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Preface

 

I am an admitted object-oriented fanatic. I have been designing and implementing object-oriented
software for more than twenty years. When I started designing and implementing object-oriented
MATLAB

 

®

 

, I encountered many detractors. They would say things like “The object model isn’t
complete,” “You can’t have public variables,” “The development environment doesn’t work well
with objects,” “Objects and vector operations don’t mix,” “Object-oriented code is too hard to
debug,” and “MATLAB objects are too slow.” None of these statements matched my experience
with MATLAB objects. It quickly became obvious that MATLAB objects don’t have a capability
problem; rather, they have a public relations problem. Part of the public relations problem stems
from the fact that the sheer genius behind the design and implementation of MATLAB’s object-
oriented extensions is masked by the abbreviated discussion in the user’s guide. If you want to use
MATLAB to develop object-oriented software, ignore the critics, study the examples in this book,
and reap the benefits.

Mark Levedahl exposed me to the possibility of developing object-oriented MATLAB software
in 2001. Both of us had written a lot of C++ code, and we spoke the same object-oriented dialect.
MATLAB objects are seductive because they seem so easy. Without help, trying to get everything
right is anything but easy. My first object-oriented implementation was terrible. Construction was
dicey. Interfaces were terrible. Modules were slow. The code was very hard to maintain. Maybe
the critics were right. I was still learning. The lessons improved the next implementation, but there
still seemed to be a fundamental difference between, for example, object-oriented programming in
C++ and object-oriented programming in MATLAB.

MATLAB object-oriented code always bumped up against the same limitation. The elements
spelled out in the object-oriented design didn’t map easily to an m-file implementation. Part of the
reason for the poor match comes from the fact that each design element must be spread into more
than one m-file: one module to get a value, another module to set it, and yet another to display it.
In an evolving design, files can easily get out of synch. Couple this with the fact that a developer
is free to define the mapping, and the result can be chaos. Faced with many competing alternatives,
it is fair to ask, “Is one alternative better than the others?” After a lot of consideration and study,
I believe the answer is yes. Following the best alternative improved the object-oriented implemen-
tations by orders of magnitude. Armed with the best mapping, a software tool to keep the modules
and design in synch is a matter of design and implementation. Version 3 of the MATLAB Class
Wizard will do this. The Class Wizard tool is included on this book’s companion CD.

The first version of Class Wizard was not easy to use. George Brown, Kyle Harrigan, and Mike
Baden used it with some success. Their comments helped shape the graphical user interface in the
current version. At the same time, I was using my Class Wizard tool to create object-oriented code
for a large MATLAB project. That project, the Target Tracking Benchmark, was primarily sponsored
by the Missile Defense Agency and involved a cadre of accomplished MATLAB programmers
from government, academia, and industry. Good techniques were allowed to blossom, and the bad
were very quickly rooted out. Reactions to MATLAB objects were mixed. The ensuing debates
improved everyone’s understanding of the risks and benefits. Over time, the debate participants
included Mark Levedahl, Steve Waugh, Laura Ritter, Dale Blair, Phil West, George Brown, Paul
Miceli, Terry Ogle, Paul Burns, Chris Burton, Lisa Ehrman, Dan Leatherwood, Darin Dunham,
Steve Kay, Al de Baroncelli, Ron Rothrock, Bob Isbell, Bruce Douglas, Greg Watson, Ben Slocumb,
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Mike Klusman, Jim Van Zandt, and Joe Petruzzo. These gifted individuals improved my under-
standing of MATLAB objects and helped shape the second and current versions of Class Wizard.

The second version of Class Wizard was easier to use, and about three years ago I set out to
write a user’s guide for it. I quickly discovered that telling someone how to use a tool is a lot
different from telling someone why. Many MATLAB programmers seem genuinely interested in
learning why. For example, my half-day seminar on object-oriented MATLAB at the 2003 IEEE
Southeastern Symposium on System Theory was the best-attended session by a wide margin. After
that seminar, I started adding more detail to the Class Wizard user’s guide. I also improved Class
Wizard by adding a guide-based graphical interface and support for object arrays and multiple
inheritance. Shortly after that, Mel Belcher and Dale Blair encouraged me to turn the user’s guide
into a book. I am very grateful for their insight and moral support. I would never have undertaken
this project without their initial prodding and enthusiasm.

MATLAB is a registered trademark of The MathWorks, Inc. For product information, please
contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Introduction

 

The organization of this book breaks MATLAB object-oriented programming into three sections.
The first section covers the required elements and focuses on developing a set of functions that
give MATLAB objects first-class status within the environment. In the first section, we will develop
a group of eight indispensable functions. These functions provide object initialization, a simple
intuitive interface, interaction with the environment’s features, and array capability. Even more
important, the group of eight is responsible for an object-oriented concept called encapsulation.
Encapsulation is fundamental to using object-oriented programming as a better, safer alternative
to structures. The default functions in MATLAB seem to be at odds with the information-hiding
principle of encapsulation; but the group of eight brings MATLAB back under control. By the end
of the first section, you will have an excellent working knowledge of MATLAB’s object-oriented
capability and be able to use object-oriented programming techniques to improve software devel-
opment.

The second section builds on the first by developing strategies and implementations that allow
the construction of hierarchies without compromises. Such hierarchies are important for achieving
true object-oriented programming. The concept of building the next layer of functionality on a firm
foundation of mature code is very compelling and often elusive. Encapsulation certainly helps, but
another object-oriented concept called inheritance makes it much easier to build and traverse an
organizational hierarchy. With inheritance, each successive layer simply builds up additional capa-
bility without changing code in the foundation. As the code matures, bug fixes simply make the
foundation stronger. At first blush, the desire for both first-class status and an inheritance hierarchy
appears incompatible. The section on building a hierarchy delivers a harmonious framework.

The third section discusses advanced strategies and introduces some useful utilities. Advanced
strategies include, among others, type-based function selection, also known as polymorphism;
passing arguments by reference instead of by value; replacing 

 

feval’s

 

 function handle with an
object; and a utility for rapid object-oriented code development. Do not expect to use all the
advanced strategies in every software development. Instead, reserve the advanced techniques for
difficult situations. Discussing these concepts is important because it opens the door to what are
essentially limitless implementation options. It is also nice to know about advanced strategies when
the uncommon need arises.

This book makes two assumptions about you, the reader. The first assumption is that you
consider yourself an intermediate or better MATLAB programmer. At every opportunity, example
code uses vector syntax. The example code also uses a few important but relatively obscure
MATLAB functions. Example code also uses language features that some might consider to be
advanced topics, for example, function handles and try-catch error handling. Even though code
examples are described line by line, entry-level MATLAB programmers might find the example
code somewhat vexing.

The second assumes only a cursory knowledge of object-oriented programming. I dedicate a
significant amount of the discussion to the introduction of fundamental object-oriented program-
ming concepts. MATLAB programmers new to object-oriented programming will be able to follow
these discussions and thus gain the ability to implement object-oriented designs. Even so, there is
also plenty of substance to keep seasoned object-oriented programmers on their toes. Going back
to the basics will often reveal important design considerations or expose hidden object-oriented
capability. It is my sincere hope that everyone reading this book will mutter the phrase “I didn’t
know you could do that” at least once.
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 Most of this book concentrates on MATLAB coding techniques; however, the introductory
chapter gives me an opportunity to touch on a few topics critical to general software development
that are somewhat peripheral to the mechanics of writing code. It also gives me a place to discuss
some of the ideas that support object-oriented programming. I trust you are anxious to dive into
the world of MATLAB object-oriented programming, so this introduction will be brief. 

Some of you might decide to skip this chapter and dive right into the MATLAB implementation.
You will be skipping background information on general object-oriented programming: topics like
encapsulation, inheritance, and polymorphism. Nothing in this chapter is critical to the examples;
however, if you decide to skip this chapter, you might want to come back and read §1.3 before
diving into the second section on inheritance. I will remind you to come back when the time comes. 

 

1.1 EXAMPLES

 

One of the easiest ways to learn is by example. I have tried to include examples of working source
code for every new concept or iterative improvement. Each chapter is complete in that the example
source code will run and produce results. Subsequent chapters will often add to or improve modules
from earlier chapters, but by the end of the chapter everything should execute. You can work along
by either typing in the example code or copying the source from the CD. Every chapter has its
own directory. All of the examples are included on the CD that accompanies this book.

Interact with the examples. Type in the example source code or copy it from the CD and
experiment. The descriptions that accompany the listings will guide you along by supplying
command-line instructions. As an alternative to constantly setting MATLAB’s path, it is more
convenient to experiment with the examples from each chapter’s directory. I will include a listing
with the explicit 

 

cd

 

 command or the result 

 

pwd

 

 (print working directory) when it is important to
move to a particular directory. That way, you will know where to navigate before typing the
commands. The recommended location for the example files is 

 

c:/oop_guide

 

.* Of course, the 

 

cd

 

directory or 

 

pwd

 

 display will be different if you copy the example files to a different location.
To save a little space, displayed results use compact spacing. MATLAB displays results using

a compact format when the 

 

‘FormatSpacing’

 

 

 

environment variable is set to 

 

‘compact’

 

.
The following command can be used to set the environment variable. 

 

>> set(0, ‘FormatSpacing’, ‘compact’)

 

Set 

 

‘FormatSpacing’

 

 to 

 

‘loose’

 

 to get back to the default display spacing. 

 

1.2 OBJECT-ORIENTED SOFTWARE DEVELOPMENT

 

In lieu of a long discussion, I will instead refer you to authors, books, or websites that I have found
to be particularly helpful. The referrals are of course not exhaustive because there are too many
effective ways to attack software development. The cited references are simply some of the tools
I have found to be effective for me. With time and experience, you will accumulate a set of tools
that are effective for you. If you do not already have a favorite resource in some particular area,
the citations are a good place to begin. I am confident that this book will find a place in your
favored set of tools.

 

*  The direction of the directory slash will depend on your operating system. In Windows you can navigate directories
using either / or \ , but 

 

pwd

 

 uses \ in its output. In Unix and Linux, only / may be used. In code, the variable 

 

filesep

 

always returns the directory slash appropriate for the operating system; see 

 

help filesep

 

.
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As you are no doubt aware, software development is not just about implementation. Development
involves an extensive set of activities that span a wide range of topics, and for any large project,
the human element is vitally important. To attack increasingly difficult problems you will need to
sharpen your own development ability. Successful software development also draws upon the
collective abilities of individuals, teams, and organizations. As problems grow in size you need to
be able to focus the development team and help improve the capability of your entire organization.
Such continuous professional development at all levels is personally rewarding and directly leads
to bigger, better, and faster software. It also leads to more responsibility and improved salaries.

First, recognize that the development of bulletproof software is an exceptionally difficult
undertaking. You need to be at the top of your game, and you need to focus and organize your
development team. There are a number of proven techniques that can improve both your personal
effectiveness and that of your team. These techniques are not limited to coding but span the entire
project scope from design through delivery.

Second, recognize that both MATLAB programming and object-oriented programming repre-
sent two areas that by themselves rely on a high level of hard-won expertise. Merging the two
represents yet another challenge. The MathWorks software engineers did a very commendable job
in adding object-oriented capability to MATLAB. Their object model seamlessly meets all of the
basic requirements of object-oriented programming; however, this does come with a price. You
must write efficient code or run-time performance will suffer. Gaining efficiency requires advanced
MATLAB techniques. There are new functions to learn, and familiar functions will be used in
entirely new ways. Even fundamental subjects like the function search path get new rules when
objects are involved.

The various quirks of MATLAB’s object-oriented model can tax the ability of even the most
capable designers. MATLAB contains encapsulation and inheritance capability equal to any modern
object-oriented language. Sometimes, however, it is difficult to use all of that capability. To clear
that hurdle, simply expand and reuse the coding patterns presented in the various examples. The
biggest difference between MATLAB and more typical object-oriented languages stems from one
of the fundamental properties of MATLAB, untyped variables. The lack of strong variable typing
represents a handicap. The rules that govern search-path searching help in some regard. Even so,
minor concessions are usually required when implementing a complex object-oriented design in
MATLAB. With very weak typing, MATLAB’s use of polymorphism is similarly weak. You as the
programmer are responsible for choosing correct functionality based on the data. MATLAB’s
polymorphism usually leads you to a function in the correct class, but the rest is up to you. 

 

1.2.2 P

 

ERSONAL

 

 D

 

EVELOPMENT

 

Evolving your personal skills is important, but how do you do this effectively? To paraphrase Watts
Humphrey of the Software Engineering Institute,

 

If you want to get to where you’re going, you need a map; 

if you don’t know where you are, a map won’t help.

 

Following from this statement the general procedure for continuous improvement is not difficult
to describe:

• Gauge your level of expertise; find that big, red “You are here” arrow.
• Identify the skills you want to acquire, that is, identify the destination.
• Plot a path from where you are now to where you want to be.
• Periodically check that you are indeed moving toward the destination.
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This sounds simple enough, but as always, the devil is in the details. 
One good resource where you can learn to sort out the details is a book by Watts Humphrey

titled 

 

Introduction to the Personal Software Process

 

sm

 

.* The Personal Software Process (PSP) sets
up an organized approach that allows you to gauge your existing skill set and control the introduction
of new skills. By following the PSP’s prescriptions, you can improve all phases of your personal
development from planning through delivery. The PSP is particularly effective in helping to elim-
inate the introduction of errors in the critical design and coding stages. Errors eliminated early in
the process cannot then affect later stages.

The PSP is a tailored, one-developer version of a software discipline used to improve team-
based software engineering. A multiple-developer software discipline can be found in 

 

The Capa-
bility Maturity Model

 

 (

 

CMM

 

) by Mark Paulk et al.** The 

 

CMM

 

 is not unique in its objective. A
large body of research on the introduction of structure and rigor to team-based software development
certainly exists. Among the many resources available, the articles found at http://www.sei.cmu.edu
are quite extensive and use the same language as that used in the PSP and 

 

CMM

 

.
Aligned with personal improvement and software engineering rigor is the software development

life cycle. Different software products benefit from using different life cycle models, and indeed,
there are many different models. Each model supports a relatively unique development environment.
The IEEE/EIA 12207 standard***

 

,

 

**** is a concession by both industry and government that no
single development model works for every situation. This gives us the liberty to search for models
that work well with both our intended applications and MATLAB.

MATLAB programs are successful across a variety of disciplines. The most successful use is
when a small group of technical professionals attempts to solve an entirely new problem. This type
of development usually contains an evolving set of interlocking constraints. The software is part
of the evolution. Designing and writing one iteration increase problem awareness. The discipline
involved in developing the software improves understanding and reveals new issues and constraints.
Each new revelation folds back into the requirements and begins a new implementation. In the
extreme, the revisions never end and it is difficult to complete one revision before discovering new
requirements. 

There is no definitive stopping rule. Answers to questions like “When is the software model
close enough to reality?” or “When is the algorithm accurate enough?” are often difficult to know
in advance because each revision uncovers the need for more detail. The software development
process itself has become one method of problem discovery. Consequently, each revision extends
the capability of the software. After several iterations, the code often evolves completely away from
the initial design. We often refer to the result of this constant change as “spaghetti code” because
of all the twisted connections among modules. It does not take too much iteration before continued
development becomes painfully slow and protracted. Is this a familiar situation?

It turns out that this “typical” MATLAB project description fits the definition of a so-called
wicked problem.***** The extreme-programming life cycle model****** is gaining traction as
the preferred method for wicked-problem software development. The extreme-programming model
is also increasing in popularity for general software development. Since the topic of this book is
object-oriented programming, it should come as no surprise that object-oriented programming and
the extreme-programming life cycle model are well suited for each other. In fact, certain protections

 

*  Addison-Wesley Professional, 1999.
**  Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis, principal eds., 

 

The Capability Maturity Model

 

,
Addison-Wesley Professional, 1995.
***  http://standards.ieee.org/reading/ieee/std_public/description/se/12207.0-1996_desc.html.
****  http://www.stsc.hill.af.mil/crosstalk/about.html.
*****  P. DeGrace and L. Stahl, 

 

Wicked Problems, Righteous Solutions: A Catalogue of Modern Software Engineering
Paradigms

 

,

 

 Yourdon Click, 1990.
******  http://www.extremeprogramming.org.
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afforded by object-oriented programming actually enable the extreme-programming life cycle
model. There is more to say about wicked problems and extreme programming.

 

1.2.3 W

 

ICKED

 

 P

 

ROBLEMS

 

We can classify all problems into one of two categories: tame and wicked. Tame problems can be
subdued using traditional linear thinking and thus lend themselves to traditional linear development
method (e.g., a waterfall model). Wicked problems by contrast are not so easily domesticated.
When dealing with wicked problems you need a different approach, and learning to identify them
is a good place to begin.

If developers cannot agree on a shared description of the problem, it is probably wicked. Such
consensus is difficult because the definition of the problem changes every time a new solution is
considered. Individuals on the development team will be at different stages in problem discovery
and thus have different opinions about the problem description. Lack of a shared vision often leads
to constantly changing requirements, another bane of software development. When developers
finally solve the problem, the solution leads to a shared description. 

There are many other clues. Some of the most distinctive characteristics often associated with
wicked problems are as follows*:

• You cannot understand the problems until you develop solutions, and unfortunately, every
solution is expensive and has lasting unintended consequences.

• You find an evolving set of interlocking issues and constraints. 
• Proposed solutions are not necessarily right or wrong but rather better or worse.
• There seems to be no definitive stopping rule aside from exhausting the available

resources.
• The problem and the proposed solutions are novel or unique.
• The problem does not seem to provide an ultimate test whether the solution is correct

or complete.

Anyone with experience in software development can certainly recall a project or two with
some of these characteristics. Many of these projects get into trouble not because the wicked
problem exists, but rather due to a failure to identify the problem as wicked and approach the
solution with the appropriate tools and techniques. Software development has a dismal record where
one third of software projects are canceled, and of those that remain half fail to meet the original
budget.** The skill and dedication of developers are not at fault in this record. More likely, the
whole methodology of approaching the solution of wicked problems is broken.

For example, the knee-jerk approach in dealing with a failing project is to apply more man-
agement scrutiny and impose processes that are more stringent. The hope is that a more detailed
definition of the requirements, deeper analysis of the problem, in-depth planning, or more progress
tracking will get the project back on track. With a so-called tame problem, this approach might
actually work. With a wicked problem, this linear approach will almost certainly fail. Wicked
problems are very resistant to up-front detailed analysis. The usual approach is failing so we must
consider a new set of tools.

The most important part of the new strategy is to accept that wicked problems do indeed exist.
After accepting their existence, we need a method of identification. A development team at odds
with each other, at odds with management, or at odds with the customer over exactly what the
software is supposed to do is a strong indication. A project that continues to spiral downward after

 

*  Horst Rittel and Melvin Webber, “Dilemmas in a General Theory of Planning,” Reprint no. 86, the Institute of Urban
and Regional Development, University of California, Berkeley.
**  Mary Poppendieck and Tom Poppendieck, 

 

Lean Software Development: An Agile Toolkit for Software Development
Managers

 

, Addison-Wesley, 2003.
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adding more resources or swapping out key personnel is also waving a wicked flag. There are other
more subtle indications, and a web search on the keywords “wicked problems” will result in a host
of resources for both identifying wicked problems and dealing with them.

Accepting the fact that we must begin the solution before we have all the data is important in
dealing with wicked problems. Accepting this allows development to focus on revealing more
problem detail rather than trying to solve the complete, poorly defined problem. Additional detail
refines the problem statement, which folds back into the next solution. Developers are not upset
about modifying or scrapping code because neither the goal nor the schedule called for a solution
on the first cycle. After several adaptive cycles, developers understand the problem and the software
represents a good solution. The solution process for wicked problems concedes that bouncing
among design, implementation, and test is the best way to solve poorly understood problems.

This type of iterative development usually runs counter to the current, generally accepted
software development practices; however, the future of software development is iterative. This does
not mean that software development will revert to the early days of no process maturity or an ill-
defined process framework. Developing software in such a stop-and-go manner can result in an
unwieldy design unless the iterative development follows a suitable development model. The current
set of development processes go hand in hand with a procedural approach. The extendible power
of object-oriented programming enables new development models capable of solving wicked
problems. 

Decades ago there were dire predictions made about the adoption of object-oriented program-
ming. As we now know, most of these damning predictions turned out to be false. Now, the same
voices are shouting warnings about iterative development. History appears to be repeating itself.
In spite of such dire predictions, companies are obtaining good results using the combined power
of object-oriented programming and iterative development.

 

1.2.4 E

 

XTREME

 

 P

 

ROGRAMMING

 

The extreme-programming development model* is one of several models that embody precisely
the kind of iterative development necessary to solve wicked problems. In brief, the extreme-
programming model emphasizes the following:

• The use of test suites to define project milestones (fanatical testing)
• Frequent releases with small, stable additions to functionality
• A simple design that is iteratively refined
• Continuous code improvement (to make code faster and easier to maintain)
• Pair programming
• Collective code ownership
• Documented standards

The items in this list and object-oriented programming go hand in hand. Frequent releases and
continuous code evolution require the use of a language that supports reliable, extendible, reusable
code. Object-oriented languages support these goals, and in §1.3.4 we will see how. Items in the
list also encourage more of a team-based approach compared to traditional methods. Collective
ownership, pair programming, and documented standards make peer review and code walk through
integral parts of code development rather than after-the-fact quality assurance steps. Individual
effort is still valuable for innovation. The difference here is in bringing the result of individual
innovation into the team-based environment.

Perhaps the only valid criticism of iterative methods like extreme programming involves
documentation. With very little predevelopment emphasis on requirements and design, developers

 

*  http://www.extremeprogramming.org.
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write documentation concurrently as the code is developed or after the code is complete. Neither
is ideal. The evolutionary nature of iterative development makes it extremely difficult to document
revisions synchronized with code revisions. The community of developers must take collective
ownership of the documentation, but supporting tools are not well established. Pushing the devel-
opment of documentation to the end of the project yields the same poor results regardless of the
life cycle model. The descriptions are often lacking in important detail because developers forget
many of the nuances. The truth is that software documentation is a tough problem. Even with
traditional methods, documentation is often out of date or incomplete. Iterative methods make some
problems of documentation different, but the situation overall is neither better nor worse.

You have to relate the importance of documentation to your development team because good
documentation relates to productivity. Effort spent analyzing undocumented code is effort that could
have gone toward solving the real problem. Multiply this over several developers and many classes,
and the consequences become clear. The iterative development community has adopted a posture
that says documentation is not required, a posture that might actually have some merit. Instead of
separate documentation, the code itself should be self-documenting. Any description other than
code is simply a translation, and all translations are subject to error. Under some strict conditions
the idea of self-documenting code might actually work. Generally, these conditions are not exclusive
to extreme programming but are conditions of good software development in any environment. 

Clearly written code is the first condition. Use variable names that represent the data in them
and function names that represent the operation. All developers need to be on the same page with
respect to the conventions. Community code ownership demands uniformity. Unfortunately, every
problem domain seems to use a different vocabulary, making one universal convention impossible
to establish. The convention must be somewhat flexible to change just like the code itself. Clearly
written code also limits the number of operations carried out on each line. Sometimes run-time
performance issues are at odds with such limiting. The 80–20 rule of thumb says that only 20
percent of the code consumes 80 percent of the run time. Surprisingly accurate, this rule allows
you to be judicious in trading run time for code complexity. Where code syntax becomes unusually
difficult, add a comment to aid in future maintenance. Code idioms and a modular implementation
also improve clarity and quality. Document standard conventions and idioms in a coding standard,
but allow the standard to evolve.

Taking advantage of MATLAB’s help utility is the second condition. Use a 

 

Contents.m

 

 file
to display a table-of-contents description of all the functions in a directory. Use a standard,
compatible format for header comments. Format all the lines in a header as comments, and
MATLAB displays the comments in response to 

 

help

 

 

 

function name

 

. These header comments
should summarize the function’s intent and cite important assumptions for input–output arguments.
In an extreme-programming environment, the header should also include a list of test functions.
The first comment line is particularly important because it plays a significant role. Known as the
H1 line, MATLAB displays the first header line in response to a 

 

lookfor

 

 command.
Up-to-date requirements and at least a high-level design hierarchy form the minimum level of

documentation for the third condition. Documented requirements are necessary because these
represent the best view of the problem. Use the requirements to scope the problem and drive
development in a particular direction. As the development progresses, requirements can and often
do change. A formal update of the requirements keeps everyone’s expectations on track. A high-
level design hierarchy imposes a shared vision.

Align the design with the requirements and allow it to drive iteration goals. Like the require-
ments, the design hierarchy evolves with the development. In an ideal situation, the hierarchy simply
expands its level of detail. Indeed this should be the goal for the design of the public interface.
Sometimes entire branches of the hierarchy need reorganization. Allow this reorganization to set
the stage for the next cycle of code refactoring. Documented requirements, an up-to-date high-level
design, and a standard for self-documenting code are significant improvements over the typical
status quo. 
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Finally, code specifically designed and developed for reuse needs a higher level of documen-
tation. Presumably, the public interface is mature and the behavior is predictable. In short, the code
has ceased to evolve so there is little danger of documentation becoming obsolete. Under this
scenario, good documentation can improve productivity because even self-documenting code is
harder to understand compared to a carefully written, peer-reviewed, cataloged document. With a
documented reuse library, we are plainly trying to discourage a developer from redeveloping the
same solution.

 

1.2.5 MATLAB, O

 

BJECT

 

-O

 

RIENTED

 

 P

 

ROGRAMMING

 

, 

 

AND

 

 Y

 

OU

 

Effectively dealing with MATLAB object-oriented programming means first effectively dealing
with MATLAB. The included code examples and idioms rely on an advanced understanding of the
MATLAB path, passing data using variable argument lists, and improving run time with vector
syntax. Object-oriented techniques also require an expert’s knowledge of both standard and obscure
MATLAB functions. Object-oriented programming in MATLAB is an advanced topic, and the
examples and idioms assume a certain level of MATLAB-language expertise. My goal is to increase
your understanding of MATLAB in general, but this book is not a general language reference. The
various manuals that come with MATLAB are one of the best general references. Although cryptic
at times, they provide a very concise, complete description of almost every language feature. The
help facility makes most of the manual information available from the desktop. Online resources
at http://www.matlab.com supplement the manuals with up-to-the-minute documentation and user
examples. The discussion groups and contributed utilities on the site are particularly valuable. 

Programmers include a continuum of MATLAB expertise, but with respect to object-oriented
programming, there are two divisions: 

 

client

 

 and 

 

developer

 

. Client programmers use objects in their
own software but do not develop “low-level” object code. Clients are vital to the development in
other ways. Clients are important because they often represent the group of domain experts. Their
expertise is not in object-oriented programming but rather is steeped in the real problem. As such,
clients are an important resource for defining interfaces and functionality. If it were not for clients,
developers would be out of a job. Clients, however, are not the target audience of this book. 

Developers, on the other hand, are responsible for developing low-level object code. The
remaining chapters develop examples, define idioms, and introduce a software tool specifically
designed to ease the burden of object-oriented development in MATLAB. As your experience with
object-oriented programming increases, you will be called on to both build the object-oriented
foundation and use the foundation elements to build applications. The first role represents developer;
and the second, client. Clients and developers use different mind-sets. and part of your job as a
developer is being able to apply the client mind-set when playing that role.

Playing the role of developer requires a greater attention to detail because you will design both
the outward appearance and the inner workings of each object. The outward appearance is important
because this is the only part of the object seen by a client. Here, careful thought and attention to
detail make the object easy to use. Indeed, this book describes a set of techniques that can be used
to give objects an interface identical to that of a structure. A structure-like interface eases a client’s
use of objects but the structure-like interface is only half the equation. The other half involves the
inner workings or private implementation. While the object interface might appear structure-like,
your code is actually taking over and producing a result. You have to be diligent in anticipating
every condition or the implementation will fail, usually at the worst possible time. Isn’t that how
Murphy’s Law always works? MATLAB’s model for object-oriented programming gives you
powerful tools to thwart misuse by clients; but as a developer, you must learn how and when to
use each tool. Some of these tools are pervasive across all object-oriented languages, while some
are unique to MATLAB.

The remaining chapters and examples put you on the right track of becoming a MATLAB
object-oriented developer. Same as with the MATLAB language itself, the examples presume a
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certain level of expertise in general programming and in object-oriented design. Unlike the treatment
of the MATLAB language, objects in the examples remain relatively simple because the imple-
mentation methods for simple and complicated objects are essentially the same. There is no reason
to cloud the discussion of implementation issues by trying to attack a difficult problem. Of course,
this does put limits on how far we will delve into the problem of object-oriented design. As you
try to attack increasingly difficult problems, you will undoubtedly need additional object-oriented
design resources. A seminal book focusing on object-oriented design is Grady Booch’s 

 

Object-
Oriented Analysis and Design with Applications

 

*. Booch is one of the early pioneers and has a
very intuitive approach to object-oriented design. Two other object-oriented pioneers are James
Rumbaugh and Edward Yourdon. 

These three object-oriented giants have put aside their differences to develop a graphical design
format called the Unified Modeling Language (UML). UML is the standard development and
documentation tool for object-oriented programs. The modeling environment provides a very rich
and detailed approach, and the basics are easy to learn. The book by Booch et al. titled 

 

The Unified
Modeling Language User Guide

 

** is one of many UML references. 

 

1.3 ATTRIBUTES, BEHAVIOR, OBJECTS, AND CLASSES

 

Before we try to answer the fundamental question “Why objects?” let’s first discuss the difference
between an object and a class. The two terms are closely related but are not interchangeable, even
though that is how they are often used. In short, a class is a model that exists as lines of code, and
an object is an instance of the model that exists in memory during program execution. A class is
a user-defined type and an object is a variable of that type.

For tangible objects, we generally accept that they will have both attributes and behaviors. In
addition, we usually know how to link attributes and behaviors depending on the object’s type. For
example, a hungry baby cries and an alarm clock rings. For tangible objects, an object-modeling
approach is easy to rationalize because that is how we naturally organize them. In concept, software
objects are not much different from tangible objects. Software objects represent tangible elements
of the problem domain. Just like worldly objects, software objects have both attributes (data) and
behaviors (functions). In a good design, these attributes and behaviors associate naturally and are
inseparable from one another. Perform some thought exercises centered on this idea.

What image enters your mind at the mention of the word “shape”? Is it two-dimensional or
three? What is its color? Are the sides straight or curved? If you describe your image, do you think
I would agree that it is indeed a shape? It can be square, circular, or star shaped; red, blue, or
rainbow colored; stationary, rotating, or zipping about; and it would still be a shape. From expe-
rience, we are able to abstract the idea of shape into a general collection of attributes and behaviors.
In object-oriented terms, the abstraction is a 

 

class

 

 and any particular shape is an 

 

object

 

 of that
class. This particular abstraction is easy because we practice it without even realizing. With practice
and experience, abstraction into an object-oriented software design is almost as easy.

 

1.3.1 F
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 MATLAB H
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Until fairly recently universities taught most engineers, scientists, mathematicians, and technical
professionals to decompose a problem into a series of actions. Converting these actions into a
loosely organized set of functions yields a so-called procedural-based design. The procedural-based
approach spawned a variety of other software-engineering techniques. Software development life

 

* Grady Booch, 

 

Object-Oriented Analysis and Design with Applications

 

, Benjamin Cummings, 1991. The 3rd edition was
released in 2004.
**  Grady Booch, James Rumbaugh, and Ivar Jacobson, 

 

The Unified Modeling Language User Guide

 

, Addison-Wesley
Professional, 1998.

 

C911X_C001.fm  Page 9  Friday, March 30, 2007  11:05 AM



 

10

 

A Guide to MATLAB Object-Oriented Programming

 

cycles are the most notable. In too many cases, the customer’s project-planning tools assumed a
so-called waterfall life cycle model. Project planning is much easier with a waterfall model. 

Unfortunately, the procedural approach and the waterfall life cycle are showing their age. The
amount of module-to-module coupling hinders the ability to maintain or extend many large pro-
grams. Adding a new feature or fixing an old one takes longer than expected and, far too often,
introduces side effects unrelated to the new feature. The use of object-oriented methods can
drastically reduce the amount of module-to-module coupling. Many in the software-engineering
community believe that shifting to an object-oriented approach is the only way to achieve significant
increases in program size and complexity.

The ready availability of commercial MATLAB toolboxes has allowed large increases in
complexity even with the use of traditional, procedural methods. Invariably with time, software
requirements will grow to the point where even the use of toolboxes will not be enough to offset
the limitations of the procedural approach. No one can predict when the typical program size will
outstrip the capacity of the current approach; however, some MATLAB projects have already
crossed the threshold. Many MATLAB programmers recognize the early-warning signs. If we
follow the lead of our software-engineering brethren, embracing object-oriented techniques appears
to be the solution. Helping defend this position is the fact that MATLAB includes a very robust
object model.

Where would the study of mathematics be without whole, real, and complex numbers? Biology
would be equally difficult without taxonomy divisions among plants, animals, fungi, virus, protozoa,
and bacteria. In these disciplines, properties rather than behavior drive the decompositions. Object-
oriented programming is no different. User-defined types are the central focus of the software
architecture. Just like other taxonomies, the types contain both properties and behavior but the
decomposition emphasizes the properties. For someone steeped in procedural decomposition, the
object-oriented approach appears backward. Instead of focusing on behavior (functions), object-
oriented programming focuses on attributes (data). Along with this change in focus come big
differences in life cycles, coding development, testing, and integration. 

To many, object-oriented development represents a radically different way of thinking. Intro-
ducing changes of this scale into an organization can be difficult and protracted. By one estimate,
the transition takes an average programmer about one year.* This book should help speed the
transition by defining specific coding practices and by exposing potential problem areas. The Class
Wizard tool also allows programmers to focus on design rather than implementation (see Chapter
18), further speeding the transition. Other techniques may also hasten the transition. For example,
pair programming is a type of co-mentoring activity that should be helpful in shortening the
transition time. There are also many more books, seminars, and short courses available today
compared to 1994 when the estimate was made. 

 

1.3.2 O
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RIENTED
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Think about shapes again. If asked to design a software representation of a shape, how would you
begin? You might have a good idea about shapes but you still need to find out if your ideas match
the needs of your clients. You can use client requirements, user stories, and domain experts to help
pin down the set of attributes and behaviors required of your software shape. At first these attributes
and behaviors might seem disconnected; however, with more analysis, patterns and dependencies
usually emerge. First, arrange shapes with similar attributes in a loose taxonomy. Then use behavior
differences to infer additional attributes. For example, it might be perfectly reasonable to combine
a division between moving and stationary shapes by defining a speed attribute. This gives all shapes
the same behavior; however, shapes with zero speed do not appear to move. It might also be
perfectly reasonable to keep moving shapes separate from stationary ones. In that case, a moving

 

*  B. Stroustrup, 

 

The Design and Evolution of C++

 

, Addison-Wesley, 1994.
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shape is still a shape but it has at least one additional attribute and behavior. The choice affects
the software design and code, but the client’s experience with the final design is the same. When
the taxonomy stops changing, we establish the software architecture. Each leaf in the taxonomy
represents a set of attributes that can be implemented as a class. Connections among leaves allow
classes higher in the taxonomy to serve as the foundation for lower classes. Lower classes do not
redeclare higher-level attributes because they can inherit the higher-level attributes by simply
declaring a connection in the taxonomy. The same organization works for behaviors.

The process is similar in many respects to procedural design except that the final organization
focuses on data rather than function. In theory, the process sounds reasonable, but in reality, some
software problems are maddeningly difficult to organize. Sometimes developers do not have enough
experience in the problem area to foster good organization. At other times, the special terms and
notation used by the experts simply overwhelm the designer. Object-oriented designers have
experienced these difficulties and have developed many techniques useful in difficult design envi-
ronments. Unfortunately, a full treatment of object-oriented design is outside the scope of this book.
If you are new to object-oriented programming, you will gain valuable experience by implementing
and evolving someone else’s design. When you are ready to design your own object-oriented
architecture, a library of books and a wealth of articles and websites are available that fully develop
object-oriented design. The authors and references already cited represent good starting points. 

 

1.3.3 W
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BJECTS
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Previously, I made the statement that the creation of objects seems to mirror the way we naturally
view the world. A brief discussion about shapes was used to demonstrate the idea. If true, the idea
that software development can reflect our typical worldview is nice but it certainly would not
compel programmers to abandon their current practice. This is particularly true in light of the
amount of effort involved in making a change. No, the argument has to be a lot more compelling. 

The area of software development most influenced by object-oriented programming is software
quality. Demonstrated quality improvements can make converts of even the most grizzled procedural
programmers. Quality has many facets, but bug-free software that works correctly the first time it
is used is a typical goal. It is hard to disagree that bug-free software somehow equates to high-
quality software; however, if bug-free code takes too long to develop or runs too slowly, what then
of quality? 

In reality software quality is an elusive topic with a lot of “I’ll know it when I see it” judgments.
Running correctly without crashing is certainly one aspect of quality, but other areas are important
too. Assuming the requirements correctly identify what is needed, software engineers generally
agree that overall quality is influenced by the following:

• Reliability
• Reusability
• Extendibility

Specific features in object-oriented programming relate to every one of these factors. Another
possible factor is productivity. Perhaps it would be better to emphasize productivity rather than
quality. After all, we know that bug-free software is impossible to produce. Even if we could get
all the bugs out, delivery times would be very long and the production cost would be astronomical.
Besides, customers have learned to expect bugs, particularly in the first few versions.

I hope you were 

 

not

 

 nodding in agreement with the last few sentences. These often accepted
assumptions are 

 

wrong

 

, 

 

wrong

 

, 

 

wrong

 

. The fact that your competitors believe them gives you an
enormous competitive advantage. Proven techniques can both reduce the number of coding errors
and hasten the discovery of bugs that do manage to slip in. The introduction of fewer errors along
with quicker discovery increases productivity by reducing the amount of unproductive time spent
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reworking broken code. With a lower error rate, testing reveals fewer bugs, thus allowing the entire
development to run at a faster pace. In the manufacturing sector, Lean-Six-Sigma* techniques
dramatically improve both quality 

 

and

 

 productivity. Proven false in the manufacturing sector is the
notion that high quality equals low productivity. In fact, attaining both exceptional quality and high
productivity can be the rule rather than the exception. There is nothing to prevent the introduction
of Lean-Six-Sigma ideas into the software development process.

 Customers can also be retrained. Once you start delivering high-quality products, the market-
place will demand the same quality from all producers. The rise of the Japanese auto industry
provides a clear example where a customer’s appreciation for quality disrupted the marketplace. I
predict that the same disruption will eventually occur in the software industry. Currently, India
seems to be the likely winner, but China too is coming on strong. I urge you to consider the
implications and work to drive your organization toward the delivery of world-class quality. Sooner
than you imagine, customers will be demanding it.

 

1.3.4 A Q

 

UALITY

 

 F

 

OCUS

 

Proven techniques can enhance software quality. Some techniques focus on one particular quality
measure like reuse. Others cut across all measures. Object-oriented techniques belong in the latter
group because they create a fundamentally different development environment. It is an environment
with a proven ability to improve all areas of quality. Below we summarize the major factors
contributing to quality. 

 

1.3.4.1 Reliability

 

The most visible aspect of software quality is reliability. If the software crashes or produces the
wrong result, customers consider the product unreliable. Even when most features work reliably,
it follows from Murphy’s Law that the one unreliable feature will be the most important to the
customer. Contrary to opinion, highly reliable software is not impossible or prohibitively expensive
to develop. Consider the selected observations about the state of general software development
published in 2001**:

• Half the modules are defect free.
• Disciplined personal practices can reduce the initial defect rates by up to 75 percent.
• Avoidable rework constitutes 40 to 50 percent of the total effort on most software projects.
• It costs 50 percent more per line of code to develop high-dependability software….

However, the initial investment reduces overall cost if the project involves significant
operations and maintenance costs.

The fact that on average half the modules are defect free provides strong evidence that it is
possible to write defect-free software. Anything that can increase the defect-free percentage will
have an enormous impact, and the second observation promises a huge improvement. Reducing
initial defect rates by 75 percent means the typical rate of five defective lines out of ten improves
to about one in ten. Extending the same improvement to well-implemented modular code means
that close to 90 percent of the modules will be error free the first time a developer releases the
code for test. At a minimum, this implies fewer trips between test and rework, but the implications
on productivity are much deeper.

Examine the effect on resources. Spending 50 percent of your time on rework means that every
four hours of programming require, on the average, another four hours to find and fix defects —
defects that were 

 

avoidable

 

. If four hours is the average debug time, how wide is the span around

 

*  Michael L. George, 

 

Lean Six Sigma: Combining Six Sigma Quality with Lean Speed

 

, McGraw-Hill, 2002.
**  Barry Boehm and Victor R. Basili, “Software Defect Reduction Top 10 List,” IEEE Computer, January 2001, 135–17.
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the average? From experience, we know that some bugs are unbelievably hard to find. Consequently,
it is very difficult to predict how long it will take to fix a broken module. The span around the
average is very wide indeed. When you stop and consider the typical environment, it becomes
obvious why workdays are long and slipped schedules are considered normal.

Now consider high-reliability practices. The previous four hours of programming time increase
by 50 percent to six hours. Development is longer, true; but, there are now one fourth the number
of defects. If on average the time to fix an error does not change, debugging should take one fourth
as long as before. Now, debugging adds only one hour instead of four. The total time to bug-free
software with high-reliability practices is seven hours. Compare that to eight hours without them.
Both produced the same code; however, high-reliability practices give you extra time to learn new
development techniques, keep your desk tidy, or be even more productive.

What about the span? It is extremely difficult to estimate how long it will take to find and fix
a bug. If you dedicate four of every eight hours to a task that is extremely difficult to predict, how
good is your predicted schedule? We know from experience that the schedule is often wrong.
Bringing the debug time down to one of every eight hours fosters much more confidence in the
schedule. As strange as this may sound, it is easier to estimate how long it will take to develop
error-free code compared to developing sloppy code and debugging it. Reducing the expected span
of the estimate has an enormous impact on planning, scheduling, and product rollout.

At the beginning of this subsection, we dismissed productivity in deference to quality. It is
empowering to understand that quality and productivity are not at odds with one another. It might
seem counterintuitive that the quest for high reliability results in on-time delivery, less stress on
the development team, and cost reduction, but this is not a new revelation. Eliyahu Goldratt* wrote
about it in his series of critical-chain, project-planning books. Andrew Carnegie understood the
relationship and lived by the mantra “Quality is the most important factor in business.”
Japanese industry also understands the relationship: “When quality is pursued, productivity will
follow” (K. Fujino, vice president, NEC).**

Now you too are a member of this august group.
Of course, high-quality techniques are not limited to object-oriented programming. In the short

term, as you confirm the value of object-oriented programming and transition development to it,
your current MATLAB projects can achieve a significant boost in quality and productivity. 

1.3.4.2 Reusability

A software module is reusable when we can grab it from one project and use it, as is, in another
project. Reusability does not happen automatically. Code intended for reuse must be designed,
developed, and packaged in a form that promotes reuse. Good documentation, consistent conven-
tions, and stellar code quality are a few of many aspects used to judge reuse potential.*** 

Over the long haul, software reuse improves quality and hence productivity in a number of
ways. Reusable components can shorten development time or allow the production of more capable
software in a given amount of time. With fewer new lines of code, there are fewer defects and a
lower maintenance burden. As long as the reusable components are robust and high quality, most
defects can be isolated to the new code. Toward that end, every reuse adds more test conditions
and improves our confidence that the component library is defect free. Run-time optimization of
reusable code also benefits every module reusing it. This is particularly true if the reusable code
is an optimized MEX function. (A MEX file is a compiled C, C++, or Fortran function that can
be called from a MATLAB module.) Code reuse also encourages the use of common code styles

*  For example, Eliyahu Goldratt and Jeff Cox, The Goal: A Process of Ongoing Improvement, Gower, 1986.
** Fujino quoted Carlo Ghezzi, Mehdi Sazzjeri, and Dino Mandrioli, Fundamentals of Software Engineering, Prentice-
Hall, 1991.
***  Bertrand Meyer, Reusable Software: The Base Object-Oriented Component Libraries, Prentice-Hall, 1994.
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and conventions. The use of common styles and conventions is highly correlated with improvements
in quality. 

Imagine writing code in an environment where every variable is global. Now imagine trying
to reuse a module. Reuse is difficult because every line of code depends on the same set of variable
names. The first step toward improving reuse defines functions with formal parameters and local
variables. The formal function definition creates a user interface that controls a client’s use of the
function. The function interface also hides local variables, thus preventing unintentional side effects.
Client code no longer depends on the syntax of the function module, and vice versa. With function
definitions, we protect the integrity of our functions. With object-oriented programming and encap-
sulation, we can take the next step: create a user interface that controls the use of data. The
encapsulation interface divides data into public and private elements. Client code can use and thus
depend on public elements; however, clients cannot create a dependency on private elements.
Object-oriented rules enforce the integrity of the encapsulation and thus reduce dependency. The
improvement in reuse from data encapsulation is equal in importance to improvements gained from
using function definitions and local variables.

The proliferation of MATLAB toolboxes demonstrates that reuse is valuable. The fact that
many toolboxes aren’t object-oriented indicates that reuse, like reliability, does not depend on a
particular development approach. Some development methods are more reuse friendly compared
to others. Indeed, designing for reuse with the traditional approach requires an exceptional level
of expertise. By contrast, object-oriented development includes certain design elements that allow
code to adapt to reuse more easily. Encapsulation, also known as information hiding, is the main
element.  

Using a commercial toolbox is one thing, but developing a similar set of general-purpose
modules is a long-term endeavor. Even accounting for the assistance object-oriented techniques
bring, it takes time and effort to generalize project-specific modules into a set of general-purpose
reusable ones. After that, it takes experience and patience to make them reliable. Finally, it takes
time for others to reuse the modules in another project. The payback can be enormous, but selling
object-oriented techniques as a quick fix for reuse is dangerous. If reuse takes longer than promised,
people might give up and thus lose many of the long-term benefits.  

1.3.4.3 Extendibility

A software module is extendible when we can grab it from one project, modify it slightly, and use
it to do something the original author never envisioned. Designing for reuse and encapsulation
improves extendibility by keeping a lid on dependency. Object-oriented techniques can also improve
extendibility through a concept called inheritance. Inheritance gives us a convenient way to organize
and store modules so they can be easily shared and suitably redefined.

Inheritance directly supports a hierarchy. For example, the diagram shown in Figure 1.1 suggests
both similarities and differences between circles and squares. An object-oriented implementation
collects the similarities in modules assigned to cShape and differences in modules assigned to

FIGURE 1.1 A simple hierarchy.

cShape

cCircle cSquare
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cCircle and cSquare. Inheritance gives circle objects access to modules defined for both
cShape and cCircle classes. Similarly, square objects have access to both cShape and
cSquare modules. Both circles and squares depend on modules defined for cShape. The opposite
is not true: cShape does not depend on modules defined for cCircle or cSquare. The hierarchy
permits one-way dependencies only. 

This one-way dependency makes object-oriented code extendible along three fundamental
directions: down the hierarchy (e.g., to all shapes), to individual classes (e.g., a specific shape like
cCircle), and to the hierarchy itself. In this example, changes or additions to cShape automat-
ically extend down the hierarchy to all shapes. Extending cShape has the effect of extending all
classes inheriting from cShape. The one-way dependency isolates the effect of individual shape
extensions. The branch of the hierarchy from the point of the extension down is affected, but
inheritance prevents the change from extending back up. For example, extending cCircle will
never change the behavior of cSquare objects. The same one-way isolation allows the creation
of new shapes and the general reorganization of the hierarchy. 

In an ideal world, we would always generalize to the best hierarchy. Unfortunately, the best
hierarchy is not always initially apparent. As we develop the software solution, discovery leads to
organizational changes and hierarchy extendibility becomes important. Otherwise, we are stuck
with an inappropriate architecture. The one-way inheritance dependency allows new class creation
with no effect on existing code. In the example, we could extend the hierarchy by creating a cStar
class that inherits cShape. All existing classes and class code are unaffected by the addition.

The one-way dependency also allows us to split one class into a mini-hierarchy of two (or
more) classes. As an example, Figure 1.2a shows the original hierarchy. At the outset, we knew
we needed squares but did not realize we would need other shapes too. After writing some software
and showing it to the customer, the need for other shapes became apparent. We could stick with
the original architecture by adding an independent class for each additional shape, or we could
create a hierarchy of shapes. The first step toward building a hierarchy organizes the cSquare
class into two classes, as shown in Figure 1.2b. As long as the combined public interface doesn’t
change, modules developed for cSquare objects don’t care whether the object is organized as a
single class or as a parent←child hierarchy. The new combination cShape←cSquare behaves
no different from the Figure 1.2a monolithic cSquare class. The reorganization had minimal
impact on the operation of existing code and set the stage for the inheritance shown in Figure 1.2c.
Both the hierarchy and the existing code are exhibiting a high degree of extendibility. Extendibility
enabled by inheritance.

1.4 SUMMARY

Developing effective object-oriented software in any language involves a lot more than mastering
the coding mechanics. Compared to structured programming, object-oriented programming

(a) (b) (c) 

FIGURE 1.2 Demonstration of the extendibility of a hierarchy: (a) original organization; (b) parent–child
relationship; and (c) general subset is reused.

cSquare

cShape

cSquare

cShape

cCircle cSquare
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introduces fundamental differences in discovering and stating requirements, in extracting and rep-
resenting designs, in processes and life cycles, in unit testing and quality assurance, and of course
in code syntax. In this chapter, we touched briefly on some of the differences. The way that object-
oriented programming combines with the extreme programming model to solve so-called wicked
problems is one of the more interesting differences. Use the various footnote references in this
chapter as a starting point for further study.

We also touched on issues important to all software development. The most important and most
urgent issue is quality. I cited reliability, extendibility, and reusability as three of the many facets
of quality. We probably agree that high-quality software is desirable. Unfortunately, many also
believe the notion that high-quality development practices are too expensive in terms of both time
and effort. To help dispel this notion I briefly mentioned the way other industries have been able
to improve productivity by targeting quality as a goal. I also presented arguments and cited
references that describe a direct link between high quality and high productivity in software
development. Achieving both requires discipline and practice, but is well within the grasp of every
developer and organization.

We have not yet discussed differences in code syntax between typical MATLAB code and
object-oriented MATLAB code because the rest of this book devotes itself to that topic. On the
surface, the differences do not seem to run very deep. This is somewhat deceiving because the
rules allow you to code very simple but very weak classes. Our goal is the development of strong,
robust, bulletproof code capable of attaining the utmost quality. To achieve that goal, the following
chapters introduce code idioms that use convention to augment the basic rules. Along the way, you
get an introduction to the object-oriented terms and ideas behind the idioms. Taken together, the
idioms form a cooperating set of reusable modules that can be used to repeatedly to develop world-
class, object-oriented MATLAB programs.
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Part 1

 

Group of Eight

 

MATLAB object-oriented rules dictate only one required function for each class. In practice, there
are eight functions so fundamental to MATLAB object-oriented programming that each warrants
its own chapter. Apart from each other, any one from this group of eight would be easy to describe,
design, and code. Toy classes rarely use more than two or three of the eight, making their design
easy. We are not interested in toy classes. In industrial-strength classes, the functions comprising
this so-called 

 

group of eight

 

 always occur together, and each relies on functionality contained in
the other members. In Chapter 1, we discussed dependency and coupling and concluded that such
reliance requires careful attention to detail. Care is doubly important for the group of eight because
these functions implement the most important part of any object, its interface. As you read along
and consider the examples, keep the fact of coupling in mind. Sometimes it forces design decisions
that become apparent only after the coupling partner is described, designed, and implemented.

As we will soon see, the notion of an interface goes hand in hand with the object-oriented
concept of encapsulation. This first major section focuses on object-oriented encapsulation and
develops an effective interface strategy. By the end of this section, the advantages of encapsulation
along with the access rules enforced by MATLAB should be clear. Every function in the group of
eight contributes to encapsulation. If you are wondering about the names of the group-of-eight
functions, they are listed below. There are chapters in this section devoted to each member.

Functions belonging to the group of eight are

 

• constructor
• subsref.m
• subsasgn.m
• display.m
• struct.m
• fieldnames.m
• get.m
• set.m

 

The required elements are the best place to begin. First, there are not many; and, second, the
required elements should exist in every class we write. After we cover the required elements, we
will develop a set of optional elements that allow object-oriented variables to attain a status equal
to built-in types. Without these optional elements, object-oriented code is difficult to use and
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maintain. After the optional elements, we examine strategies for atypical situations. This section
covers all of the required and many of the optional object-oriented coding elements.
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2

 

Meeting MATLAB’s 
Requirements

 

MATLAB forces very little on us in the way of requirements. This is both good and bad. To the
good, it means that we have a lot of freedom to make the implementation match our particular
need. It also means that we do not have to devote a lot of time toward learning an intricate set of
requirements, nor do we have to devote effort toward implementing the requirements with our code.
To the bad, it means we must blaze our own trail without the benefit of requirements to keep us
on track. Loose requirements provide enough rope to hang ourselves. It is too easy to weave a path
that is difficult to maintain. In this chapter, we will learn how to meet requirements in a way that
supports the needs of the group of eight. This helps keep MATLAB object-oriented programming
on the straight and narrow.

 

2.1 VARIABLES, TYPES, CLASSES, AND OBJECTS

 

In every specialty, there are certain words that carry special meaning. At first glance, the sheer
number of special words associated with object-oriented programming appears overwhelming. The
sad fact that these words are sometimes misused does not help the situation. An additional burden
comes in understanding slight differences among words that appear to be describing the same thing.
Fortunately, mastering the vocabulary is not difficult. Most of the differences are anchored to the
normal programming vocabulary.

In discussing object-oriented programming, the words 

 

class

 

 and 

 

object

 

 seem to suffer the
most abuse. When you look closely at what these words actually represent, it is easy to understand
why. After we carefully define both words, you will be able to follow discussions where the
language is sloppy. This knowledge will also allow you to determine the competency of self-
professed experts.

The easiest way to explain the differences between class and object is to relate them to things
you probably already know. Look at the MATLAB command-line listing provided in Code Listing
1. First, let me reassure you. If the command syntax and results in Code Listing are familiar, you
stand an excellent chance of taking full advantage of MATLAB object-oriented programming. 

 

Code Listing 1, Command Line Example to Illustrate 

 

Class

 

 and 

 

Object

 

1 >> x = 10;
2 >> name = 'Wilbur';
3 >> whos
4 Name       Size Bytes  Class
5
6 name       1x6 12  char array
7 x 1x1 8  double array
8
9 Grand total is 7 elements using 20 bytes
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Look carefully at the information displayed by the 

 

whos

 

 command and you will notice, perhaps
for the first time, a heading titled 

 

Class

 

. I hope you find this particular word choice very interesting.
You might complain that 

 

char

 

 and 

 

double

 

 are not classes but rather types. There’s no cause for
alarm. In this particular context, 

 

class

 

 and 

 

type

 

 mean almost the same thing. Class is a slightly
more specific term, one with special meaning to object-oriented programmers. In fact, the connec-
tion between class and type is so close that the term 

 

user-defined type

 

 is often used as a substitute
for 

 

class

 

.
You might reasonably wonder why the object-oriented pioneers felt the need to coin a new

term. The short answer is that class represents a new category of a variable’s type in the same vein
as array, cell, or structure. When we identify a variable as a double, its type attaches certain
expectations to the variable. A class is more complicated than one of the simple types like double,
char, or integer, but it still represents a type. We are comfortable with many of the simple or built-
in types because we know what to expect. By comparison, identifying a variable’s type as class is
uncomfortable unless we already know what that means. Like me, you have probably forgotten
that once upon a time, even the so-called simple types were not so simple. It took time and effort
to arrive at a comfortable level of understanding for double, char, and cell. The same is true for
class. Before long, the idea of class as simply another variable type will seem natural.

Learning about object-oriented programming will require some time and effort, and we certainly
don’t want to take on all of the special properties at once. After all, even with numbers we started
with 1, 2, and 3 before moving on to 

 

π

 

 and 

 

e

 

. 
Before moving on, go back to the 

 

whos

 

 display in Code Listing 1 and examine the information
associated with variable 

 

x

 

. Think about the low-level details that you usually take for granted.
Reading from left to right, 

 

x

 

 is the name of the variable. What is a variable name? The variable’s
name provides a human-readable reference to a value stored in memory. The variable’s size is listed
as 

 

1

 

×

 

1

 

. From the size, we know that 

 

x

 

 is scalar. From the variable’s type, 

 

double

 

, we know that

 

x

 

 is a member of the set of real numbers. The type establishes limits on which functions to use
and on the expected accuracy. At a glance, we know how 

 

x

 

 should behave and we take many details
for granted. 

So, what is 

 

x

 

 exactly? Is it a variable? a memory location? a scalar? a real number? … Of
course, this is a trick question. Indeed, 

 

x

 

 represents all of those things and more. For algorithm
design, the fact that 

 

x

 

 is 

 

double

 

 rather than 

 

complex

 

 or 

 

char

 

 is the primary focus. During
code implementation, the variable’s name, structure, and indices become increasingly more impor-
tant. During execution, MATLAB’s memory manager needs to know the physical address, the
number of bytes, and so forth. No one is shocked that the meaning of 

 

x

 

 radically changes depending
on context. This is exactly how we naturally cope with complexity. We avoid confusion by choosing
to focus only on the features that are important to us right now. 

Now I tell you that 

 

x

 

 is an 

 

object

 

. Is it still a variable? Still located in memory? Still a scalar?
… Of course! The new information that identifies 

 

x

 

 as an 

 

object

 

 does not change the fact that it
is still double precision. Saying that 

 

x

 

 is an object merely attaches yet another feature to the variable

 

x

 

. In the 

 

whos

 

 display, 

 

Class

 

 simply puts built-in types and user-defined types on an equal
footing. Some programmers might bristle at the use of class to describe common built-in types,
but with MATLAB this attitude is misguided. The fact that

 

 double array

 

 is a class and 

 

x

 

 is
an object opens many interesting options. We will examine many of these options as we progress
through the various examples.

 

Class

 

 is simply another description used to organize variables. The choice of the word “class”
must imply something, or one of the more common terms would have been used. A class is a
formal description of something general, possibly a reusable data structure, an abstract concept, or
a tangible thing. While there are often other supporting documents, the ultimate class description
exists as class’ executable code. A class defines data elements and defines a set of functions used
to operate on the elements. The data represent features or attributes and as a collection form the
class’ outward appearance. MATLAB uses a structure to define the data elements. The class’
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functions manipulate the data contained in the class’ structure. Functions are implemented using
m-files. What makes a class different from a normal structure and set of m-files are the object-
oriented rules that associate the data structure and the m-files in a way that they always exist
together as a whole. In short, a class defines a data structure and an inseparable set of m-files
designed to operate on that structure.

There must also be a difference between a class and an object. Objects relate to classes in the
same way variables relate to types. During the course of a program’s execution, objects are created,
used, and destroyed. The data structure for each object is unique and exists as a set of values stored
in memory. Object 

 

x

 

 is different from object 

 

y

 

 because each occupies a different memory location.
The structure of the data might be the same but the values can be different. All objects of the same
class use the same set of class-specific m-files. The object’s data are always passed into these
functions. In this way, the behavior is always consistent with a particular object’s data. In short,
an object is a run-time entity that includes a type and individualized data.

 

2.2 WHAT IS A MATLAB CLASS?

 

What is a MATLAB class? Even though the MATLAB user’s guide does a good job of answering
it, I hear this question a lot. After numerous discussions and mentoring sessions, I now realize that
this is not really the intended question. Askers are really searching for a framework on which they
can build their own classes. Other languages provide this type of framework, so it is natural to
expect MATLAB to provide one too. The user’s guide doesn’t define such a framework, probably
for good reason. It would require more detail than is typical for a user’s guide.

In C++ and Java, the framework is largely predefined by the language syntax. In MATLAB,
no such framework exists and the few required elements allow for a lot of customization. Unfor-
tunately, this also means there is no single answer to exactly what constitutes a MATLAB class or
what constitutes an acceptable framework. There is a range of answers that depend on the desired
level of customization. Classes designed to do one particular job in some specific application do
not need an extensive framework. Classes that are nearly indistinguishable from built-in types or
classes implemented with an extensive reuse goal require a sophisticated framework. Both need to
include the required elements, but the first requires fewer “optional” elements.

Another thing to consider is change. The object-oriented framework in this book is tailored for
MATLAB versions 6.5 through 7.1. When version 7 was released, a beta version containing several
improvements to the object framework was also released. The framework in the version 7 beta
release and the framework developed in this book can peacefully coexist. Future releases of
MATLAB will undoubtedly contain framework elements that improve the performance or organi-
zation of this book’s framework. This is a good thing, and from what I have seen, it should be easy
to incorporate those improvements. Also, from what I have seen, there is a lot to like in the beta
version of the framework. Future releases could also include elements that break this book’s
framework. So far, there is no hint of a problem. The detailed descriptions and examples in this
book will allow you to adapt to any new framework.

 

2.2.1 E

 

XAMPLE

 

: C

 

LASS

 

 R

 

EQUIREMENTS

 

Currently there are only two requirements for creating a class: a directory that identifies the class,
and an m-file that defines the data structure and returns an object. Central to both requirements is
the name of the class. All class files are stored in a directory with a name that is essentially the
name of the class, and the name of the class’ defining m-file is the same as the class name. Since
the class name and the name of the defining m-file are the same, the naming restrictions for the
class are identical to restrictions placed on functions: no punctuation, no spaces, cannot start with
a number, and so on. 
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In this section, we will work on an implementation for an oversimplified version of a shape
class. In the example, the name of the class will be 

 

cShape

 

. As we will see, the class’ directory
will be named 

 

@cShape

 

 and the defining m-file will be named 

 

cShape.m

 

.

 

2.2.1.1 Class Directory

 

MATLAB uses a distinctive directory-name syntax that includes an ampersand, “

 

@

 

,” to identify
class code versus nonclass code. For class 

 

cShape

 

, MATLAB expects to find the class code in a
directory named 

 

/@cShape

 

. The class directory itself must 

 

not

 

 be added to the MATLAB path;
however, the class directory’s parent (i.e., the directory containing 

 

/@cShape

 

) must be on the path.

There is one additional wrinkle regarding the class directory. There can be more than one
directory named 

 

/@cShape

 

. This requires more than one parent directory, but in such a setup,
MATLAB will traverse the path and search all class directories it can locate. The search follows
standard path-search rules. The 

 

addpath

 

 order resolves ambiguity. The first directory in the path
with a 

 

/@cShape

 

 subdirectory is searched first, and so on. Usually this behavior is simply a
curiosity. Under normal conditions, you should strive to avoid confusion by locating all of your
class’ m-files in one directory. Sometimes the application conspires against us and we need to break
with convention. There are some special circumstances when this behavior is desirable. One such
situation involves replacing default functions for built-in types. For example, you can add a

 

/@double

 

 directory and add m-files to the directory. Now if you properly arrange the path-search
order, you can force MATLAB to find functions in the new 

 

/@double

 

 before it finds the built-
in version. This ability is very useful during debug because you can log values and temporarily
change a function’s behavior. Another situation involves class functions that are proprietary or
classified. In those situations, you can provide nonproprietary functions in the standard 

 

/@cShape

 

directory and keep proprietary functions in a second 

 

/@cShape

 

 directory located in a safe place.
When you want to run the proprietary version, all you need to do is arrange the path so that the
proprietary version is found before the default version. That way, you do not have to have multiple
copies of nonproprietary files. 

If you are familiar with the MATLAB search path, you know that the present working directory
(

 

pwd

 

) is always on the path and is high up in the search priority. This makes 

 

pwd

 

 a convenient
place to perform code experiments because you do not have to mess around with the path. Instead
of manipulating the path, it is often easier to 

 

cd

 

 into a temporary directory and get to work. Of
course, if you would rather manipulate the path that is okay too. You are free to use any convenient
directory to experiment with the book’s example code. If you don’t have a preference, use the name

 

c:/oop_guide

 

 and you will be in step with the text included in the example commands.

 

2.2.1.2 Constructor

 

MATLAB needs a way to create an object. While this might sound out of the ordinary, it is actually
very common. Think about how you might normally use, for example, 

 

ones(r, c) or com-
plex(x, y) or struct. MATLAB fills in default values for the built-in types that it understands.
By providing a constructor, you are extending the list of types that MATLAB understands to types

Requirement: The class directory name must begin with an @ symbol.

Requirement: The class’ parent directory must be on the function search path.

Requirement: The class’ @ directory must not be on the function search path.
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beyond the built-in types. Consequently, every class is required to have a function that both clients
and MATLAB can use to create an object filled with default values. 

In object-oriented terminology, the m-file that creates an object is called a constructor. The
constructor defines the data structure and fills in element values. The so-called default constructor
is called with no input arguments and is configured to fill the element values with reasonable default
values. The m-file name for the constructor takes the same name as the class. The complete
constructor code for the simplified shape class is given in Code Listing 2. You can type in the
function from scratch or copy the file from the code disk. This file is on the code disk at
/oop_guide/chapter_1/@cShape/cShape.m. 

Code Listing 2 is very simple, yet this three-line constructor meets all of MATLAB’s requirements: 

• The function is located in the appropriate class-specific directory.
• The m-file’s name identifies it as the cShape class constructor.
• The constructor can be called with no arguments.
• The data structure of the object is defined.
• Each field of the structure is assigned a default value.
• The return value is an object of class cShape.

These bullets can be expressed in terms of requirements.

Code Listing 2 is also easy to dissect. Line 1 is simply the normal syntax for the definition of
a function. The function accepts no input arguments and returns one value. The default constructor
by definition has no input arguments. When arguments are passed in, we are asking the constructor
to do more than the minimum. Construction using input arguments is important; however, we will
not need to go beyond default construction until Part 2 of this book. The single return argument is
the constructed object. Returning more than the constructed object is possible but discouraged.

Code Listing 2, Minimalist Constructor

1 function this = cShape
2 this = struct('dummy', []);
3 this = class(this, 'cShape');

Requirement: The constructor m-file must be located in the class’ @ directory.

Requirement: The constructor m-file must use the same name as its directory without the leading 
@ symbol.

Requirement: A default constructor call, one with no required input arguments, must be 
available.

Requirement: The constructor must define a structure and assign default values to each element.

Requirement: The constructor must call class so that it can return an object instead of a 
structure.
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Line 2 defines the object’s data structure and assigns the structure into the variable this. The
data structure must be a struct array, and any conceivable structure can be used.* The structure
can also be created using struct, by adding fields one at a time or by calling a function that
returns a structure. The only real requirement is that the method must be able to reproduce the
same structure every time. MATLAB enforces object consistency by requiring that all objects of
the same class be based on the same structure. The values contained in the structure elements can
be different, but the number and order of the structure’s elements must be the same. If you try to
construct two objects of the same class using two different structures, MATLAB will issue an error
during the second attempt. 

There is nothing special about the variable name this. In MATLAB, this is not a reserved
word, nor does it have any special properties. There is nothing but convention to compel you to
use a standard name to identify the operated-on object. My advice is to always use the same name,
and the example code follows this advice. A standard name makes coding, debugging, testing, and
maintenance much easier. It is also a good idea to refrain from using the standard name outside of
the class’ m-files for similar reasons. Choosing the name this is nice because of its familiarity.
Programmers with a C++ background already have an idea of what this represents. 

Line 3 uses MATLAB’s class function to convert the data structure into an object. The class
function is multipurpose and you can use help to investigate the various options. In this context,
the first input argument is the object’s structure and the second input argument is a string containing
the name of the class. During the execution of class, MATLAB uses the structure and class name
to check consistency. If no errors occur, the structure is converted into an encapsulated object and
returned. Convention reserves this particular use of class to the constructor function. Depending
on the version, MATLAB will generate an error if you try to convert a structure outside of the
constructor function. More recent versions strictly adhere to this rule.

2.2.1.3 The Test Drive

It may be hard to believe, but the development of our first class is complete. The cShape class
includes all required functionality, and the code is ready for a test drive. If you already typed in
the constructor, change into the directory that contains the @cShape directory. Otherwise, you
can copy files from the code disk and change into the Chapter 2 directory. You are now ready to
create your first object. The command-line entries included in Code Listing 3 demonstrate a sample
of the class’ current capability. 

*  Version 6.5 does not allow an object to be created from an empty structure, that is, struct([]).

Requirement: All objects of the same class type must be based on the same structure.

Recommendation: Reserve the variable name this for exclusive use within class code.

Code Listing 3, Chapter 1 Test Drive Command Listing

1 >> clear classes; clc
2 >> cd /oop_guide/chapter_2
3 >> set(0, 'FormatSpacing', 'compact');
4 >> shape = cShape
5 shape = 
6 cshape object: 1-by-1
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Line 1 in Code Listing 3 clears the workspace and clears the command window. You are
probably familiar with clear all but may not be familiar with clear classes. The clear
classes command includes clear all’s functionality and adds the ability to clear the
association between a class name and a specific structure. You don’t need to clear classes
every time, but there is no harm in using clear classes instead of clear all. You must
call clear classes if you change a class’ structure. If you change the structure but fail to call
clear classes, MATLAB will remind you by displaying the following error:

??? Error using ==> class.

Line 2 changes the present working directory to the base directory for this chapter. If you
copied files into a different location, change the command to suit your directory structure.

Line 3 is optional and tells MATLAB to display output values using the so-called compact
format. The compact format displays fewer blank lines compared to the ‘loose’ option. 

Line 4 is the first object-oriented command. The assignment, shape=cShape, initiates a lot
of behind-the-scenes work. First, MATLAB searches for a constructor by checking the right-hand
side against all @-directory names that occur in directories on the path. In this case, MATLAB is
looking for the @cShape directory. As long as we changed into the correct directory, there will
be a @cShape directory in the present working directory. MATLAB now searches the @cShape
directory, finds the cShape.m function, and runs it. Our constructor code builds the structure,
converts the structure into an object, and returns the object as an output. On return, the object is
assigned into the shape local variable. Since we conveniently left off the semicolon, MATLAB
displays the variable. The display isn’t informative. The result from disp in line 7 is not any
better. We can certainly do better, but providing a cogent display is not a requirement.

Since we have met all the requirements, we can pass cShape objects in and out of functions,
assign objects to structure fields, save objects to a mat file, and load them back into the workspace.
The next few command lines demonstrate this capability. For example, the variable shape is saved
to a mat file in line 9. Line 10 clears the workspace, and line 12 restores shape back into the
workspace. In line 20, the class command returns shape’s type. As expected, we see that
shape’s type is indeed ‘cShape’.

7 >> disp(shape)
8 cshape object: 1-by-1
9 >> save test_shape shape;
10 >> clear all;
11 >> whos
12 >> load test_shape;
13 >> whos
14 Name      Size Bytes  Class
15
16 shape 1x1 124  cshape object
17
18 Grand total is 1 element using 124 bytes
19
20 >> class(shape)
21 ans =
22 cShape
23 >> shape.dummy
24 ??? Access to an object's fields is only permitted within 

its methods.
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Emboldened by our success, line 23 tries to access the dummy value stored in the object’s
structure. We know the object has a dummy field because we included it in the constructor. The
result is not a value but rather an error. MATLAB tells us we are not allowed to access the field.
How can this be?

The answer lies in the fact that shape is not a structure but rather an object. As an object,
MATLAB treats access to its fields differently. We already know that objects are associated with
a particular @ directory, that objects are created by a special m-file called a constructor, and that
all objects of the same class use the same structure. Attempting to access dummy uncovers another
important detail: the fields of the class’ structure are not accessible. In object-oriented lingo, we
would say that the fields are encapsulated. The general philosophy driving encapsulation was
introduced in §1.3. 

In §1.3, we said that encapsulation helps protect an object’s integrity by hiding selected
elements. Also in §1.3, we said that encapsulation includes various levels of visibility or access.
From the error message in line 24, it appears that dummy must be one of the hidden elements.
Being hidden means that dummy has private visibility and MATLAB is correctly denying us access
to it. Now that we understand the source of the error, all we need to do is learn how to unhide
dummy. There must be a way to make elements of the object public, right? 

First the bad news: you cannot unhide elements and make them public. MATLAB treats the
entire structure and everything stored in it as hidden, private data, period. You cannot make dummy
public even if you want to. If that were the end of the story, this book would be very short. Now
the good news: private variables are accessible; however, they are not accessible using normal
techniques. Object-oriented programming and encapsulation define the concept of an interface and
the hidden elements are indirectly accessible through the interface. The next chapter dives headlong
into the issue of encapsulation and begins to develop techniques to deal with the inviolable fact
that the object’s structure is always private.

2.3 SUMMARY

All the requirements have now been met, and we know how to build classes that play well in
MATLAB’s environment. Having met the requirements, our budding cShape class represents a
new data type with many of the properties we expect from any type. We can create a variable based
on cShape, and once created we can display it, save its state to a mat file, and load it back into
the environment. This variable is also called an object, and we demonstrated all of this in the test
drive. We can pass the variable into and out of a function, assign it into the field of a structure,
and create arrays of objects.

While this is indeed a great start, we really can’t do much with a cShape object because we
don’t yet know how to access the private elements. Accessing private elements requires an interface,
but before we can define an interface, we need to focus some attention on exactly how a user might
want to use an object. Designing an interface to meet the user’s expectations is the hardest part of
MATLAB object-oriented programming.

In every object-oriented programming environment, various topics fit together like a jigsaw
puzzle. The topics all relate to one another, and you can’t see the whole picture until most of the
pieces are in place. If you pick a piece at random, it’s hard to find exactly where it fits in. Most
people begin a puzzle by finding the corners. In our object-oriented puzzle, Figure 2.1, the required
elements are the corners. Usually the frame pieces are added next. The chapters in the rest of this
section piece together the frame by focusing on encapsulation and interface. Later sections bring
the whole picture into focus. 
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2.4 INDEPENDENT INVESTIGATIONS

Every chapter will conclude with a set of questions or exercises. You are encouraged to ponder the
questions and attempt the exercises. Spending some time considering them will help cement the
chapter’s topics, introduce the next chapter’s topics, and sometimes point out useful tricks or
common pitfalls.

This book is not designed to be a textbook, and the questions or exercises are not intended as
an exit exam. Sometimes answers will not be readily apparent until more pieces of the puzzle fall
into place. Before moving to the next chapter, you should at least spend a few moments considering
each of the proposed investigations. If any pique your interest, take a break from reading, fire up
MATLAB, and attempt a solution. Also, keep in mind that the investigation topics will grow more
challenging with each passing chapter. As you grow in the knowledge of object-oriented program-
ming, you will be up to the challenge.

1. Examine the use of memory. Create a normal structure using the command

ns = struct(‘dummy’, []);

and create an object using the command

shape = cShape;

Now use whos to display the size of each variable. Is there anything noteworthy about
the sizes and number of bytes?

2. Experiment with the size of the constructed object by changing the structure that underlies
each cShape object. In the constructor, replace line 2 with 

this = struct(‘dummy’, {[] []});

Next, save the file, and create a new cShape object. Don’t forget to clear classes
before creating the object. Use whos to display the object’s size. Can you also use the
size function to return the object’s size? What is the modified constructor creating?

3. Investigate what kind of data the object can hold. Add additional fields along with default
value assignment to the data structure. You might as well build an equivalent structure,
too, and compare size and bytes. Can the object store strings, arrays, cell arrays, or
structures? 

FIGURE 2.1 Puzzle with MATLAB-required pieces in place.

struct
MATLAB

class

call @ Directory
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4. The object’s structure is fixed by calling class. Is each field’s data type also fixed by
class? (Answer: no.) 
If a field is assigned a structure value, is this structure fixed by class? (Answer: no,
only the first level of field names is fixed.)
If the default value of a field is a number, is it possible to assign a string into the field?
(Answer: yes, but doing so usually results in a poor interface.)

5. Create a cShape object and name it x. See what happens when you type

y=struct(x)

What does whos tell you about y? Add some fields to the object’s structure by modifying
the constructor code, and repeat the same command. What is struct doing to the
object? 
This exercise is included here so I can warn you about struct. In the context of object-
oriented programming, struct’s ability to convert an object into a structure is very
dangerous. Until we discuss the specifics in Chapter 7, you should absolutely avoid
calling struct with an object as its argument.

6. Try to create an array of cShape objects. One way to do this would be

shape_array = [cShape cShape];

Can you add a new element to the array? For example, what happens if you try the
following command?

shape_array(3) = cShape;

Repeat this exercise, but properly replace [] or () with {}.
7. Explore how built-in types make use of object-oriented facilities. Create a /@double

directory in the present working directory. Add a rand.m function inside the /@double
directory that simply returns 0.5 instead of a random number. From the command line,
enter rand(1). What value do you get? The directory and code for this exercise are
included in the example files for Chapter 2.
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3

 

Member Variables and 
Member Functions

 

With the required elements covered, it is time to piece together the frame of the puzzle. The frame
pieces include many features that make object-oriented programming different from procedural
programming. These features rely on encapsulation, and the differences stem from the fact that
procedural languages cannot exhibit encapsulation. These features also influence the interface. For
ease of use, every class interface should include a common subset of behavior. Chapter 2 described
the requirements, and now we are on our own. The rest of this book provides a coding framework
that covers “everything else.” While perhaps not perfect in every way, the framework and recom-
mendations make good use of MATLAB’s various peculiarities. 

