
G12CAN Complex Analysis

Books: Schaum Outline book on Complex Variables (by M. Spiegel), or Churchill and Brown,

Complex Analysis and Applications. There should be copies in Short Loan and Reference Only

sections of the library. Notes are on www.maths.nottingham.ac.uk/personal/jkl (readable in PDF

form).

Lecturer: J.K. Langley (C121, jkl@maths, (95) 14964). Lectures Mon at 2, Tues at 4, in B1.

Office hours: displayed outside my office. (see notices and timetable outside my room).

AIMS AND OBJECTIVES:

Aims: to teach the introductory theory of functions of a complex variable; to teach the computa-

tional techniques of complex analysis, in particular residue calculus, with a view to potential

applications in subsequent modules.

Objectives: a successful student will: 1. be able to identify analytic functions and singularities; 2.

be able to prove simple propositions concerning functions of a complex variable, for example

using the Cauchy-Riemann equations; 3. be able to evaluate certain classes of integrals; 4. be

able to compute Taylor and Laurent series expansions.

SUMMARY: in this module we concentrate on functions which can be regarded as functions of a

complex variable, and are differentiable with respect to that complex variable. These "good" func-

tions include exp, sine, cosine etc. (but log will be a bit tricky). These are important in applied

maths, and they turn out to satisfy some very useful and quite surprising and interesting formulas.

For example, one technique we learn in this module is how to calculate integrals like

∫ − ∞
+ ∞

x2 + 1

cos x��������� dx WITHOUT actually integrating.

PROBLEM CLASSES will be fortnightly, on Tuesdays at 11.00 and 12.00. You must be avail-

able for at least one of these times. Please see handouts for dates and further information.

COURSEWORK: Dates for handing in for G12CAN will be announced in the first handout (all

will be Tuesdays). The problems will be made available at least one week before the work is due.

Homework does not count towards the assessment, but its completion is strongly advised, and the

work will emphasize the computational techniques which are essential to passing the module.

Failure to hand in homework, poor marks, and non-attendance at problem classes will be reported

to tutors.

ASSESSMENT: One 2-hour written exam. Section A is compulsory and is worth half the total

marks. From Section B you must choose two out of three longer questions. For your revision,

you may find it advantageous to look at old G12CAN papers, although there have been minor

variations in content over the years.

The assessment will mainly be based on using the facts and theorems of the module to solve

problems of a computational nature, or to derive facts about functions. You will not be expected

to memorize the proofs of the theorems in the notes.
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Proofs of some theorems will just be sketched in the lectures, with the details provided on han-

douts in case you wish to see them. You will not be required to reproduce these proofs in the

examination.

1.1 Basic Facts on Complex Numbers from G1ALIM

All this section was covered in G1ALIM. Suppose we have two complex numbers z = x + yi and

w = u + � i (where x, y, u, � are all real). Then x = Re(z), y = Im(z),

(x + yi) + (u + � i) = (x + u) + (y + � ) i, (x + yi) − (u + � i) = (x − u) + (y − � ) i,

(x + yi)(u + � i) = xu − y � + (x � + yu) i

and, if x + yi /= 0 + 0i ,

x + yi

u + � i� ������� =
x 2 + y2

(u + � i)(x − yi)� ��������������������� =
(x + yi)(x − yi)

(u + � i)(x − yi)� ��������������������� .

With these rules, we’ve made a field called , which contains , as x = x + 0i .

The Argand diagram, or complex plane

Think of the complex number z = x + yi , with x = Re(z), y = Im(z) both real, as interchangeable

with the point (x, y) in the two dimensional plane. A real number x corresponds to (x, 0) and the

x axis becomes the REAL axis, while numbers iy , with y real (often called purely imaginary)

correspond to points (0, y), and the y axis becomes the IMAGINARY axis.

The complex conjugate

The complex conjugate of the complex number z is the complex number
	
z = Re(z) − i Im(z).

Some write z* instead. E.g.

 
�
�


�

2 + 3i = 2 − 3i . In fact,

�
z is the reflection of z across the real axis.

The conjugate has the following easily verified properties:
� ���
(
�
z) = z,

�������
�
z + w =

�
z +

� �
w,

� �
�
zw =

�
z
� �
w, z +

�
z = 2Re(z), z −

�
z = 2iIm(z).

Modulus of a complex number

The modulus or absolute value of z is the non-negative real number
�
z � = √�����������������������Re(z)2 + Im(z)2. This

is the distance from 0 to the point z in the complex plane. Note that

z �z = (Re(z) + iIm(z))(Re(z) − iIm(z)) = Re(z)2 + Im(z)2 = � z � 2

so that a useful formula is  z ! = √"#"z$z. Also (i) 1/z = %z & z ' −2 if z /= 0 (ii) ( zw ) = * z +,+ w - .
Warnings (i) The rules . z / = ± z, z2 = 0 z 1 2 are only true if z is real; (ii) The statement z < w

only makes sense if z and w are both real: you can’t compare complex numbers this way.

Triangle Inequality

For all z,w ∈ , we have 2 z + w 3 4 z 5 + 6 w 7 and 8 z − w 9 : z ; − < w = . Note that 0, z, w,z + w form

the vertices of a parallelogram. The second inequality follows from > z ? @ w A + B z −w C .
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Note also that 0, w, z − w, z form the vertices of a parallelogram and hence D z − w E is the distance

from z to w .

Polar and exponential form

Associate the complex number z with the point (Re(z) , Im(z)) in 2.

If z ≠ 0, then Re(z) and Im(z) aren’t both zero, and r = F z G /= 0. Let θ be the angle between

the positive real axis and the line from 0 to z , measured counter-clockwise in radians. Then

x = Re(z) = r cos θ , y = Im(z) = r sin θ . Writing

z = r cos θ + ir sin θ ,

we have the POLAR form of z . The number θ is called an ARGUMENT of z and we write

θ = arg z . Note that (1) arg 0 does not exist. (2) If θ is one argument of z , then so is θ + k2π for

any integer k . (3) From the Argand diagram, we see that arg z ± π is an arg of −z .

We can always choose a value of arg z lying in (−π, π] and we call this the PRINCIPAL ARGU-

MENT Arg z . Note that if z is on the negative real axis then Arg z = π, but Arg z → − π as z

approaches the negative real axis from below (from the lower half-plane).

To compute Arg z using a calculator: suppose z = x + iy /= 0, with x, y real. If x > 0 then

θ = Arg z = tan−1(y /x) = arctan(y /x) but this gives the WRONG answer if x < 0. The reason is

that calculators always give tan−1 between − π /2 and π /2. Thus if x < 0 then tan−1(y /x) =
tan−1(−y / (−x)) gives Arg (−z) = Arg z ± π. If x = 0 and y > 0 then Arg z = π /2, while if x = 0

and y < 0 then Arg z = − π /2.

Definition

For t real, we define e it = cos t + i sin t . Using the trig. formulas

cos(s + t) = cos s cos t − sin s sin t, sin(s + t) = sin s cos t + cos s sin t,

we get, for s,t real,

e ise it = cos s cos t − sin s sin t + i(cos s sin t + sin s cos t) = e i(s + t).

Thus e − ite it = e i0 = 1. Also, H H�H
H�H(e it) = e − it and, if z,w are non-zero complex numbers, we have

zw = I z J e i arg z K w L e i arg w = M zw N e i (arg z + arg w)

and Oz = P z Q e − iarg z, 1 /z = R z S −1e − iarg z. We get:

(a) arg z + arg w is an argument of zw . (b) − arg z is an argument of 1 /z and of Tz .

Warning: it is not always true that Arg z + Arg w = Arg zw . Try z = w = − 1 + i .

De Moivre’s theorem

For t real, we have e 2it = e ite it = (e it)2 and e − it = 1/ (e it). Repeating this argument we get

(e it)n = e int for all real t and integer n (de Moivre’s theorem). For example, for real t , we have

cos 2t = Re(e2it) = Re((e it)2) = Re(cos2t − 2icos tsin t − sin2t) = 2cos2t − 1.
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Roots of unity

Let n be a positive integer. Find all solutions z of zn = 1.

Solution: clearly z /= 0 so write z = re it with r = U z V and t an argument of z . Then

1 = z n = r ne int. So 1 = W z n X = r n and r = 1, while e int = cos nt + i sin nt = 1. Thus nt = k2π for

some integer k , and z = e it = ek2πi /n. However, e is = e is + j2πi for any integer j , so e k2πi /n =
ek ′2πi /n if k − k ′ is an integer multiple of n . So we just get the n roots ζk = e k2πi /n, k =
0, 1,...., n −1. One of them (k = 0) is 1, and they are equally spaced around the circle of centre 0

and radius 1, at an angle 2π /n apart. The ζk are called the n ’th roots of unity.

Solving some simple equations

To solve z n = w , where n is a positive integer and w is a non-zero complex number, we first

write w = Y w Z e iArg w. Now z0 = [ w \ 1/ne (i /n)Arg w, in which ] w ^ 1/n denotes the positive n ’th root

of _ w ` , gives (z0)n = w . This z0 is called the principal root. Now if z is any root of zn = w , then

(z /z0)n = w /w = 1, so z /z0 is an n ’th root of unity. So the n roots of zn = w are

zk = a w b 1/ne (i /n)Arg w + k2πi /n, k = 0, 1, . . . , n −1.

For example, to solve z 4 = − 1 − i = w , we write w = √c2e − 3πi /4 and z0 = 21/8e − 3πi /16. The

other roots are z1 = 21/8e − 3πi /16 + πi /2 = 21/8e5πi /16 and z2 = 21/8e − 3πi /16 + πi = 21/8e13πi /16 and

z3 = 21/8e − 3πi /16 + 3πi /2 = 21/8e − 3πi /16 − πi /2 = 21/8e − 11πi /16.

Quadratics: we solve these by completing the square in the usual way. For example, to solve

z 2 + (2 + 2i)z + 6i = 0 we write this as (z + 1 + i)2 − (1+ i)2 + 6i = 0 giving (z + 1 + i)2 = − 4i =
4e − iπ /2 and the solutions are z + 1 + i = 2e − iπ /4 and z + 1 + i = 2e − iπ /4 + iπ = 2e3iπ /4.

In general, az 2 + bz + c = 0 (with a /= 0) solves to give 4a 2z 2 + 4abz + 4ac = 0 and so (2az + b)2 =
b2 − 4ac and so z = ( − b + (b2 − 4ac)1/2) /2a with, in general, two values for the square root.

For example, to solve z 4 − 2z 2 + 2 = 0 we write u = z2 to get (u − 1)2 + 1 = 0 and so u = 1 ± i .

Now z 2 = 1 + i = √d2e iπ /4 has principal root z1 = 21/4e iπ /8 and second root z2 = z1e iπ =
− z1 = 21/4e i9π /8 = 21/4e − i7π /8, in which 21/4 means the positive fourth root of 2. Two more solu-

tions come from solving z2 = 1 − i = √e2e − iπ /4 and these are z3 = 21/4e − iπ /8 and z4 = 21/4e i7π /8.
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An example

Consider the straight line through the origin which makes an angle α,0 α π /2, with the posi-

tive x -axis. Find a formula which sends each z = x + iy to its reflection across this line.

