to the conclusion that there could be up to a 26% difference in the quan-
titative characteristics of the stress around a crack in the micropolar case by
comparison with the model when microstructure is ignored (the classical case;
see, for example, [Sn69]).

28.2 Preliminaries

In what follows Greek and Latin indices take the values 1, 2 and 1, 2, 3,
respectively, the convention of summation over repeated indices is understood,
Mm×n is the space of (m×n)-matrices, and a superscript T indicates matrix
transposition.

Let S be a domain in R
2 occupied by a homogeneous and isotropic, linearly

elastic micropolar material with elastic constants λ, µ, α, γ, and ε. We use the
notation ‖ · ‖0;S and 〈·, ·〉0;S for the norm and inner product in L2(S)∩Mm×1

for any m ∈ N. When S = R
2, we write ‖ · ‖0 and 〈·, ·〉0 .

The state of plane micropolar strain is characterized by a displacement
field u (x′) = (u1 (x′) , u2 (x′) , u3 (x′))T and a microrotation field φ (x′) =
(φ1 (x′) , φ2 (x′) , φ3 (x′))T of the form

uα (x′) = uα (x) , u3(x
′) = 0,

φα (x′) = 0, φ3(x
′) = φ3 (x) ,

where x′ = (x1, x2, x3) and x = (x1, x2) are generic points in R
3 and R

2,
respectively.

The internal energy density is given by [Sch96]
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2E (u, v) = 2E0 (u, v) + µ(u1,2 + u2,1)(v1,2 + v2,1)
+α(u1,2 − u2,1 + 2u3)(v1,2 − v2,1 + 2v3)
+(γ + ε)(u3,1v3,1 + u3,2v3,2),

2E0 (u, v) = (λ + 2µ) (u1,1v1,1 + u2,2v2,2) + λ(u1,1v2,2 + u2,2v1,1).

In what follows we assume that

λ + µ > 0, µ > 0, γ + ε > 0, α > 0.

Clearly, E(u, u) is a positive quadratic form.
We consider the boundary stress operator T (∂x) = T (∂/∂xα) defined by

T (ξ) = T (ξα)

=

⎛
⎝

(λ + 2µ) ξ1n1 + (µ + α) ξ2n2 (µ − α)ξ1n2 + λξ2n1 2αn2

(µ − α)ξ2n1 + λξ1n2 (λ + 2µ) ξ2n2 + (µ + α) ξ1n1 −2αn1

0 0 (γ + ε)ξαnα

⎞
⎠ ,

where n = (n1, n2)
T is the unit outward normal to ∂S.

The space of rigid displacements and microrotations F is spanned by the
vectors z(1) = (1, 0, 0)T , z(2) = (0, 1, 0)T , and z(3) = (−x2, x1, 1)T .

We consider the matrix of fundamental solutions D(x, y) and the matrix
of singular solutions P (x, y) = (T (∂y)D(y, x))T .

We consider an infinite domain with a crack modeled by an open arc Γ0

and assume that Γ0 is a part of a simple closed C2-curve Γ that divides R
2

into interior and exterior domains Ω+ and Ω−. In what follows, we denote
by the superscripts + and − the limiting values of functions as x → Γ from
within Ω+ or Ω−. Furthermore, we define Ω = R

2\Γ0 and Γ1 = Γ\Γ0. We
introduce the restriction operators π± to Ω± and the trace operators γ±

0 on
Γ0 and γ±

1 on Γ1 from within Ω±, respectively. Let H1,ω(Ω) be the space of all
u = {u+, u−} such that u+ ∈ H1(Ω

+), u− ∈ H1,ω(Ω−), and γ+
1 u+ = γ−

1 u−.
The space H1(Ω

+) is a standard Sobolev space and H1,ω(Ω−) is a weighted
Sobolev space defined in [21].

Next, we introduce the corresponding single-layer and double-layer poten-
tials, respectively, by

(V ϕ)(x) =

∫

Γ0

D(x, y)ϕ(y) ds(y),

(Wϕ)(x) =

∫

Γ0

P (x, y)ϕ(y) ds(y),

where ϕ ∈ M3×1 is an unknown density matrix.

28.3 Boundary Value Problem

Let us consider the Neumann boundary value problem with the boundary
conditions
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(Tu)+(x) = g+(x), (Tu)−(x) = g−(x), x ∈ Γ0,

where g+ and g− are prescribed on Γ0. We write δg for the jump of these
quantities across the crack.

The variational formulation of the boundary value problem is as follows.
We seek u ∈ H1,ω(Ω) such that

b(u, v) =
〈
δg, γ+

0 v+

〉
0;Γ0

+
〈
g−, δv

〉
0;Γ0

∀v ∈ H1,ω(Ω), (28.1)

where b(u, v) = 2
∫

Ω− E(u−, v−) dx+ 2
∫

Ω+ E(u+, v+) dx. Note that (28.1) is
solvable only if

〈z, δg〉0;Γ0
= 0 ∀z ∈ F .

We define the modified single-layer potential V of density ϕ by

(Vϕ)(x) = (V ϕ)(x) −
〈
(V ϕ)0, z̃

(i)
〉

0;Γ0

z̃(i)(x), x ∈ R
2,

where V ϕ is the single-layer potential, V0 is the boundary operator defined
by (V ϕ)0 = γ±

0 π
±V ϕ, and {z̃(i)}3

i=1 is an L2(Γ0)-orthonormal basis for F .
Also, we introduce the modified double-layer potential W of density ψ

(Wψ)(x) = (Wψ)(x) −
〈
π0W

+ψ, z̃(i)
〉

0;Γ0

z̃(i)(x), x ∈ Ω,

where π0 is the operator of restriction to Γ0.
The solution of problem (28.1) may be represented in the form

u = (Vϕ)Ω + Wψ + z, (28.2)

where ϕ and ψ are unknown densities and z ∈ F is arbitrary. The detailed
procedure for obtaining solution (28.2) has been developed by Shmoylova et
al. in [SPRb].

28.4 Boundary Element Method

Consider problem (28.1). As shown in [SPRb], the solution to this problem
may be represented in the form (28.2), and the corresponding boundary inte-
gral equations are uniquely solvable with respect to distributional densities ϕ
and ψ. As stated above, these densities cannot be found analytically. To ap-
proximate them numerically, we use the boundary element method [GKW03],
which makes use of the following classical result.

Lemma 1. (Somigliana formula If u ∈ H1,ω(Ω) is a solution of (28.1) in Ω,
then
∫

Γ0

[D(x, y)δ (T (∂y)u(y)) − P (x, y)δu(y)] ds(y) =
1

2
δu(x), x ∈ Γ0, (28.3)

where δ (·) denotes the jump of (·) across the crack.
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It has been shown in [SPRb] that the density of the modified single-layer
potential may be found in the form ϕ = δ (T (∂y)u(y)) = δg. Now we need to
find the density of the modified double-layer potential ψ = −δu. To achieve

this goal, we divide Γ0 into n elements Γ
(k)
0 , each of which possesses one node

ξ(k) located in the middle of the element. The values of δg and δu are constant
throughout the element and correspond to the value at the node δg(ξ(k)) and
δu(ξ(k)). Then (28.3) becomes

n∑

k=1

∫

Γ
(k)
0

[
D(x, y)δg(ξ(k)) − P (x, y)δu(ξ(k))

]
ds(y) =

1

2
δu(x), x ∈ Γ0.

Placing x sequentially at all nodes, we obtain the linear algebraic system of
equations

n∑

k=1

(∫

Γ
(k)
0

D(ξ(i), y) ds(y)

)
δg(ξ(k)) −

n∑

k=1

(∫

Γ
(k)
0

P (ξ(i), y) ds(y)

)
δu(ξ(k))

(28.4)

=
1

2
δu(ξ(i)), i, k = 1, n

with respect to δu(ξi).
We note that

∫
Γ

(k)
0

D(ξ(i), y) ds(y) are defined for any i and k, as in [Sch96].

Solving (28.4), we construct an approximation to ψ. If we introduce the
shape function Φk(x) by

Φk(x) =

{
1, x ∈ Γ

(k)
0 ,

0, x ∈ Γ0\Γ (k)
0 ,

then the approximate densities ϕ and ψ are ϕ(n)(x) =
∑n

k=1 Φk(x)δg(ξ(k))
and ψ(n)(x) = −∑n

k=1 Φk(x)δu(ξ(k)), and the approximate solution takes the
form u(n) = (Vϕ(n))Ω + Wψ(n) + z, where z is arbitrary. It is easy to check
that u(n) → u as n → ∞.

28.5 Example

As an example, we consider a longitudinal crack inside a human bone in the
case when constant normal stretching pressure of magnitude p is applied on
both sides of the crack. If we consider a typical transversal cross section of the
bone and assume that this cross section is small enough, then the deformation
of each cross section under the prescribed load will be the same throughout
the length of the bone and will develop in the plane of the cross section.
Consequently, such deformations may be considered under assumptions of
plane micropolar elasticity. Such a model is not an idealization that lies far
from reality, as it may seem at first, but, as shown, for example, in [BJ01] and
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[JS04], it can describe actual cracks in bones very closely, since orthopedic
biomechanics usually deals with cracks of a very small size.

We model a crack as an open arc of the circle given by x1 = a cos θ
and x2 = a sin θ, θ ∈ (0, π/6). Changing the radius a of the circle, we will
change the length of the crack. We are interested in how the normal traction
distributes at a distance from the crack tip along the line x1 = a, x2 < 0.
Clearly, this problem can be considered as the Neumann problem described
above.

Elastic constants for a human bone have been measured in [Lak95] and
take the following values: α = 4000 MPa, γ = 193.6 N, ε = 3047 N, λ = 5332
GPa, µ = 4000 MPa. In our example, we construct solutions for cracks of
lengths equal to 0.26 mm, 0.52 mm, 0.75 mm, and 10 mm to show good
agreement of our results with those presented in the experimental study by
Nakamura and Lakes [NL88], performed on human bone cracks of the same
lengths. We also assume that the normal stretching pressure p takes the value
2 MPa.