Similar to the requirements development in Chapter 2, framework development includes both
discussions and example code. The example code forms the basis of every class implementation.
Due to its ultimate importance, the example code needs to be compact and efficient. In most of
the example code, the desire for efficiency pushes the code syntax into the realm of advanced
coding techniques. The discussions around each example include a brief explanation of the syntax.
I hope that these explanations offer enough detail. If not, many MATLAB references focus exclu-
sively on language syntax. The discussions around each example also provide an in-depth expla-
nation of the object-oriented aspects. The object-oriented discussions are the central focus because
there is no other comprehensive reference source.

In §2.2.1.3 the command generated an error when we tried to inspect the value of

 

shape.dummy

 

. The reason for the error is the fact that MATLAB hides all object data. To access
the data we need to add functions to the class directory. The group of eight represents the set of
functions common to all classes, and most classes will include additional specialized functions.
Taken together these functions form the class interface. The interface functions are fundamentally
different from functions that exist outside the class directory. This chapter describes the differences,
introduces some terms, and generally sets the stage for interface design. Chapters that follow will
specifically address each function in the group of eight. By the end of Part 1 of this book, the initial
implementations for all functions in the group of eight will be nearly complete. 

Before moving on to the interface description, let’s reexamine our attempt to inspect the value

 

shape.dummy

 

. This is the correct syntax if both 

 

shape

 

 is a structure and 

 

dummy

 

 is an element
of the structure. In MATLAB terminology the operation is a 

 

subscripted reference

 

. MATLAB also
allows the use of subscripted references for objects. In general, subscripted references come in
three flavors: dot, array (“()”), and cell (“{}”). All three can be included in an object’s interface,
and we need a standard, shorthand way to refer to each reference type. The discussions that follow
use the following terms:

•

 

dot-reference

 

: subscripted reference with 

 

‘.’

 

 (e.g., 

 

shape.dummy

 

)
•

 

array-reference

 

: subscripted reference with 

 

‘()’

 

 (array indexing)
•

 

cell-reference

 

: subscripted reference with 

 

‘{}’

 

 (cell indexing)

 

3.1 MEMBERS

 

A class is like an exclusive club, and membership has its privileges. The m-files stored in the class
directory are members of the club. All other m-files are nonmembers. Standard object-oriented
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terminology uses the name 

 

member functions

 

 to identify the files in the class directory. In total,
these functions are responsible for implementing the interface because they enjoy the privilege of
accessing the object’s private structure. This is exactly why we say that the private data are hidden
behind the interface. As clients, we can’t “see” the data unless we get them indirectly via one of
the interface functions.

If you look in the 

 

/chapter_2/@cShape

 

 directory, you will find only one file, 

 

cShape.m

 

.

 

That means the constructor is currently the only member, and we all know it’s no fun being the
only member of a club. We need to expand the membership rolls, not because we are afraid the
constructor will be lonely but because member functions are the only way for nonmembers to
collaborate with an object.

The close association between member functions and an object’s private structure is a very
important feature in object-oriented programming. To help enforce the importance of the associa-
tion, the fields of the private structure are collectively referred to as the

 

 

 

member variables

 

. Every
object has the same member variables, but the values contained in the variables are unique from
object to object. The functions are the same from object to object, but the values used by the
functions are different. Every time a member function is called, the object’s private structure is
used to populate the variables in a private workspace.

It is this close association between member functions and member variables that requires every
object of the same class have the same set of member variables. For MATLAB objects, this means
that the private structure for each class’ object must be identical to every other. MATLAB enforces
this by two means. First, MATLAB saves the object’s structure description and compares the
structure of every subsequent 

 

class

 

 call to the initial description. If the structure in the 

 

class

 

call does not match the previously stored description, MATLAB generates an error. Thus, the
constructor must build the framework of the object’s structure the same way every time. The values
and even the types stored in each field can be different, but the fieldnames themselves must be
identical. During class development, the structural description can be cleared using the command

 

clear classes

 

. 
Second, after 

 

class

 

 transforms the structure into an object, it is illegal to add or remove a
field. MATLAB will generate an error if you try. This behavior is actually very helpful in catching
spelling or capitalization errors. Rather than silently creating a new field, MATLAB instantly alerts
you to the error. This behavior also protects the integrity of every object in the environment.

 

3.2 ACCESSORS AND MUTATORS

 

Accessors

 

 and 

 

mutators

 

 are not horror-movie creatures waiting to drag unsuspecting programmers
into the fire and brimstone. Accessors and mutators are simply two member function categories.
Altogether, there are only three categories — constructor, accessor, and mutator — so it is easy to
keep them straight.*

The constructor is mostly about defining the member variable organization. Accessors and
mutators concern themselves with the values stored in each member variable. The terms accessor
and mutator are descriptive of what the member function does to the object’s data. An accessor
returns one or more values but does not change any of the data already stored in the object. Changing
the object’s data is the job of the mutator. A mutator may also return values, but primarily it
functions as an agent for change. Unlike the name “constructor,” the names “accessor” and “muta-
tor” are not universal. Other programmers and authors use a variety of names to describe the same
thing. 

Accessors are member functions that 

 

return

 

 values associated with an object. It is very common
for the function name to indicate its role by including the word “get” somewhere in the name. For

 

*  In some languages, but not in MATLAB, there is a fourth group named 

 

destructor

 

 that undoes the action of the constructor
before a variable goes out of scope.
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example, 

 

cShape

 

 might provide accessors with names like 

 

getColor

 

 or 

 

getSize

 

. The asso-
ciation between the function name and the value accessed is obvious. The fact that the function is
an accessor is also obvious. 

Mutators are member functions used to 

 

change

 

 values associated with an object. Often the
name of a mutator will include the word “set” somewhere in its name, for example 

 

setSize

 

 or

 

setColor

 

. Again, the association between the function name and the mutated value is obvious.
Now the real fun begins. If we choose to add these particular accessors and mutators, do we

also need to add member variables with names like 

 

color

 

 or 

 

size

 

? Well, sometimes yes and
sometimes no. For simple member variables, a pair of get and set member functions might be
appropriate. Attempting to match member variables with get and set member functions, and vice
versa, reveals a strong bias toward structures. Once we eliminate the bias, restricting accessors and
mutators to such a simple association is a limitation we can’t live with. After all, it seems a bit
silly to carefully hide all the data behind an interface and then write a bunch of “get” functions
for every variable. If it doesn’t seem so silly now, it will by the time you finish the book.

Individual get and set functions have their place, but they do not represent the real power behind
object-oriented programming and the philosophy of encapsulation. They are an easy way to dem-
onstrate some of the basic aspects of member functions, and this chapter uses them for that purpose.
MATLAB gives us a much better way to handle such a mundane chore, so don’t get too comfortable
with the idea of always including individual get and set functions. I introduce the better way in
Chapter 4 and improve on the initial version in later chapters.

 

3.2.1 A S

 

HORT

 

 S

 

IDE

 

 T

 

RIP

 

 

 

TO

 

 E

 

XAMINE

 

 E

 

NCAPSULATION

 

Up to this point, we have been dancing around the concept of encapsulation. To understand fully
the connection between member functions and member variables, we need to examine encapsulation
in more detail. In particular, we need to discuss MATLAB-specific details or the code in the
examples will be difficult to follow. The two topics, encapsulation and members, are very closely
related, making it hard to explain one before the other. The implementation details in the example
should tie up any loose ends in the encapsulation discussion.

We have already introduced encapsulation as a way to both control the fields of an object’s
structure and hide member variables. As one of the three pillars of object-oriented programming,
encapsulation includes a lot more. Principal to encapsulation is the idea of hidden members. Of
course, not everything can be hidden or we couldn’t do anything with an object. Consequently,
encapsulation brings with it the idea of member visibility and provides a way to control what is
hidden and what is not.

The object-oriented terminology defines two types of class members: 

 

public

 

 and 

 

private

 

.*
Private members are hidden and public members are not. In Chapter 2, I made a big deal out of
the fact that all class variables are private. Indeed, from the class developer’s perspective, this is
always true. In Chapter 4, we will introduce a special technique that allows us to create classes
that appear to have public variables. As developers, we know this must be an interface illusion.

Public and private visibility also applies to functions. By definition, all m-files located in the class
directory are public functions. In its current condition, 

 

cShape

 

 contains one public function, the
constructor. Standard MATLAB convention lets us create a 

 

/private

 

 directory inside the class
directory. Ordinarily, we use a private directory to avoid path-search ambiguity when m-files share
the same name. In object-oriented programming, the private directory has a different purpose because
the object’s type along with the class directory already resolve path-search ambiguity. M-files in the
class’ private directory are 

 

private member functions

 

, callable only by the public members.
Visibility rules restrict the use of private members by functions outside the class. Recall the

error that occurred when we tried to access a private variable in §2.2.1.3. Class member functions

 

*  Some languages include a third type, 

 

protected

 

. Currently MATLAB does not support protected members.
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are not similarly restricted. Visibility rules allow member functions unrestricted use of public and
private variables and functions. Of course, unrestricted access to private class members is available
only to those functions that belong to the same class.

One important aspect of encapsulation is visibility control. Strong encapsulation absolutely
prevents a client from observing private members. We always strive for strong encapsulation because
we never want a client to develop code that depends on private members. Strong encapsulation
extends to the object’s structure, its fieldnames, and its values. MATLAB’s default treatment of
encapsulation is not strong because it allows clients to bypass the interface to observe private
fieldnames and read private values. Fortunately, clients can’t bypass the interface to change private
variables; however, even unprotected read access opens the door for abuse. This chapter focuses
on the properties of the default encapsulation. We can’t achieve the strongest possible encapsulation
until all functions in the group of eight are fully developed. Even then, there is one small crack
where the encapsulation can’t be protected. It is too early to go into all the details. If you are
curious, look at 

 

help

 

 

 

builtin

 

,

 

 

 

help

 

 

 

struct

 

, and 

 

help fieldnames

 

.

 

3.2.1.1 cShape Variables

 

Let’s try to tie the idea of encapsulation back to the 

 

cShape

 

 example. We didn’t define shape-
related member variables in Chapter 2 because we didn’t need any. Now that we need variables,
we need to sort out the requirements. Rather than defining all requirements at once, let’s follow
an incremental approach by introducing new requirements only when necessary. For many software
projects, this approach mirrors reality. For the purposes of this chapter, the set of requirements is
small. We only need enough requirements to continue the encapsulation discussion and demonstrate
the general implementation for member functions.

Before you start screaming, “What kind of shape?” I need to tell you that I don’t want to go
in that direction until we start talking about an object-oriented concept called inheritance. If you
are already familiar with inheritance, the rationale is clear. If you are not yet familiar with
inheritance, rest assured: we deal with different kinds of shapes in Part 2 of this book. We certainly
don’t want to dive into inheritance now because encapsulation is both more important and forms
its foundation.

Without the benefit of encapsulation, requirements exert a strong influence on data structures
and functions. The influence is so strong that it is often difficult to separate the requirements from
the implementation. This coupling occurs because clients and developers have no choice but to
depend on the same organization, including name, type, and size. Encapsulation breaks this depen-
dency by providing a public interface consistent with the requirements and a private implementation
tailored to the task.

We will set four requirements:

• Get and set the size of the shape’s bounding box.
• Get and set a scale factor value.
• Reset the shape’s size back to its original value.
• Get and set the shape’s border color.

Notice the implied dependency among this simple requirement set. The current bounding box size
depends on both the original size and a scale factor. 

In a structure-based design, this kind of dependency always forces a lesser-of-two-evils solution.
Often the safest course eliminates the data dependency by pushing the dependency out to the client.
In this simple example, we first create a structure containing 

 

original_size

 

 and

 

scale_factor

 

. By defining the structure this way, we force clients to calculate the current box
size using the equation 

 

shape.original_size * shape.scale_factor

 

. This works
fine until a client needs to save a vector scale factor (i.e., a different scale value for horizontal
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versus vertical) rather than a scalar one. Every client module must be updated with a revised
equation.

In the other structure-based course, we ask clients to interact with the structure using function
calls rather than normal dot-reference syntax. The approach breaks down because we are asking
clients to treat structure elements as if they were private, but there is no built-in support for this
request. For example, clients can easily view the structure, but finding the associated function
names is a lot harder. Clients are also comfortable with dot-reference syntax and usually prefer it.
It doesn’t take long before clients start bypassing the function interface. When that happens, the
data are no longer under control and any number of errors can result. Even with this potential for
disaster, the function-based approach is often the best approach. 

An object-oriented design is safer. The property of encapsulation helps an object-oriented
implementation avoid these problems. The fact that an object’s structure and its data are private
allows a lot more data flexibility. As long as we can support the interface requirements, we can
store any combination of original size, current size, and scale factor. Built-in protection also means
we can more easily support requirements that include dependency. It is usually safer to address
these dependencies in the class functions rather than relying on every client to get it right. Encap-
sulation also allows us to be somewhat cavalier with the private organization. If we make a bad
choice, at least we can be certain that any ill effects will be isolated to functions inside the class.

 

3.2.2

 

C

 

S

 

HAPE

 

 M

 

EMBERS

 

Before we can investigate accessors and mutators, we need some member variables to, well, access
and mutate. Here we refine the high-level requirements to produce a set of private member variables
and public member functions. After that, the object-oriented implementation follows easily. Code
for this example is included on the code disk in the following directory:

 

/oop_guide/chapter_3/@cShape

 

3.2.2.1 cShape Private Member Variables

 

The high-level requirements from §3.2.1.1 are repeated below.

• Get and set the size of the shape’s bounding box.
• Get and set a scale factor value.
• Reset the shape’s size back to its original value.
• Get and set the shape’s border color.

These high-level requirements give us a lot of wiggle room in defining the interface. As a starting
point, we will include 

 

mSize

 

, 

 

mScale

 

, and 

 

mColorRgb

 

 as elements in 

 

cShape

 

’s

 

 class
structure. It would then be correct to say that 

 

mSize

 

, 

 

mScale

 

, and 

 

mColorRgb are cShape’s
private variables. Clients will never see these variables, so we can define them so they are convenient
to the implementation.

Both mSize and mScale will be stored as 2 × 1 numeric vectors. The current size of the
bounding box is stored in mSize. The multiplicative scale factor used to convert the original size
to the current size is stored in mScale. Values at array indices (1) and (2) correspond respectively
to the horizontal and vertical directions. We can reset the value of mSize using the following
equation:

this.mSize = this.mSize ./ this.mScale;

The border color is stored as a 3 × 1 RGB array in mColorRgb. Values at array indices (1),
(2), and (3) correspond respectively to red, green, and blue. Each color value ranges from zero to one.
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Defining arrays as column vectors is convenient for concatenation and ultimately vectorization.
When we add support for object arrays, the vectorized code dealing with column arrays will have
an easier syntax. Proper concatenation of row arrays across an array of objects is possible, but it
usually requires a call to vertcat. It is also convenient to store N-dimensional arrays as columns.
In this case, use a reshape call to change the array into the desired shape. Finally, standardizing
around column vectors as the default internal format makes maintenance much easier. Unless you
have a good reason to the contrary, always store private arrays as columns.

You might also be wondering about the lowercase m at the beginning of each private member
variable. The m serves several purposes. Beginning each fieldname with lowercase m identifies the
variable as a member variable, and such identification is often helpful during code development.
The syntax serves as a cue in the same vein as the variable name this and the lowercase c added
to the beginning of the class name. It helps remind you that the variable belongs to an object and
is private. As with the other cues, adding an m is not required. If you discover that it is not useful,
leave it off.

3.2.2.2 cShape Public Interface

It is too early in our study of the MATLAB implementation to do anything fancy. In this chapter,
we will define a set of member functions capable of implementing the interface; however, keep in
mind that as we learn new techniques we will drop support for some of them. Presently we have
two techniques that we can exploit: a get and set pair and a switch based on the number of input
arguments obtained using nargin. To demonstrate both, we will implement the interface for size
and scale with get and set pairs and border color with an internal switch. Since the requirements
did not dictate names and formats, we will take the liberty to define them ourselves. 

Object-oriented design advises a minimalist approach when creating the interface. Each acces-
sor or mutator exposes a little more of the class’ internal workings. If we expose too much of the
implementation or if we expose it in an awkward way, our future options are limited. Remember,
once advertised, a function is part of the interface forever. This locks you into supporting legacy
areas of the interface that might have been better left hidden. Being prudent and miserly when
defining the interface keeps our classes nimble. 

Encapsulation along with a minimalist interface create a certain amount of tension between the
data required to support normal operation and the data required to support development tasks like
unit testing. A normal interface that exposes all hidden variables doesn’t quite follow the philosophy
of encapsulation; however, efficient testing sometimes mandates full exposure. For example, an
accessor that calculates its output based on some combination of private variables is much easier
to test if you can set private values and execute the member function. The problem here is that you
now have more than one type of client. Each type has a different agenda and consequently needs
a different interface. Indeed, this common situation is often included in books discussing object-
oriented design.

You don’t have to supply the entire public interface to every client. MATLAB has some very
convenient ways to accommodate different clients. You can include relatively simple switches
designed to turn certain features on and off. You can support different access syntax to reveal
concealed elements. There are others but the full list includes topics we haven’t yet discussed.
Later, when you refer back to the list, some of the items will make more sense. The list includes
the following:

• Selectively add special-purpose member functions for use by special-purpose clients by
using secondary class directories and manipulating the path. The possibility of multiple-
class directories was first described in §2.2.1.1. Technically, member functions in a
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secondary directory are part of the interface; however, their use is generally easier to
control compared to the functions in the general interface.

• Temporarily modify the constructor so that it enables built-in support for special-purpose
clients. For example, private logical values can easily guard debug displays. In another
example, store a function handle in a private variable and let special-purpose clients
reference a more capable function.

• Conceal certain variables by making their access or mutate syntax more difficult com-
pared to public variable syntax. This is actually a good option when you want to maintain
the general appearance of a simple interface yet still add advanced capability for sophis-
ticated clients. So-called concealed variables might not be advertised as belonging to the
public interface, but they need to be treated as public.

• Use private functions that don’t require an object but still operate with member variables.
Instead of passing an object, simplify the arguments by passing dot-referenced values.
The resulting code will be modular and allows functions to be tested separately from
the class.

• Allow a class to inherit a parent class that temporarily adds interface elements, or create
a child class that includes an alternate interface. An inheritance-based solution is often
difficult because, currently, MATLAB has no intrinsic support for protected visibility.

Most of these options result in challenging implementations. Serving two masters is inherently
difficult. As the examples become more challenging, some of these techniques will be discussed
further. We will not be able to develop a complete solution, but we will develop some of the options. 

In the case of our simple example, there are not a lot of decisions to make regarding the
interface. The client’s view of the interface is functionally defined as follows:

shape = cShape;

shape_size = getSize(shape);

shape = setSize(shape, shape_size);

shape_scale = getScale(shape);

shape = setScale(shape, shape_scale);

shape_color = ColorRgb(shape);

shape = ColorRgb(shape, shape_color);

shape = reset(shape);

where

shape is an object of type cShape.
shape_size is the 2 × 1 numeric vector [horizontal_size; vertical_size]

with an initial value of [1; 1].
shape_scale  i s  t he  2  ×  1  numer ic  vec to r  [horizontal_scale;
vertical_scale] with an initial value of [1; 1].

shape_color is the 3 × 1 numeric vector [red; green; blue] with an initial value
of [0; 0; 1].

All of these functions will be implemented as public member functions. The first function is the
constructor. The constructor is one of the required elements, and we already understand what it
needs to contain. The other member functions are the topic of this chapter.
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First, notice that every mutator includes the mutated object as an output. MATLAB always
uses a pass-by-value argument convention. The mutator must pass out the modified object and the
client must assign the modified object to a variable or all changes will be lost. The syntax is simply
a fact of programming under a pass-by-value convention. In many respects, the syntax used in
object-oriented MATLAB programming would benefit from the addition of a pass-by-reference
approach. The assignin function can be used to emulate a pass-by-reference calling syntax.
Before you attempt this technique, you should consider the warnings mentioned in Chapter 21.

Second, notice that the input argument lists include a cShape object as the first argument.
This is one of the hallmarks of a member function. The member function needs the object so that
it operates on the correct data, and MATLAB needs the object’s type so that it can locate the
appropriate class-specific member function. MATLAB still uses the search path; however, an object
in the input list triggers some additional priorities. Before we discuss the member function imple-
mentations, we need to take another brief side trip to examine this critical detail.

3.2.3 A SHORT SIDE TRIP TO EXAMINE FUNCTION SEARCH PRIORITY

MATLAB uses something called the search path to locate and execute functions. The search path
is simply an ordered list of directories, and any function you want to run must exist in one of the
search-path directories. Even though it does not show up in the ordered list, the present working
directory is also included in the search. Private directories are also absent from the list, but search
rules include them too. Of particular interest to us are the class directories. Class directories are
also absent from the list, but we already know that MATLAB readily locates the constructor.
MATLAB can also locate member functions. In most cases, you will not encounter problems with
the search. For those rare occasions when a problem comes up, it is good to understand the rules.
MATLAB documentation already includes a good description of the rules. For all the various
conditions, I will refer you to those documents. Here, the emphasis is on the object-oriented aspects
of the rules. 

MATLAB always applies the same set of rules when it searches for a function. MATLAB can
locate all files on the search path that have the same name; however, it only executes the first file
that it finds. A determination of the first file can be made because locations are ordered according
to a priority. The location of the class constructor and other public member functions has a very
high priority. In order, from highest priority to lowest, the top few are summarized in the list below.

1. The function is defined as a subfunction in the caller’s m-file.
2. The function exists in the caller’s /private directory. There are two subtle exceptions

to this rule. First, the rule does not extend to /private/private directories. Instead,
functions that exist in a private function’s directory are located with a priority of 2. The
subtle nature of this rule can catch you if you are trying to call another class’ overloaded
function from within a private function of the same name.

3. The m-file is a constructor. That is, a class directory named /@function_name exists
and contains the m-file named function_name.m. A free function on the path with
the same name as a constructor will not be found before the constructor. In §2.2.1.1 we
discussed the possibility of spreading member functions across multiple class directories.
Like-named class directories are searched in the order that their parent directory appears
in the path. 

4. When the input argument list contains an object, the object’s class directories are
searched. In those cases when more than one object appears among the input arguments,
only one type is selected and there is a procedure for determining which type. Under
typical conditions, the first argument’s type is used. Atypical conditions involve the use
of superiorto and inferiorto commands. These commands and their use are
described in §4.1.1. Inheritance also affects the search. The directories for the object’s
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most specific type are searched first. The search continues in the parent directories until
all parent levels have been exhausted. Inheritance from multiple parents uses type supe-
riority to decide which path to traverse.

5. An m-file for the function is located in the present working directory (i.e., pwd).
6. The function is a built-in MATLAB function.
7. The function is located elsewhere on the search path.

Items 3 and 4 are important in understanding how MATLAB treats objects, classes, and member
functions. Inherent in the search is the notion of type. This is a little odd because we typically
think of MATLAB variables as untyped. Once we accept typing, we note that locating an object’s
member functions is among the search path’s highest priorities. Except for a few subtle situations,
the member functions are usually located first.

3.2.4 EXAMPLE CODE: ACCESSORS AND MUTATORS, ROUND 1

In §3.2.2 we expanded the requirements into a set of public member functions supported by a
private set of variables. This section implements conversion code. Accessors convert from the
private variable set to the return values expected. Mutators accept input values and convert these
values into a consistent, private, internal representation. As a demonstration of some of the power
behind the interface, the mutators in this implementation check for input assignment errors.

3.2.4.1 Constructor

Recall from §2.2.1.2 the constructor’s job: define the class structure and assign default values. The
constructor shown in Code Listing 4 meets all the requirements; it has the right name, it creates a
structure, and it calls class to convert the structure into an object. All we have to do is make
sure the file is stored as /@cShape/cShape.m. The structure is no longer being constructed
with a dummy field but rather includes the private variables identified in §3.2.2: mSize, mScale,
and mColorRgb. By setting the private variables to reasonable initial values, we avoid member
function errors and allow clients the luxury of omitting a lot of error-checking code. 

3.2.4.2 Accessors

The class’ various interface functions were identified and defined in §3.2.2. Clients have read access
for every private variable. A get function from a get and set pair was defined as the interface to
both mSize and mScale. Accessors do not come any simpler compared to those shown in Code
Listing 5 and Code Listing 6 for getSize.m and getScale.m, respectively. The first line
defines the function. The second line uses dot-reference syntax to assign the private variable value
to the return argument. The simplicity of these functions relies on the operation of the constructor

Code Listing 4, A Very Simple Constructor

1 function this = cShape
2 this = struct( ... 
3 ‘mSize’, ones(2,1), ... % scaled [width height]’ of bounding 

box
4 ‘mScale’, ones(2,1), ... % [width height]’ scale factor
5 ‘mColorRgb’, [0 0 1]’ ... % [R G B]’ of border, default 

is blue
6 );
7 this = class(this, ‘cShape’);
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and the mutators. For the cShape class, the constructor and the mutators must carefully control
what is assigned into the private variables. 

The private variable mColorRgb also gets an accessor, but we will not implement its accessor
using a get function. Instead, the implementation combines both accessor and mutator into a single
function. The implementation is found in §3.2.4.4.

3.2.4.3 Mutators

Like the accessors, the mutators were identified and defined in §3.2.2. Clients have write access
for every private variable. A set function from a get and set pair was defined as the interface to
both mSize and mScale. Mutators rarely get any simpler compared to those shown in Code
Listing 7 and Code Listing 8 for setSize.m and setScale.m, respectively. 

In Code Listing 7, line 1 defines the function. Line 2 sets the horizontal and vertical scale
factor to 1:1 whenever a new size is assigned. This behavior was not specified, but it seems to be
a reasonable thing to do. The alternate behavior would simply leave the scale factor with its current
value. Line 3 enters a switch based on the number of values passed via ShapeSize. Line 5
expands the size value to both directions when a scalar value is passed in. This behavior was not
specified, but most MATLAB functions seem to provide this sort of flexibility. Line 7 performs
the assignment when two values are passed in. These two values can occupy two elements of an
array of any dimension, and they will still be correctly assigned into mSize as a 2 × 1 column.
Again, this behavior was not specified, but such flexibility is generally expected. Finally, if any
number of values other than 1 or 2 is passed in, an error is thrown. 

In most respects, Code Listing 8 is equivalent to Code Listing 7. Line 2 is different because it
calls the reset function. Since we are applying a new scale factor, we need to reset the shape

Code Listing 5, getSize.m Public Member Function

1 function ShapeSize = getSize(this)
2 ShapeSize = this.mSize;

Code Listing 6, getScale.m Public Member Function

1 function ShapeScale = getScale(this)
2 ShapeScale = this.mScale;

Code Listing 7, setSize.m Public Member Function

1 function this = setSize(this, ShapeSize)
2 this.mScale = ones(2,1);    % reset scale to 1:1 when size 

is set
3 switch length(ShapeSize(:))
4 case 1
5 this.mSize = [ShapeSize; ShapeSize];
6 case 2
7 this.mSize = ShapeSize(:);  % ensure 2x1
8 otherwise
9 error('ShapeSize must be a scalar or length == 2');
10 end
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back to its original size before we can apply and store the new scale. The details for reset can
be found in §3.2.4.5. Line 11 resizes the shape by multiplying the reset size by the new scale value. 

These two functions demonstrate the elegance of encapsulation by keeping mSize and mScale
in synch. The two variables are coupled so that whenever one changes, the other must also change.
Encapsulation enforces the use of the member functions, making it impossible for clients to change
one without changing the other. The coupled values always maintain their proper relationships.

3.2.4.4 Combining an Accessor and a Mutator

So far, we have not defined an accessor or mutator for mColorRgb. We could of course define a
get and set pair of functions, but we have already investigated that syntax. Instead, let’s look at a
syntax that combines the functionality of both accessor and mutator into a single member function.
The combined implementation is shown in Code Listing 9. 

Code Listing 8, setScale.m Public Member Function

1 function this = setScale(this, ShapeScale)
2 this = reset(this);  % back to original size (see Code 

Listing 10)
3 switch length(ShapeScale(:))
4 case 1
5 this.mScale = [ShapeScale; ShapeScale];
6 case 2
7 this.mScale = ShapeScale(:);  % ensure 2x1
8 otherwise
9 error('ShapeScale must be a scalar or length == 2');
10 end
11 this.mSize = this.mSize .* this.mScale;  % apply new scale

Code Listing 9, ColorRgb.m Public Member Function

1 function return_val = ColorRgb(this, Color)
2 switch nargin  % get or set depending on number of arguments
3 case 1
4 return_val = getColorRgb(this);
5 case 2
6 return_val = setColorRgb(this, Color);
7 end
8  otherwise
9 % -----------------------------------
10 function ColorRgb = getColorRgb(this)
11 ColorRgb = this.mColorRgb;
12
13 % -----------------------------------
14 function this = setColorRgb(this, Color)
15 if length(Color(:)) ~= 3
16 error('Color must be length == 3');
17 end
18 if any(Color(:) > 1) | any(Color(:) < 0)
19 error('all RGB Color values must be between 0 and 1');
20 end
21 this.mColorRgb = Color(:);  % ensure 3x1
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The switch in line 2 sorts out whether the member function is being called as an accessor
or mutator. If nargin equals one, the lone input must be a cShape object. The function is not
provided with an assignment value; therefore, the client must be requesting read access. Read
access calls the subfunction getColorRgb and simply returns the value stored in mColorRgb.

If nargin equals two, the function operates as a mutator. In the two-argument case, the object
and the assignment value are passed into the subfunction setColorRgb. Line 15 verifies the
number of color values, and line 18 verifies their values. If the values are okay, they are assigned
into the object as a 3 × 1 column. The modified object is passed back to the client.

The switch in line 2 doesn’t need an otherwise case because MATLAB will never allow a
member function other than the constructor to be called without an argument. Function-search rules
allow MATLAB to locate a function inside a class directory only when an argument’s type matches
the type of a known class. With no argument, MATLAB has no type to check. MATLAB might
find and execute a ColorRgb function, but it will not belong to any class.

3.2.4.5 Member Functions

With the current set of member functions, it is easy to get the wrong idea about accessors and
mutators. Accessors and mutators are not limited to simply returning or assigning values one-to-
one with private member variables. As we add capability to cShape, we will see that accessors
and mutators are more varied. Member functions can do anything a normal MATLAB function can
do because they are normal MATLAB functions. Just because they possess the special privilege of
reading and writing private variables does not preclude them from doing other things. This includes
calling member functions, calling general functions, graphing data, and accessing global data.

As an initial example, the expanded requirements stipulate a reset function. Unlike the other
member functions, neither the function name nor the argument list implies a direct connection to
a private variable. We know reset is a mutator because it passes the object back to the client.
As long as reset behaves properly, clients do not need to worry about the private changes that
take place. Behaving properly in the current context means resetting the shape’s scale to 1:1 and
adjusting the size back to the value assigned in the constructor or in setSize. The implementation
is provided in Code Listing 10. 

Line 1 defines the function. The function is a mutator because the object, this, is passed in
and out. Line 2 loops over all objects in this. We could vectorize the code with calls to num2cell
and deal. Line 3 calculates the object’s size by dividing the current size by the current scale. This
calculation never needs to worry about a variable mismatch because the mutators work together in
ensuring that data are always stored in the proper format. A simple addition to setScale could
add protection from divide-by-zero warnings. Line 4 resets the scale back to 1:1.

3.2.5 STANDARDIZATION

The current implementation presents two equivalent implementation approaches that result in big
differences in client syntax. One method uses a pair of get and set functions, while the other

Code Listing 10, reset.m Public Member Function

1 function this = reset(this)
2 for k = 1:length(this(:))
3 this(k).mSize = this(k).mSize ./ this(k).mScale; % divide 

by scale
4 this(k).mScale = ones(2,1);  % reset scale to 1:1
5 end
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combines accessor and mutator capabilities into a single function. In my opinion, it is a bad idea
to follow this example and mix the use of both methods in the interface for a single class. It is
much better to choose one method and apply it consistently. In a similar vein, a library composed
of many classes is simply easier to use when all member functions use the same syntax. This
broadens the scope considerably because it typically means development teams should standardize
around a single method.

It seems reasonable to ask which approach is better. Unfortunately, there is no clear-cut winner.
The combined syntax is convenient because it results in fewer m-files overall. The combined syntax
also collects code associated with the same variable into the same source file. In my experience,
co-located accessor and mutator code is easier to maintain. On the other hand, get and set syntax
inherently describes the interface. If a variable has no associated set function, it means the variable
is not mutable, at least not directly. Identifying read-only versus read-write variables based on the
member function list is easy. The function name used by the combined syntax does not provide
this level of detail. In Chapter 8, when we will discuss a command-line feature called tab completion,
we will see how to get a complete list of public member functions. Finally, some clients prefer get
and set syntax.

Fortunately, MATLAB provides another alternative. Consider again our earlier attempt to
inspect the value shape.dummy. We tried this approach because the syntax is universally recog-
nized. It says there is a structure variable named shape and we think it has a field named dummy.
Using dot-reference notation is elegant, easy, and entrenched. What if MATLAB included a way
for objects to handle dot-reference notation? If such a feature exists, choosing get and set vs. a
combined syntax is a lot less urgent. MATLAB does indeed support this capability. We will discuss
dot-reference support in the next chapter. First, let’s take the current cShape class for a test drive.

3.3 THE TEST DRIVE

Our class now has the beginnings of an interface and we can use the interface to interact with
objects of the class. We need to construct some cShape objects and exercise the interface. We
need to both demonstrate the syntax and make sure objects behave according to the requirements.
The commands shown in Code Listing 11 provide a sample of cShape’s new capability. 

Code Listing 11, Chapter 3 Test-Drive Command Listing

1 >> cd 'C:/oop_guide/chapter_3'
2 >> set(0, 'FormatSpacing', 'compact')
3 >> clear classes; clc;
4 >> shape = cShape;
5 >> shape = setSize(shape, [2 3]);
6 >> getSize(shape)'
7 ans =
8 2     3
9 >> shape = ColorRgb(shape, [1 0 1]);
10 >> ColorRgb(shape)'
11 ans =
12 1     0     1
13 >> getScale(shape)'
14 ans =
15 1     1
16 >> shape = setScale(shape, [2 4]);
17 >> getScale(shape)'
18 ans =
19 2     4
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From the command results, we see that objects of the class behave as we expect. Lines 1–3
move us into the correct directory, configure the display format, and clear the workspace. Line 4
calls the cShape constructor. Line 5 assigns a size, and line 6 shows that the size was correctly
assigned.* Similarly, lines 9 and 10 mutate and access the shape’s color using the dual-purpose
function ColorRgb. Line 13 displays the default scale factor, and line 16 assigns a new scale.
Lines 17–22 show that directly mutating the scale indirectly mutates the size. Lines 23–26 show
that reset returns size back to its most recent setSize value. Finally, displaying the shape
results in the same cryptic message we saw in Chapter 2. In Chapter 5, we will replace this cryptic
output with an output tailored for the class.

3.4 SUMMARY

The primary topic in this chapter was encapsulation. Encapsulation is one of the three pillars of
object-oriented programming and as such carries a heavy load. Therefore, it is impossible to cover
every aspect in one chapter. This chapter did lay a solid foundation by including the most important
aspects. Primarily, encapsulation includes the idea of an interface, and an interface brings with it
a separation between so-called members and nonmembers. Membership has its privileges. For a
class, membership means unrestricted access to hidden or private variables and functions. Non-
members are restricted to public variables and functions. 

Member functions are physically located inside a class directory. This allows MATLAB to find
them by checking a variable’s type. To do this, MATLAB follows the search path. We saw that
additional object-oriented search locations are one of the many consequences of encapsulation.
Now that we understand both path rules and encapsulation, locating the additional search directories
is a simple matter of applying the rules. 

Member functions come in three flavors: constructor, accessor, and mutator. These three types
of member functions work in concert to provide object consistency. Each type serves a particular
role in the client-to-object interface. Constructors create the object’s private structure and assign
default values. Accessors provide read access, while mutators provide assignment capability. Encap-
sulation supports different connection options between the interface and the private variables. The
most straightforward connects private variables one-to-one with an interface function. The most
powerful completely separates the interface from the implementation. The most common uses a
combination of the two. 

Even though the member functions in this chapter are basic, they reveal the potential power of
encapsulation. By adding these pieces, our object-oriented puzzle is off to a good start. Figure 3.1
shows us that we are missing pieces, but it also shows us that we are well on our way toward filling
out the frame. 

20 >> getSize(shape)
21 ans =
22 4     12
23 >> shape = reset(shape);
24 >> getSize(shape)
25 ans =
26  2     3
27 >> shape
28 shape = 
29 cShape object: 1-by-1

*  The member variable mSize should not be confused with the MATLAB function size. They represent different things.
Now suppose we developed a combined accessor and mutator named Size. The potential for confusion is certainly high.
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3.5 INDEPENDENT INVESTIGATIONS

1. Modify setScale to protect other member functions from divide by zero errors. 
2. Investigate path-search rules in action. Create functions with the same name, locate them

in various directories, and call them with various arguments. Place a function in a
/private directory in the class directory and see if MATLAB can find it. Try to get
MATLAB to find a function located in a /private/private directory. Inside each
function, you can use mfilename(‘fullpath’) to display the complete search
path. You can also use keyboard to prevent an infinite recursive loop.

3. Investigate more implementation alternatives. Instead of a series of get and set pairs
tailored for each member variable, can you design a general accessor named get.m and
a general mutator named set.m? (Hint: look at help for getfield and setfield.)
If your implementation relies on a large switch statement, can you use dynamic-field-
name syntax instead? Which implementation is more extendable and maintainable?

4. Try to enhance the interface. Most of your clients want to set the color using a string
like ‘red’ or ‘blue’. What do you do: eliminate the use of [r g b] values from the
interface spec? Write a new member function? Modify ColorRgb.m? (Hint: look at
help for ischar and isnumeric.) How does each choice influence quality measures? 

5. Examine one benefit of encapsulation. Suppose you need to change the implementation
and store colors in HSV (hue–saturation–value) format but you can’t change the interface
in any way. What changes are required inside ColorRgb.m? (Hint: look at help for
rgb2hsv and hsv2rgb.) Do you need to change other member functions? Don’t forget
the constructor. You should be able to implement this change. Try it and see how well
you can do.

6. Examine another encapsulation option. Half your member functions need an RGB format,
and half need HSV. Clients always specify colors in terms of RGB. You have three
options: store the color using RGB format, store the color using HSV format, or store
both formats and rely on member functions to keep them synchronized. Which option
do you choose? Suppose you know the color is rarely changed and the conversion from

FIGURE 3.1 Puzzle with member variable, member function, and encapsulation.
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RGB to HSV is very expensive. Does this additional information push you toward a
different option? Without the benefit of encapsulation, keeping multiple copies of the
same data is risky business. Does encapsulation change the level of risk involved?
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4

 

Changing the Rules … in 
Appearance Only

 

Near the end of the previous chapter, I alluded to the fact that MATLAB gives us a way to tailor
standard dot-reference syntax to suit the needs of our objects. In the eyes of our clients, dot-
reference tailoring makes an object look like a structure. This gives objects an enormous boost. If
objects look like structures, using objects rather than structures is completely transparent. Trans-
parency is a good thing because it gives us immediate access to a very powerful tool we can use
to protect the integrity of our code, encapsulation.

The good news is that MATLAB allows dot-reference tailoring. In this chapter, we will develop
a set of member functions that implement the tailoring in a way that allows objects to mimic
structures. We will take advantage of a pair of standard, but relatively unknown, functions, 

 

sub-
sref.m

 

 and 

 

subsasgn.m

 

. The built-in versions operate on structures. Tailored versions, as long
as MATLAB can find them, operate on objects. From Chapter 3, we know MATLAB will find
them as long as they exist in the class directory as member functions. As tailored member functions,

 

subsref.m

 

 and 

 

subsasgn.m

 

 are so critical to object-oriented programming that they share a
place beside the constructor in the group of eight. 

 

4.1 A SPECIAL ACCESSOR AND A SPECIAL MUTATOR

 

The reason these very important functions are not well-known is that outside the realm of object-
oriented programming, they are almost never called by name. MATLAB classifies these functions
as operators in the same way it classifies symbols like 

 

+

 

, 

 

-

 

, 

 

/

 

, and 

 

~=

 

 as operators. There are
many operators (see Table 4.1), but the distinguishing feature is syntax. When MATLAB encounters
an operator, it orders the arguments and converts the operator’s symbol into a function call. Unless
you understand what it means to be an operator, you might not realize what is going on behind
the scenes. Shortly we will specifically examine 

 

subsref.m

 

 and 

 

subsasgn.m

 

 operators. First,
let’s take a brief side trip to discuss operators and introduce a technique called operator overloading.

 

4.1.1 A S

 

HORT

 

 S

 

IDE

 

 T

 

RIP

 

 

 

TO

 

 E

 

XAMINE

 

 O

 

VERLOADING

 

Most of the symbols you can type from the keyboard have special meaning. The meanings behind

 

+

 

, 

 

-

 

, 

 

/

 

, and 

 

~=

 

 are clear. These special symbols are called operators. When MATLAB interprets
a line of code, it maps every operator to an m-file. Table 4.1 lists the mapping from symbol to m-
file. From the command line, you can display a similar list using 

 

help ops

 

. If you look at the
list you see conversions like 

 

+

 

 

 

⇒

 

 

 

plus.m

 

 and 

 

<=

 

 

 

⇒

 

 

 

le.m

 

. We can call these functions by name,
but we almost never do because operator syntax is a lot easier. 

Stop for a minute and consider the implications. Every operator maps to an m-file, and the
execution of every m-file is determined based on the search path. That means we can redefine the
operation of any operator. All we have to do is create a new m-file with the same name as the
operator and put it in a directory with a higher search-path priority. For objects, we simply put the
tailored operator function in the class directory. Since MATLAB searches for member functions
before it searches for built-in functions, the tailored function has higher priority. Clients use normal
operator syntax, and MATLAB conveniently finds the appropriate function.
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Object-oriented terminology calls this technique operator overloading, and every function in
Table 4.1 can be overloaded. When MATLAB encounters operator syntax, it collects variables into
argument lists and calls the operator’s function. Once you know the name of the operator’s function,
you can display the function’s help information to get a description of the arguments. For example,
the statement 

 

c = a + b;

 

 converts to the function equivalent 

 

c = plus(a, b);

 

.
Operator overloading represents an important subset of general function overloading. General

function overloading allows a class to customize the operation of virtually any function by including
a tailored copy of the function in the class directory. Thus, any discussion of overloading involves
two functions, the function doing the overloading and the function being overloaded. Let’s refer
to the function doing the overloading as the tailored version and to the function being overloaded
as the original version.

With very few exceptions, MATLAB allows a class to overload any function. The original
function might exist as a built-in function or as a function on the path. If we jump ahead and
consider inheritance, the original function might also exist as a parent-class function. In short, once
a class overloads a function, the location of the original isn’t too important.

 

TABLE 4.1
Overloadable Operators

 

Operator Symbol m-file Name

 

a & b and.m
a:b colon.m
a’ ctranspose.m
a(end) end.m
a == b eq.m
a >= b ge.m
a > b gt.m
[a b] horzcat.m
a .\ b ldivide.m
a <= b le.m
loading object from .MAT file loadobj.m
a < b lt.m
a – b minus.m
a \ b mldivide.m
a ^ b mpower.m
a / b mrdivide.m
a * b mtimes.m
a ~= b ne.m
~a not.m
a | b or.m
a + b plus.m
a .^ b power.m
a ./ b rdivide.m
saving object to .MAT file. saveobj.m
a(k)=b, a{k}=b, or a.field=b subsasgn.m
x(a) subsindex.m
a(k), a{k}, and a.field subsref.m
a .* b times.m
a.’ transpose.m
-a uminus.m
+a uplus.m
[a; b] vertcat.m
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Given the ability to overload almost any function, you are also given the responsibility of doing
it wisely. Unfortunately, this is an area where experience is the best guide. There are few hard-and-
fast rules, but there are some things to consider. Original functions are generally well understood,
and overloading works best when the behavior of the tailored version can be inferred from the
behavior of the original. The argument syntax of an original function is also well-known, and the
tailored version should match the syntax very closely. This is particularly true for operator over-
loading because you can’t control the conversion from operator syntax to function call.
The implementation examples and the group of eight represent a good resource for examining
operator and function overloading. As we progress through the example code, you will be building
experience.

 

4.1.1.1 Superiorto and Inferiorto

 

In §3.2.3 the description of function-search rules conveniently assumed there was only one input
argument. Finding the correct function is a simple matter of including the argument’s class directory
in the search. Most functions require more than one input argument. With the prospect of more
than one type, we need to understand what MATLAB does to locate the correct function.

Some object-oriented languages select a function based on the combination of all input argu-
ments; however, MATLAB always uses one input argument. For functions with more than one
input, a priority scheme picks the argument with the highest priority. By default, 

 

class

 

 creates
all classes at the same priority level. After that, user-defined types can increase their relative priority
by calling 

 

superiorto

 

 and decrease it by calling 

 

inferiorto

 

. Calls to these functions must
occur inside the constructor, and that means built-in types cannot change their priority. When one
argument clearly has the highest priority, its type is used in the search. When one argument is not
the clear winner, argument order is used as a tiebreaker. In this case, the type of the first tied
argument in the argument list is used.

If all arguments have the same type, MATLAB uses the type of the very first argument. This
is convenient for a number of reasons. First, a single priority eliminates errors that occur due to
unanticipated argument combinations. If you set up a complicated priority tree, it is easy to find
yourself in an unexpected function call. Second, a single priority makes it easy to understand which
class directory will be selected. It will always correspond to the first argument’s type. Finally, with
a single priority you never need to search the argument list to find 

 

this

 

. The active object is
always passed in the first position. 

Classes that overload operators usually need to increase their priority relative to built-in types.*
This is particularly true for commutative operators like 

 

+

 

 because the object can be passed using
either argument. Relying on default priority will result in an error about half the time. When the
object shows up on the left side of the operator, the tailored version executes and all is well;
however, when the object shows up on the right-hand side, MATLAB will call the built-in version
and the built-in version does not know what to do with an object. For example, 

 

obj+1

 

 is converted
into the function call expressed as 

 

plus(obj, 1)

 

. Here the 

 

plus

 

 function associated with 

 

obj

 

correctly executes. Switch the argument order to 

 

1+obj

 

 and the conversion becomes 

 

plus(1,
obj)

 

. If 

 

1

 

 and 

 

obj

 

 have the same priority, the built-in 

 

plus

 

 will be called and the result will be
an error. To remedy this situation, the constructor needs to include the command 

 

superi-
orto(‘double’)

 

.
Other than superiority over built-in types, the software design ultimately determines the com-

plexity of the priority tree and thus represents a barrier to implementing some object-oriented
designs in MATLAB. The barrier is not impossible to cross but does limit extendibility in some
designs. When one of the design constraints is to limit the number of priority levels, the result is

 

*  In version 7.1 (R14), this is no longer true. User-defined types are superior to the built-in types. Relative argument
priority still applies to operations using user-defined types.
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a better implementation. For designs with a small number of classes and a reasonably flat structure,
the risk is low. By the time your designs approach that level of complexity, you will be well
equipped to consider priority as a constraint.

 

4.1.1.2 The Built-In Function

 

More often than you might imagine, you need to call the original version of a function from inside
the tailored version. For example, suppose you design a class interface that makes objects of the
class look like a simple one-dimensional array of doubles. To implement the interface, you need
to overload 

 

length

 

, 

 

ndims

 

, 

 

numel

 

, and 

 

size

 

. Depending on the private variable organization,
all of these tailored functions might need to call the built-in version of 

 

size

 

. We can’t simply
write 

 

size(this)

 

 because path rules insist on running the tailored version.
The 

 

builtin

 

 function solves this problem. The argument syntax for 

 

builtin

 

 uses the same
syntax as 

 

feval

 

. The name of the function is the first input argument, and the remaining inputs
are passed into the function named in argument one. The output arguments are declared the same
as if the function was being called directly. The prototype for this function is

 

[y1, …, yn] = builtin(‘function_name’, x1, …, xn);

 

The availability of 

 

builtin

 

 solves one problem but creates another. Clients can use 

 

builtin

 

to circumvent the interface and violate the integrity of the encapsulation. Unfortunately, we can’t
stop them. All we can reasonably do is dissuade them from using 

 

builtin

 

 and periodically search
for its use.

 

4.1.2 O

 

VERLOADING

 

 

 

THE

 

 O

 

PERATORS

 

 

 

SUBSREF

 

 

 

AND

 

 

 

SUBSASGN

 

It may come as a surprise to realize that 

 

.

 

, 

 

()

 

, and 

 

{}

 

 are operators. If you scan Table 4.1, you
will see that dot-reference, array-reference, and cell-reference syntax map to 

 

subsref.m

 

 and

 

subsasgn.m

 

. Thus, using one of these index operators on an object tells MATLAB to call that
object’s version of 

 

subsref or subsasgn. It is up to us to include the appropriate class-specific
commands in the body of each. These functions are the most important operator functions we will
encounter because they allow us to create an easy-to-use interface. This will become clear as we
progress through the examples. The accessor is subsref, and the mutator is subsasgn. Each
function can determine which operator triggered the call because MATLAB passes a specially
formatted version of the operator along with the other arguments.

In Chapter 3 the only member function tools at our disposal consisted of a pair of get and
set functions for each public member variable. With operator overloading and the availability of
subsref and subsasgn, get and set syntax can be easily replaced by dot-reference syntax.
Doing so makes the interface a lot more convenient because it looks like something very familiar,
a structure.

In the test drive for Chapter 3, we wrote,

shape_size = getSize(shape);

shape = setSize(shape, [10; 20]);

In the test drive for this chapter, we will be able to write,

shape_size = shape.size;

shape.size = [10; 20];

Compared to the other operators, more code is required to implement tailored versions of
subsref and subsasgn. For the most part the additional code results from the fact that each
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function must handle three operators. Using a switch statement to select the appropriate case is an
easy approach. First, let’s look at the function syntax.

The function definitions for subsref.m and subsasgn.m can be written as

 function varargout = subsref(this, index)

 function this = subsasgn(this, index, varargin)

In both cases the first argument is the active object this. Since MATLAB passes this as the
first argument, these operator overloads don’t require calls superiorto or inferiorto.

The second argument, index, is a specially packaged version of the operator and indices. In
addition to supporting three different operators, index also supports multiple index levels. Another
obscure function, substruct, can be used to create the special packaging, and because of this,
the index format is also called substruct. All substruct indices are stored as a structure
array with two fields:

 index(k).type

 index(k).subs

Each index level represented by index(k) contains a type field and a subs field. The type
field is a string containing one of three string values: ‘.’, (), or {}. These three string values
respectively represent a dot-reference, array-reference, and cell-reference operation. When MAT-
LAB converts operator syntax into an index, only certain combinations of operators and levels
are converted.

When the type field is ‘.’, the subs field will contain a character string that names the
desired public member variable. When the type field is () or {}, the subs field will contain a
cell array. Each cell index holds the index values for one dimension. The values in
index(k).subs{1} are used to select values in the first dimension, values in
index(k).subs{2} the second dimension, and so on. With one exception, the index values
will be packaged as a fully expanded array. The lone exception occurs when the specified index
was ‘:’. In that case, the index value is equal to ‘:’. Fortunately, when the type field is () or
{}, we don’t need to manage the contents of the subs field on our own. Instead, we can coerce
MATLAB into performing all of the low-level work. We still have to process ‘.’ and the public
variable names; but, since there is only one format, that is the easy case.

The standard set of allowed values for type is well defined and small, making a switch
statement ideal for implementation.* The switch skeleton is shown in Code Listing 12. This

Code Listing 12, Skeleton Switch Statement for subsref and subsasgn

1 switch index (1).type
2 case '.'
3 % code to deal with the fieldname in index(1).subs
4 case '()'
5 % code to deal with an array of index values
6 case '{}'
7 % code to deal with cell array of index values
8 otherwise
9 error(['Unexpected index.type of ' index(1).type]);
10 end

*  It is possible to pass nonstandard operators into subsref and subsasgn but not via automatic operator conversion.
A manually created substruct index can include an arbitrary type string, and this index can be passed into substruct
or subsasgn if the functions are called by name. Adding new access categories might seem bizarre, but might actually
be useful under the right set of circumstances. Nonstandard indices are not supported by the built-in versions of subsref
and subsasgn, and they are not supported by Class Wizard.
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skeleton is used inside both subsref and subsasgn. Before filling in code for each case, I need
to outline an approach for discussing the boxes shown in Figure 4.1. One organization discusses
all cases of subsref before moving on to all cases of subsasgn. The alternate organization
discusses one operator case with respect to both access and mutation before moving on to the
next. As you might expect, there is a lot of overlap between these alternate paths. The discussion
seems to work better when access and mutation for a single case are covered together.

4.1.2.1 Dot-Reference Indexing

The dot-reference operator looks something like the following:

 b = a.field;

 a.field = b;

When MATLAB encounters these statements, it converts them into the equivalent function calls
given respectively by

 b = subsref(a, substruct(‘.’, ‘field’));

 a = subsasgn(a, substruct(‘.’, ‘field’), b);

The two representations are exactly equivalent. You will probably agree that dot-reference operator
syntax is much easier to read at a glance compared to the functional form. The functional form
gives us some important details to use during the implementation of subsref and subsasgn. 

With either conversion, the index variable passed into both subsref and subsasgn is
composed using substruct(‘.’, ‘field’). The type field is of course ‘.’ and the
element name is represented here by the subs field value ‘field’. The substruct argument
is a structure, and the MATLAB display looks like the following: 

If all we want to do is provide a 1:1 mapping between public and private member variables,
the ‘.’ case of subsref would include just one line*:

FIGURE 4.1 Access operator organizational chart.

1 >> index = substruct('.',  'field')
2 index =
3 type: '.'
4 subs: 'field'

*  Dynamic fieldname indexing works for versions 7.0 and later. In some earlier versions, dynamic field syntax did not
always work from inside a member function. If dynamic fieldname syntax generates an error, revert to the use of properly
formatted calls to getfield or setfield.

Access Operators

subsref subsasgn

dot-access

array-access

cell-access

dot-access

array-access

cell-access
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varargout = {this.(index(1).subs)};

Similarly, the ‘.’ case of subsasgn would include the following line:

this.(index(1).subs) = varargin{1};

The one-line 1:1 mapping code works well as an introduction but is too simplistic for most classes.
For example, the one-line solution does not support multiple indexing levels, and it doesn’t support
argument checking. Even worse, the one-line solution maps every private member variable as
public. It is easy to address each of these deficiencies by adding more code and checking more
cases. By the end of this chapter, we will have a good working knowledge of subsref and
subsasgn, but we will not yet arrive at their final implementation. The final implementation relies
on first developing some of the other group-of-eight members.

4.1.2.2 subsref Dot-Reference, Attempt 1

One potential solution to the subsref challenge is shown in Code Listing 13. This solution is
similar to the solution outlined in the MATLAB manuals and is more versatile than the previous
one-liner. This approach might be okay for simple classes, but for classes that are more complicated
it needs improvement. The biggest downfall of the implementation in Code Listing 13 is the coupling
between the dot-reference name and private variable names. It also doesn’t take care of multiple
index levels and is not as modular as we might like. Such complaints are easily remedied. It just
takes a little more work to push it over the top.  

Line 1 references the operator’s type. For dot-reference the type string is ‘.’ and execution
enters the case on line 2. Line 3 references the name included in the dot-reference index. This
name, specified by the client, is part of the public interface. That is an important point that bears
repeating. The string contained in index(1).subs is a public name. The situation in this code

Code Listing 13, By-the-Book Approach to subref’s Dot-Reference Case

1 switch index(1).type
2 case '.'
3 switch index(1).subs
4 case 'mSize'
5 varargout = {this.mSize};
6 case 'mScale'
7 varargout = {this.mScale};
8 case 'mColorRgb'
9 varargout = {this.mColorRgb};
10 otherwise
11 error(['??? Reference to non-existent field ' ... 
12 index(1).subs '.']);
13 end
14 case '()'
15 % code to deal with cell array of index values
16 case '{}'
17 % code to deal with cell array of index values
18 otherwise
19 error(['??? Unexpected index.type of ' index(1).type]);
20 end
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example can be very confusing because the client’s interface and the private member variables
share the same name. Lines 4, 6, and 8 assign the private member variable with the same dot-
reference name into the output variable, varargout. We already know that object-oriented rules
prohibit clients from directly accessing private variables, but the contents of this version of sub-
sref seem like an attempt to get around the restriction. The source of the confusion comes from
making the public dot-reference names identical to the private variable names. The client doesn’t
gain direct access to each private member variable but the names make it seem so. The specific
cell-array assignment syntax in lines 5, 7, and 9 supports later extensions where this will exist
as an array of structures. Finally, line 11 throws an error if the client asks for a dot-reference name
not included in the list.

The subsref syntax is different compared to the get and set syntax from Chapter 3. Clients
usually prefer subsref syntax because it is identical to accessing a structure. In Chapter 3, the
only interface tool in our member function toolbox was get and set. With the addition of
subsref, we can now define a friendly interface. In doing so we will deprecate some of Chapter
3’s interface syntax.

4.1.2.3 A New Interface Definition

The initial interface syntax was defined in §3.2.2.2. Here we are going to make a couple of changes
that both take advantage of dot-reference syntax and allow the investigation of specific implemen-
tation issues. The client’s new view of the interface is defined as

shape = cShape;

shape_size = shape.Size;

shape.Size = shape_size;

shape = shape_scale * shape;

shape = shape * shape_scale;

shape_color = shape.ColorRgb;

shape.ColorRgb = shape_color;

shape = reset(shape);

where

shape is an object of type cShape.
shape_size is the 2 × 1 numeric vector [horizontal_size; vertical_size] with an initial

value of [1; 1].
shape_scale is the 2 × 1 numeric vector [horizontal_scale; vertical_scale] with an initial

value of [1; 1].
shape_color is the 3 × 1 numeric vector [red; green; blue] with an initial value of [0; 0; 1].

Notice that the only member functions implied by syntax are the constructor, cShape.m, and
reset. The functions getSize, setSize, and ColorRgb have been completely replaced by
subsref, subsasgn, and dot-reference syntax. Also, notice the abstraction of the client’s use
of a scale factor into multiplication and reset.
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4.1.2.4 subsref Dot-Reference, Attempt 2: Separating Public and 
Private Variables

From the by-the-book approach in Code Listing 13, it would be easy to get the idea that objects
are just encapsulated structures and that subsref and subsasgn simply avoid a collection of
get and set functions. Nothing could be further from the truth. The real purpose of subsref
and subsasgn is to support encapsulation by producing an easy-to-use interface.

Let’s formalize some terminology that will simplify the discussions. To the client, values
associated with subsref’s dot-reference names are not hidden. Furthermore, dot-reference
syntax makes these values appear to be variables rather than functions. Based on appearances, we
will refer to the collection of dot-reference names as public member variables. This will differentiate
them from the fields in the private structure, that is, the private member variables. Even in Code
Listing 13, where public member variables and private member variables shared the same names,
clients could not directly access private variables. Cases inside subsref guard against direct
access.

As we will soon see, subsasgn also uses a switch on the dot-reference name and cases inside
subsasgn guard against direct mutation. The fact that MATLAB uses one function for access,
subsref, and a different function for mutation, subsasgn, gives us added flexibility. At our
option, we can include a public variable name in the switch of subsref, subsasgn, or both. If
the public variable name is included in subsref, the variable is readable. If the public variable
name is included in subsasgn, the public member variable is writable. A public variable is both
readable and writable when the name is included in both subsref and subsasgn. Independently
controlled read and write permissions also differentiate object-oriented programming from most
procedural programming. A complete interface specification should include the restrictions read-
only and write-only as appropriate, and these restrictions should be included in the implementations
of subsref and subsasgn. 

Use different names to reinforce the idea that private member variables are separate from public
member variables. This is where the lowercase ‘m’ convention is useful. In one-to-one public-to-
private associations, the ‘m’ makes the code more obvious. The variable with a leading ‘m’ is
private, and the one without is public. There is a second part to the ‘m’ convention. If private
variables are named using the ‘m’ convention, no public variable should include a leading ‘m’.
For coding standards that only allow lowercase characters in variable names, expand the convention
from ‘m’ to ‘m_’ to avoid private names beginning with ‘mm’.

The subsref switch in Code Listing 14 implements the replacement. The difference from
the by-the-book approach occurs in lines 4 and 6, where the ‘m’ has been removed from the case
strings. The mScale case has also been removed. Now, dot-reference names match the new
interface definition from §4.1.2.3. Most variables in this example are still one-to-one, public-to-
private. Let’s remedy that situation next. 

4.1.2.5 subsref Dot-Reference, Attempt 3: Beyond One-to-One, 
Public-to-Private

For an example of a general public variable implementation, let’s change the internal color format.
One of the exercises at the end of Chapter 3 asked you to consider this exact change. Instead of
storing red-green-blue (RGB) values, we want to change the class implementation to store hue-
saturation values (HSV). For this change, we are not allowed to change the interface defined in
§4.1.2.3. According to the interface, the public variables use RGB values and the implementation
change must not cause errors in client code. To help in this change, MATLAB provides two
conversion functions, hsv2rgb and rgb2hsv. These functions allow us to convert between RGB
and HSV color representations.
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Modify the constructor by replacing all occurrences of mColorRgb with mColorHsv. Also
in the constructor, set the value for mColorHsv to rgb2hsv([0 0 1])’. The modified
constructor code is shown in Code Listing 15. Line 5 replaces mColorRgb with mColorHsv
and assigns blue as the default color. Line 8 also represents an addition over the earlier constructor.
Here we increase the superiority of cShape with respect to double because the interface
definition overloads the associative operator, mtimes. 

The change to subsref is almost as simple and is completely isolated inside the ColorRgb
case. The modified ColorRgb case code is shown in Code Listing 16. Line 2 uses hsv2rgb

Code Listing 14, Public Variable Names in subref’s Dot-Reference Case

1 switch index(1).type
2 case '.'
3 switch index(1).subs
4 case 'Size'
5 varargout = {this.mSize};
6 case 'ColorRgb'
7 varargout = {this.mColorRgb};
8 otherwise
9 error(['??? Reference to non-existent field ' ... 
10 index(1).subs '.']);
11 end
12 case '()'
13 % code to deal with cell array of index values
14 case '{}'
15 % code to deal with cell array of index values
16 otherwise
17 error(['??? Unexpected index.type of ' index(1).type]);
18 end

Code Listing 15, Modified Constructor Using mColorHsv Instead of mColorRgb

1 function this = cShape
2 this = struct( ... 
3 'mSize', ones(2,1),  ... % scaled [width height]’ of 

bounding box
4 'mScale', ones(2,1), ... % [width height]’ scale factor
5 'mColorHsv', rgb2hsv([0 0 1])' ... % [H S V]’ of border, 

default, blue
6 );
7 this = class(this, 'cShape');
8 superiorto('double')

Code Listing 16, Converting HSV Values to RGB Values

1 case 'ColorRgb'
2 rgb = hsv2rgb([this.mColorHsv]')';
3 varargout = mat2cell(rgb, 3, ones(1, size(rgb,2)));
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to convert private HSV values into public RGB values. The function will convert multiple HSV
vectors by packaging each HSV 3-tuple as a row of the input matrix. Similarly, each output RGB
3-tuple is returned as a row of the output matrix. In Line 2, [this.mColorHsv] supports a
nonscalar this by concatenating HSV columns. The concatenated columns are transposed before
they are passed into hsv2rgb, and the result is transposed so that each column contains an RGB
3-tuple. Line 3 converts the combined RGB array into a cell array of 3 × 1 RGB vectors and assigns
the cell array into varargout. Now, just like all the other cases, a nonscalar this returns multiple
arguments. 

To a client familiar with dot-reference and structures, dot-reference and objects looks identical.
While the outward appearance is the same, inside the private implementation we can do whatever
we want. As with Size, the public name might refer to a private member variable, but the public
name can easily refer to a data conversion or a combination of several private variables. The public
names are included in the interface specification and the client doesn’t need to know what is really
happening behind the interface.

4.1.2.6 subsref Dot-Reference, Attempt 4: Multiple Indexing Levels

If the length of the substruct index array is greater than one, index includes reference
operators beyond the initial dot-reference operator. The length is unlimited; however, certain
combinations of nested reference operators are illegal. For example, when the length of the indexed
variable is greater than one, a second dot-reference operator generates an error. That is, when a is
nonscalar, a.level_1 is allowed but a.level_1.level_2 is not. MATLAB already lives by
these rules so it would be very convenient to coerce MATLAB to handle all of these details.

Code Listing 17 shows an improved version of the dot-reference case that can handle multiple
indexing levels. This version is not as compact as before primarily due to the addition of error-
checking code. Each public name case adds a check for an empty object… If the object is empty
the function’s return value is also empty. Lines 4–5 and 10–11 are examples. Exactly how an empty
object can occur is discussed in the array-reference-operator section. When an empty object does
appear, the correct return is an empty cell. The nonempty else code is identical to the code already
discussed. Lines 20–35 implement multiple-level indexing.

Code Listing 17, An Improved Version of the subsref Dot-Reference Case

1 case '.'
2 switch index(1).subs
3 case 'Size'
4 if isempty(this)
5 varargout = {};
6 else
7 varargout = {this.mSize};
8 end
9 case 'ColorRgb'
10 if isempty(this)
11 varargout = {};
12 else
13 rgb = hsv2rgb([this.mColorHsv]')';
14 varargout = mat2cell(rgb, 3, ones(1, size(rgb,2)));
15 end
16 otherwise
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 Deeper indexing is needed when the length of the index array is more than one. In that
case, the test in line 20 will be true. Now look at line 22 and the subsref call. The value that
needs deeper indexing was assigned into varargout by the first dot-reference operation, and
index(2:end) contains the remaining indices. Passing the initial value and the remaining indices
into subsref will force the remaining indices to be evaluated; but which subsref is used? 

To answer that question we need to apply function-search rules:

1. The function is defined as a subfunction in the caller’s m-file. While this rule might seem
true, the rule applies strictly to subfunctions. The primary function in the m-file is not
considered as a subfunction. That eliminates /@cShape/subsref.m.

2. An m-file for the function exists in the caller’s /private directory. There is not yet a
/@cShape/private directory, so that rules out /@cShape/private/sub-
sref.m.

3. The m-file is a constructor. MATLAB will not recognize a subsref class even if you
define one. That rules out /@subsref/subsref.m.

4. When the input argument is an object, the object’s class directory is included in the
search for the function. The class type of the value in varargout{1} is used to steer
MATLAB to a class-specific version of subsref. For user-defined types, this means a
tailored version. For built-in types, this means the built-in version.

The path-search rules are beginning to make a lot of sense. Here, MATLAB saves us a lot of work
by using the value’s type to find the correct version of subsref. With every new value, the process
repeats until all indices have been resolved.

The else clause for the test in line 21 restricts the level of indexing for nonscalar objects.
For objects, the restriction is somewhat arbitrary because MATLAB will convert almost any
arrangement of access-operator syntax into a substruct index. Code inside subsref gets

17 error(['??? Reference to non-existent field ' 
index(1).subs '.']);

18 end
19
20 if length(index) > 1
21 if length(varargout) == 1
22 varargout{1} = subsref(varargout{1}, index(2:end));
23 else
24 [err_id, err_msg] = array_reference_error 

(index(2).type);
25 error(err_id, err_msg);
26 switch index(2).type
27 case '.'
28 error('??? Dot name reference on non-scalar structure.');
29 case {'()' '{}'}
30 error(['??? Field reference for multiple structure ' ...
31 'elements that is followed by more reference ' ...
32 'blocks is an error.']);
33 otherwise
34 error(['??? Unexpected index type: ' index(2). type]);
35 end
36 end
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to decide which particular arrangements it will support. In the case of structure arrays and dot-
reference, the built-in version of subsref throws an error if the length of index is greater than
one. In the case of object arrays and dot-reference, we could choose to process all additional indices;
however, the else clause beginning on line 23 chooses instead to throw an error. This makes the
dot-reference behavior for object arrays consistent with the dot-reference behavior of structure
arrays. For scalar objects, all index levels are processed; and for nonscalar objects, the presence
of index levels beyond the first dot-reference will throw an error. Line 24 selects the error message
depending on the string in index(2).type.

The ability to detect array-indexing errors and throw an error with the correct message is
something that other member functions will also need. Rather than repeating lines 24–33 in many
places, it is much better to create a free function that will return the correct message. That way
every class will issue the same message, thus providing a consistent look and feel. The function
array_reference_error is shown in Code Listing 18. This function returns both the error
identifier and the error message. To use this function, lines 20–35 in Code Listing 17 are replaced
by the following,

if length(index) > 1

    if length(varargout) == 1

        varargout{1} = subsref(varargout{1}, index(2:end));

    else

        [err_id, err_msg] = array_reference_error(index(2).type);

        error(err_id, err_msg);

    end

end

This function must also exist on the path. Add c:/oop_guide/utils/wizard_gui to the
MATLAB path or copy array_reference_error.m from the utils/wizard_gui direc-
tory to a directory that is already on the path.

4.1.2.7 subsref Dot-Reference, Attempt 5: Operator Conversion Anomaly  

Look carefully at the answers to the various commands listed in Code Listing 19. The command
in line 1 builds a regular 1 × 3 structure array with two dot-reference elements. The element names,
sizes, and values correspond to the “shape” interface but struct_shape is not an object. Line
9 uses operator syntax to select two array indices and concatenate the Size elements from each.
Exactly as we expect, the answer is [[1;1] [2;2] [3;3]]. Line 14 uses function syntax to
request identical indexing, but the answer is not the same. For object arrays, this is a problem.

Ordinarily, you might think this is okay because the whole point of tailoring subsref is to
allow clients the use of operator syntax and using operator syntax on line 9 produces the correct
result. The problem is that access operator conversion is different for built-in types vs. user-defined
types. For built-in types, MATLAB appears to interpret access-operator syntax without a call to
subsref or subsasgn. For user-defined types, the only option is to convert the syntax into a
call to subsref or subsasgn. This would be okay if subsref receives the correct value for
nargout. Unfortunately, conversion from access-operator syntax into the equivalent function call
doesn’t always preserve the correct value of nargout … or at least does not always preserve the
same value for both built-in and user-defined types.

This behavior means that we cannot always trust the value of nargout. Based on the index,
the tailored-version of subsref knows how many values to return regardless of the value in
nargout. In fact, the syntax in each public member case has already filled in the correct number
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of cells. You might think that this would solve the problem; however, MATLAB will not deliver
more than nargout outputs even when more have been assigned. The lone exception occurs when
nargout equals zero but one return value is allowed.

The only available work-around for this anomaly is to repackage the individual cells of
varargout into varargout{1}.* From inside the tailored subsref there is no way to tell

Code Listing 18, A Free Function That Returns Indexing Error Messages

1 function [err_id, err_msg] = 
array_reference_error(index_type)

2 switch index_type
3 case '.'
4 err_id = 'MATLAB:dotRefOnNonScalar';
5 err_msg = '??? Dot name reference on non-scalar 

structure.';
6 case {'()' '{}'}
7 err_id = 'MATLAB:extraneousStrucRefBlocks';
8 err_msg = ['??? Field reference for multiple structure ' 

...
9 'elements that is followed by more reference ' 

...
10 'blocks is an error.'];
11 otherwise
12 err_id = 'OOP:unexpectedReferenceType';
13 err_msg = ['??? Unexpected index reference type: ' 

index_type];
14 end

Code Listing 19, Operator Syntax vs. subsref

1 >> struct_shape = struct( ...
2 'Size', {[1;1] [2;2] [3;3]}, ...
3 'ColorRgb', {[0;0;1] [0;1;0] [1;0;0]})
4 struct_shape = 
5 1x3 struct array with fields:
6 Size
7 ColorRgb
8
9 >> [struct_shape.Size]
10 ans =
11 1     2     3
12 1     2     3
13 >> [subsref(struct_shape, substruct('.', 'Size'))]
14 ans =
15 1
16 1

*  Inline objects overload the nargout command; however, this approach does not work for other object types.
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whether the client wants the values packaged as array or as a cell array. Since we can’t tell, the
strategy is to pick one and hope for the best. Admittedly this is not perfect, but currently it is the
best we can do.

The code in Code Listing 20 represents a good approach. Line 1 decides if we really trust the
value in nargout. Untrustworthy values for nargout are zero and one. Whenever more than
one return value has been assigned and nargout is zero or one, we need to repackage the return.
Line 2 looks for two conditions that usually dictate the use of a cell array: strings and an empty
element. Strings are detected using iscellstr, and empty elements are detected using cellfun
and isempty.* Strings default to a cell array because it is very difficult to undo the effect of
string concatenation after the fact. Return values with empty elements default to a cell array because
normal concatenation would make it impossible to determine which object index contained the
empty element. 

If the cellstr or isempty tests fail, the code tries simple array concatenation in line 6. If
the concatenation is successful, the result is assigned into varargout{1}. If concatenation throws
an error, the error is caught by line 8 and the entire cell array is assigned into varargout{1}.
A client might not always get the desired result but the code in Code Listing 20 provides the data
in a format that is easy to manipulate. (By the way, if you know of or discover a better solution
to this problem, I would love to hear about it. One of my initial reviewers suggested redefining the
behavior for numel. Unfortunately, a tailored version of numel didn’t solve the problem.) 

4.1.2.8 subsasgn Dot-Reference

Many details that drove us through five attempts for subsref can be folded into the initial
implementation of subsasgn. We will still use switch statements for both the operator and the
public names. The primary differences are due to mutation versus access. For example, in sub-
sref, the return value based on multilevel indexing could be refined incrementally. In subsasgn,
the opposite has to happen because the value can’t be assigned before all index levels have been
resolved. Again, we will coerce MATLAB into doing most of the work. The initial code for the
dot-reference case of subsasgn is shown in Code Listing 21.

The case on line 3 handles the assignment of the public variable Size. There are two situations,
one when dot-reference Size is the only index and another when Size is the first of many. In
the length-one-index situation, lines 9–17 error-check the new size values. Line 9 preallocates a 2
by number of inputs array, and the loop on line 10 fills up columns. Line 12 tries to assign each
input value into a corresponding column. If the length of varargin{k} is one or two, there is

*  Note that [] and ‘‘ are both empty; however, ischar(‘‘) is true while ischar([]) is false.

Code Listing 20, Addressing the subsref nargout Anomaly

1 if length(varargout) > 1 & nargout <= 1
2 if iscellstr(varargout) || any([cellfun('isempty', 

varargout)])
3 varargout = {varargout};
4 else
5 try
6 varargout = {[varargout{:}]};
7 catch
8 varargout = {varargout};
9 end
10 end
11 end
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no error. An error occurs if varargin{k} is larger than two, and execution jumps to line 14 and
displays a meaningful error message. Line 17 makes assignment easier by converting the array into
a cell array of columns. Line 18 assigns the error-checked values, and line 19 assigns [1;1] to
mScale. For the function subsasgn, assignment values are passed into subsasgn through
varargin and the error-checking code assigns varargin values into new_size. The argument
order presents us with another conversion problem with no good work around. When the functional
form is used, arguments in varargin occur in the same order that they appear in the call; however,
when MATLAB converts operator syntax and calls subsasgn, it reverses the order of the varar-
gin arguments. The only solution is to avoid using the functional form and always assume that

Code Listing 21, Initial Version of subasgn’s Dot-Reference Case

1 case '.'
2 switch index(1).subs
3 case 'Size'
4 if length(index) > 1
5 this.mSize = ...
6 subsasgn(this.mSize, index(2:end), varargin{end:-

1:1});
7 this.mScale = subsasgn(this.mScale, index(2:end), 1);
8 else
9 new_size = zeros(2, length(varargin));
10 for k = 1:size(new_size, 2)
11 try
12 new_size(:, k) = varargin{k}(:);
13 catch
14 error('Size must be a scalar or length == 2');
15 end
16 end
17 new_size = num2cell(new_size, 1);
18 [this.mSize] = deal(new_size{end:-1:1});
19 [this.mScale] = deal(ones(2,1));
20 end
21 case 'ColorRgb'
22 if length(index) > 1
23 rgb = hsv2rgb([this.mColorHsv]')';
24 rgb = subsasgn(rgb, index(2:end), varargin{end:-1:1});
25 this.mColorHsv = rgb2hsv(rgb')';
26 else
27 hsv = rgb2hsv([varargin{end:-1:1}]')';
28 hsv = num2cell(hsv, 1);
29 [this.mColorHsv] = deal(hsv{:});
30 end
31 otherwise
32 error(['??? Reference to non-existent field ' index(1). 

subs '.']);
33 end
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operator conversion reversed the order of the assignment values. The reversed values are assigned
into the appropriate object indices with deal.