If we do this first using the line with angle α , and then using the line with angle β ( 0 < β < π /2

), what is the net effect?

1.2 Introduction to complex integrals

Suppose first of all that [a,b] is a closed interval in and that g :[a,b] → is continuous (this

means simply that u = Re(g) and � = Im(g) are both continuous). We can just define

∫a

b

g(t) dt = ∫a

b

Re(g(t)) dt + i∫a

b

Im(g(t)) dt.

Example Determine ∫0

2

e 2itdt .

Note that every complex number z can be written in the form z = re it with r = f z g 0 and t ∈ ,

and so h z i = ze − it. Thus we have, for some real s ,

j
∫a

b

g(t) dt k = e is ∫a

b

g(t) dt = ∫a

b

e isg(t) dt = ∫a

b

Re( e isg(t) ) dt

and this is, by real analysis,

∫a

b l
Re( e isg(t) ) m dt ∫a

b n
e isg(t) o dt = ∫a

b p
g(t) q dt.

Example: for n ∈ set In = ∫1

2

e it 3

(t + in)−1dt . Show that In → 0 as n → + ∞.

1.3 Paths and contours

Suppose that f1 , f2 are continuous real-valued functions on a closed interval [a,b]. As the "time" t

increases from a to b , the point γ (t) = f1(t) + if2(t) traces out a curve ( or path, we make no

distinction between these words in this module ) in . A path in is then just a continuous

function γ from a closed interval [a,b] to , in which we agree that γ will be called continuous

iff its real and imaginary parts are continuous.

Paths are not always as you might expect. There is a path γ :[0,2] → such that γ passes

through every point in the rectangle w = u + i � , u, � ∈ [0,1]. (You can find this on p.224 of Math.

Analysis by T. Apostol). There also exist paths which never have a tangent although (it’s possi-

ble to prove that) you can’t draw one.

Because of this awkward fact, we define a special type of path with good properties:

A smooth contour is a path γ :[a, b] → such that the derivative γ ′ exists and is continuous and
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never 0 on [a, b]. Notice that if we write Re(γ ) = σ , Im(γ ) = τ then (σ ′ (t) , τ ′ (t)) is the tangent

vector to the curve, and we are assuming that this varies continuously and is never the zero vec-

tor.

For a < t < b let s(t) be the length of the part of the contour γ between "time" a and "time"

t . Then if δ t is small and positive, s(t + δ t) − s(t) is approximately equal to r γ (t + δ t) − γ (t) s and so

dt

dstut =
δ t → 0 +

lim
δ t

v
γ (t + δ t) − γ (t) wxyx�x�x�x�x�x�x�x�x�x�x�x = z γ ′ (t) { .

Hence the length of the whole contour γ is ∫a

b |
γ ′ (t) } dt , and is sometimes denoted by ~ γ � .

Examples

(i) A circle of centre a and radius r described once counter-clockwise. The formula is

z = a + re it, 0 t 2π.

(ii) The straight line segment from a to b . This is given by z = a + t(b − a), 0 t 1.

More on arc length (optional!)

Let γ :[a, b] → , γ (t) = f (t) + ig(t), with f, g real and continuous, be a path (not necessarily a

smooth contour). The arc length of γ , if it exists, can be defined as follows. Let

a = t0 < t1 < t2 < ...... < tn = b . Then P = {t0 , ......, tn} is a partition of [a, b] with vertices tk

(the notation and some ideas here have close analogues in Riemann integration), and

L(P ) =
k =1
∑
n �

γ (tk ) − γ (tk −1 ) �

is the length of the polygonal path through the n + 1 points γ (tk ), k = 0, 1, . . . , n . If we form P ′ by

adding to P an extra point d , with tj −1 < d < tj , then the triangle inequality gives

L(P ′) − L(P) = � γ (tj ) − γ (d) � + � γ (d) − γ (tj −1 ) � − � γ (tj ) − γ (tj −1) � 0.

So as we add extra points, L(P ) can only increase, and if the arc length S of γ exists in some

sense then it is reasonable to expect that L(P ) will be close to S if P is "fine" enough (i.e. if all

the tk − tk −1 are small enough). With this in mind, we define the length S of γ to be

S = Λ(γ , a, b) = l.u.b. L(P ),

with the supremum (l.u.b. i.e. least upper bound) taken over all partitions P of [a, b]. If the L(P)

are bounded above, then S is the least real number which is L(P) for every P, and γ is called

rectifiable. If the set of L(P ) is not bounded above then S = ∞ and γ is non-rectifiable.

Suppose that a < c < b . Then every partition of [a, b] which includes c as a vertex can be written

as the union of a partition of [a, c] and a partition of [c, b]. It follows easily that

Λ(γ , a, b) = Λ(γ , a, c) + Λ(γ , c, b).

The following theorem shows that, for a smooth contour, the arc length defined this way has the
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same value as the integral ∫a

b �
γ ′ (t) � dt which we derived earlier.

Theorem

Let γ :[a, b] → , γ = f + ig , with f,g real, be a smooth contour. Then S as defined above satisfies

S = Λ(γ , a, b) = ∫a

b �
γ ′(t) � dt. (1)

Proof: Let

S( � ) = Λ(γ , a, � ), a � b.

If we can show that S ′ ( � ) = � γ ′ ( � ) � for a < � < b then (1) follows by integration. So let

a < � < b and let c = � γ ′ ( � ) � = √�����������������������f ′ ( � )2 + g ′ ( � )2. We know that c /= 0 (definition of smooth con-

tour). Let 0 < δ < c , and choose ε > 0, so small that − ε < p < ε and − ε < q < ε imply that

c − δ < √���������������������������������������( f ′ ( � ) + p)2 + (g ′ ( � ) + q)2 < c + δ . (2)

Since γ ′ = f ′ + ig ′ is continuous at � , we can choose ρ > 0 such that

�
f ′(s) − f ′( � ) � < ε, � g ′(s*) − g ′ ( � ) � < ε, (3)

for � s − ��� < ρ, � s* − ��� < ρ . So, for � s − ��� < ρ,   s* − ��¡ < ρ , (2) and (3) give

c − δ < √¢ ¢�¢�¢�¢�¢�¢�¢�¢�¢�¢�¢�¢f ′ (s)2 + g ′ (s*)2 < c + δ . (4)

Let 0 < h < ρ , and let P = {t0 , t1 , . . . , tn} be any partition of [ � , � + h]. Then

L(P ) =
k =1
∑
n £

γ (tk ) − γ (tk −1 ) ¤ =
k =1
∑
n

√¥¦¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥�¥( f (tk ) − f(tk −1 ))2 + (g(tk ) − g(tk −1))2

and the mean value theorem of real analysis gives us sk and sk* in (tk −1 , tk ) such that

L(P ) =
k =1
∑
n

(tk − tk −1)√§¨§�§�§�§�§�§�§�§�§�§�§�§�§f ′ (sk )2 + g ′ (sk*)2.

Hence, by (4), we have

(tn − t0)(c − δ ) =
k =1
∑
n

(tk − tk −1 )(c − δ ) < L(P ) <
k =1
∑
n

(tk − tk −1 )(c + δ ) = (tn − t0 )(c + δ ).

Since P is an arbitrary partition of [ � , � + h] we get

h(c − δ ) Λ(γ , � , � + h) = S( � + h) − S( � ) h(c + δ )

and so, provided 0 < h < ρ ,

c − δ
h

S( � + h) − S( � )© ©�©�©�©�©�©�©�©�©�©�© c + δ .
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Since δ may be chosen arbitrarily small we get S ′( � ) = c = ª γ ′ ( � ) « .

1.4 Introduction to contour integrals

Suppose that γ :[a, b] → is a smooth contour. If f is a function such that f (γ (t)) is continuous

on [a, b] we set

∫γ
f (z) dz = ∫a

b

f(γ (t)) γ ′ (t) dt.

1.5 a very important example!

Let a ∈ , let m ∈ and r > 0, and set γ (t) = a + re it , 0 t 2mπ. As t increases from 0 to

2mπ, the point γ (t) describes the circle ¬ z − a ­ = r counter-clockwise m times. Now let n ∈ .

We have

∫γ
(z − a)n dz = ∫0

2mπ
rne int ire it dt = ∫0

2mπ
i rn +1 e (n +1) it dt.

If n ≠ −1 this is 0, by periodicity of cos ((n +1) t) and sin ((n +1) t). If n = −1 then we get 2mπi .

1.6 Properties of contour integrals

(a) If γ :[a,b] → is a smooth contour and λ is given by λ(t) = γ (b + a − t) (so that λ is like γ
"backwards") then

∫λ
f (z) dz = ∫a

b

f(γ (b + a − t)) ( − γ ′ (b + a − t)) dt = − ∫γ
f (z) dz.

(b) A smooth contour is called SIMPLE if it never passes through the same point twice (i.e. it is a

one-one function). Suppose that λ and γ are simple, smooth contours which describe the same set

of points in the same direction. Suppose λ is defined on [a,b] and γ on [c,d]. It is easy to see

that there is a strictly increasing function φ :[a,b] → [c,d] such that λ(t) = γ (φ(t)) for a t b .

Further, it is quite easy to prove that φ(t) has continuous non-zero derivative on [a,b] and we can

write

∫λ
f (z) dz = ∫a

b

f(λ(t)) λ ′(t) dt = ∫a

b

f (γ (φ(t))) γ ′ (φ(t)) φ ′ (t) dt =

= ∫c

d

f(γ (s))γ ′(s) ds = ∫γ
f (z) dz.

Thus the contour integral is "independent of parametrization".

Here’s the proof that φ ′(t) exists (optional!). For t and t0 in (a, b) with t /= t0 write
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t − t0

λ(t) − λ(t0 )®¯®�®�®�®�®�®�®�® =
φ(t) − φ(t0)

γ (φ(t)) − γ (φ(t0 ))° °�°�°�°�°�°�°�°�°�°�°�°�°
t − t0

φ(t) − φ(t0)±²±�±�±�±�±�±�±�± .

Note that there’s no danger of zero denominators here as φ is strictly increasing so that

φ(t) /= φ(t0 ). Letting t tend to t0 we have γ (φ(t)) → γ (φ(t0 )) and so φ(t) → φ(t0 ) since γ is one-

one on (c, d). (If φ(t) had a "jump" discontinuity then λ(t) would "miss out" some points through

which γ passes). Thus we see that

φ ′ (t0 ) =
t → t0

lim
t − t0

φ(t) − φ(t0)³´³�³�³�³�³�³�³�³ =
γ ′ (φ(t0 ))

λ ′ (t0 )µ�µ�µ�µ�µ�µ�µ

which gives the expected formula for φ ′ (and shows that it’s continuous).

(c) This is called the FUNDAMENTAL ESTIMATE; suppose that ¶ f (z) · M on γ . Then we

have

¸
∫γ

f (z) dz ¹ ∫a

b º
f (γ (t)) »¼» γ ′ (t) ½ dt M∫a

b ¾
γ ′ (t) ¿ dt = M. ( length of γ ).

Example: let γ be the straight line from 2 to 3 + i , and let In = ∫γ dz / (z n + Àz), with n a positive

integer. Show that In → 0 as n → ∞.