Let the distance from the tip of the crack be ρ = |x2|. The numerical
solution for boundary tractions and moments has been found to coincide with
the exact solution to five decimal places for n = 52 elements of Γ0.

Let us now compare the results for the normal traction in the micropolar
case with the results of the classical theory. The classical case may be obtained
from the solution for micropolar elasticity by setting the micropolar elastic
constants equal to zero. In Figures 28.1–28.3 there is a graphical representa-
tion for the distribution of the normal traction at a distance from the lower
crack tip for crack lengths equal to 0.26 mm, 0.52 mm, and 0.75 mm, respec-
tively. The traction is divided by the applied load p to represent the data in
nondimensional values. The bold curve characterizes the stress distribution
in the micropolar case, whereas the classical case is plotted by the ordinary
curve. The distance between the first point, in which we compute the normal
traction, and the tip of the crack is equal to one fifth of the length of the
crack.

We see that the normal traction is significantly higher in the vicinity of
the crack tip in the micropolar case in comparison with the case when mi-
crostructure is ignored (classical theory). In the case when the length of the
crack is equal to 0.75 mm, we can observe that the normal traction in the
vicinity of the crack tip is 26.8% higher under the assumptions of Cosserat
elasticity in comparison with the classical case.

When it comes to the consideration of stresses at a distance from the
crack tip, we can conclude that the traction in the micropolar case decays
faster than in the classical case, and at a distance of approximately one crack
length, the values of the normal traction in both cases become equal to each
other. Farther from the crack tip, the traction in the micropolar case becomes
lower than in the classical case, especially when we consider the crack of length
0.26 mm, for which, as may be seen from Figure 28.1, the difference is drastic
and may be up to 19.8%. Additionally, it may be observed that at a distance
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Fig. 28.1. Normal traction on the edge of a crack of length 0.26 mm.

Fig. 28.2. Normal traction on the edge of a crack of length 0.52 mm.
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Fig. 28.3. Normal traction on the edge of a crack of length 0.75 mm.

of approximately three crack lengths from the tip of the crack, the effect of
the crack on stresses is negligible, in agreement with Saint-Venant’s principle.

The results presented in Figures 28.1–28.3 may be compared with earlier
investigations undertaken in the area of Cosserat solids. Nakamura and Lakes
[NL88] performed an experimental study on stress concentrations around
cracks in a human bone. They considered the same crack lengths as in this
chapter. Later, Lakes et al. validated their results presented in [NL88] using
the finite element method [LNB90]. However, it should be noted that a di-
rect comparison with the results presented in [NL88] and [LNB90] does not
seem feasible since our formulation of the crack problem is different from that
adopted in [NL88] and [LNB90], where a crack is considered to be a “blunt”
notch, as in the approach of classical fracture mechanics [Sn69], in which a
crack is usually modeled as a “squashed” ellipse of small eccentricity. The tip
of the crack considered in [NL88] and [LNB90], therefore, is smooth, whereas
in our study, the crack is represented by a piece of a plane curve whose edges
have sharp corners. It has been found in [LNB90] that the difference in stress
concentrations near the crack edge between the classical and micropolar case
for a crack with a “blunt” tip may be up to 30% in the case when the crack
length is equal to 0.26 mm, and that for longer cracks, this difference is al-
most negligible. The order of difference is in agreement with our results, but
in [LNB90], the stress concentration near the crack tip in the micropolar case



28 Crack in Plane Asymmetric Elasticity 255

is lower than in the classical case. At a distance from the crack tip, the results
obtained in [LNB90] are almost identical to the results of this investigation.

The explanation of discrepancies between our results and those presented
in [LNB90] in the vicinity of a crack tip lies in the crack geometry. If we con-
sider a smooth contour such as an ellipse of small eccentricity as in [LNB90],
then material particles can rotate under the applied load and generate couple
stresses. Consequently, a part of the applied load is compensated by couple
stresses and the resultant traction is reduced in comparison with the classi-
cal case. When we consider a crack with a sharp tip, material particles get
trapped in the corner and cannot rotate; however, the load accumulated by the
couple stresses (due to continuity) is still present. Hence, the resultant stress
in the vicinity of a sharp edge grows. When we move away from the corner,
the particles gain back their ability to rotate and the load is redistributed
between the stresses and the couple stresses, so the resultant traction starts
decreasing.

Indirect confirmation of our explanation may be found in [PL86] and
[PSM04]. In [PL86], Park and Lakes performed an experimental investiga-
tion of the torsion of a rectangular micropolar beam. The boundary of any
typical cross section of such a beam by a plane perpendicular to the genera-
tors contains sharp corners. It has been found that the stress distribution on
the boundary of the beam cross section is significantly higher than in the case
when microstructure is ignored. At the same time, the study by Potapenko et
al. [PSM04], performed for an elliptic micropolar bar (in this case any typical
cross section of the bar is bounded by a smooth curve), shows that stress
concentrations on the boundary of the bar cross section may be up 15% lower
than in the classical case. Similar conclusions may be drawn when we compare
cracks with sharp and “blunt” tips in a micropolar medium.

28.6 Summary

In this chapter, we have shown that the method introduced by Shmoylova
et al. in [SPRb] may be applied to the investigation of stress distribution
around a crack with a sharp tip in a micropolar medium. We came to the
conclusion that material microstructure has a significant effect on the stress
distribution around a crack, and demonstrated it by using the example of a
crack in a human bone. The effect of material microstructure depends on the
crack length and crack geometry, and exercises the strongest influence in the
vicinity of the crack tip.
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29.1 Statement of the Problem

We present several results on the problems associated with the Euler–Bernoulli
beam model with dynamical nonconservative boundary conditions. A forcing
term, treated as a distributed control, is introduced into the equation govern-
ing small transverse vibrations of a beam. The main question is the following:
Can one provide an explicit formula for the control law in order to steer an
initial state to zero in a prescribed time interval of length T > 0? As we
show, the answer is affirmative for any T > 0 if certain conditions on the ini-
tial state and force distribution function are satisfied; if these conditions are
not satisfied, then one has an approximate controllability (Theorems 6 and
7 below). However, to give explicit formulas for the control laws, one needs
the following information: (i) detailed asymptotic and spectral results on the
dynamics generator governing beam vibrations; (ii) facts about completeness,
minimality (linear independence for an infinite number of vectors), and the
Riesz basis property of the generalized eigenvectors of the dynamics generator
(recall that a Riesz basis is a linear isomorphic image of an orthonormal basis,
i.e., it is the mildest modification of an orthonormal basis); and (iii) results on
solvability of the corresponding moment problem that, in turn, requires some
information on the basis property of nonharmonic exponentials in L2(0, T ).

We also present an interesting result on the nature of a semigroup for which
the main operator, the dynamics generator, is an infinitesimal generator. It
is found that this semigroup is of a Gevrey class; i.e., differentiability of such
a semigroup is slightly weaker than that of an analytic semigroup (see [T89]
and [TC90]).

Extensive research exists on the Euler–Bernoulli beam model in traditional
areas such as control, stability, and optimization for the model involving both
undamped and damped cases (see [CR82], [CKM87], [CLL98], [GWY05], and
[R73]). However, one of the contemporary research directions is developing in
the field of unmanned aerial vehicles (UAV) in aeronautics. In particular, a
long-span, very light, flexible object in flight (high aspect-ratio “flying wing”
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configuration) can be considered as an elastic beam with both ends free, and
boundary feedback stabilization of such a beam could be of great interest
both in control theory and in engineering practice (see [H90], [PHC00], and
[PH04]).

Consider a linear model of the Euler–Bernoulli beam with a forcing term

ρ(x)htt(x.t) + (EI(x)hxx(x, t))xx = g(x)f(t), (x, t) ∈ (0, L) × R+, (29.1)

where h is the transverse displacement, ρ is the mass density, and EI is the
flexural rigidity:

ρ ∈ C1[0, L], EI ∈ C2[0, L], ρ(x) > 0, EI(x) > 0, x ∈ [0, L]. (29.2)

We assume that the beam is clamped at the left end; i.e.,

h(0, t) = hx(0, t) = 0, t � 0. (29.3)

The right-end conditions reflect shear feedback design for vibration suppres-
sion [GWY05]

hxx(L) = 0, (EI(x)hxx(x, t))x|x=L = khxt(x, t)|x=L, (29.4)

with k being a positive parameter that can be changed in practice.
The initial conditions are standard:

h(x, 0) = h0(x), ht(x, 0) = h1(x). (29.5)

In what follows, we assume that the force distribution function is g ∈
L2(0, L); f will be called an admissible control function on the interval [0, T ]
if f ∈ L2(0, T ).

29.1.1 Exact Controllability Problem

Let initial conditions (29.5) and T > 0 be given. Does there exist an admissible
control f(t) on the interval [0, T ] such that the solution of problem (29.1)–
(29.5) also satisfies the additional conditions at t = T

h(x, T ) = 0, ht(x, T ) = 0, x ∈ [0, L]? (29.6)

From now on, we will consider the case of a uniform beam with x ∈ [0, 1].
Even though the asymptotic analysis of a differential equation with variable
coefficients is lengthy, the main results of this chapter remain essentially the
same in the nonuniform case.

Let H be the state space of the system; i.e., H is a Hilbert space of two-
component vector-valued functions (h(x, t), ht(x, t))T obtained as a closure
of the set of smooth, compactly supported functions U(x) = (u0(x), u1(x))T

in the norm (the superscript T means transposition)
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‖U‖2
H =

∫ 1

0

[|u′′
0(x)|2 + |u1(x)|2]dx.