In the more-than-one-index situation, lines 5–7 perform the assignment. As an example, client
syntax might be

shape.Size(2) = 5;

For deeper indexing, we will allow MATLAB to do the assignment with a call to subsasgn. The
target of the assignment is this.mSize, and its type determines which version of subsasgn
to use. The index minus the first element is passed as the new index, and a reversed version of
varargin is passed as the assignment values. The case completes by putting the return value
back into this.mSize. Line 7 addresses the coupling between mSize and mScale. When a
new value for mSize is assigned, we want to set mScale to one. Line 7 is particular about which
values are set to one. By using index(2:end), only scale factors associated with the modified
size are set. No input-error-checking code was included, but it is probably needed. The subsasgn
calls in lines 6 and 7 allow a client to expand the length of mSize and mScale. An unchecked
example is

shape.Size(3) = 10;

Now that we understand the error mechanism, we could easily add code to error-check the input.
Doing so is an exercise at the end of the chapter.

The obscure way this error occurs is one reason why an interface should be as simple as
possible. With each interface feature comes the added burden of ensuring the integrity of the object.
It is always prudent to ask whether all of the features we will discuss are always necessary. Do we
really need to support multiple levels of indexing? If not, subsref and subsasgn can still
inspect the index length and throw an error. Do we really need to support arrays of objects? If not,
we can adjust subsasgn and overload the various concatenation functions. It is sometimes prudent
to ask whether the class should accept the full burden for object integrity. Error checking has a
negative impact on run time and results in functions that may be harder to maintain and extend.
Many of these choices are difficult, and are usually decided on a case-by-case basis. It is nice to
know there are alternatives.

The ColorRgb case is more complicated because hsv2rgb and rgb2hsv functions need
to convert color formats before anything can be assigned. In the length-one-index situation, the
client specifies a complete RGB 3-tuple that will completely replace the existing color. The strategy
is to convert input RGB values to corresponding HSV values and assign the HSV 3-tuples into
mColorHsv. Line 27 converts input RGB values into their equivalent HSV values. To do this the
input RGB values are reversed, concatenated, and transposed before they are passed into rgb2hsv.
HSV values from rgb2hsv are organized in rows and must be transposed before they are assigned
into the local hsv variable. Line 28 splits the hsv array into a cell array of HSV columns, and
line 29 deals cell elements into this.mColorHsv.

In the more-than-one index situation, clients specify a subset of the RGB color values. This
subset cannot be converted to HSV format until the whole RGB 3-tuple is available. In this situation,
the strategy is to (1) convert mColorHsv into RGB format; (2) assign the input RGB subset into
the proper indices of the converted, current values; (3) convert the mutated RGB values back into
HSV format; and (4) assign mutated HSV values back into mColorHsv. Line 23 assembles and
converts a copy of the mColorHsv values into RGB values. The result is stored in the local
variable rgb. Line 24 allows MATLAB to assign color subset values by calling subsasgn. Line
25 transposes rgb, converts values into HSV format, and assigns the transposed result into
this.mColorHsv. We don’t really need error-checking code in either case because the rgb2hsv
function catches and throws errors for us.
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4.1.2.9 Array-Reference Indexing

The array-reference operator looks something like the following:

b = a(k); 

a(k) = b;

When MATLAB encounters these statements, it converts them into the equivalent function calls
given respectively by

 b = subsref(a, substruct(‘()’, {k}));

 a = subsasgn(a, substruct(‘()’, {k}), b);

The two representations are exactly equivalent. You will probably agree that array-reference operator
syntax is much easier to read at a glance compared to the functional form. The functional form
gives us some important details to use during the implementation of subsref and subsasgn. 

With either conversion, the index variable passed into both subsref and subsasgn is
composed using substruct(‘()’, {k}). The type field is of course ‘()’ and the array
index values are represented here by the subs field value {k}. The type field value, ‘()’, is
self-explanatory, but the meaning of {k} needs a little more investigation. 

Examples are usually better than a long-winded explanation, and Table 4.2 provides some
illustrative examples of how MATLAB packages substruct indices for both array-reference and
cell-reference operators. In lines 1–5, one-dimensional indices are packaged in a cell array with
only one cell. In lines 2–3, index range syntax is expanded to include all values in the range, and
the size of the array is used to expand a range that includes the keyword end. In line 4, a colon
range causes a string to be written into the cell. In the remaining lines, multidimensional indices
are packaged in a cell array with multiple cells. Each cell contains the numerical indices for one
dimension. Each dimension is expanded following the same rules used for one-dimensional expan-
sion. Line 8 demonstrates expansion with the keyword end. Line 9 demonstrates ‘:’. Line 11
demonstrates the result of an expansion of a nonconsecutive range. 

TABLE 4.2
Array-Reference and Cell-Reference Index 
Conversion Examples

Line Array-Operator Syntax subsref/subsasgn index.subs

1 (1) {[1]}
2 (1:5) {[1 2 3 4 5]}
3 (1:end) 

where size(a)==[1 6]
{[1 2 3 4 5 6]}

4 (:) {‘:’}
5 ([]) {[]}
6 (1, 2, 3) {[1] [2] [3]}
7 (1:3, 3:4, 5) {[1 2 3] [3 4] [5]}
8 (1:3, 2:end, 5) 

where size(a)==[3 4 5]
{[1 2 3] [2 3 4] [5]}

9 (1, :, 3) {[1] ‘:’ [3]}
10 (1, [], 3) {1, [], 3}
11 ([1 3], [3:4 6], 5) {[1 3] [3 4 6] [5]}
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Indexing over multiple dimensions, each with the possibility for empty, numeric, and ‘:’
ranges, would require a lot of code. Fortunately, we rarely need to look at the contents of
index.subs because we can coerce MATLAB to perform most of the indexing.

4.1.2.10 subsref Array-Reference

Code for the initial version of the subsref array-reference case is shown in Code Listing 22. We
get into this case when subsref is called with index(1).type equal to ‘()’. While there
are not too many lines of code, there is still a lot going on. 

In line 2, as promised, we are throwing index(1).subs{:} over the fence and asking
MATLAB to return a properly indexed subset. We don’t need to worry about multiple dimensions,
index expansion, or whether a ‘:’ might be lurking in one of the subs{:} cells. The simple
syntax in line 2 gives objects the ability to become arrays of objects. Of course this ability also
means that every member function must treat this as if were an array, but the trade-off isn’t bad
considering what we get in return.

The syntax in line 2 certainly appears rather ordinary, but think about what must be going on
behind the scenes. First, MATLAB converts operator syntax into a call to subsref. The functional
form would look something like

this_subset = subsref(this, substruct(‘()’, {index(1).subs});

Next, MATLAB applies search rules to find the appropriate version of subsref. The argument
this has a type of cShape. Normally, MATLAB would call /@cShape/subsref.m and the
result would be an endless recursive loop. So how do we get away with this? Why doesn’t MATLAB
recursively call the tailored version of subsref? For that matter, why didn’t we have the same
problem in the dot-reference case accessing this.mSize? 

The short answer is that subsref and subsasgn have some special rules. When access
operator syntax is used inside a member function, the syntax is converted into a call to the built-
in version of subsref or subsasgn rather than the tailored version. Consider the alternative.
Every time code in a member function wanted to access a private variable, it would have to use
builtin, the function name, and a substruct index. Class developers would never stand for
it. The resulting class code would be difficult to write and even harder to maintain.

Instead, it appears that MATLAB’s designers bent the rules to allow access-operator syntax to
call the built-in versions of subsref or subsasgn, but only from within the confines of a
member function. Thus, from inside a member function, access-operator syntax treats the object’s
structure as if the object-ness has been stripped away. This behavior does not violate encapsulation
because member functions are allowed access to the object’s private structure. Thus, if we need
the value of a public variable, we cannot get it using the dot-reference operator because the private
structure does contain an element with the public name. To access or mutate a public variable from
within a member function, we have to use the functional form of subsref or subsasgn.

Code Listing 22, Initial Version of subref’s Array-Reference Case

1 case '()'
2 this_subset = this(index(1).subs{:});
3 if length(index) == 1
4 varargout = {this_subset};
5 else
6 % trick subsref into returning more than 1 ans
7 varargout = cell(size(this_subset));
8 [varargout{:}] = subsref(this_subset, index(2:end));
9 end
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For a length-one index, line 4 assigns the subset into varargout{1}. Lines 7–8 fill varar-
gout in the case of deeper indexing. Line 7 preallocates varargout based on the size of the
subset. If we trusted the value of nargout, its value would be used instead. Line 8 calls subsref
using the functional form. This allows the tailored version to recursively call itself to handle, for
example, an array-reference operator followed by a dot-reference operator. Inside the recursive call,
nargout is correctly set to the length of the preallocated varargout. The multiple values
returned by the call will be assigned into the corresponding indices of varargout. After assign-
ment, there is a possibility of a mismatch between nargout and the length of varargout. The
nargout-anomaly code developed for the dot-reference case will work here too.

4.1.2.11 subsasgn Array-Reference

Code for the initial version of the subsasgn array-reference case is shown in Code Listing 23.
We get into this case when subsasgn is called with index(1).type equal to ‘()’. The
subsasgn code looks simple, but again, there is a lot going on.

If this is passed in as an empty object, lines 2–4 create a default object and assign the default
into this. Subsequent assignment relies on the assumption that this is not empty, and line 3
enforces the assumption. For a length-one index, line 6 calls the built-in version of subsasgn.
The assignment call will fail if the input values in varargin are not objects of the class. The
indices for varargin go in reverse order because operator conversion reversed the arguments
when it assigned them into the cell array. The built-in version expects the arguments to be in the
correct order. Using the built-in version also gives us the benefit of automatic array expansion. If
an object is assigned into an array element that does not yet exist, MATLAB will automatically
expand the array by filling the missing elements with a default version of the object. This is one
reason why a default, no-argument constructor is required.

Another benefit gained by using the built-in version in line 6 is the ability to assign [] to an
index and free memory. In fact, this is one way to create an empty object. For example, consider
the following set of commands. Line 1 creates an object array with one element. Line 2 deletes
the element, freeing memory, but it does not completely delete the variable shape. Line 3 shows
us that shape still exists and still has the type cShape. Passing shape as a function argument
will correctly locate cShape member functions. Line 6 shows us that one of the size dimensions
is indeed zero, and line 9 correctly tells us that shape is empty. There are several ways to create
an empty object, and member functions must be written so they are capable of correctly dealing
with them. 

Code Listing 23, Initial Version of subasgn’s Array-Reference Case

1 case '()'
2 if isempty(this)
3 this = cShape;
4 end
5 if length(index) == 1
6 this = builtin('subsasgn', this, index, varargin{end:-

1:1});
7 else
8 this_subset = this(index(1).subs{:});  % get the subset
9 this_subset = subsasgn(this_subset, index(2:end), 

varargin{:});
11 this(index(1).subs{:}) = this_subset; % put subset back
12 end
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Back to Code Listing 23, lines 8–10 take over in the case of deeper indexing. Compared to
subsref, the procedure in subsasgn is a little more complicated because the assignment must
ripple through different levels before it can be correctly assigned into the object. The strategy is
to first obtain a subset, second perform subsasgn on the subset, and third assign the modified
subset back into the correctly indexed locations of the object’s array. Line 8 uses standard operator
notation to retrieve the subset. In line 9, the subset assignment calls subsasgn, resulting in a
recursive call. Here it is important to pass varargin in the same order received. The dot-reference
recursive call will then properly reverse the order when it assigns values to deeper-indexed elements.
Finally, line 10 uses operator notation to assign the mutated subset back into the original locations.

As with subsref, subsasgn can also get confused when operator conversion incorrectly
sets nargout. There is no decent work-around, and thus clients are prohibited from using
otherwise legal syntax. One example of the prohibited syntax is

[shape(2:3).Size] = deal(10, 20);

MATLAB examines the left-hand side and (incorrectly) determines that deal should produce only
one output. MATLAB passes nargout=1 to deal, and from that point forward the number of
arguments actually needed by the left-hand side and the number of values returned by the right-
hand side are hopelessly mismatched. This behavior applies not only to deal but also to any
function that returns more than one value. Due to a related quirk, the following syntax is okay:

[shape.Size] = deal(10, 20, 30);

In this case, MATLAB can correctly determine the number of values required by the left-hand side
and it passes the correct nargout value into deal. It is important to realize that even though
[shape.Size] works, [shape(:).Size] will not. This is significant because many clients
prefer the latter syntax. Perhaps some of these anomalies will be cleared up in future versions. For
now, a certain amount of client training will be necessary.

4.1.2.12 Cell-Reference Indexing

The cell-reference operator looks something like the following:

b = a{k}; 

a{k} = b;

Unlike the other two reference operators, cell-reference operators are not always converted into the
syntax needed to execute a tailored version of subsref or subsasgn. Taking advantage of this
behavior allows MATLAB to manage cell arrays of objects without our help. We can choose to
add cell array–handling code to subsref and subsasgn, but such code is seldom required.
Under most circumstances, the tailored versions of subsref and subsasgn should generate an
error in the cell-reference case. By throwing an error, the tailored versions of subsref and

1 >> shape  = cShape;
2 >> shape(1) = [];
3 >> class(shape)
4 ans =
5 cShape
6 >> size(shape)
7 ans =
8 1     0
9 >> isempty(shape)
10 ans =
11 1
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subsasgn encourage the syntax that allows MATLAB to manage the cells. Under these conditions,
cell-reference code is easy. All we need to do is return an error. This behavior is also consistent
with the way MATLAB treats cell arrays of structures.

Objects can still be inserted into cell arrays, and indeed, cell arrays are very important for
object-oriented programming. The syntax for creating cell arrays of objects is nothing special. For
example, consider the following two commands:

a = cShape;

b{1} = cShape;

Both commands create an object. The first command assigns the object into the variable a. The
second command assigns the object into cell array b. In the first command, a’s type is cShape,
but in the second, b’s type is cell. The type of b{1} is of course cShape. The differences in
type can be seen when we try to index each variable with a cell-reference operator. For a{1},
since a is an object, MATLAB is forced to call /@cShape/subsref. For b{1}, since b is a
cell, MATLAB indexes the cell array using the built-in version.

4.1.3 INITIAL SOLUTION FOR SUBSREF.M

Putting all three indexing sections together leads to the subsref function shown in Code Listing
24. The preceding sections detailed individual functional blocks. Lines 5–22 implement the code
used to convert between public and private member variables. Lines 24–31 take care of deeper
indexing levels when the dot-reference operator is the initial index. Lines 33–41 implement the
code for array-reference. Lines 43–44 generate an error in response to a cell-reference. Finally,
lines 50–60 repackage the output when we don’t trust the value of nargout. Later we will make
more improvements to the code in this function. These later improvements will still preserve the
basic functional flow of subsref. 

Code Listing 24, Initial Solution for subsref

1 function varargout = subsref(this, index)
2
3 switch index(1).type
4
5 case '.'
6 switch index(1).subs
7 case 'Size'
8 if isempty(this)
9 varargout = {};
10 else
11 varargout = {this.mSize};
12 end
13 case 'ColorRgb'
14 if isempty(this)
15 varargout = {};
16 else
17 rgb = hsv2rgb([this.mColorHsv]')';
18 varargout = mat2cell(rgb, 3, ones(1, size(rgb,2)));
19 end
20 otherwise
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21 error(['??? Reference to non-existent field ' index(1). 
subs '.']);

22 end
23
24 if length(index) > 1
25 if length(this(:)) == 1
26 varargout = {subsref([varargout{:}], index(2:end))};
27 else
28 [err_id, err_msg] = array_reference_error(index(2). 

type);
29 error(err_id, err_msg);
30 end
31 end
32
33 case '()'
34 this_subset = this(index(1).subs{:});
35 if length(index) == 1
36 varargout = {this_subset};
37 else
38 % trick subsref into returning more than 1 ans
39 varargout = cell(size(this_subset));
40 [varargout{:}] = subsref(this_subset, index 

(2:end));
41 end
42
43 case '{}'
44 error('??? cShape object, not a cell array');
45
46 otherwise
47 error(['??? Unexpected index.type of ' index(1). 

type]);
48 end
49
50 if length(varargout) > 1 & nargout <= 1
51 if iscellstr(varargout) || any([cellfun('isempty', 

varargout)])
52 varargout = {varargout};
53 else
54 try
55 varargout = {[varargout{:}]};
56 catch
57 varargout = {varargout};
58 end
59 end
60 end
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4.1.4 INITIAL SOLUTION FOR SUBSASGN.M

Putting all three indexing sections together leads to the subsasgn function shown in Code Listing
25. The preceding sections detailed individual functional blocks. Lines 5–37 represent the functional
block used to convert between public and private member variables. Lines 39–49 represent the
functional block used for array-reference mutation. Lines 51–52 generate an error in response to
cell-reference mutation. Later, when we make more improvements, this basic functional flow for
subsasgn will remain intact.

Code Listing 25, Initial Solution for subsasgn

1 function this = subsasgn(this, index, varargin)
2
3 switch index(1).type
4
5 case '.'
6 switch index(1).subs
7 case 'Size'
8 if length(index) > 1
9 this.mSize = ...
10 subsasgn(this.mSize, index(2:end), varargin{end:-

1:1});
11 this.mScale = subsasgn(this.mScale, index(2:end), 

1);
12 else
13 new_size = zeros(2, length(varargin));
14 for k = 1:size(new_size, 2)
15 try
16 new_size(:, k) = varargin{k}(:);
17 catch
18 error('Size must be a scalar or length == 2');
19 end
20 end
21 new_size = num2cell(new_size, 1);
22 [this.mSize] = deal(new_size{end:-1:1});
23 [this.mScale] = deal(ones(2,1));
24 end
25 case 'ColorRgb'
26 if length(index) > 1
27 rgb = hsv2rgb([this.mColorHsv]')';
28 rgb = subsasgn(rgb, index(2:end), varargin{end:-

1:1});
29 this.mColorHsv = rgb2hsv(rgb')';
30 else
31 hsv = rgb2hsv([varargin{end:-1:1}]')';
32 hsv = num2cell(hsv, 1);
33 [this.mColorHsv] = deal(hsv{:});
34 end
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4.1.5 OPERATOR OVERLOAD, MTIMES

While subsref and subsasgn represent one type of operator overload, mtimes represents the
more typical overload situation. The operator associated with mtimes is *. When MATLAB
interprets *, it passes the values on the left- and right-hand sides of the operator into mtimes,
and users expect a return value that represents the product between the left- and right-hand
arguments. The constructor for cShape increased superiority over double, meaning that the
object might occupy either the left-hand or the right-hand argument. We don’t know in advance
which argument holds the argument, so we need to perform a test.

The implementation for the tailored version of mtimes is shown in Code Listing 26. Line 4
checks whether the left-hand argument’s type is cShape. The isa function is very convenient
for this type of test because it returns a logical true or false. If the left-hand argument’s type
is not cShape, then the right-hand argument must be. In either case, the object is assigned into
this and the scale factor is assigned into scale. Lines 12–19 ensure that scale’s format is
correctly configured. A scalar scale value is expanded into a 2 × 1 column. Similarly, a 1 × 2
row is converted into a 2 × 1 column. Any other input scale format generates an error. Lines
21–22 perform the scaling multiplication by multiplying both mSize and mScale by scale.
The results of each multiplication are stored back into their respective private variables. This code
has not been vectorized to support nonscalar objects, and at least for now it hardly seems worth
the trouble to do so.

35 otherwise
36 error(['??? Reference to non-existent field ' index(1). 

subs '.']);
37 end
38
39 case '()'
40 if isempty(this)
41 this = cShape;
42 end
43 if length(index) == 1
44 this = builtin('subsasgn', this, index, varargin{end:-

1:1});
45 else
46 this_subset = this(index(1).subs{:});  % get the subset
47 this_subset = ...
48 subsasgn(this_subset, index(2:end), varargin{end:-

1:1});
49 this(index(1).subs{:}) = this_subset; % put subset back
50 end
51
52 case '{}'
53 error('??? cShape object, not a cell array');
54
55 otherwise
56 error(['??? Unexpected index.type of ' index(1).type]);
57 end
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4.2 THE TEST DRIVE

Whew — developing a compact, robust, general implementation for subsref and subsasgn
took us into many dusty corners of MATLAB. It also required some advanced MATLAB coding
techniques. Pat yourself on the back for a job done well. If you decide to use the cShape model
to build your own class, it should be easy to modify variable names and add new member functions.

Before we move on to the example commands in the test drive, let’s summarize exactly what
we have done and what we have not done. We have written a pair of member functions that create
a convenient interface. The interface is convenient because it mimics the way MATLAB structures
can be indexed. We have not exposed any private variables. The interface functions subsref and
subsasgn still stand between a client and our private member variables. In fact, we were careful
to choose different names for public and private variables. A client might think that the object
contains public member variables, but appearances can be deceiving. 

The development of subsref and subsasgn covered a lot of ground. Consequently, the
test drive will also cover a lot of ground. To maintain some semblance of order, the test drive
examples are split into two sections, one for subsasgn and one for subsref. The test drive for
subsasgn is first because it populates the objects that serve as a source for the subsref
examples. Otherwise, we wouldn’t have anything interesting to access. 

4.2.1 SUBSASGN TEST DRIVE

The command-line entries shown in Code Listing 27 provide a small sample of cShape’s newly
developed subsasgn capability. Except for a couple of commands, the interface does indeed
make the shape object look like a structure.

Code Listing 26, Tailored Version of cShape’s mtimes

1 function this = mtimes(lhs, rhs)
2
3 % one input must be cShape type, which one
4 if isa(lhs, 'cShape')
5 this = lhs;
6 scale = rhs;
7 else
8 this = rhs;
9 scale = lhs;
10 end
11
12 switch length(scale(:))
13 case 1
14 scale = [scale; scale];
15 case 2
16 scale = scale(:);
17 otherwise
18 error('??? Error using ==> mtimes');
19 end
20
21 this.mSize = this.mSize .* scale;
22 this.mScale = this.mScale .* scale;
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Line 1 changes to the correct directory. Line 2 contains a set of clear commands that clean up
many things. In addition to clearing workspace variables, clear classes also resets MATLAB’s
understanding of class structures. Next, fclose all closes any open files. After that, close
all force closes any open plot windows, even if their handles are not visible. If diary capture
is on, diary off closes the diary. Finally, clc clears the command window so we can begin
with a fresh screen. You don’t always need all these clear commands, but usually there is no harm
done in using them. Additional detail concerning any of these commands can be found using the
help facility.

After the clear commands, line 3 uses the constructor to create a cShape object. The next
few lines exercise the syntax and exercise both subsref and subsasgn. Line 4 copies the object
at index 1 into element 2. Element 2 did not previously exist so subsasgn opened some space
before adding the copy. Line 5 concatenates two objects and assigns the result into elements 2:3.
Not bad for about 100 lines of code, and we aren’t done yet. Line 6 demonstrates a length-one,
dot-reference assignment; and line 7 demonstrates deeper indexing. Line 8 tries to assign two
indexed public variables but results in an error. With a structure, the syntax would be valid. With
objects, the nargout anomaly confounds our ability to support this syntax. At least MATLAB
throws an error rather than assigning to the wrong location. Line 12 is almost the same as line 8
except there is no array-reference operator and MATLAB can resolve all of the sizes. Also, notice
the use of three different array formats inside deal. Code in subsasgn will convert each array
into a column vector before assigning them into the object. Line 13 saves a temporary copy of the
third element, and line 14 deletes element 3 and reduces the matrix length to 2. Line 15 uses
operator syntax for horzcat to add the element back to the end. Lines 17–19 demonstrate the
capability to assign different elements of ColorRgb. Remember, ColorRgb looks like a structure
element but the value is actually being converted and stored as an HSV 3-tuple in mColorHsv.
The conversion is not apparent from the interface.

Code Listing 27, Chapter 4 Test Drive Command Listing for subsasgn

1 >> cd 'C:/oop_guide/chapter_4'
2 >> clear classes; fclose all; close all force; diary off; clc;
3 >> shape = cShape;
4 >> shape(2) = shape(1);
5 >> shape(2:3) = [shape(1) shape(2)];
6 >> shape(2).Size = [2;3];
7 >> shape(2).Size(1) = 20;
8 >> [shape(2:3).Size] = deal([20;21], [30;31]);
9 ??? Too many outputs requested.  Most likely cause is missing 

[] around
10 left hand side that has a comma separated list expansion.
11
12 >> [shape.Size] = deal([10;11], [20], [30 31]);
13 >> temp = shape(3);
14 >> shape(3) = [];
15 >> shape = [shape temp];
16 >>
17 >> shape(2).ColorRgb = [0 1 0]';
18 >> shape(3).ColorRgb = [0 0.5 0.5]';
19 >> shape(3).ColorRgb(3) = 1.0;
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4.2.2 SUBSREF TEST DRIVE

Now that we have some cShape objects with known values, we can exercise subsref. We can
also confirm the operation of subsasgn because we know what values to expect from each access.
The command-line entries shown in Code Listing 28 provide a sample of cShape’s newly
developed subsref capability.

Code Listing 28, Chapter 4 Test Drive Command Listing for subsref

1 >> set(0, 'FormatSpacing', 'compact');
2 >> ShapeCopy = shape;
3 >> OneShape = shape(2);
4 >> ShapeSubSet = shape(2:3);
5 >> ShapeSize = shape(2).Size
6 ShapeSize =
7 20
8 20
9 >> ShapeSize = [shape.Size]
10 ShapeSize =
11 10    20    30
12 11    20    31
13 >> ShapeSize = {shape.Size}
14 ShapeSize =
15 [2x1 double]    [2x1 double]    [2x1 double]
16 >> ShapeSize = [shape(:).Size]
17 ShapeSize =
18 10    20    30
19 11    20    31
20 >> ShapeSize = {shape(:).Size}
21 ShapeSize =
22 [2x3 double]
23 >> ShapeHorizSize = shape(2).Size(1)
24 ShapeHorizSize =
25 20
26 >> [shape.ColorRgb]
27 ans =
28 0         0         0
29 0    1.0000    0.5000
30 1.0000         0    1.0000
31 >> shape(1) = 1.5 * shape(1) * [2; 3];
32 >> shape(1).Size
33 ans =
34 3.0000e+001
35 4.9500e+001
36 >> shape(1) = reset(shape(1));
37 >> shape(1).Size
38 ans =
39 10
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The set command in line 1 is optional. It reduces the number of blank lines displayed after
each result. The two FormatSpacing options are loose and compact. If you prefer a display
with blank lines, substitute loose for compact and reissue the command. You can set many
different environment variables. If you are curious, the command set(0) will list them all. In
addition, type get(0) and look at the difference between the two listings. Maybe our classes
would benefit from a similar display.

Lines 2–4 demonstrate assignment. The syntax in these commands looks perfectly normal.*
Lines 5–8 exercise subsref and display the result. The values shown in 7–8 confirm the assign-
ment used in the subsasgn test drive. The Size member variable was assigned using a scalar
value of 20, and the displayed result confirms that the scalar value was correctly converted into a
pair of width and height values. The commands in lines 9, 13, 16, and 20 demonstrate the nargout
anomaly. 

There is nothing unusual about the outputs from the commands on line 9 and 14. We know
that shape has 3 elements and the [] and {} operators collect the element values into arrays
with the correct dimension. Like lines 10–12, outputs for the command in line 16 are correct. This
is simply due to good luck. In line 16, the (:) index on shape causes subsref to receive an
inconsistent value for nargout. When subsref detects this inconsistency, it formats the output
as a normal array and returns the result. Since the syntax on line 16 asked for a normal array,
everything is copasetic. On line 20, when the syntax requests a cell array, the wheels fall off. When
subsref detects an inconsistent value for nargout, it again formats the output as a regular
array. This time the conversion assumption is wrong, and the result on lines 21–22 has an unexpected
form. 

Line 23 demonstrates the use of three indexing levels. The first level is shape(2), the second
level is shape(2).Size, and the third is shape(2).Size(1). The value displayed on lines
24–25 agrees with the previously assigned value. Line 26 displays RGB color values. The object
does not store RGB values so the values displayed on lines 27–30 represent calculated values.
These calculations were done inside subsref, where stored HSV color values are converted into
RGB equivalent values. The opposite conversion occurs inside subsasgn. The subsasgn and
subsref combination is consistent because the values on lines 27–30 are the same values assigned
earlier. 

Commands on lines 31 and 32 demonstrate the overloaded mtimes operator. A shape’s size
can be scaled by pre- or postmultiplying by a scalar or a length-2 vector. Overloading mtimes
seems much more convenient compared to setScale. Lines 36 and 37 reset the scaled size back
to original values and display the result.

Finally, display commands in lines 31 and 34 give some information about the object, but
the information is not particularly useful. It would be much better if the public member variables
and their values were displayed. Ideally, we should also be able to type the variable name with no
trailing semicolon and receive a cogent display. Overloading display is very similar to over-
loading any operator. The difference with the display operator is that its absence triggers the function
call. In the next chapter, we will develop an implementation for display, the fourth member of
the group of eight.

40 11
41 >> display(shape)
42 shape =
43 cShape object: 1-by-3
44 >> display(shape(1))
45 cShape object: 1-by-1

*  Some object-oriented languages allow you to overload the assignment operator; MATLAB does not. 
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4.3 SUMMARY

The descriptions and implementations of subsref and subsasgn are the most involved topics
in this book. They are also among the most important. It turns out that the implementations are
difficult precisely because they are so important. Each case in the dot-access switch statement
corresponds to a public member variable. Thus, subsref and subsasgn represent much of the
interface and their contents implement the conversions between public and private member vari-
ables. The tailored versions must also be able to handle object arrays and vector syntax. Getting
all of this right for every class we develop isn’t easy. One thing we learned in this chapter is to
involve MATLAB built-in functions whenever possible. The built-in functions provide functionality
that is documented, tested, and fast. Another thing we have learned from experience is the process
of managing complexity by breaking it down into smaller units that are more manageable. Later
we will investigate a convenient way to do this.

It took us several attempts, but in the end we achieved the goal of building a class interface
that mimicked the structure interface. Overloading subsref and subsasgn also allowed us to
introduce the concept of public member variables and define the relationship between public and
private members. At first, it appeared that supporting dot-reference, array-reference, and cell-
reference operators would degrade encapsulation. By the time we finished with the implementations,
these operators actually enhanced its benefits. The real power of the interface resulted from the
ability to hide, combine, and manipulate private member variables on their way to and from the
public interface. 

The implementations of subsref and subsasgn required a discussion of substruct and
forced the issue of general operator overloading and the builtin command. We learned that
almost every operator has an associated function call. In most cases, operator syntax and the
associated functional form are identical. We pointed out a couple of instances where the two diverge
and included work-around code. We also discussed superiorto and inferiorto relative to
argument lists and the function search path. With all these new pieces in place, the object-oriented
puzzle looks like Figure 4.2.

FIGURE 4.2 Puzzle with subsref, subsasgn, builtin, and overloading.
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4.4 INDEPENDENT INVESTIGATIONS

1. Add code to perform additional input error checking, in particular the indices for the
index-length-greater-than-one assignment of Size.

2. The code for subsasgn’s Size dot-reference case is getting long. Collect the code
into a subfunction and call it.

3. Create a /@cShape/private directory and move the subfunction from exercise 2
into the directory. Does subsasgn still find this function? What is the difference?

4. One of the public member variables is Size. If size.m is overloaded instead, would
this result in a similar interface? Is this new use for size potentially confusing? Is it
okay to change the behavior of a familiar function? What about a less familiar function?
Would size also be used as a mutator? Overload size and see how you like it.
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5

 

Displaying an Object’s State

 

Being able to view the state of an object is vitally important to class development, client use, and
code maintenance. Being forced to index and display individual values is too tedious and far too
time-consuming. MATLAB provides a decent display mechanism for scalars, arrays, and structures.
Our classes deserve no less. As we have seen, MATLAB does not provide a good built-in display
for objects, but now we know how to tailor functions to do whatever we want. All we need to know
is the name of the built-in function.

 

5.1 DISPLAYING OBJECTS

 

MATLAB’s two primary display functions are 

 

display.m

 

 and 

 

disp.m

 

. The biggest difference
between them is a connection between 

 

display

 

 and the semicolon operator. When a semicolon
terminates a command, MATLAB does not call display. The opposite statement is also true. If a
command does not end in a semicolon, MATLAB calls 

 

display

 

. This behavior is very convenient
and makes 

 

display

 

 a good overload candidate. Otherwise, all we will continue to see is the
following cryptic message:

 

>> shape = cShape

shape = 

cShape object: 1-by-1

 

Of course, we could also overload 

 

disp

 

, 

 

sprintf

 

, 

 

num2str

 

, and 

 

evalc

 

; however, these
functions pale in convenience and importance to 

 

display

 

. Developing a general solution for the
other display functions does not add much value. 

The function 

 

display

 

 is overloaded the same way any other function is overloaded. A
customized member function named 

 

display.m

 

 is added to the class directory. After that,
whenever 

 

display

 

 needs to operate on an object, the tailored version of 

 

display.m

 

 will be
found. This is true when called directly as in 

 

display(shape)

 

, or indirectly by leaving off the
semicolon.

 

5.1.1 W

 

HAT

 

 S

 

HOULD

 

 B

 

E

 

 D

 

ISPLAYED

 

?

 

The question of what to display might sound like a trick question, but it is not a trick. It isn’t easy
to answer either. Unlike structures, objects have both public and private variables. Also different
from structures, a public variable might be read-only, write-only, or read-write. There are also at
least two audiences for the displayed information, clients and developers. The number of options
makes it difficult to settle on a universal implementation for 

 

display

 

. 
In 

 

cShape

 

, for example, developers might find it convenient to display stored HSV color
values along with calculated RGB values. Developers and clients alike might like to see the value
of 

 

mScale

 

 from time to time. Violating encapsulation by allowing client code to depend on private
variables is a bad idea, but is it really a violation to allow a client to display internal states during
client code debug and development? For some data and some developers, it might be okay. Once
we nail down the kind of information to display, the implementation becomes easier.

When deciding what should be displayed, there are at least three information categories or
user-related topics to consider:
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• value information for public member variables
• class membership lists and permissions
• class development and debug-related data

The first category represents a view that should look similar, if not identical, to a structure’s
display. This helps extend the illusion of a class as a structure. Instead of structure elements, the
display includes public member variables. We will call this the standard view. The second category
represents a view that provides a brief summary of the interface, a summary that can often be used
in lieu of 

 

help

 

. The display for the second category should include a list of public member
variables along with their type. A list of valid assignment values is also useful. The environment
commands 

 

set(0)

 

 and 

 

get(0)

 

 can serve as a model for the display. The third category is
intended primarily for class developers engaged in code development or maintenance. This view
is impossible to specify rigorously but should probably include all public member variables and
often includes a large selection of private member variables. We will call this view 

 

developer view

 

.
For the first two views, MATLAB provides some guidance in the form of displays that exist

elsewhere. For developer view, there really is no precedence. Developer view’s format is also more
difficult to pin down because it is largely a matter of taste. Some developers prefer a standard
structure-like display, some prefer a 

 

whos

 

-like format, and some prefer a format that provides even
more detail. In fact, different formats can be useful during different stages of development. Devel-
oper view demands flexibility, and indeed, we can organize class variables and 

 

display

 

 to support
flexibility. 

Adding flexibility isn’t completely related to 

 

display

 

. Part of the motivation is to reveal more
ways that objects are fundamentally different from structures and develop some insight into how
those differences might be exploited. Providing a design for 

 

display

 

 that allows almost unlimited
flexibility serves many purposes.

If we want to model the second-view category after 

 

get(0)

 

 and 

 

set(0)

 

, we need to develop
tailored versions of these two functions. Once developed, 

 

get(cShape)

 

 and 

 

set(cShape)

 

would display the appropriate lists. Like 

 

display

 

, 

 

get

 

 and 

 

set

 

 are also members of the group
of eight. The chapters in this section take on the group of eight one at a time. This chapter is
devoted to 

 

display

 

. Chapter 8 is devoted to 

 

get

 

 and 

 

set

 

.
In any display, variables come in only four flavors:

• public member variables
• read-only public member variables 
• write-only public member variables
• private member variables

There is almost universal agreement that standard view should include public member variables.
After all, public variables are public for a reason and one of the best ways to advertise their
availability is via 

 

display

 

. Most also agree that the standard display should not include private
variables. In some classes, it might make sense to include selected private variables, but generally,
private variables are private for a reason. Omitting them from the standard view helps keep them
private.

It is harder to reach a consensus on read-only and write-only variables. Part of the reason why
it is difficult to decide is the observation that MATLAB’s structure display has no provision for
such “oddly behaved” elements. We don’t have a firm foundation on which to base our opinions
because read-only and write-only do not exist for structures. Perhaps the interface design can shed
some light on these variables. 

In most situations, read-only and write-only permissions flow naturally from the class design
and its interface definition. In a well-designed class with an intuitive interface, the idea of writing
a value into a read-only variable should never occur. Even if the interface is not perfect, a client
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can display a read-only value even if it isn’t included in the standard 

 

display

 

 view. This alone
justifies including read-only variables in the standard view. Write-only variables are much less
common. When the interface definition designates a variable as write-only, we should probably
respect the designation. For this reason, we will not include write-only variables in the standard
view. Modifications to standard display policy can always be addressed on a case-by-case basis.

 

5.1.2 S

 

TANDARD

 

 S

 

TRUCTURE

 

 D

 

ISPLAY

 

MATLAB’s built-in 

 

display

 

 outputs for a scalar structure and a structure array are shown in
Code Listing 29. These outputs serve as the bogie for an object’s standard display. MATLAB can
already display a structure, and an object is based on a structure. Maybe the tailored version of

 

display

 

 can take advantage of MATLAB’s built-in capability. The trick comes in organizing the
right set of commands. 

Sometimes when we are inside a member function MATLAB allows us to treat 

 

this

 

 as a
structure. For example, we can access and mutate elements using dot-reference and array-reference
operators. It is very tempting to write a one-line display function that uses one of the following
commands:

 

1 this % note: no semicolon

2 display(this);

3 builtin(‘display’, this);

4 display(struct(this));

 

Try to figure out what will happen in each case before reading further.
Commands 1 and 2 are functionally equivalent and produce the same bad result. The result is

an infinite recursive loop. In the best case, you will receive a maximum-recursion error message;
and in the worst case, a crash. Inside the tailored version of 

 

display.m

 

, 

 

this

 

 is still an object.
MATLAB path rules always find the tailored version of 

 

display

 

 before they find the built-in
version. The only two functions allowed to break this rule are 

 

subsref

 

 and 

 

subsasgn

 

, and they
only get to break the rules when operator syntax is used. 

 

Code Listing 29, The Normal Display for a Structure

 

1 >> set(0, 'FormatSpacing', 'compact');
2 >> shape = struct('Size', [1;1], 'Scale', [1;1], 'ColorRgb', 

[0;0;1]);
3 >> shape
4 shape = 
5 Size: [2x1 double]
6 Scale: [2x1 double]
7 ColorRgb: [3x1 double]
8 >> shape = [shape shape];
9 >> shape
10 shape = 
11 1x2 struct array with fields:
12 Size
13 Scale
14 ColorRgb
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Command 3 is not recursive but the output is the same familiar cryptic display. Inside a member
function, 

 

this

 

 is still an object and the built-in 

 

display

 

 function has only one format for
displaying an object. The command did not crash, but the output is too cryptic.

Command 4 uses 

 

struct

 

 to change the object into a structure and then displays the structure.
The built-in 

 

struct

 

 command strips away the object’s identity, and that allows the built-in version
of 

 

display

 

 to output the structure. The output from a tailored version of 

 

display

 

 that uses
command number 4 is shown in Code Listing 30. Unfortunately, this output includes all of the
object’s private variables and we are trying to display the public elements. 

At this point, some of you might be thinking, “Why don’t we just write a type-specific version
of 

 

struct that returns a structure constructed from the public member variables?” I like the way
you think. Like display, struct is another member of the group of eight. In Chapter 7, we
will develop a tailored-version of struct that will do exactly that. In fact, some of the code
developed in this chapter will be moved into struct. By the time we get to Chapter 9, the syntax
in command number 4 will work because a tailored version of struct will exist. All of that must
wait because we need a cogent display capability right now.

5.1.3 PUBLIC MEMBER VARIABLE DISPLAY

For a scalar cShape object, display’s output should look like the output shown in Code
Listing 31. On line 3, the name of the variable is repeated along with an equal sign. Lines 4 and
5 display the public member variables. There are no “m” prefixes on the names, and the shapes’
use of RGB color values is obvious. 

5.1.3.1 Implementing display.m, Attempt 1

The first version of display used to produce the output in Code Listing 31 is shown in Code
Listing 32. The source can be found in the class directory under subdirectory chapter_5/dis-
play-first-attempt/@cShape. Change into the first attempt directory if you want to
experiment. 

Lines 3–4 construct a temporary structure from the public variables. Line 3 simply copies a
private value into the appropriate public field. Line 4 uses subsref to access the public Col-
orRgb value because, privately, color is stored in HSV format. An in-line conversion is needed,

Code Listing 30, Displaying the Object’s Private Structure

1 >> shape = cShape;
2 >> shape
3 mSize: [2x1 double]
4 mScale: [2x1 double]
5 mColorHsv: [3x1 double]

Code Listing 31, Desired Format for the cShape Display Output

1 >s> shape = cShape;
2 >> shape
3 shape = 
4 Size: [2x1 double]
5 ColorRgb: [3x1 double]
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and code to perform the conversion already exists inside subsref. Calling subsref is better
than repeating code even though subsref’s function syntax is a little awkward. 

At first blush, it is tempting to access ColorRgb using operator syntax, for example,
this.ColorRgb. Ordinarily, operator syntax and the equivalent functional form produce the
same result. However, remember that reference operators inside a member function break the rules.
From inside a member function, the only way we can get subsref to return a public variable is
by using the functional form.

In line 6, inputname retrieves the name of the variable. The inputname function retrieves
a name the client will recognize. We don’t want to display this or public_struct because
the client has no idea that these variables exist. The name along with an equals sign are displayed
using disp. Finally, in line 8, the fields of the temporary structure are displayed. Using disp
allows MATLAB to do most of the output formatting.

5.1.3.2 Implementing display.m, Attempt 2

Our first attempt is a good beginning. Before it is ready for prime time, we need to consider a
couple of details.

1. What do we display if inputname(1) returns []?
2. How do we format the output when this is an array?
3. How should the spacing change in response to

set(0, ‘FormatSpacing’, ‘loose’) and
set(0, ‘FormatSpacing’, ‘compact’)?

These details are not difficult to manage and can be resolved in several different ways. The code
shown in Code Listing 33 addresses these three questions. This source can be found in the directory
chapter_5/display-improved/@cShape/display.m. Change into the display-
improved directory if you want to experiment. 

To address question 1, lines 4–7 set display_name to ‘ans’ whenever inputname(1)
returns []. 

To address question 2, a temporary structure is only created for a scalar this. The code in
lines 12–19 is very similar to the commands in Code Listing 32. Substituting display for disp
in line 19 guarantees compatibility with all environment settings, including the state of ‘For-
matSpacing’. 

The display code for a nonscalar this does not need to create a temporary structure because
no values are displayed. Instead, line 22 uses eval to assign the object to a variable with the
correct display name. Line 24 uses eval along with builtin and ‘display’ to write the

Code Listing 32, First Attempt at an Implementation for cShape’s Tailored display.m

1 function display(this)
2 % assign values to a temporary struct
3 public_struct.Size = this.mSize;
4 public_struct.ColorRgb = subsref(this, substruct('.', 

'ColorRgb'));
5 % use disp and inputname for the display header
6 disp([inputname(1) ' =']);
7 % use disp and the temporary structure
8 disp(public_struct);
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cryptic default-formatted object information. This information serves as a very nice header because
it identifies the variable as an object. 

Next, we need a list of fieldnames, or in this case a list of public member variable names. Lines
26–28 display the list of public variable names in a way that is consistent with the display format
for nonscalar structure arrays. Finally, lines 29–31 check the state of ‘FormatSpacing’ and
add an extra line if the state is ‘loose’. Together this code takes care of all three questions.

Example outputs are shown in Code Listing 34. When shape is a scalar, the display output
looks identical to the equivalent structure display. This is expected because the output was created
by displaying a structure. When shape is nonscalar, the display output is similar, but not
identical, to the structure display. The differences are that we identify the variable as an object and
we identify element names as public member variables. This display output is exactly what we
want. Now we will add flexibility. 

Code Listing 33, Second Attempt at an Implementation for cShape’s Tailored display.m

1 function display(this)
2
3 % handle empty inputname
4 display_name = inputname(1);
5 if isempty(display_name)
6 display_name = 'ans';
7 end
8
9 % handle scalar vs. vector this
10 % note: [] this jumps to else
11 if length(this) == 1  % scalar case 
12 % assign values to a temporary struct
13 public_struct.Size = this.mSize;
14 public_struct.ColorRgb = ...
15 subsref(this, substruct('.', 'ColorRgb'));
16 % use eval to assign temp struct into display_name 

variable
17 eval([display_name ' = public_struct;']);
18 % use eval to call display on the display_name structure
19 eval(['display(' display_name ');']);
20 else  % array case
21 % use eval to assign this into display_name variable
22 eval([display_name ' = this;']);
23 % use eval to call builtin display for size info
24 eval(['builtin(''display'', ' display_name ');']);
25 % still need to display variable names explicitly
26 disp('    with public member variables:');
27 disp('        Size');
28 disp('        ColorRgb');
29 if strcmp(get(0, 'FormatSpacing'), 'loose')
30 disp(' ');
31 end
32 end
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5.2 DEVELOPER VIEW

An object’s standard display view mimics MATLAB’s structure display. This gives objects the
benefit of presenting a common look and feel; however, it also gives objects the same limitations.
Lines 3–4 in Code Listing 34 illustrate the primary limitation. Values stored in the public variables
are arranged in columns, and MATLAB displays size information instead of values. If the data
were arranged in rows, the output would include values. This behavior is lame, particularly when
you realize a simple transpose will allow values to be displayed. For a more informative display,
the interface definition could have specified row vectors; however, a row orientation makes it more
difficult to concatenate values from object arrays. A desire for maximum compatibility saddles the
standard view. 

This is part of the motivation behind the additional flexibility. Giving developers a way to swap
in a better display makes object-oriented development proceed at a faster pace. Since each devel-
oper’s tastes are unique and since certain views aid different phases of development, we need a
flexible implementation. One way to address code flexibility is to specify a standard function
interface and use a function handle to store the currently desired function.

A function handle is a standard MATLAB type. A function handle allows a variable to hold a
function reference. Very simplistically, a function handle is equivalent to the function’s name. A
function handle can reference almost any function using a value that can be changed dynamically.
If you want to execute a new function, you don’t need to change source code; you simply change
the value of a variable. A display implementation based on a function handle gives us a convenient
way to change the view quickly and easily. This is particularly true if we store the function handle
in a private member variable. After that, all we need are some standard functions, a way to set the
handle, and some code that will use it.

Use mDisplayFunc for the name of the private variable. An updated version of the constructor
code with developer view enabled is included in Code Listing 37. Ordinarily, the constructor will
assign [] and display will default to the standard view. For now, anyway, a developer can
temporarily modify the constructor so that it assigns a function handle, or a developer can tempo-
rarily add a setDisplayFunc member function to the class directory. Code that uses the function
handle will assume the following function definition.

function display_function(this, display_name)

In the definition, this is a length-one object and display_name is a string that contains the
object variable’s name. Since we want to be able to swap out display functions, all custom display
functions must conform to this definition. 

Code Listing 34, Example Display Output for the Tailored Version of display.m

1 >> shape = cShape
2 shape = 
3 Size: [2x1 double]
4 ColorRgb: [3x1 double]
5 >> shape = [shape shape]
6 shape = 
7 cShape object: 1-by-2
8 with public member variables:
9 Size
10 ColorRgb
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5.2.1 IMPLEMENTING DISPLAY.M WITH DEVELOPER VIEW OPTIONS

Code Listing 33 presented a very good implementation of display for the standard view. Here
we simply modify that implementation so that a nonempty mDisplayFunc value will trigger a
call to the special-purpose display function. The new version of display.m is shown in Code
Listing 35.  

Code Listing 35, Improved Display Implementation with Developer View Options

1 function display(this, display_name)
2
3 if nargin < 2
4 % assign 'ans' if inputname(1) empty
5 display_name = inputname(1);
6 if isempty(display_name)
7 display_name = 'ans';
8 end
9 end
10
11 % check whether mDisplayFunc has a value
12 % if it has a value feval the value to get the display
13 use_standard_view = cellfun('isempty', 

{this(:).mDisplayFunc});
14 if all(use_standard_view)
15 standard_view(this, display_name);
16 else
17 for k = 1:length(this(:))
18 if use_standard_view(k)
19 standard_view(this(k), display_name);
20 else
21 indexed_display_name = sprintf('%s(%d)', 

display_name, k);
22  feval(this(k).mDisplayFunc, this(k), 

indexed_display_name);
23 end
24 end
25 end
26
27 % --------------------------
28 function standard_view(this, display_name)
29 if ~isempty( ...
30 [strfind(display_name, '.') ...
31 strfind(display_name, '(') ...
32 strfind(display_name, '{')])
33 display_name = 'ans';
34 end    
35 % handle scalar vs. non-scalar this
36 % note: if isempty(this), jumps to else
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The implementation code is organized into two subfunctions. The subfunction
standard_view is nearly identical to the previous display code in Code Listing 33. The
subfunction developer_view can be used as the function stored in mDisplayFunc. The main
display function checks requested display options and calls the appropriate function.

Lines 3–9 came directly from Code Listing 33 with one small tweak. The function now accepts
two input arguments. The second argument is a string representing the desired display name. When
only one input is passed in, display_name is assigned a value exactly as before. The additional
input gives us more flexibility to configure the output format.

Line 13 builds a logical array used to steer execution to the requested display option for every
object in the object array. For scalar objects, there is only one function handle, but for object arrays,
every index might use a different handle. A handle for every object provides a lot of fine control
over the display. It also makes it easier to concatenate objects or form subsets. Working from the
inside out, {this(:).mDisplayFunc} creates a cell array of function handles. Each cell index
corresponds to the same object-array index. The next level uses cellfun to “map” a function
onto each cell in a cell array. Prior to version 7.1, the list of “map-able” functions was somewhat
limited. In this case, ‘isempty’ is the one we need and it is fully supported. The return from

37 if length(this) == 1  % scalar case 
38 % assign values to a temporary struct
39 public_struct.Size = this.mSize;
40 public_struct.ColorRgb = ...
41 subsref(this, substruct('.', 'ColorRgb'));
42 % use eval to assign temp struct into display_name 

variable
43 eval([display_name ' = public_struct;']);
44 % use eval to call display on the display_name structure
45 eval(['display(' display_name ');']);
46 else  % array case
47 % use eval to assign this into display_name variable
48 eval([display_name ' = this;']);
49 % use eval to call builtin display for size info
50 eval(['builtin(''display'', ' display_name ');']);
51 % still need to display variable names explicitly
52 disp('    with public member variables:');
53 disp('        Size');
54 disp('        ColorRgb');
55 if strcmp(get(0, 'FormatSpacing'), 'loose')
56 disp(' ');
57 end
58 end
59
60 % --------------------------
61 function developer_view(this, display_name)
62 disp('----- Public Member Variables -----');
63 standard_view(this, display_name);
64 disp('..... Private Member Variables .....');
65 full_display(this, display_name, true);
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cellfun is an array of logical values the same length as the input cell array. If a value is true,
it means that the object’s mDisplayFunc field is empty and the standard view should be used. 

If no object in the array specifies developer view, the test in line 14 is true and line 14 passes
the whole object into standard_view. In that case, the output is the same as before, in Code
Listing 34. The reason the output is the same is because the contents of standard_view in lines
28–58 were copied from the implementation in Code Listing 33. 

If any object specifies developer view, the test in line 14 is false, the new code executes, and
the output format is different. For nonscalar object arrays, each object is separately displayed. Line 17
loops over every object in the array and calls the display option specified by each. Line 19 calls
standard_view. Lines 21–22 update the display name and use feval to call the function handle
stored in this(k).mDisplayFunc. The value in this(k).mDisplayFunc can be either a
function handle or the string name of a function. The feval call is more run-time efficient with a
function handle, but in display the difference in efficiency doesn’t matter. For convenience, a simple-
minded but very informative developer view function is included as a subfunction.

In lines 61–66, the function developer_view displays both public and private member vari-
ables. Line 63 displays the public variables by calling standard_view. Private variables are dis-
played by calling a utility function named full_display. The third argument allows
full_display to use builtin to turn the object into a structure prior to its display. Passing true
specifies builtin and keeps the tailored version of struct from getting in the way. This is one of
those rare times when builtin with ‘struct’ is acceptable. The function full_display is
found in the /oop_guide/utils/wizard_gui directory and provides a more cogent output
compared to display. Any variable type can be passed into full_display.

5.3 THE TEST DRIVE

The command-line entries shown in Code Listing 36 provide a sample of cShape’s newly
developed display capability. Under the /chapter_5/display-standard-view direc-
tory, the constructor sets mDisplayFunc to empty and the listing demonstrates the normal view.
In these three cases, the output looks nearly identical to the output that we would expect if shape
was a structure or structure array. 

Code Listing 36, Chapter 5 Test Drive Command Listing for Display

1 >> cd 'C:/oop_guide/chapter_5/display-standard-view'
2 >> clear classes; fclose all; close all force; diary off; clc;
3 >> shape = cShape
4 shape = 
5 Size: [2x1 double]
6 ColorRgb: [3x1 double]
7 >> shape = [shape shape]
8 shape = 
9 cShape object: 1-by-2
10 with public member variables:
11 Size
12 ColorRgb
13 >> shape(2)
14 ans = 
15 Size: [2x1 double]
16 ColorRgb: [3x1 double]
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We also know there is a developer view option lurking inside display. Soon we will add
some control options, but for now at least, we need to modify the constructor to demonstrate it.
The modified constructor is shown in Code Listing 37. The only addition occurs in line 6. Since
the default value of mDisplayFunc is now ‘developer_view’, developer view will be active
for all objects instantiated by this constructor. To deactivate developer view and activate the standard
view, change the assignment in line 6 back to []. The constructor located under the directory
chapter_5/display-developer-view includes the ‘developer_view’ assignment.

With developer view enabled, the same commands from Code Listing 36 result in the display
of a lot more data. This can be seen in the output provided in Code Listing 38. The output under
the title Public Member Variables is formatted similar to standard view, but there is now
another section titled Private Member Variables. The private outputs are formatted
differently because full_display rather than the built-in version of display is used for the
p r iva t e  s t r uc tu r e .  The  func t i on  full_display  i s  f ound  i n  t he
/oop_guide/utils/wizard_gui directory and as you can see in, for example, lines 8–11,
it provides superior detail. The output format from full_display allows lines to be cut and
pasted into the command window or into an m-file. The output format also shows every indexing
level. This is a real benefit for deeply nested data structures. 

Code Listing 37, cShape Constructor with Developer View Enabled by Default

1 function this = cShape
2 this = struct( ... 
3 'mSize', ones(2,1),  ... % scaled [width height]’ of 

bounding box
4 'mScale', ones(2,1), ... % [width height]’ scale factor
5 'mColorHsv', rgb2hsv([0 0 1])', ... % [H S V]’ of border, 

default, blue
6 'mDisplayFunc', 'developer_view' ... % function format 

fun(this, name)
7 );
8 this = class(this, 'cShape');
9 superiorto('double')

Code Listing 38, Chapter 5 Test Drive Command Listing Using the Alternate Display

1 >> clear classes; fclose all; close all force; diary off;
2 >> cd 'C:/oop_guide/chapter_5/display-developer-view'
3 >> shape = cShape
4 ----- Public Member Variables -----
5 ans = 
6 Size: [2x1 double]
7 ColorRgb: [3x1 double]
8 ..... Private Member Variables .....
9 shape(1).mSize = [1  1]';
10 shape(1).mScale = [1  1]';
11 shape(1).mColorHsv = [0.66667           1           1]';
12 shape(1).mDisplayFunc = 'developer_view';
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5.4 SUMMARY

The process of developing of display.m demonstrates some of the power behind object-oriented
programming and encapsulation. Unbeknownst to our clients, we added a private member variable
and made enormous changes to the internal workings of the tailored display function. Such
change is only possible because we are committed to keeping private areas of our objects private.
The development of display helps us keep that commitment. 

We have also provided developers with a very convenient development aid. By temporarily
changing the constructor, a developer can change an object’s behavior to display all object data.
One version of this code lurks in the display function, but the design has a lot more flexibility.
It takes some design work to create this kind of abstraction and it takes some advanced MATLAB
techniques to make it work, but the end result is definitely worth the effort. There are plenty of
applications where the use of function handles can greatly enhance the extendibility and maintain-
ability of code. This chapter opened the door to a range of possibilities.

Display and function handle pieces have been added to the puzzle. These pieces give objects
the look and feel of built-in variable types and add developer flexibility. That is quite a lot of benefit
from three simple pieces. With a few more pieces, the puzzle in Figure 5.1 will have a complete
frame.

5.5 INDEPENDENT INVESTIGATIONS

1. Pass a complicated structure with arrays and cell arrays into full_display and see
what happens.

2. The developer view output for public variables does not show as much information as
the private variables. Modify the code so that public variables are displayed using

13
14 >> shape = [shape shape]
15 ----- Public Member Variables -----
16 ans = 
17 Size: [2x1 double]
18 ColorRgb: [3x1 double]
19 ..... Private Member Variables .....
20 shape(1).mSize = [1  1]';
21 shape(1).mScale = [1  1]';
22 shape(1).mColorHsv = [0.66667           1           1]';
23 shape(1).mDisplayFunc = 'developer_view';
24 ----- Public Member Variables -----
25 ans = 
26 Size: [2x1 double]
27 ColorRgb: [3x1 double]
28 ..... Private Member Variables .....
29 shape(2).mSize = [1  1]';
30 shape(2).mScale = [1  1]';
31 shape(2).mColorHsv = [0.66667           1           1]';
32 shape(2).mDisplayFunc = 'developer_view';
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full_display format. (Hint: build a public structure and call full_display.)
Soon we will make this a lot easier.

3. Try to redefine MATLAB’s builtin display function to use full_display instead.
Make this work for built-in types as well as for user-defined types.

FIGURE 5.1 Puzzle with display and function handles.
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6

 

fieldnames.m

 

 

 

 

 

  

 

With the basic implementation behind us, we need to step up to the next level. We want to improve
the implementations by making our classes more capable. With 

 

subsref

 

 and 

 

subsasgn

 

, we
set up 

 

public

 

 as a new category of member variables. In the tailored 

 

display

 

 function, we
struggled to generate the structure-like output because a separate list of public variables is not
available. In this chapter, we tailor 

 

fieldnames

 

 as a way to provide that list. The 

 

fieldnames

 

function also plugs a leak in encapsulation. The built-in version of 

 

fieldnames

 

 returns a list of
private names, a behavior we cannot tolerate.

Tailoring 

 

fieldnames

 

 also improves the modularity in the group-of-eight implementation.
For example, in 

 

display

 

 we were forced to add public names to the implementation. Other
functions in the group of eight also need access to the names. By including a member function
that returns the public list, we can reduce the number of places where public names are repeated.
Based on its role with structures, a tailored version of 

 

fieldnames

 

 is the logical place for the
list to exist.

 

6.1 FIELDNAMES

 

While we could easily write a specific get function for this task (e.g., 

 

getPublicNames

 

),
MATLAB already defines a suitable function. For structures, the built-in version of 

 

fieldnames

 

will return a 

 

cellstr

 

 filled with element names. The built-in version will also operate on objects.
If you examine 

 

help

 

 

 

fieldnames

 

, you will notice that built-in version claims to return a list
of an object’s “public data fields.” Unfortunately, help’s use of “public” is confusing.

First, we are well aware that every field in the object’s structure is private. We also know that
our definition of public member variable comes about through the implementation of 

 

subsref

 

and 

 

subsasgn

 

. How is it possible for the built-in version of 

 

fieldnames

 

 to discover the names
of the public variables? It isn’t. There must be a mismatch between help’s idea of public and ours.

We can test the built-in version. What we find is that the built-in version actually returns the
field names of the object’s underlying structure, that is, the names of the private member variables.
This is not good. If we don’t correct this situation, we have another potential window into the
private structure. We have already discussed why revealing the private part of an object is a bad
idea, and the same arguments apply to 

 

fieldnames

 

. This is simply another function that seems
to be at odds with encapsulation goals.

Of course, by now the solution path is clear. If we don’t like what we get from the built-in
version, we simply supply a tailored version that suits our purposes. In this case, we will tailor

 

fieldnames

 

 so that it properly returns a list of public member variables. This will allow clients
to interface with objects using 

 

getfield

 

, 

 

setfield

 

, or dynamic fieldname syntax.

 

6.2 CODE DEVELOPMENT

 

The built-in version of 

 

fieldnames

 

 accepts a structure as the input and returns a 

 

cellstr

 

populated with the element names. The tailored version should work the same way for an object.
Also, when used with objects, there is a more obscure syntax. A second string input with the value

 

‘-full’

 

 can be passed into 

 

fieldnames

 

. The 

 

‘-full’

 

 option tells 

 

fieldnames

 

 to add
information about each field’s type, attributes, and inheritance. This option appears to be an
extension for Java. For native MATLAB objects, type in particular does not make a lot of sense.
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The implementation will include code to process the 

 

‘-full’

 

 option, but its purpose and output
format are not well specified with respect to native MATLAB objects.

In the same way 

 

‘-full’

 

 appears to be a Java-related option, we will add an option related
to the group-of-eight interface. Recall the discussion of the commands 

 

get(0)

 

 and 

 

set(0)

 

. If
possible, we should give objects a similar interface, that is, an interface where commands like

 

get(cShape)

 

 and 

 

set(cShape)

 

 will return a brief summary of the public variables. Java
objects have this ability, and it is very convenient. 

Most of the information displayed by these commands is information related to the public
variable names, and not all of it the current value. This makes 

 

fieldnames

 

 a very logical place
to store the additional data. The 

 

‘-full’

 

 option does not include everything we need. We need
to invent a new string value that will be used primarily from inside other group-of-eight member
functions. In the case of 

 

set(cShape)

 

, the output needs to include a list of the allowed values
for each element. The list describes the possible element values, and following from this, the new
string value will be 

 

‘-possible’

 

.
When 

 

‘-possible’

 

 is the second argument to 

 

fieldnames

 

, a special output format will
be produced. The output will be a single cell array where odd-numbered elements contain the
public member variable names and even-numbered elements contain a cell array filled with the
allowed values for the preceding odd index name. If the set of allowed values is indeterminate, the
cell array will be empty.

The tailored version of 

 

fieldnames

 

 is shown in Code Listing 39. Like the other examples,
this version is tailored for 

 

cShape

 

. Other classes would follow the syntax in this example but
encode different names, types, and allowable values. 

In the one-argument case, line 4 returns a 

 

cellstr

 

 with a list of public variable names. The
names are hard-coded into the function. These names need to match the public cases in 

 

subsref

 

or problems might arise later. Class developers are responsible for keeping the files synchronized.
The 

 

switch

 

 on line 6 is evaluated when more than one argument is passed. Lines 8–9 assemble
the 

 

cellstr

 

 return when the caller requests the 

 

‘-full’

 

 option. Lines 11–12 assemble the
return when the caller requests 

 

‘-possible’

 

. This is our option, so we are free to define any

 

Code Listing 39, Initial Design for fieldnames.m

 

1 function names = fieldnames(this, varargin)
2 % returns the list of public member variable names
3 if nargin == 1
4 names = {'Size' 'ColorRgb'}'; % note: return as a column
5 else
6 switch varargin{1}
7 case '-full'
8 names = {'Size % double array' ...
9 'ColorRgb % double array'}';
10 case '-possible'
11 names = {'Size' {{'double array (2x1)'}} ...
12 'ColorRgb' {{'double array  (3x1)'}}}';
13 otherwise
14 error('Unsupported call to fieldnames');
15 end
16 end
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syntax. The syntax in lines 11–12 allows each private variable to specify an allowed-value 

 

cellstr

 

in addition to the name. This syntax makes it easier to separate and display the list of possible values.

 

6.3 THE TEST DRIVE

 

The test drive for 

 

fieldnames

 

 is easy because there are only three possible options. The results
are shown in Code Listing 40. Line 3 builds an object and line 4 gets the public name list by calling

 

fieldnames

 

 with only one argument. By leaving off the semicolon, the display shows that the
list is consistent with the public interface. Line 8 invokes the 

 

‘-full’

 

 option and the returned
list includes names and some type information. Line 12 invokes the 

 

‘-possible’

 

 option. The
return value for this option has a format that lends itself to direct conversion into a structure. Line
13 demonstrates the conversion and displays the structure result. 

 

6.4 SUMMARY

 

The 

 

fieldnames

 

 function, while simple, is important because it prevents the built-in version of

 

fieldnames

 

 from advertising private areas of our objects. The function also supports code
modularity by consolidating the names of the public member variables in one location. In Chapter
5, prior to the existence of 

 

fieldnames

 

, the list of public names was twice hard-coded inside

 

display.m

 

. Now that 

 

fieldnames exists, display code can be refactored to eliminate the
hard-coded list. The refactored version of display is presented in §9.3. The tailored version of
fieldnames also supports a new option that will be used to display a convenient public member
summary. As we continue to develop the group of eight, the importance of fieldnames will
become more and more evident.

Code Listing 40, Chapter 6 Test Drive Command Listing for fieldnames.m

1 >> cd /oop_guide/chapter_6
2 >> clear classes; clc
3 >> shape = cShape;
4 >> fieldnames(shape)
5 ans = 
6 'Size'
7 'ColorRgb'
8 >> fieldnames(shape, '-full')
9 ans = 
10 'Size % double array'
11 'ColorRgb % double array'
12 >> possible = fieldnames(shape, '-possible');
13 >> struct(possible{:})
14 ans = 
15 Size: {'double array (2x1)'}
16 ColorRgb: {'double array  (3x1)'}
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6.5 INDEPENDENT INVESTIGATIONS

1. In the ‘-full’ case, use class to inspect and assign the field’s type. What are you
going to do for object arrays?

2. Modify display.m to take advantage of fieldnames.
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struct.m

 

In the previous chapter, we patched a hole in MATLAB’s default encapsulation by tailoring

 

fieldnames

 

. In this chapter, we patch another hole by tailoring 

 

struct

 

. As we have already
seen, the built-in version of 

 

struct

 

 returns the names and values of private member variables.
In fact, 

 

struct

 

’s default behavior represents a risky situation because clients can use it to gain
access to private data. We need to eliminate this possibility by developing a type-specific version
of 

 

struct.m

 

.
As a bonus, a standard function that returns an object’s public structure is broadly useful. For

example, look back at the scalar case of the tailored version of 

 

display

 

. The strategy of allowing
MATLAB to perform most of the formatting requires a structure of public variables. At that time,
public structure generation was coded directly in line and we could not easily make use of it in
developer view. Further proliferation of in-line structure-generation code makes class extensions
very tedious and error prone. Consolidating structure generation into one function makes a lot of
sense. We can even take advantage of the tailored version of 

 

fieldnames

 

 so that even public
names are not directly coded into 

 

struct

 

.

 

7.1 STRUCT

 

While we could easily write a specific get function for this task (e.g., 

 

getPublicStructure

 

),
MATLAB already defines a suitable function. The built-in version of 

 

struct

 

 already returns a
structure associated with the object. The built-in version will also operate on objects. Unlike the help
for 

 

fieldnames

 

, 

 

help

 

 

 

struct

 

 does not promise to return a structure of “public data fields.” 
The help files for 

 

struct

 

 describe a function that converts an object into its equivalent
structure. Here our idea of “equivalent structure” and MATLAB’s idea are definitely not the same.
In our world, the structure should contain public member variables; however, the built-in version
of 

 

struct

 

 returns a structure made up of the private variables. The 

 

fieldnames

 

 function was
bad enough, but the 

 

struct

 

 function is even more despicable. It returns both the names and the
values of the private variables! 

While it is still true that MATLAB prevents changes to the private data, that does not prevent clients
from using the values and even passing around the structures created from the object. Here is yet another
place where MATLAB seems very lax about preventing client access to private data. We need to
reinforce this area because the potential result of such permissiveness can be devastating. If left
unchecked, clients will use this back door to destroy most of the benefits of encapsulation. Once a
client ties code to the private structure returned by the default version of 

 

struct

 

, later attempts to
reorganize or improve the class will result in broken code and angry clients. While it might indeed be
their fault, it becomes our problem. I have personally witnessed such chaos and can tell you it is no
easy chore to clean it up. Preventing it from happening in the first place is a much better plan.

Like always, if we don’t like what the built-in version gives us, we simply tailor the function
to suit our purposes. In this particular case, tailoring is not perfect because we can’t prevent clever
or devious clients from using 

 

builtin

 

 to tie their code to an object’s private data. A client can
bypass all our carefully crafted member functions by using, for example, 

 

shape_struct = builtin(‘struct’, shape)

 

When a client uses 

 

builtin

 

 in this way, 

 

shape_struct

 

 is not an object, but rather a structure.
With a structure, the client loses the ability to call member functions, but in return gains the ability
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to read and write any field in the structure. Mutation does not carry into the object, but once a
client has a structure, the object is usually forgotten. Unfortunately, there is no way to prevent a
client from using 

 

builtin

 

. 
For this very reason, clients should be told about 

 

builtin

 

 and strongly cautioned against its
use. There is no conceivable reason for a client to circumvent the behavior of any type-specific
member function by using a call to 

 

builtin

 

. This decision belongs to a class developer and not
a client. Class developers can and often do use 

 

builtin

 

 to coerce MATLAB into doing work for
them; however, if class developers are doing their job properly, it is extremely rare for a client to
have the same need. This is particularly true with 

 

struct

 

. 

 

7.2 CODE DEVELOPMENT

 

The first time we noticed a need for a function like 

 

struct

 

 was during the implementation of

 

display

 

. We didn’t yet have such a function, so we resorted to building the structure in line. The
code used in 

 

display

 

 built a structure for a scalar object, and it will serve as a decent starting
point for the tailored, nonscalar version of 

 

struct

 

. All we have to do is adapt and generalize.
The important lines of code from 

 

display

 

 are repeated below. 

This code has three problems:

1. the use of public names
2. in-line conversions from private variables to public
3. only works on scalar objects

The first problem is easily solved by calling our newly tailored version of 

 

fieldnames

 

. We never
need to hard-code the public names because we can easily get them in the form of a 

 

cellstr

 

.
The second problem is solved by realizing that 

 

subsref

 

 already includes the necessary conver-
sions. In fact, lines 2–3 above already use 

 

subsref

 

. Code in the generalized version of 

 

display

 

must always use 

 

subsref

 

 to obtain public member values. Using both 

 

fieldnames

 

 and

 

subsref

 

 allows for a non-class-specific implementation. The third problem isn’t hard to solve,
but it does require a 

 

for

 

 loop. The initial implementation is shown in Code Listing 41. 

 

1  public_struct.Size = this.mSize;
2  public_struct.ColorRgb = ...
3  subsref(this, substruct('.', 'ColorRgb')); 

 

Code Listing 41, Initial Implementation for struct.m

 

1 function public_struct = struct(this)
2 names = fieldnames(this);  % tailored version returns public 

names
3 values = cell(length(names), length(this(:)));  % preallocate
4 for k = 1:length(names)
5 [values{k, :}] = subsref(this(:), substruct('.', names 

{k}));
6 end
7 public_struct = reshape(cell2struct(values, names, 1), 

size(this));
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As the solution to problem 1, line 3 calls 

 

fieldnames

 

 to get a 

 

cellstr

 

 of public member
variable names. Now that we have the names, we need values. Line 3 preallocates an empty cell array
where the values will be stored. The size of the cell array is 

 

length(names)

 

 

 

×

 

 

 

length(this)

 

or, equivalently, the number of public variables 

 

×

 

 the number of objects in the array. Line 4 loops over
the names, and line 5 assigns public values. We avoid a double loop because the whole object array is
passed into 

 

subsref

 

 and 

 

subsref

 

 returns

 

 length(this)

 

 answers. The magic of list expansion
allows the assignment of multiple cell array elements. Finally, line 7 uses 

 

cell2struct

 

 to generate
the structure as a row vector, and reshape converts the row into the same shape as 

 

this

 

.
The function 

 

cell2struct

 

 is very powerful but somewhat obscure. The structure values
and names are passed into 

 

cell2struct

 

 as cell arrays. The third argument tells 

 

cell2struct

 

how to assign values in the 

 

values

 

 cell array to fieldnames in the 

 

names

 

 cell array. In the case
of line 7, a 1 breaks up 

 

values

 

 into columns. Each value in the column is associated index for
index with a name in 

 

names

 

. After 

 

cell2struct

 

, the resulting structure array will be 1 

 

×

 

size(values,2)

 

.

7.3 THE TEST DRIVE

The test drive for struct is easy because there aren’t many options. The results are shown in
Code Listing 42. Line 3 builds an object, and lines 4–5 set some values. Line 6 returns the public
structure. Because the returned value is a structure, we can use the full_display utility function
if we want more detail. Lines 10–12 show the details, and the values match those assigned in lines
4–5. Line 13 uses a horzcat operator to create an object array. Line 14 obtains the structure
array, and lines 19–23 display the details. Again, the detailed values match the values expected. 

Code Listing 42, Chapter 7 Test Drive Command Listing for struct.m

1 >> cd /oop_guide/chapter_7
2 >> clear classes; clc
3 >> shape = cShape;
4 >> shape.Size = 2;
5 >> shape.ColorRgb = [1;1;1];
6 >> struct(shape)
7 ans = 
8 Size: [2x1 double]
9 ColorHsv: [3x1 double]
10 >> full_display(ans)
11 ans.Size = [2  2]';
12 ans.ColorRgb = [1  1  1]';
13 >> shape = [cShape shape];
14 >> struct(shape)
15 ans = 
16 1x2 struct array with fields:
17 Size
18 ColorRgb
19 >> full_display(ans)
20 ans(1, 1).Size = [1  1]';
21 ans(1, 1).ColorRgb = [0  0  1]';
22 ans(1, 2).Size = [2  2]';
23 ans(1, 2).ColorRgb = [1  1  1]';
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7.4 SUMMARY

This function, while simple, is important because it closes a huge hole in the object’s encapsulation.
Now clients are presented with a uniform public front because display, fieldnames, and
struct all advertise the same variables. The tailored version of struct takes advantage of code
modularity relying on fieldnames and subsref to return public information. Notice that no
class-dependent data are contained inside the implementation of struct. The tailored version
also supports modularity by allowing other functions to obtain the public structure without having
to resort to in-line code. Member functions can now take advantage of this support, and eventually
we will modify some of the code in display to use both struct and fieldnames.

7.5 INDEPENDENT INVESTIGATIONS

1. Try to overload builtin and see what happens.
2. Modify display.m to take advantage of struct.
3. Modify developer_view (a subfunction inside display.m) to take advantage of

fieldnames.
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get.m, set.m

 

One of the exercises back in Chapter 3 asked you to examine the possible benefits of developing
one 

 

get

 

 and one 

 

set

 

 instead of a 

 

get

 

 and 

 

set

 

 pair for every public variable. That was before
the implementations of 

 

subsref

 

 and 

 

subsasgn

 

. Since 

 

subsref

 

 and 

 

subsasgn

 

 provide such
an elegant, natural interface, perhaps there is no longer a need for 

 

get

 

 or 

 

set

 

. There are still
benefits, but it seems the most compelling reasons were stolen away by 

 

subsref

 

 and 

 

subsasgn

 

.
In this chapter, we will examine some of the benefits and define implementations for 

 

get

 

 and 

 

set

 

that add quite a lot of flexibility. The functions 

 

get

 

 and 

 

set

 

 complete the membership roles for
the group of eight.

 

8.1 ARGUMENTS FOR THE MEMBER FUNCTIONS GET AND SET

 

A general 

 

get 

 

and

 

 set

 

 pair is still useful to both developers and clients. A 

 

get 

 

and

 

 set

 

pair helps simplify syntax and increases code modularity. In special circumstances, 

 

get

 

 and 

 

set

 

can be used to “conceal” object data. So-called concealed data are variables that shouldn’t be part
of the typical interface but still might be needed from time to time. A 

 

get 

 

and

 

 set

 

 pair can
provide abbreviated information about the class in the same way that 

 

get(0)

 

 and 

 

set(0)

 

 provide
information about the command environment. Finally, defining a 

 

get 

 

and

 

 set

 

 pair allows tab
completion to work with objects. Without a 

 

get 

 

and

 

 set

 

 pair, tab completion displays a list of
private variables. By closing another gap in MATLAB’s default encapsulation, the deal for devel-
oping 

 

get.m

 

 and 

 

set.m

 

 is sealed.