Some more definitions

By a PIECEWISE SMOOTH contour γ we mean finitely many smooth contours γ k joined end to

end, in which case we define

∫γ
f (z) dz =

k
∑ ∫γ k

f (z) dz.

The standard example is a STEPWISE CURVE: a path made up of finitely many straight line

segments, each parallel to either the real or imaginary axis, joined end to end. For example, to go

from 0 to 1 + i via 1 we can use γ 1(t) = t , 0 t 1 followed by γ 2(t) = 1 + (1 + i − 1) t , 0

t 1.

Note that by 1.6(b) if you need ∫γ f (z)dz it doesn’t generally matter how you do the parametriza-

tion.

Suppose γ is a PSC made up of the smooth contours γ 1 ,.....,γ n , in order. It is sometimes con-

venient to combine these n formulas into one. Assuming each γ j is defined on [0,1] (if not we can

easily modify them) we can put

γ (t) = γ j(t − j + 1), j −1 t j. (1)

The formula (1) then defines γ as a continuous function on [0,n].
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A piecewise smooth contour is SIMPLE if it never passes through the same point twice (i.e. γ
as in (1) is one-one), CLOSED if it finishes where it started (i.e. γ (n) = γ (0)) and SIMPLE

CLOSED if it finishes where it started but otherwise does not pass through any point twice ( i.e. γ
is one-one except that γ (n) = γ (0) ). These are equivalent to:

γ is CLOSED if it finishes where it starts i.e. the last point of γ n is the first point of γ 1 .

γ is SIMPLE if it never passes through the same point twice (apart from the fact that γ k +1 starts

where γ k finishes).

γ is SIMPLE CLOSED if it finishes where it starts but otherwise doesn’t pass through any point

twice (apart again from the fact that γ k +1 starts where γ k finishes).

Example

Let σ be the straight line from i to 1, and let γ be the stepwise curve from i to 1 via 0. Show that

∫γ

Á
z dz /= ∫σ

Â
z dz.

Thus the contour integral is not always independent of path (we will return to this important

theme later).

1.7 Open Sets and Domains

Let z ∈ and let r > 0. We define B(z,r) = {w ∈ : Ã w − z Ä < r}. This is called the open disc of

centre z and radius r . It consists of all points lying inside the circle of centre z and radius r , the

circle itself being excluded.

Now let U ⊆ . We say that U is OPEN if it has the following property: for each z ∈U there

exists rz > 0 such that B(z,rz ) ⊆ U. Note that rz will usually depend on z .

Examples

(i) An open disc B(z,r) is itself an open set. Suppose w is in B(z,r). Put s = r − Å w − z Æ > 0. Then

B(w,s) ⊆ B(z,r). Why? Because if Ç u − w È < s then É u − z Ê Ë u − w Ì + Í w − z Î < s + Ï w − z Ð = r .

What we’ve done is to inscribe a circle of radius s and centre w inside the circle of centre z and

radius r .

(ii) Let H = {z :Re(z) > 0}. Then H is open. Why? If z ∈H, put rz = Re(z) > 0. Then B(z,rz ) ⊆ H,

because if w ∈B(z,rz ) we have w = z + te i Ñ for some real � and t with 0 t < rz . So

Re(w) = Re(z) + t cos � Re(z) − t > 0.

(iii) Let K = {z = x + iy :x,y ∈ \ }. Then K is not open. The point u = √Ò2 + i√Ó2 is in K, but any

open disc centred at u will contain a point with rational coordinates.

A domain is an open subset D of which has the following additional property: any two points

in D can be joined by a stepwise curve which does not leave D. An open disc is a domain, as is
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the half-plane Re(z) > 0, but the set {z :Re(z) ≠ 0} is not a domain, as any stepwise curve from

−1 to 1 would have to pass through Re(z) = 0 ( by the IVT ).

We will say that a set E in 2 is open/a domain if the set in corresponding to E, that is,

{x + iy :(x, y) ∈E}, is open/a domain.

A useful fact about domains

Let D be a domain in 2, and let u be a real-valued function such that ux ≡ 0 and uy ≡ 0 on D.

Then u is constant on D.

Here the partials ux = ∂u /∂x, uy = ∂u /∂y, are defined by

ux(a, b) =
x → a
lim

x −a

u(x, b)−u(a, b)ÔÕÔ�Ô�Ô�Ô�Ô�Ô�Ô�Ô�Ô�Ô�Ô , uy(a, b) =
y → b
lim

y −b

u(a, y)−u(a, b)ÖÕÖ�Ö�Ö�Ö�Ö�Ö�Ö�Ö�Ö�Ö�Ö .

Why is this fact true? Take any straight line segment S in D, parallel to the x axis, on which

y = y0 , say. Then on S we can write u(x, y) = u(x, y0) = g(x), and we have g ′ (x) = ux(x, y0 ) = 0.

So u is constant on S, and similarly constant on any line segment in D parallel to the y axis.

Since any two points in D can be linked by finitely many such line segments joined end to end, u

is constant on D.

2. Functions

2.1 Limits

If (zn ) is a sequence (i.e. non-terminating list) of complex numbers, we say that zn → a ∈ if×
zn − a Ø → 0 (i.e. the distance from zn to a tends to 0).

As usual, if E ⊆ a function f from E to is a rule assigning to each z ∈E a unique value

f (z) ∈ . Such functions can usually be expressed either in terms of Re(z) and Im(z) or in terms

of z and Ùz .

For example, consider f(z) = Úzz 2. If we put x = Re(z) , y = Im(z) then we have f (z) =
z( Ûzz) = z(x2 + y 2) = u(x,y) + i � (x,y), where u(x,y) = x(x2 + y 2) and � (x,y) = y(x2 + y2). It is stan-

dard to write

f (x + iy) = u(x,y) + i � (x,y) , (1)

with x,y real and u, � real-valued functions ( of x and y ).

For any non-trivial study of functions you need limits. What do we mean by

z → a
lim f (z) = L ∈ ? We mean that as z approaches a , in any manner whatever, the value f (z)

approaches L. As usual, the value or existence of f (a) makes no difference.
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Definition

Let f be a complex-valued function defined near a ∈ (but not necessarily at a itself).

We say that
z → a
lim f (z) = L ∈ if the following is true. For every sequence zn which converges to

a with zn /= a , we have
n → ∞
lim f (zn ) = L.

This must hold for all sequences tending to, but not equal to, a , regardless of direction: the condi-

tion that zn /= a is there because the existence or value of f (a) makes no difference to the limit.

Using the decomposition (1) ( with x,y,u, � real ) it is easy to see that

z → a
lim f (z) = L ∈ iff

(x,y) → (Re(a),Im(a))
lim u(x,y) = Re(L) and

(x,y) → (Re(a),Im(a))
lim � (x,y) = Im(L).

This is because

Ü
u − Re(L) Ý + Þ � − Im(L) ß 2 à f − L á 2( â u − Re(L) ã + ä � − Im(L) å ).

A standard Algebra of Limits result is also true, proved in exactly the same way as in the real

analysis case.

Examples

(a) Let g(x, y) = (x3 + y2x2) / (x2 + 4y2). Then
(x, y) → (0, 0)

lim g(x, y) = 0.

(b) Let f(z) = æ z ç / (π + Arg z) for z ≠ 0. Does
z → 0
lim f(z) exist?

If we let z → 0 along some ray arg z = t with t in ( − π,π], then the denominator is constant and

f (z) → 0. However, let s > 0 be small, and put z = se i( − π + s2). Then Arg z = − π + s 2 and so

f (z) = s /s 2 = 1/s → ∞ if we let s tend to 0 through positive values. So the limit doesn’t exist.

Continuity

This is easy to handle. We say f is continuous at a if
z → a
lim f(z) exists and is f (a). Thus f (z) is as

close as desired to f (a), for all z sufficiently close to a .

Note that Arg z is discontinuous on the negative real axis.

2.2 Complex differentiability

Now we can define our "good" functions. Let f be a complex-valued function defined on some

open disc B(a,r) and taking values in . We say that f is complex differentiable at a if there is a

complex number f ′ (a) such that

f ′ (a) =
z → a
lim

z − a

f (z) − f (a)è è�è�è�è�è�è�è�è =
h → 0
lim

h

f (a + h) − f (a)éêé�é�é�é�é�é�é�é�é�é .

Examples
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1. Try f (z) = ëz . Then we look at

z → a
lim

z − a

ì
z − íaî´î�î�î =

h → 0
lim

h

ï
hð ð .

For f ′ (a) to exist, the limit must be the same regardless of in what manner h approaches 0. If we

let h → 0 through real values, we see that ñh /h = 1. But, If we let h → 0 through imaginary

values, say h = ik with k real, we see that òh /h = − ik / ik = −1. So óz is not complex differentiable

anywhere. This is rather surprising, as ôz is a very well behaved function. It doesn’t blow up

anywhere and is in fact everywhere continuous. If you write it in the form u(x,y) + i � (x,y) you get

u = x and � = −y , and these have partial derivatives everywhere. We’ll see in a moment why õz
fails to be complex differentiable.

2. Try f (z) = z2. Then, for any a ,

z → a
lim

z − a

z2 − a 2ö ö�ö�ö�ö�ö =
z → a
lim (z + a) = 2a,

and so the function z 2 is complex differentiable at every point, and (d /dz)(z2) = 2z as you’d

expect. In fact, the chain rule, product rule and quotient rules all apply just as in the real case.

So, for example, (z 3 − 4) / (z2 + 1) is complex differentiable at every point where z 2 + 1 /= 0, and so

everywhere except i and − i .

Meaning of the derivative

In real analysis we think of f ′ (x0) as the slope of the graph of f at x0 . In complex analysis it

doesn’t make sense to attempt to "draw a graph" but we can think of the derivative in terms of

approximation. If f is complex differentiable at a then as z → a we have
z − a

f (z) − f(a)÷ ÷�÷�÷�÷�÷�÷�÷�÷ → f ′(a)

and so
z − a

f (z) − f (a)ø ø�ø�ø�ø�ø�ø�ø�ø = f ′ (a) + ρ(z), where ρ(z) → 0, and we can write this as f (z) − f(a) =

(z − a)( f ′ (a) + ρ(z)). In particular, f is continuous at a . We can use this to check the chain rule.

Suppose g is complex differentiable at z0 and f is complex differentiable at w0 = g(z0 ). As

z → z0 we have

z − z0

g(z) − g(z0 )ùúù�ù�ù�ù�ù�ù�ù�ù → g ′ (z0),

which we can write in the form

g(z) = g(z0 ) + (z − z0)(g ′ (z0 ) + ρ(z))

where ρ(z) → 0 as z → z0 . Similarly

f (w) = f (w0 ) + (w − w0)( f ′(w0 ) + τ(w))

where τ(w) → 0 as w → w0 . Substitute w = g(z), w0 = g(z0 ). Then
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f (g(z)) = f (g(z0 )) + (g(z) − g(z0))( f ′ (g(z0 )) + τ(g(z))) = (z − z0 )(g ′ (z0 ) + ρ(z))( f ′(g(z0 )) + τ(g(z)))

and so

z − z0

f (g(z)) − f (g(z0 ))ûüû�û�û�û�û�û�û�û�û�û�û�û�û = (g ′(z0) + ρ(z))( f ′ (g(z0)) + τ(g(z))) → g ′ (z0 ) f ′ (g(z0 ))

as z → z0 , giving the rule ( f (g)) ′ = f ′ (g)g ′ as expected.