Evidently, if U ∈ H, then u0(0) = u′
0(0) = 0. Equation (29.1) and conditions

(29.2)–(29.5) (without a forcing term) define the following first order (in time)
evolution problem:

Ut(x, t) = (LkU)(x, t), U |t=0 = (u0
0(x), u0

1(x))T , 0 � x � 1, t � 0,

where the dynamics generator Lk is given by the matrix differential expression

Lk = −i

⎛
⎝

0 1

− d4

dx4 0

⎞
⎠ (29.7)

defined on the domain

D(Lk) =
{
U ∈ H : u0 ∈ H4(0, 1), u1 ∈ H2(0, 1), u1(0) = u′

1(0) = 0,

u0(0) = u′
0(0) = u′′

1(1) = 0, u′′′
0 (1) = ku′

1(1)} ,

where Hs(0, 1), s = 2, 4, are the standard Sobolev spaces [A75]. The adjoint
operator L∗

k can be given by the same differential expression as (29.7), with
the following change in the domain:

D(L∗
k) =
{
U ∈ H : u0 ∈ H4(0, 1), u1 ∈ H2(0, 1), u1(0) = u′

1(0) = 0,

u0(0) = u′
0(0) = u′′′

1 (1) = 0, u′′
0(1) = ku1(1)} .

29.2 Asymptotic and Spectral Properties of Operator Lk

29.2.1 Asymptotic Distribution of the Eigenvalues

Theorem 1. (i) Lk is an unbounded non-self-adjoint operator with a compact
resolvent. Therefore, the spectrum of Lk consists of a countable set of normal
eigenvalues (i.e., isolated eigenvalues, each of a finite algebraic multiplicity
[GK96]) that can accumulate only at infinity.

(ii) (a) When k > 1, the following asymptotic representation holds for the
eigenvalues as the number n of an eigenvalue tends to infinity:

λn = (πn)2 + iπn ln
k + 1

k − 1
− 1

4
ln2 k + 1

k − 1
+O(e−γn), n > 0,

where γ > 0 is an absolute constant. The spectrum is symmetric with respect
to the imaginary axis; i.e., λ−|n| = −λ̄n.

(b) When 0 < k < 1, the following asymptotic representation holds for the
eigenvalues as the number n of an eigenvalue tends to infinity:

λn = π2

(
n− 1

2

)2

+ iπ

(
n− 1

2

)
ln

1 − k

1 + k
− 1

4
ln2 1 − k

1 + k
+O(e−γn), n > 0.
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29.2.2 Riesz Basis Property of the Generalized Eigenvectors

The set of the almost-normalized eigenvectors can be written in the form

Φn(x) =

( 1
µ2

n
ϕn(x)

ϕn(x)

)

n∈Z

, ‖Φn‖H ≍ 1, (29.8)

where ϕn is an eigenfunction of the Sturm–Liouville problem that is equiv-
alent to the spectral problem for Lk. The following approximation is valid as
n → ∞ (µn =

√
λn) :

ϕn(x) = sinµnx− cosµnx+ e−µnx +O(e−|n|).

Taking into account that µ−|n| = iµ̄|n|, as n → −∞, we obtain the approxi-
mation

ϕ−|n|(x) = i(− sin(µ̄|n|x) + cos(µ̄|n|x)) − ie−µ̄|n|x +O(e−|n|).

As we know, the non-self-adjoint operator Lk may have a finite number
of multiple eigenvalues that could lead to a finite number of the associate
vectors.

Theorem 2. The set of the generalized eigenvectors (eigenvectors and asso-
ciate vectors together) of the operator Lk forms a Riesz basis for H. The set
of the generalized eigenvectors of the adjoint operator L∗

k forms a biorthogonal
Riesz basis (see [GK96], [S96], and [S00]).

29.2.3 Generation of a Gevrey-Class Semigroup

We now discuss the properties of a semigroup for which the operator (iLk)
is an infinitesimal generator. This operator generates a strongly continuous
semigroup. Indeed, (iLk) is closed and its domain D(iLk) is dense in H. The
only fact to be proved is that the resolvent R(λ, iLk) satisfies the estimate
‖R(λ, iLk)n‖ � M/(λ − ω)n, where M is an absolute constant and λ > ω
with some ω > 0 (see [P83] and [S06]). This estimate can be proved by using
the spectral asymptotics and the spectral decomposition for the resolvent
operator.

We now turn to the fact that the semigroup is of a Gevrey class. (The
relevant definition can be found in [T89], [TC90], and [S06].)

Theorem 3. A strongly continuous semigroup T (t) is of Gevrey class δ for
t > t0 if it is infinitely differentiable for t ∈ (t0,∞) and if for every compact
set K ⊂ (t0,∞) and each θ > 0, there exists a constant B = B(θ,K) such that
‖T (n)(t)‖ � Bθn(n!)δ for all t ∈ K and n = 0, 1, 2, . . . .

As one can see, “Gevrey regularity” involves bounds on the nth-order
derivatives, which are similar to (but somewhat weaker than) the bounds on
the nth-order derivatives for the case of an analytic semigroup [P83]. The
main result of this section is included in the next assertion.
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Theorem 4. The semigroup generated by the operator Lk is of Gevrey class
δ > 1/2.

The detailed proof can be found in [S06].

29.3 Moment Problem and Controllability Results

29.3.1 Some Known Results on Nonharmonic Exponentials

To formulate the solution of the control problem , we need some information on
the properties of nonharmonic exponentials (see [HNP81], [Y80], and [AI95]).
Let

P =
{
exp

(
iλ̄n t

)}
n∈Z

,

where {λn}n∈Z is the spectrum of Lk. The following statement is valid for P:

Theorem 5. For any T > 0, (i) the set of nonharmonic exponentials P is
not complete in L2(0, T ), and (ii) this set forms a Riesz basis for its closed
linear span in L2(0, T ).

Let T > 0, and let E (P, T ) denote the smallest closed subspace in L2(0, T )
containing P. As is well known [FR71], E (P, T ) is a proper subspace of
L2(0, T ) if and only if

∑
n∈Z

1
|λn| < ∞, which is our case. It is also known

that if Pn ≡
{
λ̄n |k �= n

}
, then E (Pn, T ), then the smallest closed sub-

space in L2(0, T ) containing Pndoes not include exp(iλ̄nt). In this case, using
standard arguments from Hilbert space theory, one can show that there is a
unique function τn(t) ∈ E(Pn, T ) that is closest to the function exp(iλ̄nt) in
the L2(0, T )-norm. If

(dn(T ))2 =

∫ T

0

(eiλ̄nt − τ(t))2dt,

then the set

ψn(t) =
eiλ̄nt − τn(t)

(dn(T ))2
, n ∈ Z,

is a biorthogonal set for P in L2(0, T ). Obviously, since the set P is not
complete in L2(0, T ), the biorthogonal set is not unique. However, the set

{ψn}n∈Z is called the optimal biorthogonal set for P. Suppose that {ψ̃n}n∈Z

is any other biorthogonal vector for P in L2(0, T ). It is easily verified that

ψ̃n = ψn + ϕn and ϕn ∈ E(P, T )⊥, n ∈ Z; hence, ‖ψn‖L2(0,T ) � ‖ψ̃n‖L2(0,T ),
n ∈ Z, which yields ‖ψn‖L2(0,T ) = (dn (T ))−1.

Since P is a Riesz basis for E(P, T ), the biorthogonal family {ψn}n∈Z is
also a Riesz basis for E(P, T ).
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29.3.2 Moment Problem

Let G(x) = (0, g(x), 0, 0)T ∈ H, where g(x) is the force profile function from
(29.1). Then, from (29.1)–(29.5), we obtain the following representation of the
initial problem:

Ut(x) = i(LkU)(x) + f(t)G(x), U(x, 0) = F0(x). (29.9)

Let us expand the solution of (29.9) with respect to the Riesz basis of the
generalized eigenvectors of the operator Lk (29.8):

U(x, t) =
∑

n∈Z

an(t) Φn(x), x ∈ (0, 1), t � 0. (29.10)

We use through numeration for the generalized eigenvectors making no dif-
ference between the eigenvectors and associate vectors of Lk. We also expand
the functions G(·) and F0(·) with respect to the same Riesz basis:

G(x) =
∑

n∈Z

gn Φn(x), F0(x) =
∑

n∈Z

ϕn Φn(x),
∑

n∈Z

(
|gn|2 + |ϕn|2

)
< ∞.

(29.11)
Substituting (29.10) and (29.11) into (29.9), we obtain an infinite sequence of
the initial-value problems

(an(t))t = iλnan(t) + gnf(t), an(0) = ϕn, n ∈ Z. (29.12)

Solving problems (29.12) for an(t), we rewrite representation (29.10) in the
form

U(x, t) =
∑

n∈Z

[
ϕn e

iλnt + gn

∫ t

0

eiλn(t−τ)f(τ)dτ

]
Φn(x). (29.13)

Our main question is the following: Is there a moment T > 0 such that
U(x, T ) = 0? From (29.13) and the Riesz basis property of {Φn}n∈Z, we find
that U(x, T ) = 0 if and only if the following infinite system of equations has
a solution f ∈ L2(0, T ) :

ϕn + gn

∫ T

0

e−iλnτ f(τ)dτ = 0, n ∈ Z. (29.14)

The problem of finding a solution of (29.14) is known as the moment problem
(see [Y80] and [Z91]). To solve it, we will use the properties of nonharmonic
exponentials.

29.3.3 Exact and Approximate Controllability

We are now in a position to present our results on exact controllability [S07].
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Theorem 6. (i) Suppose that

gn �= 0 for all n ∈ Z. (29.15)

The following statements are valid.
(a) System (29.9) is controllable on the time interval [0, T ] with any T > 0

if and only if

{γn ≡ ϕn/gn}n∈Z
∈ ℓ2(Z), i.e.,

∑

n∈Z

|γn|2 < ∞. (29.16)

(b) The desired control function f , which brings the system to the zero
state on the time interval [0, T ], T > 0, can be defined by the formula

f(t) = −
∑

n∈Z

γn ψn(t), (29.17)

where ψn are the functions biorthogonal to the corresponding nonharmonic ex-
ponentials. There exist infinitely many control functions from L2(0, T ). How-

ever, f defined by (29.17) has the minimal norm; i.e., if another function f̃
brings the system to rest in the same time T , then

‖f‖L2(0,T ) � ‖f̃‖L2(0,T ).