 

8.1.1 F

 

OR

 

 D

 

EVELOPERS

 

Switch statements inside 

 

subsref

 

 and 

 

subsasgn

 

 convert between private data and the public
interface. Often, the conversion code is simple and can be included directly in each case. In these
cases, private-public conversion can only be accomplished using 

 

subsref

 

 or 

 

subsasgn

 

. For
clients, operator-syntax conversion automatically formats the arguments. From inside the class,

 

subsref

 

 or 

 

subsasgn

 

 syntax is cumbersome. Using 

 

substruct

 

 to pack the index helps, but
dot-reference access to public variables should be easier. For example, the current implementation
of display uses the command

 

 [values{k, :}] = subsref(this(:), substruct(‘.’, names{k}));

 

Using 

 

get

 

 makes the command easier to read. In that case, the command uses the modified syntax

 

 [values{k, :}] = get(this(:), names{k});

 

While this change might seem insignificant, it has a big impact on maintainability because the 

 

get

 

syntax is easier to read at a glance.
Instead of “inventing” new function names like 

 

get

 

 and 

 

set

 

, we could have tailored 

 

get-
field

 

 and 

 

setfield

 

. There are several reasons why 

 

get

 

 and 

 

set

 

 are better. First, in version
7.0, 

 

getfield

 

 and 

 

setfield

 

 are deprecated functions, i.e., they may not exist in future versions.
We certainly don’t want to develop new classes based on obsolete functions. Second, the argument
syntax for 

 

getfield

 

 and 

 

setfield

 

 is too complicated. By using 

 

get

 

 and 

 

set

 

, we don’t need
to support a complicated predefined syntax. Third, if we don’t overload 

 

getfield

 

 and 

 

set-
field

 

, MATLAB automatically converts them into 

 

subsref

 

 and 

 

subsasgn

 

 calls. Finally, we
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are not really inventing the names 

 

get

 

 and 

 

set

 

. These functions are already used to manipulate
the command environment and for graphics handles. Indeed, the environment and graphics handles
look a lot like objects. Even more important, tab completion uses 

 

get

 

 and set to obtain the
completion list. 

Clients primarily use access-operator syntax. This opens the possibility of concealing special
functionality inside get or set. For example, even when

 shape.mDisplayFunc = ‘developer_view’;

throws a “field not found” error, mutation can be accomplished by calling set directly. The
equivalent direct-call syntax looks like the following:

shape = set(shape, ‘mDisplayFunc’, ‘developer_view’);

To make this happen, both subsasgn and set must be properly implemented. This kind of
concealed functionality might be used to support development, test, or quality assurance. Devel-
opers, testers, and inspectors usually demand more access to internal states compared to normal
clients. It is also an easy way to include developer-level capability without advertising it as public.
Concealed functionality still has public visibility because there are no formal checks that can be
used to limit access to these so-called special-access variables. This makes it difficult to decide
when to promote the visibility of a private variable to concealed.

Consider mDisplayFunc as an example. How do we decide whether to keep mDisplay-
Func private or promote its visibility to concealed or even public? If we leave it as private,
developers must modify the constructor or add a member function to assign a value. If we promote
it to public visibility, then we need to document its behavior along with that of all the other public
variables. An interface description that includes many obscure or special-use functions can make
a simple class appear overwhelming. True public visibility also requires more diligence by devel-
opers to trap error conditions and protect class integrity. Concealed visibility is a gray area. There
is more latitude in the documentation as well as with safety. The answer usually comes down to
purpose and complexity. In general, it is unwise to add too much concealed functionality. You want
clients to respect the boundaries imposed by the interface, and adding a lot of concealed functionality
promotes bad habits.

8.1.2 FOR CLIENTS

We generally discourage clients from using get and set in their source code; however, during
development, get and set can provide a quick summary of the public variables. Using get and
set with graphic handles provides a good example. The command window is another example.
Open MATLAB and enter the commands get(0) and set(0) in the command window. For
reference, the first few lines of each command are shown in Code Listing 43. With get(0), you
get a display that includes all the “get-able” variables along with their current values. The output
is very similar to a structure display. With set(0), you get a display that includes all the “set-
able” variables along with a list of possible assignment values. Many times this is the only reminder
you need. The displays from graphics handles are similar. Adding this capability to every class
makes the use of objects more agreeable. With the added benefits, clients might actually prefer
objects to structures.

The outputs in Code Listing 43 are also interesting for another reason. The list of “get-able”
variables is different from the list of “set-able” variables. Just like the public variables in our objects,
certain variables are read-write while others are read-only. Now that we are comfortable with
encapsulation, we recognize this as the rule rather than an exception. Both the command window
settings and graphics handles seem much more like objects than like structures. 
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8.1.3 TAB COMPLETION

A very convenient command-line option is “tab completion.” With tab completion, you type the
first few characters of a command or variable name and hit the Tab key. At that point, MATLAB
will either fill in the rest of the command or display a list of items that begin with the characters
typed. This helps speed development and reduces the burden of remembering complete command
or variable names.

Tab completion calls on get and set to populate the name list. If we don’t implement get
and set, the name list isn’t empty. Instead, it contains the names of the class’ private variables.
An empty list would be better because the list of private names represents another breach of
encapsulation. In this case, the list of private names is also worthless. If we accept a name from
the list, we will be presented with an error message telling us that it is illegal to access an object’s
private variables. There is really no choice: we must tailor get and set for every class.

8.2 CODE DEVELOPMENT

Inside get and set, a switch statement will be used to steer the execution into the correct public
case. In fact, the switch statements needed by get and set already exist inside the dot-reference
sections of subsref and subsasgn, respectively. The function calls are a little different, but if
we grab the dot-reference switch code and wrap it in a new interface the implementation is quick
and easy. During the implementation for get and set, you will notice a lot of code duplication
between get and subsref and between set and subsasgn. In fact, the dot-reference switches
can be replaced by calls to get or set. In this chapter, the focus centers on the implementations
of get and set. In the next chapter, we will clean up code in several group-of-eight functions by
replacing in-line code with calls to fieldnames, struct, get, and set.

Code Listing 43, Output Example for Built-In get and set

1 >> get(0)
2 CallbackObject = []
3 CommandWindowSize = [134 26]
4 CurrentFigure = []
5 Diary = off
6 DiaryFile = diary
7 Echo = off
8 FixedWidthFontName = Courier
9 FormatSpacing = loose
10
11 >> set(0)
12 CurrentFigure
13 Diary: [ on | off ]
14 DiaryFile
15 Echo: [ on | off ]
16 FixedWidthFontName
17 FormatSpacing: [ loose | compact ]
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8.2.1 IMPLEMENTING GET AND SET

The implementations for get and set need to do three things: access and mutate public variables,
access and mutate concealed variables, and display summary information. To access and mutate
public variables, we will copy the switch cases from subsref and subsasgn into get and
set. To implement concealed variables, get and set need code to allow them to figure out from
where they were called. The easiest way to figure this out is to examine the format of the input
arguments. The input arguments also steer the execution to display summary information. Too few
input arguments will trigger get and set to display a summary.

Because the arguments are used to steer the execution, we need to examine them more closely.
The function definitions listing all arguments are given by the following: 

The functions are member functions, and consequently the object occupies the first argument
position. In addition, in both functions the index variable occupies the second position. The format
of index will be used to grant or deny access to the concealed variables. When index is a simple
string, get and set will allow access to concealed variables. In this case, switch statements
can use the value without modification because it already names the desired variable. When index
is not a string, get and set will deny access to concealed variables. In this case, get and set
assume a substruct format for index. The element at index (1) will specify dot-reference
so that substruct, index (1).type will be equal to ‘.’ and index (1).subs is the
string value used for the switch.

At first, allowing two formats for index might seem odd, but it turns out to be very convenient.
A typical call to get might look something like the following:

shape_size = get(shape, ‘Size’);

Here, passing the public name as the index simplifies the syntax. The simple arguments also
match the typical syntax for getfield. We don’t specify a dot-reference operator because get
is specifically tailored to return public variables. The dot-reference operator is inherent in its
operation. 

On the other hand, when a public variable is accessed using operator syntax, for example,

shape_size = shape.Size;

MATLAB automatically packages the indices into a substruct. The substruct index is
passed into subsref or subsasgn, and the dot-referenced public variable name is contained in
index(1).subs. Under these conditions, subsref and get should behave the same way. The
same is true for subsasgn and set. Because they share the same behavior, it is smart to let them
share the code that implements the behavior. One way to do this is to allow get and set to
perform the actual dot-reference indexing and let subsref call get and subsasgn call set.
We can even use the substruct index passed into subsref or subsasgn as a cue to disallow
access to concealed variables. In this chapter, we won’t make changes to subsref or subsasgn,
but we will implement get and set so that the changes are easier to make when we get to
§10.1.1.3 and §10.1.1.4.

The number of input arguments is used to select between access/mutate or summary display.
Calling get or set with only one argument, for example,

get(shape)     % shape is an object of type cShape 

set(cShape)    % constructor creates a temporary object

1 function varargout = get(this, index)
2 function varargout = set(this, index, varargin)
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results in a summary display of all “get-able” or “set-able” public variables. Calling set with two
arguments, for example,

set(cShape, ‘Size’)

results in a summary display of the indexed variable only.
When this is a scalar object, get returns one value and set assigns one value. When this

is nonscalar, get returns a cell array composed of one value from each object in the object array.
In addition, when this is nonscalar, set potentially needs more than one assignment value. In
the calling syntax, the values appear as a comma-separated list. MATLAB packages the comma-
separated arguments into individual cells of varargin.

Execution based on both the number and type of the input arguments leads to an implementation
with several logical paths. Supporting public and concealed variables adds a few more. The
implementations will be easier to follow if we first construct a high-level block diagram.

 We are now in a position to draw a high-level block diagram for these functions. The block
diagrams are shown in Figure 8.1 and Figure 8.2. The logical flow is similar for both because in
many ways they both do the same sort of things. They have to check the number of input arguments,
search the public names, determine whether concealed access is allowed, throw an error for unknown
names, and convert between public and private data. The diagram for set is a little more compli-
cated because of its support for both full and subset summary displays. Similarities allow the
implementations to share the same general structure. The initial implementations of get and set
are shown in Code Listing 44 and Code Listing 45.

FIGURE 8.1 get’s functional block diagram.
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8.2.2 INITIAL GET.M

The implementation in Code Listing 44 follows the block diagram in Figure 8.1, and much of the
code should look at least vaguely familiar. The public variable cases in lines 23–41 came directly
from the implementation of subsref in Chapter 4. 

FIGURE 8.2 set’s functional block diagram.

Code Listing 44, Initial Implementation for get.m

1 function varargout = get(this, index)
2 % one argument, display info and return
3 if nargin == 1
4 if nargout == 0
5 disp(struct(this(1)));
6 else
7 varargout = cell(1,max([1, nargout]));
8 varargout{1} = struct(this(1));
9 end
10 return;
11 end 
12
13 % if index is a string, we will allow special access
14 called_by_name = ischar(index);
15
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16 % the set switch below needs a substruct
17 if called_by_name
18 index = substruct('.', index);
19 end
20
21 % public-member-variable section
22 found = true;  % otherwise-case will flip to false
23 switch index(1).subs
24 case 'Size'
25 if isempty(this)
26 varargout = {};
27 else
28 varargout = {this.mSize};
29 end
30 case 'ColorRgb'
31 if isempty(this)
32 varargout = {};
33 else
34 rgb = hsv2rgb([this.mColorHsv]')';
35 varargout = mat2cell(rgb, 3, ones(1, size(rgb,2)));
36 end
37 otherwise
38 found = false;  % didn't find it in the public section
39 end
40
41 % concealed member variables, not strictly public
42 if ~found && called_by_name
43 found = true;
44 switch index(1).subs
45 case 'mDisplayFunc'
46 if isempty(this)
47 varargout = {};
48 else
49 varargout = {this.mDisplayFunc};
50 end
51 otherwise
52 found = false;  % didn't find it in the special 

section
53 end
54 end
55
56 if ~found
57 error(['??? Reference to non-existent field ' index(1).subs 

'.']);
58 end
59
60 if length(varargout) > 1 & nargout <= 1
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Lines 3–11 implement the true branch of the block diagram’s first decision block. On line 3,
if only one input was passed, nargin will equal 1. In the case of no requested output, line 5 uses
the tailored version of struct to obtain the public structure and then passes that structure to
disp. The net result is a display of the public elements. If outputs are requested, line 7 builds a
varargout cell array with the correct number of cells and line 8 assigns the public structure into
the first cell. Tab completion uses this behavior to obtain the public variable completion list.

If both an object and an index were passed, execution skips to line 14. Line 14 uses an
ischar test to determine whether the index is a simple name string or something else. The
value called_by_name governs concealed variable access. If index is a string,
called_by_name is true and concealed access is permitted.

Lines 17–19 give index a uniform format. There are two choices for converting index:
convert a substruct into a string or convert a string into a substruct. Lines 17–19 convert
a string into a substruct. Later, when we encounter complicated examples of private to public
conversion, the use of a substruct simplifies the implementation.

The remaining lines are organized into four functional blocks: public access (lines 22–39),
concealed access (lines 42–54), error processing (lines 56–58), and varargout conversion (lines
60–70). The variable found is used to control entry into each of these blocks. In the public variable
block, line 22 sets found to true before attempting to match the indexed name with the public
variable cases. If one of the public variable cases matches the indexed name, the case assigns public
values into varargout and found remains true. Otherwise, line 38 sets found to false.
The commands contained in each case were described line by line in Chapter 4.

Line 42 guards the concealed variable block. The guard allows entry only when the calling
syntax allows access to concealed variables and the value has not yet been found. The variable
called_by_name is true if concealed access is permitted. Once entered, the concealed variable
block operates the same as the public variable block. Of course, the cases contain concealed variable
names rather than public variable names. Line 43 sets found to true before attempting to match
the indexed name with a case. If one of the concealed variable cases matches the indexed name,
the case assigns concealed values into varargout and found remains true. Otherwise, line
52 sets found to false. Notice that on line 45, mDisplayFunc is a concealed variable.
Populating varargout with concealed values is the same as populating varargout with public
values.

Line 56 guards the field not found error. If the indexed field didn’t match an available case,
found will be false and line 57 throws an error. The syntax mimics the error message generated
when a structure is dot-referenced with a name that does not match one of its elements. If the
indexed field did match a case, found will be true and varargout will contain the indexed
values.

Finally, the size of varargout must to be repackaged to conform to the value of nargout.
Repackaging is only necessary when nargout is zero or one and the length of varargout is

61 if iscellstr(varargout) || any([cellfun('isempty', 
varargout)])

62 varargout = {varargout};
63 else
64 try
65 varargout = {[varargout{:}]};
66 catch
67 varargout = {varargout};
68 end
69 end
70 end
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larger than one. Values in varargout are concatenated according to the same rules developed
for subsref, and lines 60–70 were copied directly from Chapter 4’s implementation of subsref.

8.2.3 INITIAL SET.M

The implementation in Code Listing 45 follows the block diagram in Figure 8.2. Like get, much
of the set code will look familiar because a lot of it came directly from the implementation of
subsasgn in Chapter 4. 

Code Listing 45, Initial Design for set.m

1 function varargout = set(this, index, varargin)
2 % one argument or two arguments, display info and return
3 if nargin < 3
4 possible = fieldnames(this, '-possible');
5 possible_struct = struct(possible{:});
6 if nargout == 0
7 if nargin == 1
8 disp(possible_struct);
9 else
10 try
11 temp_struct.(index) = possible_struct.(index);
12 disp(temp_struct);
13 catch
14 warning(['??? Reference to non-existent field 

' ... 
15 index '.']);
16 end
17 end
18 else
19 varargout = cell(1,max([1, nargout]));
20 varargout{1} = possible_struct;
21 end
22 return;
23 end
24
25 called_by_name = ischar(index);
26
27 % the set switch below needs a substruct
28 if called_by_name
29 index = substruct('.', index);
30 end
31
32 % public-member-variable section
33 found = true;  % otherwise-case will flip to false
34 switch index(1).subs
35 case 'Size'
36 if length(index) > 1
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37 this.mSize = subsasgn(this.mSize, index(2:end), 
varargin{:});

38 this.mScale = subsasgn(this.mScale, index(2:end), 1);
39 else
40 new_size = zeros(2, length(varargin));
41 for k = 1:size(new_size, 2)
42 try
43 new_size(:, k) = varargin{k}(:);
44 catch
45 error('Size must be a scalar or length == 2');
46 end
47 end
48 new_size = num2cell(new_size, 1);
49 [this.mSize] = deal(new_size{:});
50 [this.mScale] = deal(ones(2,1));
51 end
52 case 'ColorRgb'
53 if length(index) > 1
54 rgb = hsv2rgb(this.mColorHsv')';
55 rgb = subsasgn(rgb, index(2:end), varargin{:});
56 this.mColorHsv = rgb2hsv(rgb')';
57 else
58 hsv = rgb2hsv([varargin{:}]')';
59 hsv = mat2cell(hsv, 3, ones(1, size(hsv,2)));
60 [this.mColorHsv] = deal(hsv{:});
61 end
62 otherwise
63 found = false;
64 end
65
66 % concealed member variables, not strictly public
67 if ~found && called_by_name
68 found = true;
69 switch index(1).subs
70 case 'mDisplayFunc'
71 if length(index) > 1
72 this.mDisplayFunc = ...
73 subsasgn(this.mDisplayFunc, ...
74 index(2:end), varargin{:});
75 else
76 [this.mDisplayFunc] = deal(varargin{:});
77 end
78 otherwise
79 found = false;  % didn't find it in the special section
80 end
81 end
82

C911X_C008.fm  Page 108  Thursday, March 1, 2007  2:24 PM



get.m, set.m 109

Lines 3–23 implement the first two true branches found in set’s block diagram and govern
the behavior of the summary display. Line 4 uses the ‘-possible’ option added to the tailored
version of fieldnames to obtain a cell array containing public names and their possible values.
The cell array format allows the struct command in line 5 to create a structure with public
names as fields and possible value strings as values. When there is no requested output, lines 7–17
format and display summary information. If only the object was passed, line 8 displays the entire
structure of public names and possible values. If both object and index were passed, line 11 uses
the index to create a temporary structure that contains only the indexed element. Line 11 can
assume that index is a string because subsasgn always passes at least three arguments. Line
12 then displays the temporary structure. If lines 11–12 cause an error, the warning on lines 14–15
is displayed. The error might not actually be the result of a nonexistent field, but it is certainly the
most likely error.

Tab completion will request an output, and lines 19–20 handle the request. Line 19 allocates
varargout with the correct number of elements, and line 20 assigns the structure of possible
values into the first element. With this structure, tab completion can populate the selection list.

If three or more arguments were passed, execution skips to line 25. Concealed access rights
and index conversion commands are identical to the code in get. Line 25 uses an ischar test
to determine whether the index is a simple name string or something else. The value
called_by_name governs concealed variable mutation. If index is a string,
called_by_name is true and concealed mutation is permitted. Lines 28–30 give index a
uniform format by converting a string index into a substruct.

Again as in get, the remaining lines are organized into three functional blocks: public access
(lines 33–64), concealed access (lines 67–81), and error processing (lines 83–85). The variable
found is used to control entry into each of these blocks. In the public variable block, line 22 sets
found to true before attempting to match the indexed name with the public variable cases. If
one of the public variable cases matches the indexed name, the case assigns input values into the
indexed variable of this and found remains true. Otherwise, line 38 sets found to false.
The commands contained in each case were described line by line in Chapter 4. Different from
the Chapter 4 description is how the input values are indexed. In subsasgn, access-operator
conversion reverses the order of the input values. With set, there is no operator conversion and
the input values are correctly ordered.

Line 67 guards the concealed variable block. The guard allows entry only when the calling
syntax supports concealed variables mutation and the indexed name has not yet been found. The
variable called_by_name is true if concealed mutation is permitted. Once entered, the concealed
variable block operates the same as the public variable block. Of course, the cases contain concealed
variable names rather than public variable names. Line 68 sets found to true before attempting
to match the indexed name with a case. If one of the concealed variable cases matches the indexed
name, the case assigns input values into the indexed variable of this and found remains true.
Otherwise, line 79 sets found to false. Notice that on line 70, mDisplayFunc is a writeable
concealed variable. The only difference between this case and the case described in Chapter 4 is
the index order of the input values.

Line 83 guards the field not found error. If the indexed field didn’t match an available case,
found will be false and line 84 throws an error. The syntax mimics the error message generated

83 if ~found
84 error(['??? Reference to non-existent field ' 

index(1).subs '.']);
85 end
86
87 varargout{1} = this;
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when a structure is dot-referenced with a name that does not match one of its elements. If the
indexed field matches a case, found will be true and this will contain mutated values. Line
87 returns this as the first and only element of varargout even when nargout==0. 

8.3 THE TEST DRIVE

In the test drive, we will test both the typical string-name syntax and the substruct syntax. In
the next chapter, the substruct syntax option will be used to support subsref and subsasgn,
and we need to make sure get and set are ready. We will use the values from the test drive in
Chapter 4. Instead of dot-reference operators, we will use calls to get and set. We can also use
mDisplayFunc to experiment with concealed variables. Some commands and outputs for get
and set are shown in Code Listing 46 and Code Listing 47. 

Code Listing 46, Chapter 8 Test Drive Command Listing for set.m

1 >> cd 'C:/oop_guide/chapter_8'
2 >> clear classes; fclose all; close all force; diary off; clc;
3 >> shape(1) = cShape; 
4 >> shape(2) = shape(1);  
5 >> shape(2:3) = [shape(1) shape(2)]; 
6 >> shape(2) = set(shape(2), 'Size', [2;3]); 
7 >> shape(2) = set(shape(2), substruct('.', 'Size'), [2;3]); 
8 >> shape = set(shape, 'Size', [10;11], [20;21], [30;31]); 
9 >> shape(2) = set(shape(2), 'ColorRgb', [0 1 0]'); 
10 >> shape(3) = set(shape(3), 'ColorRgb', [0 0.5 0.5]'); 
11 >> set(shape)
12 Size: {'double array (2x1)'}
13 ColorRgb: {'double array  (3x1)'}
14 >> set(shape, 'Size')
15 Size: {'double array (2x1)'}
16 >> shape = set(shape, 'mDisplayFunc', 'developer_view'); 
17 >> shape(1)
18 ----- Public Member Variables -----
19 ans = 
20 Size: [2x1 double]
21 ColorRgb: [3x1 double]
22 ..... Private Member Variables .....
23 ans(1).mSize = [10  11]';
24 ans(1).mScale = [1  1]';
25 ans(1).mColorHsv = [0.66667           1           1]';
26 ans(1).mDisplayFunc = 'developer_view';
27 >> shape(1) = set(shape(1), substruct('.', 'mDisplayFunc'), 

[]);
28 ??? Error using ==> cShape.set
29 ??? Reference to non-existent field mDisplayFunc.
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Line 1 changes to this chapter’s directory, and line 2 clears the workspace. Lines 3–5 construct
an object array. Line 6 sets shape(2)’s ‘Size’ public variable using name-string syntax, and
line 7 repeats the command using substruct syntax. Lines 8–10 assign values we will check
when we get to display public variables. Line 11 demonstrates the one-input summary display.
Lines 12–13 display the public variable names along with the allowed value syntax. Line 14
demonstrates the output of an indexed summary display. The output on line 15 matches the first
line of the one-input summary display. Line 16 sets the concealed variable ‘mDisplayFunc’,
and lines 17–26 demonstrate the resulting expanded output. Notice that line 16 mutated all three
objects in the array even though only one input value was provided. For reference, line 8 supplied
three input values. Line 27 attempts to set ‘mDisplayFunc’ using substruct syntax. Lines
28–29 correctly complain that ‘mDisplayFunc’ is not a field. This is correct because sub-
struct syntax can’t be used to mutate concealed variables. 

Lines 1–4 confirm that set does not need to reverse the input values. The values are correct,
but the line 1 outputs are concatenated because nargout is zero. Lines 5–14 confirm that RGB
values written into the object are the same values accessed. Finally, lines 15–17 demonstrate the
use of get’s summary display.

8.4 SUMMARY

In this chapter, we closed all the remaining holes in MATLAB’s default encapsulation. Defining
get and set enables effective tab completion, provides a handy summary of the public member
variables, introduces concealed variable visibility, and gives class developers a friendly syntax for
accessing public variables. The implementations for get and set borrow heavily from Chapter
4, but the code is better organized. The organization will immediately allow simplifications to
subsref and subsasgn. Later the organization will easily support inheritance. 

The previous few chapters added many pieces to the implementation, but we have neglected
to add those pieces to our puzzle. With recent additions of fieldnames, struct, get, and
set, every group-of-eight function has an initial implementation. We can and we will improve

Code Listing 47, Chapter 8 Test Drive Command Listing for get.m

1 >> get(shape, 'Size')
2 ans =
3 10    20    30
4 11    21    31
5 >> get(shape(2), 'ColorRgb')
6 ans =
7 0
8 1
9 0
10 >> get(shape(3), 'ColorRgb')
11 ans =
12 0
13 5.0000e-001
14 5.0000e-001
15 >> get(shape)
16 Size: [2x1 double]
17 ColorRgb: [3x1 double]
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them, but now that all have an implementation, the frame of the puzzle is complete. A picture of
our progress is shown in Figure 8.3. The rest of the development focuses on improving what we
have already developed and on extending the scope of the framework.

8.5 INDEPENDENT INVESTIGATIONS

1. Give get the ability to accept a cellstr with multiple public member variable names.
How should return values be organized? Is it a lot easier to support scalar objects
compared to general object arrays?

2. Give set the ability to accept a cellstr with multiple public member variable names
and a cell array of input values. How does object array support complicate the code?

FIGURE 8.3 All the pieces of the frame are in place.
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9

 

Simplify Using get, set, 
fieldnames, and struct

 

Throughout this section, we have developed the implementations for a small but very important
collection of member functions. In their order of development, the functions belonging to this so-
called group-of-eight are as follows:

1. default constructor (e.g., 

 

cShape

 

)
2.

 

subsref

 

3.

 

subsasgn

 

4.

 

display

 

5.

 

fieldnames

 

6.

 

struct

 

7.

 

get

 

8.

 

set

 

For the current implementations, we considered the following two goals: 

1. Make the class interface mimic the built-in structure interface.
2. Coerce MATLAB to do as much of the work as possible.

For the most part, the group of eight successfully reproduces a structure-like interface. It takes all
eight to produce a robust reproduction. The reproduction is so good that in many cases, clients will
not even be aware they are using objects. The group of eight also takes maximum advantage of
function-search rules to allow MATLAB to find and use built-in functions. Learning how to use
an obscure built-in function is always preferable to developing a new function. 

Before we start using the group-of-eight functions, we need to add another constraint and revisit
our earlier implementations. This second pass will create a collection of bulletproof functions that
can be used to create a safe alternative to structures. The additional constraint is to 

• collect class-specific code into the smallest possible set of functions.

Certainly low-level functions like 

 

fieldnames

 

, 

 

get

 

, and 

 

set

 

 need to include class-specific
code, but 

 

subsref

 

, 

 

subsasgn

 

, and 

 

display

 

 may not.
In their current states, implementations for 

 

subsref

 

, 

 

subsasgn

 

, and 

 

display

 

 contain
class-specific code simply because they were developed first. In this chapter, we revisit these
functions and make them class independent. By the end of this chapter, half the functions in the
group of eight can be copied from class to class with no additional class-specific tailoring. This
situation represents reuse at its best. The four functions are 

 

struct

 

, 

 

subsref

 

, 

 

subsasgn

 

, and

 

display

 

. We spent a lot of time and effort designing and developing the implementations, and
it is comforting to realize that a lot of that work will never be repeated.
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9.1 IMPROVING SUBSREF.M

 

The improved implementation for 

 

subsref

 

 is included in Code Listing 48. The primary difference
between this version and the version in §4.1.3 occurs in the dot-reference case. Lines 5–9 are
different, and only those lines are described below. A detailed description of the other lines can be
found in §4.1.3. Rather than including a case for each public variable name, public values are
accessed using 

 

get

 

. By eliminating the public-name cases, 

 

subsref

 

 no longer contains class-
specific code. 

 

Code Listing 48, Improved Implementation for subsref.m

 

1 function varargout = subsref(this, index)
2
3 switch index(1).type
4 case '.'
5 if isempty(this)
6 varargout = cell(0);
7 else
8 varargout = cell(1, max(length(this(:)), nargout));
9 end
10 try
11 [varargout{:}] = get(this, index);
12 catch
13 rethrow(lasterror);
14 end
15
16 if length(index) > 1
17 if length(this) == 1
18 varargout = {subsref([varargout{:}], index(2:end))};
19 else
20 [err_id, err_msg] = array_reference_error(index(2). 

type);
21 error(err_id, err_msg);
22 end
23 end
24
25 case '()'
26 this_subset = this(index(1).subs{:});
27 if length(index) == 1
28 varargout = {this_subset};
29 else
30 % trick subsref into returning more than 1 ans
31 varargout = cell(size(this_subset));
32 [varargout{:}] = subsref(this_subset, index 

(2:end));
33 end
34
35 case '{}'

 

C911X_C009.fm  Page 114  Thursday, March 1, 2007  2:28 PM



 

Simplify Using get, set, fieldnames, and struct

 

115

 

Lines 5–9 preallocate the output cell array. When 

 

get

 

 is called in line 11, the length of

 

varargout

 

 will determine 

 

get

 

’s value of 

 

nargout

 

. Preallocation is important because it tricks
MATLAB into passing the proper 

 

nargout

 

 value. If the object is empty, line 6 preallocates an
empty 

 

varargout

 

. Otherwise, line 8 preallocates using the maximum of the number of objects
in the array or 

 

subsref

 

’s 

 

nargout

 

 value.
The call to 

 

get

 

 in line 11 is surrounded by a 

 

try-catch

 

 statement. If a “field not found”
error occurs during the call to 

 

get

 

, line 13 catches and rethrows the error. The 

 

rethrow

 

 allows
the execution to halt inside 

 

subsref

 

 rather than deep within some unknown member function.

 

9.2 IMPROVING SUBSASGN.M

 

The improved implementation for 

 

subsasgn

 

 is included in Code Listing 49. The primary differ-
ence between this version and the version in §4.1.4 occurs in the dot-reference case, but the array-
reference case also includes some changes. Only the changes are described below. A detailed
description of the other lines can be found in §4.1.4. Rather than including a case for each public
variable name, public values are mutated using 

 

set

 

. By eliminating the public name cases,

 

subsasgn

 

 no longer contains class-specific code. We are also careful to keep the array reference
changes non-class-specific. 

 

36 error(['??? ' class(this) ' object, is not a cell 
array']);

37
38 otherwise
39 error(['??? Unexpected index.type of ' index(1).type]);
40 end
41
42 if length(varargout) > 1 & nargout <= 1
43 if iscellstr(varargout) || any([cellfun('isempty', 

varargout)])
44 varargout = {varargout};
45 else
46 try
47 varargout = {[varargout{:}]};
48 catch
49 varargout = {varargout};
50 end
51 end
52 end

 

Code Listing 49, Improved Implementation for subsasgn.m

 

1 function this = subsasgn(this, index, varargin)
2
3 switch index(1).type
4 case '.'
5 try
6 this = set(this, index, varargin{end:-1:1});
7 catch
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Replacing the public member cases is the call to 

 

set

 

 on line 6. Notice the index reversal on
the input values contained in 

 

varargin

 

. Field not found errors are caught and rethrown by line
8. The 

 

rethrow

 

 allows the execution to halt inside 

 

subsasgn

 

 rather than deep within some
unknown member function.

Lines 12–19 correct a potential error that might occur when array-access mutation is used on
an empty object. The variable is still identified as an object even though one or more of its
dimensions is zero. Under the empty object condition, line 15 gets the class name with

 

class(this)

 

 and uses 

 

eval

 

 to invoke the constructor. Lines 12–19 also correct a potential
error condition where 

 

this

 

 is completely empty (i.e., 

 

[]

 

) and 

 

subsasgn

 

 was selected based on

 

varargin

 

’s type rather than 

 

this

 

. The use of either 

 

superiorto

 

 or 

 

inferiorto

 

 can lead
to this condition. In this situation, line 17 gets the class name with 

 

class(varargin{1})

 

 and
uses 

 

eval

 

 to invoke the constructor. The 

 

isa

 

 check in line 14 allows 

 

this

 

 to be properly assigned
with a default value regardless of which argument directed the call.

 

9.3 IMPROVING DISPLAY.M

 

The improved implementation for 

 

display

 

 is included in Code Listing 50. The modified display
replaces the use of public variable names with calls to struct and fieldnames. These changes
show up in the standard_view subfunction. The format for developer_view also changes
slightly. 

8 rethrow(lasterror);
9 end
10
11 case '()'
12 if isempty(this)
13 % due to superiorto, need to look at this and varargin
14 if isa(this, mfilename('class'))
15 this = eval(class(this));
16 else
17 this = eval(class(varargin{1}));
18 end
19 end
20 if length(index) == 1
21 this = builtin('subsasgn', this, index, varargin{:});
22 else
23 this_subset = this(index(1).subs{:});  % get the subset
24 this_subset = subsasgn(this_subset, index(2:end), 

varargin{:}); 
25 this(index(1).subs{:}) = this_subset; % put subset back
26 end    
27
28 case '{}'
29 error(['??? ' class(this) ' object, is not a cell 

array']);
30
31 otherwise
32 error(['??? Unexpected index.type of ' index(1).type]);
33 end
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Code Listing 50, Improved Implementation for display.m

1 function display(this, display_name)
2
3 if nargin < 2
4 % assign 'ans' if inputname(1) empty
5 display_name = inputname(1);
6 if isempty(display_name)
7 display_name = 'ans';
8 end
9 end
10
11 % check whether mDisplayFunc has a value
12 % if it has a value feval the value to get the display
13 DisplayFunc = cell(size(this));
14 [DisplayFunc{:}] = get(this, 'mDisplayFunc');
15 use_standard_view = cellfun('isempty', DisplayFunc(:));
16 if all(use_standard_view)
17 standard_view(this, display_name);
18 else
19 for k = 1:length(this(:))
20 if use_standard_view(k)
21 standard_view(this(k), display_name);
22 else
23 indexed_display_name = sprintf('%s(%d)', display_name, 

k);
24 feval(get(this(k), 'mDisplayFunc'), this(k), indexed_ 

display_name);
25 end
26 end
27 end
28
29 % --------------------------
30 function standard_view(this, display_name)
31 if ~isempty( ...
32 [strfind(display_name, '.') ...
33 strfind(display_name, '(') ...
34 strfind(display_name, '{')])
35 display_name = 'ans';
36 end    
37 % handle scalar vs. non-scalar this
38 % note: if isempty(this), jumps to else
39 if length(this) == 1  % scalar case 
40 % use eval to assign public struct into display_name 

variable
41 eval([display_name ' = struct(this);']);
42 % use eval to call display on the display_name structure
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Lines 13–14 and 24 substitute a get call for mDisplayFunc for the previous dot-reference
access. Using get helps decouple display from the object’s structure. In line 41, a call to the
tailored version of struct replaces previous calls to subsref and get. The use of struct
eliminates the need to build the structure inside standard_view. For nonscalar object arrays,
line 52 gets a list of variable names using the tailored version of fieldnames and lines 54–56
loop over the list writing each name in the command window. The use of fieldnames eliminates
the need to code the public variable names into standard_view.

Inside developer_view, line 66 uses full_display to format and display the public
structure. Often this results in a longer display with more data. With this change, the public display
format matches the private display format and the result is easier to read. Commands in the test
drive demonstrate developer_view’s new output.

9.4 TEST DRIVE

An important part of encapsulation is the ability to improve the private implementation without
upsetting client code. In this chapter, we made significant changes to three core interface functions.
If encapsulation works, we should be able to repeat the commands from Chapter 4 and get the
same results from subsref and subsasgn. The commands in Code Listing 51 are indeed the
same commands used in Chapter 4. Except for the output of the display commands, the results
are identical. In Chapter 4, the tailored version of display did not yet exist, so we got a cryptic
output from the built-in version. Now that we have a tailored version, the outputs on lines 62–66
and 68–70 display the same information we would get from a structure. 

43 eval(['display(' display_name ');']);
44 else  % array case
45 % use eval to assign this into display_name variable
46 eval([display_name ' = this;']);
47 % use eval to call builtin display for size info
48 eval(['builtin(''display'', ' display_name ');']);
49 % still need to display variable names explicitly
50 disp('    with public member variables:');
51 % get list of public names with fieldname 
52 names = fieldnames(this);
53 % loop over the name list and display
54 for name = names'
55 disp(['        ' name{1}]);
56 end
57 % display extra line if loose
58 if strcmp(get(0, 'FormatSpacing'), 'loose')
59 disp(' ');
60 end
61 end
62
63 % --------------------------
64 function developer_view(this, display_name)
65 disp('----- Public Member Variables -----');
66 full_display(struct(this), display_name);
67 disp('..... Private Member Variables .....');
68 full_display(builtin('struct', this), display_name, true);
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Code Listing 51, Chapter 9 Test Drive Command Listing: A Repeat of the Commands 
from Chapter 4

1 >> cd 'C:/oop_guide/chapter_9'
2 >> clear classes; fclose all; close all force; diary off;
3 >> set(0, 'FormatSpacing', 'compact')
4 >> shape = cShape; 
5 >> shape(2) = shape(1);
6 >> shape(2:3) = [shape(1) shape(2)];
7 >> shape(2).Size = [2;3];
8 >> shape(2).Size(1) = 20;
9 >> [shape(2:3).Size] = deal([20], [30 31]);
10 ??? Too many outputs requested.  Most likely cause is missing 

[] around
11 left hand side that has a comma separated list expansion.
12
13 >> [shape.Size] = deal([10;11], [20], [30 31]);
14 >> temp = shape(3);
15 >> shape(3) = [];
16 >> shape = [shape temp];
17
18 >> shape(2).ColorRgb = [0 1 0]';
19 >> shape(3).ColorRgb = [0 0.5 0.5]';
20 >> shape(3).ColorRgb(3) = 1.0;
21 >> 
22 >> ShapeCopy = shape;
23 >> OneShape = shape(2);
24 >> ShapeSubSet = shape(2:3);
25 >> ShapeSize = shape(2).Size
26 ShapeSize =
27 20
28 20
29 >> ShapeSize = [shape(:).Size]
30 ShapeSize =
31 10    20    30
32 11    20    31
33 >> ShapeSize = [shape.Size]
34 ShapeSize =
35 10    20    30
36 11    20    31
37 >> ShapeSize = {shape(:).Size}  
38 ShapeSize =
39 [2x3 double]
40 >> ShapeSize = {shape.Size}
41 ShapeSize = 
42 [2x1 double]    [2x1 double]    [2x1 double]
43 >> ShapeHorizSize = shape(2).Size(1)
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The display outputs on lines 62–66 and 68–70 above represent a vast improvement over the
outputs from the built-in version. With developer_view, the output will display values. This
is true even for object arrays and oddly shaped variables. The output from developer_view is
shown in Code Listing 52. Line 1 uses set to assign a display-format function. We can’t use a
dot-reference operator because ‘mDisplayFunc’ is a concealed variable. Line 2 displays the
entire object array. There are three objects in the array, and developer_view shows the contents
of all three. The output can be seen in lines 3–26. Unlike the normal display format, this output
is formatted to look like a normal MATLAB command. Display lines can be cut from public
member variable sections and pasted into a command line or into client code. The output also
displays the names and values for both public and private variables. The display is a violation of
encapsulation, but it is easy to see how this output format can be useful during debugging, testing,
and quality assurance. Line 28 displays only the first array element. The output format in lines
29–36 uses the same format but limits the number of elements. 

44 ShapeHorizSize =
45 20
46 >> [shape.ColorRgb]
47 ans =
48 0         0         0
49 0    1.0000    0.5000
50 1.0000         0    1.0000
51 >> shape(1) = 1.5 * shape(1) * [2; 3];
52 >> shape(1).Size
53 ans =
54 3.0000e+001
55 4.9500e+001 
56 >> shape(1) = reset(shape(1));
57 >> shape(1).Size
58 ans =
59 10
60 11
61 >> display(shape)
62 shape = 
63 cShape object: 1-by-3
64 with public member variables:
65 Size
66 ColorRgb
67 >> display(shape(1))
68 ans = 
69 Size: [2x1 double]
70  ColorRgb: [3x1 double]

Code Listing 52, Chapter 9 Additional Test-Drive Commands

1 >> shape = set(shape, 'mDisplayFunc', 'developer_view');
2 >> display(shape)
3 -----  Public Member Variables  -----
4 shape(1).Size = [10  11]';
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9.5 SUMMARY

In this chapter, we didn’t add any new functionality to group-of-eight functions; however, we
significantly improved the overall organization. Half of the group is now completely class inde-
pendent. This is important because subsref, subsasgn, struct, and display will never
suffer from errors due to class-to-class tailoring. It also improves our ability to maintain and evolve
each class because changes affect fewer functions. As we move into the next section, we will
continue to isolate class-specific code into specific files and then use those files to make member
functions easier to maintain.

The chapters in this section have stressed the importance of encapsulation, and most of our
work has centered on improving MATLAB’s default encapsulation. All that work paid off. In this
chapter, we were able to improve the private implementation without upsetting the format or output
of earlier commands. Commands from Chapter 4 continue to work exactly as before.

5 shape(1).ColorRgb = [0  0  1]';
6 .....  Private Member Variables  .....
7 shape(1).mSize = [10  11]';
8 shape(1).mScale = [1  1]';
9 shape(1).mColorHsv = [0.66667           1           1]';
10 shape(1).mDisplayFunc = 'developer_view';
11 -----  Public Member Variables  -----
12 shape(2).Size = [20  20]';
13 shape(2).ColorRgb = [0  1  0]';
14 .....  Private Member Variables  .....
15 shape(2).mSize = [20  20]';
16 shape(2).mScale = [1  1]';
17 shape(2).mColorHsv = [0.33333           1           1]';
18 shape(2).mDisplayFunc = 'developer_view';
19 -----  Public Member Variables  -----
20 shape(3).Size = [30  31]';
21 shape(3).ColorRgb = [0         0.5           1]';
22 .....  Private Member Variables  .....
23 shape(3).mSize = [30  31]';
24 shape(3).mScale = [1  1]';
25 shape(3).mColorHsv = [0.58333           1           1]';
26 shape(3).mDisplayFunc = 'developer_view';
27 >>
28 >> display(shape(1))
29 -----  Public Member Variables  -----
30 ans(1).Size = [10  11]';
31 ans(1).ColorRgb = [0  0  1]';
32 .....  Private Member Variables  .....
33 ans(1).mSize = [10  11]';
34 ans(1).mScale = [1  1]';
35 ans(1).mColorHsv = [0.66667           1           1]';
36 ans(1).mDisplayFunc = 'developer_view';
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9.6 INDEPENDENT INVESTIGATIONS

1. Create a new display function called expanded_view that uses full_display
format to display an object’s public variables only.

2. Build an object array and set some elements to use ‘expanded_view’, set others to
use ‘develope_view’, and leave a few set with the default view. Now display the
whole object array and observe the output. If you don’t like the format, improve it.

3. Remove the class call from the constructor and try to create a cShape object. Do
you get an object back from the constructor? What happens to the public variables? Is
this behavior potentially useful?
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10

 

Drawing a Shape

 

Before we leave this section, let’s have some fun. For a shape, one of the first things you think
about is “What does it look like?” Acting on that thought by drawing the shape object in a figure
window exercises private member variables associated with the shape’s size, scale, and color. The
old cliché about a picture painting a thousand words means we can tell at a glance when the values
are in the correct range. Drawing the shape also opens the door to many other class considerations.
For example, we should update the drawing when the size, scale, or color changes. Encapsulation
allows us to easily detect these changes and redraw the figure. Of course, we can’t draw anything
until we answer the question “What sort of shape do we draw?” Do we draw a square, a circle, or
some random shape? Our current shape class doesn’t include any sort of data to help answer that
question. We need to add some member variables, and that forces us to think about generalizing a

 

draw

 

 member function.

 

10.1 READY, SET, DRAW

 

We know the shape’s size and its color, but we can’t draw it because we don’t know what it looks
like. The possibilities are endless. There are lines, squares, circles, and even stars. There are open
shapes, closed shapes, convex shapes, and concave shapes. You certainly have to wonder whether
it’s possible to generalize all shapes into a small number of member variables and a single 

 

draw

 

function. Even if such a generalization were possible, the implementation would be very difficult.
In this chapter, we are going to keep things simple. Here is the plan. 

We will define a private member variable called 

 

mPoints

 

 and a public member function
named 

 

draw

 

. The variable will hold a 2 

 

×

 

 

 

n

 

 array of x–y corner points, one corner per column.
The 

 

draw

 

 function will create a figure window and plot the corner points using solid, straight-line
segments. The first corner will be stored in 

 

mPoints(:,1)

 

, and the last in 

 

mPoints(:,end)

 

.
If the shape is supposed to be closed, 

 

mPoints(:,1)

 

 must be equal to 

 

mPoints(:,end)

 

.
This plan will get us started, with the details worked out during the implementation.

 

10.1.1 I

 

MPLEMENTATION

 

The plan calls for a new private member variable, 

 

mPoints

 

. Anytime a private variable is added
to a class, we need to consider how that change affects the four class-dependent members of the
group of eight. The constructor will always change because the new private variable needs to be
added to the private structure and initialized. Changes to the other three — 

 

fieldnames

 

, 

 

get

 

,
and 

 

set

 

 — depend on the desired interface. In this case, a public variable named 

 

Points

 

 will
be used to read and write the array of corner points. With both read and write permission, the new
public variable imposes changes on all three.

A new member variable, public or private, also causes us to consider its effect on member
functions outside the group of eight. Currently this includes two functions, 

 

mtimes

 

 and 

 

reset

 

.
Since both functions modify 

 

mScale

 

, it is possible that both functions will need to modify

 

mPoints

 

.
Additional functionality can also impose changes to the interface, and adding draw capability

represents a major upgrade in functionality. The definition for 

 

draw

 

 is simple but the implications
arising from 

 

draw

 

 are not. From the client’s perspective, the syntax is simple, given by

 

shape = draw(shape);
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Not as simple is the behavior. There are a number of questions to consider. For example:

• If 

 

draw

 

 is called more than once for the same object, should 

 

draw

 

 open a new figure
every time or reuse the existing figure?

• If the length of the object array is greater than 1, should each element get its own figure
or should all objects in the array be drawn in the same figure?

• If 

 

mSize

 

, 

 

mScale

 

, 

 

mColorHsv

 

, or 

 

mPoints

 

 changes, should the object automati-
cally redraw itself?

• Should 

 

reset

 

 also close an object’s figure?

There is no definitive right or wrong answer to any of these questions. It is also very interesting
that we can even consider the idea of an object redrawing itself. With structures, this would not be
an option. The selected answers and some of their implications are as follows:

• If 

 

draw

 

 is called more than once for the same object, the object should reuse its existing
figure. Reusing a figure requires each object to save a handle to the appropriate figure
window. The handle is saved in a private variable named 

 

mFigureHandle

 

. If 

 

mFig-
ureHandle

 

 is empty, the object should open a new figure.
• If the length of the object array is greater than 1, all objects in the array should be drawn

in the same figure. Each element in the object array can stand on its own because each
saves a copy of the figure handle. When array elements are pulled out of an array or
when arrays are concatenated, mismatches in the handle values can occur. If a mismatch
is detected during a draw, the object should close all mismatched figures and open a new
figure window. We will live with the consequences of any other mismatched situation.

• If 

 

mSize

 

, 

 

mScale

 

, 

 

mColorHsv

 

, or 

 

mPoints

 

 changes, the object should definitely
redraw itself. To support redraw, a handle to each object’s line plot will be saved in a
private variable named 

 

mPlotHandle

 

. With access to the plot handle, colors and even
x–y values can be changed without having to redraw the entire figure. Initially,

 

mPlotHandle

 

 will be empty.
• Calling 

 

reset

 

 on an object should close its figure window and assign empty into both

 

mFigureHandle

 

 and 

 

mPlotHandle

 

.

Adding all of this functionality requires changes to the constructor, 

 

fieldnames

 

, 

 

get

 

, 

 

set

 

,

 

mtimes

 

, and 

 

reset

 

. We will discuss each file’s changes in that order. The implementation of

 

draw

 

 will be discussed last. As always, after we make these changes and additions we will take
the class out for a test drive.

 

10.1.1.1 Modify the Constructor

 

The modified constructor is shown in Code Listing 53. At first glance, it appears that a lot has
changed. Primarily, this appearance is due to the structure being initialized element by element
rather than passing all the names and initial values into a single 

 

struct

 

 call. There are two reasons
for this change. First, when an initial value is a cell array, the syntax for element-by-element
construction is a lot easier. Second, earlier versions of MATLAB had difficulty with name–value
syntax when a constructor had to be called to obtain an initial value. Changing to element-by-
element construction allows non-built-in types to be used as private variables. Element-by-element
construction is a little less run-time efficient, and some of the functional changes in Code Listing
53 improve run-time performance. 

Line 2 demonstrates a class-independent way to get the class name using 

 

mfilename

 

 with
the 

 

‘class’

 

 option. Any member function can use the 

 

mfilename

 

 technique, although it is
particularly convenient in the constructor because there is no input object that can be queried using
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class

 

. Line 4 declares 

 

default_this

 

 as persistent, lines 5–18 fill the persistent variable with
values, and line 19 returns the persistent value in 

 

this

 

. Holding a copy of the default-valued
object can significantly improve run time. This is particularly true for complicated classes and run-
time-intensive initialization.

New private variables are also included in the class, and lines 11–14 add the new variables and
initialize their values. Lines 11–12 add the private variable 

 

mPoints

 

 and initialize it with a
collection of corners. The corner points line on the unit circle separated by 144˚. When the corners
are plotted in order, a star is drawn. Lines 13–14 add the private variables 

 

mFigureHandle

 

 and

 

mPlotHandle

 

 and initialize both to empty. Drawing the object assigns nonempty values into
these variables.

 

10.1.1.2 Modify fieldnames

 

The modified version of 

 

fieldnames

 

 is shown in Code Listing 54. Lines 3, 9, and 13 now contain
the new public variable 

 

Points

 

. We don’t expect much use of the 

 

‘-full’

 

 option, but the

 

‘-possible’

 

 option is used to format the set summary display. Line 13 provides a convenient
reminder that the size of the corner point array needs to be 2 × n. 

10.1.1.3 Modify get

The modified version of get is shown in Code Listing 55. The changes found on lines 37–42 are
very easy because they follow the same pattern used by the other public variables. In the case of

Code Listing 53, Improving the Constructor Implementation

1 function this = cShape
2 class_name = mfilename('class');
3
4 persistent default_this
5 if isempty(default_this)
6 % piece-meal create to avoid object and cell problems
7 default_this = struct([]);  % initially empty structure
8 default_this(1).mSize = ones(2,1); % scaled [width height]’
9 default_this(1).mScale = ones(2,1); % [width height]’ scale 

factor
10 default_this(1).mColorHsv = [2/3; 1; 1]; % [H S V]’ default 

is blue
11 default_this(1).mPoints = ...
12 [imag(exp(j*(0:4:20)*pi/5)); real(exp(j*(0:4:20)*pi/5))];
13 default_this(1).mFigureHandle = []; % handle for shape's 

figure window
14 default_this(1).mPlotHandle = [];   % handle for shape's 

line plot
15 default_this(1).mDisplayFunc = [];  % handle for non-default 

display
16 default_this = class(default_this, class_name);
17 superiorto('double');
18 end
19 this = default_this;
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Code Listing 54, Improved Implementation of fieldnames.m

1 function names = fieldnames(this, varargin)
2 if nargin == 1
3 names = {'Size' 'ColorRgb' 'Points'}';
4 else
5 switch varargin{1}
6 case '-full'
7 names = {'Size % double array' ...
8 'ColorRgb % double array' ...
9 'Points % double array'}';
10 case '-possible'
11 names = {'Size' {{'double array (2x1)'}} ...
12 'ColorRgb' {{'double array  (3x1)'}} ...
13 'Points' {{'double array  (2xN)'}}}';
14 otherwise
15 error('Unsupported call to fieldnames');
16 end
17 end

Code Listing 55, Improved Implementation of get.m

1 function varargout = get(this, index)
2
3 if nargin == 1 % one argument, display info and return
4 if nargout == 0
5 disp(struct(this(1)));
6 else
7 varargout = cell(1,max([1, nargout]));
8 varargout{1} = struct(this(1));
9 end
10 return;
11 end 
12
13 % if index is a string, we will allow special access
14 called_by_name = ischar(index);
15
16 % the set switch below needs a substruct
17 if called_by_name
18 index = substruct('.', index);
19 end
20
21 % public-member-variable section
22 found = true;  % otherwise-case will flip to false
23 switch index(1).subs
24 case 'Size'
25 if isempty(this)
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26 varargout = {};
27 else
28 varargout = {this.mSize};
29 end
30 case 'ColorRgb'
31 if isempty(this)
32 varargout = {};
33 else
34 rgb = hsv2rgb([this.mColorHsv]')';
35 varargout = mat2cell(rgb, 3, ones(1, size(rgb,2)));
36 end
37 case 'Points'
38 if isempty(this)
39 varargout = {};
40 else
41 varargout = {this.mPoints};
42 end
43 otherwise
44 found = false;  % didn't find it in the public section
45 end
46
47 % concealed member variables, not strictly public
48 if ~found && called_by_name
49 found = true;
50 switch index(1).subs
51 case 'mDisplayFunc'
52 if isempty(this)
53 varargout = {};
54 else
55 varargout = {this.mDisplayFunc};
56 end
57 otherwise
58 found = false;  % didn't find it in the special 

section
59 end
60 end
61
62 if ~found
63 error(['??? Reference to non-existent field ' 

index(1).subs '.']);
64 end
65
66 if length(varargout) > 1 & nargout <= 1
67 if iscellstr(varargout) || any([cellfun('isempty', 

varargout)])
68 varargout = {varargout};
69 else
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an empty object, line 39 returns nothing. For a nonempty object, line 41 packs each object’s
mPoints array into a separate cell and returns them to the caller.

10.1.1.4 Modify set

The modified version of set is shown in Code Listing 56. The changes to set are more extensive
compared to those for get because the figure window only changes when member variables are
changed. The biggest change occurs in lines 75–93, where the new Points public variable is
implemented. Line 77 throws an error when indexing deeper than the first dot-reference level is
detected. This is different from what we have done in the past, and it incrementally moves the class
interface away from the look and feel of a structure. Later, if we decide to support individual
element mutation, that code would replace the error message. Lines 79–83 check the size of each
input array. If the first dimension is not two, an error is thrown. If the input sizes are okay, line 84
deals the input arrays into mPoints. Finally, lines 86–93 update the figure. For all objects in the
array, line 87 gets a copy of the corner points and lines 89–91 assign the x–y data into each object’s
plot handle. Notice that public Points are being used for the plot. Either public or private values
could be used because they represent the same array. To avoid errors caused by invalid handles,
the set command occurs inside a try statement. For example, if a client closes a figure by clicking
the close box, mPlotHandle will contain an invalid handle. If the handle is empty, nothing
happens and no error is thrown. After the client requests a draw, however, the figure is kept up-to-
date when an object’s Points change. 

70 try
71 varargout = {[varargout{:}]};
72 catch
73 varargout = {varargout};
74 end
75 end
76 end

Code Listing 56, Improved Version of set.m

1 function varargout = set(this, index, varargin)
2
3 if nargin < 3  % one or two arguments, display info and return
4 possible = fieldnames(this, '-possible');
5 possible_struct = struct(possible{:});
6 if nargout == 0
7 if nargin == 1
8 disp(possible_struct);
9 else
10 try
11 temp_struct.(index) = possible_struct.(index);
12 disp(temp_struct);
13 catch
14 warning(['??? Reference to non-existent field ' ... 
15 index '.']);
16 end
17 end
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18 else
19 varargout = cell(1,max([1, nargout]));
20 varargout{1} = possible_struct;
21 end
22 return;
23 end
24
25 called_by_name = ischar(index);
26
27 % the set switch below needs a substruct
28 if called_by_name
29 index = substruct('.', index);
30 end
31
32 % public-member-variable section
33 found = true;  % otherwise-case will flip to false
34 switch index(1).subs
35 case 'Size'
36 if length(index) > 1
37 this.mSize = subsasgn(this.mSize, index(2:end), 

varargin{:});
38 this.mScale = subsasgn(this.mScale, index(2:end), 1);
39 else
40 new_size = zeros(2, length(varargin));
41 for k = 1:size(new_size, 2)
42 try
43 new_size(:, k) = varargin{k}(:);
44 catch
45 error('Size must be a scalar or length == 2');
46 end
47 end
48 new_size = num2cell(new_size, 1);
49 [this.mSize] = deal(new_size{:});
50 [this.mScale] = deal(ones(2,1));
51 end
52 for k = 1:length(this(:))
53 points = get(this(k), 'Points');
54 try
55 set(this(k).mPlotHandle, ...
56 'XData', this.mSize(1) * points(1,:), ...
57 'YData', this.mSize(2) * points(2,:));
58 end
59 end
60 case 'ColorRgb'
61 if length(index) > 1
62 rgb = hsv2rgb(this.mColorHsv')';
63 rgb = subsasgn(rgb, index(2:end), varargin{:});
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64 this.mColorHsv = rgb2hsv(rgb')';
65 else
66 hsv = rgb2hsv([varargin{:}]')';
67 hsv = mat2cell(hsv, 3, ones(1, size(hsv,2)));
68 [this.mColorHsv] = deal(hsv{:});
69 end
70 for k = 1:length(this(:))
71 try
72 set(this(k).mPlotHandle, 'Color', get(this(k), 

'ColorRgb'));
73 end
74 end
75 case 'Points'
76 if length(index) > 1
77 error('The entire Points array must be assigned at one 

time');
78 else
79 for k = 1:length(varargin)
80 if size(varargin{k}, 1) ~= 2
81 error('Points must be size 2xN');
82 end
83 end
84 [this.mPoints] = deal(varargin{:});
85 end
86 for k = 1:length(this(:))
87 points = get(this(k), 'Points');
88 try
89 set(this(k).mPlotHandle, ...
90 'XData', this.mSize(1) * points(1,:), ...
91 'YData', this.mSize(2) * points(2,:));
92 end
93 end
94 otherwise
95 found = false;
96 end
97
98 % concealed member variables, not strictly public
99 if ~found && called_by_name
100 found = true;
101 switch index(1).subs
102 case 'mDisplayFunc'
103 if length(index) > 1
104 this.mDisplayFunc = ...
105 subsasgn(this.mDisplayFunc, ...
106 index(2:end), varargin{:});
107 else
108 [this.mDisplayFunc] = deal(varargin{:});

C911X_C010.fm  Page 130  Thursday, March 1, 2007  2:35 PM



Drawing a Shape 131

Lines 52–59 and lines 70–74 also keep the object up-to-date when Size or ColorRgb
changes. For Size changes, line 53 gets a copy of the corner points and lines 55–57 assign the
x–y data into each object’s plot handle. Again, to avoid errors caused by invalid handles, the set
command occurs inside a try statement. For ColorRgb, the procedure in lines 70–74 is similar
except that the ‘Color’ attribute is set rather than ‘XData’ and ‘YData’. 

10.1.1.5 Modify mtimes

The modified version of mtimes is shown in Code Listing 57. In this version, redraw code has
been added to the end of mtimes, lines 24–31. This is the same set of commands used in the
‘Size’ and ‘Points’ cases of set. In a rigorous development, these commands should be
moved into a separate function. In this chapter, we will keep them in line. As before, line 25 gets
the points and lines 27–29 set ‘XData’ and ‘YData’ attributes. 

109 end
110 otherwise
111 found = false;  % didn't find it in the special section
112 end
113 end
114
115 if ~found
116 error(['??? Reference to non-existent field ' index(1). 

subs '.']);
117 end
118
119 varargout{1} = this;

Code Listing 57, Improved Version of mtimes.m

1 function this = mtimes(lhs, rhs)
2
3 % one input must be cShape type, which one
4 if isa(lhs, 'cShape')
5 this = lhs;
6 scale = rhs;
7 else
8 this = rhs;
9 scale = lhs;
10 end
11
12 switch length(scale(:))
13 case 1
14 scale = [scale; scale];
15 case 2
16 scale = scale(:);
17 otherwise
18 error('??? Error using ==> mtimes');
19 end
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10.1.1.6 Modify reset

The modified version of reset is shown in Code Listing 58. In this version, mSize and mScale
are reset as before but nothing happens to the values in mPoints. When we implement draw,
plot must use a scaled version of the values in mPoints. Otherwise, this particular implemen-
tation of reset will not be correct. Lines 5–9 manage the figure window and the associated private
variables. Line 6 closes the figure window by calling delete on the figure’s handle. To avoid
problems with invalid-handle errors, the delete command is placed inside a try statement.
There is no need to include a catch statement. After closing the figure, lines 8–9 clean up the
now invalid handles by overwriting their values with empty. 

10.1.1.7 Adding Member Function draw

The implementation for draw is shown in Code Listing 59. Line 2 verifies that the caller is
requesting a return, and line 3 throws a warning if no return value is requested. This is necessary
because draw mutates the object. The function saves figure handles and plot handles in the object.
Both handle variables are private, but that does not change the fact that draw changes the state of
the object. Unless the object is passed back to the client, there is no way to update size, scale,
color, or corner point changes. This is a function where call-by-reference rather than call-by-value
would be enormously beneficial. MATLAB always uses call-by-value. 

If the calling syntax is okay, lines 5–29 are evaluated. On line 5, if the object is empty nothing
is drawn. Otherwise, lines 6–17 inspect and manage the object’s figure handles. Line 6 collects a

20
21 this.mSize = this.mSize .* scale;
22 this.mScale = this.mScale .* scale;
23
24 for k = 1:length(this(:))
25 points = get(this(k), 'Points');
26 try
27 set(this(k).mPlotHandle, ...
28 'XData', this.mSize(1) * points(1,:), ...
29 'YData', this.mSize(2) * points(2,:));
30 end
31 end

Code Listing 58, Improved Version of reset.m

1 function this = reset(this)
2 for k = 1:length(this(:))
3 this(k).mSize = this(k).mSize ./ this(k).mScale; % divide 

by scale
4 this(k).mScale = ones(2,1);  % reset scale to 1:1
5 try
6 delete(this(k).mFigureHandle);
7 end
8 this(k).mFigureHandle = [];
9 this(k).mPlotHandle = [];
10 end
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copy of the unique handles in handle_array. If the length of handle_array is one, line 16
uses figure to activate the correct graphics window. A length other than one means there is a
handle mismatch or the object has never been drawn. Lines 8–12 delete any mismatched figures.
The delete command is in a try statement to avoid invalid-handle errors. Line 13 then creates
a new figure window, and line 14 assigns the handle into the object. In either case, the correct
figure window is now active and ready to accept the plots.

Line 19 clears the figure, and line 20 allows multiple objects to be plotted in the same figure.
The objects are plotted using the plot command in lines 22–25. Notice that the corner points are
scaled by mSize on their way to plot. After the loop, line 27 returns hold to the off state
because all the objects have been plotted. 

10.2 TEST DRIVE

In this test drive, the scenery gets better. Instead of studying text outputs, we get to look at a
graphical representation of the shape. Changing into the Chapter 10 directory and executing,

Code Listing 59, Improved Implementation of draw.m

1 function this = draw(this)
2 if nargout ~= 1
3 warning('draw must be called using: obj = draw(obj)');
4 else
5 if ~isempty(this)
6 handle_array = unique([this(:).mFigureHandle]);
7 if length(handle_array) ~= 1 % no handle or mismatched
8 for k = 1:length(handle_array)
9 try
10 delete(handle_array(k));  % close figures
11 end
12 end
13 figure_handle = figure;  % create new figure
14 [this.mFigureHandle] = deal(figure_handle);  % save it
15 else
16 figure(handle_array);  % use the handle
17 end
18
19 clf;   % clear the figure
20 hold on;  % all shapes drawn in the same figure
21 for k = 1:length(this(:))
22 this(k).mPlotHandle = plot(...
23 this(k).mSize(1) * this(k).mPoints(1,:), ...
24 this(k).mSize(2) * this(k).mPoints(2,:), ...
25 'Color', get(this(k), 'ColorRgb'));
26 end
27 hold off;
28 end
29 end
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shape = cShape;

shape = draw(shape);

draws the figure shown in Figure 10.1. When the size and scale factors change, pay close attention
to the axes. We are allowing MATLAB to scale the plot automatically. We could improve on that
situation by designing in another set of scale-related member variables and functions. For this test
drive, automatic scaling is okay.

Change the color to red using either

shape.ColorRgb = [1; 0; 0];

or

shape = set(shape, ‘ColorRgb’, [1; 0; 0]);

Clients should usually use dot-reference syntax vs. set, but the result from either is the same. The
object will automatically redraw itself, and the new red star is shown in Figure 10.2.

FIGURE 10.1 Default graphic for cShape object.

FIGURE 10.2 cShape graphic after assigning an RGB color of [1; 0; 0].
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The size can be changed in two ways, via the public member variable Size or by multiplying
by a scaling constant. Changing the Size with

shape.Size = [2; 3];

results in the plot shown in Figure 10.3. The star takes up the same position in the plot; however,
notice that the scales have changed.

The figure’s size can also be changed by multiplying the shape by a constant. For example,
the command

shape = 0.25 * shape;

results in the plot shown in Figure 10.4. Again, note the change in the scale. Multiplying is not
quite the same as assigning the Size variable because multiplication also sets the private variable
mScale. The only real implication of the difference occurs during reset.

FIGURE 10.3 cShape graphic scaled using the size mutator.

FIGURE 10.4 cShape graphic scaled using the overloaded mtimes.
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The reset command

shape = reset(shape);

closes the figure window and resets private member variables back to undrawn values.
Arrays of cShape objects can also be drawn. For example, the set of commands

clear all;

shape = [cShape cShape];

shape(2).ColorRgb = [0; 1; 0];

shape(2).Points = [[-1; -1] [-1; 1] [1; 1] [1; -1] [-1; -1]];

shape(2) = [0.75; 0.25] * shape(2);

shape = draw(shape);

results in the figure shown in Figure 10.5. The commands build a length-2 array of cShape objects,
and set the shape at index 2 so that it is first a green square. The x-direction is scaled by three
fourths, and the y-direction is scaled by one fourth. Finally, when the shape array is drawn, both
the default blue star and the mutated green rectangle are drawn in the same figure.

10.3 SUMMARY

This concludes the section on encapsulation. We have now uncovered most of the major issues
involved in MATLAB object-oriented programming. The functions developed to support encapsu-
lation can easily serve as a reference design for classes without inheritance. Group-of-eight functions
should be included in every class you write. To do otherwise compromises encapsulation in some
way. The group of eight functions are as follows:

• constructor
• subsref.m
• subsasgn.m
• get.m
• set.m
• display.m

FIGURE 10.5 Graphic for an array of cShape objects.

C911X_C010.fm  Page 136  Thursday, March 1, 2007  2:35 PM



Drawing a Shape 137

• fieldnames.m
• struct.m

Four in this group can be reused with no class-dependent tailoring. It is possible to isolate these
four into their own directory; however, it involves more complexity than it is worth. It is much
easier to copy them into each new class directory. The remaining four — constructor, get, set,
and fieldnames —are organized to make class-dependent tailoring as easy as possible. The
organization includes private variables, public variables, and so-called concealed variables. Fortu-
nately, some of the most difficult code in the class-dependent functions is not class dependent.
Member names and the specific case code used to manage the conversion from public to private
data are class dependent, but functionality like tab completion and multilevel indexing is identical
from class to class.

Including all members in the group of eight gives our objects first-class status among MAT-
LAB’s built-in types. Object variables can be passed as arguments. Object variables can also be
saved and loaded. They can be assigned into structure elements and even used as a private member
variable for another class. Objects can be displayed, turned into structures, and, with additional
member functions, converted into other types. In short, attention to detail makes objects appear as
if they are an intrinsic part of the language. Indeed, that is exactly how it should be.

In the remaining sections, we will reexamine constructors, examine inheritance, and discuss
many “gee-whiz” ideas. These topics are important but not nearly as important as encapsulation
and the group of eight. As we will see, the organization included in the group of eight makes
inheritance much easier to implement. Several standard functions will be added to the class, but
these pale in importance next to the group of eight.

10.4 INDEPENDENT INVESTIGATIONS

1. Add member variables and functions that would allow clients to set the scale.
2. Like color, allow clients to specify the line style.
3. Instead of setting corner points, allow a client to pass in strings like ‘Square’ and

‘Triangle’. Can you do this by modifying the code found in case ‘Points’
inside set? Do you need a string like ‘Rectangle’? Think about the public variable
Size.

4. Add member variables and functions that allow clients to rotate the shape.
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Part 2

 

Building a Hierarchy

 

This section focuses on building hierarchies because objects and hierarchies go hand in hand. For
example, a hierarchy of shapes might include rectangles, stars, and circles. A hierarchical imple-
mentation allows one class to build on functions defined in another class. An object-oriented
hierarchy can do this without a lot of rework. Throughout the first section, we simplified much of
our code by coercing MATLAB into doing a lot of the work. In a small way, all classes are
hierarchical because they build on the built-in types. MATLAB is always at the top of the hierarchy.
A deeper hierarchy of classes follows the same philosophy. The lower-level class, sometimes called
the 

 

child

 

, tries to coerce a higher-level class, the 

 

parent

 

, into doing as much as possible. This is
the way of a hierarchy: always try to force the next higher level into doing all the work.

When a child class coerces a parent to perform an operation, the child is said to 

 

inherit

 

 that
particular function from the parent. There are different flavors of inheritance. Differences depend
on how control passes to the parent. A 

 

parent–child

 

 relationship is what we normally think of as
inheritance, but anytime one class passes control to another, this is inheritance. When one class uses
another class as a private member variable, this too is inheritance. Called 

 

composition

 

 or 

 

aggrega-
tion

 

, using a class as a member variable often works better than parent–child inheritance and is
just as powerful. In this section, we will examine both parent–child inheritance and composition.

Also in this section, we will find that efficient, bulletproof hierarchies can be coded in MATLAB.
Hierarchies are built using both types of inheritance, parent–child and composition. The group-of-
eight implementations from Section 1 are already organized to support inheritance. In this section,
we will expand on the organization.

Recall from the first section how we tailored built-in MATLAB functions like 

 

subsref

 

,

 

subsasgn

 

,

 

 

 

display

 

, and even 

 

mtimes

 

 to suit the needs of our classes. In a hierarchy, a child
class can accomplish the same trick. This time, the child tailors a function already defined by the
parent. The child simply includes a tailored version of the function in its own class directory. In
the first section, even when a class redefined a function, we could still call MATLAB’s built-in
version using 

 

builtin

 

. When a child redefines a parent function, a similar mechanism allows a
child to call the parent’s version. We can’t use 

 

builtin

 

 because that will skip over the parent.
By the end of this section, you will be able to churn out bulletproof class implementations

based on the reference designs. Soon the novelty will wear off and you will pine for a computer-
aided way to create the group-of-eight scaffolding. The CD that accompanies this book includes a
very complete MATLAB tool that will build the scaffolding and help you maintain and evolve each
class. The last two chapters in this section document and demonstrate the Class Wizard tool.

 

C911X_S002.fm  Page 139  Thursday, March 1, 2007  2:38 PM



 

140

 

A Guide to MATLAB Object-Oriented Programming

 

Now in its third version, Class Wizard will rapidly generate core class functions based on lists
of private and public variables and functions. These lists are entered using a graphical interface.
Once entered, Class Wizard generates group-of-eight functions that include all the special func-
tionality discussed throughout this book. Class Wizard is a versatile and extremely powerful tool.
It is found on the disk in 

 

/utils/wizard_gui

 

, and this directory must be added to the path.
The dialog screens in Class Wizard require MATLAB version 7 or greater but will generate classes
that work with version 6.5 or greater.
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11

 

Constructor Redux

 

In the first part of this book, objects were constructed in the most basic way because no arguments
were passed into the constructor. With a no-argument constructor, all objects are constructed using
the same initial values. For the Part 1 

 

cShape

 

 class, this basic approach worked because Part 1
focused primarily on encapsulation mechanics. Now that we understand encapsulation, we will
turn our attention to inheritance and the development of class hierarchies. With the development
of class hierarchies, we also need a richer set of construction options.

For example, if we want 

 

cShape

 

 to serve as a parent for 

 

cStar

 

 and 

 

cSquare

 

, the construc-
tors for 

 

cStar

 

 and 

 

cSquare

 

 need to initialize 

 

mPoints

 

 with different values. The best time to
perform the initialization is during construction, and a constructor that accepts arguments is the
best way to tailor the construction process. Instead of relying on hard-coded values, constructor
arguments are used to initialize private variables. As with any function, we can pass any number
of arguments into the constructor through 

 

varargin

 

. The number of arguments along with their
types can then be used to select the appropriate initialization commands. Different classes have
different construction requirements. In this chapter, we develop an extendable organization we can
use to implement general-purpose constructors.

 

11.1 SPECIFYING INITIAL VALUES

 

Two initial-value cases are so common that they have special names. The no-argument constructor
is called the 

 

default constructor

 

. We already know much about the default constructor because the
default constructor was the constructor used in Part 1. For example, we know that MATLAB requires
a default constructor for every class. The other common constructor is called the 

 

copy constructor

 

.
The copy constructor is a one-argument constructor and the lone argument has the same type as
the name of the constructor. The copy constructor makes a copy of an existing object; however, in
MATLAB, assignment also makes a copy. Assignment syntax is much easier and that diminishes
the importance of a copy constructor. Perhaps the only difference between the two is the fact that
we can tailor the copy constructor but we can’t tailor assignment. The copy constructor is still
important enough to be included in the standard implementation. 

The standard object-oriented vocabulary gives these constructors different names because most
object-oriented languages implement each constructor using a different function. Other languages
can do this because their compiler or interpreter uses the number of arguments and the type of
each to select an appropriate function. MATLAB works differently. In MATLAB, every class has
only one constructor. To get multiple-constructor functionality, code inside the constructor steers
the execution based on the value of 

 

nargin

 

. Code for each 

 

nargin

 

 value can further inspect an
argument’s type and take appropriate action.

In addition to a default constructor and a copy constructor, a class can define constructors with
any number of input arguments of any type.* Different classes have different construction needs,
and that means every class’ constructor is unique in terms of number of inputs and input types.
The challenge in this chapter is to generalize all of these unique requirements into an implementation
strategy that can be universally applied.

 

*  The standard terminology is a little sloppy when we consider that MATLAB has only one constructor. When I talk about
a specific type of constructor (e.g., copy or default), what I really mean is one of the unique execution paths through the
constructor function. Each unique execution path is selected based on the number of input arguments and their types.
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We already know how to construct a default object. In fact, our current default constructor
optimizes run time by saving a copy of the default object as a persistent variable. Thus, it seems
reasonable to begin the general construction process by first constructing a default object. Beginning
with a default object is more than reasonable: it is essential for the development of a robust,
maintainable set of constructors. For a particular type, MATLAB saves the object’s structure during
the very first call to 

 

class

 

. Later, if the constructor calls 

 

class

 

 with a different structure,
MATLAB throws an error. Beginning with a default object will eliminate structure-mismatch errors
that might otherwise occur between different constructors.

Once we have a default object, a 

 

switch

 

 based on the value in 

 

nargin

 

 seems to be the best
choice; however, a switch statement does not support a general-purpose implementation. A 

 

switch

 

is not general because both the number of cases and the 

 

nargin

 

 value for each 

 

case

 

 change
from class to class. A more general but much less obvious approach breaks out code associated
with each supported 

 

nargin

 

 value into a separate m-file. Following a standard naming convention
for each of these m-files allows the constructor to build the name on the fly and use 

 

feval

 

 to call it.
 Following the more general 

 

feval

 

 approach is consistent with the group-of-eight design goal
of building a robust implementation that will withstand the test of time. The constructor is robust
because the same underlying code is always used. The constructor also tolerates change because
private variables and 

 

nargin

 

 conditions can be added without upsetting functions that already
exist. Using 

 

feval

 

 in this way can sometimes result in poor run-time performance. In those
situations, the constructor can be tailored to use a 

 

switch-case

 

 approach. Individual cases can
still call a separate m-file because the run-time improvement comes from eliminating the 

 

feval

 

overhead.
At first, it seems that giving every supported 

 

nargin

 

 value its own function would add too
many files to each class directory. Fortunately, function-search rules give us a way out of this
dilemma. The so-called 

 

helper functions

 

 can be located in the class’ private directory. As private
member functions, they are not included in the public interface yet they are still available to the
constructor. Private functions represent an important topic and before we get too involved with
inheritance, we will take another brief side trip to examine the private class directory.