2.3 Cauchy-Riemann equations, first encounter

Assume that the complex-valued function f is complex differentiable at a = A + iB, and as usual

write

f (x + iy) = u(x,y) + i � (x,y) (1)

with A,B,x,y,u, � all real. Now, by assumption, f ′ (a) =
h → 0
lim

h

f(a + h) − f (a)ýúý�ý�ý�ý�ý�ý�ý�ý�ý�ý and the limit is the

same regardless of how h approaches 0. So if we let h approach 0 through real values, putting

h = t ,

f ′ (a) =
t → 0
lim

t

f (a + t) − f(a)þ�þ�þ�þ�þ�þ�þ�þ�þ�þ�þ =

t → 0
lim (u(A + t,B ) − u(A,B ) + i � (A + t,B ) − i � (A,B)) / t = ux(A,B ) + i � x(A,B ).

( In particular, the partials ux , � x do exist. ) Now put h = it and again let t → 0 through real

values. We get

f ′ (a) =
t → 0
lim (u(A,B + t) − u(A,B ) + i � (A,B + t) − i � (A,B)) / it = (1 / i)(uy(A,B) + i � y(A,B )).

Equating real and imaginary parts we now see that, at (A,B), we have

ux = �
y , uy = − �

x .

These are called the Cauchy-Riemann equations. We also have ( importantly ) f ′ (a) = ux + i � x .

These relations must hold if f is complex differentiable. Now we need a result in the other direc-

tion.

2.4 Cauchy-Riemann equations, second encounter

Theorem

Suppose that the functions f,u, � are as in (1) above, and that the following is true. The partial

derivatives ux ,uy , � x , � y all exist near (A,B ), and are continuous at (A,B), and the Cauchy-Riemann

equations are satisfied at (A,B ). Then f is complex differentiable at a = A + iB, and f ′ (a) =
ux + i � x .
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Remark: the continuity of the partials won’t usually be a problem in G12CAN: e.g. this is

automatic if they are polynomials in x,y and (say) functions like ex,cos y . If there are denomina-

tors which are 0 at (A, B ) some care is needed, though.

Proof of the theorem (optional) We can assume without loss of generality that a = A = B = 0,

and that f (a) = 0 (if not look at h(z) = f(z + a) − f (a): if h ′(0) exists then f ′(a) exists and is the

same).

Suppose first that ux = �
y = 0 and uy = − �

x = 0 at (0, 0). We claim that f ′(0) = 0. To prove this

we have to show that f (z) /z → 0 as z → 0. Put z = h + ik , with h,k real. Look at

u(h, k) = u(h, k) − u(h, 0) + u(h, 0) − u(0, 0).

Let g(y) = u(h, y). Then g ′ (y) = uy(h, y) and the mean value theorem gives

u(h, k) − u(h, 0) = g(k) − g(0) = kg ′ (c) = kuy(h, c) = kδ 1 ,

in which c lies between 0 and k and δ 1 → 0 as h, k → 0 (because the partials are continuous at

(0, 0)). Now let G(x) = u(x, 0). Then the mean value theorem gives

u(h, 0) − u(0, 0) = G(h) − G(0) = hG ′ (d) = hux(d, 0) = hδ 2 ,

in which d lies between 0 and h and δ 2 → 0 as h, k → 0. We get

h + ik

u(h, k)ÿ ÿ�ÿ�ÿ�ÿ�ÿ
h + ik

kδ 1� ������� +
h + ik

hδ 2� ������� �
δ 1 � + � δ 2 � → 0

as h, k → 0. In the same way, � (h, k) / (h + ik) → 0 as h, k → 0 and we get f(z) /z → 0 as required.

Now suppose that ux = �
y = α, uy = − �

x = β at (0, 0). Let F(z) = f (z) − αz + iβz =
u − αx − βy + i( � − αy + βx) = U + iV. Then Ux = Vy = Uy = Vx = 0 at (0, 0), and so F ′ (0) = 0, by

the first part. Since f(z) = F(z) + (α − iβ)z we get f ′ (0) = α − iβ = ux + i � x as asserted.

Example

Where is x 2 + iy2 complex differentiable?

2.5 Analytic Functions

We say that f is ANALYTIC at a point a (resp. analytic on a set X) if f is complex differentiable

on an open set G which contains the point a (resp. the set X). Obviously, if f is comp. diffle on a

domain D in then f is analytic on D (take G = D). Other words for analytic are regular, holo-

morphic and uniform. A sufficient condition for analyticity at a is that the partial derivatives of

u, � are continuous and satisfy the Cauchy-Riemann equations at all points near a .

Examples

1. The exponential function. We’ve already defined e it = cos t + i sin t for t real. We now define
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exp ( x + iy ) = e x + iy = e xe iy = ex cos y + ie x sin y for x,y real. We then have, using the standard

decomposition,

u(x,y) = e x cos y , � (x,y) = ex sin y ,

and

ux = ex cos y , uy = − ex sin y , � x = e x sin y , � y = ex cos y ,

and so the Cauchy-Riemann equations are satisfied. Obviously these partials are continuous. Thus

exp(z) is complex differentiable at every point in , and so is analytic in , or ENTIRE. Further,

the derivative of exp at z is ux + i � x = exp(z).

It is easy to check that e z + w = e zew for all complex z,w . Also � e z 	 = eRe(z) ≠ 0, so exp(z)

never takes the value zero. Since e0 = e2πi = 1 and eπi = −1 this means that two famous

theorems from real analysis are not true for functions of a complex variable!

2. sine and cosine. For z ∈ we set

sin z = (e iz − e − iz) /2i , cos z = (e iz + e − iz) /2 .

Exercise: put z = x ∈ in these definitions and check that you just get sin x , cos x on the RHS.

With these definitions, the usual rules for derivatives tell us that sine and cosine are also entire,

but it is important to note that they are not bounded in .

3. Some more elementary examples. What about exp(1 /z)? We’ve already observed that the chain

rule holds for complex differentiability, as does the quotient rule. So this function is complex

differentiable everywhere except at 0, and so analytic everywhere except at 0. Similarly

sin(exp(1 / (z4 + 1)) is analytic everywhere except at the four roots of z 4 + 1 = 0.

4. At which points is

g(x + iy) = x2 + 4y 2 + ixy , x,y ∈

(i) complex differentiable (ii) analytic? We have

u = x2 + 4y2 , � = xy,

and so

ux = 2x , uy = 8y , �
x = y , �

y = x.

If g is complex differentiable at x + iy then Cauchy-Riemann gives

2x = x , 8y = − y ,

and so x = y = 0. Thus g can only be complex differentiable at 0. Since the partial are continuous

and the Cauchy-Riemann equations are satisfied at (0,0), our function g IS complex differentiable
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at 0. It is not, however, analytic anywhere.

5. Does there exist any function h analytic on a domain D in such that Re(h) is x2 + 4y 2 at each

point x + iy ∈D ( x,y real ) ?

Suppose that h = U + iV is such a function, with U = x2 + 4y 2. Then we need

Vy = Ux = 2x and Vx = − Uy = − 8y .

The first relation tells us that the function W = V − 2xy is such that Wy = 0 throughout D. Let’s

fix some point a = A + iB in D. Since Wy = 0, we see that near (A, B ), the function W(x,y) depends

only on x . Thus we must have W(x,y) = p(x), with p a function of x only, and so

V(x,y) = 2xy + p(x).

But this gives

− 8y = Vx = 2y + p ′ (x),

which is plainly impossible. So no such function h can exist.

6. The logarithm. The aim is to find an analytic function w = h(z) such that exp(h(z)) = z . This is

certainly NOT possible for z = 0, as exp(w) is never 0. Further,

exp(h(z)) = eRe(h(z))e iIm(h(z)) and z = 
 z � e i arg z.

So if such an h exists on some domain it follows that Re(h(z)) = ln � z 
 and that Im(h(z)) is an

argument of z . Here we use ln x to denote the logarithm, base e , of a POSITIVE number x . A

problem arises with this. If we start at z = −1, and fix some choice of the argument there, and if

we then continue once clockwise around the origin, we find that on returning to −1 the argument

has decreased by 2π and the value of the logarithm has changed by − 2πi . Indeed, we’ve already

seen that the argument of a complex number is discontinuous at the negative real axis. So to

make our logarithm analytic we have to restrict the domain in which z can lie.

Let D0 be the complex plane with the origin and the negative real axis both removed, and define,

for z in D0 ,

w = Log z = ln � z � + i Arg z.

Remember that Arg will be taking values in ( − π,π). This choice for w gives

ew = exp( Log z ) = e ln � z � exp( iArg z ) = z

as required. Now for z ∈D0 we have − ∞ < ln � z � < + ∞ and − π < Arg z < π and so w = Log z

maps D0 one-one onto the strip W = {w ∈ : � Im(w) � < π}. For z,z0 ∈D and w = Log z, w0 =
Log z0 , we then have z → z0 if and only if w → w0 . Hence
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z → z0

lim
z − z0

Log z − Log z0� ��������������������� =
z → z0

lim
z − z0

w − w0� ��������� =

=
w → w0

lim
z − z0

w − w0� ��������� =
w → w0

lim
e w − e w0

w − w0� ����������� .

The last limit is the reciprocal of the derivative of exp at w0 and so is 1/exp(w0 ) = 1/z0 . We

conclude:

The PRINCIPAL LOGARITHM defined by Log z = ln � z � + i Arg z is analytic on the domain D0

obtained by deleting from the origin and the negative real axis, and its derivative is 1/z . It

satis fies exp( Log z ) = z for all z ∈D0 .

Warning: It is not always true that Log (exp(z)) = z , nor that Log (zw) = Log z + Log w . e.g. try

z = w = −1 + i .

Powers of z
Suppose we want to define a complex square root z 1/2. A natural choice is

w = √������ z  e 2
1! ! iarg z

,

because this gives w2 = " z # e iarg z = z . If we do this, however, we encounter the same problem as

with the logarithm. If we start at −1 and go once around the origin clockwise the argument

decreases by 2π and the value we obtain on returning to −1 is the original value multiplied by

e − iπ = −1. So we again have to restrict our domain of definition.

We first note that if n is a positive integer, then, on D0 ,

exp(nLog z) = (exp(Log z))n = zn, exp( − nLog z) = (exp(nLog z))−1 = (exp(Log z))−n = z −n.

So, on D0 , we can define, for each complex number α ,

zα = exp(α Log z).

With this definition and properties of exp,

zαzβ = exp(α Log z)exp(β Log z) = exp((α + β) Log z) = zα + β.

However, it isn’t always true that with this definition, (zα)β = zαβ. For example, take

z = i, α = 3, β = 1/2. Then zαβ = i3/2 = exp((3 /2) Log i) = exp((3/2) iπ /2) = exp(3πi /4). But

zα = i3 = exp(3 Log i) = exp(3πi /2), and this has principal logarithm equal to − πi /2, so that

(zα)β = exp((1/2)( − πi /2)) = exp( − πi /4) /= exp(3πi /4).