(ii) Assume that (29.15) is not satisfied, and let R = {n ∈ Z : gn = 0}.
Let γn be defined by (29.16) only for n ∈ Z\R, and let S = {n ∈ Z : ϕn = 0}.
Then the following statements hold:

(a) The system is controllable in time T > 0 if and only if R ⊆ S and

∑

n∈Z

|γn|2 < ∞.

(b) The desired control function is not unique and can be given by the
formula

f(t) = −
[ ∑

n∈Z\S

γn ψn(t) +
∑

m∈R

bm ψm(t)

]
,

where bm ∈ C are arbitrary coefficients such that
∑

m∈R

|bm|2 < ∞.

(c) If the set R\(R
⋂
S) is not empty, then the system is not controllable

in any time.

Remark 1. The formulas for the basis functions ψn(t) that are biorthogonal to
the basis of the nonharmonic exponentials are known to be very complicated
and can be given in terms of the truncated Blaschke product.
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Theorem 7. (Approximate Controllability) Suppose that condition (29.16) is
not valid, but that

{γn}n∈Z
∈ lq(Z) for some q ∈ (2,∞], i.e.,

∑

n∈Z

|γn|q < ∞, (if 2 < q < ∞) or sup
n∈Z

|γn| < ∞ (if q = ∞).

Then for any ǫ > 0, there exists N such that for the control function

fN (t) =
∑

|n|�N

γn ψn(t),

the following estimate is valid:

‖U(·, T )‖H � ǫ for T > 0.

However, ‖fN‖L2(0,T ) → ∞ as N → ∞.
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30.1 Introduction

Under favorable conditions, lipid molecules consisting of hydrophobic tail and
hydrophilic head groups, self-assemble to form vesicles in an aqueous medium
with a lipid bilayer separating the inner and outer solutions [Ino96], [Kom96].
Vesicles have been attracting enormous attentions because of their biological
significance with numerous applications such as drug delivery and targeting,
medical imaging, catalysis, etc. [KR96], [Zan96]. It is recognized that the
equilibrium shape of the vesicle is determined by minimizing a shape energy
given by the spontaneous-curvature model of Helfrich [Hel73], [OH89]:

F =
1

2
kb

∮
(c1 + c2 − c0)

2dA + kG

∮
c1c2dA + λ

∮
dA + ∆P

∫
dV. (30.1)

Here dA, dV , and kb are the surface area element, volume element, and the
bending rigidity, respectively; c1 and c2 denote the two principal curvatures
and c0 denotes the spontaneous curvature, which takes the possible asymme-
try of the bilayer into account; λ and ∆P are Lagrangian multipliers used
to incorporate the constraints of constant area and constant volume, respec-
tively. Physically, λ and ∆P can be interpreted as the tensile stress and pres-
sure difference, respectively. For vesicles with the same topological forms, the
Gaussian curvature term kG

∮
c1c2dA can be dropped from (30.1).

For vesicles with axisymmetric equilibrium shapes, four different ap-
proaches have been used to derive the shape equation in the literature.

A1. In Ou-Yang and Helfrich [OH89], a general shape equation was derived by
allowing the variation of the functional F only in the normal direction of
the membrane surface. The axisymmetric shape equation can be obtained
by applying the axisymmetric condition.

A2. This approach is similar to A1, allowing variation only in the normal direc-
tion. The difference is that variation is carried out after the axisymmetric
condition is applied [HO93].



268 N.K. Vaidya, H. Huang, and S. Takagi

A3. Again, functional F is written in the axisymmetric form first. The calcu-
lus of variation is performed without the restriction in the normal direc-
tion [MFR91], [Pet85].

A4. This approach is similar to A3. However, the arc-length is used as the
primary variable, instead of the distance to the axis of symmetry [SBL91],
[Sef66].

Both A1 and A2 generate the same equation. The shape equations produced
by A3 and A4, however, are slightly different, as pointed out in [HO93]. In
an attempt to remove the confusion, it was shown in [ZL93] that the shape
equations in A1 and A3 are related. However, due to the coordinate singular-
ity, this relationship does not necessarily imply equivalence [BP04], [Poz03].
This was confirmed in [NOO93] with the help of an analytical expression of
a circular biconcave discoid (the shape of red blood cells). In addition, by
considering the 2D limit, it was shown that the equations derived from A3
and A4 are erroneous since they do not recover the correct equation, whereas
the equation from A1 and A2 gives the correct limit [BP04], [Poz03]. Other
special solutions have also been used to validate or invalidate the equivalence
of the shape equations [HO93], [NOO93]. The most satisfactory discussion
about these issues has been presented in [JS94], in which it was shown that
the same equation can be obtained by A4 and A1. Their main conclusion is
that an additional equation has to be introduced for the Hamiltonian (i.e.,
constant Hamiltonian), which can be maintained by proper treatment of the
boundary conditions. However, this idea of treatment of the boundary condi-
tion does not work for fixed integral limits (i.e., constant total contour length)
and the validity of the argument was questioned by [BP04], [Poz03]. There-
fore, it is still not clear whether it is necessary to restrict the variation in the
normal direction, as suggested in [OH89].

In this chapter, we show that the same shape equation in A1 and A2 can
be obtained without restricting the variation in the normal direction. We fur-
ther prove that a slight modification of A3 produces the correct equation. As
long as a geometric condition is satisfied (explicitly or implicitly), the varia-
tion does not have to be in the normal direction, contrary to the argument
in [HO93]. To show the equivalence of equations by A1 and A4, [JS94] also
suggested similar types of geometric conditions. However, they and others fol-
lowing their arguments have not implemented these conditions in their later
works [DBS03], [JL96] when attempting to get the axisymmetric shape equa-
tions. Our result (correct shape equation by modification of A3) suggests that
when A4 is used, apart from the extra Hamiltonian condition, the geometric
condition should also be imposed properly to get the correct shape equations.

The rest of the chapter is organized as follows. In Section 30.2, we present
the equations obtained using A1–A3 in the literature. In Section 30.3, we
show that the correct equation can be obtained by taking the variation in the
direction perpendicular to the axis of symmetry. Furthermore, by imposing
the geometric condition implicitly in the action form of the energy functional,
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we show that A3 can produce exactly the same equation as A1 (and A2).
Various topological shapes of vesicles are discussed in Section 30.3.4, and we
present our conclusions in Section 30.4.

30.2 Shape Equation

We consider vesicles of axisymmetric shape with the axis of symmetry along
the z-axis. We denote the arc length of the contour, the distance to the sym-
metric axis, and the angle made by the tangent to the contour with the plane
perpendicular to the axis of symmetry by s, ρ, and ψ, respectively (see Figure
30.1(a).

(a) (b)

Fig. 30.1. (a) Schematic diagram of the axisymmetric vesicle. (b) The variation in
the direction perpendicular to the axis of symmetry (i.e., in ρ-direction). AB = ds
is the segment in the original generating curve, CD is the corresponding segment
in the curve deduced by the variation δρ in the ρ-direction, and the dashed curve is
the curve deduced by moving the original curve from A to C.

Using A1, that is, substituting the mean curvature

H = −(c1 + c2)/2 = −(1/2)[cos ψ(dψ/dρ) + sinψ/ρ]

and the Gaussian curvature

K = c1c2 = cos ψ sin ψ(1/ρ)(dψ/dρ)

in the general shape equation derived by Ou-Yang and Helfrich [OH89], we
obtain the shape equation as (see [BP04], [HO93], [NOO93], [Poz03], and
[ZL93])
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cos3 ψ
d3ψ

dρ3
= 4 sin ψ cos2 ψ

d2ψ

dρ2

dψ

dρ
− cos ψ(sin2 ψ − 1

2
cos2 ψ)

(
dψ

dρ

)3

+
7 sin ψ cos2 ψ

2ρ

(
dψ

dρ

)2

− 2 cos3 ψ

ρ

d2ψ

dρ2

+

(
c2
0

2
− 2c0 sin ψ

ρ
+

sin2 ψ

2ρ2
+

λ

kb
− sin2 ψ − cos2 ψ

ρ2

)
cos ψ

dψ

dρ

+
∆P

kb
+

λ sin ψ

kbρ
− sin3 ψ

2ρ3
+

c2
0 sin ψ

2ρ
− sin ψ cos2 ψ

ρ3
. (30.2)

The axisymmetric shape equation generated by A3, in which axisymmetric
expressions for curvatures are used in (30.1) and the Euler–Lagrange equation
is obtained, is (see [MFR91] and [Pet85])

H = 0,

where

H = cos2 ψ
d2ψ

dρ2
− sin ψ cos ψ

2

(
dψ

dρ

)2

− sin ψ

2ρ2 cos ψ
− sin ψ cos ψ

2ρ2
− c2

0 sin ψ

2 cos ψ

+
cos2 ψ

ρ

dψ

dρ
− c0 sin2 ψ

ρ cos ψ
− ∆Pρ

2kb cos ψ
− λ sin ψ

kb cos ψ
. (30.3)

The shape equation based on A4 is obtained in the same way [JS94], [SBL91],
[Sef66].

30.3 Equivalence of the Shape Equations

Equation (30.3) has been obtained without any reference to the z-coordinate.
Therefore, ψ(ρ) varies over a larger class of functions, and the extremal
function, which minimizes the energy functional, may not be admissible. In
fact, the coordinates z(s) and ρ(s) have to satisfy the geometric relations
dρ/ds = cos ψ and dz/ds = − sin ψ, which give the geometric relation in the
parameter ρ as

dz

dρ
cos ψ + sinψ = 0. (30.4)

In what follows, we show that the correct shape equation can be obtained if
this geometric condition is imposed explicitly or implicitly. We will demon-
strate this fact by using two different approaches.

30.3.1 Variation in the ρ-Direction

We now derive the shape equation for axisymmetric vesicles by taking the vari-
ation of the axisymmetric energy functional. The method used here is similar
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to A2 [HO93], but the variation is performed along the direction perpendic-
ular to the axis of symmetry (i.e., the ρ-direction) and the corresponding
induced variations in ψ and s are obtained by using the geometric relations
dρ/ds = cos ψ and dz/ds = − sin ψ. The method used here is similar to the
method used to find the equation of geodesics in Riemannian geometry by
means of the variational method [HO93], [Spi79].