 

11.1.1 P

 

RIVATE

 

 M

 

EMBER

 

 F

 

UNCTIONS

 

In the previous discussion of path-search priority, §3.2.3, the class directory was listed as third in
priority. Both subfunctions and the private directory have higher priority. This priority system means
that functions located in a class’ private directory are callable from only two locations: the class
directory and the private directory itself. The fact that the private directory is included represents
a minor deviation from standard function-search rules. It means that functions in one private
directory cannot call functions located in another private directory. For example, functions located
in 

 

/@cShape/private

 

 cannot call a function located in 

 

/@cShape/private/private

 

.
In this way, both public and private member functions can call all other member functions, both
public and private.

Functions located in a class’ private directory are not part of the public interface because a
client can’t call them. Just like private member variables, the only functions able to access private
member functions are other member functions. An m-file in the class directory is a public member
function, and an m-file in the class’ private directory is a private member function. It really is that
easy.

The use of 

 

/private

 

 gives us an opportunity to modularize class functions and improve
maintainability. Just like public member functions, a private member function can read and write
private member variables and call other member functions. For the constructor, each 

 

nargin

 

-
specific function can be located in a class’ private directory. This move helps simplify the constructor
to the point where it can be made almost entirely class independent. Other functions in the group
of eight can also benefit from private functions. For example, complicated 

 

get 

 

and

 

 set

 

 cases
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can be isolated in a private member function. Being second in priority also means that MATLAB
can find private functions even if they do not use an object as an input argument. This makes the
private directory a very convenient location for class-specific utility functions and encourages the
development of modular code.

Under some conditions, a private member function can also improve run time. For example, a
private function might allow member functions to get and set public variables without having to
go through the overhead involved in 

 

get

 

 and 

 

set

 

. This sets up more coupling than we usually
prefer. Sometimes the run-time improvement is worth the trade. Member functions outside the
group of eight can also use private member functions to share common code, increase modularity,
and sometimes improve performance. 

 

11.2 GENERALIZING THE CONSTRUCTOR

 

We can use a standard file-naming convention and private member functions to generalize the
constructor. Except for calls to 

 

superiorto

 

 and 

 

inferiorto

 

, the constructor file itself is class
independent. The class-dependent sections from the previous version of the constructor can be
found in the class’ private directory. All the code used to build and initialize the default structure
can be found in the private member function named 

 

ctor_ini.m

 

. The abbreviation 

 

ctor

 

 is
short for constructor, and the abbreviation 

 

ini

 

 is short for initialization. Code to convert the
structure into an object, code to modify the superiority, and code to save the persistent copy will
still be found in the main constructor function.

The 

 

nargin

 

-dependent functions can also be found in the class’ private directory. The function
used for one input argument is named 

 

ctor_1.m

 

; for two input arguments, 

 

ctor_2.m

 

; and so
on for any number of input arguments. There is no “numbered-

 

ctor

 

” function for the no-argument
constructor because 

 

ctor_ini

 

 in conjunction with the main constructor function already produces
a default object. We also don’t include a numbered-

 

ctor

 

 function for 

 

nargin

 

 conditions that we
don’t intend to support. This allows the main constructor to detect undefined-function errors and
throw a different error with a more appropriate error message. Supporting a new 

 

nargin

 

 value
simply means developing another numbered-

 

ctor

 

 function and adding it to the private directory.
Similarly, deleting a numbered-

 

ctor

 

 function will remove support for the associated 

 

nargin

 

value. This flexibility can be used to support development, testing, and quality assurance through
construction methods not available to general clients.

The main constructor function is shown in Code Listing 60 and can be analyzed in two sections.
The first section, lines 2–15, is the default, no-argument constructor; and the second section, lines
17–30, overwrites default values using any number of input arguments. As you examine the listing,
note the complete absence of class-specific commands. Class-specific information is obtained in
line 6 by calling 

 

ctor_ini

 

. 

 

Code Listing 60, Improved Constructor without Inheritance

 

1 function this = constructor(varargin)
2 class_name = mfilename('class');  % simply more general than 

'cShape'
3
4 persistent default_this
5 if isempty(default_this)
6 [default_this, superior, inferior] = ctor_ini;  % /private/ 

ctor_ini.m
7 default_this = class(default_this, class_name);
8 if ~isempty(superior)
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The filename for this constructor is 

 

cShape.m

 

 but line 1 specifies 

 

constructor

 

 as the
function’s name. Due to a quirk of MATLAB, the function name inside an m-file does not need to
match the filename. MATLAB finds and calls the function based on the filename, making the name
in the function declaration irrelevant. This quirk allows the declaration on line 1 to be class
independent. Of course, you can use the class name in the declaration if you prefer.

In keeping with the idea of class independence, line 2 gets the class name using 

 

mfilename

 

with the 

 

‘class’

 

 option. Instead of coding 

 

‘cShape’

 

 into constructor commands, we can
instead use the variable 

 

class_name. Again, if you prefer to make code in the constructor more
explicit, you can instead choose to code the name into the constructor commands. 

Line 4 declares default_this as a persistent variable, and the result of the initial default-
valued instantiation is stored in default_this. Subsequent instantiations simply use the stored
value. In complicated class hierarchies, this implementation detail can improve run-time perform-
ance. This strategy was introduced in §10.1.1.1. Lines 5–9 fill default_this with a default
object, and line 15 copies the persistent object into this. The difference between then and now
occurs on line 6. On line 6, a function call to ctor_ini initializes the private structure and gets
class superiority information. This function is located in the class’ private directory and is described
in §11.2.1. Line 7 uses class to turn the structure into an object, and lines 8–13 modify the class’
superiority. Line 9 uses list expansion on superior, and line 12 uses list expansion on inferior.

If nargin is zero, construction is complete and the constructor returns the default object.
When the constructor call includes arguments, line 19 builds the name of a function and uses
feval to call it. The function name is constructed using ‘ctor_’ as a prefix and the value of
nargin as a suffix. The default object and all constructor arguments are passed into the numbered-
ctor private helper function. The private function uses input values to modify the object’s private

9 superiorto(superior{:});
10 end
11 if ~isempty(inferior)
12 inferiorto(inferior{:});
13 end
14 end
15 this = default_this;  % copies persistent to this
16
17 if nargin > 0  % if not default, pass varargin to helper
18 try
19 this = feval(sprintf('ctor_%d', nargin), this, 

varargin{:});
20 catch
21 err = lasterror;
22 switch err.identifier
23 case 'MATLAB:UndefinedFunction'
24 err.message = [['class ' class_name] ...
25 [' cannot be constructed from '] ...
26 [sprintf('%d', nargin) ' input 

argument(s) ']];
27 end
28 rethrow(err);
29 end
30 end
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variables and passes the object back to the constructor. An example of a numbered-ctor function
is described in §11.2.2. Functions triggered by other nargin values follow the format described
in §11.2.2.

The feval call on line 19 is embedded in a try-catch statement. A try-catch statement
is used so that we don’t have to include every possible numbered-ctor function. An error during
numbered-ctor initialization will force the execution into the catch block in lines 21–28. Line
21 gets the cause of the error from lasterror and line 22 selects the appropriate error-handling
case. If the error resulted from an undefined function, lines 24–26 reformat the error message so
the client will see a reasonable message. In this case, the message indicates an unsupported number
of input arguments. Line 28 rethrows the error. 

The constructor code does not need advance knowledge of the available numbered-ctor
helpers. The constructor simply calls a function consistent with nargin and hopes for the best.
The function also prepares for the worst by trapping and reporting errors. The constructor’s laissez-
faire attitude makes it easy to add cases and begin using them. All you need to do is add a numbered-
ctor function to the private directory and start constructing objects with that number of arguments.
The only caveat is to make sure there are no numbered-ctor functions on the general search path
that might be found when the private function does not exist.

11.2.1 CONSTRUCTOR HELPER /PRIVATE/CTOR_INI.M

The class-specific portions of the class’ default initialization code have been moved into /pri-
vate/ctor_ini.m. When the design of the constructor relies on “ctor-helper” functions,
ctor_ini.m joins the group of eight as a required function. The complete set of required functions
will still be referred to as the group of eight because there are still only eight public functions. The
ctor_ini function is shown in Code Listing 61. The default structure commands come directly
from the constructor code discussed in §10.1.1.1. The helper returns a variable named this;
however, the value has not yet been converted from a structure into an object. 

Code Listing 61, Modular Code, Constructor Helper /private/ctor_ini.m

1 function [this, superior, inferior] = ctor_ini
2 % piece-meal create to avoid object and cell problems
3 this = struct([]);  % initially empty structure
4 this(1).mSize = ones(2,1); % scaled [width height]’ of 

bounding box
5 this(1).mScale = ones(2,1); % [width height]’ scale factor
6 this(1).mColorHsv = [2/3; 1; 1]; % [H S V]’ of border, 

default is blue
7 this(1).mPoints = ...
8 [imag(exp(j*(0:4:20)*pi/5)); real(exp(j*(0:4:20)*pi/5))];
9 this(1).mFigureHandle = []; % handle for shape's figure window
10 this(1).mPlotHandle = [];  % handle for shape's line plot
11 this(1).mDisplayFunc = [];  % function handle for non-default 

display
12
13 superior = {'double'};
14 inferior = {};
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Lines 13 and 14 define and return arguments that the main constructor will pass into supe-
riorto and inferiorto. By defining these in ctor_ini, the body of the constructor main-
tains class independence. The constructor uses simple list expansion on these variables, and that
means their format is a cellstr of class names. In this case, cShape is superior to double.

11.2.2 CONSTRUCTOR HELPER EXAMPLE /PRIVATE/CTOR_1.M

To get a flavor for the implementation of a numbered-ctor function, let’s build one. We will build
/private/ctor_1.m because a one-argument ctor-helper includes support for the copy
constructor. A one-argument ctor-helper also allows a Points array to be assigned during
construction. Code inside ctor_1 is responsible for figuring out which assignment is being
requested. There is only one input because that is a condition for calling ctor_1. The type of the
single argument or the value contained in the argument must be used to make that determination.
Many other object-oriented languages perform this task for us. With MATLAB, we have to include
selection code inside every numbered-ctor function that supports more than one construction
method.

The implementation for /private/ctor_1.m is shown in Code Listing 62. Line 3 uses
isa to check whether the lone input’s type is cShape. If the isa check is true, line 4 uses
assignment to return a copy of the input. Arranging the copy constructor as the first among all the
type checks is typical in ctor_1 implementations. The second check on line 5 looks for an empty
input. If the input is empty, line 6 assigns a 2 × 0 array into mPoints. The value is still empty,
but the 2 × 0 size prevents certain indexing errors. The third check on line 7 looks for a numeric
input, and line 8 assigns the input to the public variable ‘Points’. Assigning the public variable
here serves several purposes. First, it demonstrates that this is an object, and as such, code in
ctor_1 can elect to use the public interface. Second, it highlights the fact that clients will likely
see constructor arguments from a public-interface point of view. Third, it offloads input error
checking onto code that already exists in set. If input error checking becomes more restrictive,
we will not need to modify ctor_1. Finally, if no previous check is appropriate for the input,
lines 11–12 throw an error. Other numbered-ctor functions follow the same model, but the number
of combinations is potentially larger due to the larger number of inputs. 

Code Listing 62, Modular Code, Constructor Helper /private/ctor_1.m Example

1 function this = ctor_1(this, InitialPoints)
2
3 if isa(InitialPoints, 'cShape')  % copy constructor
4 this = InitialPoints;  % let MATLAB do the copy assignment
5 elseif isempty(InitialPoints)
6 this.mPoints = zeros(2,0); % empty, size 2x0
7 elseif isnumeric(InitialPoints)
8 this = set(this, 'Points', InitialPoints);  % copy in the 

data
9 else
10 % any other input produces an error
11 error(['Input is not appropriate for constructing a ' ...
12 class(this) ' object.']);
13 end
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11.3 TEST DRIVE

From outside the class, very little has changed between the implementations in Chapter 10 and this
chapter: encapsulation at work again. Internally, the organization of the constructor changed radi-
cally and we need to test those changes. The default constructor should work the same as in Chapter
10. We can confirm this with the following commands:

>> shape = cShape;

>> shape = draw(shape);

Indeed, the same result is shown in Figure 11.1.
We should also be able to construct a shape with corner points different from the default values.

All we need to do is pass an array of points through the constructor and draw the shape. Here is
one example:

>> shape(2) = cShape([-1 0 1 0 -1; 0 -1 0 1 0]);

>> shape(2).ColorRgb = [1; 0; 0];

>> shape = draw(shape);

What shape do you expect to see? The result is shown in Figure 11.2.
Now what about the other constructors? The copy constructor is easy. The following command

will construct a copy:

>> shape_copy = cShape(shape(2));

To confirm that we really have a copy, we can draw the copy or look at the values contained in
shape_copy.Points. Displaying the contents shows us the following:

>> shape_copy.Points

ans =

 -1 0 1 0 -1

 0 -1 0 1 0

Indeed, we have a copy of the original.

FIGURE 11.1 Default constructor graphic for a cShape object.
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During the copy, every field in shape(2) was copied into shape_copy. Usually an element-
by-element copy is exactly the desired result. In this case, however, there is a small but important
problem. Use developer_view to look at the public and private variables of both shape(2)
and shape_copy. The commands and outputs are shown in Code Listing 63. 

FIGURE 11.2 Example graphic of object constructed from a corner-point array.

Code Listing 63, Chapter 11 Test-Drive Commands (Partial List)

1 >> shape = set(shape, 'mDisplayFunc', 'developer_view');
2 >> shape_copy = shape(2);
3 >> shape(2)
4 -----  Public Member Variables  -----
5 ans(1).Size = [1  1]';
6 ans(1).ColorRgb = [1  0  0]';
7 ans(1).Points(1, :) = [-1  0  1  0 -1];
8 ans(1).Points(2, :) = [0 -1  0  1  0];
9 .....  Private Member Variables  .....
10 ans(1).mSize = [1  1]';
11 ans(1).mScale = [1  1]';
12 ans(1).mColorHsv = [0  1  1]';
13 ans(1).mPoints(1, :) = [-1  0  1  0 -1];
14 ans(1).mPoints(2, :) = [0 -1  0  1  0];
15 ans(1).mFigureHandle = [1];
16 ans(1).mPlotHandle = [155.0139];
17 ans(1).mDisplayFunc = 'developer_view';
18 >> shape_copy
19 -----  Public Member Variables  -----
20 shape_copy(1).Size = [1  1]';
21 shape_copy(1).ColorRgb = [1  0  0]';
22 shape_copy(1).Points(1, :) = [-1  0  1  0 -1];
23 shape_copy(1).Points(2, :) = [0 -1  0  1  0];
24 .....  Private Member Variables  .....
25 shape_copy(1).mSize = [1  1]';
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Look closely at the handle values on lines 15–16 and 30–31. Both objects contain the same
figure handle value and the same plot handle value. This means that both the original object and
its copy point to the same figure window and the same line plot. The problem with two objects
pointing to the same figure can be demonstrated by resetting the copy. Entering the command

shape_copy = reset(shape_copy);

closes the figure associated with both the original and the copy.
Here’s the problem. The copy contains valid handles even though the copy has never been

drawn. We can fix this problem in ctor_1 by adding lines that assign empty to both handles
before returning the copy. Unfortunately, clients can also use assignment to create a copy. Unlike
the copy constructor, with assignment, we have no ability to modify the copy before it is assigned.
When the object contains a handle, an exact copy may or may not be the desired result. We are
again at the mercy of MATLAB, and this is unfortunate because it represents another limitation
with no viable work-around. For this reason, the implementation of ctor_1 takes the path of least
resistance by creating a copy constructor such that the following two commands result in the same
private values for shape_copy.

>> shape_copy = cShape(shape);

>> shape_copy = shape;

Finally, look at the one-argument constructor that passes [] as an argument. The commands

shape = cShape([]);

shape = draw(shape)

result in the figure shown in Figure 11.3. The figure is empty because mPoints is empty.

26 shape_copy(1).mScale = [1  1]';
27 shape_copy(1).mColorHsv = [0  1  1]';
28 shape_copy(1).mPoints(1, :) = [-1  0  1  0 -1];
29 shape_copy(1).mPoints(2, :) = [0 -1  0  1  0];
30 shape_copy(1).mFigureHandle = [1];
31 shape_copy(1).mPlotHandle = [155.0139];
32 shape_copy(1).mDisplayFunc = 'developer_view';

FIGURE 11.3 Example graphic for shape with no corner points.
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11.4 SUMMARY

Viewed from outside the class, very little has changed between the implementations in Chapter 10
and this chapter. This is encapsulation at work again. Internally, the organization of the constructor
changed radically. We now have a general design that will easily support growth in both the number
and type of the class’ constructors. To do this we isolated nearly all the application-specific code
into separate functions located in the class’ private directory. These functions do not pollute the
public interface because they are callable only from within other member functions. We also added
a one-argument constructor and discussed how the ctor_1 helper strategy would extend to other
numbered-ctor functions.

This chapter did not begin the process of designing and building a hierarchy, but you probably
see where we are heading. For example, in this chapter, star and diamond represent two specific
types of shapes. If we introduce cStar and cDiamond classes, they can reuse all the cShape
code we have already developed. The brute-force way to reuse cShape would be to copy all of
its code into /@cStar and /@cDiamond. The object-oriented way to reuse the code is to construct
a cShape object and use it as an integral part of both cStar and cDiamond. Giving cShape’s
constructor, the ability to construct an object with specified corner points makes object-oriented
reuse a lot more convenient.

As the hierarchy extends, we might need a two-argument constructor that allows construction
with both corner points and a color value. The numbered-ctor strategy implemented in this chapter
makes this type of extension both easy and safe. It is easy because the main constructor function
is already designed to use the new helper. As long as its name is ctor_2.m and it is placed in
the class’ private directory, the main constructor function will automatically use it when two
arguments are passed into the constructor. It is safe because the new constructor is the only modified
file. The main constructor function and all preexisting helpers work exactly as before because they
did not change. Similarly, deleting a numbered-ctor function only affects construction with the
associated number of arguments. This flexibility can be used to support development, testing, and
quality assurance without upsetting the code being developed, tested, or inspected.

In the private member function discussion, we used numbered-ctor functions as an example
of private member functions. It should be clear that we could also add private member functions
to improve maintainability or extendibility for other members of the group of eight. In fact, we
can add private member functions to improve the maintainability of any member function, public
or private. Private member functions lead to the creation of modular code because function search
rules were designed so that private functions do not pollute the public interface.

As we continue with our discussion of inheritance, cShape will continue to be used as an
example. You might be surprised that such a simple class will be able to serve in this capacity. If
you examine the details of cShape, what is surprising is the true complexity of the implementation.
Unified Modeling Language (UML) uses a diagram called the static-structure diagram to help
illustrate class details. The full UML static-structure diagram for the current version of cShape
is shown in Figure 11.4. Organized into two sections, the upper section contains member variables
and the lower section contains member functions. The + symbols designate public members; and
the – symbols, private. There is indeed a lot going on in our “simple” cShape implementation.
It is good that we now have a standard organizational framework to control the complexity.

The list of functions in the lower section reminds us of the slight mismatch between standard
object-oriented terminology and MATLAB’s object model. The first four functions in the list
represent four different constructors. In order, they are the default constructor, the copy constructor,
an empty-points constructor, and an array-of-points constructor. From this chapter we understand
that all of these separately listed constructors are implemented using only one public function. The
same holds true for other functions in the list with more than one entry. The UML diagram and
object-oriented design in general focus on all of the different ways a member function can be
called. It is up to the class developer to interpret the design and convert it into an implementation.
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11.5 INDEPENDENT INVESTIGATIONS

1. Investigate the result of commands class and size when used for the variables created
by the following commands:

a = zeros(0);

b = ones([3 4 0]);

c = struct(‘name’, {}, ‘value’, {});

d = [1 2 3]’;

d(:,true) = [];

x = [];

y = {};

z = ‘‘;

FIGURE 11.4 UML static structure diagram for cShape.

+cShape() : cShape
+cShape(in In : cShape) : cShape
+cShape(in In : []) : cShape
+cShape(in In : array) : cShape
+display(in this : cShape)
+fieldnames(in this : cShape) : cellstr
+fieldnames(in this : cShape, in type : string = -full) : cellstr
+fieldnames(in this : cShape, in type : string = -possible) : cellstr
+struct(in this : cShape) : structure
+subsref(in this : cShape, in index : substruct) : untyped
+subsasgn(in this : cShape, in index : substruct, in set_val : untyped) : cShape
+get(in this : cShape, in index : substruct) : untyped
+get(in this : cShape, in index : string) : untyped
+get(in this : cShape) : untyped
+set(in this : cShape, in index : substruct, in set_val : untyped) : cShape
+set(in this : cShape, in index : string, in set_val : untyped) : cShape
+set(in this : cShape, in index : string) : cShape
+set(in this : cShape) : cShape
+draw(in this : cShape)
+mtimes(in lhs : cShape, in rhs : array) : cShape
+mtimes(in lhs : array, in rhs : cShape) : cShape
+reset(in this : cShape) : cShape
-ctor_ini() : cShape
-ctor_1(in this : cShape, in In : cShape) : cShape
-ctor_1(in this : cShape, in In : []) : cShape
-ctor_1(in this : cShape, in In : array) : cShape

+Size : array = mSize
+ColorRgb : array = hsv2rgb(mColorHsv)
+Points : array = mPoints
-mSize : array = [1;1]
-mScale : array = [1;1]
-mColorHsv : array = [0.67;1;1]
-mPoints : array = [imag(exp(j*(0:4:20)*pi/5)); real(exp(j*(0:4:20)*pi/5))]
-mFigureHandle : handle = []
-mPlotHandle : handle = []
-mDisplayFunc : function handle = []

cShape
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Are all empties the same? What happens if you ask for the element c.name? What
about [c.name]?

2. Modify the copy constructor so that it sets the figure handles and plot handles to []
before passing the object back to the client.

3. Add another one-input constructor that initializes corner values based on a string input.
We have already defined corner point values for a star, a square, and a diamond, so it
should be relatively easy to write a constructor that will create the appropriate objects
for the following:

star = cShape(‘star’);

square = cShape(‘square’);

diamond = cShape(‘diamond’);

A. If you also want a ‘rectangle’ case, can you use the corner points for a square
and then overwrite the default size or scale? Which one would you overwrite so that
after reset you will still have a rectangle?

B. Now implement a shape that does not use corners. For example, what changes do you
need to make to cShape members to allow for circles? Would it be easier to create
a new cCircle class?

4. Investigate the use of a different strategy for constructor arguments and the changes that
would occur to the main constructor function and the private helpers. A popular syntax
used for setting attributes in graphics objects uses an attribute string followed by the
attribute value. What changes would be required to support similar constructor syntax?
For example:

shape(1) = cShape;

shape(2) = cShape(‘Points’, [-1 0 1 0 -1; 0 -1 0 1 0]);

shape(3) = cShape(‘ColorRgb’, [1;0;0], ...

 ‘Points’, [-1 0 1 0 -1; 0 -1 0 1 0]);

Can the result from one of the exercises in Chapter 8 be used to make this type of
assignment easier? Would it be too much trouble to include support for both a numbered-
ctor approach and this approach?
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12

 

Constructing Simple 
Hierarchies with Inheritance

 

Using 

 

cShape

 

, we have drawn shapes that look like a star, a rectangle, and a diamond.* Even
though these three shapes have a lot in common, we still recognize them as three different shapes.
The organization of this simple shape taxonomy looks like Figure 12.1. With inheritance, we can
build a set of classes to recreate this taxonomy without copying a lot of code. Member functions
common to all shapes are found only in 

 

/@cShape

 

. Member functions with code tailored for each
particular shape type are found in each particular directory. Inheritance is the glue that allows us
to build the hierarchy and allows MATLAB to find the appropriate function.

Inheritance builds a hierarchy by allowing us to specify a relationship between a parent and
child class. In the relationship, a child class is said to inherit attributes and behaviors from the
parent.** Behaviors are synonymous with member functions, and in MATLAB, finding a member
function involves the function path. For sure, MATLAB will search for a function in the child
class’ directory. With inheritance, if the function is not found in the child’s directory, MATLAB
will also search the parent’s directory. If we are going to allow MATLAB to call one of the parent’s
functions, the object must contain all of the parent’s member variables. The second part of inher-
itance relates to data. A child object contains all parent data but parent data are still encapsulated.
The child is allowed entry to the parent’s members-only club, but the child does not enjoy all of
the same privileges. 

The parent offers inheritance and the child gets to choose what to accept. In the simplest case,
the child accepts everything the parent has to offer. The child redefines none of the parent’s functions
and adds no new member variables. The only difference probably occurs in the child’s default
construction values. Getting a little more complicated, a child might be happy with the parent’s
variables but needs to redefine the behavior of a member function. This important aspect of
inheritance can be tricky because inheritance does not circumvent encapsulation. Encapsulation
means that only parent member functions can access parent member variables. Private parent
variables are not available from inside a child’s new or redefined function. The parent-class-only
restriction applies to both private variables and private functions. This is a situation where concealed
variables can be useful. Finally, in the general case, a child can add new member variables, add
new member functions, and redefine parent functions. Supporting the general case might seem
difficult, but with a systematic approach, inheritance is actually easy. 

 

*  In the opening paragraphs of Chapter 1, I promised to remind you before the information in §1.3 became important. If
you accepted my invitation to skip directly to Chapter 2, now would be a very good time review §1.3.
**  The terms superclass and subclass, respectively, are often used as an alternative to parent and child.

 

FIGURE 12.1

 

The simple shape taxonomy.
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Inheritance supports code reuse in several ways. In the hierarchy, a child can rely on functions
located in the parent-class directory. Many different child classes from the same parent can easily
reuse the same function. In client code, a child can temporarily masquerade as a parent because
the child’s interface contains the same public members. Any client code that worked with a parent
object will still work with a child.

Inheritance occurs without the parent even knowing that the child exists. This is important
because coupling in the hierarchy only goes one way. Inheritance couples the child to the parent
but not the other way around. Changes in the parent ripple down the hierarchy to all the children,
but changes to children are not reflected in the parent. Achieving the promise of one-way-only
coupling is one reason we spent so much time nailing shut every possible hole in encapsulation.

 

12.1 SIMPLE INHERITANCE

 

Since this is the first chapter on inheritance, we are going to walk before we run. We will use

 

cShape

 

 as the parent class for 

 

cStar

 

 and 

 

cDiamond

 

, but the only functional difference will
occur in the constructor. A simplified diagram of the inheritance relationship is shown in Figure
12.2. We could further simplify inheritance by only supporting scalar objects. In the simple case
with scalar objects, the implementation is too easy. That example would be almost worthless
compared to an example that includes full array support. As with encapsulation, our goal with
inheritance is to develop a robust example that can be used as a reference design for other classes.
To get to that point we need to add a few improvements to the group of eight. These modifications
are only necessary for child classes; however, there is no harm in adding inheritance support to
every class. If the hierarchy needs to evolve, the basic scaffolding will already be in place.

 

12.1.1 C

 

ONSTRUCTOR

 

Every class needs a constructor; it is an object-oriented requirement. Without a constructor, the
child class would never be able to declare its inheritance. As with any constructor, a child-class
constructor must define a structure. The parent is part of that structure, but the parent isn’t added
the same way as private member variables. Parents are added to the class structure via the 

 

class

 

command. This is the same 

 

class

 

 command we used in Part 1, but with inheritance there are
more than two arguments. The additional arguments are parent-class objects. A child class can
inherit from one parent or from multiple parents. Inheritance from more than one parent is called
multiple inheritance. There is considerable debate in the object-oriented community about the
usefulness of multiple inheritance. In the shape example, we will demonstrate inheritance from
only one parent. The general-purpose code that supports inheritance will not be limited to single
inheritance. The general-purpose code will support base classes with no inheritance as well as child
classes with single or multiple inheritance. 

 

FIGURE 12.2

 

The inheritance structure of cStar and cDiamond.

cShape

cStar cDiamond
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Modifications to the existing set of files are easy. We will add a new helper function to keep
track of parent names, but the main organization stays the same. There will still be a main constructor
with a function name the same as the class name, a default 

 

ctor_ini

 

 helper, and any desired
numbered-

 

ctor

 

 functions. The 

 

default_this

 

 object returned by 

 

class

 

 will still be stored
as a persistent variable, but with inheritance more arguments are passed into 

 

class

 

. With inher-
itance, the 

 

class

 

 call must include more than two arguments. The first two arguments are the
same as before, and the new arguments are objects of each parent class. We need to construct each
parent and we can use the default parent constructor or can construct each parent using constructor
arguments. We still save a copy of the default child object, but that does not limit us to calling
only the default parent-class constructor.

The default child object can be based on a parent constructed using any available parent-class
constructor. For example, in 

 

cDiamond.m

 

 we expect to see commands similar to the following:

 

parent_shape = cShape([-1 0 1 0 -1; 0 -1 0 1 0]);

default_this = class(default_struct, class_name, parent_shape);

 

The first line creates a 

 

cShape

 

 object with a specific set of corner points. These corner points
draw a diamond. The second line creates an object using the child’s default structure and the
nondefault parent. To modify the general framework, we will isolate class-specific inheritance
commands in a small number of files. This allows the group-of-eight files to keep their general-
purpose design.

The first argument in the 

 

class

 

 call is a structure. We already said the parent would hold all
the member variables, so we need an empty structure. This is not a problem because 

 

ctor_ini.m

 

can easily return a structure without any elements. Indeed, the current version of 

 

cShape

 

’s

 

ctor_ini

 

 initially creates a no-element structure. Code Listing 64 lists the contents of a

 

ctor_ini

 

 function that can be used to construct 

 

cDiamond

 

 objects. If you want to add private
member variables to the child, you already know how to add them. Simply modify 

 

ctor_ini

 

 to
add elements to 

 

this_struct

 

. The general code in the main constructor will take care of the rest.

With inheritance, the class call requires one or more parent objects. The return-argument list
for 

 

ctor_ini

 

 has been expanded to include a cell array of parent objects. An empty cell array
is passed back when there is no inheritance. When the cell array is not empty, all objects in the
array are passed into 

 

class

 

 and used as parents. In this particular example, line 5 constructs a

 

cShape

 

 object with a specific set of corner points and assigns the object into the first element of

 

parents

 

. Notice on line 5 that we are not merely accepting what the default 

 

cShape

 

 constructor
has to offer. Instead, we are instantiating the 

 

cShape

 

 parent with arguments specifically tailored
for the child. The same general technique can be used inside other constructor helper functions.
The main constructor can now use the specific parent object when it creates the default version of
the child. We will see how that works in Code Listing 66.

 

Code Listing 64, Modular Code, Simple ctor_ini with Inheritance

 

1 function [this_struct, superior, inferior, parents] = 
ctor_ini

2 this_struct = struct([]);
3 superior = {‘double’};
4 inferior = {};
5 parents{1} = cShape([-1 0 1 0 -1; 0 -1 0 1 0]);
6 parent_list(parents{:})
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Line 6 passes the cell array of parents into a private helper function named 

 

parent_list

 

.
The helper function examines the array of parents and saves their names in a persistent variable.
When a member function needs to know the names of its parents, it can call 

 

parent_list

 

 to
get the persistent list. As we will soon see, the parent names are a very important part of inheritance.

The listing for 

 

parent_list

 

 is provided in Code Listing 65. This function has no class-
specific code because the persistent variable is initialized based on the input. For the group-of-
eight framework, every class must have a private 

 

parent_list

 

 helper function. 

Line 2 declares the persistent variable 

 

parent_cellstr

 

. The list of parent-class names is
assigned into its elements. Lines 4–14 execute when 

 

parent_list

 

 is called with one or more
arguments. Line 5 preallocates space for each input. Lines 6–8 loop over the input arguments. Line
7 uses 

 

class

 

 to assign the type of each input argument into an element of 

 

parent_cellstr

 

.
After the loop, lines 9–13 implement a work-around for a problem that existed in MATLAB

prior to version 7.0. Prior to version 7.0, MATLAB referred to parent classes using lowercase
names. The commands in lines 9–13 detect the version and convert the class names to lowercase
when necessary. If you are developing exclusively for versions 7.0 and above, your 

 

parent_list

 

function doesn’t need to include this code.
Finally, line 15 copies the persistent list of parent names into the 

 

parents

 

 return argument.
The only place this helper should be called with inputs is from 

 

ctor_ini

 

. After that, the helper
can be called with no arguments whenever a list of parent-class types is needed.

With these modifications to the private helper functions in place, we can modify code in the
main constructor to take advantage of them. A copy of the main constructor is shown in Code
Listing 66. You have to look closely to find the changes. Line 6 now gets a cell array of parent
objects from 

 

ctor_ini

 

, and line 7 expands the parent-object list when it calls 

 

class

 

. All other
lines remain as they were. 

The commands in Code Listing 66 represent the final version of the main constructor. The
main constructor and the 

 

parent_list 

 

helper function can be reused in every class implemen-
tation. Both functions are appropriate for base classes with no inheritance as well as child classes
with single and multiple inheritance. Code Listing 66 is the final reference design for the main
constructor, replacing all previously developed versions.

 

Code Listing 65, Modular Code, cStar’s Private parent_list Function

 

1 function parents = parent_list(varargin)
2 persistent parent_cellstr
3
4 if nargin > 0
5 parent_cellstr = cell(nargin, 1);
6 for index = 1:nargin
7 parent_cellstr{index,1} = class(varargin{index});
8 end
9 if sscanf(version, '%g%x') < 7.0 && nargout == 1
10 % parent is stored in object using lower case in v.6.5
11 % if not being called from ctor, change parent_name to 

lower case
12 parent_cellstr = lower(parent_cellstr);
13 end
14 end
15 parents = parent_cellstr;
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The private member functions that support Code Listing 66 — 

 

ctor_ini

 

, 

 

ctor_1

 

, and

 

parent_list

 

 — are also complete. These files cannot be reused without class-specific tailoring
because moving class-specific commands out of the main constructor and into these functions was
one of our goals. Even so, these files can be used as a template for other class implementations
because their contents are organized to make tailoring easy.

 

12.1.2 O

 

THER

 

 S

 

TANDARD

 

 M

 

EMBER

 

 F

 

UNCTIONS

 

At first, you might think, “Hey, that’s all we need.” If MATLAB worked like other object-oriented
languages, we would indeed be finished. As we discovered throughout Part 1, however, MATLAB
does not always behave the same as other object-oriented languages. Implementing inheritance also

 

Code Listing 66, Main Constructor with Support for Parent–Child Inheritance

 

1 function this = constructor(varargin)
2 class_name = mfilename('class');  % simply more general than 

'cShape'
3
4 persistent default_this
5 if isempty(default_this)
6 [default_struct, superior, inferior, parents] = ctor_ini;
7 default_this = class(default_struct, class_name, 

parents{:});
8 if ~isempty(superior)
9 superiorto(superior{:});
10 end
11 if ~isempty(inferior)
12 inferiorto(inferior{:});
13 end
14 end
15 this = default_this;  % copies persistent to this
16
17 if nargin > 0  % if not default, pass varargin to helper
18 try
19 this = feval(sprintf('ctor_%d', nargin), this, 

varargin{:});
20 catch
21 err = lasterror;
22 switch err.identifier
23 case 'MATLAB:UndefinedFunction'
24 err.message = [['class ' class_name] ...
25  [' cannot be constructed from '] ...
26 [sprintf('%d', nargin) ' input 

argument(s) ']];
27 end
28 rethrow(err);
29 end
30 end
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exposes differences, and because of that, the group of eight needs a little more work before our
child classes can deal with arrays and vectorization. The differences also mean that we need to
include a few more files in our child-class directories. Presently, the only files in 

 

/@cStar

 

 are

 

cStar.m

 

, 

 

/private/ctor_ini.m

 

, and 

 

private/parent_list.m

 

. MATLAB forwards
all other function calls to the parent directory, 

 

/@cShape.
Our cStar class has a constructor, and we can indeed create an object. All we have to do is

call the constructor, for example:

star = cStar;

We can also access public member variables. For example, accessing Size displays the following:

star.Size

ans =

 1

 1

The parent’s version of subsref is being called, and it correctly returns the default value for
Size. For scalar objects, everything seems to be working well. For nonscalar objects, however,
the wheels fall off. Build an array of stars and try the same dot-reference command. Here is what
happens*:

star = [cStar cStar];

star.Size

??? Dot name reference on non-scalar structure.

To find the cause of this error, we need to trace the call into the parent’s version of subsref and
examine some values. If you are following along, put a breakpoint at the beginning of
/@cShape/get.m. When the execution gets to the breakpoint, step through the code (F11, or
click the equivalent toolbar icon). You will eventually find that the error occurs inside
/@cShape/get.m on the line

 varargout = {this.mSize};

Now we know where, but don’t know why. 
To understand why, we need to dig deeper, but how? We can’t display this because cShape’s

display function relies on get and get is somehow the source of the problem. We can’t use
struct(this) either because struct also relies on get. Even developer_view lets us
down. 

To discover the cause of the error, we need to rely on functions that are not redefined by the
parent. As a start, we can inspect the object’s type. The functions class and isa are used for
this purpose.

K>> class(this)

ans =

cStar

*  Depending on your version of MATLAB, you might get the following error message instead:
??? Field reference for multiple structure elements that is followed by more reference blocks is an error.
Both messages refer to the same root cause.
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K>> isa(this, ‘cShape’)

ans =

 1

Using class informs us that this is an object of type cStar. We started with a cStar so this
might seem reasonable. The problem is that we are inside a function in cShape’s directory.
Shouldn’t the object’s type be reported as cShape? At least in the next command, when we use
isa to check for the type cShape, the answer comes back true. There is still something troubling
about the fact that the primary type of this is cStar. Perhaps the type will point us to the root
cause of the error.

If you are familiar with how inheritance works in other languages, you might expect an object
to display a type consistent with the function. When you are in a /@cStar function, you expect
cStar as the object’s type; and when you are in a /@cShape function, you expect the object to
suppress its child-class additions to become an object of type cShape.

In other languages the term used for this behavior is slicing. Before passing a child object into
a parent-class function, the compiler temporarily slices the child layer off the object. This exposes
the data in the object’s parent. When the parent function receives the sliced object, the object
contains only parent-class members. The parent function can correctly operate on the object because
it only seems to contain parent data. After its trip through the parent-class function, the compiler
glues the sliced-off child layer back onto the object. The parent portion may have changed, and
the original child portion is restored intact. We need to examine this to find out if MATLAB is
doing anything to our object. Fortunately, from Part 1 we have a few tricks up our sleeve.

When we get into a real bind, we can use the built-in version of either fieldnames or
struct. In general, builtin is dangerous, but sometimes we have to take the gloves off when
we are debugging a tough problem. The result from the built-in version of struct is as follows:

K>> builtin(‘struct’, this)

ans = 

1x2 struct array with fields:

 cShape

This simple result gives us a lot of insight into how MATLAB stores parent objects. That insight
allows us to understand the cause of our error.

The output from ‘class’ tells us that this is an object of type cStar, and the output from
‘struct’ tells us that cStar object’s have one field in their private structure. The call to
ctor_ini returned a no-element structure, so MATLAB must have added the field during the
three-argument call to class. Indeed, the fieldname and parent’s class match.* This is exactly
how MATLAB stores the parent part of a child object. For more than one parent, more than one
field will be added. As part of the structure, the parent object is simply another private variable.
Inside a child’s member function, the parent is referenced like any other private variable, for
example, this.cShape. The structure of this is the root of our problem.

Inside get when MATLAB encounters {this.mSize}, it automatically converts operator
syntax into a call to the built-in version of subsref. Operator conversion sorts out the fact we
are asking for a parent variable, expands the index into this(:).cShape.mSize, and calls
the built-in version of subsref. For scalar objects, the built-in subsref can index to any dot-
reference level and the built-in subsref can correctly slice the object’s structure. For nonscalar
objects, the built-in subsref will only index into one level. If we want full support for both
inheritance and nonscalar objects, we must add slicing code to some of the child’s member functions.

*  In versions prior to 7.0, the parent object’s fieldname matches a lowercase version of the parent’s type.
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Related to both inheritance and slicing is a special type of function called a virtual function.
In practical terms, a virtual function is a public function that exists in both the parent’s directory
and the child’s. The child does not inherit the parent’s function but rather chooses to redefine the
function so that it does something different for child-class objects vs. parent-class objects. MATLAB
decides which version to use based on the argument type. If one member function calls another
member function, the argument type is used to decide where to find the called member function.
Even when the calling member function is a parent function, the call will execute a child function.
The object-oriented word used to describe this behavior is polymorphism. Getting the full power
of polymorphism is tricky because we have to be careful about when we slice an object. If we slice
it too soon, we lose the ability to run child-class functions.

It seems slicing code might be added in one of two places: parent-class member functions or
child-class member functions. Inside the parent, slicing code would look something like the
following:

parent = [this(:).cShape];

Size = [parent(:).Size];

There are at least three problems with this approach. First, we prefer an inheritance relationship
where the parent never needs to know it is being used as a parent. Modifying parent-class functions
violates that preference. Second, in a multiple-inheritance situation, the priority for choosing a
parent lies with the child. Third, the parent-class structure element is not available from inside
parent-class member functions. When the built-in subsref slices this, it removes the child
portion and thus there is no longer a cShape field. The whole object is a cShape. The correct
place to slice is inside the child. We just need to be a little careful when we allow a child class to
redefine a parent-class function. 

Let’s examine the remaining group-of-eight functions. The two access-operator functions,
subsref and subsasgn, each contain three cases. Dot-references are forwarded to get or set.
No slicing on the part of subsref or subsasgn is required to forward this request. Any required
slicing is done inside get and set. Array-reference code treats each index level separately, and
thus no slicing code is required. Cell-references already throw an error, and thus they require no
further slicing. Since inheritance introduces no changes to subsref and subsasgn, a child class
can choose to include or omit them from its class directory.

Next in the list is display. Here there are two options, standard display and developer view.
Standard display relies on the tailored version of struct, while developer view relies on builtin
and full_display. As long as struct returns a full set of public variable names, display
can get the values without slicing. Similarly, neither the built-in version of struct nor
full_display needs any additional slicing code. Any required slicing occurs when struct
is called. Even though struct has to travel up the inheritance hierarchy, struct needs no
additional slicing code. Instead, struct relies on slicing code inside fieldnames and get.
This means that display and struct are also optional for child classes.

To support combined inheritance and object arrays, the remaining three group-of-eight functions
— fieldnames, get, and set — need to slice their objects. All three can generalize their
slicing code by using parent_list to obtain a list of parent-class names. Coding fieldnames,
get, and set to handle an empty list allows for a general solution. Of course, the name list inside
fieldnames and the cases inside get and set will still need class-specific tailoring; however,
slicing code can be reused as is. Generalizing on parent_list has other positive implications,
the primary advantage being that the parent_list order can be used to establish parent-class
priority.

The Part 1 organization of fieldnames, get, and set makes it relatively easy to add slicing
code. For fieldnames, public names from parent-class fieldnames calls are concatenated
with any additional child-class names. In the case of get and set, they are already organized into
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functional blocks that represent public member variables, concealed variables, and error processing.
To support slicing and inheritance, we need to add another functional block just before error
processing. This way, the dot-reference request can be forwarded to each parent prior to throwing
an error. In effect, we are setting up a standard precedence for indexing member variables that is
quite similar to the overarching function-search rules.

12.1.2.1 Child Class fieldnames

The child classes in this chapter don’t add public member variables, but that is not typical. Ordinarily
a child class adds variables and functions. Private variables are added through the constructor,
public variables are added using cases in get and set, and functions are added to the class
directory. Private variables and public functions take care of themselves, but public variable names
need to be available from fieldnames. 

Calling the parent’s version of fieldnames returns a list of the parent’s public variables.
Calling the child’s version of fieldnames returns a list of the child’s public variables. Due to
inheritance, the child’s list needs to include the names from every parent plus those names added
by the child. The easiest way to assemble the list is to call parent_list, slice the object into
each parent listed, concatenate the variable names from the parents, and finally add the child’s
names. Code to implement this process is shown in Code Listing 67. 

Code Listing 67, Implementing Parent Slicing in cStar’s fieldnames.m

1 function names = fieldnames(this, varargin)
2
3 names = {};
4
5 % first fill up names with parent public names
6 parent_name = parent_list;  % get the parent name cellstr
7 for parent_name = parent_list'
8 parent = [this.(parent_name{1})];
9 names = [names; fieldnames(parent, varargin{:})];
10 end
11
12 % then add additional names for child
13 % note: return names as a column
14 if nargin == 1
15 % no extra fields for this child class
16 else
17 switch varargin{1}
18 case '-full'
19 % no extra fields for this child class
20 case '-possible'
21 % no extra fields for this child class
22 otherwise
23 error('Unsupported call to fieldnames');
24 end
25 end
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Line 6 calls the parent list, and lines 7–10 loop over all the parent names returned. Line 8 slices
the object using dynamic fieldname syntax, and line 9 calls each parent’s fieldnames. The result
from each call is concatenated into names. After assembling the parent-class names cellstr,
lines 14–25 add the names for public variables added by the child. In this particular case, there are
no additional names and lines 14–25 don’t add anything. These lines were included in the listing
to remind us what needs to be done whenever the child adds public variables.

12.1.2.2 Child Class get

Inside get, parent-forwarding code slices out the parent object and forwards the sliced object
along with index arguments to each parent’s version of get. The parent’s version of get looks
for the dot-reference name among its public variables and either returns a value or forwards the
request to the parent’s parent. This way it doesn’t matter how deeply a child is rooted in the
hierarchy because the call traverses the hierarchy one level at a time. If the call makes it all the
way to the highest level yet still does not find a reference to the dot-reference name, the error block
will throw an error. With single inheritance, it really doesn’t matter which version of get throws
the error. With multiple inheritance, these errors need to be caught and handled by the child. Before
throwing an error, the child needs to wait until all parent objects have been given an opportunity
to respond.

Code to implement get for both cStar and cDiamond is shown in Code Listing 68. This
listing contains the same functional blocks as before, and it contains a new parent-forwarding
section. The public and concealed variable blocks don’t include any cases because currently the
child classes do not contain additional variables. Even requests for the concealed variable mDis-
playFunc will be forwarded to the parent. The empty switch statements are here to remind us
of the other sections and give us a head start if we want to add child-class variables. The error-
processing block is included, and the error has been upgraded so that it assigns an identifier as
well as a message. An error with an identifier is much easier to catch compared to one without.
After error processing, the value of nargout is used to condition the output. 

Code Listing 68, Implementing Parent Forwarding in cStar’s get.m

1 function varargout = get(this, index, varargin)
2
3 % one argument, display info and return
4 if nargin == 1
5 if nargout == 0
6 disp(struct(this(1)));
7 else
8 varargout = cell(1,max([1, nargout]));
9 varargout{1} = struct(this(1));
10 end
11 return;
12 end
13
14 % if index is a string, we will allow special access
15 called_by_name = ischar(index);
16
17 % the set switch below needs a substruct
18 if called_by_name
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19 index = substruct('.', index);
20 end
21
22 found = false;
23
24 % public-member-variable section
25 found = true;  % otherwise-case will flip to false
26 switch index(1).subs
27 % No additional public variables
28 otherwise
29 found = false;  % didn't find it in the public section
30 end
31
32 % concealed member variables, not strictly public
33 if ~found && called_by_name
34 found = true;
35 switch index(1).subs
36 % No additional concealed variables
37 % mDisplayFunc exists in the parent
38 otherwise
39 found = false;  % didn't find it in the public section
40 end
41 end
42
43 % parent forwarding block
44 if ~found
45  
46 if called_by_name
47 forward_index = index(1).subs;
48 else
49 forward_index = index;
50 end
51  
52 if nargout == 0
53 varargout = cell(size(this));
54 else
55 varargout = cell(1, nargout);
56 end
57  
58 for parent_name = parent_list'  % loop over parent cellstr
59 try
60 parent = [this.(parent_name{1})];
61 [varargout{:}] = get(parent, forward_index, 

varargin{:});
62 found = true;  % catch will assign false if not found
63 break;  % can only get here if field is found
64 catch
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The parent-forwarding section can be found in lines 43–76. As with the other functional blocks,
entrance to parent forwarding is guarded on line 44 by if ~found. We don’t need to ask the
parent for a value if we have already found it in the child. Lines 46–50 change the input index
back into its original form. This change allows the parent to determine whether to allow access to
concealed variables.

Lines 52–56 initialize varargout to the right size so that nargout inside of the parent’s
get will return the correct number of values. We have used this trick before. Preallocating
varargout allows the parent’s get to return the correct number of arguments. Line 58 loops
over the names returned by the call to parent_list. Line 60 slices the object using dynamic
fieldname syntax. In cStar, for example, the equivalent nondynamic syntax would be written as
this.cShape. Parent objects are stored in the child object as private structure elements with
element names identical to the parent’s type. The variable parent is now a parent-class object.
Once parent is passed out of the child-class function, all associations with the child are severed.
MATLAB treats parent as a parent-class object because the child has been sliced away.

65 found = false;
66 err = lasterror;
67 switch err.identifier
68 case 'MATLAB:nonExistentField'
69 % NOP
70 otherwise
71 rethrow(err);
72 end
73 end
74 end
75 end
76
77 % error block
78 if ~found
79 error('MATLAB:nonExistentField', ...
80 'Reference to non-existent field identifier %s', ...
81 index(1).subs);
82 end
83
84 % nargout adjustment
85 if length(varargout) > 1 & nargout <= 1
86 if iscellstr(varargout) || any([cellfun('isempty', 

varargout)])
87 varargout = {varargout};
88 else
89 try
90 varargout = {[varargout{:}]};
91 catch
92 varargout = {varargout};
93 end
94 end
95 end
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Line 61 and normal object-oriented function selection forward the get request to the parent.
If line 61 successfully returns a value, line 62 sets found to true. Line 63 then breaks out of
the parent_name loop. Once the loop receives a value from one parent, there is no reason to
ask another. If line 61 is not successful, the parent at the top of the hierarchy will throw a
‘MATLAB:nonExistentField’ error. Lines 62–63 are skipped, and the error is caught by
line 64. Line 65 makes sure found is set to false, line 66 loads the error into err, and line 67
selects a case based on the error identifier. If the identifier is ‘MATLAB:nonExistentField’,
program control jumps back to the beginning of the parent_name loop. Maybe the value will
be found in the next parent. Any other error is a lot more serious and is rethrown by line 71. If the
parent_name loop completes without finding a value, found will be false and standard error
processing will occur.

The parent-forwarding section in lines 43–76 is general and can be included in every class’
get. This is even true for parentless base classes because parent_list returns an empty
cellstr. The standard implementation of get will always include a parent-forwarding block.

12.1.2.3 Child Class set

After inserting a parent-forwarding section inside get, we are in an excellent position to insert
the same functionality into set. The basic idea is the same but the direction is different. With
set, we are trying to assign, not access, parent values. Assignment is a little harder because we
need to slice the object, forward the request, and glue the child portion back to the parent. Code
to implement get for both cStar and cDiamond is shown in Code Listing 69. The parent-
forwarding block in this listing is general and can be added to every version of set. 

Code Listing 69, Implementing Parent Forwarding in cStar’s set.m

1 function varargout = set(this, index, varargin)
2
3 % one/two arguments, display info and return
4 if nargin < 3
5 possible = fieldnames(this, '-possible');
6 possible_struct = struct(possible{:});
7 if nargout == 0
8 if nargin == 1
9 disp(struct(this(1)));
10 else
11 try
12 temp_struct.(index) = possible_struct.(index);
13 disp(temp_struct);
14 catch
15 warning(['??? Reference to non-existent field ' ... 
16 index '.']);
17 end
18 end
19 else
20 varargout = cell(1,max([1, nargout]));
21 varargout{1} = struct(this(1));
22 end
23 return;
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24 end
25
26 % if index is a string, we will allow special access
27 called_by_name = ischar(index);
28
29 % the set switch below needs a substruct
30 if called_by_name
31 index = substruct('.', index);
32 end
33
34 % public-member-variable section
35 found = true;  % otherwise-case will flip to false
36 switch index(1).subs
37 % No additional public variables
38 otherwise
39 found = false;  % didn't find it in the public section
40 end
41
42 % concealed member variables, not strictly public
43 if ~found && called_by_name
44 found = true;
45 switch index(1).subs
46 % No additional concealed variables
47 % mDisplayFunc exists in the parent
48 otherwise
49 found = false;  % didn't find it in the public section
50 end
51 end
52
53 % parent forwarding block
54 if ~found
55  
56 if called_by_name
57 forward_index = index(1).subs;
58 else
59 forward_index = index;
60 end
61  
62 for parent_name = parent_list'  % loop over parent cellstr
63 try
64 parent = [this.(parent_name{1})];
65 parent = set(parent, forward_index, varargin{:});
66 parent = num2cell(parent);
67 [this.(parent_name{1})] = deal(parent{:});
68 found = true;  % catch will assign false if not found
69 break;  % can only get here if field is found
70 catch
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Here the parent-forwarding block is found in lines 53–80. The only differences from get’s
parent-forwarding block occur in lines 65–67. Like get, line 64 performs the slice so that parent
contains a parent-class object. In line 65, the parent is used as an input to set. Passing the
parent-class object allows MATLAB to find and use the parent’s member function. Line 66 converts
parent into a cell array so that line 67 can easily deal the elements back into their proper location.
Line 67 is the place where the parent and child are glued back together. Line 64 performed the
slice, and line 67 reassembles the pieces. The catch statement that begins on line 70 handles
assignment errors.

12.1.3 PARENT SLICING IN NONSTANDARD MEMBER FUNCTIONS

Quite often, a member function outside the group of eight needs to call a parent member function.
To do this, slicing code must be added; however, slice-and-forward code inside nonstandard member
functions usually targets a specific parent. For standard group-of-eight functions, slice-and-forward
code can successfully loop over every parent because every parent contains all the standard
functions. This is not the case for nonstandard functions.

Currently cShape has three nonstandard functions, draw, mtimes, and reset. For each,
cStar and cDiamond can choose to redefine these functions or allow MATLAB to run the parent
version directly. For scalar objects, MATLAB can directly run the parent version whenever no
additional child-class variable is involved in the function. This is very convenient because it means
most member functions are not tailored by the child. For nonscalar objects, a tailored version with
slice-and-forward code must be included anytime the parent version uses private member variables.
This is unfortunate because it usually forces the child to overload every nonstandard member
function. When a child inherits from more than one parent, all nonstandard functions from every
parent must be tailored or at least considered for tailoring.

One of the biggest benefits of inheritance is an ability to reuse parent-class functions without
child-class tailoring. MATLAB does not currently have intrinsic support for the combination of
inheritance and nonscalar objects. There are also issues with deeper levels of inheritance Lack of

71 found = false;
72 err = lasterror;
73 switch err.identifier
74 case 'MATLAB:nonExistentField'
75 % NOP
76 otherwise
77 rethrow(err);
78 end
79 end
80 end
81 end
82
83 % error block
84 if ~found
85 error('MATLAB:nonExistentField', ...
86 'Reference to non-existent field identifier %s', ...
87 index(1).subs);
88 end
89
90 varargout{1} = this;
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intrinsic support forces difficult decisions. We can choose to allow only scalar objects. We still get
the benefit of object-oriented reuse, but we lose one of the most powerful reasons for using
MATLAB: vectorization. If we choose to support nonscalar objects, we diminish some of the typical
reasons for using an object-oriented approach: reuse and polymorphism. We still get some reuse
because child-class functions only need to include slice-and-forward code. The bulk of the func-
tionality still resides in the parent. We lose polymorphism because after the child-class function
slices the object, only parent-class functions can be called. For MATLAB, the lesser-of-two-evils
choice is to support vectorization at the expense of reuse and polymorphism.

12.1.3.1 draw.m

Supporting nonscalar objects with draw means that each child class needs to define a function
named draw.m. In this example, the child version must include slice-and-forward code but can
rely on the parent’s version to do all the drawing. Like set, draw is a mutator and the child’s
version of draw will follow set’s example. The implementation is shown in Code Listing 70.
Some of the lines in the else block could be combined, but this example breaks each operation
into a separate line. 

Notice in line 1 that this version of draw will accept more than one argument. Including
varargin as an input and forwarding the values to the parent helps insulate the child’s slice-
and-forward function from future changes that might occur in the parent. Like the parent’s version,
lines 2–3 enforce the use of draw as a mutator. If the client doesn’t ask for a return value, it’s an
error. Line 5 slices the object into an array of cShape parents. This is different from the parent-
forwarding loop used inside get and set. Unlike the general situation that exists in get and
set, inside draw we already know which parent contains draw. Line 6 calls draw using the
parent as both an input and output argument. Calling draw on the parent will potentially change
the parent. Lines 7–8 assign the mutated parent back into the child-object array. We can follow a
similar approach with all class-specific member functions.

12.1.3.2 mtimes.m

Overloading mtimes for the child follows the same strategy as draw. The child’s version needs
to slice the object, forward to the parent, and reassemble the object. Before the object can be sliced,
it needs to be identified. The implementation is shown in Code Listing 71. 

Line 2 identifies which input variable is the object and which is the scale factor. Inheritance
allows isa to use the name ‘cShape’. Lines 3 and 7 assign the appropriate input to this.
Lines 4 and 8 slice, forward, and distribute the mutated parent array into cells. Lines 5 and 9 deal
the mutated parent objects back into the child objects.

Code Listing 70, Parent Slice and Forward inside Child-Class draw.m

1 function this = draw(this, varargin)
2 if nargout ~= 1
3 warning(‘draw must be called using: obj = draw(obj)’);
4 else
5 parent = [this.cShape];
6 parent = draw(parent, varargin{:});
7 parent = num2cell(parent(:));
8 [this.cShape] = deal(parent{:});
9 end
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12.1.3.3 reset.m

Tailoring reset is even easier because there is only a single input. Again, the child’s version
needs to slice the object, forward to the parent, and reassemble the object. The implementation is
shown in Code Listing 72. Lines 1 and 2 isolate the child-class function from parent-class changes
by including varargin. Line 2 slices, forwards, and collects the reset parent objects in cells of
parent. Line 3 deals the cells back into the child objects. 

12.2 TEST DRIVE

If we correctly understand what simple inheritance means and if we implemented it correctly, we
should be able to substitute a child object for a parent object almost anywhere. In this particular
example, simple inheritance implies that cDiamond and cStar objects can be used anywhere
we previously used a cShape object. A complete copy of the parent’s interface is passed down
the inheritance hierarchy to the child. The interface copy comes primarily through inheritance and
not by duplicating code. Let’s create some objects and see what happens. The commands using
cStar are shown in Code Listing 73. 

Code Listing 71, Parent Slice and Forward in Child-Class mtimes.m

1 function this = mtimes(lhs, rhs)
2 if isa(lhs, ‘cShape’)
3 this = lhs;
4 parent = num2cell(mtimes([this.cShape], rhs));
5 [this.cShape] = deal(parent{:});
6 else
8 parent = num2cell(mtimes(lhs, [this.cShape]));
9 [this.cShape] = deal(parent{:});
10 end

Code Listing 72, Parent Slice and Forward in Child-Class reset.m

1 function this = reset(this, varargin)
2 parent = num2cell(reset([this.cShape], varargin{:}));
3 [this.cShape] = deal(parent{:});

Code Listing 73, Chapter 12 Test Drive Command Listing: Exercising the Interface for a 
cStar Object

1 >> cd '/oop_guide/chapter_12'
2 >> set(0, 'FormatSpacing', 'compact')
3 >> clear classes; fclose all; close all force;
4 >> star = cStar;
5 >> star2 = cStar(star);
6 >> whos
7  Name        Size Bytes  Class
8
9  ans         1x1 8  double array
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10  star        1x1 1020  cStar object
11  star2       1x1 1020  cStar object
12
13 Grand total is 53 elements using 2048 bytes
14
15 >> disp(star.Size')
16 1     1
17 >> disp(star.ColorRgb')
18 0     0     1
19 >> disp(star.Points)
20 0  5.8779e-01 -9.5106e-01  9.5106e-01 -5.8779e-01 -4.8986e-16
21 1.0000e+00 -8.0902e-01  3.0902e-01  3.0902e-01 -8.0902e-01  

1.0000e+00
22 >> star.Size = [2;3];
23 >> disp(star.Size')
24 2     3
25 >> star
26 star = 
27 Size: [2x1 double]
28 ColorRgb: [3x1 double]
29 Points: [2x6 double]
30 >> fieldnames(star)
31 ans = 
32 'Size'
33 'ColorRgb'
34 'Points'
35 >> fieldnames(star, '-full')
36 ans = 
37 'Size % double array'
38 'ColorRgb % double array'
39 'Points % double array'
40 >> fieldnames(star, '-possible')
41 ans = 
42 'Size'
43 {1x1 cell}
44 'ColorRgb'
45 {1x1 cell}
46 'Points'
47 {1x1 cell}
48 >> struct(star)
49 ans = 
50  Size: [2x1 double]
51 ColorRgb: [3x1 double]
52  Points: [2x6 double]
53 >> star = draw(star);
54 >> star = 2 * star * 2;
55 >> star = reset(star);
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The number of commands in Code Listing 73 displays a lot of capability given the fact that
beyond the implementation of cShape, very little work was required. We could repeat the same
set of commands for cDiamond. All of these commands were used extensively throughout Part
1. Here they are briefly summarized. A more thorough discussion can be found in Part 1.

The first cStar object is created in line 4. Here, MATLAB finds the constructor named
/@cStar/cStar.m. The constructor is a copy of the standard group-of-eight constructor. The
constructor was designed to be generic because it relies on /@cStar/private/ctor_ini.m
for all class-specific details. There are no input arguments, so the constructor returns a default
cStar object. In line 5, one argument is passed into the constructor. In this case, the constructor
relies on /@cStar/private/ctor_1.m to construct a copy of the input object.

Let’s take a short diversion and examine the details involved in child-class construction. The
fact of a hierarchy complicates object construction because the process is now distributed. Multiple
functions are involved, and these functions are spread across several directories. Ordinarily, such
(dis)organization would lead to maintenance problems. With inheritance, however, a hierarchy with
enforced encapsulation allows the organization to work smoothly. Even so, the organization is
important and we must always keep in mind what is going on behind the scenes during child
construction. 

Figure 12.3 displays a diagram of the calling tree along with each function’s path. Even with
one level of inheritance, there are many functions to call. The depth of the calling tree and the ease

56 >> star = [cStar cStar; cStar cStar];
57 >> size(star)
58 ans = 
59 2    2
60 >> [star.Size]
61 ans =
62 1     1     1     1
63 1     1     1     1
64 >> {star.Size}
65 ans = 
66 [2x1 double]    [2x1 double]    [2x1 double]    [2x1 double]
67 >>
68 >> disp(class(star))
69 cStar
70 >> disp(isa(star, 'cShape'))
71 1
72 >> disp(isa(star, 'cDiamond'))
73 0

FIGURE 12.3 Call tree for cStar’s default constructor.

star = cStarcommand

/@cStar

/@cStar/private

/@cShape
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cShape.m
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• • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • •

• • • •
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with which such depth is created are exactly why object-oriented programming received low grades
for performance in the early years. Since then, we have learned some tricks on managing perform-
ance so that object-oriented programming can sometimes achieve higher efficiency compared to
other techniques. During the construction of default objects, a persistent copy of the default object
lets us short-circuit this calling tree and improve performance. MATLAB return a copy of the
persistent object much faster than executing the nested constructor functions. The persistent copy
is even more valuable when the hierarchy is deep or parent construction is complicated.

Back to the commands: the next few commands, lines 15–22, confirm that we have access to
public member variables. Access to Size, ColorRgb, and Points is demonstrated. Remember
that the private variables associated with these public variables do not belong to cStar but rather
to the parent cShape. Slice-and-forward code inside cStar’s set and get appears to be working
correctly. Let’s briefly look at the calling tree for these operations.

MATLAB converts the dot-reference operator into a tailored call to subsref.m. The child
class can choose to include or omit subsref because polymorphism allows the parent’s version
to work as a substitute. The calling tree in Figure 12.4 assumes the child includes all group-of-
eight functions. Some of the file locations would be different if the child omits some of the standard
functions. Inside subsref, there is an object-oriented call to get.m and MATLAB finds get
in /@cStar. Slice-and-forward code inside the child’s version of get forwards the index to the
parent. This process would be repeated for any number of parents, and in this case, the public
variables are found and values are passed back to the command window. The order is a little easier
because we never need to call the parent’s version of subsref. Assignment works the same way
except that subsasgn and set are used instead of subsref and get. 

Line 25 has no trailing semicolon, and that triggers a call to display. Other standard functions
like fieldnames and struct are demonstrated on lines 30–52. In these standard functions,
slice-and-forward code assembles the desired result. All of this appears to be working because the
outputs are the same as those at the end of Part 1.

Parent–child inheritance also provides cStar with a graphics interface. The result of draw
in line 53 is shown in Figure 12.5. The scale is not 1:1 because we set the Size to [2; 3] back
in the command on line 22. Figure 12.5 shows the result after pre- and postmultiplying by two in
line 54. The reset in line 55 closes the graphics window.  

Lines 56–59 demonstrate that we are able to create arrays of cStar objects, and lines 60–66
demonstrate that we can access the object array even with the use of inheritance. Finally, lines
68–73 investigate the object’s type. Here we note that the primary type returned by class is
cStar. In line 70 when we explicitly ask whether star is a cShape object, the answer is yes.
That means the variable star is of course a cStar object, and inheritance allows star to
masquerade as a cShape object too. Line 72 correctly tells us that star is not a cDiamond object.

So far, the test drive commands have pointed out similarities between inheritance and the shape
classes developed at the end of Part 1. In Chapter 10, stars and diamond shapes both used cShape
as their type. In this chapter, star and diamond shapes each have their own type and both cStar
and cDiamond classes inherit from cShape. The command on line 72 points out that star shapes
are not the same as diamond shapes and that difference casts a big shadow on the design. We are
back to a place where we need to wrestle with a choice between scalar and vectorized objects. We
will move that fight into the next chapter. 

FIGURE 12.4 Call tree for cStar’s dot-reference accessor.

star.Sizecommand

/@cStar

/@cStar

subsref.m

get.m

• • • • • • • • • • • •

• • • •

• • • • • • • • • • • • • • • • • •

/@cShape • • • • • • • • • • • • • • • • • • • • • get.m
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12.3 SUMMARY

If you thought that inheritance was going to be hard, hopefully this short chapter has dispelled that
belief. The mechanics of inheritance are easy because we spent a lot of effort in the first section.
First, bulletproof encapsulation always makes inheritance easier. Second, the code organization
from Part 1 made it easy to add generic slice-and-forward code to the core group-of-eight functions.
We also showed how to add slice-and-forward code to other child member functions so that both
inheritance and object arrays can work in harmony.

Four functions in the standard group of eight received inheritance-related additions. The con-
structor, get, set, and fieldnames now include slice-and-forward code as part of their general
implementation. The slice-and-forward code is based on the output of the private parent_list
helper function. In classes without inheritance, parent_list returns an empty cellstr. An
empty list bypasses slice-and-forward code sections. In classes with inheritance, parent_list
returns a list of parent-class names and these names are used to slice out each parent and recall
the original function, this time using the parent as an argument.

FIGURE 12.5 cStar graphic (simple inheritance) after setting the size to [2; 3].

FIGURE 12.6 cStar graphic (simple inheritance) after scaling via multiplication, 2 * star * 2.
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12.4 INDEPENDENT INVESTIGATIONS

1. Try your hand at adding a couple of other shape-specific classes. You might try adding
a square or a triangle. For some real fun, try creating the corner points using rand.
Think about how you might add a shape with no corners, like a circle.

2. Define a child of cStar called cGreenStar, and construct it so that when drawn the
star is green rather than blue.
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13

 

Object Arrays with Inheritance

 

With the introduction of 

 

cStar

 

 and 

 

cDiamond

 

, the same class no longer represents both stars
and diamonds. Even though both are derived from 

 

cShape

 

 and even though neither adds new
features, 

 

cStar

 

 and 

 

cDiamond

 

 objects are different. These differences cast a big shadow on
design because they force difficult choices between inheritance and vectorization. Here we discuss
the differences and add some implementation details to our classes.

 

13.1 WHEN IS A CSHAPE NOT A CSHAPE?

 

One of the nice things about inheritance, virtual functions, polymorphism, and arrays of objects is
the promise that MATLAB will always find and execute the right function based on the object’s
type. Following this to its conclusion, you might get the idea that a 

 

cShape

 

 array should be able
to hold objects in any combination of 

 

cShape

 

, 

 

cStar

 

, and 

 

cDiamond

 

. In reality, the vectorized
implementation inside 

 

cShape

 

’s group of eight cannot deal with a mixture of types. Vectorized
operations rely on every object having exactly the same private structure, and exactly the same
type. Therefore, even though 

 

cStar

 

 objects can masquerade as 

 

cShape

 

 objects, with respect to
building object arrays, there is definitely a difference.

Unfortunately, MATLAB currently permits some questionable syntax. For example, using the
code from Chapter 12, the commands in Code Listing 74 execute without causing an immediate
error. The command in line 1 concatenates objects of different types. Line 2 is a variation on line
1. To make matters worse, the class reported for 

 

my_shapes(2)

 

 from both forms of concatenation
is 

 

cStar

 

. Concatenation does not cause an immediate error because the underlying structures are
the same. This loophole must be closed. To close it, we need to add some code to 

 

subsasgn

 

 and
we need to tailor 

 

cat

 

, 

 

horzcat

 

, and 

 

vertcat

 

. The commands on line 7 are particularly bad
because they eventually result in an internal memory error. 

These changes eliminate the possibility of a single object array being populated with different
types, but they do not eliminate the promise of inheritance, virtual functions, polymorphism, and
arrays of objects. A cell array populated with different object types can still be used. The syntax
is not quite as convenient as a regular array, but short of developing specialized container classes,
a cell array is a good compromise. These issues will be discussed in the test drive.

 

Code Listing 74, Questionable Inheritance Syntax

 

1 >> my_shapes = [cStar cDiamond];
2 >> my_shapes = cStar; my_shapes(2) = cDiamond;
3 >> class(my_shapes(2));
4 ans = 
5 cStar
6 >>
7 >> shape = cShape; shape(2) = cStar;
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13.1.1 C

 

HANGES

 

 

 

TO

 

 

 

SUBSASGN

 

Rather than repeating the entire listing for 

 

subsasgn

 

, only the modified 

 

case ‘()’

 

 section is
shown in Code Listing 75. In this listing, the modifications occur as additions in lines 11–17. These
additions check the values in 

 

varargin

 

 to make sure they all match the type of the class. If they
don’t match, an error is thrown. 

Lines 11–14 generate an error when 

 

varargin

 

 contains more than one assignment value.
Since the array-reference operator is assigning array elements, the input must be an array and there
should be only one. If there is more than one, lines 12–13 throw an error. Lines 15–22 check the
input type. The input can be empty or can be an array of objects of the current class. Recall from
Chapter 9 that 

 

mfilename(‘class’)

 

 is a general way to obtain the name of the current class.
If the checks on lines 15–16 are okay, line 17 uses the built-in version of 

 

subsasgn

 

 to index and
assign elements. If the checks are not okay, lines 19–21 throw an error.

 

Code Listing 75, Changes to subsasgn That Trap Mismatched Array Types

 

1 case '()'
2 if isempty(this)
3 % due to superiorto, need to look at this and varargin
4 if isa(this, mfilename('class'))
5 this = eval(class(this));
6 else
7 this = eval(class(varargin{1}));
8 end
9 end
10 if length(index) == 1
11 if length(varargin) > 1
12 error('OOP:UnexpectedInputSize', ...
13 ['Only one input is allowed for () assignment.']);
14 end
15 if isempty(varargin{1}) || ...
16 strcmp(class(varargin{1}), mfilename('class')) 
17 this = builtin('subsasgn', this, index, varargin{end:-

1:1});
18 else
19 error('OOP:UnexpectedType', ...
20 ['Conversion to ' mfilename('class') ' from ' ...
21 class(mismatched{1}) ' is not possible.']);
22  end
23 else
24 this_subset = this(index(1).subs{:});  % get the subset
25 this_subset = subsasgn(this_subset, index(2:end), 

varargin{:});
26 this(index(1).subs{:}) = this_subset; % put subset back
27  end
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13.1.2

 

VERTCAT

 

 

 

AND

 

 

 

HORZCAT

 

When objects are concatenated, the current built-in versions of 

 

cat

 

, 

 

vertcat

 

, and 

 

horzcat

 

 do
not carefully inspect the types. If the underlying structures are the same, the built-in versions will
concatenate objects of different types, usually resulting in an internal memory error when the
combined variable is used. To avoid this situation, our classes will perform some additional
checking. Performing the additional checks means adding 

 

vertcat.m

 

, 

 

horzcat.m

 

, and 

 

cat.m

 

as member functions to every class. These standard member functions are not in the same league
as the group-of-eight functions because they don’t do anything to the object. Ideally, the built-in
functions would already include this kind of check. For example, 

 

cell2mat

 

 does not require
tailoring because the built-in version correctly checks element types prior to concatenation.

The 

 

vertcat

 

 function is shown in Code Listing 76. For 

 

horzcat

 

, even though the function
name is different, the body is identical to Code Listing 76. The 

 

cat

 

 function is very similar and
is shown in Code Listing 77. 

In both functions, lines 2–3 create a cell array of mismatched inputs. The 

 

cellfun

 

 command
applies an 

 

isclass

 

 check to the cells of 

 

varargin

 

. For 

 

vertcat

 

 and 

 

horzcat

 

, every cell
is checked. For 

 

cat

 

, the cell at 

 

{1}

 

 is not checked because it specifies the concatenation direction.
The output of 

 

cellfun

 

 is a logical array. The element values are 

 

true

 

 where the input class
matches 

 

mfilename(‘class’)

 

. If all elements match, the inputs are okay and 

 

mismatched

 

will be empty. If 

 

mismatched

 

 is not empty, lines 5–7 throw an error. The error identifies the first

 

Code Listing 76, Implementing Input Type Checking for vertcat.m

 

1 function this = vertcat(varargin)
2 mismatched = varargin( ...
3 ~cellfun('isclass', varargin, mfilename('class')));
4 if ~isempty(mismatched)
5 error('MATLAB:UnableToConvert', ...
6 ['Conversion to ' mfilename('class') ' from ' ...
7 class(mismatched{1}) ' is not possible.']);
8 end
9
10 this = builtin(mfilename, varargin{:});

 

Code Listing 77, Implementing Input Type Checking for cat.m

 

1 function this = cat(varargin)
2 mismatched = varargin( ...
3 [false ~cellfun('isclass', varargin(2:end), mfilename 

('class'))]);
4 if ~isempty(mismatched)
5 error('MATLAB:UnableToConvert', ...
6 ['Conversion to ' mfilename('class') ' from ' ...
7 class(mismatched{1}) ' is not possible.']);
8 end
9
10 this = builtin(mfilename, varargin{:});
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mismatched type using 

 

class(mismatched{1})

 

 and the type from 

 

mfilename(‘class’)

 

.
If 

 

mismatched

 

 is empty, line 10 uses 

 

builtin

 

 to forward the arguments to the built-in version
of the function.

 

13.1.3 T

 

EST

 

 D

 

RIVE

 

Using a cell array to hold objects of different types is a good compromise because the variable
types in a cell array’s elements do not control the cell array’s type. This allows a cell array to hold
any combination of types. When each cell is indexed, the contents are used to select the appropriate
functions. This is where the trade-off between performance and inheritance creeps in. Holding
different object types in cell arrays leads to code that is difficult or inconvenient to vectorize. The

 

cellfun

 

 command in MATLAB version 7.1 helps to some degree, but there are still important
differences. What follows is a discussion of some examples.

Class code is designed so that an object can actually be an array of objects. All objects in the
array must be of the same type. For example,

 

>> star = [cStar;

 

 

 

cStar];

>> star(2).ColorRgb = [1; 0; 0];

>> star(1) = 1.5 * star(1);

>> star = draw(star);

>> diamond = [cDiamond; cDiamond];

>> diamond(1).ColorRgb = [0; 1; 0];

>> diamond(2).Size = [0.75; 1.25];

>> diamond = draw(diamond);

 

results in the figures shown in Figure 13.1 and Figure 13.2.
This chapter’s additions to 

 

subsasgn

 

 and to the set of member functions prohibit assignment
or concatenation of mismatched types, for example,

 

FIGURE 13.1

 

cStar graphic (simple inheritance plus an array of objects) after scaling via multiplication,
1.5* star(1).
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>> shape = [star diamond];

??? Error using ==> cStar.horzcat

Conversion to cStar from cDiamond is not possible.

 

Trying to concatenate a cStar object and a cDiamond object throws conversion error from
horzcat. If we want to comingle different object types in a single array, we have to use a cell
array, for example,

>> shape = {star diamond}

shape = 

 [1x2 cStar] [2x1 cDiamond] 

The problem with a cell array is that we have to index each cell before calling member functions.
Trying to call a member function on the entire cell array results in an error, for example,

>> shape_size = shape.Size;

??? Attempt to reference field of non-structure array.