To discover more about analytic functions and their derivatives it is necessary to integrate them.



- 19 -

Section 3 Integrals involving analytic functions

Theorem 3.1

Suppose that γ :[a, b] → D is a smooth contour in a domain D ⊆ , and that F :D → is ana-

lytic with continuous derivative f . Then ∫γ
f(z) dz = F(γ (b)) − F(γ (a)) and so is 0 if γ is closed.

To prove this we just note that H(s) = F(γ (s)) − ∫a

s

f (γ (t)) γ ′ (t) dt is such that H ′ (s) = 0 on

(a, b) and so its real and imaginary parts are constant on [a, b]. So H(b) = H(a) = F(γ (a)).

If we do the same for a PSC γ , we find that the integral of f is the value of F at the finishing

point of γ minus the value of F at the starting point of γ , and again if γ is closed we get 0.

Now we prove a very important theorem.

Theorem 3.2 ( Cauchy-Goursat )

Let D ⊆ be a domain and let T be a contour which describes once counter-clockwise the perim -

eter of a triangle whose perimeter and interior are contained in D. Let f :D → be analytic. Then

∫T
f (z) dz = 0.

Proof

Let the length of T be L, and let M = $ ∫T
f (z) dz % . We bisect the sides of the triangle to form 4

new triangular contours, denoted Γ j . In the subsequent proof, all integrals are understood to be

taken in the positive ( counter-clockwise ) sense. Since the contributions from the interior sides

cancel, we have

∫T
f (z) dz =

j =1
∑
4

∫Γ j

f (z) dz.

Therefore one of these triangles, T1 say, must be such that & ∫T1

f (z) dz ' M /4. Now T1 has

perimeter length L /2. We repeat this procedure and get a sequence of triangles Tn such that:

(i) Tn has perimeter length L /2n; (ii) Tn +1 and its interior lie inside the union of Tn and its inte-

rior; (iii) ( ∫Tn

f (z) dz ) M /4n.

Let Vn be the region consisting of Tn and its interior. Then we have Vn +1 ⊆ Vn . It is not hard to

see that there exists some point z*, say, which lies in all of the Vn , and so on or inside EVERY

Tn . (We could let zn be the centre of Vn and note that zn tends to a limit.) Since f is differenti-

able at z* we can write ( for z ≠ z* )

z − z*
f (z) − f (z*)*+*�*�*�*�*�*�*�* − f ′ (z*) = η(z), η(z) → 0 as z → z*.
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Further,

∫Tn

f(z) dz = ∫Tn

f(z*) + (z − z*) f ′ (z*) + η(z)(z − z*) dz = ∫Tn

η(z)(z − z*) dz.

This is using (3.1) and the fact that

f (z*) =
dz
d,+, ((z − z*) f (z*)) , (z − z*) f ′ (z*) =

dz
d-.- ( 2

1/ / (z − z*)2f ′ (z*)) .

We therefore have M /4n ∫Tn

f (z)dz = ∫Tn

η(z)(z − z*) dz

( length of Tn ) ( sup of 0 z − z* 1 on Tn ) ( sup of 2 η(z) 3 on Tn )

( length of Tn )2 ( sup of 4 η(z) 5 on Tn ) = L24−n ( sup of 6 η(z) 7 on Tn ).

But since η(z) → 0 as z → z* this now gives ML−2 ( sup of 8 η(z) 9 on Tn ) → 0 as n → ∞.

Therefore we must have M = 0.

Here’s the proof that (zn ) converges. Since zn and zn +1 both lie inside Tn , we have : zn +1 − zn ;
length of Tn = L /2n. Writing zn = xn + iyn (xn , yn real) we get

k =1
∑
∞ <

xk +1 − xk =
k =1
∑
∞ >

zk +1 − zk ? L
k =1
∑
∞

2−k < ∞.

Since every absolutely convergent real series converges (G1ALIM), the series x1 +
k =1
∑
∞

(xk +1 − xk )

converges, which means that xn = x1 +
k =1
∑

n −1
(xk +1 − xk ) tends to a finite limit x*. The same works for

yn . Since all the zk for k n lie in Vn , so must z* = x* + iy*.

Example

Let T describe once counter-clockwise the triangle with vertices at 0, 1, i . We have already seen

that ∫T

@
z dz /= 0. Which of the following functions have integral around T equal to 0?

(z − a)−2, exp(1/ (z − a)), exp(1/ (z − 10)). Here a = (1 + i) /4.

3.3 A special type of domain

A star domain D is a domain (in ) which has a star centre, α say, with the following property.

For every z in D the straight line segment from α to z is contained in D. Examples include an

open disc, the interior of a rectangle or triangle, a half-plane. On star domains we can prove a

more general theorem about contour integrals than Theorem 3.2.

Useful fact: if γ is a simple closed PSC in a star domain D, and w is a point inside γ , then w is in

D. Why? Draw the straight line from the star centre α of D to w . Extend this line further. It

must hit a point � on γ . Thus � is in D and so is w .
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Theorem 3.4

Suppose that f :D → is continuous on the star domain D ⊆ and is such that ∫T f (z) dz = 0

whenever T is a contour describing once counter-clockwise the boundary of a triangle which,

together with its interior, is contained in D. Then the function F defined by F(z) = ∫α
z

f (u)du , in

which the integration is along the straight line from α to z , is analytic on D and is such that

F ′ (z) = f (z) for all z in D.

Remark

An analytic function is continuous ( see Section 2 ) and so Theorem 3.4 applies in particular when

f is analytic in D.

Proof of 3.4

Let a be the star centre. We define F(w) = ∫a

w

f (z) dz , where we integrate along the straight

line from a to w . Let h be small, non-zero. Then the line segment from w to w + h will lie in D,

and so will the whole triangle T with vertices a,w,w + h , as well as its interior. Then

∫T
f (z) dz = 0. This gives us

F(w + h) − F(w) = ∫w

w +h

f (z) dz = ∫0

1

f(w + th)h dt

and so

h

F(w + h) − F(w)A A�A�A�A�A�A�A�A�A�A�A�A = ∫0

1

f (w + th) dt → ∫0

1

f (w) dt = f (w)

as h → 0. Thus F ′ (w) = f (w). This leads at once to the following very important theorem.

Theorem 3.5 (stronger than 3.2)

Let D ⊆ be a star domain and let f :D → be analytic. Let γ be any closed piecewise smooth

contour in D. Then ∫γ
f (z) dz = 0.

To see this, Theorem 3.4 gives us a function F such that F ′ (z) = f(z) in D, and so the integral of

f is just F evaluated at the final point of γ minus F evaluated at the initial point of γ . But these

points are the same!

In fact, even more than this is true. We state without proof:

The general Cauchy theorem: let γ be a simple closed piecewise smooth contour, and let D be a

domain containing γ and its interior. Let f :D → be analytic. Then ∫γ
f (z)dz = 0.
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For reasonably simple SCPSC γ , this can be seen by introducing cross-cuts and reducing to

Theorem 3.5. For example, let f be analytic in 10 < B z C < 14, and consider the SCPSC γ which

describes once counter-clockwise the boundary of the region 11 < D z E < 12, F arg z G < π /2. We

put in cross-cuts, each of which is a line segment 11 H z I 12, arg z = c . This gives us

∫γ
f(z)dz = ∑∫γ j

f (z)dz

in which each γ j is the boundary of a region 11 J z K 12, c1 arg z c2 . We can do this so

that each γ j lies in a star domain on which f is analytic, and we deduce that ∫γ
f (z)dz = 0.

The general case is, however, surprisingly difficult to prove, and is beyond the scope of G12CAN.

We will, however, use the result, since the contours encountered in this module will be fairly

simple geometrically.

Example 3.6

Suppose that f is analytic in the disc L z M < S. Suppose that 0 < s < S, and that w ∈ , N w O ≠ s .

We compute

2πi

1PQP�P ∫ R z S = s z − w

f (z)T.T�T�T dz,

in which the integral is taken once counter-clockwise.

First, if U w V > s then g(z) = f (z) / (z − w) is analytic on and inside W z X = s , so the integral is 0.

Next, assume that Y w Z < s and let δ be small and positive. Consider the domain D1 given by

[
z \ < s, ] z − w ^ > δ .

Then g(z) = f(z) / (z − w) is analytic on D1 . By cross-cuts, we see that the integral of g(z) around

the boundary of D1 , the direction of integration keeping D1 to the left, is 0. Thus

∫ _ z ` = s
g(z)dz = ∫ a z − w b = δ

g(z)dz =

= ∫0

2π
f (w + δ e iθ) idθ → ∫0

2π
f (w) idθ = 2πif (w)

as δ → 0. Hence ∫ c z d = s
f (z) / (z − w) dz = 2πif (w) when e w f < s . This generalizes to:

3.7 Cauchy’s integral formula

Suppose that f is analytic on a domain containing the simple closed piecewise smooth contour γ
and its interior. Let w ∈ , with w not on γ . Then, integrating once counter-clockwise,
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2πi

1gQg�g ∫γ z − w

f (z)h.h�h�h dz

is f (w) if w lies inside γ , and is 0 if w lies outside γ .

Note that we have to exclude the case where w lies on γ , as in this case the integral may fail to

exist.

3.8 Liouville’s theorem

Suppose that f is entire ( = analytic in ) and bounded as i z j tends to ∞, i.e. there exist M > 0

and R0 > 0 such that k f (z) l M for all z with m z n R0 . Then f is constant.

The Proof is to take any u and � in . Take R very large. By Cauchy’s integral formula, we

have, integrating once counter-clockwise,

f (u) − f ( � ) =
2πi

1o�o�o ∫ p z q = R (z − u)(z − � )

f (z)(u − � )rsr�r�r�r�r�r�r�r�r dz.

If R is large enough then t z − u u R /2 and v z − �xw R /2 for all z on y z z = R and so the integral

has modulus at most (1 /2π)(2πR )4MR −2 { u − �x| → 0 as R → ∞. Hence we must have

f (u) = f ( � ).

A corollary to this is the fundamental theorem of algebra: if P(z) =
k =0
∑
n

ak z k is a polynomial in z

of positive degree n (i.e. an /= 0) then there is at least one z in with P(z) = 0. For otherwise

1/P is entire, and 1/P(z) → 0 as } z ~ → ∞.

3.9 An application, and a physical interpretation of Cauchy’s theorem

Analytic functions can be used to model fluid flow, as follows. Suppose that f(z) =
f (x + iy) = u(x,y) + i � (x,y) is analytic in a star domain D ⊆ , and let γ be any simple closed

piecewise smooth contour in D, parametrized with respect to arc length s, 0 s L. Then we

have

0 = ∫γ
f (z)dz = ∫γ

(u + i � )(dx + idy) =

= ∫0

L

(u
ds

dx��� − �
ds

dy��� )ds + i∫0

L

( �
ds

dx��� + u
ds

dy��� )ds.

So

∫0

L

(u
ds

dx��� − �
ds

dy��� )ds = 0 = ∫0

L

( �
ds

dx��� + u
ds

dy��� )ds. (*)

Consider a fluid flow in D such that the velocity at the point (x,y) is given by (u(x,y), − � (x,y)).