We start with the axisymmetric shape energy functional with parameter
s

Fs = π

∫ [
kbρ

(
dψ

ds
+

sinψ

ρ
− c0

)2

+∆Pρ2 sinψ + 2λρ

]
ds

and introduce an arbitrary parameter t to get

Fs = π

∫
L̄
(
ρ(t), ψ(t), ψ̇(t), ṡ(t)

)
dt,

where

L̄
(
ρ(t), ψ(t), ψ̇(t), ṡ(t)

)
=

kbρ(ψ̇)2

ṡ
+
kbṡ sin2 ψ

ρ
+ kbρc

2
0ṡ− 2kbc0ρψ̇

+2λρṡ+∆Pρ2 sinψṡ. (30.5)

Note that the terms 2kbψ̇ sinψ and −2kbc0ṡ sinψ have been neglected in (30.5)
as they do not contribute to the shape equation [HO93].

Let δρ be an infinitesimal variation along the ρ-direction so that the vari-
ation along the z-direction is δz = 0 (see Figure 30.1(b)). The geometric
relation dρ = cosψds gives

− sinψds(δψ) + cosψδds = δdρ. (30.6)

Similarly, the geometric relation dz = − sinψds, given that dδz = δdz due to
the independence of the operators d and δ, yields

cosψds(δψ) + sinψδ(ds) = 0. (30.7)

Solving (30.6) and (30.7) for δψ and δ(ds), we get

δψ = − sinψδdρ

ds
, δ(ds) = cosψδdρ, δψ̇ = − d

dt

(
sinψδdρ

ds

)
, δṡ =

cosψδdρ

dt
.

The shape equation is determined by the variational equation δFs = 0,
which leads to

∫ [
∂L̄

∂ρ
δρ+

∂L̄

∂ψ
δψ +

∂L̄

∂ψ̇
δψ̇ +

∂L̄

∂ṡ
δṡ

]
dt = 0. (30.8)

Using expressions for δψ, δψ̇, and δṡ in (30.8), and performing integration by
parts and simplification, we obtain the shape equation
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∂L̄

∂ρ
+

d

dt

(
sin ψ

ṡ

∂L̄

∂ψ

)
− d

dt

(
sin ψ

ṡ

d

dt

∂L̄

∂ψ̇

)
− d

dt

(
cos ψ

∂L̄

∂ṡ

)
= 0. (30.9)

We use (30.5) in (30.9) and consider ρ as a parameter by taking t = ρ. Then,
using ψ̇ = dψ/dρ, ṡ = ds/dρ = 1/ cos ψ, and ρ̇ = 1 along with their higher
derivatives in the resulting equation, we obtain (30.2), which is also the shape
equation derived in the literature from A2. Therefore, we have shown that the
variation does not have to be in the normal direction, and that the variation
in other directions can also produce the same shape equation if the induced
variations in the other variables are obtained from the geometric relations
dρ/ds = cos ψ and dz/ds = − sin ψ. We note that the approach outlined here
breaks down when the surface is perpendicular to the axis of symmetry. We
now move on to a more general approach.

30.3.2 The Method of Lagrange Multiplier

We include the geometric condition (30.4) in the action form of the shape
energy functional via an additional Lagrange multiplier η as follows:

F = π

∫
L̃

(
ρ, ψ(ρ), z(ρ), η(ρ),

dψ

dρ
,
dz

dρ

)
dρ,

where the Lagrangian L̃ is

L̃ =
kbρ

cosψ

(
dψ

dρ
cosψ +

sinψ

ρ
− c0

)2

+
∆Pρ2 sinψ

cosψ
+

2λρ

cosψ

+η

(
dz

dρ
cosψ + sinψ

)
.

This gives the Euler–Lagrange equations

H =
η

2kbρ
, (30.10)

dz

dρ
= − sinψ

cosψ
, (30.11)

cosψ
dη

dρ
= η sinψ

dψ

dρ
. (30.12)

We rewrite (30.10) as η = η
(
ρ, ψ, dψ/dρ, d2ψ/dρ2

)
and find the expression

for dη/dρ, then substitute the expressions for η and dη/dρ in (30.12). After
lengthy mathematical manipulations, we obtain (30.2), which is the equation
generated by A1 (and A2).

This suggests that the discrepancy in the shape equations obtained by dif-
ferent approaches in the literature occurs when the geometric relation (30.4)
is not imposed. A3 can produce the same equation as A1 (and A2) as long as
the geometric relation (30.4) is preserved when the variation is performed. In
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the situation when ψ can vary independently without taking z into considera-
tion, the geometric condition is not necessary. Furthermore, if the variation is
with respect to the normal displacement, as in A1 and A2, ρ and z are varied
proportionately so that the geometric relation is implicitly preserved.

30.3.3 Relationship Between the Shape Equations

Equation (30.12) can be expressed as d(η cos ψ)/dρ = 0, which, by (30.10),
leads to d(ρH cos ψ)/dρ = 0. We note that this relation differs from the equa-
tion in [ZL93]; i.e., (1/ρ)[d(ρH cos ψ)/dρ] = 0, which has an extra factor 1/ρ.
Not having 1/ρ avoids the singularity at ρ = 0, which removes the doubt on
the validity of the conclusion in [ZL93], as pointed out in [BP04] and [Poz03].
Integrating once yields η cos ψ = 2kbρH cos ψ = C, where C is an integrat-
ing constant. Obviously, C = 0 does not necessarily lead to H = 0 unless
ρ cos ψ �= 0. Therefore, (30.2) and (30.3) are equivalent if and only if η = 0,
which is relatively easy to verify.

30.3.4 Vesicles with Distinct Topological Shapes

It has been pointed out in the literature that the shape equations obtained
using different approaches are equivalent only for spherical vesicles. We now
demonstrate this by observing the value of the Lagrange multiplier η used in
our approach.

Spherical Vesicles

For spherical vesicles, ρ = r0 sin ψ, (30.2) leads to ∆Pr3
0 + 2λr2

0 + kbc
2
0r

2
0 −

2kbc0r0 = 0 and (30.10)–(30.12) yield

∆Pr3
0 + 2λr2

0 + kbc
2
0r

2
0 − 2kbc0r0 + η cot ψ csc ψr0 = 0.

Since these two conditions are identical, we have η = 0. Thus, (30.3) is equiv-
alent to (30.2) for spherical vesicles. This is due to the fact that we do not
need to impose any constraint on z and its derivatives, which allows ψ to vary
freely.

Cylindrical Vesicles

We now assume that the vesicle is of cylindrical shape, which is given by the
equations ρ = r0, ψ = π/2. Substituting this in (30.2) and in (30.10)–(30.12),
we can verify that for this cylindrical vesicle equation to be a solution of both
(30.2) and (30.10)–(30.12), we require that

C = ∆Pr0 (2 − r0)+2λr0

(
1

r0
− 1

)
+c20kbr0

(
1

r0
− 1

)
+2kbc0−

kb

r0

(
1

r0
+ 1

)
.
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Since C �= 0 and cosψ = 0, η cannot be zero. To obtain the cylindrical
vesicle, we need to have infinite slope dz/dρ (= − sin ψ/ cos ψ), which must
be maintained when the variation is performed. Hence, (30.3) and (30.2) are
not equivalent for cylindrical vesicles.

Toroidal Vesicles

Similarly, a vesicle of perfect torus shape given by ρ = x+ sin ψ, where 1/x is
the ratio of its generating radii, can be a solution of both (30.2) and (30.10)–
(30.12) only if C = 2kb(1 + 2c0). Thus, η = 0 only if c0 = −1/2. However,
based on experiments performed in [FMB92], [MBB91], and [MB91] and the
theoretical result in [Wil82], in general [HO93] c0 �= −1/2. Therefore, η �= 0
and (30.3) is not equivalent to (30.2) for toroidal vesicles.

As a simple observation, we offer the following explanation. To have a
vesicle of perfect torus shape, we need to have vanishing slope of the curve
z = z(ρ) at the point ρ = x (i.e., (dz/dρ)|ρ=x = 0). Because of this condition,
ψ cannot vary without taking z into consideration.

Circular Biconcave Discoids

In [NOO93], the authors showed that ψ = arcsin[ρ(c0 ln ρ+b)] with a constant
b is a solution of (30.2) under the condition ∆P = λ = 0. This solution with
c0 < 0 represents a circular biconcave discoid, the shape of the red blood cell
(RBC). For this vesicle to be a solution of (30.10)–(30.12) under the condition
∆P = λ = 0, we require that η = 4kbc0/(

√
1 − ρ2(c0 ln ρ + b)2). The nonzero

η indicates that (30.3) is not equivalent to (30.2), unless c0 = 0.
When c0 �= 0, the biconcave vesicle z = z(ρ) has a local extreme value;

i.e., dz/dρ = 0 at ρ = exp(−b/c0). Thus, ψ cannot vary independently. When
c0 = 0, the biconcave vesicle becomes spherical with b = 1/r0; thus, η = 0,
and (30.3) and (30.2) become equivalent.

30.4 Conclusion

We have introduced two new approaches for deriving the equilibrium shape
equation for axisymmetric vesicles. We have shown that as long as the ge-
ometric relation dz/dρ = − tanψ is maintained in performing the calculus
of variations, both approaches produce the correct shape equation. We have
also shown that the variation does not have to be in the normal direction.
Furthermore, by imposing the geometric condition as a Lagrange multiplier,
we established a simple relationship between the two distinct shape equa-
tions derived previously in the literature. Using this relationship, it becomes
a straightforward exercise to verify the equivalence of the shape equation using
explicit shape solutions.
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31.1 Introduction

We consider the well-known Falkner–Skan equation
⎧
⎪⎨
⎪⎩

f ′′′(η) + f(η)f ′′(η) + λ[1 − (f ′)2(η)] = 0 on η ∈ (0,∞),

f(0) = f ′(0) = 0, f ′(∞) = 1,

0 < f ′(η) < 1 for η ∈ (0,∞),

(31.1)

which is used to describe the steady two-dimensional flow of a slightly vis-
cous incompressible fluid past a wedge-shaped body of angle related to λπ/2,
where η is the similarity boundary layer ordinate, f(η) is the similarity stream
function, and f ′(η) and f ′′(η) are the velocity and shear stress, respectively.
If λ ∈ [−2, 0], the corresponding flow is called a corner flow and if λ ∈ [0, 2],
the flow is a wedge flow. We refer to [Na79] and [SG00] for a more detailed
physical interpretation of (31.1).