Naturally, we can’t use a dot-reference operator on shape because shape is a cell array. We have
to use a loop instead. For example, 

>> shap_size = []; 

>> for k = 1:length(shape)

shape_size = [shape_size shape{k}.Size];

end

>> disp(shape_size)

 1.5000e+000 1.0000e+000 1.0000e+000 7.5000e-001

 1.5000e+000 1.0000e+000 1.0000e+000 1.2500e+000

FIGURE 13.2 cDiamond graphic (simple inheritance plus an array of objects) after setting the size of (2) to
[0.75; 1.25].
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builds the shape_size array using individual calls to subsref. Drawing the shapes works the
same way. A loop is used, and the resulting figures are identical to Figure 13.1 and Figure 13.2.*

The process of looping over object arrays is common in other object-oriented languages, and
it isn’t too objectionable in MATLAB. It would be convenient if the loops could be vectorized, but
for objects of different types, vectorization is not possible. One consequence is that we can’t
currently draw cStar objects and cDiamond objects in the same figure window.

Drawing multiple objects in the same figure is now a design issue. If we want to be able to
draw all the shapes held in the same cell array in the same figure window, we need to alter the
design of the interface. In this particular case, we simply need to modify draw to accept a figure
handle as an optional argument. The modified /@cShape/draw is shown in Code Listing 78.
This function was first developed in Chapter 10. Only the changes are discussed below. 

*  In version 7.1, it is also possible to use cellfun instead of a loop. The syntax is certainly a lot less familiar:
 shape = cellfun(@draw, shape, ‘UniformOutput’, false);.

Code Listing 78, Modified Implementation of draw That Will Accept an Input Figure 
Handle

1 function this = draw(this, figure_handle)
2 if nargin < 2
3 figure_handle = [];
4 end
5
6 if nargout ~= 1
7 warning('draw must be called using: obj = draw(obj)');
8 else
9 if ~isempty(this)
10 handle_array = unique([figure_handle 

this(:).mFigureHandle]);
11 if length(handle_array) ~= 1 % no handle or mismatched
12 for k = fliplr(find([handle_array ~= figure_handle]))
13 try
14 delete(handle_array(k));  % close figures
15 end
16 handle_array(k) = [];
17 end
18 end
19 if isempty(handle_array)
20 figure_handle = figure;  % create new figure
21 else
22 figure_handle = handle_array(1); % use existing
23 end
24 [this.mFigureHandle] = deal(figure_handle);  % save the 

handle
25 figure(handle_array);  % use the handle
26
27 if nargin < 2
28 clf;   % clear the figure
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When a figure_handle isn’t passed in, lines 2–4 initialize figure_handle with empty.
Line 10 concatenates figure_handle with the object’s figure handles before calling unique.
When no figure_handle was passed in, concatenation with empty has no effect. The loop in
lines 12–17 now loops over indices of handle_array that are not equal to the value of the
passed-in handle value. The command fliplr is used to reverse the loop order because elements
are removed during the loop. Line 14 closes each figure, and line 16 removes the handle from
handle_array. On line 19, if handle_array is empty, line 20 creates a new figure; otherwise,
the first element of handle_array will be reused. Line 24 assigns the handle into the objects,
and line 25 activates the figure. Lines 27–29 clear the figure only when a handle was not passed
into the function. When a handle is passed in, the caller is responsible for clearing the figure.

Now that we can pass in a figure handle to draw, we can create a loop that will draw all the
shapes on one figure window. The following commands will draw the figure shown in Figure 13.3.
It is a little crowded, but all have been drawn together.

>> fig_handle = figure;

>> for k = 1:length(shape)

shape{k} = draw(shape{k}, fig_handle);

end 

29 end
30
31 hold on;  % all shapes drawn in the same figure
32 for k = 1:length(this(:))
33 this(k).mPlotHandle = plot(...
34 this(k).mSize(1) * this(k).mPoints(1,:), ...
35 this(k).mSize(2) * this(k).mPoints(2,:), ...
36 'Color', get(this(k), 'ColorRgb'));
37 end
38 hold off;
39 end
40 end

FIGURE 13.3 Combined graphics for cStar and cDiamond.
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13.2 SUMMARY

In this chapter, we tied up some loose ends related to inheritance and arrays of objects. MATLAB’s
built-in functions allow the assignment of child objects into array elements of the parent, and they
allow the assignment of different types as long as their private structures match. A simple modifi-
cation to subsasgn and the addition of cat, horzcat, and vertcat member functions
effectively eliminate assignment errors. These functions do not rise to the level of the group-of-
eight functions because they don’t really interact with the object. They simply error-check the input
and pass that input along to the built-in version.

We also investigated how to manage arrays of objects with different types but the same set of
member functions. A cell array must be used and cell arrays force us to abandon vectorized code,
at least for some operations. The use of cell arrays also influences the interface design. The interface
must always consider the possibility of holding objects in a cell array rather than in a regular array.
In our shape example, the impact was small.

13.3 INDEPENDENT INVESTIGATIONS

1. With the shape cell array populated with cStar and cDiamond, experiment with
changing the color or size of individual shapes.

2. Can you change all shapes to the same color with one assignment? Do you have to use
a loop or cellfun?
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14

 

Child-Class Members

 

An important facet of parent–child inheritance is the child’s ability to tailor any function that would
otherwise be conveyed from the parent. In Chapters 12 and 13, the child-class functions didn’t do
anything other than slice and forward. They couldn’t do much more than that because the child
classes inherited all of their data from the parent. Closely related to member function tailoring is
the child’s ability to go beyond inheritance by adding private member variables, public member
variables, and member functions.

Adding new m-files is straightforward. Adding new public member variables is a little more
difficult because additional variable names need to be incorporated in the group-of-eight functions.
Supporting these additions is exactly the reason behind the organization of 

 

get.m

 

 and 

 

set.m

 

.
In Chapters 12 and 13, these functions contained slice-and-forward sections only. There was no
reason to include sections for public or concealed variables because 

 

cStar

 

 and 

 

cDiamond

 

 had
none. In this chapter, we will add a public variable to 

 

cStar

 

 and examine the effects on both the
implementation and inheritance.

 

14.1 FUNCTION REDEFINITION

 

A class can tailor the behavior of almost any built-in function. The group-of-eight functions are a
good example of tailoring. We also used the fact that a tailored function can call the built-in version
to coerce MATLAB into doing most of the heavy lifting. In Chapters 12 and 13, we examined
parent–child inheritance and noted that a child class can tailor the behavior of many parent-class
functions. Using a slice-and-forward strategy, a tailored child’s function can coerce the parent into
doing most of the heavy lifting. The limiting factors in slice and forward are the parent’s public
interface and the visibility of variables. A child-class function is not limited to include only slice-
and-forward code. A child-class function doesn’t have to call the parent function at all, but when
it does, the child can add behavior either before or after the call to the parent. Such redefinition
allows the hierarchy to extend beyond its original intent without changing the original code. We
get the maximum amount of reuse with the smallest number of side effects.

Adding a title string to figures that contain a star is a nice addition that fits nicely into the
shape hierarchy. We could hold the title string at the parent level and give every shape the same
capability. Since we already know how to add things at the parent level, we will instead give only

 

cStar

 

 objects a title. We will create the public variable 

 

Title

 

 and store the string in the private
variable 

 

mTitle

 

. The constructor will set a default value of 

 

‘A Star is born’

 

, and a client
can change the string at any time. 

Since we are adding a new member variable to 

 

cStar

 

, the following four group-of-eight
functions will need to be modified:

 

/@cStar/private/ctor_ini.m

/@cStar/fieldnames.m

/@cStar/get.m

/@cStar/set.m

 

The constructor will add and initialize the new private variable, 

 

fieldnames

 

 will add the new
public variable to its name list, and 

 

get and set

 

 will add accessor and mutator code for the
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title. Outside the group of eight, 

 

/@cStar/draw.m

 

 needs to add the title to the figure window.
We will take on the changes to each function in turn.

 

14.1.1 /@

 

C

 

S

 

TAR

 

/

 

PRIVATE

 

/

 

CTOR

 

_

 

INI

 

.

 

M

 

 

 

WITH

 

 P

 

RIVATE

 

 M

 

EMBER

 

 V

 

ARIABLES

 

The modification to 

 

/@cStar/public/ctor_ini.m

 

 is quite pedestrian. Instead of returning
an empty structure, the structure contains one element, 

 

mTitle

 

. The code for the function is shown
in Code Listing 79. Line 2 creates an empty structure, and line 3 adds 

 

mTitle

 

 and initializes its
value. All other private variables for 

 

cStar

 

 are encapsulated within the parent. 

After a 

 

clear classes

 

 command, the constructor change allows the creation of new-style

 

cStar

 

 objects. The new private variable is part of the structure, but its presence cannot be observed
until new capabilities are added to the interface. Until then, new-style 

 

cStar

 

 objects will appear
to be the same as before.

 

14.1.2 /@

 

C

 

S

 

TAR

 

/

 

FIELDNAMES

 

.

 

M

 

 

 

WITH

 

 A

 

DDITIONAL

 

 P

 

UBLIC

 

 M

 

EMBERS

 

In Chapter 12, 

 

fieldnames

 

 only needed to include a slice-and-forward operation. Since we
intend to add a public variable, 

 

fieldnames

 

 needs to add a name to the list. The new name
could be added anywhere in the list, but the beginning or the end is the most convenient. As a
standard convention, the child class will add its variables to the end of the parent’s 

 

fieldnames

 

list. This convention also means that the fields of 

 

struct

 

 will be arranged in the same order. The
child’s version of 

 

fieldnames

 

 first slices the object and forwards it to the parent function. It
then concatenates new names to the end of the parent’s list. The code for 

 

/@cStar/fieldnames

 

is shown in Code Listing 80. 

 

Code Listing 79, Adding a Private Variable to a Child-Class Constructor

 

1 function [this, superior, inferior, parents] = ctor_ini
2 this = struct([]);
3 this(1).mTitle = 'A Star is born';
4 superior = {'double'};
5 inferior = {};
6 parents{1} = ...
7 cShape([imag(exp(j*(0:4:20)*pi/5)); real(exp(j*(0:4:20)* 

pi/5))]);
8 parent_list(parents{:});

 

Code Listing 80, Adding a Public Variable to a Child-Class fieldnames.m

 

1 function names = fieldnames(this, varargin)
2 names = {};
3
4 % First fill up names with parent's public names
5 for parent_name = parent_list'
6 names = [names; fieldnames([this.(parent_name{1})], 

varargin{:})];
7 end
8
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Line 2 initializes 

 

names

 

 with empty so that subsequent names can always be concatenated
onto the end. Lines 5–7 represent the standard 

 

fieldnames

 

 slice-and-forward operation. With
multiple inheritance, the loop adds each parent’s public names in order. Except for the names added,
lines 9–21 look exactly like the lines developed for 

 

cShape

 

. Line 11 assembles the typical return
by simply adding child names to the end of the list. Lines 15 and 16 assemble special-purpose
lists. Each class adds its public names to the list and relies on slice-and-forward code to include
parent names.

 

14.1.3 /@

 

C

 

S

 

TAR

 

/

 

GET

 

.

 

M

 

 

 

WITH

 

 A

 

DDITIONAL

 

 P

 

UBLIC

 

 M

 

EMBERS

 

The accessor function 

 

get.m

 

 is already organized into different sections. Adding read access for

 

Title

 

 is a simple matter of adding a case and code to the public variable section. The case code
looks identical to the public variable case code from Part 1. This is reasonable because, now as
then, the code is simply converting from a private value to a public one. The modified public
variable section for 

 

/@cStar/get

 

 is shown in Code Listing 81. The syntax of the case code was
discussed in §8.2. Other sections of 

 

/@cStar/get 

 

are the same as those developed in Chapter
12. The child’s public variable section does not include cases for the parent’s public variables
because the slice-and-forward section automatically takes care of that operation. 

 

9 % then add additional names for child
10 if nargin == 1
11 names = [names; {'Title'}']; % note: return as a column
12 else
13 switch varargin{1}
14 case '-full'
15 names = [names; {'Title % string'}'];
16 case '-possible'
17 names = [names; {'Title' {{'string'}}}'];
18 otherwise
19 error('Unsupported call to fieldnames');
20 end
21 end

 

Code Listing 81, Child-Class Public Member Variables in get.m

 

1 % public-member-variable section
2 found = true;  % otherwise-case will flip to false
3 switch index(1).subs
4 case 'Title'
5 if isempty(this)
6 varargout = {};
7 else
8 varargout = {this.mTitle};
9 end
10 otherwise
11 found = false;  % didn't find it in the public section
12 end
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14.1.4 /@

 

C

 

S

 

TAR

 

/

 

SET

 

.

 

M

 

 

 

WITH
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 M
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Similar to 

 

get

 

, the mutator function 

 

set is also organized into different sections. Adding write
access for Title is again a simple matter of adding a case and code to the public variable section.
The case code can be modeled after the public variable case code from Part 1. Again, this is a
reasonable approach because, now as then, the code converts from a public value to a private one.

Whenever the title is modified, the figure needs to be redrawn. This is a problem because the
only command available, this = draw(this), introduces an error. This error occurs if the
shape’s figure does not yet exist. In this case, draw will pop open a figure window even though
the client has not yet requested one. The parent class needs an interface change or this particular
drawing error cannot be avoided.

There are several options: make the value in private variable cShape.mFigureHandle
observable, create a /@cShape/redraw function that behaves differently compared to
/@cShape/draw, or pass an argument into /@cShape/draw that modifies its behavior. Here
we will take the first approach and make mFigureHandle a read-only concealed variable. This
approach is flexible, but flexibility comes at a cost. The figure handle will now be available to any
client that understands how to use concealed variables. The concealed variable section in
/@cShape/get now has another case besides mDisplayFunc. An additional concealed variable
case is included in the example code for Chapter 14 and beyond, but is not listed or described.

The modified public variable section for /@cStar/set is shown in Code Listing 82. The
syntax of the case code was discussed in §8.2, and other sections of /@cStar/set are the same
as those developed in Chapter 12. The child’s public variable section does not include cases for
the parent’s public variables because the slice-and-forward section automatically takes care of that
operation. 

The addition to cShape’s concealed variables allows lines 11–14 to modify the title for figure
handles associated with star objects. The figure might also include other shapes, but it will also
include a star. If the shape has not yet been drawn, the figure handle will be empty. The figure
command in line 12 will not activate a figure, and the title command on line 13 will do nothing.

Code Listing 82, Child-Class Public Member Variables in set.m

1 % public-member-variable section
2 found = true;  % otherwise-case will flip to false
3 switch index(1).subs
4 case 'Title'
5 if length(index) > 1
6 this.mTitle = ...
7 subsasgn(this.mTitle, index(2:end), varargin{:});
8 else
9 [this.mTitle] = deal(varargin{:});
10 end
11 for k = 1:length(this)
12 figure(get(this(k), 'mFigureHandle'));
13 title(this(k).mTitle);
14 end
15 otherwise
16 found = false;
17 end
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14.1.5 /@CSTAR/DRAW.M WITH A TITLE

The modifications to ctor_ini, get, and set have given cStar both private and public
variables associated with a title. Next, we add the code to /@cStar/draw that completes the job
of displaying a title on the figure. After Chapter 12’s slice-and-forward code creates each figure,
additional code activates each window and uses the title command to set the title. This is the same
procedure used in /@cStar/set. The new implementation of /@cStar/draw is shown in
Code Listing 83. 

Lines 1–7 are a repeat of the draw function from Chapter 12, and lines 9–12 were borrowed
from /@cStar/set. Line 10 activates each figure, and line 11 uses the title command to set
the figure’s title.

14.2 TEST DRIVE

For this test drive, we need to confirm that we indeed get a title for cStar objects and we need
to investigate what happens when stars and diamonds are drawn on the same figure. A few of the
many possible commands are shown in Code Listing 84. Commands 2–10 repeat some of the test
drive commands from Chapter 13. The graphical results shown in Figure 14.1 and Figure 14.2 are
almost the same as before, in Figure 13.1 and Figure 13.2. The difference can be seen at the top
of Figure 14.1. The star figure now has a title.

Code Listing 83, Child-Class draw.m Using Additional Child-Class Members

1 function this = draw(this, varargin)
2 if nargout ~= 1
3  warning('draw must be called using: obj = draw(obj)');
4 else
5  parent = num2cell(draw([this.cShape], varargin{:}));
6  [this.cShape] = deal(parent{:});
7 end
8
9 for k = 1:length(this)
10  figure(get(this(k), 'mFigureHandle'));
11  title(this(k).mTitle);
12 end

Code Listing 84, Chapter 14 Test Drive Command Listing for Child-Class Member 
Variables

1 >> cd '/oop_guide/chapter_14'
2 >> clear classes; fclose all; close all force; diary off;
3 >> star = [cStar  cStar];
4 >> star(2).ColorRgb = [1; 0; 0];
5 >> star(1) = 1.5 * star(1);
6 >> star = draw(star);
7 >> diamond = [cDiamond; cDiamond];
8 >> diamond(1).ColorRgb = [0; 1; 0];
9 >> diamond(2).Size = [0.75; 1.25];
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Commands 12–16 draw the star and diamond arrays on the same figure. The figure is shown
in Figure 14.3. The figure now has a title because the figure includes a star. Finally, the command
in line 18 demonstrates what happens when the title of one of the stars is modified. The graphic

10 >> diamond = draw(diamond);
11 >>
12 >> shape = {star diamond};
13 >> fig_handle = figure;
14 >> for k = 1:length(shape)
15 shape{k} = draw(shape{k}, fig_handle);
16 end
17 >> star = draw(star);
18 >> star(1).Title = 'Shooting Star';

FIGURE 14.1 cStar graphic with a title.

FIGURE 14.2 cDiamond graphic, no title.

2

1

0

–1

–2
10

A Star is born

–1–2 2

1.5

1

0.5

0

–0.5

–1

–1.5
10–1–2 2

C911X_C014.fm  Page 188  Friday, March 2, 2007  7:53 AM



Child-Class Members 189

result is shown in Figure 14.4. The figure is titled using the title string from the last object drawn.
Drawing the entire array would return the title back to the default because star(2) still contains
the default value.

14.3 SUMMARY

This short chapter reinforced many things we have already learned about objects. Adding new
variables to child classes involves encapsulation, slicing, and forwarding. The addition also takes
advantage of the previous group-of-eight organization. The organization makes adding a new child
variable the same as adding a variable to any class, inherited or not. Private variables are added
and initialized in ctor_ini. Public variables require modifications to fieldnames, get, and
set. The use of the parent_list helper function allows code generalization and thus makes
the code relatively immune to child-class evolution. Typically, member functions outside the group

FIGURE 14.3 Combined cStar and cDiamond graphics, now with a title.

FIGURE 14.4 cStar graphic, now with a new title.
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of eight will also need modifications to support the new variables. In the cStar example, draw
was the only nonstandard function that changed.

14.4 INDEPENDENT INVESTIGATIONS

1. Create a cStar object, a cDiamond object, and a cShape object. Use the whos
command to look at the number of bytes occupied by each object. Why are the byte
sizes different?

2. Modify draw so that the title consists of a concatenation of the titles from all objects
in the figure.

3. Add a title to the cDiamond class and repeat investigation 2.
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15

 

Constructing Simple 
Hierarchies with Composition

 

There is another common form of inheritance, very different from parent–child inheritance, called
composition.* Using an object in composition is easy. All you have to do is assign an object as
the value for a private member variable. For example, if 

 

double

 

 represents a class, we could say
that 

 

this.mSize

 

 is one element of the composition. This means that even simple classes use a
composition of built-in types. Complex classes add structures and objects to the composition. Unlike
parent–child inheritance where the parent’s interface is public, the interface of every object in the
composition remains private.

In composition, there are always two objects involved. We need to define some terminology
so we can keep these two objects straight. The first object is composed from a collection of private
member variables of various types. Let’s call this object the primary object. In our example code,

 

cShape

 

, 

 

cStar

 

, and 

 

cDiamond

 

 are all primary objects. Every private member variable held by
the primary object can be an object. Let’s call these objects secondary objects. In our example
code, 

 

mSize

 

 and 

 

mPoints

 

 represent two secondary objects.
In MATLAB, there is overlap between parent–child inheritance and composition. Parent–child

inheritance is a special case of composition. The child is a primary object and the parent is a
secondary object. This might seem backward but it is consistent with the way primary and secondary
were defined. The parent is a secondary object because the parent object is stored as an element
in the child’s private structure. In Chapters 12 through 14, the element 

 

this.cShape

 

 was
automatically added to child objects.

The difference between parent–child inheritance and composition is the object’s visibility. In
parent–child inheritance, 

 

all

 

 public features of the parent are automatically included in the child’s
public interface. In parent–child inheritance, the child has limited control over the public interface
conveyed from the parent. In composition, 

 

no

 

 public feature of the secondary object is automatically
included in the primary object’s public interface. In composition, the primary object always has
total control over its public interface. The primary object can choose to expose all, part, or nothing
from the secondary object’s public interface. This exposure can be further limited to, for example,
read-only privilege.

 

15.1 COMPOSITION

 

To demonstrate composition we are first going to create a class that makes it a little bit easier to
manage a shape’s plot handle and its line style. Out of the large set of possible line attributes,

 

cLineStyle

 

 encapsulates the conversion between RGB and CSV and demonstrates how to
encapsulate controls for line width. Other attributes would follow the same strategy. There are too
many to list but some of the more common attributes include color, line width, line style, markers,
and marker color. All of these and more are available through the shape’s plot handle and the
handle-graphics 

 

get

 

 and 

 

set

 

 functions. In fact, storing the plot handle as a private member variable
already represents composition. Although not implemented in the same way as a class, a graphics
handle is very similar to an object. 

 

*  MATLAB help files and documents use the term 

 

aggregation

 

 instead of 

 

composition

 

. The Unified Modeling Language
(UML) community and most object-oriented references use composition.
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The first step creates a class implementation for 

 

cLineStyle

 

. The implementation takes full
advantage of group-of-eight development by reusing standard code for the constructor, 

 

display

 

,

 

struct

 

, 

 

subsref

 

, 

 

subsasgn

 

, 

 

private/ctor_1

 

, and 

 

private/parent_list

 

. All
class-dependent modifications are isolated to 

 

private/ctor_ini

 

, 

 

fieldnames

 

, 

 

get

 

, and

 

set

 

. The modifications are also easy to make because they follow the standard prescription. It is
also worth noting that once the 

 

cLineStyle

 

 class has been implemented, it can be tested
independently. It does not have to be included in a composition to work properly. This independence
is important because it helps partition the complexity and generally improves software quality.

The process of creating the 

 

cLineStyle

 

 class is identical to the process of creating any new
class that uses the standard group-of-eight approach. The process is enumerated below, and the
subsections that follow describe the details involved in each change.

1. Create a new class directory and class private directory with the appropriate location and
name. For this example, the new class directory is

 

/oop_guide/chapter_15/@cLineStyle

 

and the new private directory is

 

/oop_guide/chapter_15/@cLineStyle/private

 

2. Copy the set of standard files from any convenient class directory into the new directory.
For this example, the source location is

 

/oop_guide/chapter_15/@cShape

 

The standard set of files includes the group of eight plus a few helpers. The list of files
includes

 

>> copyfile ‘cShape.m’ ‘../@cLineStyle/cLineStyle.m’

>> copyfile ‘subsref.m’ ‘../@cLineStyle’

>> copyfile ‘subsasgn.m’ ‘../@cLineStyle’

>> copyfile ‘struct.m’ ‘../@cLineStyle’

>> copyfile ‘display.m’ ‘../@cLineStyle’

>> copyfile ‘fieldnames.m’ ‘../@cLineStyle’

>> copyfile ‘get.m’ ‘../@cLineStyle’

>> copyfile ‘set.m’ ‘../@cLineStyle’

>> 

>> copyfile ‘private/parent_list.m’ ‘../@cLineStyle/private’

>> copyfile ‘private/ctor_ini.m’ ‘../@cLineStyle/private’

>> copyfile ‘private/ctor_1.m’ ‘../@cLineStyle/private’

 

3. Modify 

 

ctor_ini.m

 

 to reflect the correct list of private member variables and initial
values. All base classes must include 

 

mDisplayFunc

 

 as a private variable because

 

display

 

 depends on it.
4. Modify 

 

fieldnames.m

 

 to reflect the correct list of public member variables.
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5. Modify 

 

get.m

 

 with cases for each public member variable. Include concealed variable
cases if they are appropriate to the class design.

6. Modify 

 

set.m

 

 with cases for each public member variable. Include concealed variable
cases if they are appropriate to the class design.

Out of the many possible line attributes, two were selected for encapsulation inside 

 

cLine-
Style

 

. Color is one obvious choice because 

 

cShape

 

 already includes a lot of code to manage
the conversion between RGB and CSV values. Moving lines of code out of 

 

cShape

 

 and into

 

cLineStyle

 

 allows other classes to include the same functionality without having to repeat lines
of code. Moving the code also makes 

 

cShape

 

 easier to maintain, evolve, and test. The other
attribute is line width. Currently, 

 

cShape

 

 objects cannot change the line width, but the addition
of a public member variable will allow it. To complete the composition, we will set the following
requirements for the 

 

cLineStyle

 

’s interface:

• Get and set the line’s RGB color through a 

 

Color

 

 public variable.
• Change the plot’s line color whenever the object’s line color changes.
• Get and set the line width as a positive integer through a 

 

LineWidth

 

 public variable.
• Change the plot’s line width whenever the object’s line width changes.
• Get and set the line’s graphic’s handle through a 

 

LineHandle

 

 public variable.

The public names 

 

Color

 

 and 

 

LineWidth

 

 are the same names used by the line’s handle-graphics
attributes.

 

15.1.1.1 cLineStyle’s private/ctor_ini

 

The 

 

ctor_ini

 

 private helper function builds the object’s private structure and assigns default
values. For this class we need four private variables. These variables are as follows:

 

mDisplayFunc

 

: The standard group-of-eight 

 

display

 

 function requires this variable.
The only exception occurs in parent–child inheritance. The child class does not need to
add 

 

mDisplayFunc

 

 to its structure because it should already exist in the parent. The
default value is 

 

[]

 

.

 

mColorHsv

 

: The code to manage line color will be moved from 

 

cShape

 

 into 

 

cLine-
Style

 

. That code already relies on 

 

mColorHsv

 

 as a private variable. The default value
is blue: 

 

[0; 0; 1]

 

.

 

mLineWidth

 

: This private variable holds the width of the line as an integer value. The
integer value can be directly used in the 

 

plot

 

 function and in the handle-graphics 

 

set

 

function. The default value is 1.

 

mLineHandle

 

: This private variable holds the value of the line’s plot handle. The value
in 

 

mLineHandle can be used to change the figure color and width when the values
change. The default value is [].

The code to implement this collection of private variables and default values is shown in Code
Listing 85. The mapping between the description above and the code is straightforward. 

Code Listing 85, Modular Code, cLineStyle’s /private/ctor_ini.m

1 function [this, superior, inferior, parents] = ctor_ini
2 this = struct([]); % initially empty structure
3 this(1).mDisplayFunc = []; % function handle for non-default 

display
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15.1.1.2 cLineStyle’s fieldnames

Whereas ctor_ini defines the collection of private variables, fieldnames defines the collec-
tion of public variables. In this case, there are only three: Color, LineWeight, and LineHan-
dle. The public variables and the values they hold come directly from the requirements. The code
to implement fieldnames for these public variables is shown in Code Listing 86. 

4 this(1).mColorHsv = [2/3; 1; 1]; % [H S V]’ of border, 
default is blue

5 this(1).mLineWidth = 1; % line weight: ‘normal’ == 1 ‘bold’ 
== 3

6 this(1).mLineHandle = []; % handle for shape’s line plot
7 superior = {};
8 inferior = {};
9 parents = {};
10 parent_list(parents{:});

Code Listing 86, Modular Code, cLineStyle’s fieldnames.m

1 function names = fieldnames(this, varargin)
2 names = {};
3
4 % first fill up names with parent public names
5 parent_name = parent_list;  % get the parent name cellstr
6 for parent_name = parent_list'
7 names = [names; fieldnames([this.(parent_name{1})], 

varargin{:})];
8 end
9
10 % returns the list of public member variable names
11 if nargin == 1
12 names = {'Color' 'LineWidth' 'LineHandle'}';
13 else
14 switch varargin{1}
15 case '-full'
16 names = {'Color % double array' ...
17 'LineWidth' % positive integer' ...
18 'LineHandle % plot handle'}';
19 case '-possible'
20 names = {'Color' {{'double array  (3x1)'}} ...
21 'LineWidth' {{'positive integer'}} ...
22 'LineHandle' {{'plot handle'}}}';
23 Otherwise
24 error('Unsupported call to fieldnames');
25 end
26 end
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The parent-forwarding code in lines 4–8 is not necessary because parent_list returns an
empty cellstr. It is included because it is part of the standard template. When fieldnames
is called with one input argument, line 12 returns a cellstr populated with the three public
variable names. Lines 16–18 and 20–22 return additional information that depend respectively on
‘-full’ and ‘-possible’ flag values. In line 21, note the possible values for LineWeight
are ‘normal’ or ‘bold’.

15.1.1.3 cLineStyle’s get

The public variable section for cLineStyle’s get is shown in Code Listing 87. By now, the
code in this listing should look familiar. The value of found on line 2 is used to control entry
into subsequent concealed variable, parent-forwarding, and error code blocks. Inside the switch
beginning on line 3, there is a case for each public member variable. Lines 4–10 came directly
from the public member variable section of cShape’s previous implementation. The remaining
cases simply map one private variable into one public variable. This public variable section is just
about as easy as it gets. The remaining sections of cLineStyle’s get function use code from
the standard group-of-eight template. 

Code Listing 87, Public Variable Implementation in cLineStyle’s get.m

1 % public-member-variable section
2 found = true;  % otherwise-case will flip to false
3 switch index(1).subs
4 case 'Color'
5 if isempty(this)
6 varargout = {};
7 else
8 rgb = hsv2rgb([this.mColorHsv]')';
9 varargout = mat2cell(rgb, 3, ones(1, size(rgb,2)));
10 end
11 case 'LineWidth'
12 if isempty(this)
13 varargout = {};
14 else
15 varargout = {this.mLineWidth};
16 end
17 case 'LineHandle'
18 if isempty(this)
19 varargout = {};
20 else
21 varargout = {this.mLineHandle};
22 end
23 otherwise
24 found = false;  % didn't find it in the public section
25 end
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15.1.1.4 cLineStyle’s set

The public variable section for cLineStyle’s set is shown in Code Listing 88. Compared to
the same cases in get, the code in this listing is a little more involved but that is primarily due to
input-value checking. The listing should still be familiar, particularly after you find all of the
common landmarks. The value of found on line 2 is used to control entry into subsequent concealed
variable, parent-forwarding, and error code blocks. Inside the switch beginning on line 3, there
is a case for each public member variable. 

Code Listing 88, Public Variable Implementation in cLineStyle’s set.m

1 % public-member-variable section
2 found = true;  % otherwise-case will flip to false
3 switch index(1).subs
4
5 case 'Color'
6 if length(index) > 1
7 rgb = hsv2rgb(this.mColorHsv')';
8 rgb = subsasgn(rgb, index(2:end), varargin{:});
9 this.mColorHsv = rgb2hsv(rgb')';
10 else
11 hsv = rgb2hsv([varargin{:}]')';
12 hsv = mat2cell(hsv, 3, ones(1, size(hsv,2)));
13 [this.mColorHsv] = deal(hsv{:});
14 end
15 for k = 1:length(this(:))
16 try
17 set(this(k).mLineHandle, 'Color', get(this(k), 

'Color'));
18 End
19 End
20
21 case 'LineWidth'
22 if length(index) > 1
23 error([index(1).subs ' does not support indexing']);
24 end
25 if any([varargin{:}] < 1)
26 error([index(1).subs ' input values must be >= 1']);
27 end
28 if length(varargin) ~= 1 && length(varargin) ~= 

length(this(:))
29 error([index(1).subs ' input length is not correct']);
30 end
31 [this.mLineWidth] = deal(varargin{:});
32 for k = 1:length(this(:))
33 Try
34 set(this(k).mLineHandle, ...
35 'LineWidth', get(this(k), 'LineWidth'));
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Lines 5–14 came directly from the public member variable section of cShape’s previous
implementation. Lines 15–19 loop over the objects in this and set the handle graphic’s
‘Color’ attribute to the newly assigned value. The new RGB value is accessed by calling get
on each cLineStyle object. 

Lines 21–37 deal with LineWidth. Lines 22–30 check the inputs for several conditions. First,
no additional indexing beyond the initial dot-reference name is allowed. Second, all of the width
values must be greater than or equal to one. Third, the length of the input must be one or equal to
the size of the object array. If the input values pass these checks, line 31 deals the new line-width
values into this.mLineWidth. Lines 32–37 then loop over the objects in this and set the handle
graphic’s LineWidth value. The new value is accessed by calling get on each cLineStyle
object. 

Lines 39–46 deal with LineHandle. Lines 40–45 check the inputs for several conditions.
First, no additional indexing beyond the initial dot-reference name is allowed. Second, the length
of the input must be 1 or equal to the size of the object array. If the input values pass these checks,
line 46 deals the new line-width values into this.mLineHandle. The remaining sections of
cLineStyle’s set function use code from the standard group-of-eight template. 

15.1.1.5 cLineStyle’s private/ctor_2

With cLineStyle, we have an opportunity to create a constructor helper function that takes two
input arguments: color and width. The standard constructor is designed to call the helper as long
as it has the correct name. In this case, the name is /private/ctor_2.m. The implementation
is shown in Code Listing 89. 

The function definition on line 1 defines three inputs because this is passed along with the
two inputs originally passed into the constructor. Lines 2 and 3 use set to assign the RGB color

36 End
37 end
38
39 case 'LineHandle'
40 if length(index) > 1
41 error([index(1).subs ' does not support indexing']);
42 end
43 if length(varargin) ~= 1 && length(varargin) ~= 

length(this(:))
44 error([index(1).subs ' input length is not correct']);
45 end
46 [this.mLineHandle] = deal(varargin{:});
47
48 otherwise
49 found = false;  % didn't find it in the public section
50 end

Code Listing 89, Modular Code, cLineStyle Constructor, private/ctor_2.m

1 function this = ctor_2(this, color, width)
2 this = set(this, ‘Color’, color);
3 this = set(this, ‘LineWidth’, width);
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value and the line weight. Using set works correctly here because the main constructor converted
this into an object before it called the helper. By using this two-input constructor, cShape’s
constructor can specify both the color and line width for default cShape objects.

15.1.2 USING A PRIMARY CSHAPE AND A SECONDARY CLINESTYLE

To create the composition we simply add a cLineStyle object to cShape’s collection of private
member variables. This addition occurs inside @cShape/private/ctor_ini.m. Since the
object’s structure has been modified, don’t forget to clear classes before using the new
cShape class. With the addition of a cLineStyle object, we can also eliminate mColorHsv
and mPlotHandle. Of course, we also have to change any member function that relies on
mColorHsv and mPlotHandle as private variables. Group-of-eight functions subject to change
include ctor_ini.m, get.m, and set.m. Member functions outside the group of eight that
require work include draw.m, mtimes.m, and reset.m because they currently use
mPlotHandle. Changes to private variables affect cShape’s internal implementation. They do
not affect cShape’s public interface.

Even though cLineStyle includes a public variable for LineWidth, LineWidth does
not automatically become part of cShape’s public interface. Due to composition, cShape’s
cLineStyle object is private and so is its interface. As it stands, clients will not be able to change
the shape’s line width. If we want to permit clients to change the width, we need to include this
ability by adding to cShape’s public interface. There are several ways to implement the addition;
however, they all boil down to a choice between two alternatives. One alternative exposes the entire
secondary object, while the other only exposes part of the secondary object. No single choice is
always right or always wrong. Part of the design effort involves deciding between the two.

Exposing the secondary object is easy: treat the object like any other private variable by
including cases in get and set to access and mutate the object as a whole. This approach can be
convenient because it automatically allows the primary class to evolve along with the secondary
object. Of course, this approach also introduces a high level of coupling between the primary and
secondary implementations. This approach can also be problematic because complete exposure
typically introduces a read-modify-write approach to mutation. Since multiple levels of dot-refer-
ence indexing on arrays are not allowed,* clients have to copy the object to a local variable, modify
the copy, and write the modified copy back into the primary object. This process is convenient for
the primary-object developer but tedious for primary-object clients. Rather than exposing the whole
secondary object, it is usually better to use parent–child inheritance.

Exposing only part of the secondary object is also easy but it generally requires more work.
In this case, the secondary object and its public members remain hidden behind the primary object’s
interface. If a client needs a value from the secondary object, a primary-object member function
always operates as an intermediary. The client asks the primary object for a value and in turn, the
primary object’s function asks the secondary object for a value. When the secondary object returns
a value, the primary object’s function forwards the value to the client. Here, the primary object
always maintains control over the interface. The primary-object interface chooses which elements
to expose and which to leave hidden. This interface also chooses how to expose secondary object
elements. The primary object’s interface can rename elements and modify their formats. The
example code in this chapter demonstrates this important capability.

To add line-width capability to cShape we are not going to expose the entire secondary object,
but rather we are going to define a public member variable named LineWeight. Clients can set
LineWeight to one of only two values: ‘normal’ or ‘bold’. The LineWeight case
inside set will convert these strings into LineWidth integers, and the LineWeight case

*  This statement applies to built-in functions. In the tailored versions of subsref and subsasgn, a limit was implemented
to match built-in behavior. It is possible to relax the limit at the risk of introducing nonstandard syntax.
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inside get will convert LineWidth integers back into strings. Clients see the width as only
‘normal’ or ‘bold’, but inside cShape’s member functions, integer values are available from
the secondary object. Implementing this behavior will demonstrate how the primary object’s
interface can easily buffer the interaction between client and secondary object.

15.1.2.1 Composition Changes to cShape’s ctor_ini.m

The cLineStyle object needs a private variable, and two existing private variables need to be
removed. The cLineStyle object will be stored in the private variable mLineStyle. With this
change, mColorHsv and mPlotHandle are no longer needed because the secondary object
manages their values. The modified constructor helper is shown in Code Listing 90. In line 9, a
call to cLineStyle’s constructor initializes the mLineStyle object. The first argument is an
RGB color, and the second is the default line width. Since two arguments are passed, cLine-
Style’s constructor will use /@cLineStyle/ctor_2 to complete the assignment. 

15.1.2.2 Adding LineWeight to cShape’s fieldnames.m

Adding a new public variable always adds a new name to the cellstr lists returned by field-
names. The modified code is shown in Code Listing 91. Additions to the previous version occur
in lines 12, 19, and 24. Note in line 24, the possible values for LineWeight are listed as
‘normal’ or ‘bold’. These possible values are displayed in response to set(cShape). 

Code Listing 90, Modular Code, Modified Implementation of cShape’s ctor_ini.m

1 function [this, superior, inferior] = ctor_ini
2 this = struct([]);  % initially empty structure
3 this(1).mDisplayFunc = [];  % function handle for non-default 

display
4 this(1).mSize = ones(2,1); % scaled [width height]’ of 

bounding box
5 this(1).mScale = ones(2,1); % [width height]’ scale factor
6 this(1).mPoints = ...
7 [imag(exp(j*(0:4:20)*pi/5)); real(exp(j*(0:4:20)*pi/5))];
8 this(1).mFigureHandle = []; % handle to the figure's window
9 this(1).mLineStyle = cLineStyle([0;0;1], 1); % color blue, 

width 1
10 superior = {'double'};
11 inferior = {};
12 parents = {};
13 parent_list(parents{:});

Code Listing 91, Adding LineWeight to cShape’s fieldnames.m

1 function names = fieldnames(this, varargin)
2 names = {};
3
4 % first fill up names with parent public names
5 parent_name = parent_list;  % get the parent name cellstr
6 for parent_name = parent_list'
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15.1.2.3 Composition Changes to cShape’s get.m

A change to the way ColorRgb is stored and a new public member variable trigger changes to
cShape’s get.m. These changes are isolated to two public member variable case statements.
The case blocks for ‘ColorRgb’ and ‘LineWeight’ are shown in Code Listing 92. 

7 names = [names; fieldnames([this.(parent_name{1})], 
varargin{:})];

8 end
9
10 % returns the list of public member variable names
11 if nargin == 1
12 names = {'Size' 'ColorRgb' 'Points' 'LineWeight'}';
13 else
14 switch varargin{1}
15 case '-full'
16 names = {'Size % double array' ...
17 'ColorRgb % double array' ...
18 'Points % double array' ...
19 'LineWeight % string'}';
20 case '-possible'
21 names = {'Size' {{'double array (2x1)'}} ...
22 'ColorRgb' {{'double array  (3x1)'}} ...
23 'Points' {{'double array  (2xN)'}} ...
24 'LineWeight' {{'normal' 'bold'}}}';
25 otherwise
26 error('Unsupported call to fieldnames');
27 end
28 end

Code Listing 92, Adding ColorRgb and LineWeight Cases to cShape’s get.m

1 case 'ColorRgb'
2 if isempty(this)
3 varargout = {};
4 else
5 line_style = [this.mLineStyle];
6 varargout = {line_style.Color};
7 end
8 case 'LineWeight'
9 if isempty(this)
10 varargout = {};
11 else
12 line_style = [this.mLineStyle];
13 line_width = [line_style.LineWidth];
14 varargout = cell(1,length(this(:)));
15 varargout(line_width == 1) = {'normal'};
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The new case code for ‘ColorRgb’ is shorter because the conversion from HSV to RGB
now occurs inside the secondary object. Line 5 creates an array of cLineStyle objects, and line
6 uses dot-reference syntax to access Color values. Line 5 is necessary because {this.mLin-
eStyle.Color} throws an error if this is a nonscalar array. Line 6 is composition in action.
The dot-reference syntax is converted into a function call that looks like

varargout = {subsref(line_style, substruct(‘.’, ‘Color’))};

and MATLAB uses path rules to find the appropriate version of subsref. Since line_style
is a cLineStyle object, MATLAB finds and executes @cLineStyle/subsref.m. 

The case code for ‘LineWeight’ was added in lines 8–17. Line 12 creates an array of
cLineStyle objects, and line 13 uses dot-reference syntax to access LineWidth values. Line
14 preallocates varargout, and lines 15–16 fill varargout with strings. Line 15–16 use a
logical array to select the indices that receive ‘normal’ or ‘bold’. Elements where the == test
is true are assigned, and elements where the == test is false are not assigned. Line 15 tests
with 1 and assigns ‘normal’. Line 16 tests with 3 and assigns ‘bold’. Clients never see values
of 1 or 3 but rather only values of ‘normal’ or ‘bold’.

15.1.2.4 Composition Changes to cShape’s set.m

A change to the way ColorRgb is stored and a new public member variable also trigger changes
to cShape’s set.m. These changes are also isolated to the same two public member variable
case statements. The case blocks for ‘ColorRgb’ and ‘LineWeight’ are shown in Code
Listing 93. This listing appears more complicated than the previous version. In reality, the increase
in code length is primarily due to rigorous input value testing. 

16 varargout(line_width == 3) = {'bold'};
17 end

Code Listing 93, Adding ColorRgb and LineWeight Cases to cShape’s set.m

1 case 'ColorRgb'
2 index(1).subs = 'Color';
3 line_style = set([this.mLineStyle], index, varargin{:});
4 line_style = num2cell(line_style);
5 [this.mLineStyle] = deal(line_style{:});
6  
7 case 'LineWeight'
8 if length(index) > 1
9 error([index(1).subs ' does not support indexing']);
10 end
11 if length(varargin) ~= 1 && length(varargin) ~= 

length(this(:))
12 error([index(1).subs ' incorrect input size']);
13 end
14 normal_sieve = strcmp(varargin, 'normal');
15 bold_sieve   = strcmp(varargin, 'bold');
16 if ~all(normal_sieve | bold_sieve)
17 error([index(1).subs ' input values not ''normal'' or 

''bold''']);
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The new case code for ‘ColorRgb’ is shorter because the conversion from RGB to HSV
now occurs inside the secondary object. Line 3 is about to forward the set arguments to the
secondary object, and line 2 prepares for this forward by modifying index. Line 2 changes the
dot-reference name to ‘Color’ because that is the name used in the secondary object’s interface.
There is no reason to check the length of index because line 3 puts that ball in cLineStyle’s
court. Line 3 concatenates the cLineStyle objects and calls set. MATLAB finds and executes
@cLineStyle/set.m and assigns the modified object into line_style. This is again com-
position in action. Line 4 changes line_style into a cell array, and line 5 deals the modified
objects back into their original locations. 

The case code for ‘LineWeight’ was added in lines 7–24. Lines 8–18 perform various
input value checks. First, lines 8–10 disallow indexing deeper than the first dot-reference level.
Next, lines 11–13 make sure the number of arguments in varargin is compatible with the length
of the object array. One input argument is okay because it will be assigned to every object in the
array. With more than one argument, the number must equal the length of the object array. Lines
14–18 check the string values in varargin. Elements of normal_sieve will be true only
at indices where the input string is identically equal to ‘normal’. Similarly, elements of
bold_sieve will be true only at indices where the input string is identically equal to ‘bold’.
If normal_sieve and bold_sieve are both false at the same index value, something is
wrong with the input. On line 16, normal_sieve or bold_sieve is used to determine when
something is wrong.

If the input values pass all the tests, line 19 overwrites ‘normal’ with 1 and line 20 overwrites
‘bold’ with 3. Line 22 is about to toss everything into cLineStyle’s court, and line 21 prepares
for this by changing the dot-reference name from LineWeight to LineWidth. Now the set
in line 22 will correctly return a modified version of the object. This is another example of
composition. Line 23 converts the line_style array into a cell array, and line 24 deals the
modified objects back into their original locations.

15.1.2.5 Composition Changes to cShape’s draw.m

When a shape object is drawn, saving its plot handle makes it easy to change the shape’s line
attributes. Previously, the plot handle was saved in a private variable. With composition, the plot
handle is saved in mLineStyle.LineHandle. The modified plot command in
/@cStar/draw is shown in Code Listing 94. In line 1, the handle is stored in the secondary
object; and in line 5, the LineWidth value stored in the secondary object is added as an argument.
In line 1, MATLAB uses /@cLineStyle/subsasgn, and in lines 4 and 5, /@cLine-
Style/subsref. 

15.1.2.6 Composition Changes to cShape’s Other Member Functions

In mtimes.m, the plot handle is used to set the shape’s new corner points. In reset.m, the plot
handle is assigned an empty value. In both functions, this(k).mPlotHandle has been changed
to this(k).mLineStyle.LineHandle. In the case of mtimes, MATLAB uses /@cLin-

18 end
19 varargin(normal_sieve) = {1};
20 varargin(bold_sieve)   = {3};
21 index(1).subs = 'LineWidth';
22 line_style = set([this.mLineStyle], index, varargin{:});
23 line_style = num2cell(line_style);
24 [this.mLineStyle] = deal(line_style{:});

C911X_C015.fm  Page 202  Friday, March 30, 2007  11:39 AM



Constructing Simple Hierarchies with Composition 203

eStyle/subsref to access the graphics handle. In the case of reset, MATLAB mutates the
graphics handle using /@cLineStyle/subsasgn. Both represent composition.

15.2 TEST DRIVE

Using a cLineStyle object in composition involved some significant changes to cShape’s
implementation. A private variable for the secondary object was added, and several private variables
were deleted. The first few commands in the test drive need to confirm that these structural changes
did not change cShape’s public interface or alter its behavior. Repeating the commands from
Code Listing 84 and comparing the outputs will serve this purpose. For easy reference, these
commands are included as the first eighteen lines in Code Listing 95. Executing lines 1–18 results
in the same figures previously shown in Figures 14.1 through Figure 14.4. You can also experiment
with other elements included in the public interface.

Code Listing 94, Modified Implementation of cShape’s draw.m

1 this(k).mLineStyle.LineHandle = plot( ...
2 this(k).mSize(1) * this(k).mPoints(1,:), ...
3 this(k).mSize(2) * this(k).mPoints(2,:), ...
4 'Color', this(k).mLineStyle.Color, ...
5 'LineWidth', this(k).mLineStyle.LineWidth ...
6 );

Code Listing 95, Chapter 15 Test Drive Command Listing for Composition

1 >> cd '/oop_guide/chapter_15'
2 >> clear classes; fclose all; close all force; diary off;
3 >> star = [cStar  cStar];
4 >> star(2).ColorRgb = [1; 0; 0];
5 >> star(1) = 1.5 * star(1);
6 >> star = draw(star);
7 >> diamond = [cDiamond; cDiamond];
8 >> diamond(1).ColorRgb = [0; 1; 0];
9 >> diamond(2).Size = [0.75; 1.25];
10 >> diamond = draw(diamond);
11 >>
12 >> shape = {star diamond};
13 >> fig_handle = figure;
14 >> for k = 1:length(shape)
15 shape{k} = draw(shape{k}, fig_handle);
16 end
17 >> star = draw(star);
18 >> star(1).Title = 'Shooting Star';
19 >> 
20 >> shape{1}(1).LineWeight = 'bold';
21 >> shape{1}(1)
22 ans = 
23 Size: [2x1 double]
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We can also demonstrate the line-width addition to the collection of public variables. The
command in line 20 results in the shapes shown in Figure 15.1. The largest star is now bold. The
outputs on lines 22–27 confirm that the LineWeight public variable is indeed ‘bold’.

15.3 SUMMARY

In many ways, cLineStyle represents a different interface to the values associated with each
shape’s graphics handle, but developing a replacement interface was never a goal. The real goal is
to demonstrate the various aspects of object-oriented programming by creating a series of classes
that are meaningful in the context of the original cShape class. By coincidence, the example
evolved in a direction where cLineStyle makes sense as a secondary-object class. Even so, it
is interesting to point out some of the differences between the handle-graphics interface and the
simple object-oriented interface.

The first difference is syntax. Using a graphics handle always requires a call to set, for
example, set(handle, ’Color’, [1 0 0]). By comparison, the interface for cLine-
Style uses dot-reference syntax to perform the same operation, for example, line.Color = 3.
The second difference is control. With handle-graphics commands, you can’t control the collection
of available attributes and you can’t redefine the format. By comparison, a class interface makes
it easy to limit the available attributes and define an alternate format. A class interface also allows
the creation of new attributes. Assigning ‘normal’ or ‘bold’ to control the line width is one
example. The third difference is persistence. Attribute data held in an object do not vanish when
the figure window is closed. The final difference is stability. The handle-graphics commands are
built in and tested. It would take much time and effort to test a class interface to the same degree. 

Drawing a cStar object exercises member functions belonging to the child, the parent, and
a secondary object. Even in this simple example, there are many layers and many function calls.
The simplified UML static structure diagram in Figure 15.2 provides a good map of the layers.

24 ColorRgb: [3x1 double]
25 Points: [2x6 double]
26 LineWeight: 'bold'
27 Title: 'A Star is born'

FIGURE 15.1 Combined graphic, now with shape {1}(1) changed to ‘bold’.
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The arrows indicate parent–child inheritance, and the diamond indicates composition. This diagram
helps reveal the path each function takes during execution. For example, drawing a scalar cStar
object uses the set of member functions shown in Table 15.1. 

In particular, subsref, subsasgn, get, and set receive quite a workout, and most of
the calls to these functions are a direct consequence of slice and forward. A few of these calls
in Table 15.1 can be eliminated, but in general, traversing each level in the hierarchy introduces
a certain amount of overhead that cannot be avoided. This is unfortunate because even without
objects, run-time performance is MATLAB’s primary weakness. With objects, there is always a
fine line to walk between efficiency and coupling. The additional overhead means that you have
to be very judicious in your choice of syntax, in the design of each class, and in the design of
the hierarchy. 

Performance optimization is a very involved discipline. The biggest gains usually come from
vectorization. The fact that the group-of-eight implementation fully supports vectorization can
provide a huge performance benefit compared to a scalar-only implementation. This means that
developers need to consider vectorization when designing the software architecture. The fact that
most other object-oriented languages don’t support vectorization makes a MATLAB design unique.
Other performance tweaks can be added, but typically the gains are small. For example, calls to
subsref, subsasgn, get, and set can sometimes be reduced by accessing and mutating
several private variables through one public variable name. Another way to increase performance

FIGURE 15.2 Simplified UML static structure diagram with inheritance and composition.

TABLE 15.1 
Member Functions Used to Draw a Scalar cShape 
Object

Number of Calls Function

1 @cStar/draw
1 @cStar/get
1 @cStar/private/parent_list
1 @cShape/draw
1 @cShape/subsref
1 @cShape/get
2 @cShape/horzcat
2 @cLineStyle/subsref
2 @cLineStyle/get
1 @cLineStyle/subsasgn
1 @cLineStyle/set

cShape

cStar cDiamond

cLineStyle
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involves the use of variable-specific get and set member functions. Except for vectorization,
these techniques usually degrade other aspects of software quality.

Parent–child inheritance and composition have different levels of visibility. Parent–child inher-
itance is sometimes called public inheritance because the parent’s public interface remains public.
Similarly, composition is also called private inheritance because the secondary object’s public
interface is hidden behind the primary object’s interface. During design, these visibility differences
help us decide how to use a secondary object. If the entire interface of the secondary object needs
to be exposed, parent–child inheritance is usually the best choice. In this case, the primary object
is-a specialized version of the secondary. If only a small percentage of the secondary object needs
to be exposed, choose composition. In this case, the primary object has-a secondary object. 

The last time we added puzzle pieces was at the end of Chapter 8. Since then, we have uncovered
a large number of pieces related to inheritance. We can add pieces for hierarchies, slicing, forward-
ing, parent–child inheritance, and composition. After adding these pieces, the object-oriented picture
in Figure 15.3 is coming together. Only a few more pieces and the puzzle will be complete.

15.4 INDEPENDENT INVESTIGATIONS

1. Add the capability to change the style of the line. The addition to cLineStyle should
store the handle-graphics LineStyle characters, but cShape’s interface can use the
same characters or use descriptions like ‘solid’ or ‘dotted’.

2. In §15.1.2 we discussed read-write-modify syntax when a secondary object is made
available through a single public variable name. This exercise investigates that syntax
further.
a. Add a public variable named LineStyle that allows direct access and mutation for

the private secondary object mLineStyle. Changes to /@cShape/fieldnames,
/@cShape/get, and /@cShape/set will be required.

b. Create an object with the command star = cStar and confirm that you can read
and write LineStyle, for example, style = star.LineStyle.

c. Did you include an isa check in set’s LineStyle case? Is it usually a good idea
to include this type of checking? Why or why not?

FIGURE 15.3 Puzzle, now with the inheritance pieces.
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d. Try to access ColorRgb through LineStyle but don’t make a copy of the sec-
ondary object. The command to do this would be star.LineStyle.ColorRgb.

e. Draw the star using the command star = draw(star). Mutate ColorRgb
via LineStyle, for example, star.LineStyle.ColorRgb = [1;0;0];.
Did the color change?

f. Modify the LineStyle cases in get and set so that length(index) == 1
throws an error and repeat investigation 0. This should have generated an error. Can
this approach be used as an alternative to get-modify-set syntax?

g. Create an array of cStar objects with the command star = [star star];
and repeat investigations 0. and 0. What is the difference? What can you do to make
this work?
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16

 

General Assignment and 
Mutator Helper Functions

 

In our constant quest for software quality, consistent interfaces and modular code are very important.
In light of this, we need to turn our attention on 

 

get

 

 and 

 

set

 

. If you examine the current
implementations of 

 

get

 

 or 

 

set

 

, the logic in almost every case statement is different. These
differences are currently necessary because the interface for each public variable is unique. It is
preferable to keep the group-of-eight functions as uniform as possible and that means trying to
move interface differences out of 

 

get

 

 and 

 

set

 

. There isn’t a lot we can do about individual cases,
but we can simplify the code contained in each. To do this we will develop a helper-function
technique that pushes most of the differences out of 

 

get

 

 and 

 

set

 

 and into the helper. This technique
will improve code modularity and improvements in modularity directly relate to improvements in
code quality.

As always, the driving force is code quality. As the public interface grows in complexity, it
would be bad if the complexity of 

 

get

 

 and 

 

set

 

 grew faster than the interface. If we include all
the code directly in these functions, that is exactly what will happen. We will get a riot of cases,
and every case is essentially unique. If we don’t develop a good strategy for the 

 

case

 

 code, an
interface definition can easily overwhelm our ability to grow and maintain the code. A good strategy
will allow us to use a common approach and can lead to the efficient use of automated generation
tools for the group of eight.

 

16.1 HELPER FUNCTION STRATEGY

 

The designs for 

 

get

 

 and 

 

set

 

 already partition the code into sections associated with public
variables, concealed variables, parent forwarding, and error checking. The public variable and
concealed variable sections are further partitioned into separate cases for each variable. This
organization naturally separates each case into a self-contained code block, independent from the
other cases. It is also important to observe that case code in 

 

get

 

 generally uses the same variables
and follows a similar pattern as the case code in 

 

set

 

. It makes sense that this would be true because

 

get

 

 and 

 

set

 

 cases represent inverse operations on the same variable. With such close coupling,
there is a strong argument for organizing the input and output conversion code into the same
function.

In a class with many public variables, the public variable switch blocks can quickly become a
development bottleneck. We can modularize the switch statement by taking advantage of the fact
that each case is self-contained. Here it makes a lot of sense to move the code for each variable
into its own private helper function. 

Based on these two observations, we now have a reasonable way to organize code into smaller,
more manageable pieces. We could easily create a helper function for every public variable, but
first we need to draw a fine line between run-time performance and code organization. Using a
separate helper function means adding yet another function call in the evaluation of 

 

subsref

 

and

 

 subsasgn

 

. If the operation inside the helper function is simple, the overhead of the additional
function call can eat up more run time than the operation itself. On the other hand, member functions
might be able to improve their run time by calling the helper thus eliminating the overhead in 

 

get

 

and 

 

set

 

.
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There isn’t a single approach that will always guarantee the best run time, but it is reasonable
to ask whether every public member variable should be matched with a private helper function.
The best locations for simple functions might be 

 

get

 

 and 

 

set

 

. Public member variables with a
direct link to a single private member variable certainly fit the simple-function category. The case
code for these so-called 

 

direct-link

 

 public member variables is fast and simple and it is difficult to
justify a separate helper function. For other public variables, the picture isn’t as clear. As a general
approach, it is very easy to separate public variables into direct link and non-direct link. We will
proceed along this path with the understanding that run-time optimization will sometimes force us
to include code for simple, non-direct-link variables in 

 

get

 

 and 

 

set

 

. 

 

16.1.1 D

 

IRECT

 

-L

 

INK

 

 P

 

UBLIC

 

 V

 

ARIABLES

 

For scalar objects, directly returning or mutating a private variable through a public variable is
trivial. Access involves returning the value of the associated private variable, and mutation involves
storing an assignment value into it. Supporting multiple index levels is also easy. We have already
discussed these situations and have developed the case code to handle them. Before we discuss the
more difficult case of non-direct-link access and mutation, we will review the direct-link code.
Values returned by the helper functions need to conform to the code already developed. Otherwise,
we will need to modify the code found in the current group of eight.

 

16.1.1.1 get and subsref

 

 The standard, direct-link 

 

case

 

 code for 

 

get

 

 is shown in Code Listing 96. Here we assume a
public variable name of 

 

‘VarName’

 

 and a private variable name of 

 

‘mVarName’

 

. Matching the
public and private names in this way is not required, but it does seem to improve code maintenance.
Line 1 begins the 

 

case

 

 for the 

 

‘VarName’ 

 

public variable. Line 2 checks the length of the
object and returns nothing when the object is empty. When the object is not empty, line 5 uses
standard dot-reference list expansion to collect private variable values from every index. These
values are saved in 

 

varargout

 

. 

Near the end of 

 

get

 

, the code shown in Code Listing 97 compares the size of 

 

varargout

 

with the value of 

 

nargout

 

 and adjusts the output format. As previously discussed, this code is
required because the value of 

 

nargout

 

 is not always consistent with the size of the object. The
comparison code in line 2 only needs to compare with one because that is the only value where
the confusion occurs. Line 4 looks for strings and empty cells and, if they exist, packages the output
so that concatenation will not destroy the cellular structure. Otherwise, line 7 tries to concatenate
the outputs in an array. If the concatenation fails, line 9 packages the return so that it retains its
cellular structure. 

Finally, if 

 

get

 

 was called from 

 

subsref

 

, indices deeper than the first dot-reference level
might exist. After 

 

subsref

 

 calls 

 

get

 

, Code Listing 98 forwards additional indices to 

 

subsref

 

.
Following standard dot-reference syntax means that this forward is only allowed for scalar objects.

 

Code Listing 96, Standard Direct-Link-Variable Access Case for get.m

 

1 case 'VarName'
2 if isempty(this)
3 varargout = {};
4 else
5 varargout = {this.mVarName};
6 end
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The test in line 2 determines whether to allow the forward or throw an error. The forward is on
line 3, and the errors are thrown in lines 5–6.

 

16.1.1.2 set and subsasgn

 

The standard, direct-link 

 

case

 

 code for 

 

set

 

 is shown in Code Listing 99. Here we also assume
a public variable name of 

 

‘VarName’

 

 and a private variable name of 

 

‘mVarName’

 

. Line 1
begins the 

 

case

 

 for the 

 

‘VarName’ 

 

public variable. Line 2 checks the length of the index.
When there is more than one index level, line 3 makes sure the object is scalar, and if so, line 4
forwards the private variable, the remaining indices, and the assignment values to 

 

subsasgn

 

. If
the object is nonscalar, lines 6–7 throw the appropriate error. Throwing a meaningful error message
is an improvement over previous implementations of 

 

set

 

. When there is only one index, line 10
deals values into the private variable. Each 

 

case

 

 is self-contained. There is no additional dot-
reference support code inside 

 

set

 

 or 

 

subsasgn

 

. 

 

Code Listing 97, Varargout Size-Conversion Code

 

1 % varargout conversion
2 if length(varargout) > 1 & nargout <= 1
3 if iscellstr(varargout) || any([cellfun('isempty', 

varargout)])
4 varargout = {varargout};
5 else
6 try
7 varargout = {[varargout{:}]};
8 catch
9 varargout = {varargout};
10 end
11 end
12 end

 

Code Listing 98, Handling Additional Indexing Levels in subsref.m

 

1 if length(index) > 1
2 if length(this(:)) == 1
3 varargout = {subsref([varargout{:}], index(2:end))};
4 else
5 [err_id, err_msg] = array_reference_error(index(2).type);
6 error(err_id, err_msg);
7 end
8 end

 

Code Listing 99, Standard Direct-Link-Variable Access Case for set.m

 

1 case 'VarName'
2 if length(index) > 1
3 if length(this(:)) == 1

 

C911X_C016.fm  Page 211  Friday, March 30, 2007  11:42 AM



 

212

 

A Guide to MATLAB Object-Oriented Programming

 

16.1.2

 

GET

 

 

 

AND

 

 

 

SET

 

 H

 

ELPER

 

 F

 

UNCTIONS

 

Unlike direct-link variables, the code for every non-direct-link variable is unique to the behavior
of each public variable. Using a helper function with a standard interface is preferable to sprinkling

 

get

 

 and 

 

set

 

 with nonstandard blocks of code. Using a helper function also enables automatic
code generation. To reduce the number of helper functions, to improve maintenance, and to support
advanced syntax, accessor and mutator functionality are combined into each public variable’s helper.
Combining both functions in one file makes the interface a little more difficult, but the benefits
outweigh this concern. In addition, once we define the interface and develop the helper’s structure
we can reuse them for all that follow.

Helper functions are located in the class’ private directory. Helper functions for the constructor
include the string ‘ctor_’ in their name. Helper functions for get and set include the name
of the public variable and the string ‘_helper’. We will use /@cLineStyle/Color as an
example for discussing the helper-function interface and implementation. The standard name for
this helper becomes Color_helper.

16.1.2.1 Helper functions, get, and set

Once we develop the code for Color_helper, we can reuse it to implement helper functions
for other public variables. Since get and set both call the helper, the function’s input must include
a way to specify access versus mutate. The input must also include the same input originally passed
into get or set. Different values can be passed depending on access or mutate; however, it is
easier to define the input as the union of arguments required for both access and mutation. This
collection of input arguments includes the following:

which: A variable that specifies whether an access or a mutate operation is desired. The
string ‘get’ will designate access; and ‘set’, mutation.

this: The object array is passed into the helper via this. 
index: Being inside a particular helper function means that get or set already processed

the first dot-reference name. The index value is formatted as a substruct and includes
elements 2:end from get’s or set’s original index value. 

varargin: The assignment values for mutation are passed into the helper as cells in
varargin. These are the same varargin values passed into set. 

Similarly, it is also easier to return both the object and varargout rather than define one
output variable and force it to share duty. In addition, two logical values help create a more powerful
interface. The collection of helper-function output arguments includes the following:

4 this.mVarName = subsasgn(this.mVarName, index(2:end), 
varargin{:});

5 else
6 [err_id, err_msg] = array_reference_error(index(2) 

.type);
7 error(err_id, err_msg);
8 end
9 else
10 [this.mVarName] = deal(varargin{:});
11  end
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do_sub_indexing: This logical value allows the helper, rather than get or subsref,
to perform all indexing beyond the initial dot-reference. The helper function returns a
value of true when it wants get or subsref to take care of deeper indexing. When
code inside the helper performs all of the indexing, the return value is set to false.
Typically, the helper will not index deeper than the first dot-reference level and thus
typically returns true. 

do_assignin: This logical value supports some special mutator syntax that we will
discuss in Part 3. At least for now, the helper will return false. 

this: The object array passed into the helper and possibly modified is passed back out
using this. 

varargout: The accessed values are contained in the varargout cell array. The format
for varargout from an accessor is the same format used for direct-link variables, one
value per cell. The varargout return from a mutator is always empty.

16.1.2.2 Final template for get.m

The implementation of get’s case code follows easily from the above input–output description.
The entire get function is shown in Code Listing 100 because there are several important changes
that need to be discussed. 

Code Listing 100, Final Version of get.m Implemented for cLineStyle

1 function varargout = get(this, index, varargin)
2
3 do_sub_indexing = true;  % helper might do all sub indexing
4 do_assignin = false;  % special variable, see book section 3
5
6 % one argument, display info and return
7 if nargin == 1
8 if nargout == 0
9 disp(struct(this(1)));
10 else
11 varargout = cell(1,max([1, nargout]));
12 varargout{1} = struct(this(1));
13 end
14 return;
15 end
16
17 % if index is a string, we will allow special access
18 called_by_name = ischar(index);
19
20 % the set switch below needs a substruct
21 if called_by_name
22  index = substruct('.', index);
23 end
24
25 % public-member-variable section
26 found = true;  % otherwise-case will flip to false
27 switch index(1).subs
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28 case 'Color'
29 if isempty(this)
30 varargout = {};
31 else
32 varargout = cell(size(this)); % trick next function's 

nargout
33 % either index(2:end) or varargin{1} should be empty
34 [do_sub_indexing, do_assignin, this, varargout{:}] = 

...
35 Color_helper('get', this, [index(2:end) 

varargin{:}]);
36 end
37 case 'LineWidth'
38 if isempty(this)
39 varargout = {};
40 else
41 varargout = {this.mLineWidth};
42 end
43 case 'LineHandle'
44 if isempty(this)
45 varargout = {};
46 else
47 varargout = {this.mLineHandle};
48 end
49 otherwise
50 found = false;  % didn't find it in the public section
51 end
52
53 % concealed member variables, not strictly public
54 if ~found && called_by_name
55 found = true;
56 switch index(1).subs
57 case 'mDisplayFunc' % class-wizard reserved field
58 if isempty(this)
59 varargout = {};
60 else
61 varargout = {this.mDisplayFunc};
62 end
63 otherwise
64 found = false;  % didn't find it in the concealed section
65 end
66 end
67
68 % parent forwarding block
69 if ~found
70 if called_by_name
71 forward_index = index(1).subs;
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72 else
73 forward_index = index;
74 end
75  
76 if nargout == 0
77 varargout = cell(size(this));
78 else
79 varargout = cell(1, nargout);
80 end
81  
82 for parent_name = parent_list'  % loop over parent cellstr
83 try
84 parent = [this.(parent_name{1})];
85 [varargout{:}] = get(parent, forward_index, 

varargin{:});
86 found = true;  % catch will assign false if not found
87 do_sub_indexing = false;  % assume parent did all sub-

indexing
88 break;  % can only get here if field is found
89 catch
90 found = false;
91 err = lasterror;
92 switch err.identifier
93 case 'MATLAB:nonExistentField'
94 % NOP
95 otherwise
96 rethrow(err);
97 end
98 end
99 end
100 if do_assignin
101 parent = num2cell(parent);
102 [this.(parent_name{1})] = deal(parent{:});
103 end
104 end
105
106 % error checking
107 if ~found
108 error('MATLAB:nonExistentField', ...
109 'Reference to non-existent field identifier %s', ...
110 index(1).subs);
111 end
112
113 % nargout adjustment
114 if length(varargout) > 1 & nargout <= 1
115 if iscellstr(varargout) || any([cellfun('isempty', 

varargout)])
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The first changes occur in lines 3 and 4. The local variables do_sub_indexing and
do_assignin guard code blocks near the end of this now standard version of get. Helper
functions return values for these two variables, but we never know in advance whether a direct-
link public variable or a non-direct-link variable is being accessed. Lines 3 and 4 assign initial
values compatible with direct-link access. During non-direct-link access, the helper function assigns
values to these variables.

116 varargout = {varargout};
117 else
118 try
119 varargout = {[varargout{:}]};
120 catch
121 varargout = {varargout};
122 end
123 end
124 end
125
126 % special syntax block, see book section 3
127 if do_assignin
128 var_name = inputname(1);
129 if isempty(var_name)
130 warning('get with assignment is only for non-indexed 

objects');
131 else
132 assignin('caller', var_name, this);
133 caller = evalin('caller', 'mfilename');
134 if ~isempty(strmatch(caller, {'subsref' 'subsasgn' 'get' 

'set'}))
135 assignin('caller', 'do_assignin', true);
136 end
137 end
138 end
139
140 % deep indexing block
141 if do_sub_indexing
142 index = [index(2:end) varargin{:}];
143 if length(index) > 0
144 if length(this) == 1
145 varargout = {subsref([varargout{:}], index)};
146
147 else
148 [err_id, er_msg] = 

array_reference_error(index(1).type);
149 end
150 end
151 end
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The next change brings us into the public member variable section. The case for ‘Color’,
lines 28–36, uses a helper function. As before, line 28 identifies the ‘Color’ case, and when
the object is empty, line 30 returns an empty varargout. When the object is not empty, line 32
prepares for the helper call by preallocating varargout. Lines 34–35 call the helper. There are
three input arguments and three plus length(varargout) outputs. 

The first input, ‘get’, tells the helper to perform an access operation. The second input,
this, is the source of the access. The third input is a concatenation of index(2:end) and
varargin{:}. The values in index and varargin depend on the path leading up to the helper
call. If the path began with dot-reference syntax, index(2:end) will contain additional indices
converted from operator notation and varargin will be empty. If the path began with a call to
get, index(2:end) will be empty but varargin might include an additional substruct
index. The concatenation assembles the entire index and passes it into the helper.

One important thing to notice is the fact that there is no limit imposed on the length of the
index passed into the helper. Ordinarily MATLAB places limits on indexing into nonscalar variables.
In most situations, the group-of-eight implementation also places limits on indexing. The length
of the index passed into the helper is an exception because the helper is responsible for these
decisions. When the helper accepts this responsibility it returns a value of false in
do_sub_indexing. 

The helper returns values for do_sub_indexing, do_assignin, this, and varar-
gout. Allowing the helper to index into the dot-referenced value and return a do_sub_indexing
value of false means that values returned from the helper might be fully indexed. This has
implications for subsref because, currently, subsref will incorrectly reindex the values. To
fix this problem, indexing code is moved out of subsref and into lines 140–151. The code
previously shown in Code Listing 98 will no longer exist in the standard version of subsref.
Instead, all standard versions of get will include the ability to perform deeper indexing. It should
come as no surprise that the do_sub_indexing flag guards this ability.

The helper also returns a value for do_assignin. Do_assignin is used as a guard value
for lines 127–138. These lines implement some special syntax that will be described in Part 3.
Until we take up that discussion, the value returned by the helper will always be false. That
way, until we discuss the pros and cons of returning a true value, we will skip over 127–138.
You might also notice other do_assignin-related additions. These additions are also discussed
in Part 3.

The final addition occurs on line 87 inside the parent-forwarding section. When the get forward
in line 85 executes without error, line 86 sets found equal to true and line 87 sets
do_sub_indexing to false. Now that we have moved the indexing code into get, the parent’s
version will have already performed any necessary indexing and we don’t want to reindex the
values. Of course, this also means that all of our classes need to be updated with the new group-
of-eight functions described in this chapter.

16.1.2.3 Final Template for set.m

Case code for set is shown in Code Listing 101.

Code Listing 101, Final Version of set.m Implemented for cLineStyle

1 function varargout = set(this, index, varargin)
2
3 do_assignin = false;  % special variable, see book section 3
4
5 if nargin < 3  % one or two arguments, display info and return
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6 possible = fieldnames(this, '-possible');
7 possible_struct = struct(possible{:});
8 if nargout == 0
9 if nargin == 1
10 disp(possible_struct);
11 else
12 try
13 temp_struct.(index) = possible_struct.(index);
14 disp(temp_struct);
15 catch
16 warning(['??? Reference to non-existent field ' ... 
17 index '.']);
18 end
19 end
20 else
21 varargout = cell(1,max([1, nargout]));
22 varargout{1} = possible_struct;
23 end
24 return;
25 end
26
27 called_by_name = ischar(index);
28
29 % the set switch below needs a substruct
30 if called_by_name
31     index = substruct('.', index);
32 end
33
34 % public-member-variable section
35 found = true;  % otherwise-case will flip to false
36 switch index(1).subs
37 case 'Color'
38 [do_sub_indexing, do_assignin, this] = ...
39 Color_helper('set', this, index(2:end), varargin{:});
40 case 'LineWidth'
41 [do_sub_indexing, do_assignin, this] = ...
42 LineWidth_helper('set', this, index(2:end), 

varargin{:});
43 case 'LineHandle'
44 if length(index) > 1
45 if length(this) == 1
46 this.mLineHandle = ...
47 subsasgn(this.mLineHandle, 
48 index(2:end), varargin{:});
49 else
50 [err_id, err_msg] = array_reference_error(index(1) 

.type);
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51 error(err_id, err_msg);
52 end
53 else
54 [this.mLineHandle] = deal(varargin{:});
55 end
56 otherwise
57 found = false;
58 end
59
60 % concealed member variables, not strictly public
61 if ~found && called_by_name
62 found = true;
63 switch index(1).subs
64 case 'mDisplayFunc'
65 if length(index) > 1
66 this.mDisplayFunc = ...
67 subsasgn(this.mDisplayFunc, ...
68 index(2:end), varargin{:});
69 else
70 [this.mDisplayFunc] = deal(varargin{:});
71 end
72 otherwise
73 found = false;  % didn't find it in the special section
74 end
75 end
76
77 % parent forwarding block
78 if ~found
79 if called_by_name
80 forward_index = index(1).subs;
81 else
82 forward_index = index;
83 end
84
85 for parent_name = parent_list'  % loop over parent cellstr
86 try
87 parent = set([this.(parent_name{1})], forward_index, 

varargin{:});
88 parent = num2cell(parent);
89 [this.(parent_name{1})] = deal(parent{:});
90 found = true;  % catch will assign false if not found
91 break;  % can only get here if field is found
92 catch
93 found = false;
94 err = lasterror;
95 switch err.identifier
96 case 'MATLAB:nonExistentField'
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The first change to set occurs in line 3. The logical variable do_assignin guards entry
into the block of code added in lines 110–122. Behavior related to do_assignin will be described
in Part 3. Until then, do_assignin should be false and line 3 assigns false as the initial
value.

The next change brings us into the public member variable section. The case for ‘Color’,
lines 37–39, uses a helper function. Line 37 identifies the ‘Color’ case, and lines 38–39 call
the helper. This time the first argument is ‘set’ because we want to execute the mutator. The
remaining three arguments are the object, the additional indices, and the assignment values. The
helper returns values for do_sub_indexing, do_assignin, and the mutated object. In this
case, do_sub_indexing is a dummy variable because it is never used by set.

The case for ‘LineWidth’ is interesting because get uses direct-link code but set uses a
helper. This is typical because the standard organization moves input-value-checking code into the
helper. The mutator needs to check the input values, but the accessor does not. Thus, the mutator
uses a helper but the accessor does not. Finally, the case for LineHandle uses the standard direct-
link syntax.