Now the vector (x ′ (s),y ′(s)) is a unit vector tangent to the curve γ , and udx /ds − � dy /ds is the
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component of velocity in the direction tangent to the curve. The first equation of (*) says that the

average of this component, i.e. the circulation of the flow around the curve, is zero. Similarly, the

vector (y ′(s), − x ′ (s)) is normal to the curve γ , and udy /ds + � dx /ds may be interpreted as the

component of velocity across the curve γ . The second equation in (*) says that the average flow

of fluid across the curve γ is zero, i.e. there is no net flux. Both these conclusions are compatible

with (u,− � ) representing an irrotational flow of incompressible fluid, with the velocity depending

only on position and not on time.

Using the assumption that D is a star domain, take F = P + iQ such that F ′ = f = u + i � . Then

u = Px = Qy , � = Qx = − Py . On the path (x(t), y(t)) taken by a particle of fluid (t now time),

(x ′ , y ′ ) = (u, − � ) and (u, − � ).(Qx , Qy ) = u � − u � = 0. So Q is constant (streamline).

Note that the velocity vector is (u, − � ) = (Px , Py ) and so is the gradient vector of P.

Example: in the quadrant 0 < arg z < π /2 take u = x, � = y . Then F = z2 /2 and Q = xy . Stream-

lines are arcs of hyperbolas.

Suppose that we have an incompressible irrotational fluid flow in the whole complex plane. The

velocity vector at (x, y) is given by (u, − � ), where u + i � is analytic in . Suppose now that the

speed is bounded i.e. there exists M > 0 such that � u + i �x� M throughout the plane. Then u + i �
is a bounded entire function and so by Liouville’s theorem u + i � is constant. Thus the velocity

vector is constant, and we have a uniform flow across the plane.

Section 4 : Series and Analytic Functions

Example: for r > 0 let I(r) = ∫ � z � = r
sin 1 /z dz . Using cross-cuts, show that I(r) is constant for

0 < r < ∞.

By using series expansions, the methods to be justified in this chapter, we can calculate I(r)

and many other integrals directly.

We will use series to do two things. The first will be to construct new analytic functions. We will

show that convergent power series, such as those that arise in applied mathematics and the solu-

tion of differential equations, are analytic. In the opposite direction, we will also show that ana-

lytic functions can be represented by series, and we will use these to compute the integral around

a closed PSC, in cases more general than those we have met so far.

4.1 Complex Series

Let ap , ap +1 , ap +2 , .... be a sequence (i.e. a non-terminating list) of complex numbers. For n p ,

define

sn =
k =p
∑
n

ak ,
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the sequence of partial sums. If the sequence sn converges (i.e. tends to a finite limit as n → ∞,

with S =
n → ∞
lim sn , then we say that the series

k =p
∑
∞

ak =
n → ∞
lim

k =p
∑
n

ak converges, with sum S.

Example

Let � t � < 1. Then sn =
k =0
∑
n

t k =
1 − t

1 − tn +1� ����������� →
1 − t

1� ����� as n → ∞. So
k =0
∑
∞

t k =
1 − t

1� ����� if � t � < 1.

Fact 1

If
k =p
∑
∞

ak converges, with sum S, then sn → S as n → ∞ and so does sn −1 . Thus an =

sn − sn −1 → 0 as n → ∞. The converse is false: we have

k =1
∑
∞

1/k = 1 + 1/2 + (1 /3 + 1/4) + (1 /5 + 1/6 + 1/7 + 1/8) + .... > 1 + 1/1 + 1/2 + 1/2 + ....

and the series diverges, because we can make the partial sums as large as we like.

Fact 2

Suppose that
k =p
∑
∞

ak and
k =p
∑
∞

bk both converge, and that α,β are complex numbers. Then

k =p
∑
∞

(αak + βbk ) converges, and equals α(
k =p
∑
∞

ak ) + β(
k =p
∑
∞

bk ).

So for example
k =0
∑
∞

2−k + i3−k converges, but
k =1
∑
∞

2−k + i /k diverges.

Fact 3

Suppose that ak is real and non-negative. Then sn =
k =p
∑
n

ak is a non-decreasing real sequence, and

converges iff it is bounded above.

For example if p > 1 the series
k =1
∑
∞

1/k p converges. This is proved in G1ALIM, but we can also

note that every partial sum is

1 + (1 /2p + 1/3p) + (1 /4 p + 1/5p + 1/6p + 1/7p) + ....... <

< 1 + 2/2p + 4/4p + 8/8p + .... = 11−p + 21−p + 41−p + . . . =
k =0
∑
∞

(21−p)k = 1/ (1 − 21−p).

Comparison test: if 0 ak bk and
k =p
∑
∞

bk converges then
k =p
∑
∞

ak converges (G1ALIM).

Fact 4

Suppose that
k =p
∑
∞ �

ak � converges (in which case we say that
k =p
∑
∞

ak is absolutely convergent). Then

k =p
∑
∞

ak converges.
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Proof

Write ak = bk + ick , with bk ,ck real. Write Bk = ( � bk � + bk ) /2 and Ck = ( � bk � − bk ) /2. Then

0 Bk � bk � � ak � , and 0 Ck � bk �   ak ¡ . So ∑Bk , ∑Ck converge, and so does ∑bk =
∑(Bk − Ck ). Similarly ∑ck converges, and ∑ak = ∑bk + i∑ck .

We will also need (from G1ALIM)

Fact 5 (The Ratio Test)

Suppose that ak is real and positive for k ∈ and that L =
n → ∞
lim an +1 /an exists.

(i) If L > 1 then an does not tend to 0 (since an +1 > an for large n ), and so
k =1
∑
∞

an diverges.

(ii) If 0 L < 1 then
k =1
∑
∞

an converges.

There is no conclusion if L = 1.

Example: if 0 < t < 1 then
k =1
∑
∞

kt k −1 converges.

4.2 Power series

Consider the power series

F(z) =
k =0
∑
∞

ck(z − α)k = c0 + c1(z − α) + c2(z − α)2 + ......,

in which the centre α and the coefficients ck are complex numbers. Obviously F(α) = c0 .

To investigate convergence for z /= α we let TF be the set of non-negative real t having the

property that ¢ ck £ t k → 0 as k → + ∞. Then 0 ∈TF .

The radius of convergence RF is defined as follows. If TF is bounded above (this means that

TF has an upper bound P, a real number P with x P for all x in TF ), we let RF be its l.u.b., i.e.

the least real number which is an upper bound for TF (see G1ALIM notes, e.g. on

www.maths.nottingham.ac.uk/personal/jkl). If TF is not bounded above, then we set RF = ∞.

In either case, the following is true. If 0 < r < RF then r is not an upper bound for TF and so

there exists s ∈TF with s > r .

Note that if ¤ z − α ¥ > RF then ck(z − α)k cannot tend to 0 as k → ∞ (since its modulus does

not), and so F(z) diverges.

We assume for the rest of this section that F has positive radius of convergence RF . Set

D = B(α, RF ) (if RF = ∞ then D = ). Then

(i) F converges absolutely (i.e.
k =0
∑
∞ ¦

ck(z − α)k § converges) for z in D, and so does f (z) =

k =1
∑
∞

kck(z − α)k −1.
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(ii) F is continuous on D.

(iii) if γ is a PSC in D and φ(z) is continuous on γ we have

∫γ
F(z)φ(z)dz =

k =0
∑
∞

∫γ
ck(z − α)kφ(z)dz =

k =0
∑
∞

ck∫γ
(z − α)kφ(z)dz,

i.e. we can integrate term by term.

(iv) F is analytic on D, with derivative f (z) =
k =1
∑
∞

kck(z − α)k −1.

(v) If F(u) converges, then F(z) converges for every z with ¨ z − α © < ª u − α « .
Proof

We can assume WLOG that α = 0 (if not we just put G(z) = F(z + α) =
k =0
∑
∞

ck z k). Let 0 < r < RF

and let Er = {z ∈ : ¬ z ­ r}. Since r < RF there exists a real number s with r < s and s ∈TF ,

which means that ® ck ¯ s k → 0 as k → ∞. So there is some real M > 0 such that ° ck ± sk M for all

integers k 0. Hence ² ck ³ rk M(r /s)k for all integers k 0. Therefore for ´ z µ r , and integer

N 0,

¶
k =N
∑
∞

ck z k ·
k =N
∑
∞ ¸

ck zk ¹
k =N
∑
∞ º

ck » r k

k =N
∑
∞

M(r /s)k = M(r /s)N(1 − r /s)−1. (3)

Taking N = 0 this proves that F(z) converges absolutely for ¼ z ½ r , and hence for ¾ z ¿ < RF

since r was arbitrary. Similarly,

k =1
∑
∞ À

kck zk −1 Á
k =1
∑
∞

k Â ck Ã r k −1

k =1
∑
∞

kMs −krk −1 = Ms −1

k =1
∑
∞

k(r /s)k −1 < ∞,

using the last example of 4.1.

For the rest of the proof, retain M, r, s as in (3).

Now we prove (ii), that F is continuous on D. Take w in D and r with Ä w Å < r < RF . Let z be

close to w , in particular so close that we also have Æ z Ç r . Then

È
F(z) − F(w) É = Ê

k =1
∑
∞

ck(zk − wk) Ë
k =1
∑
∞ Ì

ck(z k − w k) Í .

But, for k ∈ ,

z k − w k = ∫w

z
ku k −1du,

in which the integral is along the straight line L from w to z , which lies in Î u Ï r and has lengthÐ
z − w Ñ . Applying the Fundamental Estimate, we get, since Ò ku k −1 Ó kr k −1 on L,

Ô
zk − w k Õ kr k −1 Ö z − w × .

Thus
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Ø
F(z) − F(w) Ù

k =1
∑
∞

k Ú ck Û rk −1 Ü z − w Ý
k =1
∑
∞

kMs −kr k −1 Þ z − w ß = (M /s) à z − w á
k =1
∑
∞

k(r /s)k −1

which tends to 0 as z → w , using again the fact that
k =1
∑
∞

k(r /s)k −1 converges (see 4.1).

Now we prove (iii) i.e. that we can integrate term by term. To prove this, note that γ will lie in

some Er , with 0 < r < RF . But then, with L the length of γ and T the maximum of â φ(z) ã on γ we

get, using (3),

∫γ φ(z)F(z)dz −
k =0
∑
N

∫γ φ(z)ck z kdz = ∫γ φ(z)F(z)dz − ∫γ φ(z)
k =0
∑
N

ck z kdz =

= ∫γ φ(z)
k =N +1

∑
∞

ck z kdz L T M(r /s)N +1 (1 − r /s)−1,

which tends to 0 as N → ∞. So

∫γ
φ(z)F(z)dz =

N → ∞
lim

k =0
∑
N

∫γ
φ(z)ck zkdz =

k =0
∑
∞

∫γ
φ(z)ck zkdz.

(iv) We now prove that F is analytic on D, with derivative

f (z) =
k =1
∑
∞

kck z k −1.