It is well known that there exists λ∗ < 0 such that (31.1) has at least
one solution for each λ ≥ λ∗ and no solutions for λ < λ∗. Moreover, the
condition 0 < f ′(η) < 1 for η ∈ (0,∞) can be replaced by f ′′(η) > 0 for
η ∈ (0,∞) (see [LY07] and the references therein). An open problem left
in [LY07] is what is exactly λ∗? A well-known numerical result shows that
λ∗ = −0.1988 (see [BS66], [LL67], and [RW89]). We refer to [AO02], [Cop60],
[Har02], [Har72], [Has71], [Has72], [Tam70], [WG99], [Wey42], [Yan03], and
[Yan04] for an analytic study of (31.1). Recently, Lan and Yang [LY07] have
proved analytically that λ∗ ∈ [−0.4,−0.12]. The main idea is to prove that
(31.1) is equivalent to a singular integral equation of the form

z(t) =

∫ 1

t

(1 − s)(λ+ λs+ s)

z(s)
ds+ (1 − t)

∫ t

0

s

z(s)
ds for t ∈ (0, 1), (31.2)

and study the properties of the positive solutions of (31.2) and the range of
λ∗ for (31.2). Many properties of f , f ′, and f ′′ have been obtained by Lan
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and Yang in [LY07] and [YL07]. For example, f is increasing and concave up
on (0,∞), f(η) < η for η ∈ (0,∞), limη→∞ f(η)/η = 1, and both the set
of velocity functions f ′ and the set of shear stress functions f ′′ are compact
in BC(R+) for each λ ∈ [λ∗, 0]. It is proved in [LY07] that the norm of f ′′

satisfies 2/27 ≤ ‖f ′′‖ ≤ 1 for λ ∈ [λ∗, 0].
In this chapter, we shall prove a better result concerning the above in-

equalities satisfied by ‖f ′′‖. The method is again based on the study of the
properties of the positive solutions of (31.2). We provide upper and lower
bounds for the positive solutions z(t) of (31.2) and give explicit formulas for
these bounds. When λ ∈ [λ∗, 0], we prove new inequalities for ‖z‖, which im-
prove a result in [LY07]. Then we use the equalities z(t) = f ′′(η) and t = f ′(η),
proved in [LY07], to derive properties of f ′ and f ′′.

31.2 Properties of the Positive Solutions of (31.2)

Let z ∈ C(0, 1) with z(t) > 0 for t ∈ (0, 1). We define

Az(t) =

∫ 1

t

fz(s) ds for t ∈ [0, 1] and Bz(t) =

∫ t

0

s

z(s)
ds for t ∈ [0, 1),

where fz(s) := (1−s)(λ+λs+s)
z(s) for s ∈ (0, 1). Let δ := δ(λ) = −λ

1+λ . Then

δ ∈ [0, 1) if and only if λ ∈ (−1/2, 0]. It is shown in [LY07] that if δ ∈ (0, 1),
then

fz(s) ≤ 0 for s ∈ (0, δ) and fz(s) ≥ 0 for s ∈ [δ, 1) (31.3)

and
Az is increasing on (0, δ) and decreasing on [δ, 1). (31.4)

We denote by C[0, 1] the Banach space of continuous functions defined on
[0, 1] with the maximum norm ‖z‖ = max{|z(t)| : t ∈ [0, 1]}. Let

Q = {z ∈ C[0, 1] : z(t) > 0 for t ∈ (0, 1)}.

It is known that if z ∈ Q and the improper integral Az(t) converges for
t ∈ [0, 1), then Az(t) is a Lebesuge integral for t ∈ [0, 1) and

Az(t) ≥ 0 for t ∈ [0, 1]

and if z ∈ Q is a solution of (31.2), then Bz(1) = limt→1− Bz(t) = ∞ and
limt→1−(1 − t)Bz(t) = 0. If a function z : [0, 1] → R+ satisfies (31.2), then
z ∈ C(0, 1).

The following result obtained in [LY07] gives the values of a positive solu-
tion z(t) of (31.2) at t = 0, 1.

Lemma 1. Suppose that (λ, z) ∈ (−1/2,∞)×Q satisfies (31.2). Then z(0) =
Az(0) and z(1) = 0.



31 Positive Solutions of the Falkner–Skan Equation 279

It is showed in [LY07] that (31.2) is equivalent to two differential equations
with suitable boundary conditions. We state one of these results, which will
be used later.

Lemma 2. Let (λ, z) ∈ (−1/2,∞)×Q. Then (λ, z) satisfies (31.2) if and only
if z(1) = 0 and

z′(t) =
−λ(1 − t2)

z(t)
− Bz(t) for t ∈ (0, 1). (31.5)

It is known that (31.1) is equivalent to (31.2) (see Lemma 4 below). The results
on (31.1) can be used to derive the results on (31.2) via the equivalence. Hence,
the following result is a consequence of Lemma 4.1 in [LY07].

Lemma 3. There exists λ∗ ∈ [−0.4,−0.12] such that (31.2) has multiple so-
lutions in Q for each λ ∈ (λ∗, 0), has a unique solution for either λ = λ∗ or
λ ≥ 0, and has no solutions for λ < λ∗.

It is difficult to find the explicit expressions of the solutions of (31.2), but
we can provide upper and lower bounds for the positive solutions of (31.2)
and give the explicit formulas of these bounds in the following theorem.

Theorem 1. Assume that (λ, z) ∈ [λ∗,∞) × Q satisfies (31.2). Then the fol-
lowing assertions hold:

(i) If λ ∈ [λ∗, 0), then for t ∈ [0, 1],

√
3(1 + λ)(1 − t)t2

2
√

4λ3 + 4λ2 + 2λ + 1
≤ z(t) ≤

√
3[(1 + 2λ)3 − 2λ(1 + λ)2t(3 − t2)]

3(1 + λ)
.

(ii) If λ ∈ [λ∗, 0), then

2/27 <
2
√

9855

1971
≤ ‖z‖ ≤ 3(1 + λ)2

4λ3 + 4λ2 + 2λ + 1
≤

√
9855/135 < 1.

(iii) If λ ≥ 0, then

√
6

6
(1 − t)g(t) ≤ z(t) ≤

√
6[z1(t) + (1 − t)z2(t)] for t ∈ [0, 1].

where g(t) =
√

2(λ + 1)t + 4λ + 1, z1(t) =
[λ − 2 − (1 + λ)t]g(t)

3(1 + λ)2
, and

z2(t) =

√
1 + 4λ − g(t)

1 + λ
+

√
6λ + 3

6λ + 3
ln

[ 5λ + 2 + (1 + λ)t +
√

(6λ + 3)g(t)

(1 − t)(5λ + 2 +
√

(6λ + 3)(1 + 4λ))

]
.

Proof. (i) We define a function h : [λ∗, 0] → [0,∞) by

h(λ) =

∫ 1

δ(λ)

(1 − t)(λ + λt + t) dt.
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By computation, we have h(λ) =
(1 + 2λ)3

6(1 + λ)2
. Assume that (λ, z) ∈ [λ∗, 0)×Q

satisfies (31.2). Then z(t) > 0 and z(t) ≥ (Az)(t) for t ∈ (0, 1). By (31.3),
fz(t) ≥ 0 for t ∈ [δ, 1) and we have for t ∈ [δ, 1),

−(Az)′(t)(Az)(t) = fz(t)(Az)(t) ≤ fz(t)z(t) = (1 − t)(λ+ λt+ t).

Integrating the above inequality from δ(= δ(λ)) to 1 and using Az(1) = 0, we
have

[(Az)(δ)]2 ≤ 2h(λ).

By (31.4), we have (Az)(t) ≤ (Az)(δ) for t ∈ [0, 1]. This and Lemma 1 imply
that

[z(0)]2 = [(Az)(0)]2 ≤ [(Az)(δ)]2 ≤ 2h(λ) =
(1 + 2λ)3

3(1 + λ)2
.

By (31.5) and the continuity of z, we obtain z(t)z′(t) ≤ −λ(1−t2) for t ∈ [0, 1].
Integrating the inequality from 0 to t implies that

1

2
[z2(t) − z2(0)] ≤ −λ

∫ t

0

(1 − t2)dt = (−λ)(t− t3/3).

This yields

[z(t)]2 ≤ (−2λ)(t−t3/3)+[z(0)]2 ≤ (−2λ)(t−t3/3)+
(1 + 2λ)3

3(1 + λ)2
for t ∈ [0, 1],

(31.6)

and so, the second inequality of (i) holds. Since z(t) ≥ Bz(t) ≥ t2(1−t)
2 ‖z‖−1,

the first inequality of (i) follows.
(ii) Noting that g(t) := (t− t3/3) is increasing on t ∈ [0, 1] and (31.6), for

t ∈ [0, 1] we have

[z(t)]2 ≤ −4λ/3 +
(1 + 2λ)3

3(1 + λ)2
=

4λ3 + 4λ2 + 2λ+ 1

3(1 + λ)2
.

This implies that

‖z‖ ≤
√

4λ3 + 4λ2 + 2λ+ 1

3(1 + λ)2
:= ω(λ). (31.7)

Let ω1(λ) =
4λ3 + 4λ2 + 2λ+ 1

(1 + λ)2
for λ ∈ [−0.4, 0]. Then

ω′
1(λ) =

4λ[(λ+ 3/2)2 − 1/4]

(1 + λ)3
< 0 for λ ∈ [−0.4, 0]

and ω1 is decreasing on [−0.4, 0]. Hence, we have
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ω(λ) ≤ ω(−0.4) =
√

9855/135 for λ ∈ [−0.4, 0].