97 % NOP
98 otherwise
99 rethrow(err);
100 end
101 end
102 end
103 end
104
105 if ~found
106 error('MATLAB:nonExistentField', ...
107 '??? Reference to non-existent field ', ...
108 index(1).subs);
109 end
110
111 if do_assignin % set used in special way, see book section 3
112 var_name = inputname(1);
113     if isempty(var_name)
114         warning('MATLAB:invalidInputname', ...
115          'No assignment: set with assignment needs a non-

indexed object');
116     else
117         assignin('caller', var_name, this);
118         caller = evalin('caller', 'mfilename');
119 if ~isempty(strmatch(caller, {'subsref' 'subsasgn' 

'get' 'set'}))
120 assignin('caller', 'do_assignin', true);
121 end
122 end
123 end
124
125 varargout{1} = this;
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16.1.2.4 Color Helper Function

Code for one combined accessor–mutator helper function is shown in Code Listing 102. This
particular helper is used for the public member variable color. Code in the listing should look
familiar because most of the lines came directly from member functions in Chapter 15. Of course,
the organization is different and there is a lot going on in this function. 

Code Listing 102, Final Version of cLineStyle’s Color_helper.m

1 function [do_sub_indexing, do_assignin, this, varargout] = 
...

2 Color_helper(which, this, index, varargin)
3
4 switch which
5  
6 case 'get'  % ACCESSOR
7 do_sub_indexing = true;  % true and get will index deeper
8 do_assignin = false; % typically false, see book section 3
9 rgb = hsv2rgb([this.mColorHsv]')';  % convert color format
10 varargout = num2cell(rgb, 1);  % num2cell instead of 

mat2cell
11
12 case 'set'  % MUTATOR
13 do_sub_indexing = false;  % mutator must do deeper indexing
14 do_assignin = false; % typically false, see book section 3
15 varargout = {};    % mutator doesn't use varargout
16 if isempty(index)  % only an initial dot-reference value
17 rgb = [varargin{:}];  % input values are rgb
18 else  % deeper indexing
19 if length(this) == 1
20 rgb = subsasgn(get(this, 'Color'), index, 

varargin{:});
21 else
22 [err_id, err_msg] = array_reference_error(index(1). 

type);
23 error(err_id, err_msg);
24 end
25 end
26 hsv = num2cell(rgb2hsv(rgb')', 1);  % convert rgb to hsv
27 [this.mColorHsv] = deal(hsv{:});  % assign new hsv values
28
29 for k = 1:length(this(:))
30 try
31 set(this(k).mLineHandle, 'Color', get(this(k), 

'Color'));
32 end
33 end
34
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First notice the file is separated into two sections: accessor (lines 3–10) and mutator (lines
12–37). This is not necessarily required, but it is a convenient organization. Both sections assign
values to do_sub_indexing, do_assignin, and varargout. The accessor code can allow
get to finish deeper indexing by setting do_sub_indexing equal to true. That is what this
helper does on line 7. The accessor code can also elect to perform deeper indexing by setting
do_sub_indexing equal to false. The mutator code must always perform deeper indexing
and will always set do_sub_indexing equal to false.

The accessor code then converts private HSV values into RGB values on line 9. To populate
the varargout cell array, line 10 converts the RGB array values into a cell array. The mutator
code doesn’t return values via varargout, so it sets varargout to empty in line 15.

Instead of using varargout, mutator code performs the mutation in place and returns the
mutated object. When the variable name is the only index, line 17 copies input RGB values into
a temporary variable. When there are additional indices, line 19 checks the size of the object array.
If the array is scalar, line 20 uses subsasgn to assign the subset. If the array is nonscalar, lines
22–23 throw an error by calling array_reference_error.

After populating the rgb temporary variable, line 26 converts the RGB values into HSV values
and stores the HSV values in a cell array. Line 27 then deals the cell values into the correct locations.
Finally, lines 29–33 loop over all the objects in the array and set their line colors to the newly
assigned values. Just like before, using the handle-graphics set silently does nothing when the
handle is empty.

16.1.2.5 The Other Classes and Member Functions

Before cLineStyle can be used in our current collection of classes, we need to code
LineWidth_helper. The implementation follows the same strategy used for Color_helper.
The code is included in the Chapter 16 @cLineStyle/private directory. The mutator section
includes index checking, value checking, and input size checking identical to Chapter 15’s set case.

While not technically required, we should also be able to convert member functions for
cShape, cStar, and cDiamond into this chapter’s newly established, group-of-eight format.
The old class organization will work with the new version of cLineStyle because its public
interface didn’t change. The problem with keeping the old class organization is one of consistency.
A collection of classes is much easier to maintain if they all consistently conform to the
same internal strategy. Affected group-of-eight member functions are get, set, subsref, and
subsasgn. 

The new organization also uses helper functions for non-direct-link public variables. The
previous implementations for cShape, cStar, and cDiamond were also reorganized to use
helpers. Implementations of the various helper functions follow the same strategy laid out in this
chapter. The newly organized class files can be found in the chapter_16 directory. You should
look at these files and pay close attention to the helper functions in the private directories. 

16.2 TEST DRIVE

The code in this chapter represents reorganization with no new functionality. All of the commands
from previous chapters should still work the same as they did before. We need to rerun some of
our test commands to make sure our classes still behave the same. Some of the Chapter 15

35 otherwise
36 error('OOP:unsupportedOption', ['Unknown helper option: ' 

which]);
37 end
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commands for cStar objects are repeated in Code Listing 103. The commands confirm that the
helper-function interface is working correctly across our parent–child and primary-secondary hier-
archies. The figure that results from the command in line 6 is shown in Figure 16.1. 

16.3 SUMMARY

The focus of this chapter was the organization of get and set. By changing the organization, we
improved the modularity of the standard group of eight. To do this we considered two situations:
direct-link variables and variables that use a helper function. Direct-link variables are easy to access
and mutate because there is no data conversion or input checking. The code to access and mutate
these variables is short and essentially the same every time. Public variables that use a helper
include those that convert data from one representation to another and those that perform any sort
if input check during mutation.

FIGURE 16.1 cStar graphic after implementing helper-function syntax.

Code Listing 103, Chapter 16 Test Drive Command Listing: The cStar Interface

1 >> cd '/oop_guide/chapter_16'
2 >> clear classes; fclose all; close all force; diary off;
3 >> star = [cStar cStar];
4 >> star(2).ColorRgb = [1;0;0];
5 >> star(1) = 1.5 * star(1);
6 >> star = draw(star);
7 >> star(1).Title = 'Shooting Star';
8 >> star(1).LineWeight = 'bold';
9 >> star(1)
10 ans = 
11  Size: [2x1 double]
12  ColorRgb: [3x1 double]
13 Points: [2x6 double]
14 LineWeight: 'bold'
15  Title: 'Shooting Star'

2

1

0

–1

–2
10

Shooting Star

–1–2 2
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Moving accessor and mutator code outside of get and set also has another benefit. It allows
computer-aided-software-engineering (CASE) tools to manage the addition and removal of private,
public, and concealed variables. Without helper functions and their standard interface, every time
a class changes, a lot of hand tailoring is required. The next chapter introduces a very capable
CASE tool that exploits all of the group of eight’s organizational elements.

16.4 INDEPENDENT INVESTIGATIONS

1. Repeat the same commands using a cDiamond object instead of a cStar object.
2. Experiment with the implementation by accessing and mutating elements using multiple

indexing levels.
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17

 

Class Wizard

 

With sixteen chapters under your belt, you can now create sophisticated, robust MATLAB classes
on your own. During the first few implementations, it is easy to stay motivated because there are
many new twists and turns. After the first few, however, the repetitive syntax can quickly become
monotonous and time-consuming. At some point, you need to shift back into a product focus but
the implementation mechanics are too tedious to allow your attention to waver. Once you shift
from “How do I implement objects?” back to “How do I use objects to implement products?” you
are likely to find yourself wishing for some sort of class-generation tool. Standard, repetitive tasks
like building the group-of-eight functions are ideally suited for automation. Of course, this did not
happen by accident. Modularity along with a constant drive to isolate class-dependent code into a
small subset of functions makes automation possible. 

This chapter introduces an automated code-generation tool that simplifies group-of-eight devel-
opment for MATLAB classes. Using the tool, you can define a collection of public and private
member variables along with an associated collection of public and private member functions. The
tool will use these to generate fully functional class code that follows the guidelines developed in
the previous sixteen chapters. All of the various bells and whistles are included. The tool will even
give you a head start on class tailoring by generating a function template for public functions and
helpers. The template includes the function definition along with reasonably complete header
comments. This is convenient because it gives variable names and comment headers a consistent
form with shared comments across all members of the class.

The automation tool is called 

 

class_wizard.m

 

. The Class Wizard tool uses a graphical
interface entirely developed using MATLAB’s standard development tools. Dialog screens and
callback functions were developed using Guide* and MATLAB 7.0. In addition, all of the code in

 

class_wizard.m

 

 is native MATLAB. The main Class Wizard function along with other required
functions can be found on the source disk in 

 

/oop_guide/utility/wizard_gui

 

. I recom-
mend that you add this directory to the MATLAB path or copy all the files to a directory already
on the path. If you don’t want to put the wizard on your path, you can 

 

cd

 

 into its directory to run it.
The first time you run Class Wizard

 

,

 

 you will immediately recognize its organization. Data-
entry areas on the main dialog correspond to specific areas in the group of eight. There are entry
areas for parent classes, private variables, concealed variables, public variables, and constructors.
The 

 

more… 

 

button opens another dialog where details for public functions and some other
advanced elements can be entered. We will discuss these advanced elements in Part 3.

In this chapter, you will find a concise introduction to Class Wizard. The introduction describes
the various data-entry screens, field formats, file operations, and class generation. The descriptions
assume that you are already familiar with the organization and implementation strategy behind the
group of eight and their helpers. For example, descriptions in this chapter assume that you are
familiar with private, concealed, and public variables and understand how they relate to one another.
This chapter describes data entry for the code-generation tool, but in reality, the full documentation
for Class Wizard is the topic of this book.

 

*  Guide is a standard MATLAB utility that can be used to efficiently create cross-platform graphical user interfaces.
MATLAB version 7.0 added button groups to the standard set of graphical components, and Class Wizard uses button
groups. For this reason Class Wizard will not run properly under versions of MATLAB below 7.0. There were also some
changes to the object model; however, Class Wizard produces class code that is backward compatible with MATLAB
version 6.5.
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The collection of member functions and their internal syntax mirrors the code examples already
discussed. We can easily enter data that will result in a collection of shape classes that behave the
same as the previous examples. In fact, that is the goal of the next chapter. Between this chapter
and the next, you will discover that implementing class code is quick and easy. This is exactly how
it should be because you need to reserve most of your time and effort for the most difficult part
of object-oriented development, design.

 

17.1 FILE DEPENDENCIES

 

The prime motive for developing both the group-of-eight idiom and a code-generation tool is
coupling. Here the coupling isn’t exactly between modules of code but rather between the class
definition and the associated m-file implementation. Early on, we organized group-of-eight func-
tions to eliminate as much module-to-module coupling as possible. Now, Class Wizard will help
control the coupling between the class definition and its implementation. The coupling can’t be
eliminated, only managed. 

Let’s first examine what is meant by definition-to-module coupling. The most basic class
definition specifies a class name along with a small collection of public and private member
variables. These names are distributed into group-of-eight code according to the diagram in Figure
17.1. Arrows connect the names used in the class definition to the modules where these names
need to appear in code. The lines represent connections to class-independent modules. The depen-
dencies in this figure are modest because dependency reduction was one of the main focal points
for group-of-eight development. Even so, the arrows are still tangled and that creates a development
headache. Class evolution requires that we keep several files in synch. Trying to implement several
changes at once is a recipe for disaster. Making the situation even worse is the fact that an omission
in one file can go undetected until the class is in use. For example, suppose you add a public
member variable to 

 

get

 

 and 

 

set

 

 but forget to update 

 

fieldnames

 

. This type of error doesn’t
usually cause a crash, but the lack of consistency can be very annoying to clients. 

The lines and arrows on the dependency graph become even more entwined when parent–child
inheritance is considered. This graph is shown in Figure 17.2. Here, 

 

parent_list

 

 joins with

 

get

 

, 

 

set

 

, and 

 

fieldnames

 

 to form a Maginot line that prevents the coupling from extending
deeply into the group of eight. Unless we make concessions to functionality, the arrows can’t be
untangled. This is where Class Wizard comes to the rescue. Using a single definition, Class Wizard
keeps the standard member functions in synch. Changes to the class definition automatically migrate
into every affected function. Organizing the code into the group of eight plus associated helper
functions allows Class Wizard to manage the coupling. Allowing Class Wizard to manage this
complexity aids development, evolution, and maintenance. The result is quality. 

 

17.2 DATA-ENTRY DIALOG BOXES

 

The main class-generation file is 

 

class_wizard.m

 

 and can be found in the

 

/oop_guide/utility/wizard_gui

 

 directory. This is the third version of the tool but the
first version to use a graphical user interface (GUI) for definition entry. The GUI was developed

 

FIGURE 17.1

 

Dependency diagram for a simple class.
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using Guide and MATLAB 7.0. The main screen uses dialog elements that are not available in
MATLAB 6.5. Because of these elements, MATLAB 7.0 or higher is required to enter class
definitions and generate files. All of the generated code is backward compatible with MATLAB
6.5 and higher.

The GUI is organized around a main screen containing buttons and menus. Each button or
menu selection opens a secondary dialog dedicated to data entry for one small subset of the
definition. There are separate dialog boxes for parent classes, public and private member variables,
and public and private member functions. Most of these will be immediately familiar because they
follow directly from the group-of-eight organization. Navigating into the dialogs and entering data
requires additional explanation. That is the purpose of this chapter. 

The most important content of a source file is the code; however, the total cost of development
is lower when certain conventions are established and followed. Common code idioms generally
improve the overall code quality. In addition, tightly integrating a class into the help system makes
the class easier to use and evokes quality. The primary output from Class Wizard is code; however,
the output includes features that make it easier to include the code in a larger project. A significant
amount of Class Wizard’s functionality centers on managing and formatting this sort of data. For
example, class definitions can include comments for both functions and variables. All files generated
for the class will include these comments in their headers. These headers can be displayed by
MATLAB’s help system, and they yield big payoffs in productivity. As long as you fill the definition
with content, Class Wizard will manage it by writing it out to the appropriate files. 

 

17.2.1 M

 

AIN

 

 C

 

LASS

 

 W

 

IZARD

 

 D

 

IALOG

 

The main Class Wizard dialog gives you direct access to all class elements shown on the left-hand
side of Figure 17.2. These include class name, parent classes, superiority, inferiority, member
variables, and member functions. The red arrows indicate how these elements flow into the various
class files. The primary access functions 

 

get.m

 

 and 

 

set.m

 

 see the largest amount of customiza-
tion, with 

 

ctor_ini.m

 

 running a close third.
The main dialog with a small amount of entered data is shown in Figure 17.3. The main screen

includes items that represent the basic elements that are important for nearly every class. There are
three direct-entry text fields, and an assortment of radio buttons, check boxes, buttons, and menus.
The main screen displays a lot of summary information, but the details and the ability to change
data require a button click or a menu selection. A few definition items are accessible on the main
dialog, primarily 

 

Class Name

 

, 

 

Superior To

 

, and 

 

Inferior To

 

. 
The string entered into the 

 

Class Name

 

 field is used as the name of the constructor. The
same name should also be used in the directory name, but the directory name is specified separately
during file save operations. The suggested naming convention for classes includes a lowercase “

 

c

 

”
as the first character. To help remind you of this convention, the field for 

 

Class Name

 

 initially

 

FIGURE 17.2

 

Dependency diagram with inheritance.
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contains a lowercase 

 

c

 

. The lowercase 

 

c

 

 is not required, and you can enter any legal class name
in the field. 

Comma-separated names in the 

 

Superior To

 

 and 

 

Inferior To

 

 fields are used to set
the function-selection hierarchy. Comma-separated lists are transcribed as written into the input
arguments for calls to 

 

superiorto

 

 or 

 

inferiorto

 

, respectively. These function calls must be
made during the construction process. If the fields are populated, 

 

superiorto

 

 and 

 

inferiorto

 

commands will be written into the constructor. 
Along the left-hand side of the dialog, check boxes and radio buttons are grouped according

to the files they control: group-of-eight files, accessor or mutator helper files, and constructor helper
files. Check boxes and radio buttons exert generation control over individual group-of-eight files,
and they exert control over all files in each group of helper functions. The radio buttons are more
important than the check boxes because they control what happens to files that already exist. There
are three choices:

 

Overwrite

 

: When the file already exists, the original file is deleted and the new file is
written in its place. When this happens, there is no way to recover the contents of the
original file. Do not choose this option for files with tailored changes because the
changes will be lost when the file is regenerated. Code in the group of eight should not
normally require tailoring. Thus, the normal radio selection for the group-of-eight files is

 

FIGURE 17.3

 

Class Wizard, main dialog.
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Overwrite

 

. Helper functions always require tailoring. Thus, the normal radio selection
for both groups of helpers is 

 

New

 

.

 

Backup

 

: When the file already exists, the original file is renamed before the new file is
written. The backup name includes the original filename along with a condensed version
of the current date and time. Multiple backup copies for a particular file can coexist in a
directory because the date and time for each will be different. This option is not usually
selected unless new calling arguments or header information needs to be generated for a
tailored function. After the new function template is generated, tailored code from the
backup copy must be manually cut and inserted in the new file.

 

New

 

: When this radio button is selected, only new files will be created. If a file already
exists, Class Wizard does not regenerate the file but rather leaves the existing file alone.
Under normal conditions, this is the best option to choose for files outside the group of
eight.

By default, 

 

Overwrite

 

 is the selected action for group-of-eight functions and 

 

New

 

 is selected
for all other files. These default values are the best selections for most situations. Group-of-eight
functions are organized so that hand tailoring is almost never required. Allowing Class Wizard to
overwrite these files keeps the interface in synch with the data enters through the GUI. All other
files are usually a target for extensive tailoring. Selecting 

 

New

 

 for these files prevents them from
being overwritten.

When a check box is checked, Class Wizard will attempt to create the file. Whether the file is
saved to disk depends on the radio state. When a check box is unchecked, Class Wizard will skip
file creation. Each group-of-eight file has its own check box, and by default, each box is checked.
For normal operation, leave the box checked. Accessor and mutator helper functions and constructor
helper functions also have check boxes. The default value is checked. Presently, there is no way
to control the creation of individual helpers except through the radio buttons. For normal operation,
leave the boxes checked.

Additional data-entry screens are accessed through various buttons or through menu selections.
Buttons are arranged with a summary view of the data they control. There are buttons for additional
header information 

 

Header Info …

 

, parent-class definition 

 

Parents …

 

, private member
variables 

 

Private Variables …

 

, concealed member variables 

 

Concealed Variables
…

 

, public member variables 

 

Public Variables …

 

, and constructor helper functions 

 

Con-
structors …

 

. The 

 

More …

 

 button displays another dialog with even more class fields. The

 

Build Class Files

 

 button runs the class-generation code. Descriptions of the data-entry
dialogs associated with these buttons are included in the following sections.

 

17.2.1.1 Header Information Dialog

 

Clicking the 

 

Header Info …

 

 button on the main screen opens the header-input dialog box
shown in Figure 17.4. The header-info dialog contains fields that are written into the header of
every automatically generated member function. Input fields left blank are ignored and do not
create a blank line in the header. For a new class, the first time you open the header-info dialog,
all the fields will be empty. After entering data in individual fields, the values can be saved to a
separate file. A menu selection allows you to recall the standard values for the next class. This way,
you can avoid repeatedly typing the same information.

The menu item 

 

DefaultHeaderInfo

 

 has two options: 

 

Load <ctrl-L>

 

 and 

 

Save
<ctrl-S>

 

. Selecting 

 

DefaultHeaderInfo::Save

 

 will save the field contents in the file

 

default_header.mat

 

. This file is always located in the same directory where Class Wizard
is stored. There is not a filename option and there are no overwrite warnings. Selecting 

 

Default-
HeaderInfo::Load will read the previously saved values. 

C911X_C017.fm  Page 229  Friday, March 2, 2007  8:50 AM



230 A Guide to MATLAB Object-Oriented Programming

For the most part, these fields are self-explanatory. If you enter values shown in Figure 17.4
and generate class files, all file headers will contain the values. For example, the header from
subsref.m is shown in Code Listing 104. In line 1, we find the generated function call. The
arguments are always consistent with data in class definition. Line 2 includes the class name,
function name, and text entered into the HeaderInfo::H1 Line textbox. The class name
and function name are still included in the header even if HeaderInfo::H1 Line is blank.
Line 3 includes the string from the Classification field. The Classification string
is also appended as the last line in each file. Line 5 repeats the function declaration as comment.
When help displays the header information, the function declaration is an important part of that
display. MATLAB does not automatically include the declaration, so Class Wizard writes it in
as a comment. Lines 7–8 contain the comment specified in the Common Header Comments
field. As this comment says, it is repeated in the header of every file. Lines 10–12 are unique to
subsref. Other files will contain different comments tailored for their contents. Since sub-
sref deals with public variables, a listing of the public member variables is included. Lines
14–21 include the Author Info data, including the contents of the author notes. Line
22 comes from the Revision Control Line field. Finally, line 23 reminds you of the
amount of tedious work saved by using Class Wizard. Sometimes, it is nice to know the tool
version and the generation date. 

FIGURE 17.4 Class Wizard, Header Info … dialog.

Code Listing 104, Header Comments Generated by Class Wizard

1 function varargout = subsref(this, index)
2 %SUBSREF for class cExample, Global H1 Line
3 % UNCLASSIFIED
4 %
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17.2.1.2 Parents … Dialog

Clicking the Parents … button brings up the dialog shown in Figure 17.5. The dialog shown in
the figure contains entries for one parent class. For a new class, the fields in this dialog would be
empty except for a leading c in the Parent Class Name field. Like most of the tool’s dialogs,
the parent dialog is organized into three sections: input fields, action buttons, and a display. In the
top of the dialog, data are entered in the various text fields. In the middle, buttons are used to save
data, delete a line, or go back to the previous dialog. At the bottom, input data are displayed using
the same format written into the member functions.

For the parent dialog box, two data-entry fields are described by the following:

Parent Class Name: holds the name of a class that will serve as a parent. The dialog
accepts more than one parent name, but each name-varargin pair is added separately.

varargin: holds a comma separated list of input arguments. Enter the comma-separated
list exactly as it should appear in a call to the constructor. The values in the input list can
be values, variable names, or function calls. A somewhat complicated example is shown
in Figure 17.5. This is the same constructor value previously used to initialize corner
points for cStar objects.

Clicking the Save Change button will commit the changes and display a function call to
the parent-class constructor. The display shows the constructor call made during default construction
of the child. The parent-constructor call doesn’t make its way into generated code exactly as
displayed, but functionally the result is the same. During file generation, data from these fields are
written into the parent_list function. Parent-class names are formatted as a cellstr and

5 % function varargout = subsref(this, index)
6 %
7 % A global comment that applies to all files of the example 

class.  This
8 % comment is included in every automatically generated file 

for the class.
9 %
10 % Public Member Variables
11 % Size: double (2x1): The horiz (1,1) and vert (2,1) size 

of the 
12 % shape's bounding box
13 % 
14 % Author Info
15 % The ABC Corporation
16 % John Doe
17 % jd99@mail.abc.com
18 % (800) 222-1212
19 % Refactored interface 3/17/2005 Jane Doe
20 % [AHR] Added new fields 5/2/05
21 % (c) 2005
22 % RCS Info: ($Date:  $)  ($Author:  $)  ($Revision: $)
23 % A Class Wizard v.3 assembled file generated: 20-Dec-2005 

13:23:23
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their corresponding input arguments are formatted into a cell array. The format of the resulting
code is identical to a hand-coded parent_list.

The Save Change button and two additional buttons located between the data-entry fields
and the display list box cooperate to allow you to manage parent data. If parent lines already exist
in the display list box, you can click on a line and it will become active. The line is highlighted
and data from the line are copied into the data-entry fields. At this point, field values can be changed;
however, those changes are not automatically reflected in the definition. The change must be
committed by clicking the Save Change button. If you click anything other than Save Change,
all changes to the line will be lost. This includes clicking another line or another button. You can
also delete a parent by selecting the parent in the lower display and clicking the Delete button.

Establish a new parent-class dependency by selecting the first blank line in the lower display.
If the list box is empty, point and click where the first line would normally appear. When you select
an empty line, the parent name field will contain a c to remind you of the suggested convention.
When you are finished entering data for the new parent, clicking Save Change will commit the
new data and insert another blank line.

When you finish modifying the object’s parent data, click the Done button. This will save
your changes and return you to the main dialog. Parent-class names are shown in the list box
adjacent to the Parents … button. The names provide a quick summary. In the main dialog
view, they are not active. You have to open the parent-class dialog to make any changes or see
more detail.

17.2.1.3 Private Variable … Dialog

Clicking the Private Variables … button brings up the dialog shown in Figure 17.6. The
dialog shown in the figure contains an entry for one variable. Like most of the tool’s dialogs, the
private-variable dialog is organized into three sections: input fields, action buttons, and a display.
In Figure 17.6, the input fields contain values because a variable name in the display is selected.
Selecting a blank line will insert an m in Private Variable Name, and the other fields will
be blank. A leading m is the suggested convention for naming private member variables. The naming

FIGURE 17.5 Class Wizard, Parents … dialog.
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convention is optional, and any legal variable name except mDisplayFunc can be entered in the
field. The variable name mDisplayFunc is reserved for Class Wizard’s use, and Class Wizard
will include it in class code when necessary.

The three data-entry fields in the private variable dialog are described by the following:

Private Variable Name: holds the name of a private member variable. Private
variables are added one at a time.

Initial Value: holds the default value that will be assigned to the variable by the
constructor. The field value is entered using the exact syntax required in the assignment.
The display list box formats the input exactly as it will be written into ctor_ini.m.
What you see in the display list box is exactly what you get in ctor_ini.m. Virtually
any legal syntax can be used.

Comment: holds a text description of the variable. The text description is important because
it will show up in the header of ctor_ini.m, where it will serve as a future reference
for developers. 

The three buttons, Save Change, Delete, and Done, are the same three buttons used in
the parent-class dialog. Refer to §17.2.1.2 for a description of their behavior. When you finish
modifying the object’s parent data, click the Done button. This will save your changes and return
you to the main dialog. Private member variable names are shown in the list box adjacent to the
Private Variables … button. The names provide a quick summary, and in the main dialog
view they are not active. You have to open the private variable dialog to make changes or see more
detail. 

FIGURE 17.6 Class Wizard, Private Variables … dialog.
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17.2.1.4 Concealed Variables … Dialog

Clicking the Concealed Variables … button brings up the dialog shown in Figure 17.7.
The dialog shown in the figure contains an entry for one variable. Like most of the tool’s dialogs,
the concealed variable dialog is organized into three sections: input fields, action buttons, and a
display. In Figure 17.7, the input fields contain values because a variable name in the display is
selected. Selecting a blank line will empty all values in the input fields. Even the name field will
be empty because there is no suggested naming convention. Any legal variable name except
mDisplayFunc can be entered in the field. The variable name mDisplayFunc is reserved for
Class Wizard’s use, and Class Wizard will include it in class code when necessary.

The five data-entry fields in the concealed variable dialog are described by the following:

Concealed Variable Name: holds the name of a concealed member variable.
Concealed variables are added one at a time.

Type: holds a string that describes the variable’s type. In response to get(obj) or
set(obj), concealed variables are not displayed; however, the type string is included
in the header comments of several files, get and set for example.

Accessor Expression: holds the expression used for accessing the variable. The
contents of this field are limited to two special cases: the exact name of a private member
variable or the keyword %helper. When the name of a private member variable is used,
direct-link accessor code is included in get.m. This option also allows clients to
specify additional indices beyond the first dot-reference. The %helper keyword causes

FIGURE 17.7 Class Wizard, Concealed Variables … dialog.
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helper-function syntax (non-direct-link) to be used inside get.m. The %helper keyword
also triggers the generation of a helper-function stub. The stub contains a complete header
along with some initial code and comments. Accessing a concealed variable with a default
helper will not cause an error, but the return value will be empty until the helper is
customized.

Mutator Expression: holds the expression used for assigning values into the variable.
Like the accessor, the contents of this field are limited to two special cases: the exact name
of a private member variable or the keyword %helper. When the name of a private
member variable is used, direct-link mutator code is included in set.m. This option also
allows clients to specify additional indices beyond the first dot-reference. The %helper
keyword causes helper-function syntax to be used inside set.m. The %helper keyword
also triggers the generation of a helper-function stub. The stub contains a complete header
along with some initial code and comments. Mutating a concealed variable with a default
helper will not cause an error, but values in the object will not be modified until the helper
is customized.

Comment: holds a text description of the variable. The text description is important because
it will show up along with the variable name and variable type in various header comments,
where it will serve as a reference to other developers.

In this case, the display list box does not provide a what-you-see-is-what-you-get (WYSIWYG)
format. WYSIWYG is not possible because each name links to multiple files in the group-of-eight
and each file uses the name differently. Instead of WYSIWYG, the display box shows individual
fields separated by double colons. This achieves the goal of providing a good one-line overview
without the complications involved in writing the exact syntax.

The three buttons, Save Change, Delete, and Done, are the same three buttons used in
the parent-class dialog. Refer to §17.2.1.2 for a description of their behavior. When you finish
modifying the object’s concealed data, click the Done button. This will save your changes and
return you to the main dialog. Concealed-variable names are shown in the list box adjacent to the
Concealed Variables … button. The names provide a quick summary, and in the main
dialog view they are not active. You have to open the concealed variable dialog to make changes
or see more detail.

17.2.1.5 Public Variables … Dialog

Clicking the Public Variables … button brings up the dialog shown in Figure 17.8. The
dialog shown in the figure contains an entry for one variable. Like most of the tool’s dialogs, the
public variable dialog is organized into three sections: input fields, action buttons, and a display.
In Figure 17.8, the input fields contain values because a variable name in the display is selected.
Selecting a blank line will empty all values in the input fields. Even the name field will be empty
because there is no suggested naming convention. Any legal variable name can be entered in the
name field.

The fields in this dialog are identical to those for concealed variables because in reality the
only difference is the simplified syntax used to access public variables. Public variables can be
accessed or mutated using the dot-reference operator via subsref and subsasgn, while access
to concealed-variables is limited to get and set. In the code, public variables are written into
the public section of get and set while concealed variables are written into the concealed section.
Beyond that, there is little difference between public and concealed. The five data-entry fields in
the public variable dialog are as follows:
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Public Variable Name: holds the name of a public member variable. Public variables
are added one at a time.

Type: holds a string that describes the variable’s type. This string is displayed along with
the variable name when get(obj) or set(obj) is used to display member variable
hints. The type string also shows up in the header comments of various files, get and
set for example.

Accessor Expression: holds the expression used for accessing the variable. The
contents of this field are limited to two special cases: the exact name of a private member
variable or the keyword %helper. When the name of a private member variable is used,
direct-link accessor code is used inside get.m. This option also allows clients to specify
additional indices beyond the first dot-reference. The %helper keyword causes helper-
function syntax (non-direct-link) to be used inside get.m. The %helper keyword also
triggers the generation of a helper-function stub. The stub contains a complete header
along with some initial code and comments. Accessing a public variable with a default
helper will not cause an error, but the return value will be empty until the helper is
customized.

Mutator Expression: holds the expression used for assigning values into the variable.
Like the accessor, the contents of this field are limited to two special cases: the exact name
of a private member variable or the keyword %helper. When the name of a private
member variable is used, direct-link mutator code is used inside set.m. This option also
allows clients to specify additional indices beyond the first dot-reference. The %helper
keyword causes helper-function syntax to be used inside set.m. The %helper keyword
also triggers the generation of a helper-function stub. The stub contains a complete header

FIGURE 17.8 Class Wizard, Public Variables … dialog.
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along with some initial code and comments. Mutating a public variable with a default
helper will not cause an error, but values in the object will not be modified until the helper
is customized.

Comment: holds a text description of the variable. The text description is important because
it will show up along with the variable name and variable type in various header comments,
where it will serve as a reference to other developers.

In this case, the display list box does not provide a what-you-see-is-what-you-get (WYSIWYG)
format. WYSIWYG is not possible because each name links to multiple files in the group of eight
and each file uses the name differently. Instead of WYSIWYG, the display box shows individual
fields separated by double colons. This achieves the goal of providing a good one-line overview
without the complications involved in writing the exact syntax.

The three buttons, Save Change, Delete, and Done, are the same three buttons used in
the parent-class dialog. Refer to §17.2.1.2 for a description of their behavior. When you finish
modifying the object’s public data, click the Done button. This will save your changes and return
you to the main dialog. Public variable names are shown in the list box adjacent to the Public
Variables … button. The names provide a quick summary, and in the main dialog view they
are not active. You have to open the public variable dialog to make changes or see more detail.

17.2.1.6 Constructors … Dialog

Clicking the Constructors … button brings up the dialog shown in Figure 17.9. The dialog
shown in the figure contains an entry for one constructor in addition to the default. Like most of
the tool’s dialogs, the constructor dialog is organized into three sections: input fields, action buttons,
and a display. In Figure 17.9, the lone input field contains a value because a constructor name in
the display is selected. Selecting a blank line will empty this field. 

FIGURE 17.9 Class Wizard, Constructors … dialog.
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In the selected case, the constructor-helper function will be named ctor_1 because there is
one input argument. This is consistent with the constructor-helper naming convention previously
discussed. Inputs are specified using the comma-separated list, and Class Wizard generates a stub
for the helper. 

The single data-entry field in the constructor dialog is described by the following:

Input Argument List: holds a comma-separated list of input arguments for each
constructor-helper function. The variable name this should never be included in the
input argument list. When files are generated, helper-function names are set according to
the number of variables in each comma-separated list. The function prototype for each
helper includes this along with the names in the comma-separated list. Functional stubs
for each constructor helper are written into the class’ private directory. The default stub
does not know how to use the input arguments, so you must tailor each helper according
to the specific application. Variables from each comma-separated list are added to the data
dictionary. Comments can be associated with each dictionary name using the main dialog’s
Data menu item. 

The display list box provides a WYSIWYG format for the function definition of each helper. In
this case displayed in Figure 17.9, the function name is ctor_1 because the constructor is meant
for the case when an object is constructed from one input. The function prototype for ctor_1
actually contains two inputs: this and the variable from the Input Argument List field.
The object itself is passed in and out of the constructor because the whole purpose is to populate
the object with values other than default. The constructor helper can modify the value’s existing
private variables but cannot add new fields. This helps protect the integrity of the objects.

The three buttons, Save Change, Delete, and Done, are the same three buttons used in
the parent-class dialog. Refer to §17.2.1.2 for a description of their behavior. When you finish
modifying the object’s public data, click the Done button. This will save your changes and return
you to the main dialog. Helper names are shown in the list box adjacent to the Constructors
… button. The names provide a quick summary, and in the main dialog view they are not active.
You have to open the constructor dialog to make changes or see more detail.

17.2.1.7 More … Dialog

Clicking the More … button brings up the dialog shown in Figure 17.10. This dialog provides
access to a group of data-entry dialogs for additional class features. Most of these features involve
Part 3 topics; however, Private Functions … and Public Functions … are immediately
useful. With these buttons, you can enter data for class-specific public and private functions. Dialogs
are activated by respectively clicking the buttons Public Functions … and
Private Functions …. Unlike functions in the group of eight, Class Wizard does not know
how to configure code for general public and private functions. Instead, Class Wizard resorts to the
same strategy used for helper functions and generates a function stub. The function stub will contain
a consistently formatted function call and a header that includes detailed function comments. These
comments draw from the data dictionary to include information for input–output variables. As a
result, the generated member functions usually have more detailed comments compared to those
that are not automatically generated. The stub also includes enough code to allow the function to
execute, albeit at a greatly reduced level of function. 

The other buttons in the dialog represent class features that are less common but no less useful
under the right circumstances. At first, the number of buttons is daunting; however, the layouts of
the underlying dialogs are very similar if not identical to those we have already discussed. Entering
data follows the same procedure. The data end up in slightly different locations. You already know
the most important locations, and the next section discusses a few more elements.
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17.2.1.8 Static Variables … Dialog

Clicking the Static Variables … button brings up the dialog shown in Figure 17.11. The
dialog shown in the figure contains an entry for one variable. Like most of the tool’s dialogs, the
static variable dialog is organized into three sections: input fields, action buttons, and a display. In
Figure 17.11 the input fields contain values because a variable name in the display is selected.
Selecting a blank line will insert an m in Static Variable Name, and the other fields will
be blank. A leading m shows up by default because a static variable is a special kind of private
variable. The difference between static and private is scope. With a private variable, every object
gets its own copy; but with a static variable, every object of the class shares one copy. If one object
sets the value, that value shows up in all objects of the class.

When static variables are defined, the private helper function static.m is used to manage
them. The interface to static.m is very similar to the interface defined for accessor–mutator
helpers. The details are described in Chapter 20.

The three data-entry fields in the static variable dialog are described by the following:

Static Variable Name: holds the name of a static member variable. Static variables
are added one at a time.

Initial Value: holds the default value that will be assigned to the variable by the
constructor. The field value is entered using the exact syntax required in the assignment.
The display list box formats the input exactly as it will be written into ctor_ini.m.
What you see in the display list box is exactly what you get in ctor_ini.m. Virtually
any legal syntax can be used. 

Comment: holds a text description of the variable. The text description is important because
it will show up in the header of ctor_ini.m, where it will serve as a future reference
for developers. 

The three buttons, Save Change, Delete, and Done, are the same three buttons used in
the parent-class dialog. Refer to §17.2.1.2 for a description of their behavior. When you finish
modifying the object’s parent data, click the Done button. This will save your changes and return
you to the more dialog. Static member variable names are shown in the list box adjacent to the
Static Variables … button. The names provide a quick summary, and in the more dialog

FIGURE 17.10 Class Wizard, More … dialog.
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view they are not active. You have to open the static variable dialog to make changes or see more
detail.

17.2.1.9 Private Functions … Dialog

Clicking the Private Functions … button brings up the dialog shown in Figure 17.12. The
dialog shown in the figure contains an entry for one function. Like most of the tool’s dialogs, the
private-function dialog is organized into three sections: input fields, action buttons, and a display.
In Figure 17.12, the input fields contain values because a function name in the display is selected.
Selecting a blank line will empty all values in the input fields. Even the name field will be empty
because there is no suggested naming convention. Any legal function name can be entered in the
name field.

In reality, constructor helpers, accessor–mutator helpers, and parent_list.m are private
functions; however, these are part of the group-of-eight interface and are managed separately from
class-specific private functions. Only class-specific private functions show up in this list.

Private functions, like most functions, can be described by a function name, a list of input
arguments, a list of output arguments, and a comment. The data-entry fields for these four function
elements are described by the following:

Function Name: holds the desired name for the function. Any valid function name can
be used.

Input Argument List: holds a comma-separated list of input arguments for the
function. If a copy of the object must be passed, this must be included in the argument
list. By convention, when it exists, this should usually be the first argument in the list.
In addition, notice there is no way to enter comments for individual arguments. Instead,
variable names are added to the data dictionary using the Data menu on the main screen.

FIGURE 17.11 Class Wizard, Static Variables … dialog.
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Output Argument List: holds a comma-separated list of output arguments for the
function. If a copy of the object is passed, this must be included in the argument list.
By convention, when it exists, this should usually be the first argument in the argument
list. As with variables in the input argument list, output variable names are added to the
data dictionary.

Comment: holds a text description of the function. The text description will be added to
the header comments when the function is generated.

Clicking the Save Change button commits the changes and displays the function prototype in
WYSIWYG format. During file generation, Class Wizard writes the same function prototype into
the private function and follows the prototype with header comments. Of course, Class Wizard
doesn’t know how to write the real function body, but it can write a body that runs without error.
The body of the private function must be manually modified to include the desired class-specific
functionality.

The three buttons, Save Change, Delete, and Done, are the same three buttons used in
the parent-class dialog. Refer to §17.2.1.2 for a description of their behavior. When you finish
modifying the object’s private-function data, click the Done button. This will save your changes
and return you to the more dialog. Private-function names are shown in the list box adjacent to the
Private Functions … button. The names provide a quick summary, and in the more dialog
view they are not active. You have to open the private-function dialog to make changes or see more
detail. 

FIGURE 17.12 Class Wizard, Private Function … dialog.
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17.2.1.10 Public Functions … Dialog

Clicking the Public Functions … button brings up the dialog shown in Figure 17.13. The
dialog shown in the figure contains an entry for one function. Like most of the tool’s dialogs, the
public-function dialog is organized into three sections: input fields, action buttons, and a display.
In Figure 17.13, the input fields contain values because a function name in the display is selected.
Selecting a blank line will empty all values in the input fields. Even the name field will be empty
because there is no suggested naming convention. Any legal function name can be entered in the
name field.

In reality, standard group-of-eight functions are public functions; however, group-of-eight
functions are managed separately from class-specific public functions. Only class-specific public
functions show up in this list.

Public functions, like most functions, can be described by a function name, a list of input
arguments, a list of output arguments, and a comment. The data-entry fields for these four function
elements are described by the following:

Function Name: holds the desired name for the function. Any valid function name can
be used.

Input Argument List: holds a comma-separated list of input arguments for the
function. If a copy of the object must be passed, this must be included in the argument

FIGURE 17.13 Class Wizard, Public Function … dialog.
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list. By convention, when it exists, this should usually be the first argument in the list.
In addition, notice there is no way to enter comments for individual arguments. Instead,
variable names are added to the data dictionary using the Data menu on the main screen.

Output Argument List: holds a comma-separated list of output arguments for the
function. If a copy of the object is passed, this must be included in the argument list.
By convention, when it exists, this should usually be the first argument in the argument
list. As with variables in the input argument list, output variable names are added to the
data dictionary.

Comment: holds a text description of the function. The text description will be added to
the header comments when the function is generated.

Clicking the Save Change button commits the changes and displays the function prototype in
WYSIWYG format. During file generation, Class Wizard writes the same function prototype into
the private function and follows the prototype with header comments. Of course, Class Wizard
doesn’t know how to write the real function body, but it can write a body that runs without error.
The body of the private function must be manually modified to include the desired class-specific
functionality.

The three buttons, Save Change, Delete, and Done, are the same three buttons used in
the parent-class dialog. Refer to §17.2.1.2 for a description of their behavior. When you finish
modifying the object’s public-function data, click the Done button. This will save your changes
and return you to the more dialog. Public-function names are shown in the list box adjacent to the
Public Functions … button. The names provide a quick summary, and in the more dialog
view they are not active. You have to open the public-function dialog to make changes or see more
detail.

17.2.1.11 File Menu

The main Class Wizard dialog has two menu items: File and Data. The File menu allows you
to create a New class definition, Open … an existing definition, Save the current definition, or
Save as … to save the current definition using a different file name. These menu items behave
the same as any application that opens and saves files. Their behaviors are described as follows:

File::New: Select this item to begin a new class definition. The hot-key sequence is
ctrl-N. All fields are reset to default initial values, usually empty. Currently, using
File::New does not check for changes to the currently loaded values before loading a
new file. You will not be warned to save your changes. 

File::Open ...: Selecting this item allows you to open an existing file using the
standard file-open dialog box. The hot-key combination is ctrl-O. This familiar dialog
is shown in Figure 17.14. The file format for definition files is .mat. This format is
convenient because it allows you to load the definition file directly in MATLAB and tweak
the data in ways not available through Class Wizard.

File::Save: Selecting this item saves the current class definition file to the current file
name. The hot-key sequence is ctrl-S. If there is no current filename, you will be
prompted to enter one. 

File::Save As ...: Selecting this item opens a standard dialog box for specifying
the file name during a save. The hot-key sequence is ctrl-A. The familiar dialog is shown
in Figure 17.15. The definition file can be stored anywhere; however, the best location is
in the class directory. When class functions are generated, the definition file is automatically
saved in the same directory as the functions.
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17.2.1.12 Data Menu

In most class definitions, the same variable names are used in several functions. Rather than commenting
these variables in several places, a data dictionary approach collects the variables into a central location.
That way, comments only need to be entered once; and from there, Class Wizard can perform the
tedious task of repeating the comments into each header. The Data menu is used to enter type and
comment information for the function arguments defined for constructor helper functions, public
functions, and private functions. The information entered through Data::Dictionary ... are
written into header comments when the file is generated. The Data::Dictionary ... dialog is
shown in Figure 17.16.

Like most of the tool’s dialogs, the data dictionary dialog is organized into three sections: input
fields, action buttons, and a display. In Figure 17.16, the input fields contain values because a
variable name in the display is selected. The Variable Name field is grayed out because the
name of the variable cannot be changed. This also means that new names can’t be added to the
definition via the dictionary. Names can only be added by defining a new name in a function call.
Data in the other fields can be modified to reflect the appropriate descriptions. The three data fields
in the data dictionary variable dialog are described by the following:

FIGURE 17.14 Class Wizard, standard File::Open … dialog.

FIGURE 17.15 Class Wizard, standard File::Save As … dialog.
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Variable Name: displays the name of the variable. This name can’t be changed because
it is linked to the definition of one or more member functions.

Variable Type(s): holds a comma-separated list of types expected. Any descriptive
text can be entered in this field. The text is not used to generate code, but rather it is used
to comment on the variable in the header of every function where it is used. The field is
intended to be a description of the allowed types.

Comment: holds a string description pertaining to the variable. This comment is copied
into the header comments for each function that uses the variable in its input argument list.

The three buttons, Save Change, Delete, and Done, are the same three buttons used in
the parent-class dialog. Refer to §17.2.1.2 for a description of their behavior. When you finish
modifying the object’s parent data, click the Done button. This will save your changes and return
you to the main dialog.

17.2.1.13 Build Class Files Button

After entering class data, class files are generated by clicking the Build Class Files button.
This button first displays the standard dialog that allows you to select the directory where the files
should be written. The dialog includes a button that allows you to create a new class directory.
Don’t forget to include @ in the directory name. An example view of the dialog is shown in Figure
17.17.

Selecting a directory and clicking OK allows Class Wizard to generate the collection of
class files. In addition to generating class functions, the class definition file is also saved in the
selected directory in mat-file format. The group-of-eight files are completely functional, and

FIGURE 17.16 Class Wizard, Data File::Dictionary … dialog.
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class-specific member functions exist as simple function stubs. If new public or private member
variables need to be added, it is a simple process to reload the definition file, add the new variables,
and rebuild the files. The class organization and default wizard settings make this possible.

17.3 SUMMARY

For building a robust MATLAB class, Class Wizard has no equal. The various dialog screens are
organized along the same divisions used to describe an object-oriented design. This makes data
entry much less of a chore. Once the design data are entered, Class Wizard builds a full imple-
mentation of the group of eight and takes care of some of the more mundane details. In short, Class
Wizard allows you to focus on the design and on the application-specific aspects of the class.

There are several ways that Class Wizard can be used in a development environment. The least
effective way is to use Class Wizard to generate an initial set of class functions and then never use
it again. I don’t recommend this approach because it is very difficult to keep all of the various files
in synch. The file dependency graph in Figure 17.2 is too complicated. Some changes seem easy,
but eventually, something will be omitted or updated incorrectly. It is easy and much safer to let
Class Wizard manage changes to the group of eight.

One viable approach is to enter only parent, constructor, and variable information into Class
Wizard. This allows Class Wizard to manage changes to group-of-eight functions while you manage
private and public member functions outside of the group of eight. You lose the advantage of
uniform headers and variable descriptions, but that might be an acceptable trade-off in some
development environments. For a well-documented class, these data will still need to be entered;
however, they do not have to be entered through Class Wizard fields. Keeping default check box
and radio button selections and never entering data for private and public member variables enable
this approach.

The third approach extends definition data to include names and arguments for public and
private functions. Comments associated with arguments should also be documented in the data
dictionary. The first time a class-specific function is generated, the header will include a complete
set of comments. After that, selecting new will prevent the file from being overwritten. It would
be nice to be able to regenerate header comments yet leave the files code intact. That way the
definition would always be consistent with the Class Wizard–generated section of each file. That

FIGURE 17.17 Class Wizard, Build Class Files dialog.
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capability does not currently exist, but there are plans for future upgrades that will fill this and
other known deficiencies.

In this chapter, we focused on the mechanics of entering data into Class Wizard. There are
some idiosyncrasies due to Guide, but overall the GUI interface makes it much easier to enter data
and keep the design organized. Data contained in individual dialogs mirror the implementation
model discussed throughout the first two sections of this book. The functions generated from data
entered through these dialogs also mirror the code developed in the first two sections. In the next
chapter, we will redevelop the complete cShape example using Class Wizard. Differences in
development time and coding accuracy will be very apparent.

17.4 INDEPENDENT INVESTIGATIONS

1. Open Class Wizard (the command is class_wizard) and enter a few variables and
functions.

2. Practice saving and loading definition files. You can use the .mat files for Chapter 18
and get a preview of the next chapter.

3. Navigate into the Header Info dialog box and enter your pertinent information. Use the
Default Header Info menu to save the data for future reference.

4. After entering some data, select Build Class Files and follow the process. After
building the files, inspect a few of them and note their close similarity to the standard
idioms.
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18

 

Class Wizard Versions of the 
Shape Hierarchy

 

In Chapter 17, we covered Class Wizard’s various input dialogs along with their general operation.
In this chapter, we demonstrate the complete Class Wizard process of developing a collection of
classes. To do this, we will recreate our now familiar collection of classes that includes 

 

cLine-
Style

 

, 

 

cShape

 

, 

 

cStar

 

, and 

 

cDiamond

 

. Creating a collection of familiar classes is important
because it allows us to spot logical errors. It also allows us to compare automatically generated
files with the handcrafted versions. The collection also includes a rich hierarchy with both par-
ent–child inheritance and composition. This is important because the hierarchy exercises most of
the available options.

The primary activity in this chapter involves entering data into the various Class Wizard dialog
screens. As data are entered, the lower-list box in each dialog shows a line-by-line summary of the
data. To assist you in data entry, a screen shot of each completed dialog is included. That way, all
variables and functions are provided as you will see them displayed on your screen. The syntax of
each line in the lower-list box is easy, and converting from the display to individual fields quickly
becomes obvious. If the translation isn’t clear, you can always refer back to Chapter 17. In addition,
a shorthand table description of the data in each field is provided.

The first step is of course entering data. The second step allows Class Wizard to generate class
files. At this point, group-of-eight functions are fully functional. Objects can be created and
displayed, and direct-link public variables can be accessed and mutated. Even so, this is not the
final step. Some files will require postgeneration tailoring. The list of files includes most of the
public and private functions that give each class their unique behavior. Enter the names and
arguments for these functions, and Class Wizard will give you a head start by generating the initial
version. The initial version contains full header comments but not much more. For example, a
description for 

 

draw

 

 can be included in the 

 

Public Functions

 

 dialog, but until it is tailored,
calling 

 

draw

 

 will not do anything. The implementation isn’t complete until code for the application-
specific member functions has been added. The example code for this chapter includes a copy of
the as-generated files in a directory separate from the full solution.

 

18.1 CLINESTYLE CLASS WIZARD DEFINITION DATA

 

Begin by running the graphical interface for Class Wizard. To do this, the directory

 

/utils/wizard_gui

 

 must be on or added to the MATLAB path. You can add the path in one
of three ways: 

 

cd

 

 into the directory, use an 

 

addpath

 

 command, or use MATLAB’s 

 

File::Set
Path

 

 menu item. After adding the directory, the command to run Class Wizard is simply

 

>> class_wizard

 

 

 

The current version accepts no input arguments. The 

 

class_wizard

 

 command opens the main
Class Wizard dialog with empty fields and default options. You must now fill in fields that describe
your particular class definition. After doing this for 

 

cLineStyle

 

, the main dialog will look like
Figure 18.1. The full definition file can be found in 

 

chapter_17/@cLineStyle/cLine-
Style.mat

 

. You can follow along and enter data, but if data entry becomes too tedious, you can
load the full 

 

.mat

 

 file at any time. Similarly, the definition files for the other classes are located
in their respective class directories. As with the other chapters, the class directories under chapter_17

 

C911X_C018.fm  Page 249  Friday, March 2, 2007  9:06 AM



 

250

 

A Guide to MATLAB Object-Oriented Programming

 

are fully functional. Since these directories become fully functional only after tailoring, a copy of
t he  fi l e s  p r i o r  t o  t a i l o r i ng  can  be  found  i n  t he  c l a s s  d i r ec to r i e s  unde r

 

chapter_17/as_generated

 

. 
Open a new session of Class Wizard and type in 

 

cLineStyle

 

 as the class name. Leave the
other fields on the main dialog blank or filled with their default values. This gives Class Wizard
control over the group of eight (

 

Overwrite

 

) and allows Class Wizard to generate other files only
when the definition data are new (

 

New

 

). The remaining definition data are entered into each
corresponding dialog. Dialog order doesn’t matter, and each dialog can be opened and changed
any number of times. In the text that follows, a separate subsection is devoted to each dialog.

 

18.1.1

 

C

 

L

 

INE

 

S

 

TYLE

 

 H

 

EADER

 

 I

 

NFO

 

A good place to begin is the header info dialog. Click the 

 

Header Info …

 

 button and enter
the data shown in the various fields of Figure 18.2. Of course, you can replace the example text
with your own name, company information, and so on. After entering all header information, save
the fields for future use. Before clicking 

 

Okay

 

, select the menu item Default Header Info::Save.
There are no prompts; however, the fields contained in the dialog are now stored in the file

 

default_header.mat

 

 located in the same directory as 

 

class_wizard.m

 

. For a new class,
you can recall the fields by opening the 

 

header info

 

 dialog and selecting 

 

Default Header
Info::Load

 

.
Dialog names associated with each field are merely a suggestion because Class Wizard doesn’t

inspect the values. All fields use a free format, and you can commandeer any field to write other

 

FIGURE 18.1

 

Class Wizard, main dialog for cLineStyle.
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information into the files. In the header, each string gets a comment delimiter and the order of appearance
is fixed. Once you figure out where each string is written, you will be able to bend the header information
to your specific needs. A little later when we look at specific code examples, we can observe the header
output. For now, simply click 

 

Okay

 

 to commit the data and return to the main dialog. If you click

 

Cancel

 

, you will return to the main dialog but changes will not be committed. 

 

18.1.2

 

C

 

L

 

INE

 

S

 

TYLE

 

 P

 

RIVATE

 

 V

 

ARIABLES

 

The next dialog we will visit defines the private variables. Click the 

 

Private Variables …

 

 button
and enter the data shown in Figure 18.3. Initially, the lower display will be empty. If the first blank
line in the lower display block is not highlighted, select the first empty line by clicking on it. The data
fields are active, and you can start entering private variable data. After entering 

 

mColorHsv

 

 data,
click the 

 

Save Change

 

 button to commit the changes. The data are displayed in WYSIWYG format
in the display box, and the selection moves to an empty line. Follow the same procedure to enter data
for the other private variables. The field data are summarized in Table 18.1.

As you enter data, the contents of the lower display are almost identical to the code included
in 

 

ctor_ini.m

 

. Even the default-value assignment is correctly formatted. The 

 

Initial Value

 

string is copied verbatim into the display and into 

 

ctor_ini.m

 

. Virtually any value that can be
written on the right-hand side of an assignment can be used as an initial value. For example, a
function call generates the initial value for 

 

mColorHsv

 

. Click 

 

Done

 

 to commit the changes and
return to the main dialog.

When Class Wizard generates 

 

/@cLineStyle/private/ctor_ini

 

, the private variable
names and their default values are included in the code. The names and comments are included in
the header. If you return to the main screen and click 

 

Build Class Files

 

, Class Wizard will
generate the file 

 

@cLineStyle/private/ctor_ini.m

 

 shown in Code Listing 105. Other
files will also be generated, but 

 

ctor_ini

 

 is the current focus.

 

FIGURE 18.2

 

Class Wizard, cLineStyle header information dialog.
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FIGURE 18.3

 

Class Wizard, cLineStyle private variable dialog.

 

TABLE 18.1
cLineStyle Private Variable Dialog Fields

 

Private Variable Name Initial Value Comment

 

mColorHsv rgb2hsv
([0 0 1])’

[H; S; V] color of border; default 
is blue

mLineWidth 1 handle graphic LineWidth attribute
mLineHandle [] graphics handle of the line plot

 

Code Listing 105, Constructor Helper from Class Wizard, @cLineStyle/private/ctor_ini.m 

 

1 function [this, superior, inferior] = ctor_ini
2 %CTOR_INI for class cLineStyle, Replace with a short note ...
3 % Replace with something like UNCLASSIFIED
4 %
5 % function [this, superior, inferior] = ctor_ini
6 %
7 % Replace with text that you would like to have copied into 

the header of 
8 % every file in this class
9 %
10 % Private Member Variables
11 % mColorHsv: HSV Line Color Value
12 % mLineWidth: handle-graphic LineWidth attribute
13 % mLineHandle: graphics handle of the line plot
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Line 1 contains the function definition and lines 2–24 contain the header comments. Line 2
identifies the class and function along with a truncated one-line description. For this line to be
meaningful, the header-info defined 

 

H1 Line

 

 field needs to be short and the first few words of
the function comment should be concise. Line 3 and line 32 contain the 

 

classification

 

 string.
Line 5 repeats the function definition because 

 

help

 

 does not automatically display it. Lines 7–8
contain the contents of the 

 

Common Header Comments

 

 field from header info. Lines 10–13
list the private variables and their comments. The remaining header comments are generated from
various fields in header info. Lines 26–38 are code; here the private structure is created and private
variables are added and initialized. Notice the private variable 

 

mDisplayFunc

 

 in line 31. This
variable was not in the private variable list, but it shows up in the default constructor because

 

cLineStyle

 

 has no parents. If you compare Code Listing 105 with 

 

ctor_ini

 

 from Chapter
16, the code lines are identical.

 

18.1.3

 

C

 

L

 

INE

 

S

 

TYLE PUBLIC VARIABLES

Moving down the collection of dialog buttons brings us to the public variables. Click the
Public Variables … button and enter the data shown in Figure 18.4. Fresh from the previous

14 %
15 % Author Info
16 % Replace with your company's name
17 % Replace with your name
18 % Replace with your email address
19 % Replace with your phone number
20 % Replace with the author notes that you would like to 

appear just after
21 % the author info for every file in this class
22 % Replace with your standard copyright notice
23 % Replace with a string recognized by your revision control 

software
24 % A Class Wizard v.3 assembled file, generated: 20-Dec-2005 

13:23:23
25
26 % piece-meal create to avoid object and cell problems
27 this = struct([]);
28 this(1).mColorHsv = rgb2hsv([0 0 1])';
29 this(1).mLineWidth = 1;
30 this(1).mLineHandle = [];
31 this(1).mDisplayFunc = []; % class-wizard reserved field
32 % Construct the parent classes, if any
33 parents = cell(0, 1);
34 % Initialize parent_list
35 parent_list(parents{:});
36 % Return desired superior and inferior arguments
37 superior = {};
38 inferior = {};
39 % Replace with something like UNCLASSIFIED
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exercise of entering private variables in §18.1.2, the fields Name and Comment are familiar. The
type, accessor, and mutator fields are new. 

The type field serves two purposes. First, with the exception of display, the public name
and its type string are copied into all group-of-eight headers. Second, the type string is displayed
as a hint when set is called with one argument. That also means the type string is copied into the
–possible case inside fieldnames.

Accessor Expression and Mutator Expression fields guide the generation of public
cases inside get.m and set.m. If the Expression field contains the name of a private variable,
direct-access code syntax will be inserted into get or set. If the Expression field contains
the string %helper, helper-function syntax will be inserted into get or set, and a stub for the
helper will be generated. Finally, if the Expression field is empty, a public case for the variable
is not included. The Accessor Expression value and Mutator Expression value are
independent. Accessor Expression influences the code in get and Mutator Expression
influences the code in set. In addition, public variables with an empty Accessor Expression
value are not included in fieldnames or struct.

All public variables in cLineStyle have accessors. The accessor for Color uses a helper,
but accessors for LineWidth and LineHandle are directly linked to mLineWidth and
mLineHandle. All public variables also have mutators. In this case, the mutator for LineWidth
is not a direct link but rather uses a helper. The table of entries for the public variables is given in
Table 18.2. 

The procedure for data entry follows the same procedure used for private variables. Select the
first empty line in the lower display block, and enter data in the fields. After all field values have
been specified, click Save Change to commit the data and move to the next line. In this dialog,
the lower display can’t be easily formatted using standard MATLAB syntax. Instead, the lower
display delimits each field by putting two colons between each value. The display order is name,
type, accessor, mutator, and comment. When you have finished all additions or modifications, click
Done to commit the changes and return to the main dialog.

FIGURE 18.4 Class Wizard, cLineStyle public variable dialog.
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If you compare the generated group-of-eight files with files from Chapter 16, the code lines
are identical. Because of this, you will have no trouble relating the code to discussions in the
previous chapters. Ideally, you will never need to hand tailor any function in the group of eight,
but if do, you should have no trouble finding your way.

Accessor and mutator helper functions are another matter. These private functions require
tailoring because the dialog data do not include any information that could be used to generate
class-specific code. The functions include header information and they include code stubs that allow
them to work without error. This allows group-of-eight mechanics to be tested prior to tailoring,
but the class is not fully functional until afterward. We revisit the topic of helper file tailoring in
§18.1.7.

18.1.4 CLINESTYLE CONSTRUCTOR FUNCTIONS

The final data-entry button on the main dialog defines constructors. The cLineStyle class uses
a two-argument constructor to assign values for Color and LineWidth. Click the Construc-
tors ... button to display the dialog shown in Figure 18.5. To define a new constructor, the

TABLE 18.2
cLineStyle Public Member Variable Field Values

Public Variable
Name Type

Accessor
Expression

Mutator
Expression Comment

Color (3x1) array %helper %helper RGB line color
LineWidth integer > 0 mLineWidth %helper
LineHandle graphics handle mLineHandle mLineHandle Public 

graphics 
handle to the 
line plot

FIGURE 18.5 Class Wizard, cLineStyle constructor function dialog.
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only data required are a comma-separated list of input variable names. The function name is created
based on the number of variables. The comma-separated variable list is entered in the Input
Argument List field. Any valid variable name except this can be used in the list. 

For this example, we don’t need a table of dialog values. Select the first empty line in the lower
display. Then type color, width into the Input Argument List field. When you are
done, click Save Change to commit the data. Finally, click Done to return to the main dialog.

During file generation, Class Wizard will use this data to generate a function stub named
private/ctor_2.m. The stub contents are shown in Code Listing 106. The comma-separated
list from the definition data shows up in the input argument list of the function definition. These
variable names also show up in the header on lines 12 and 14. The comments list them as having
no type info and no description because data dictionary data for these variables do not yet exist.
The generated code is found in lines 27–31. The function will run; however, until it is tailored,
line 29 will display a warning. The helper can be tailored by copying code from the Chapter 16
version. 

Code Listing 106, Two-Input Class Wizard Constructor, @cLineStyle/private/ctor_2.m 
function this = ctor_2(this, color, width)

1 function this = ctor_2(this, color, width)
2 %CTOR_2 for class cLineStyle, Replace with a short note ...
3 % Replace with something like UNCLASSIFIED
4 %
5 % function this = ctor_2(this, color, width)
6 %
7 % Replace with text that you would like to have copied into 

the header of 
8 % every file in this class
9 %
10 % Input Arguments::
11 %
12 % color: no type info: no description provided
13 %
14 % width: no type info: no description provided
15 %
16 % Author Info
17 % Replace with your company's name
18 % Replace with your name
19 % Replace with your email address
20 % Replace with your phone number
21 % Replace with the author notes that you would like to appear 

just after
22 % the author info for every file in this class
23 % Replace with your standard copyright notice
24 % Replace with a string recognized by your revision control 

software
25 % A Class Wizard v.3 assembled file, generated: 20-Dec-2005 

13:23:23
26
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18.1.5 CLINESTYLE DATA DICTIONARY

At this point in the definition, public and private variables are defined and an additional constructor
is available. From the main screen, you could generate all required files for a fully functioning
cLineStyle class. But don’t click Build Class Files because there is one more dialog
that needs attention. We need to add comments so the header inside ctor_2 will contain mean-
ingful comments for its input arguments.

On the menu bar of the main dialog, select Data::Dictionary …. This selection will
display the dialog shown in Figure 18.6. These fields are similar to the same fields in the public
variable dialog. Initially the lower display should include the variable names color and width
but there will be no type or comments. The variable names in the lower display were collected
from the argument definitions used to define constructors, public functions, and private functions.
Since cLineStyle uses the standard set of public and private functions, the list only includes
constructor arguments. The data dictionary dialog can’t be used to add variables. Variables are
added automatically based on function definitions.

The type and comment data you need are provided in Table 18.3. Select each variable by
pointing to its line in the lower display and clicking. The field values are now active and can be
modified. Click Save Change to commit the changes before selecting the next name. After
entering all the data, click Done to return to the main dialog. Now if you generate the files, the
header in ctor_2 will contain meaningful comments. The affected lines now look like the
following: 

27 % \/  \/  \/  \/
28 % replace with your specific constructor code
29 warning('OOP:incompleteFunction', ...
30 'The function definition is incomplete');
31 % /\  /\  /\  /\
32 % Replace with something like UNCLASSIFIED

FIGURE 18.6 Class Wizard, cLineStyle data dictionary dialog.
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% Input Arguments::

%

% color: 3x1 RGB values 0-1: The initial RGB line color.  The 

% array is a 3x1 column vector of values and the values 

% range from zero to one.

%

% width: integer > 0: The initial line width as an integer 

% greater than 0

18.1.6 CLINESTYLE BUILD CLASS FILES

The definition for cLineStyle is now complete. Click Build Class Files to begin class
file generation. You always need to specify a destination class directory. MATLAB’s standard
directory-selection dialog is used. An example of the dialog is shown in Figure 18.7. Simply
highlight the desired directory and click OK. If a suitable directory does not exist, the Make New
Folder button on the lower left will allow you to create one. When you click OK, Class Wizard

TABLE 18.3
cLineStyle Data Dictionary Field Values

Variable 
Name Type Comment

color 3x1 RGB values 
0-1

The initial RGB line color. The array is 
a 3x1 column vector of values and the 
values range from zero to one.

width integer > 0 The initial line width as an integer 
greater than 0

FIGURE 18.7 Class Wizard, cLineStyle directory-selection dialog.
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generates class files. File generation is very fast. Click Okay on the confirmation dialog to return
to the main Class Wizard dialog. The newly generated class should work without error; however,
a couple of helper functions need to be tailored before the class will achieve full functionality.
These functions are discussed next.

18.1.7 CLINESTYLE ACCESSOR AND MUTATOR HELPER FUNCTIONS

In cLineStyle three private helper functions need to be tailored. The first is ctor_2, a private
constructor helper. The as-generated file was shown in Code Listing 106. Modifying the as-
generated file is easy because we can copy the code body from the working version in Chapter 16.
Refer to Code Listing 89 to see the complete function body.

Code bodies for the other two helpers, Color_helper and LineWidth_helper, can
also be copied from Chapter 16. After copying the code bodies, cLineStyle is complete. The
tailored versions of Color_helper and LineWidth_helper are also included in this
chapter’s source files. Before moving to the other classes, let’s look at the initial helper-file stub.
The as-generated version of Color_helper is shown in Code Listing 107. The listing consists
mostly of comments, but there are some important lines of code in each case.

Code Listing 107, Public Variable Helper, as Generated by Class Wizard, 
cLineStyle::Color_helper 

1 function [do_sub_indexing, do_assignin, this, varargout] = 
...

2 Color_helper(which, this, index, varargin)
3 %COLOR_HELPER for class cLineStyle, Replace with a short 

note ...
4 % Replace with something like UNCLASSIFIED
5 %
6 % function [do_sub_indexing, do_assignin, this, varargout] 

= ...
7 % Color_helper(which, this, index, varargin)
8 %
9 % Replace with text that you would like to have copied into 

the header 
10 % of every file in this class
11 %
12 % Author Info
13 % Replace with your company's name
14 % Replace with your name
15 % Replace with your email address
16 % Replace with your phone number
17 % Replace with the author notes that you would like to appear 

just 
18 % after the author info for every file in this class
19 % Replace with your standard copyright notice
20 % Replace this line with a string for your revision control 

software
21 % A Class Wizard v.3 assembled file, generated: 18-Jan-2006 

13:18:46
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22 %
23
24 switch which
25 case 'get'  % ACCESSOR
26 % input: index contains any additional indexing as a 

substruct
27 % input: varargin empty for accessor
28 do_sub_indexing = true;  % tells get.m whether to index 

deeper
29 do_assignin = false;  % leave false until you read book 

section 3
30 varargout = cell(1, nargout-3); % -3, 3 known vars plus 

varargout
31  % \/  \/  \/  \/
32  % YOUR 'GET/ACCESSOR' HELPER CODE GOES HERE
33  % e.g., [varargout{:}] = {function of public and private 

vars};
34  warning('OOP:incompleteFunction', ...
35  'The function definition is incomplete');
36  % /\  /\  /\  /\
37 case 'set'  % MUTATOR
38 % input: index contains any additional indexing as a 

substruct
39 % input: varargin contains values to be assigned into 

the object
40 do_sub_indexing = false;  % always false, mutator _must_ 

index
41 do_assignin = false;  % leave false until you read book 

section 3
42 varargout = {}; % 'set' returns nothing in varargout
43 % \/  \/  \/  \/
44 % YOUR 'SET/MUTATOR' HELPER CODE GOES HERE
45 warning('OOP:incompleteFunction', ...
46 'The function definition is incomplete');
47 % below is a code template as a convenient starting point
48 % if isempty(index) % No more indexing requested, assign 

input
49 % [this.Color] = deal(varargin{:});
50 % else  % deeper indexing requested, use subsasgn to do it
51 % Color = [this.Color];  % Modify the assignment
52 % Color = subsasgn(Color, index, varargin{:});
53 % [this.Color] = Color;
54 % end
55 % /\  /\  /\  /\
56  otherwise
57 error('OOP:unsupportedOption', ['Unknown helper option: ' 

which]);
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Lines 25–36 contain the placeholder for tailored accessor code. Lines 28–29 assign typical flag
values, and line 30 preallocates varargout based on the size of nargout. These three lines
are usually necessary so they are automatically included. Lines 31–36 should be replaced by helper-
specific accessor code. Otherwise, lines 34–35 will generate a warning and return empty values.
If accessor syntax is direct-link, there are two options depending on how much control is desired.
Either leave the warning in place or replace the warning with direct-link code.

Lines 37–55 contain the placeholder for tailored mutator code. Lines 40–41 assign typical flag
values, and line 42 preallocates varargout. Note that the mutator code must either use all the
index values or throw an error. Here varargout is empty because the object is returned in the
output variable this. These three lines are usually necessary so they are automatically included.
Lines 43–55 should be replaced by helper-specific mutator code. Otherwise, lines 45–46 will
generate a warning and an unmodified this will be returned. The comments in lines 48–54
represent typical direct-link syntax and are included as an aid to development. 

18.2 CSHAPE CLASS WIZARD DEFINITION DATA

Data entry for every class follows the same procedure used to define cLineStyle. During the
definition of cShape, we will build on that procedure by spending more time discussing new
areas. Open a new session of Class Wizard or select File::New from the menu and type in
cShape as the class name. From an earlier chapter, we know that cShape needs to be superior
to double. In the Superior To: field on the main dialog, add the string double. If cShape
needed to be superior to more than one type, a comma-separated list would be used. Keep the
default values for all other main dialog data. The remaining definition data are entered using the
various data-entry dialogs.

18.2.1 CSHAPE HEADER INFO

Click the Header Info … button and select Default Header Info::Load from the menu. This
selection loads the collection of default values previously saved during the definition of cLine-
Style. You can change the field values or leave them as is. Click Okay to return to the main dialog.

18.2.2 CSHAPE PRIVATE VARIABLES

The next dialog for data entry defines the class’ private variables.  Click the
Private Variables … button and enter the data shown in Figure 18.8. The data are also
summarized in Table 18.4. Data entry is the same as before. First, select an empty line in the lower
display block and start entering private variable data. Click Save Change to commit the changes
and move to the next line. Finally, when data for all variables have been saved, click Done to
return to the main dialog.

The only noteworthy aspects of the private variables are the initial values. The initial mPoints
array is now defined to be empty. Previous versions of cShape used the corner points of a star
to populate mPoints. If you prefer star corner points, modify the initial value field for mPoints
and rebuild the class. The initial value for mLineStyle calls the cLineStyle constructor using
two arguments. This is an example of composition and demonstrates how easy it is to define a
class that uses composition. Except for comments, the version of /@cShape/pri-
vate/ctor_ini resulting from the private variable definitions is identical to the Chapter 16
vers ion .  This  fi l e  and  a l l  the  c lass  fi l e s  fo r  th i s  chap te r  can  be  found  in
/oop_guide/chapter_18.

58 end
59 % Replace with something like UNCLASSIFIED
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18.2.3 CSHAPE CONCEALED VARIABLES

Moving down the collection of dialog buttons brings us to the concealed variables button. Click
the Concealed Variables … button and enter the data shown in Figure 18.9. The concealed
variable data are also provided in Table 18.5. Fields for concealed variables are the same as the
fields for public variables because there is very little difference between the two. In the generated
functions, concealed variables are written into the concealed variable sections of get and set. If
you examine these files, you will notice that the mFigureHandle shares the concealed section
with another concealed variable, mDisplayFunc. Managed exclusively by Class Wizard, mDis-
playFunc should never be included in the concealed variable dialog. When you are finished,
click Done to return to the main dialog.

FIGURE 18.8 Class Wizard, cShape private variable dialog.

TABLE 18.4
cShape Private Variable Dialog Fields

Private Variable Name Initial Value Comment

mSize ones(2,1) Scaled [width; height] of bounding 
box

mScale ones(2,1) [width; height] scale factor
mPoints zeros(2,0) Columns of [x; y] shape corner 

values
mFigureHandle [] Handle for the shape’s figure 

window
mLineStyle cLineStyle

([0;0;1], 1)
Secondary cLineStyle object
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18.2.4 CSHAPE PUBLIC VARIABLES

The next move down the collection of dialog buttons brings us to the public variables button. Click
the Public Variables … button and enter the data shown in Figure 18.10. The public variable
data are also provided in Table 18.6. When you are finished, click Done to return to the main dialog.

All public variables defined for cShape have accessors. Accessors for Size and Points
use simple, direct-link syntax, and accessors for ColorRgb and LineWeight use a helper
function. Internally, cShape manages color and line width through a secondary object stored in
mLineStyle. Access to the color value is simple, but it does not conform to direct-link require-
ments. Consequently, ColorRgb must specify helper-function syntax. Access to the line width is
more complicated because the interface converts between strings ‘normal’ and ‘bold’ and
integer width values. 

All public variables defined for cShape also have mutators. In this case, the desire for a robust
interface complete with input value checking means that all public variables use helper function
syntax for mutation. Helper-function stubs all look similar to the Color_helper stub in Code
Listing 107. The appropriate helper-function code for cShape’s private variables was developed
in Chapter 16.

FIGURE 18.9 Class Wizard, cShape concealed variable dialog.

TABLE 18.5
cShape Concealed Variable Dialog Fields

Concealed Variable
Name Type Accessor Expression

Mutator
Expression Comment

mFigureHandle graphics
handle

mFigureHandle The shape’s handle-
graphics handle
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18.2.5 CSHAPE CONSTRUCTOR FUNCTIONS

The final data-entry button on the main dialog defines constructors. The cShape class uses a one-
argument constructor to assign initial Point values. The one-argument constructor is a little odd
because Class Wizard always generates a copy constructor. When a one-argument constructor is
defined, the generated version of ctor_1 uses the specified variable name and still includes a

FIGURE 18.10 Class Wizard, cShape public variable dialog.

TABLE 18.6
Public Member Variable Field Values

Public Variable
Name Type

Accessor
Expression

Mutator
Expression Comment

Size double array
(2x1)

mSize %helper The horiz (1,1) and 
vert (2,1) size of 
the shape’s 
bounding box

ColorRgb double array
(3x1)

%helper %helper [R; G; B] color 
values of the shape

Points double array
(2xN)

%helper %helper Corner points: x in 
row (1,:), y in row 
(2,:)

LineWeight normal, bold %helper %helper Weight of the line 
used to draw the 
shape; either 
‘normal’ or ‘bold’

C911X_C018.fm  Page 264  Friday, March 2, 2007  9:06 AM



Class Wizard Versions of the Shape Hierarchy 265

case for copy. Clicking the Constructors ... button brings up the dialog shown in Figure
18.11. Select an empty line and enter InitialPoints as the input argument list. Now click
Save Change to commit the list and Done to return to the main dialog. The function ctor_1.m
will again be tailored using code from Chapter 16.

18.2.6 CSHAPE PUBLIC FUNCTIONS

We are done with the buttons on the main dialog, but we are not yet done entering all definition
data for the class. The public interface includes three public functions, mtimes, reset, and
draw. We are going to let Class Wizard generate the initial versions of these three files. To do that,
we need to enter public-function data.