To do this, let T be any triangular contour in D, described once counter-clockwise. Then, by (iii),

∫T
f (z)dz =

k =1
∑
∞

∫T
kck zk −1dz = 0,

by Cauchy’s theorem, since zk −1 is entire for k ∈ . Let

G(z) = ∫0

z
f (u)du,

in which the integral is along the straight line from 0 to z . Then by Theorem 3.4 G(z) is analytic

on D with derivative f . But by (iii) we have

G(z) =
k =1
∑
∞

∫0

z
kck uk −1du =

k =1
∑
∞

ck z k = F(z) − F(0).

Thus F ′(z) = f (z) on D.

(v) is obvious, since we must have RF ä u − α å .

We have thus shown that if F(z) =
k =0
∑
∞

ck(z − α)k has radius of convergence RF > 0 then
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F ′ (z) = f (z) =
k =1
∑
∞

kck(z − α)k −1

for æ z − α ç < RF . In particular, F(α) = c0 , F ′ (α) = c1 . But the new series f converges forè
z − α é < RF , and so Rf RF . This means that we can repeat the argument, and so differentiate F

as many times as we like on ê z − α ë < RF , and we get ck = F (k)(α) /k !. We have proved:

Theorem 4.3 The main theorem on power series

Suppose that F(z) =
k =0
∑
∞

ck(z − α)k has positive radius of convergence RF . Set D = B(α, RF ) (if

RF = ∞ then D = ). Then

(i) F converges absolutely for z in D, and F :D → is a continuous function;

(ii) if γ is a PSC in D and φ(z) is continuous on γ we have

∫γ
F(z)φ(z)dz =

k =0
∑
∞

∫γ
ck(z − α)kφ(z)dz,

i.e. we can integrate term by term.

(iii) F is analytic on D and can be differentiated as many times as we like on D. Also,

ck = F (k)(α) /k ! and, in D,

F ′ (z) =
k =1
∑
∞

kck(z − α)k −1 =
k =0
∑
∞

(k +1)ck +1(z − α)k.

Further, all derivatives F (k) exist on D, and F (k)(α) = k !ck .

4.4 Series in negative powers

We need a similar result for series of form G(z) =
k = 1
∑
∞

ck(z − a)−k. We can regard this as a power

series in 1 /(z − a), and the following facts can be proved by setting u = 1/(z − a) and

F(u) =
k =1
∑
∞

ck uk. Obviously, G(z) = F(1/ (z − a)).

Case 1: suppose that RF = 0.

Then F(u) converges only for u = 0, and so G(z) diverges for every z in .

Case 2: suppose that RF > 0.

Then F(u) converges absolutely for ì u í < RF and diverges for î u ï > RF . Thus G(z) converges

absolutely for ð z − a ñ > SG = 1/RF , and diverges for ò z − a ó < SG . Also, G is analytic, and can

be differentiated term by term with

G ′(z) = − (z − a)−2F ′ (u) = − (z − a)−2

k =1
∑
∞

kck uk −1 =
k =1
∑
∞

− kck(z − a)−k −1

on the domain D = {z ∈ : SG < ô z − a õ < ∞}.

Next, the same argument as in 4.3(iii) shows that if γ is a PSC in D and φ(z) is continuous on

γ , then
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∫γ φ(z)G(z)dz =
k =1
∑
∞

∫γ φ(z)ck(z − a)−kdz.

Finally, if G( � ) converges then F(1 / ( � − a)) converges, and so F(u) converges for ö u ÷ <ø
1/ ( � − a) ù so G(z) converges for ú z − a û > ü � − a ý .

Example

Let w be a complex number. Then
k =0
∑
∞

(w /z)k = 1 + (w /z) + (w /z)2 + .... = 1/ (1 − w /z) for þ z ÿ > � w � .

4.5 Laurent’s theorem

Let 0 R < S ∞, and let f be analytic in the annulus A given by R < � z − a � < S. Then there

are constants ak , k ∈ , such that for all z in A we have

f (z) =
k ∈
∑ ak(z − a)k =

k =0
∑
∞

ak(z − a)k +
j =1
∑
∞

a− j(z − a)− j. (1)

The series (i.e. both series) converge absolutely for z in A, and integrals ∫γ
φ(z) f(z)dz can be

computed by integrating term by term, for any PSC contour γ in A, i.e.

∫γ
φ(z) f (z)dz =

k ∈
∑ ak∫γ

φ(z)(z − a)kdz

provided φ(z) is continuous on γ . In particular, if R < T < S then integrating once counter-

clockwise gives

ak =
2πi

1����� ∫ � z − a � = T
f (z)(z − a)−k −1dz, (2)

so that there is just one Laurent series (1) representing f (z) in A. Finally, the series (1) can be

differentiated term by term in A.

Proof

We may assume that a = 0, for otherwise we just look at g(z) = f (z + a). Fix T1 with R < T1 < S,

and assume that R < r < T1 < s < S.

Claim I:

There are constants ak such that f(z) is given by a series (1) in r < 	 z 
 < s .

Using cross-cuts we see that Cauchy’s integral formula (Theorem 3.7) gives, with all integrals

once counter-clockwise,

f (w) =
2πi

1����� ∫ 
 z � = s z −w

f (z)������� dz −
2πi

1����� ∫ � z � = r z −w

f (z)������� dz.

Now set H(z) =
1 − z /w

1����������� . Then
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H(z) =
1 − z /w

1����������� =
k =0
∑
∞

(z /w)k

for � z � < � w � and in particular on � z � = r , and the series for H(z) can be integrated term by term

on  z ! = r . Thus

−
2πi

1"�"�" ∫ # z $ = r z − w

f (z)%&%�%�% dz =
2πi

1'�'�' ∫ ( z ) = r w

f(z)H(z)*+*�*�*�*�*�* dz =

=
2πi

1,�,�, ∫ - z . = r w

f (z)/�/�/
k =0
∑
∞

(z /w)k dz =
k =0
∑
∞

w −k −1

2πi

10�0�0 ∫ 1 z 2 = r
f (z)zk dz =

k =0
∑
∞

dk w −k −1,

which is a sum in negative powers of w , in which dk is independent of w , for r < 3 w 4 < s .

Also on 5 z 6 = s we have 7 w /z 8 < 1 and so

2πi

19�9�9 ∫ : z ; = s z − w

f (z)<&<�<�< dz =
2πi

1=�=�= ∫ > z ? = s z(1 − w /z)

f (z)@A@�@�@�@�@�@�@ dz =

=
2πi

1B�B�B ∫ C z D = s z
f (z)E�E�E

k =0
∑
∞

(w /z)kdz =
k =0
∑
∞

ck wk,

with

ck =
2πi

1F�F�F ∫ G z H = s zk +1
f (z)IJI�I�I dz

again independent of w , for w with r < K w L < s .

We have thus proved Claim I, and the rest follows easily. In the region r < M z N < s we have f (z)

given in A by a convergent series (1), which we can write as

f (z) = F(z) + G(1/z). (3)

Here F(z) =
k =0
∑
∞

ak zk is a power series which must have radius of convergence at least s , while

G(w) =
j =1
∑
∞

a− j w
j is a power series with radius of convergence at least 1/r . Integrating term by

term now gives (2) for r < T < s , and taking T = T1 we see that the coefficients do not depend on

the particular choice of r, s , as long as R < r < T1 < s < S. Since r, s are arbitrary, we have (1)

for all z in A. Finally, term by term differentiability follows from (3) and the properties of power

series.

Example: find the Laurent series of f (z) = 1/z(z − i)2 in (i) 0 < O z P < 1 (ii) 1 < Q z R < ∞ (iii)

1 < S z − i T < ∞.

Find the Laurent series of 1 /(z + 1)(z + 2) in 1 < U z V < 2.
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Using the geometric series 1/ (1 − u) = 1 + u + u2 + ........ and its differentiated versions, we can get

Laurent series for rational functions fairly straightforwardly. The next problem is to obtain series

for functions like e z. We begin by considering what happens when f is in fact analytic inW
z − a X < S.

Theorem 4.6 (Taylor’s theorem)

Suppose that f is analytic in Y z − a Z < S ∞. Then f can be differentiated as many times as we

like on [ z − a \ < S and for ] z − a ^ < S we have (Taylor series)

f (z) =
k =0
∑
∞

k !

f (k)(a)_ _�_�_�_�_ (z − a)k.

In particular, all these derivatives f (k)(a) exist.

Proof of Taylor’s theorem

We derive Taylor’s theorem from Laurent’s theorem, with R = 0. We get a series (1) valid for

0 < ` z − a a < S, and the coefficients ak are give by (2). But, if k ∈ , k < 0, it follows that

− k − 1 0 and so f (z)(z − a)−k −1 is analytic in b z − a c < S. Hence ak = 0 for k < 0 by Cauchy’s

theorem. This gives f (z) =
k =0
∑
∞

ak(z − a)k for d z − a e < S, and this is a power series with radius of

convergence at least S. In particular, we see from 4.3 that f (k)(a) /k ! exists and equals ak .

4.7 Remarks and Examples

1. It follows from Taylor’s theorem that if f :D → is analytic on the domain D ⊆ then so is

f ′ . To see this, take any w in D and just note that Taylor’s theorem shows that f (k)(w) exists for

each non-negative integer k .

2. There are functions g : → for which dkg /dx k exists for every k , but which do not always

equal their Taylor series. For example, let g(0) = 0, with g(x) = exp(−1/x 2) for x /= 0. Then the

real derivative g (k)(0) exists, and can be shown to be 0, for every k , and so the Taylor series

about 0 is 0, whereas g(x) is non-zero for real x /= 0. Note that g(z) blows up as z → 0 with z

imaginary, so that this g is certainly not analytic at 0.

3. Taylor’s theorem tells us that, for all z ,

e z = 1 + z + z 2 /2! + ...., sin z = z − z3 /3! + z 5 /5! − .....

Also, if F(z) =
k =0
∑
∞

c(z − α)k has RF > 0 then F is its own Taylor series about α . In particular, the

standard series

1/ (1 − z) = 1 + z + z2 + ....., 1 / (1 − z)2 = 1 + 2z + 3z 2 + .....

are valid for f z g < 1 and very useful.

4. The binomial theorem. Suppose that b is a complex number, and consider (1 + z)b for h z i < 1.
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It is not immediately clear how to define this. However, for j z k < 1, the number 1 + z will lie in

the domain of definition of the principal logarithm Log, and so we define

(1 + z)b = h(z) = exp( b Log (1+z) ), l z m < 1.

This function h is then analytic in n z o < 1 by the chain rule. We also have

h ′ (z) = h(z)b /z = h(z)bexp( − Log (1+z)) = b(1 + z)b −1.

Thus h ′ (0) = b, h″ (0) = b(b −1), and h (k)(0) = b(b −1). . . (b −k +1) for every positive integer k .

Thus Taylor’s theorem gives

(1 + z)b = 1 + bz + z 2b(b −1) /2 + z3b(b −1)(b −2) /3! + .....,

which is the binomial theorem. If b is a positive integer, the series terminates and the expansion

is valid for all z .