By (31.7), we have ‖z‖ ≤
√

9855/135. Let h1(t) = 1
2 (1 − t)t2 for t ∈ [0, 1].

Then h1(t) ≤ h1(2/3) = ‖h1‖ = 2/27 for t ∈ [0, 1]. From (i) and (31.7) it
follows that z(t) ≥ h1(t)/ω(λ) for t ∈ [0, 1]. This implies that

‖z‖ ≥ (135/
√

9855)‖h1‖ = (2/27)(135/
√

9855) =
2
√

9855

1971
.

(iii) By (31.5), we have for t ∈ (0, 1), z′(t) = −λ(1−t2)
z(t) − Bz(t) < 0 and z is

decreasing [0, 1]. Hence, we have for t ∈ [0, 1),

z(t) ≥ Az(t) ≥ 1

z(t)

∫ 1

t

(1 − s)(λ+ λs+ s)ds =
[2(λ+ 1)t+ 4λ+ 1](1 − t)2

6z(t)

and [z(t)]2 ≥ [g(t)]2(1 − t)2/6. This implies that z(t) ≥ g(t)(1 − t)/
√

6 for
t ∈ [0, 1]. By (31.2), we obtain for t ∈ (0, 1),

z(t) ≤
√

6(I1(t) + (1 − t)I2(t)),

where I1(t) =
∫ 1

t
λ+λs+s

g(s) ds and I2(t) =
∫ t

0
s√

(1−s)g(s)
ds. By substitution

u = g(s), we can prove that I1(t) = z1(t) and I2(t) = z2(t) for t ∈ [0, 1].
Hence, (iii) follows.

31.3 Properties of the Solutions of (31.1)

In this section we derive properties of the solutions of (31.1). We need the
following known result, which shows that (31.1) is equivalent to (31.2).

Lemma 4. (i) If (λ, f) ∈ R × C2(R+) satisfies (31.1), then (λ, z) satisfies
(31.2), where z : [0, 1] → R+ is defined by

z(t) =

{
f ′′((f ′)−1(t)) if t ∈ [0, 1),
0 if t = 1.

(ii) If (λ, z) ∈ (−1/2,∞) × Q satisfies (31.2), then (λ, f) ∈ R × C2(R+)
and satisfies (31.1), where f : R+ → R+ is defined by

f(η) =

∫ g−1(η)

0

s

z(s)
ds

and g : [0, 1) → R+ is defined by g(t) =
∫ t

0
1

z(s) ds.
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It is shown in [LY07] that there exists λ∗ ∈ [−0.4,−0.12] such that (31.1)
has at least one solution for λ ∈ (λ∗, 0) and has a unique solution for λ ∈
{λ∗, 0}. We denote by Γ the set of solutions of (31.1); that is,

Γ := {(λ, f) ∈ [λ∗, 0] × C2(R+) : (λ, f) satisfies (31.1) }.

We denote by BC(R+) the Banach space of continuous bounded functions
defined on R+ with the norm ‖f‖ = sup{|f(x)| : x ∈ R+}. It is shown in
[LY07] that if (λ, f) ∈ Γ , then 2/27 ≤ ‖f ′′‖ ≤ 1. Using Theorem 1 and
Lemma 4, we obtain the following new result, which improves the inequalities
just mentioned.

Theorem 2. Suppose that (λ, f) ∈ [λ∗, 0] ∈ Γ . Then

2
√

9855/1971 ≤ ‖f ′′‖ ≤ 3(1 + λ)2

4λ3 + 4λ2 + 2λ + 1
≤

√
9855/135.

Proof. By Lemma 4, z(t) = f ′′(η) and t = f ′(η). This, together with Theorem
1(ii), implies the required inequalities.

In Theorem 1(i),(iii), one can replace z(t) and t by f ′′(η) and f ′(η), respec-
tively, to obtain inequality relations between f ′′(η) and f ′(η). We leave the
obvious statements to the reader.
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32.1 Introduction

The sample or almost-sure stability of a dynamic system is determined by
the Lyapunov exponent, which characterizes the average exponential rate of
growth of the solutions of a dynamic system for τ large and is defined as

λq(τ) = lim
τ→∞

1

τ
log ‖q(τ)‖,

where q(τ)={q(τ), q′(τ)}T and ‖q‖ =
(
qT q

)1/2
is the Euclidean norm. If

the largest Lyapunov exponent is negative, the dynamic system is stable with
probability 1; otherwise, it is unstable almost surely.

On the other hand, the stability of the pth moment E
[
‖q‖p

]
of the solution

of the dynamic system is governed by the pth moment Lyapunov exponent
defined by

Λq(τ)( p) = lim
τ→∞

1

τ
log E

[
‖q‖p

]
,

where E[ · ] denotes the expected value. If Λq(τ)( p) is negative, then the pth
moment is stable; otherwise, it is unstable.

The relationship between the sample stability and the moment stability
was formulated by Arnold [Arn84]. The pth moment Lyapunov exponent
Λq(τ)( p) is a convex analytic function in p that passes through the origin, and
whose slope at the origin is equal to the largest Lyapunov exponent λq(τ); i.e.,

λq(τ) = lim
p→0

Λq(τ)( p)

p
.

The moment Lyapunov exponents are important in obtaining a complete
picture of the dynamic stability of a system. Suppose the largest Lyapunov
exponent λq(τ) is negative, implying that the system is sample stable, the
pth moment typically grows exponentially for large enough p, implying that
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the pth moment of the trivial solution is unstable. This can be explained by
large deviation. Although the solution of the system ‖q‖ → 0 as τ → ∞ with
probability one at an exponential rate λq(τ), there is a small probability that

‖q‖ is large, which makes the expected value E
[
‖q‖p

]
of this rare event large

for large enough values of p, leading to pth moment instability.

32.2 Formulation

Consider a linear stochastic system governed by the equations of motion

ẋ = Ax+ εξ(t)Bx, x ∈ R
4,

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−ε2δ1 ω1 0 0

−ω1 −ε2δ1 0 0

0 0 −δ2 ω2

0 0 −ω2 −δ2

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

K11 K12 M11 M12

K21 K22 M21 M22

N11 N12 L11 L12

N21 N22 L21 L22

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The quantities δ1 and δ2 represent the real part of the eigenvalues of the
critical mode and stable mode, respectively.

Applying the transformation

x1 = eρ cosφ1 cosθ, x3 = eρ cosφ2 sinθ,

x2 = −eρ sinφ1 cosθ, x4 = −eρ sinφ2 sinθ,

one can obtain the following set of equations for the amplitude ρ, phase vari-
ables (φ1, φ2, θ), and noise process ξ:

ρ̇ =
2∑

j=0

ε jq j(φ1, φ2, θ, ξ), θ̇ =

2∑

j=0

ε js j(φ1, φ2, θ, ξ),

φ̇i =

2∑

j=0

ε jh j
i (φ1, φ2, θ, ξ), dξ = −αξdt+ σ ◦ dWt.

Since the processes (φ1, φ2, θ, ξ) do not depend on ρ, it follows that the
processes (φ1, φ2, θ, ξ) form a Markov process and the associated generator is
given by

L (p) = L0(p) + εL1(p) + ε2L2(p),

where
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L0 =
σ2

2

∂2

∂ξ2
− αξ

∂

∂ξ
+

2∑

i=1

ωi

∂

∂φi
+ s0

∂

∂θ
,

L1 =s1
∂

∂θ
+

2∑

i=1

h1
i

∂

∂φi

, L2 =s2
∂

∂θ
+

2∑

i=1

h2
i

∂

∂φi

.

Arnold et al. ([AOP86] and [AKO86]) proved that Λ(p) is an isolated
simple eigenvalue of L(p) with nonnegative eigenfunction ψ; i.e.,

L(p)ψ=Λ(p)ψ ∀p ∈ R, (32.1)

where
L(p)=L0(p) + εL1(p) + ε2L2(p)

and
L0(p)=L0 + pq0, L1(p)=L1 + pq1, L2(p)=L2 + pq2.

32.3 Moment Lyapunov Exponent

A method of regular perturbation is applied to obtain a weak noise expansion
of the moment Lyapunov exponent. Consider an expansion of the moment
Lyapunov exponent in powers of ε:

Λ(p)=Λ0(p) + εΛ1(p) + ε2Λ2(p) + O(ε2).

Substituting the above expansions into equation (32.1), one obtains the
equations (

L0(p) − Λ0(p)
)
ψ0 =0, (32.2)

(
L0(p) − Λ0(p)

)
ψ1 =Λ1(p)ψ0 − L1(p)ψ0, (32.3)

(
L0(p) − Λ0(p)

)
ψ2 =Λ2(p)ψ0 + Λ1(p)ψ1 − L2(p)ψ0 − L1(p)ψ1.

32.3.1 Zeroth-Order Perturbation

From the definition of Λ(p) it follows that Λ0(p) ≡ 0 for all possible p. Thus,
(32.2) reduces to (

L0 + pq0
)
ψ0 = 0.

Using the method of separation of variables, one can easily obtain

ψ0(φ1, φ2, θ, ξ) = ( cosθ) p.

Based on the analysis in [PW88], the solution to the associated adjoint
equation of (32.2) is

Ψ∗
0 =

Z∗
0 (ξ)δ0
4π2

,

where δ0 is the Dirac distribution at 0 and Z∗
0 (ξ) is the stationary probability

density.
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32.3.2 Solution of L0ψ= f(ξ)g(φ1, φ2, θ)

Consider the partial differential equation

L0ψ1 = f(ξ)g(φ1, φ2, θ). (32.4a)

Introducing an auxiliary time t in (32.4a) leads to

(
∂

∂t
+ L0

)
Ψ(t, φ1, φ2, θ, ξ) = f(ξ)g(φ1, φ2, θ), (32.4b)

where
Ψ(0, φ1, φ2, θ, ξ) = 0.