5. The Cauchy product. Suppose that F(z),G(z) are both analytic in p z − a q < S, with Taylor series

F(z) = a0 + a1(z − a) + ..... , G(z) = b0 + b1(z − a) + ..... ,

there. Then H(z) = F(z)G(z) is analytic in the same disc. If we multiply the Taylor series of F by

that of G we get

(a0 + a1(z − a) + .....)(b0 + b1(z − a) + .....) =

= a0b0 + (a1b0 + a0b1)(z − a) + . . . + (ak b0 + . . . + a0bk )(z − a)k + . . .

Is this the Taylor series of H? We know that in r z − a s < S we have

H(z) =
k =0
∑
∞

(z − a)kH (k)(a) /k !

and, by Leibnitz’ rule,

H (k)(a) =
j =0
∑
k

F ( j)(a)G (k − j)(a)k ! / j !(k − j)! = k !
j =0
∑
k

aj bk − j .

So the answer to our question is yes.

6. Find the Taylor series of (cos z) / (1 − z2) in t z u < 1.

7. Evaluate ∫exp(z 2)z −17dz with the integral once counter-clockwise around v z w = 1.

8. Function of a function. Suppose that f (u) is analytic in x u − b y < r and that g(z) is analytic inz
z − a { < s , with g(a) = b . Then if z is close enough to a we have | g(z) − b } < r , and so

f (g(z)) = h(z) is analytic in ~ z − a � < t , for some t > 0. Suppose that

f (u) = a0 + a1(u − b) + ...., � u − b � < r,
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and

g(z) = b + b1(z − a) + ...., � z − a � < s.

If we set u = g(z) and substitute the series for g into that for f(u), we get

a0 + a1(b1(z − a) + b2(z − a)2 + ....) + a2(b1(z − a) + b2(z − a)2 + . . . )2 +

+ a3(b1(z − a) + b2(z − a)2 + . . . )3 + ....... =

= a0 + a1b1(z − a) + (z − a)2(a1b2 + a2b1
2) + (z − a)3(a1b3 + 2a2b1b2 + a3b1

3) + ....

when we gather up powers of z − a . Is this the Taylor series of h? Again, yes. For � z − a � < t we

have

h(z) =
k =0
∑
∞

(z − a)kh (k)(a) /k !

and the chain rule gives

h ′ (a) = f ′ (b)g ′ (a) = a1b1 , h″ (a) /2! = ( f ″ (b)g ′(a)2 + f ′ (b)g″ (a)) /2! = a2b1
2 + a1b2 .

A theorem on the Taylor series of a composition (optional): Suppose that g is analytic at a and

f is analytic at b = g(a). Then the composition h defined by h(z) = f (g(z)) is analytic at a , by the

chain rule, and the Taylor series of h about a is obtained by substituting the Taylor series of g

about a into the Taylor series of f about b and gathering up powers of z − a .

Warning: this only works if g(a) = b .

Proof of the theorem (optional!)

First we need the following.

Claim: suppose that G is analytic at a and F is analytic at b = G(a) and H is the composition

H(z) = F(G(z)). If m ∈ then

H (m)(z) =
k =1
∑
m

Ak(z)F (k)(G(z)), (1)

in which the Ak are analytic at a (the Ak depend on m and k ).

(1) is obviously true for m = 1, with A1 = G ′ , because (F(G)) ′ = F ′ (G)G ′ . Now suppose that (1)

is true for m . Then

H (m +1)(z) =
k =1
∑
m

(Ak ′ (z)F (k)(G(z)) + Ak(z)F (k +1)(G(z))G ′ (z))

which we can write in the form
k =1
∑

m +1
Bk(z)F (k)(G(z)), with the Bk analytic at a . Thus the Claim is



- 35 -

proved by induction on m .

Completion of the proof of the composition rule for Taylor series: there is no loss of general-

ity in assuming that b = 0. For otherwise we can put f1(w) = f (w + b) and g1(z) = g(z) − b . Then

f1(g1(z)) = f(g(z)) and f (k)(b) = f1
(k)(0) and so substituting the Taylor series of g about a into the

series of f about b gives the same result as substituting the series of g1 about a into the series of

f1 about 0.

Let ck =
k !

g (k)(a)� ��������� and let dk =
k !

f (k)(0)� ��������� . Let n be a positive integer. Near a we can write

g(z) = P(z) + r(z), P(z) =
k =1
∑
n

ck(z − a)k, r(z) =
k =n +1

∑
∞

ck(z − a)k,

noting that c0 = g(a) = 0. Near b = 0 = g(a) we can write

f (w) = Q(w) + s(w), Q(w) =
k =0
∑
n

dk w k, s(w) =
k =n +1

∑
∞

dk wk.

Here P and Q are polynomials and r is analytic near a , while s is analytic near 0.

For z close to a we know that g(z) is close to 0. If we substitute w = g(z) then for z close to a we

have

h(z) = f (g(z)) = (k =0
∑
n

dk(P(z) + r(z))k) + s(g(z)) = R(z) + s(g(z)).

Now s(0) = s ′ (0) = .... = s (n)(0), because s is a power series with first term dn +1wn +1. We calcu-

late the p ’th derivative of s(g) at a , where 1 p n , using the Claim above, with F = s and

G = g and m = p . Putting z = a we now see that (s(g))(p)(a) = 0 for 1 p n , and this is also

true for p = 0, since s(0) = 0. This means that h (p)(a) = R (p)(a) for 0 p n .

But we can expand out and write

R(z) = (k =0
∑
n

dk P(z)k) + r(z)S(z) = T(z) + r(z)S(z),

in which S(z) is analytic at a . Since r (p)(a) = 0 for 0 p n (since r(z) is a power series with

first term cn +1(z − a)n +1) we see that (rS)(p)(a) = 0 and R (p)(a) = T (p)(a) for 0 p n .

To summarize: for 0 p n it is the case that h (p)(a) = R (p)(a), and this is the p ’th derivative at

a of
k =0
∑
n

dk P(z)k, in which P(z) =
k =1
∑
n

ck(z − a)k. This means that to calculate h (p)(a), for

0 p n , we can substitute w =
k =1
∑
n

ck(z − a)k into
k =0
∑
n

dk w k and expand out, collecting up powers

of z − a , and the coefficient of (z − a)p is h (p)(a) /p !. But we get the same coefficient of (z − a)p if

we substitute the Taylor series of g about a into that of f about 0, because the powers greater

than n make no difference to the coefficient of (z − a)p.
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Having now proved this difficult but important theorem on the Taylor series of a composition we

return to our consideration of examples.

9. Find the integral once counter-clockwise around � z � = 1 of 1/z 4(1 − sin z).

10. The same, for z −4(1 + cos z)−1.

11. The same, for exp(1 /z).

12. Same again, for z −8sin(z3).

13. Find the integral once counter-clockwise around � z � = 4 of z −6(1 − z)−1.

14. Find the Laurent series of 1/ (z2 − 4) in (a) � z � < 1 (b) 0 < � z −2 � < 4 (c) 4 < � z +2 � < ∞ (d)

10 < � z � < ∞.

15. Calculate ∫ � z � = 3
e 1/z z 4 dz , the integral being once counter-clockwise.

Section 5 : Singularities and the residue calculus

5.1 Singularities

We say that the complex-valued function f has an isolated singularity at a if f is not defined at a

but there is some s > 0 such that f is analytic in the punctured disc { z ∈ : 0 < � z − a � < s } .

The singularity can be classi fied according to how f behaves as z approaches a .

Examples

1. f (z) =
z

cos z������� . Clearly, 0 is a problem point for this function. As z → 0, we easily see that
�
f (z) � → ∞. We say that f has a pole at 0. A pole is an isolated singularity a with the property

that � f (z) � → ∞ as z → a .

2. g(z) =
z

sin z������� . Here the behaviour is not so obvious. However, for z ≠ 0 we can write

g(z) = z −1(z − z 3 /6 + ....) = 1 − z 2 /6 + .....

The RHS is now a power series, converging for all z ≠ 0, and so for all z . If we set g(0) = 1, then

g becomes analytic at 0 as well, and we have removed the singularity.

A removable singularity a of a function h is an isolated singularity with the property that

z → a
lim h(z) exists and is finite.
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3. Now try H(z) =
z2

sin z ¡ � �  . For z ≠ 0 we have

H(z) = z −1 − z /6 + z 3 /5! − .....

As z → 0 the term ¢ z −1 £ → ∞, while the rest of the series tends to 0. This is again a pole.

4. F(z) = e1/z. This is an altogether worse kind of singularity, called essential. F(z) has no limit

of any kind as z → 0. It is interesting to look at the behaviour as z tends to zero along the real

and imaginary axes.

5. T(z) = cosec (1/z). Here 0 is not an isolated singularity at all, but a much bigger problem. The

function has singularities at all the points where 1 /z is an integer multiple of π.

Residues

If f has an isolated singularity at a , we compute the Laurent series
k = − ∞

∑
∞

ck(z − a)k which

represents f on some annulus Aρ given by 0 < ¤ z − a ¥ < ρ on which f is analytic. Provided ρ > 0

and f is analytic on Aρ , the coefficients don’t depend on ρ (since the Laurent series for a given

function and annulus is unique). The residue of f at a is c−1 . Note that if 0 < t < ρ then

∫ ¦ z − a § = t
f (z)dz = 2πic−1 , when we integrate once counter-clockwise.

Examples

1. Let γ be the circle ¨ z © = 2 described once counter-clockwise. Determine ∫γ (z − 1)2
sin zª�ª�ª�ª�ª�ª dz .

2. Let Γ be the contour which describes once counter-clockwise the square with vertices at

± 10 ± 10i . Determine ∫Γ z2(z + 1)

1«¬«�«�«�«�«�« dz .

5.2 Cauchy’s residue theorem

Suppose that γ is a simple closed piecewise smooth contour described in the positive (i.e.

counter-clockwise) sense. This means that as we move around γ the region interior to γ always

lies to our left.

Suppose that D ⊆ is a domain which contains γ and its interior. Suppose that f is analytic in

D apart from a finite set of isolated singularities α1 , .... , αn , which lie inside ( and not on ) γ .

Then

∫γ
f (z) dz = 2πi ( j =1

∑
n

Res( f, α j ) ).

We stress that the integral must be once around γ in the positive sense.
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To compute the residue Res( f, α j ), we look at the Laurent series of f which represents f in an

annulus 0 < ­ z − α j ® < ρ , for some ρ > 0. The residue is just the coefficient of (z − α j )
−1 in this

series.

5.3 Examples

1. Keeping the notation of 5.2, suppose there are no singularities α j . Then the integral is 0 ( this

is an even stronger form of Cauchy’s theorem than 3.5 ).

2. The Cauchy integral formula.

3. Consider ∫ ¯ z ° = 300 (z −2)(z −4)

z − 17±²±�±�±�±�±�±�±�±�± dz .

4. Consider ∫ ³ z ´ = 1 e z − 1

1µ µ�µ�µ�µ dz .

5. Consider ∫ ¶ z · = 1 (e z − 1)2
1¸¹¸�¸�¸�¸�¸�¸ dz .

6. Let γ be the semicircular contour through − R,R and iR, and calculate ∫γ
e iz / (z2 + 1)dz .

7. Determine
R → ∞

lim ∫0

R

(cos x) / (x2 + 1)dx .

8. Evaluate ∫− ∞

∞
1/ (x2 + 2x + 6)dx .