Applying the transformation

t̃ =
t

4
+

φ1

4ω1

+
φ2

4ω2

− ln(tan θ)

4δ2
, s̃ =

t

4
− φ1

4ω1

− φ2

4ω2

− ln(tan θ)

4δ2
,

γ1 = ω2φ1 − ω1φ2, γ2 = 2ω1ω2t− ω2φ1 − ω1φ2,

we bring (32.4b) to the form

(
∂

∂t̃
+
σ2

2

∂2

∂ξ2
− αξ

∂

∂ξ
− pδ2 sin2θ

)
Ψ̃ (t̃, s̃, γ1, γ2, ξ) = f(ξ)g̃(t̃, s̃, γ1, γ2),

(32.4c)
where

Ψ̃(t̃, s̃, γ1, γ2, ξ) = Ψ(t, φ1, φ2, θ, ξ), g̃(t̃, s̃, γ1, γ2) = g(φ1, φ2, θ).

To remove the sin2θ term, we introduce the function β̃ defined by

β̃(t, s̃, γ1, γ2) = Ψ̃ exp
{
−
∫ t

pδ2 sin2θ(r)dr
}
.

Hence, (32.4c) becomes

(
∂

∂t̃
+
σ2

2

∂2

∂ξ2
− αξ

∂

∂ξ

)
β̃(t̃, s̃, γ1, γ2, ξ) = f(ξ)g̃(t̃, s̃, γ1, γ2)Rβ̃

(t̃, s̃, γ1, γ2),

(32.4d)
where

R
β̃
(t̃, s̃, γ1, γ2) = exp

{
−
∫ t̃

pδ2 sin2θ(r)dr
}

=
{
1 + exp

[
2δ2
( γ2

2ω1ω2

− t̃− 3s̃
)]} p

2 .

Applying Duhamel’s principle (see, for example, [Zau89]), we see that the
solution β̃(t̃, s̃, γ1, γ2, ξ) to (32.4d) is given by
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β̃(t̃, s̃, γ1, γ2, ξ) =

∫ t̃

0

V (t̃, s̃, γ1, γ2, ξ; r)dr, (32.5a)

where V (t̃, s̃, γ1, γ2, ξ; r) is the solution of the homogeneous equation

(
∂

∂t̃
+

σ2

2

∂2

∂ξ2
− αξ

∂

∂ξ

)
V (t̃, s̃, γ1, γ2, ξ; r) = 0, for t̃>r,

V (r, s̃, γ1, γ2, ξ; r) = f(ξ) g̃(r, s̃, γ1, γ2)Rβ̃
(r, s̃, γ1, γ2), for t̃=r.

(32.5b)

To solve (32.5b), consider the equation

(
∂

∂t̃
+

σ2

2

∂2

∂ξ2
− αξ

∂

∂ξ

)
P (t̃, ξ; τ, z) = 0, t̃<τ,

P (τ, ξ; τ, z) = lim
t̃↑τ

P (t̃, ξ; τ, z) = δ(z−ξ).
(32.6a)

Equation (32.6a) is the backward Kolmogorov equation for the transition
probability function P (t̃, ξ; τ, z). It is known that P (t̃, ξ; τ, z) is also the solu-
tion of the forward Kolmogorov or Fokker–Planck equation, i.e., for the initial
condition t̃ and ξ fixed,

[
∂

∂τ
− σ2

2

∂2

∂z2
+

∂

∂z
(−αz)

]
P (t̃, ξ; τ, z) = 0, τ >t̃,

P (t̃, ξ; t̃, z) = lim
τ↓t̃

P (t̃, ξ; τ, z) = δ(z−ξ).
(32.6b)

The solution of (32.6b) is given by

P (t̃, ξ; τ, z) =
1√

2πσz(τ)

exp

⎧
⎨
⎩−
[
z − µz(τ)

]2

2σ2
z(τ)

⎫
⎬
⎭ , (32.7)

where

µz(τ) = ξe−α(τ−t̃), σ2
z(τ) =

σ2
[
1−e−2α(τ−t̃)

]

2α
.

By (32.5b) and (32.6a), the solution V (t̃, s̃, γ1, γ2, ξ; r) to (32.5b) is given
by

V (t̃, s̃, γ1, γ2, ξ; r) = g̃(r, s̃, γ1, γ2)Rβ(r, s̃, γ1, γ2)

∫ ∞

−∞
f(z)P (t̃, ξ; r, z)dr,

(32.8)
where

E
[
f
(
z(r)
)]

=

∫ ∞

−∞
f(z)P (t̃, ξ; r, z)dz

is the expected value of the random variable f
(
z(r)
)
, with z(r) being the

normally distributed random variable as defined in (32.7).
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Combining (32.5a) and (32.8), we see that the solution to (32.4c) is given
by

β̃(t̃, s̃, γ1, γ2, ξ) =

∫ t̃

0

g̃(r, s̃, γ1, γ2)Rβ(r, s̃, γ1, γ2)E
[
f
(
z(r)
)]

dr. (32.9)

Hence, one has

Ψ̃(t̃, s̃, γ1, γ2, ξ) =
β̃

R
β̃

.

The solution ψ(φ1, φ2, θ, ξ) to (32.4a) is obtained by using the inverse
transformation and passing to the limit as t̃→−∞.

32.3.3 First-Order Perturbation

Substituting the above expression for ψ0(θ) in (32.3) leads to

L0ψ1 = −s1(φ1, φ2, θ, ξ)
∂ψ0

∂θ
+ [Λ1(p) − pq1(φ1, φ2, θ, ξ)]ψ0. (32.10)

By the Fredholm Alternative, for equation (32.10) to have a solution, it is
required that

〈−s1ψ′
0 + [Λ1(p) − pq1]ψ0, Ψ

∗
0 〉=0;

i.e.,

Λ1(p)= 〈s1ψ′
0 + pq1ψ0, Ψ

∗
0 〉=0. (32.11)

The last equality in (32.11) results from the fact that q1 and s1 are periodic
in φ1 and φ2, and ξ is a zero-mean process. Hence, (32.10) reduces to

L0ψ1 = − ξg(φ1, φ2, θ). (32.12)

Equation (32.12) is of the form (32.4a), and its solution is given by (32.9).

32.3.4 Second-Order Perturbation

The equation for the second-order perturbation is

L0(p)ψ2 = [Λ2(p) − L2(p)]ψ0 − L1(p)ψ1.

By the Fredholm Alternative,

Λ2(p) = 〈L2ψ0 + L1ψ1, Ψ
∗
0 〉.

After performing the integration, one obtains

Λ2(p) =
[
− 8δ1 +

(
κ2F0 +κ3F1 +κ4F2 +κ5F3 +κ6F4

)] p
8

+
[
κ2F0 +

2κ1

α

] p2

16
,



32 Stabilization of a Four-Dimensional System 291

where

κ1 = (K11 + K22)
2, κ2 = (K12 + K21)

2 + (K11 − K22)
2,

κ3 = (N12 + N21)(M11 − M22) − (N11 − N22)(M12 + M21),

κ4 = (N12 + N21)(M12 + M21) + (N11 − N22)(M11 − M22),

κ5 = (N11 + N22)(M12 − M21) + (N12 − N21)(M11 + M22),

κ6 = (N11 + N22)(M11 + M22) − (N12 − N21)(M12 − M21),

and

F0 =
σ2

α2 + 4ω2
1

,

F1 =
σ2(ω1 + ω2)

α[(δ2 + α)2 + (ω1 + ω2)
2]
, F2 =

σ2(δ2 + α)

α[(δ2 + α)2 + (ω1 + ω2)
2]
,

F3 =
σ2(ω1 − ω2)

α[(δ2 + α)2 + (ω1 − ω2)
2]
, F4 =

σ2(δ2 + α)

α[(δ2 + α)2 + (ω1 − ω2)
2]
.

The maximal Lyapunov exponent is given by

λ =
[
− δ1 +

1

8

(
κ2F0 + κ3F1 + κ4F2 + κ5F3 + κ6F4

)]
.

32.4 Numerical Simulation

The Lyapunov exponent and moment Lyapunov exponent can also be obtained
by Monte Carlo simulations (see, for example, [Xie06]). Figures 32.1 and 32.2
compare the analytical results with the numerical results, in which the system
matrices are given by

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ1 1 0 0

−1 δ1 0 0

0 0 −0.5 1.5

0 0 −1.5 −0.5

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.1 1.0 1.2 1.0

−1.0 0.5 −2.0 1.0

1.0 2.0 −1.5 1.0

−2.0 1.0 −1.0 −1.0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It is seen from Figure 32.1 that the system can be stabilized by real noise.
When α decreases, the effect of stabilization is more significant. The numerical
results agree well with the analytical results with larger α. Since a larger α
means that the real noise is more flat (wide-band), the perturbation method
can achieve better results. This conclusion also applies to the moment Lya-
punov exponent (see, for example, Figure 32.2). Figure 32.2 also shows that a
smaller ǫ yields better results. However, if only one degree of freedom is consid-
ered, the previous equation for the Lyapunov exponent is reduced to include
only κ2 and F0. Since they are both positive, the system with one degree of
freedom cannot be stabilized, which agrees with the results of Xie [Xie02].



292 J. Zhu, W.-C. Xie, and R.M.C. So

Fig. 32.1. Lyapunov exponent.

Fig. 32.2. Moment Lyapunov exponent for δ1 =0.004.
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32.5 Conclusions

In this chapter, the effect of noise on the stability of a parametrically excited
four-dimensional system is considered. The dynamic stability of the system is
studied by determining the moment Lyapunov exponents and the Lyapunov
exponents. For weak noise excitations, a regular perturbation method is em-
ployed to obtain second-order expansions of the moment Lyapunov exponents.
The Lyapunov exponent is then obtained using the relationship between the
moment Lyapunov exponent and the Lyapunov exponent. The correctness
and accuracy of the approximate analytical results are validated and assessed
by comparing them with the numerical results. It is observed that the system
can be stabilized by real noise with proper parameters.
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