At the bottom of the main screen, click More …. This will open a dialog box with a button
for public functions. Click the Public Functions … button and enter the data shown in Figure
18.12. The public-function data are also provided in Table 18.7. When you are finished, click Done
to return to the more dialog. In the upper right-hand corner of the more dialog, click Done to
return to the main dialog.

The initial version of the public function will run without error, but it doesn’t do anything. The
code body includes a warning message, and any output variables that are not also passed into the
function are assigned an empty value. To tailor these files, we will again copy code from Chapter 16.

18.2.7 CSHAPE DATA DICTIONARY

At this point, all the elements of cShape have been defined but we still need to add some comments
for the function arguments. On the main dialog menu bar, select Data::Dictionary … and
the dialog shown in Figure 18.13 will be displayed. Enter type information and comments for each
variable. The variable data are also provided in Table 18.8. When you are finished, click Done to
return to the main dialog. 

FIGURE 18.11 Class Wizard, cShape constructor function dialog.
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18.2.8 CSHAPE BUILD CLASS FILES

The definition for cShape is now complete. Click Build Class Files to begin class file
generation. You will be prompted to choose a destination directory. If you started the definition by
selecting File::New, the initially selected directory is probably not the desired directory. Simply
highlight the desired directory and click OK. If a suitable directory does not exist, the Make New
Folder button on the lower left will allow you to create one. When you click OK, Class Wizard
generates the files. Click Okay on the confirmation dialog to return to the main Class Wizard dialog.

The new cShape class should work without error; however, helper functions and public
functions need to be tailored before the class will achieve full functionality. The files that require

FIGURE 18.12 Class Wizard, cShape public function dialog.

TABLE 18.7
Public Member Function Field Values

Public Function
Name

Input
Argument List

Output
Argument List Comments

mtimes lhs, rhs this Function used to overload the * 
operator

reset this this Function used to reset the shape 
and close its graphics window

Draw this, 
figure_
handle

this Opens the figure window and draws 
the shape
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more  work  a r e  draw ,  mtimes ,  reset ,  ctor_1 ,  ColorRgb_helper ,
LineWeight_helper, Points_helper, and Size_helper. The Chapter 16 versions of
these files contain the correct code bodies. Instead of simply copying files, code is copied out of
each Chapter 16 file and pasted into the new version. This preserves the comment information in
the new files.

The cShape class is now completely functional. There is one difference due to a change in
the initial value of mPoints. If you try to draw a cShape object, a figure window will open but
there is no shape. In this chapter, the default value of mPoints is zeros(2,0). Consequently,
draw receives no corner points and produces an empty figure window. The constructor for cShape

FIGURE 18.13 Class Wizard, cShape data dictionary dialog.

TABLE 18.8
cShape Data Dictionary Values

Public Function
Name Type Comments

figure_handle graphics 
handle

A graphics handle to the main 
figure window

InitialPoints double array 
(2xN)

Allows specific corner points to 
be assigned during construction

lhs double, cShape Left-hand-side argument in an 
expression, for example, lhs * 2

rhs double, cShape Right-hand-side argument in an 
expression, for example, 2 * rhs

this cShape The current object of type cShape
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now makes no assumptions about the shape. It will now be up to each child to pass appropriate
corner data via the parent-class constructor.

18.3 CSTAR CLASS WIZARD DEFINITION DATA

In previous chapters, after we developed an implementation for the parent, child development was
almost trivial. The same holds true for entering child-class definitions. Most of the data entry for
cStar and cDiamond occurred during data entry for cLineStyle and cShape. The definitions
for cStar and cDiamond do include a new element, a parent-class definition.

Open a new session of Class Wizard or select File::New from the menu and type in cStar
as the class name. Also on the main dialog, add the string double to the Superior To: field.
Keep the default values for all other main dialog data. Now click the Header Info … button
and select Default Header Info::Load from the menu. This selection loads default header
values. You can change the field values or leave them as is. Click Okay to return to the main dialog.
The next step is to enter data for parents, additional member variables, and member functions.

18.3.1 CSTAR PARENT

Click the Parents … button and enter the data shown in Figure 18.14. Since there is only one
parent, a table of values is not necessary. Simply read the values from fields shown in Figure 18.14.
The varargin field value consists of a 2 × n array of corner points. The default points for cStar
line on the unit circle, and a complex exponential is one easy way to generate the values. When
arrays are used as initial values, don’t add commas to separate elements in the array. MATLAB
can delimit array elements using a comma or a space. If you use a comma, Class Wizard will get
confused because it counts commas to determine how many arguments are in the input list. In
response to the parent data, Class Wizard will generate a parent_list function that returns a
cellstr populated with parent-class values. After entering cShape parent data, click Save
Change to commit the data. Click Done to return to the main dialog.

FIGURE 18.14 Class Wizard, cStar parents dialog.
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In the typical case, the child class would overload some of the parent’s functions. For that
situation, we would need to open the Public Functions dialog and enter function names and argument
lists. Class Wizard would then generate stubs, which we would fill in with child-specific code. In
the case of such a simple cStar class, no redefinitions are required. Default Class Wizard files
are all that are needed for the test drive.

18.3.2 OTHER CSTAR DEFINITION DATA

In addition to inheritance, cStar’s definition also includes one additional private variable, one
additional public variable, and three public functions. The data associated with these elements are
provided in the tables that follow.

The child-class cStar adds a title to the figure window where the shape is plotted. To do this,
mTitle is added as a private variable and Title is added as a public variable. To add the correct
private variable, start at the main dialog. Click the Private Variables … button and enter
the data provided in Table 18.9. After entering the data, click Save Changes and Done. This
will commit the data and return you to the main dialog.

For the public variable, click the Public Variables … button and enter the data provided
in Table 18.10. Notice that the accessor is direct-link and the mutator uses a helper function. Before
the class is fully functional, code for the helper function must be copied from the Chapter 16
version. After entering the data, click Save Changes and Done. This will return you to the
main dialog.

To support arrays of objects, cStar needs to overload the parent-class member functions. The
code inside mtimes and reset simply includes a slice-and-forward operation. The code inside
draw includes slice-and-forward code, but it also includes code to add a figure title. Of course,
the code to support this functionality needs to be copied from the Chapter 16 Version, but Class
Wizard will generate the initial stub. For the public functions, first click More ... and then
Public Functions …. Enter the data from Table 18.11 into the public-function dialog. After
entering the data, click Save Changes and Done to return to the more dialog. Clicking Done
in the dialog’s upper right-hand corner will return you to the main dialog. 

Before generating the class files, the variables used in the public functions should be docu-
mented. From the main dialog, select the menu item labeled Data::Dictionary …. Enter the data
shown in Table 18.12 into the data dictionary dialog. After entering the data, click Save Changes
and Done to return to the main dialog.

TABLE 18.9
cStar Private Variable Data

Private Variable Name Initial Value Comment

mTitle ‘A Star is born’ Title for the figure window

TABLE 18.10
cStar Public Variable Data

Public Variable
Name Type

Accessor
Expression

Mutator
Expression Comment

Title string mTitle %helper A title for the figure 
window
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The definition for cStar is now complete. Click Build Class Files to begin class file
generation. You will be prompted to choose a destination directory. Highlight the desired directory
and click OK. If a suitable directory does not exist, the Make New Folder button on the lower
left will allow you to create one. When you click OK, Class Wizard generates the files. Click Okay
on the confirmation dialog to return to the main Class Wizard dialog. 

As always, the helper functions and public functions must be tailored before the class will
achieve full functionality. The files that require more work are draw, mtimes, reset, and
Title_helper. The Chapter 16 versions of these files contain the correct code bodies. Copy
and paste the code bodies from each Chapter 16 file into the cStar versions. This preserves the
comment information in the new files. We still have to create a definition for cDiamond, but after
all that work, you should probably create a cStar object and draw it. If you would prefer to wait
for the test drive, that is okay with me.

TABLE 18.11
cStar Public Member Function Data

Public Function
Name

Input
Argument List

Output
Argument List Comments

mtimes lhs, rhs this slices the parent and 
forwards to the parent-
class version of mtimes

reset this, varargin this slices the parent and 
forwards to the parent-
class version of reset

draw this, varargin this First slices the parent and 
forwards to the parent 
class draw. After the 
parent draws the shape, a 
title is added.

TABLE 18.12
cStar Data Dictionary Values

Public Function
Name Type Comments

lhs double, cShape Left-hand-side argument in an 
expression

rhs double, cShape Right-hand-side argument in an 
expression

this cShape The current object of type cStar
varargin a variable-length input argument list
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18.4 CDIAMOND CLASS WIZARD DEFINITION DATA

The definition for cDiamond and cStar are almost the same. The difference is that cStar
includes some additional member variables. If we start with cStar’s definition, delete a couple
of entries, and change the name, we can easily arrive at a definition for cDiamond. This approach
will also exercise dialog controls we have not yet used.

If the definition file for cStar is still open, leave it open. Otherwise, start Class Wizard and
from the main menu select File::Open. Navigate into your most recent /@cStar directory
and select the file cStar.mat. This is the definition file for cStar. The definition file is written
into the class directory every time class files are generated. Click Open to load the definition file
into Class Wizard.

On the main dialog, change the class name from cStar to cDiamond. Next, click the
Parents … button. In the bottom display, highlight the line that contains the cShape parent
name. In the varargin field, change the corner point array to [-1 0 1 0 -1; 0 -1 0
1 0]. Don’t add commas to separate the elements. Next, click the Private Variables …
button. In the bottom display, highlight the line that contains the variable name mTitle. Click
Delete and mTitle is no longer a private variable. Click Done to return to the main dialog.
Next, click the Public Variables … button. Highlight the line that contains the variable name
Title. Click Delete and Title is no longer a public variable. Click Done to return to the
main dialog. 

 The definition for cDiamond is now complete. In this particular situation, starting from an
existing definition proved much easier compared to starting from scratch. Click Build Class
Files to begin class file generation. You will be prompted to choose a destination directory. Be
very careful because the dialog will suggest @cStar as a destination. Select a more suitable
directory and click OK to generate the files. Click Okay on the confirmation dialog to return to
the main Class Wizard dialog. 

Again, helper functions and public functions must be tailored before the class will achieve full
functionality. For cDiamond, there are no helper functions. As with cStar, code bodies for the
public member functions draw, mtimes, and reset can be copied from the Chapter 16 versions.
Copy and paste code bodies from each Chapter 16 file into the cDiamond versions. That concludes
the complete generation of all the classes in the cShape hierarchy. We can now exercise those
classes by creating and drawing a few shapes.

18.5 TEST DRIVE

The code generated by Class Wizard is supposed to be functionally identical to the handcrafted
code in Chapter 16. For helper functions and class-specific public functions, this is almost certainly
true because Class Wizard–generated stub code was replaced by code from that chapter. Even so,
it is important to demonstrate the proper operation of the wizard-generated group of eight along
with the interfaces to helper functions and public functions. Since the classes are expected to be
functionally identical, we can reuse commands from earlier chapters. Of course, drawing a shape
is the most visually appealing. The following combines default construction, mtimes, and draw
into one command.

>> star = draw([cStar 1.5*cStar]);

The graphical result of this command is shown in Figure 18.15. In fact, this single command
exercises a significant number of member functions, both public and private. The list of executed
member functions is detailed in Table 18.13. The table includes an accounting of all the member
functions. All the functions executed during the draw command above have a gray background.
The members of cDiamond are not exercised because there are no cDiamond objects involved
in the command.
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Most of the remaining member functions are exercised by the commands in Code Listing 108.
These commands came directly from the test drive in Chapter 12. Refer to §12.1.3.2 for a complete
description of the commands and their outputs. Except for the byte size of the objects and the new
fields added to cStar, the outputs for the Class Wizard–generated files are identical to the outputs
from the earlier handcrafted version. None of these commands tests cDiamond. The first inde-
pendent investigation asks you to repeat the commands using cDiamond instead of cStar. 

18.6 SUMMARY

In this chapter, we used Class Wizard to recreate the entire class hierarchy developed in the
preceding chapters. Functions belonging to the group of eight are completely and reliably generated.
The commands in the test drive demonstrate this. Functions outside the group of eight are also
generated; however, the code body does not include full functionality. The code body must be
independently implemented, and in this chapter, we recycled code from the Chapter 16 implemen-
tation. If you closely examine the files, you will notice that all the headers are consistently formatted
and contain a rich set of comments. It takes a lot of time and effort to include the same kind of
repetitive information when the files are coded from scratch.

The difficulty involved in creating classes varies from language to language. At first, creating
classes in MATLAB seems easy. Indeed, it is quite easy to create a class, define some member
functions, and begin using objects. Unfortunately, the bloom falls off the rose as you begin to
realize all the things you can’t do with a simple MATLAB object. The first step toward an improved
implementation takes advantage of syntax using subsref and subsasgn. After that, the devel-
opment of a truly robust class requires attention to nearly every detail. It has already taken eighteen
chapters to discuss all of the details, and we are not yet done.

FIGURE 18.15 A double blue star drawn by the Class Wizard generated classes.
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TABLE 18.13
Executed Member Functions Are Highlighted

@cLineStyle @cShape @cStar @cDiamond

constructor constructor constructor constructor
Subsref subsref subsref subsref
Subsasgn subsasgn subsasgn subsasgn
Display display display display
Struct struct struct struct
fieldnames fieldnames fieldnames fieldnames
get get get get
set set set set
cat cat cat cat
vertcat vertcat vertcat vertcat
horzcat horzcat horzcat horzcat
ctor_ini ctor_ini ctor_ini ctor_ini
ctor_1 ctor_1 ctor_1 ctor_1
parent_list parent_list parent_list parent_list
ctor_2 ctor_2 ctor_2
Color_helper draw draw draw
LineWidth_helper mtimes mtimes mtimes

reset reset reset
ColorRgb_helper Title_helper
LineWeight_helper
Points_helper
Size_helper

Code Listing 108, Chapter 18 Test Drive Command Listing Based on Class 
Wizard–Generated Member Functions 

1 >> clear classes; fclose all; close all force;
2 >> star = cStar;
3 >> star2 = cStar(star);
4 >> whos
5 Name Size Bytes  Class
6 ans         1x1                         8  double array
7 star        1x1                      1676  cStar object
8 star2       1x1                      1676  cStar object
9 Grand total is 93 elements using 3360 bytes
10
11 >> disp(star.Size')
12 1     1
13 >> disp(star.ColorRgb')
14 0     0     1
15 >> disp(star.Points)
16 0  5.8779e-01 -9.5106e-01  9.5106e-01 -5.8779e-01 -4.8986e-16
17 1.0000e+00 -8.0902e-01  3.0902e-01  3.0902e-01 -8.0902e-01  

1.0000e+00

C911X_C018.fm  Page 273  Friday, March 2, 2007  9:06 AM



274 A Guide to MATLAB Object-Oriented Programming

18 >> star.Size = [2;3];
19 >> disp(star.Size')
20 2     3
21 >> star
22 star = 
23 Size: [2x1 double]
24 ColorRgb: [3x1 double]
25 Points: [2x6 double]
26 LineWeight: 'normal'
27 Title: 'A Star is born'
28 >> fieldnames(star)
29 ans = 
30 'Size'
31 'ColorRgb'
32 'Points'
33 'LineWeight'
34 'Title'
35 >> fieldnames(star, '-full')
36 ans = 
37 ans = 
38 'Size % double array (2x1)'
39 'ColorRgb % double array (3x1)'
40 'Points % double array (2xN)'
41 'LineWeight % normal, bold'
42 'Title % string'
43 >> fieldnames(star, '-possible')
44 ans = 
45 'Size'
46 {1x1 cell}
47 'ColorRgb'
48 {1x1 cell}
49 'Points'
50 {1x1 cell}
51 'LineWeight'
52 {1x1 cell}
53 'Title'
54 {1x1 cell}
55 >> struct(star)
56 Size: [2x1 double]
57 ColorRgb: [3x1 double]
58 Points: [2x6 double]
59 LineWeight: 'normal'
60 Title: 'A Star is born'
61 >> star = [cStar cStar; cStar cStar];
62 >> size(star)
63 ans = 
64 2    2
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Attending to the myriad details is something that a CASE tool can do very well. Even this is
difficult unless there is a good organizational structure. The organizational structure advocated by
the preceding chapters results in good class implementation, and Class Wizard is very helpful in
maintaining that structure. This is particularly true when the class definition evolves. With Class
Wizard, evolution is a simple matter of adding elements to the definition and rebuilding the files.
Files managed by the tool are overwritten with the new definition, while handcrafted files are
untouched. The best balance is always maintained between standard idioms and a developer’s
creativity.

18.7 INDEPENDENT INVESTIGATIONS

1. Repeat the test-drive commands using cDiamond objects instead of cShape objects.
2. Modify the class interfaces to allow shapes to be rotated by an arbitrary angle. Use Class

Wizard to generate the initial versions of helper functions and public member functions.
3. Add other line-style features to cLineStyle, and expose these features so that clients

can use them with cStar and cDiamond objects (for example, dotted vs. solid lines).
4. Add a cCircle class to the hierarchy. Does cCircle inherit cShape or is there a

better relationship? Should /@cCircle/draw use polar instead of plot? How
would the use of polar change the organization?

65 >> [star.Size]
66 ans =
67 1     1     1     1
68 1     1     1     1
69 >> {star.Size}
70 ans = 
71 [2x1 double]    [2x1 double]    [2x1 double]    [2x1 double]
72 >>
73 >> disp(class(star))
74 cStar
75 >> disp(isa(star, 'cShape'))
76 1
77 >> disp(isa(star, 'cDiamond'))
78 0
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Part 3

 

Advanced Strategies

 

In this section, we redeploy standard object-oriented techniques in a way that allows MATLAB to
create a few special-purpose classes commonly found in other object-oriented languages. These
include 

 

containers

 

, 

 

singleton objects,

 

 

 

functors

 

, and 

 

iterators

 

. These classes require strong encap-
sulation and a flexible object-oriented language. The fact that these sophisticated classes can be
created from elements that already exist pays tribute to the MATLAB design team. If these example
classes make you wonder what else is possible, they have done their job. With a little imagination
and creativity, anything is possible.

Some of the topics in this section are controversial because they upset the status quo. Redefining
member-function syntax, adding a pass-by-reference function model, and obtaining protected vis-
ibility for variables and functions are probably the most disruptive topics. The discussions don’t
try to judge whether you should adopt a particular technique, but instead try to demonstrate the
flexibility inherent in MATLAB objects and expand the way you think about them. Some of the
techniques are worthy of adoption, while others would benefit from more support from the language
and the user community. Like many disruptive technologies, it is hard to know in advance what
will be embraced. Unlike many languages, MATLAB’s evolution isn’t restricted by an ISO standard.
If enough of us adopt a few of these techniques, market forces will ultimately prevail.
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19

 

Composition and a Simple 
Container Class

 

As a further demonstration of composition, we make an initial foray into designing and imple-
menting a general container class. A general container is different from an array because it can
hold different types. A general container is different from a cell array because all objects must
descend from the same parent. For example, a general 

 

cShape

 

 container can hold both 

 

cStar

 

and 

 

cDiamond

 

 objects because they both use 

 

cShape

 

 as a parent. A container is also different
from a cell array because a container has a structure-like interface. The interface makes a container
behave a lot like an object array. Rather than looping over each element in the container, clients
can use vector syntax. Often the loop still exists; however, it is now hidden behind the container’s
interface.

Developing a set of standard containers compatible with the general computer-engineering
literature* or with National Institute of Standards (NIST) definitions** would be an enormous
undertaking. The goals for this chapter’s container are much less ambitious. The primary goal is
to demonstrate one potential use of composition. A secondary goal is to produce a container that
might be useful as is, or at least produce a container that can be easily improved. The container
developed for this chapter isn’t perfect, but with what you already know, you can fix all of its
deficiencies.

 

19.1 BUILDING CONTAINERS

 

To implement a container, several details are important. First, we need to specify the object type
held by the container. Any object that passes an 

 

isa

 

 test for the specified type will be allowed in.
Thus, objects of the specified type and objects using the specified type as a parent are okay to add
to the container. For the example, we will specify 

 

cShape

 

 as the object type. That will allow the
container to hold 

 

cShape

 

, 

 

cStar

 

, and 

 

cDiamond

 

 objects. If we want to create new shape classes,
the container will hold them too. Of course, these new classes must have 

 

cShape

 

 somewhere in
their hierarchy so that 

 

isa(object, ‘cShape’)

 

 returns 

 

true

 

.
The next thing we need to decide is how the container implementation will store the objects.

MATLAB will not let us use a built-in type, like 

 

cell

 

, as a parent, so we must look for an
alternative. There are two options but both represent compromises. The first and probably the most
obvious approach stores objects in a private cell array. Cell array storage is probably the best
approach because it aligns public and private indices. One potential problem with this approach is
the mismatch among built-in functions like 

 

length

 

 and 

 

size

 

 and the number of objects held in
the container. Of course, we will code around this problem by overloading 

 

length

 

 and 

 

size

 

.
We might also want to consider overloading 

 

reshape

 

,

 

 ndims

 

,

 

 numel

 

,

 

 num2cell

 

, and

 

mat2cell

 

, among others.
The next potential problem with a private cell array is the index value 

 

end

 

. Using 

 

end

 

 to add
a new element to the container should work the same as adding an element to an array. For example,
the command syntax might look like the following:

 

*  Cardelli, L., and Wegner, P. “On Understanding Types, Data Abstraction and Polymorphism,” 

 

ACM Computer Survey

 

,
17, 4, December 1985, 471–522.
**  http://www.nist.gov/dads/.
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shape_array(end+1) = cStar;

 

The built-in behavior of 

 

end

 

 returns the dimension of 

 

shape_array

 

, not the dimension of the
private cell array inside 

 

shape_array

 

. Redefining 

 

size

 

 and 

 

length

 

 doesn’t help, but thanks
to the foresight of the MATLAB developers, we can code around this problem too. In this situation,

 

end

 

 acts like an operator. Like any operator, MATLAB converts 

 

end

 

 into a function call. This
behavior allows us to overload the function 

 

end.m

 

 to return an appropriate value. 
An alternate container solution avoids 

 

length

 

, 

 

size

 

, 

 

reshape

 

, and 

 

end

 

 issues by taking
advantage of the way MATLAB implements structures. For example, the container class might
include a private member variable named 

 

mObject

 

.  After  several  addit ions,

 

class(this(1).mObject)

 

 might equal 

 

‘cStar’

 

 and 

 

class(this(2).mObject)

 

might equal 

 

‘cDiamond’

 

. MATLAB allows different object types stored in the 

 

mObject

 

 element
to coexist. As long as we never try to concatenate 

 

mObject 

 

elements (i.e., 

 

[this.mObject]

 

),
everything will work fine. With this solution, adding a new object simply increases the size of the
private structure. The primary problem with this approach involves repeating the container’s private
structure and the fact that arrays of structures are memory hogs. Using 

 

repmat

 

 can also produce
inconsistent results.

Regardless of the approach, we also need to consider concatenation with 

 

cat

 

, 

 

horzcat

 

, and

 

vertcat

 

. Achieving the best compatibility means supporting the concatenation of a container
and an object and the concatenation of two or more containers. We usually don’t want to restrict
the concatenation order, and that means the container must be 

 

superiorto

 

 the classes it holds.

 

19.2 CONTAINER IMPLEMENTATION

 

For implementation purposes, this chapter uses the cell-array approach. With the cell-array
approach, the container object itself is never empty even when the private cell array contains no
objects. This eliminates the potential for empty-object memory errors that sometimes arise.* The
cell-array approach requires a little more work up front, but the result seems to be more robust
compared to the object-array approach. After the first container implementation, the added workload
isn’t a problem because most of the tailored functions can be copied, as is, to other container
implementations.

The implementation example is organized into three sections. The first section focuses on our
standard group-of-eight framework. The second section focuses on a set of tailored functions that
overload the behavior of standard MATLAB built-in functions. The third section focuses on

 

cShape

 

-specific functions. The implementation of any container can be organized along these
divisions.

 

19.2.1 T

 

HE

 

 S

 

TANDARD

 

 F

 

RAMEWORK

 

 

 

AND

 

 

 

THE

 

 G

 

ROUP

 

 

 

OF

 

 E

 

IGHT

 

Even though a container class is quite different from the other class examples, we don’t have to
code everything from scratch. Instead, use Class Wizard to generate the initial set of files and
modify them to suit the needs of the container. The constructor, 

 

ctor_ini

 

, 

 

ctor_1

 

, 

 

display

 

,

 

parent_list

 

, and 

 

struct

 

 won’t need modifications. The remaining group-of-eight functions
— 

 

fieldnames

 

, 

 

get, set, subsref, and subsasgn — will need container-specific changes.
The changes are modest and are relatively easy since the generated code serves as a guide. The
data entered into Class Wizard are provided in Table 19.1 through Table 19.4. The list of function
names in Table 19.3 provides a preview of the tailoring to come. Fields not listed in the tables
should remain set to their default values. The complete Class Wizard mat file and the unmodified

*  Versions 7.1 and earlier are not stable when repmat is used to create an object array with a dimension size equal to
zero. Returning a so-called empty object from a constructor is particularly bad. The fact that a default-constructed container
should be empty makes the repeated-structure approach unreliable in these versions.
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results are included in /chapter_0/as_generated cShapeArray. After entering the data,
generate the class. 

The container itself contains no public member variables, and, as generated by Class Wizard,
the public variable sections inside fieldnames, get, and set are empty. These sections will
not remain empty. Instead, these functions will forward public variable requests to the secondary
objects stored in the container. The Class Wizard cases inside subsref and subsasgn also need
some changes. The initial code assumes the container itself is an array. In reality, the container
class is always scalar. Changes to subsref and subsasgn use the private cell array to make
the container look like an array. The dot-reference case is okay because changes to get and set
determine dot-reference behavior. The array-reference case needs to access and mutate objects
held in the container’s cell array. Only the highlights are included in the following sections. The
fully modified files are included in /chapter_0/@cShapeArray. 

19.2.1.1 Container Modifications to fieldnames

Since the container itself has no public variables, fieldnames.m doesn’t initially contain a list
of public names. This is correct because only the objects held by the container have public variables.
The container needs to return a list of public names, but it doesn’t need an explicit list. Rather than
coding an explicit name list inside the container’s version of fieldnames, we simply forward
the fieldnames request and collect the result. There are two potential targets for the forward:
the class type held in this.mType (see Table 19.2) and the objects held in this.mArray (see
Table 19.2). Choosing the first returns the public members allocated to the parent. These names
are guaranteed to exist for every object in the container. Choosing the latter also includes parent-
class public names, but it might also include public names defined for the children. Choosing the
latter also means that any particular object may or may not contain every public variable listed.
This is not necessarily a problem, but it is something that must be considered when container
functions are implemented.

For cShape and its children, most of the public variables are defined by the parent. In this
situation, using the container class type held in this.mType is a good choice. This choice also

TABLE 19.1
cShapeArray Class Wizard Main Dialog Fields

Field Value

Class Name cShapeArray
Superior To cShape, cStar, cDiamond, double

TABLE 19.2
cShapeArray Private Variable Dialog Fields

Private Variable Name Initial Value Comment

mType ‘cShape’ Container can hold any object that 
passes isa(object, this.mType).

mArray {} Cell array for the container.
mFigHandle [] Figure handle where all contained shapes 

are drawn.
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TABLE 19.3
cShapeArray Public Function Field Values

Function
Name

Input
Argument List

Output
Argument List Comment

draw this, 
FigureHandle

this Calls draw for every object 
in the container. If 
FigureHandle is not passed 
in, draw will manage the use 
or creation of a figure 
window.

end this, k, n num Redefines built-in behavior. 
Returns an index value 
consistent with “end.” If n 
is not equal to 
length(size(this.mObject)), 
some reshaping is done to 
find the correct value.

length this num Redefines built-in behavior. 
Returns the correct length 
based on the number of 
objects in the container.

mat2cell this, varargin Redefines built-in behavior. 
Function is not supported; 
throws an error if called.

mtimes lhs, rhs this Redefines built-in behavior 
for *. Allows multiplication 
between the container and 
arrays of doubles.

times lhs, rhs this Redefines built-in behavior 
for *. Allows multiplication 
between the container and 
arrays of doubles.

ndims this num Redefines built-in behavior. 
Returns the correct ndims 
value based on the shape of 
the container’s mObject cell 
array.
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allows the container to return a list of names even when the container is empty. Add the following
command to the end of the initial version of @cShapeArray/fieldnames.m.

names = [names; fieldnames(feval(this.mType), varargin{:})];

In this command, feval(this.mType) creates a temporary object and varargin{:}
expands input arguments. The complete list of names is created by concatenating the return value
with any names that already exist. To improve run time, the result could be assigned to a persistent
variable. Use the profiler to determine when a persistent is warranted.

19.2.1.2 Container Modifications to subsref

For dot-reference operations, the container needs to forward the operation to the objects held in
the container. The best location for the forward isn’t in subsref but rather in get. Locating the
forward inside get means no changes to subsref’s dot-reference case.

For array-reference operations, the input index value is used to return elements in the
container’s cell array. In the normal situation, the built-in version of subsref and MATLAB’s
assignment operator cooperate to return a subset array with the same type as this. The container’s
array-reference code can’t rely on the same built-in behavior. Instead, the code first constructs an
empty container and then assigns the indexed subset into the new container’s mArray variable.
Modifications to subsref’s array-reference case are shown in Code Listing 109. 

Line 2 instantiates a new container object by calling the constructor. Class(this) returns
the name of the constructor and feval executes it. No arguments are passed with the function
call so the result is an empty container. Line 3 uses index(1) to get the correct subset out of

TABLE 19.3 (CONTINUED)
cShapeArray Public Function Field Values

Function
Name

Input
Argument List

Output
Argument List Comment

num2cell this, varargin container_
cells

Redefines built-in behavior. 
Use this function to access 
the container’s entire cell 
array. Function only supports 
one input argument. If you 
try to pass in a direction, 
the function will throw an 
error.

reset this this Calls reset for every object 
in the container.

size this, varargin varargout Redefines built-in behavior. 
Returns the correct size 
array based on the number of 
objects in the container.

Reshape this, varargin this Redefines built-in behavior. 
Reshapes the object cell 
array.
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TABLE 19.4
cShapeArray Data Dictionary Field Values

Variable Name Type Comment

container_cell cell array of 
objects

Cell array of objects held in 
the container

FigureHandle figure handle Used to pass around a handle-
graphics figure handle

K integer > 0 Specifies which dimension to 
inspect

lhs double, 
container

The left-hand-side value in an 
expression, e.g., lhs * rhs

n integer > 0 Total number of dimensions

num integer >= 0 Used to return integer values 
associated with functions like 
length, end, etc.

rhs double, 
container

The right-hand-side value in an 
expression, e.g., lhs * rhs

this cShapeArray The current or “active” object

varargin cell array Variable-length input argument 
list; see help varargin

varargout cell array Variable-length output argument 
list; see help varargout

Code Listing 109, Modifications to the subsref Array-Reference Case for a Container Class

1 case '()'
2 this_subset = feval(class(this));  % create a new container 

object
3 this_subset.mArray = this.mArray(index(1).subs{:}); % fill 

with subset
4 if length(index) == 1
5 varargout = {this_subset};
6 else
7 % trick subsref into returning more than 1 ans
8 varargout = cell(size(this_subset));
9 [varargout{:}] = subsref(this_subset, index(2:end));
10 end
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the container’s cell array. The subset is assigned into the new container’s cell array. The initial
commands on lines 4–10 are okay. If there is only one level of indexing, line 5 assigns the subset
container object into varargout. If there are more indexing levels, lines 8–9 calls subsref.

19.2.1.3 Container Modifications to subsasgn

Container additions to subsasgn follow a pattern similar to the additions in subsref. Sub-
sasgn’s dot-reference case is okay because container-related modifications to set forward the
operation to container’s objects. Commands in the array-reference case are modified to target
elements of this.mArray. Subsasgn’s modified array-reference case is shown in Code Listing
110. Compared to subsref, there are more lines of code. Input type checking and distributing
input objects into the correctly indexed locations are the primary reasons for this. 

Code Listing 110, Modifications to subsasgn Array-Reference Case for a Container Class

1 case '()'
2 if isempty(this)
3 % due to superiorto, need to look at this and varargin
4 if isa(this, mfilename('class'))
5 this = eval(class(this));
6 else
7 this = eval(class(varargin{1}));
8 end
9 end
10
11 if length(index) == 1
12 if length(varargin) > 1
13 error('Container:UnexpectedInputSize', ...
14 'Only one input is allowed for () assignment.');
15
16 elseif isempty(varargin{1})
17 % empty input, delete elements, use builtin subsasgn
18 this.mArray = subsasgn(this.mArray, index, 

varargin{1});
19
20 elseif strcmp(class(varargin{1}), mfilename('class'))
21 % another container of the same type
22 error('Container:UnsupportedAssignment', ...
23 'Container to container assignment is not supported.');
24  
25 elseif iscell(varargin{1})
26 % a cell array of objects
27 error('Container:UnsupportedAssignment', ...
28 'The assignment of cells into a container is not 

supported.');
29  
30 elseif isa(varargin{1}, this.mType)
31 % an object that can indeed be held by the container
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Lines 2–9 are already okay. Lines 2–9 detect when the input variable this is empty and take
appropriate action. When the execution reaches line 11, this will be a nonempty container object.
When there is only one index level, lines 11–43 assign the input objects. There are several ways
the input objects might be packaged: scalar object, object array, cell array, multiple inputs, and
container. The example implementation supports only one, throwing an error for the others. It isn’t
difficult to add support for the other options. The container also supports [] as an input option.
This allows a client to delete elements in the container using the standard syntax.

Lines 12–14 throw an error if more than one input is detected. Using the functional form of
subsasgn is the only way this error can occur. Array-operator syntax always converts into a call
with only one input. When the functional form is used, any number of inputs may be passed. 

Lines 16–18 support element deletion. When the input is [], the assignment removes elements
from this.mArray. Line 18 passes this.mArray, the indices, and [] into the built-in, cell-
array version of subsasgn. The cell array returned from the built-in call will have fewer elements.
When the cell array is assigned back into this.mArray, the container will contain fewer objects.

Lines 20–23 detect the assignment of one container into another and throw an error. In a fully
functional container class, this form of assignment should not throw an error unless a size mismatch
or some other error is detected. Logically, the elements of varargin{1}.mArray need to
replace the elements of this.mArray(index(1).subs{:}). Element types don’t need to
be checked because the containers are the same type. Of course, the number of elements in the
input container must be compatible with the number of indexed elements. If a mismatch is detected,
subsasgn is typically expected to throw an error.

32 % might have a length > 1
33 set_val = num2cell(varargin{1});
34 this.mArray = subsasgn(this.mArray, index, set_val);
35 is_empty = cellfun('isempty', this.mArray);
36 if any(is_empty)
37 this.mArray(is_empty) = {feval(this.mType)};
38 end
39
40 else
41 % any other condition is an error
42 error('Container:UnsupportedAssignment', ...
43 ['Container cannot hold objects of type ' 

class(varargin{1})]);
44 end
45  
46 else
47 this_subset = feval(class(this));  % create a new 

container object
48 this_subset.mArray = this.mArray(index(1).subs{:}); % 

fill with subset
49 this_subset = ...
50 subsasgn(this_subset, index(2:end), varargin{:});  % 

assign input
51 this.mArray(index(1).subs{:}) = this_subset.mArray; % put 

subset back
52 end
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Lines 25–28 detect the assignment of a cell array into the container and throw an error. In a
fully functional container class, this form of assignment would also be supported. In this case, the
elements in varargin{1}{:} are assigned into this.mArray(index(1).subs{:}).
Unlike container-to-container assignment, the type of every element in varargin{1}{:} would
need to be checked against this.mType. Unfortunately, cellfun coupled with ‘isclass’
performs the wrong check (see help cellfun). The input cell array size must also be compatible
with the number of indices.

Lines 30–38 allow the indexed assignment of a scalar object or an object array. Line 30 checks
the input object’s type to make sure it was derived from this.mType. After that, assigning the
object should be straightforward but there are two complicating conditions. The first condition
occurs with a nonscalar input object. Line 33 converts the object array into a cell array of objects,
and line 34 uses the built-in version of subsasgn to complete the assignment. The second
complication occurs when the assignment indices increase the size of this.mArray. We have
to be careful, or we might end up with a container that contains empty cells. This is not necessarily
a problem, but if allowed, it complicates the other member functions. There is nothing to prevent
line 34 from adding empty cells. Lines 35–38 detect the empty cells and replace them with default
objects. This behavior is consistent with normal array expansion. Line 35 uses cellfun to locate
empty cells, and line 37 assigns a default object into each empty index. 

Lines 40–44 catch all other input conditions and throw an error. The error message indicates
the type that caused the error. In general, this is a good idea because cogent error messages help
make debugging easier. 

When more than one level of indexing is required, lines 46–51 perform the assignment. In this
case, the input value doesn’t end up in this.mArray as an object, but rather, the input value is
assigned into an object that already exists in this.mArray. There are three steps involved. In
the first step, lines 47-48 create a new container and populate it with a subset of the objects in the
container. The objects in the subset are selected based on the indices in index(1). In the second
step, lines 49–50 call subsasgn to mutate the subset container according to the indices remaining
in index. In the third step, line 51 uses index(1) to assign the now-mutated subset back into
its original location.

19.2.1.4 Container Modifications to get

Dot-reference access is get’s domain. Two sections in the standard version of get need container-
specific additions. Both the public variable section and the concealed variable section need to
forward the dot-reference operation to objects in this.mArray. For the public forward, the
desired public variable name is formatted as a substruct. For the concealed forward, the variable
name is formatted as a string. Container-specific versions of both sections are shown in Code
Listing 111. These are the only sections that need to be modified. 

Code Listing 111, Modifications to the Public and Concealed Variable Sections of get.m 
for a Container Class

1 % public-member-variable section 
2 found = true;  % otherwise-case will flip to false
3 switch index(1).subs
4 otherwise
5 found = false;  % look in each object
6 for k = 1:numel(this.mArray)
7 try
8 varargout{k} = get(this.mArray{k}, index, varargin{:});
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9 do_sub_indexing = false; % object must sub-index
10 found = true;
11 catch
12 err = lasterror;
13 switch err.identifier
14 case 'MATLAB:nonExistentField'
15 varargout{k} = [];
16 otherwise
17 rethrow(err);
18 end
19 end
20 end
21 end
22
23 % concealed member variables, not strictly public
24 if ~found && called_by_name
25 found = true;
26 switch index(1).subs
27 case 'mDisplayFunc' % class-wizard reserved field
28 if isempty(this)
29 varargout = {};
30 else
31 varargout = {this.mDisplayFunc};
32 end
33 otherwise
34 found = false;  % look in each object
35 for k = 1:numel(this.mArray)
36 try
37 varargout{k} = get(this.mArray{k}, index(1).subs, 

varargin{:});
38 do_sub_indexing = false; % object must sub-index
39 found = true;
40 catch
41 err = lasterror;
42 switch err.identifier
43 case 'MATLAB:nonExistentField'
44 varargout{k} = [];
45 otherwise
46 rethrow(err);
47 end
48 end
49 end
50 end
51 end
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Instead of throwing an error, the otherwise cases in both the public and concealed variable
sections loop over the objects in this.mArray, calling get for each object. Before entering the
loop, found is set to false (lines 5 and 34). The first command in each loop is a try-catch
statement. The first command in each try block forwards the get call to an object (lines 8 and
36). Either get will return a value, which is inserted in varargout, or get will throw an error.
If get is successful, line 8 or line 38 informs the container that no further subindexing is required.
This will always be correct for Class Wizard objects because get for every object includes
subindexing code. Finally, line 9 or line 39 informs the container that a value was found.

If the object’s get throws an error, we immediately jump to the catch block (line 11 or 40).
There we apply standard error-processing using lasterror. If the error identifier is ‘MATLAB:non-
ExistentField’, it means the object couldn’t locate a field consistent with the index. For this
case, line 15 or line 44 inserts empty as the return value from the object. Assigning empty delays the
evaluation of found. We will wait until every object is queried to make that determination. If no
objects return a value, found will be assigned false, but if even one object returns a value, found
will be assigned true. This logic may sound odd, but it covers the situation of a child defining
additional public variables. In your container implementations, you may choose to handle this differ-
ently. If every object throws an error, line 10 or 39 will never execute, all varargout cells will be
empty, and found will be false. If even one object returns a value, line 10 or 39 assign found a
value of true and at least one varargout cell will contain an assigned value 

The way found and varargout are managed means that not all objects in the container
need an identical set of public or concealed variables. If any object in the container returns a value,
found will be set to true and the corresponding cell in varargout will contain that value.
Objects that throw an error contain empty in their corresponding varargout cell. This behavior
makes the container a little more flexible, but it also allows inconsistent behavior. For example, if
the container holds even one cStar object, shapes.Title will successfully return a value. On
the other hand, if the container does not hold a cStar object, trying to access shapes.Title
will cause an error. If inconsistent behavior is a problem, the collection of accessible names should
be limited to the names returned from fieldnames. 

Examine the forward calls on lines 8 and 37. The entire index is used in the public section,
but only index(1).subs is used in the concealed section. Prior to lines 8 and 37, the passed-
in index is converted into a substruct index; see §8.2.2. After the conversion,
called_by_name has a value that either allows or prevents access to concealed variables. If
concealed access is allowed, we can be assured that the substruct index will have only one
level of type ‘.’. Line 37 pulls the variable name out of index and passes the string. By passing
the string, the object’s get will allow access to its concealed variables. Passing the substruct
index would not allow concealed access.

19.2.1.5 Container Modifications to set

Dot-reference mutation is set’s domain. Like get, the same two sections in set need container-
specific additions. The only difference between the modified public and concealed variable
sections is the format of index. The public section uses a substruct, while the concealed
section uses a string. Since the additions are so similar, only the public variable section is shown in
Code Listing 112. The fully modified function can be found in the chapter_19/@cShape-
Array directory.

Code Listing 112, Modifications to the Public Section of set.m for a Container Class

1 % public-member-variable section 
2 found = true;  % otherwise-case will flip to false
3 switch index(1).subs
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Instead of throwing an error, the otherwise case beginning on line 4 loops over the objects
in this.mArray, calling set for each object. Before entering the loop, line 5 assigns found
equal to false. Inside the loop, lines 7–11 format the input assignment value. Line 8 supports
the assignment of the same input value into the public variable of every object. Line 10 supports
an array of input values by matching the input index with the container index. The try-catch
statement in lines 13–24 performs the assignment. Inside try, the set on line 14 attempts to
mutate a public variable. The object will either accept the value or throw an error. If the indexed
object accepts the value, line 15 assigns found equal to true. If the indexed object throws an
error, line 17 uses lasterror to assign the error structure to err. The switch statement in lines
18–23 identifies the error and takes appropriate action. If the error is ‘MATLAB:nonExistent-
Field’, no further action is required. All other errors are rethrown.

The same inconsistency described for get also occurs for set. Correcting inconsistent behav-
ior in one requires the same correction for the other. Of course, fixing the inconsistency also means
limiting the set of returned public variables to those held in common by all objects in the container.
Generally, that means the public variables allocated to the parent.

19.2.2 TAILORING BUILT-IN BEHAVIOR

Container-specific modifications to group-of-eight files now allow objects to be added to the
container. Group-of-eight modifications also provide control over each object’s public member
variables. We can’t get full control over the objects in the container until we tailor the behavior of
several built-in functions. Most of these functions have something to do with the number of objects
in the container. For example, the built-in version of size will return a value consistent with the
container object itself, but that value isn’t related to the number of objects held in the container.

4 otherwise
5 found = false;  % look in each object
6 for k = 1:numel(this.mArray)
7 if length(varargin) == 1
8 set_val = varargin{1};
9 else
10 set_val = varargin{k};
11 end
12
13 try
14 this.mArray{k} = set(this.mArray{k}, index, set_val);
15 found = true;
16 catch
17 err = lasterror;
18 switch err.identifier
19 case 'MATLAB:nonExistentField'
20 % NOP
21 otherwise
22 rethrow(err);
23 end
24 end
25 end
26 end
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Fortunately, MATLAB’s object-oriented features allow us to overload and tailor the behavior for
built-in functions. Here we look at end, length, ndims, reshape, and size. 

19.2.2.1 Container-Tailored end

In §19.1, the following use of end was highlighted:

shape_array(end+1) = cStar;

The built-in behavior of end is not appropriate because it returns the wrong value. The inputs to
end are the object this, the dimension of interest k, and the total number of dimensions n. Values
for n and k are determined based on the total number of dimensions used in the index and the
particular dimension where end is used. For example, shape_array(end) would assign n=1
and k=1, while shape_array(5, end, 3, 1) would assign n=4 and k=2. The input
argument behavior drives the implementation in Code Listing 113. 

Obtaining the value is tricky because indexing operations do not always include values for
every dimension. Line 2 gets the size of this.mArray. Line 3 uses this size to calculate a
different-sized array based on n dimensions. The leading elements in n_size are copies of the
number of elements in the 1:n-1 dimensions of this.mArray. The last value in n_size
represents the number of elements in the remaining dimensions. Line 4 selects the kth element
from the new n_size array.

19.2.2.2 Container-Tailored cat, horzcat, vertcat

Concatenation is a convenient alternative to inserting objects element by element. Three functions
are used for concatenation: cat, horzcat, and vertcat. Horzcat and vertcat are par-
ticularly important because they have corresponding operator syntax. For example, [container,
star] is converted into a call to horzcat and [container; star] is converted into a call
to vertcat. The cat function has no corresponding operator, but it is the most general because
it will concatenate along any dimension.

Given an implementation for cat, the implementation of horzcat.m consists of the one-
line command

this = cat(2, varargin{:});

Similarly, vertcat.m consists of the one-line command

this = cat(1, varargin{:});

All three are important because cat contains the general-purpose concatenation commands, while
horzcat and vertcat conveniently map to operator syntax. All three must be overloaded
because built-in versions of horzcat and vertcat will not call an overloaded version of cat.
The implementation for cat is provided in Code Listing 114. 

Line 2 instantiates an empty container that will be used as the destination for the concatenated
result. Line 3 preallocates a cell array that will eventually hold the full set of objects. Lines 5–8
call the subfunction expand_input to form an equivalent cell array of objects for every input

Code Listing 113, Overloading end.m to Support Container Indexing

1 function num = end(this, k, n)
2 array_size = size(this.mArray);
3 n_size = [array_size(1:n-1) prod(array_size(n:end))];
4 num = n_size(k);
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in varargin. Line 10 calls the built-in version of cat using list expansion for the expanded
cells. The concatenated result is assigned into this.mArray and passed back to the caller.

Code Listing 114, Overloading cat.m to Support Container Operations

1 function this = cat(dir, varargin)
2 this = feval(mfilename('class'));  % new empty container is 

destination
3 object_varargin = cell(size(varargin));  % object cells will 

go in here
4
5 for idx = 1:numel(varargin)
6 object_varargin{idx} = ...
7 expand_input(varargin{idx}, mfilename('class'), 

this.mType);
8 end
9
10 this.mArray = cat(dir, object_varargin{:});
11  
12 % --------------------------------------
13 function out_cell = expand_input(in_val, container_type, 

allowed_type)
14 if isa(in_val, container_type) % container object
15 out_cell = in_val.mArray;  % mArray is a cell array
16
17 elseif isa(in_val, allowed_type) % object array
18 out_cell = num2cell(in_val);
19
20 elseif isa(in_val, 'cell')  % cell array of objects
21 out_cell = cell(size(in_val));
22 for idx = 1:numel(in_val)
23 out_cell{idx} = ...
24 expand_input(in_val{idx}, container_type, 

allowed_type);
25 end
26 if any(cellfun('length', out_cell(:)) > 1)
27 error('Container:UnsupportedAssignment', ...
28 'The input arguments are too complicated to easily 

expand.');
29 end
30 out_cell = reshape(cat(1, out_cell{:}), size(in_val));
31 else
32 error('Container:UnsupportedAssignment', ...
33 'Container cat for specified inputs is not supported.');
34 end    

C911X_C019.fm  Page 292  Friday, March 2, 2007  9:42 AM



Composition and a Simple Container Class 293

The subfunction expand_input configures the input arguments so that the cat command
in line 10 produces the desired result. Three input types can be expanded: a container object (lines
14–15), an array of objects with a type compatible with the container (lines 17–18), and a cell
array of objects (lines 20–30). For a container, line 15 returns the private cell array, in_val.mAr-
ray. For a compatible object array, line 18 converts the array into a cell array of objects and returns
the result. Processing for a cell array is more complicated because each element in the cell array
can be a container, an object array, or another cell array. Lines 22–25 loop over the cells, making
a recursive call to expand_input. The expanded results are collected in elements of out_cell.
Some input configurations are too complex to expand in this way, and lines 26–29 throw an error
when the input is too complicated. Finally, line 30 concatenates the expanded inputs and reshapes
the result so that the output size is compatible with the input size. Expanding the inputs in this
way yields a container version of cat that can accept a wide range of inputs. 

19.2.2.3 Container-Tailored length, ndims, reshape, and size

Even with all of these changes in place, a few functions in the group of eight return unexpected
results. For example, regardless of how many objects are stored in the container, struct currently
returns a scalar structure. This behavior might be struct’s problem but it isn’t struct’s fault.
The mismatch occurs because struct calls length(this(:)) and the built-in version of
length doesn’t know about this.mArray. Currently, any function that relies on length will
receive the wrong value. The same can be said for ndims, reshape, and size.

Putting struct back on the right track requires a tailored version of length. The code is
very simple: instead of returning length(this),  the tailored version returns
length(this.mArray). The new function is shown in Code Listing 115. 

For similar reasons, we also need to provide tailored versions of ndims, reshape, and size.
Ndims and reshape are one-liners. The one-line command inside ndims is

num = ndims(this.mArray);

The online command inside reshape is

this.mArray = reshape(this.mArray, varargin{:});

A similar pattern is used to implement size. The difference with size is that more than one
output might be required. Multiple outputs may be collected in the usual way. Use nargout to
preallocate an empty cell array and assign the empty array into varargout. When size is called
for this.mArray, the correct number of outputs will be returned. All of this requires two lines
instead of one. The two-line implementation for size is

varargout = cell(1, max(1,nargout));

[varargout{:}] = size(this.mArray, varargin{:});

After length, ndims, reshape, and size are added to the class directory, the container
looks very much like an array. With a few more additions, the array-like public interface will be
complete.

Code Listing 115, Overloading length.m to Support Container Indexing

1 function num = length(this)
2 num = length(this.mArray);
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19.2.3 CSHAPEARRAY AND NUMEL

The function numel should be in the same category as length, size, reshape, and ndims;
however, numel requires a separate section because it exhibits some unexpected behavior. The
tailored version of numel doesn’t always seem to be called at the right time. We can implement
numel and demonstrate what happens. Implementing the tailored version follows easily from the
previous section. The one-line command inside numel.m is

num = numel(this.mArray, varargin{:});

First, create a cShapeArray container with two shapes in it. This can be done using the
following commands:

>> shape_array = [cShapeArray cStar cDiamond];

Next, look at the result of dot-reference access once with and once without a container-specific
version numel .  On the disk, the class that includes numel  can be found in
chapter_19/with_numel. If you are following along, when you change between directories,
be sure to clear classes and recreate the container. The result with numel is

>> shape_array.LineWeight

ans =

normal

ans =

normal

and the result without numel is

>> shape_array.LineWeight

ans = 

 ‘normal’ ‘normal’

Differences are subtle, but the result with numel included is correct. You should expect two answers
because the length of shape_array is two. Somewhere behind the scenes, MATLAB finds
the correct value of nargout by calling numel. When the container class includes numel,
subsref and get receive the appropriate value for nargout. When the container class does
not include numel, the built-in version supplies the wrong value to nargout. Code inside get
is trying to correct the mismatch by concatenating the LineWeight strings in a single cell array.
If that was the end of the story, it would be easy to say, “Let’s overload numel.” If that was the
end of the story, I wouldn’t be putting you through all of this. Before we make a firm decision on
numel, let’s look at an example of dot-reference mutation.

Include a container-specific version of numel and see what happens for the following com-
mand:

>> [shape_array.LineWeight] = deal(‘bold’);

??? Insufficient number of outputs from function on right hand 
side of equal sign to satisfy overloaded assignment.

We can shed some light on the cause of the error by putting breakpoints at the beginning of the
built-in version of deal.m and at the beginning of the container versions of both numel.m and
subsasgn.m. Execute the same command, and the first break occurs inside deal. Checking the
value of nargout returns 1. The value of nargout is incorrect even though our container
carefully overloads size, length, ndims, and numel. Continue, and the next break occurs
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inside numel. Here MATLAB is trying to figure out how many elements are required by the left-
hand side, and it calls numel to find out. As a result, the left-hand side reports that it needs two
inputs but MATLAB has already determined that the right-hand side has only one to offer. The
mismatch results in an error. We never even reached the breakpoint inside subsasgn. Try the
same thing with a structure array, and nargout inside deal returns the correct value.

A slightly different syntax produces the desired result with no error. The modified command is

>> [shape_array(:).LineWeight] = deal(‘bold’);

Here, the execution never hits the break point in numel. Instead, subsasgn performs the
assignment. Unfortunately, the problem still exists; it is just hiding in the modified syntax. 

The first hint that the problem still exists comes from the fact that the container’s version of
numel is never called. Knowing this, we can make the error reoccur by trying to assign two
LineWeight values into the two elements of shape_array, for example:

[shape_array(:).LineWeight] = deal(‘bold’, ‘normal’);

??? Error using ==> deal

The number of outputs should match the number of inputs.

This command throws an error because the value of nargout inside deal is still one. In deal,
one output is not compatible with two inputs so the result is an error. In one case, the error appears
to be occurring because deal is called before numel. In the other case, the overloaded version
of numel isn’t called at all. 

The result when the container version of numel is not included is different but still not
satisfying. In the no-numel situation, both versions of the single-input deal work, for example:

>> [shape_array.LineWeight] = deal(‘bold’);

>> [shape_array(:).LineWeight] = deal(‘bold’);

Both commands assign ‘bold’ to all objects in shape_array. While this represents a small
improvement in consistency, trying to deal more than one value still generates an error. Even so,
a small improvement is better than no improvement. For this reason, the test drive uses a cSha-
peArray implementation that does not redefine the behavior of numel. 

In reality, a container class with no numel function is a poor compromise. Now any command
that relies on numel will receive one instead of the correct number of elements. To make matters
worse, numel(shape_array) and length(shape_array(:)) return different values. Two
commands that are supposed to return the same value but don’t can lead to subtle, difficult-to-find
errors in client code. I think this behavior is an error that can only be corrected by changing MATLAB.
In a container, the problem is masked due to support for vector syntax. The loops encapsulated inside
the container use numel(this.mArray), which always returns the correct value.

19.2.3.1 Container-Tailored num2cell and mat2cell

Array-reference access through subsref always returns a container. This is true even when the
container contains only one object. Having the object versus a container with only one object
usually doesn’t matter because it is hard to tell the difference. The reason it is hard to tell is due
to the container’s ability to mimic the interface of the objects it holds. Occasionally we need to
get an object out of its container. Tailoring num2cell for this task is a logical extension of its
normal behavior. Normally, num2cell converts an array into a cell array. Thus, with some limits,
it is perfectly natural to expect num2cell to convert a container into a cell array.

Some options available through num2cell aren’t supported for this container. That does not mean
they can’t be supported. For example, a second input argument is supposed to organize the output by
row or column. We can’t use concatenation to do this, but we could return a cell array of containers,
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one for each row or column. Adding this ability isn’t difficult, but it isn’t vital to this introduction.
Specifying more than one input for this container’s version of num2cell will throw an error. For the
same reasons, the container’s version of mat2cell will always throw an error. 

The code for num2cell is provided in Code Listing 116. Lines 3–4 throw an error when
nargin is greater than one, and line 6 returns this.mArray as the converted output. Individual
objects can then be accessed by indexing the returned cell array. The code for mat2cell includes
an error call very similar to the code in lines 3–4. 

19.2.4 CONTAINER FUNCTIONS THAT ARE SPECIFIC TO CSHAPE OBJECTS

With the basics out of the way, we can focus our attention on the functions that give shape objects
their unique behavior. Changing the size, drawing the shapes, and resetting the figure are all
important operations valid for cShape objects. We need to extend the same set of operations to
cShapeArray containers. As with the other container functions, these member functions must
make the container appear to be an array of shapes. As you would expect, the container’s versions
index over the objects in this.mArray{:} in the same way the original functions index into
this(:).

19.2.4.1 cShapeArray times and mtimes

Multiplication of a shape object with a double changes the shape’s size. Multiplication of a
cShapeArray container with a double changes the size of every shape in the container.
MATLAB uses two operators for multiplication. Array multiplication, times.m, uses an operator
syntax given by x.*y. Matrix multiplication, mtimes.m, uses an operator syntax given by x*y.
The only multiplication function overloaded by cShape is mtimes. For cShapeArray objects,
both mtimes and times are overloaded.

To be effective, cShapeArray’s version of times must closely match the expected, built-
in behavior. When one input is a scalar, every object in the container must be multiplied by the
scalar input. When the same input is an array of doubles, the behavior must be element-by-
element multiplication. The code for times is provided in Code Listing 117. 

Code Listing 116, Overloading num2cell to Support Raw Output from a Container

1 function container_cells = num2cell(this, varargin)
2 if nargin > 1
3 error('Container:UnsupportedFunction', ...
4 'num2cell for a container only supports one input');
5 else
6 container_cells = this.mArray;
7 end

Code Listing 117, Overloading times.m for the cShape Container

1 function this = times(lhs, rhs)
2 % one input must be cShape type, which one
3 if isa(lhs, 'cShapeArray')
4 this = lhs;
5 scale = rhs;
6 else
7 this = rhs;
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The container is superior to double and that means the container can be passed into times
as the left-hand or right-hand argument. Lines 3–9 assign the container to this and the other
input to scale. Lines 11–14 restrict scale to real numeric values. Lines 16–17 expand a scalar
value into an array the same size as this.mArray. Now every element in this.mArray can
be multiplied by a corresponding element of scale. If the input is an array, lines 19–22 throw an
error if the size of scale and the size of this.mArray don’t match along every dimension.
Finally, lines 25–27 loop over all objects in the container to calculate the result. The result is stored
back into this.mArray.

In general, it is probably not possible to define matrix multiplication between objects in a
container and an array because the operation depends on both multiplication and addition. For
some containers it will work, and for others it will not. It is possible to define matrix multiplication
between a cShape container and a scalar. With a scalar, array multiplication and matrix multipli-
cation are the same. The implementation for mtimes reuses Code Listing 117 by replacing lines
19–22 with the following lines:

else

 error(‘Container:InvalidInput’, ...

 sprintf(‘%s\n’, ‘??? Error using ==> mtimes’, ...

 ‘Matrix multiplication of container and array is not 
allowed.’));

As implemented, container multiplication introduces a subtle difference between a container
with one object and the object. Container multiplication does not support the use of different vertical
and horizontal scale factors. There are several ways to code around this difference, but since every
container is different, no single solution will work in all situations. Rather than complicate the
example, we will simply allow this difference to exist.

8 scale = lhs;
9 end
10
11 if ~isnumeric(scale) || ~isreal(scale)
12 error('Container:InvalidInput', ...
13 'Multiplicand must be a real numeric value');
14 end
15
16 if length(scale) == 1
17 scale = scale * ones(size(this.mArray));
18
19 elseif any(size(scale) ~= size(this.mArray))
20 error('Container:InvalidInput', ...
21 sprintf('%s\n', '??? Error using ==> times', ...
22 'Dimensions are not correct.'));
23 end
24
25 for index = 1:numel(this.mArray)
26 this.mArray{index} = this.mArray{index} * scale(index);
27 end
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19.2.4.2 cShapeArray draw

The container’s version of draw uses commands from both cShape’s version of draw and the
cell-array draw example we discussed in §13.1.3. The commands from cShape’s version manage
the figure handle, and commands from the cell-array example call draw for every object in
this.mArray. Like the cell-array example, all shapes in one container are drawn in the same
figure. The function is shown in Code Listing 118. 

Code Listing 118, Overloading draw.m for the cShape Container

1 function this = draw(this, FigureHandle)
2 if nargout ~= 1
3 warning('draw must be called using: obj = draw(obj). Nothing 

drawn.');
4 elseif ~isempty(this.mArray)
5 if nargin < 2
6 FigureHandle = [];
7 end
8
9 shape_handles = [get(this(:), 'mFigureHandle')];
10 if iscell(shape_handles)
11 shape_handles = cell2mat(shape_handles);
12 end
13 handle_array = unique([FigureHandle shape_handles(:)']);
14 if numel(handle_array) > 1 % mismatched
15 for k = fliplr(find([handle_array ~= FigureHandle]))
16 try
17 delete(handle_array(k));  % close figures
18 end
19 handle_array(k) = [];
20 end
21 end
22
23 if isempty(handle_array)
24 handle_array = figure;  % create new figure
25 end
26 figure(handle_array);
27
28 if nargin < 2  % assume if handle passed in, clf already 

called
29 clf;   % clear the figure
30 end
31  
32 hold on;  % all shapes drawn in the same figure
33 for k = 1:numel(this.mArray)
34 this.mArray{k} = draw(this.mArray{k}, handle_array);
35 end
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Lines 2–3 enforce the use of mutator syntax by warning the user to include a return argument.
When nargout equals one, the execution skips to line 4. If the container is empty, there are no
shapes to draw. The execution skips to the end and returns. If this.mArray has elements, line
5 begins the process of drawing them. Lines 5–7 ensure that the FigureHandle variable exists.
Line 9 collects figure handles from all objects in the container, and lines 10–12 reformat the array
just in case the get in line 9 returned cells. Line 13 keeps only the unique figure handles. If
FigureHandle contained a value, that value can now be found in handle_array(1). Lines
14–21 check for more than one figure handle and close the extras. When the execution reaches line
23, if handle_array is empty, line 24 creates a new figure.

Line 26 selects handle_array as the current figure. If a figure handle was passed into draw,
lines 28–30 do nothing. Otherwise, line 24 clears the figure. Finally, lines 32–36 loop over all the
objects in the array, calling draw for each.

19.2.4.3 cShapeArray reset

Like draw, the container’s version of reset needs to loop over all objects in the array, calling
reset for each. After the shapes are reset, the figure window can be closed. The implementation
is shown in Code Listing 119. 

Lines 2–4 loop over all objects in the container, calling reset for each. Lines 5–7 then close
the figure window by calling delete. Calling delete more than once with the same figure handle
throws an error. The try-catch statement in lines 5–7 allows the error to occur with no
consequences. Error handling for the command on line 6 requires no corresponding catch. Finally,
line 8 assigns empty to the container’s figure handle.

19.3 TEST DRIVE

From the outside, a cShapeArray container should look almost exactly like an array of cShape
objects. The difference, of course, is that the container can hold objects with type cShape, cStar,
and cDiamond, while an array of cShape objects can hold only objects of type cShape. This
is a significant difference achieved through changes to functions in the standard group of eight, the
redefinition of several built-in functions, and the redefinition of shape-dependent functions. All of
these member functions work together to create an interface that mimics the simplicity of an array.
The commands in Code Listing 120 demonstrate the implementation. 

36 hold off;
37 end

Code Listing 119, Overloading reset.m for the cShape Container

1 function this = reset(this)
2 for k = 1:numel(this.mArray)
3 this.mArray{k} = reset(this.mArray{k});
4 end
5 try
6 delete(this.mFigHandle)
7 end
8 this.mFigHandle = [];
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Code Listing 120, Chapter 19 Test Drive Command Listing: cShape Container

1 >> cd '/oop_guide/chapter_19'
2 >> set(0, 'FormatSpacing', 'compact')
3 >> clear classes; fclose all; close all force;
4 >> 
5 >> shapes = cShapeArray
6 shapes = 
7 cShapeArray object: 0-by-0
8 with public member variables:
9 Size
10 ColorRgb
11 Points
12 LineWeight
13 >>
14 >> star = cStar;
15 >> star.LineWeight = 'bold';
16 >> star = 0.5 * star;
17 >>
18 >> diamond = cDiamond;
19 >> diamond = [2 3] * diamond;
20 >> diamond = cDiamond;
21 >> diamond = [1.5 2] * diamond;
22 >>
23 >> shapes(1) = star;
24 >> shapes(3) = diamond;
25 >> shape_cell = num2cell(shapes)
26 shape_cell = 
27 [1x1 cStar]    [1x1 cShape]    [1x1 cDiamond]
28 >> shapes = [shapes cStar cDiamond];
29 >> shapes(2) = [];
30 >> size(shape)
31 ans =
32 1     4
33 >> shapes = reshape(shapes, 2, []);
34 >>
35 >> shapes(1,1).ColorRgb = [1;0;0];
36 >> shapes(1,2).ColorRgb = [0;1;0];
37 >> shapes(2,1).ColorRgb = [0;0;1];
38 >> shapes(2,2).ColorRgb = [1;0;1];
39 >> shapes(1,2).LineWeight = 'bold'
40 >> shapes.ColorRgb
41 ans =
42 1     0     0     1
43 0     0     1     
44 0     1     0     1
45 >>
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Line 5 creates an empty cShapeArray container. Omitting the trailing semicolon produces
the output that follows on lines 6–12. The output is a result of the container-specific version of
display in concert with a host other member functions. The list of functions includes the
constructor, ctor_ini, parent_list, display, fieldnames, get, length, and size.
Even more important, 0-by-0 displayed on line 7 confirms that the default container contains the
correct number of objects. 

Lines 14–21 create a few shape objects with specifically assigned values. Lines 23–33 add,
remove, and reshape container elements. Line 23 inserts star into index 1, and line 24 inserts
diamond into index 3. During the command on line 24, subsasgn inserted a default cShape
object into index 2. Calling num2cell and displaying the result (lines 25–27) confirm our
expectations for object types. Line 28 uses operator notation for horzcat to add a default cStar
object and a default cDiamond object to end of the container. The empty assignment in line 29
removes the default cShape object from the container. The container now contains two cStar
objects and two cDiamond objects. Calling size (line 30) confirms that the container now holds
four objects. Line 33 uses reshape to changes the size from 1 × 4 to 2 × 2. So far, the container
acts like an array.

Lines 35–39 mutate member variables in place, and line 40 displays the RGB color values
from every object in the container. Notice that the color output isn’t exactly right. Instead of four
separate answers, we see an array with four columns, the result of a nargout mismatch. Line 46
demonstrates times, and line 47 draws the shapes. The resulting figure window is shown in Figure
19.1. The shapes are the right line colors, and both stars are bold. The sizes are also consistent
with scale values set using the times operator. Finally, line 48 resets the shapes and closes the
figure window.

There are many other commands we could try, but the commands in Code Listing 120 provide
us with a lot of confidence that the container really does act like an array. As long as we can put
up with inconsistent behavior from numel, we can use containers to simplify the syntax for a
hierarchy. Without containers, we are forced to store different object types in a cell array, and cell

46 >> shapes = [1 1; 0.75 1] .* shapes;
47 >> shapes = draw(shapes);
48 >> shapes = reset(shapes);

FIGURE 19.1 Shapes in a container drawn together.
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array syntax isn’t very convenient. This is particularly true for vector operations, where cellfun
is as good as it gets.

19.4 SUMMARY

In many object-oriented languages, objects and containers go hand in hand. Yet, with regard to
MATLAB, containers have been totally ignored. Nobody is talking about containers, and outside
of the implementation in this chapter, I know of no other. I hope that this chapter will change that
situation and initiate a dialog that will improve the implementation. As containers go, the container
implemented in this chapter isn’t perfect; however, it does achieve most of the necessary function-
ality. There is little doubt that over time the basic implementation in this chapter will be improved
upon.

The container implementation is an excellent example of the power of object-oriented program-
ming and an example of the flexibility provided by the group-of-eight framework. The container
gives us a way to collect objects derived from the same parent into something that acts very much
like a normal array of objects. With the container, a user doesn’t need to remember which objects
use array syntax and which use cell-array syntax. The ability to encapsulate container code behind
an interface also makes it easier to use different objects in a hierarchy. This is a huge selling
point because nobody will use MATLAB objects unless they are easy to use. Consistency in the
group-of-eight interface makes classes easier to implement and containers make hierarchies more
approachable.

19.5 INDEPENDENT INVESTIGATIONS

1. Add code to subsasgn that will allow a cell array of objects to be passed in and
assigned to objects in the container. The operator syntax for the assignment might look
something like

shapes([1 2]) = {cStar cDiamond};

2. Add code to subsasgn that will allow another container of the same type to be passed
in. The operator syntax for the assignment might look like the last line in the following:

 your_shapes = cShapeArray;

 shapes = cShapeArray;

your_shapes(1:3) = [cStar cStar cStar];

 shapes([2 4]) = your_shapes(1:2);

At first glance, you might think that your_shapes(1:2) is an array; but the way we
implemented subsref, your_shapes(1:2) is another cShapeArray container.

3. Modify times or mtimes to support different scale values for the vertical and hori-
zontal size elements.
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20

 

Static Member Data and 
Singleton Objects

 

Quite often, a class needs to manage data that must be shared among all objects of the class. Every
object of the class needs full and immediate access to this classwide data. When one object changes
a value, this change must be immediately available to every object in the class. In other languages,
such classwide data are often called 

 

static

 

. So-called 

 

static member variables

 

 can’t be stored with
an object’s private structure because objects maintain separate copies of their private data. Using

 

global

 

 data is a possibility, but that has its own set of limitations. Under the right conditions, a

 

persistent

 

 variable is perfectly suited for this application. In this chapter, we implement a
static member variable strategy that uses a 

 

persistent

 

 variable. The implementation creates a
standard location and an interface that fit nicely into the group-of-eight framework. The example
implementation also includes a way to 

 

save

 

 and 

 

load

 

 static variables along with the private
variables. Objects with this kind of 

 

load

 

 and 

 

save

 

 capability are often called 

 

persistent

 

 

 

objects

 

.
With the introduction of static variables, we can now define a class using only static variables.
Objects of an all static variable class are called 

 

singleton objects

 

 because all objects of the class
share a single copy of their variables.

 

20.1 ADDING STATIC DATA TO OUR FRAMEWORK

 

Most object-oriented languages support a way to declare and manage data that are shared among
all objects of a class. Classwide shared data represent a new data category that isn’t local, nested*,
global, or private. In C++, the 

 

static

 

 keyword is used to declare shared member variables and the
term 

 

static member variable

 

 is widely recognized. MATLAB includes no organic support for static
member variables, but that hasn’t stopped us yet. Once we have a plan, adding support for static
member variables is actually easy. We can take advantage of encapsulation to implement a static
member interface that fits reasonably well with the group of eight. The basic implementation in
this chapter hits all the highlights but probably leaves room for improvement.

Here’s an outline of the plan. First, we will create a private member function named 

 

static.m

 

that contains 

 

persistent

 

 storage for static variables and provides a simple interface for accessing
and mutating values. Since all objects of the class use the same functions, any persistent variable
in a member function is automatically shared by all objects of the class. Second, we will add static
variable initialization commands to the constructor. These commands will assign initial values and
initialize the 

 

persistent

 

 variables in 

 

static.m

 

. Third, we will give 

 

get

 

 and 

 

set

 

 a way to
access and mutate static variables. Finally, we will include 

 

load

 

 and 

 

save

 

 functionality. Before
we start the implementation, we need to discuss a few issues.

Since 

 

static.m

 

 is a private function, static member variables have private visibility. Thus,
static variables are not automatically included in the collection of public variables, and clients have
no direct access to them. If we wanted to be verbose, we could call them 

 

static private member
variables

 

. When I use the term 

 

static variable

 

, I really mean static private member variable. Like
normal private variables, only member functions have direct access to static variables. Also like
normal private variables, clients can be given indirect access through 

 

subsref

 

, 

 

subsasgn

 

, 

 

get

 

,
and 

 

set

 

. Again being verbose, we could refer to this indirect access as a 

 

static public member

 

*  See 

 

Nested Functions

 

 in the MATLAB documentation or help browser.
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variable

 

. Like normal public variables, static public variables can be implemented using direct-
link or non-direct-link techniques. The only important difference between normal private variables
and static variables is where the data are stored.

With no precedent, we are free to define the interface to 

 

static.m

 

 in any way we choose.
The fact that clients can’t call 

 

static.m

 

 allows us to be cavalier with respect to data checking.
Encapsulation restricts the visibility and reduces the chance that 

 

static.m

 

 will be abused. We
can always add error-checking code if the simple interface proves to be inadequate. The imple-
mentation for 

 

static

 

 is shown in Code Listing 121. 

With one input argument and one output argument (line 1), the interface is extremely simple.
Static variables are stored in the 

 

persistent

 

 structure declared in line 2. Lines 3–7 implement
the interface. If 

 

static

 

 is called with one input, line 4 copies the input into the 

 

persistent
static_var

 

 variable. If this seems too dangerous, add code that compares fields in the input
structure to fields in the 

 

persistent

 

 structure. If 

 

static

 

 is called with no inputs, line 6 simply
copies the static variable structure into the output variable. This interface forces a mutator to call
static 

 

twice

 

: once to get the structure of static variables, and again to assign the modified values.

 

20.1.1 H

 

OOKING

 

 S

 

TATIC

 

 D

 

ATA

 

 

 

INTO

 

 

 

THE

 

 G

 

ROUP

 

 

 

OF

 

 E

 

IGHT

 

Now that the static variable interface is specified, we can modify the group-of-eight functions to
take advantage of them. Before we can hook static data into the group of eight, we first need some
classwide data. In our shape hierarchy, no existing variable would benefit from being made static.
Thus, we need to invent a reason to use a static variable. Suppose we are interested in logging the
way our clients use a particular function. For example, every time a client sets the line width, we
want to log unique 

 

width

 

 values and count how many times each value is used. This information
might be useful for interface design or run-time optimization. We could add a 

 

persistent

 

variable in the helper function, but how would we access its value after the run? A static variable
is a much better choice. We could also use a 

 

global

 

 variable and accept the risk of a name clash.
Again, a static variable is a better choice. In fact, anytime you are tempted to add a 

 

persistent

 

or 

 

global

 

 variable to a member function, you should always think about using a static member
variable instead.

Modularity in the group of eight reduces the effort involved in adding static member variables.
Static private member variable support requires only one group-of-eight change. The constructor
helper needs to initialize the static variable structure and pass the structure into 

 

static.m

 

. Static
public member variable support requires changes to 

 

get

 

 and 

 

set

 

. Since static variables are not
stored in 

 

this

 

, cases associated with static variables need to access the static variable structure.
Finally, if we want the developer view option to display both private and static variables, a small
addition to the 

 

developer_view

 

 subfunction is necessary. Saving and loading objects with static
data involve two new overloads: 

 

saveobj

 

 and 

 

loadobj

 

.

 

Code Listing 121, Private static.m Used to Store and Manage Classwide Private Data

 

1 function static_this = static(static_this)
2 persistent static_var
3 if nargin == 1
4 static_var = static_this; % mutator
5 else
6 static_this = static_var; % accessor
7 end
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20.1.1.1 Static Variables and the Constructor

 

Like any private variable, the new static variable, 

 

mLineWidthCounter

 

, must be declared and
initialized during construction. Instead of adding 

 

mLineWidthCounter

 

 to the structure for

 

this

 

, the new private variable is added to a structure and passed into 

 

static

 

. Inside 

 

static

 

,
the input structure is stored as a 

 

persistent

 

 variable, making it available to all objects of the
class. The default module for private variable initialization is 

 

/private/ctor_ini

 

. Static
variable additions to 

 

/@cLineStyle/private/ctor_ini are shown in Code Listing 122.
If the static variable list includes one or more names, Class Wizard will generate these additions. 

Line 2 calls static.m to check its status. If the return is empty, it is okay for the helper to
assign initial values. Lines 3–5 create the initial structure of static variables, assign initial values,
and pass the structure into static.m for safekeeping. If the return value in line 2 is not empty,
static variables already exist and the helper should not overwrite the existing values with default
values.

20.1.1.2 Static Variables in get and set

Like all private variables, static variables are only visible inside the class. Clients don’t have access
to static values unless they are included in the public interface. In the Class Wizard dialogs, there
is no difference between a normal public variable and a static public variable. In the Public
Variables … dialog, fields for both Accessor Expression and Mutator Expression
will accept the name of a static private member variable. When group-of-eight files are generated,
get and set cases for direct-link static variables are slightly different from the nonstatic cases.
The get and set cases for non-direct-link public variables don’t change because helper functions
are required. After generating the class, the static variable is available through direct-access code
placed inside get or set. Direct-access static variable code is a little different from the direct-
access code for nonstatic variables. The direct-link case inside get is shown in Code Listing
123. The corresponding direct-link case inside set is shown in Code Listing 124. 

Code Listing 122, Additional ctor_ini.m Commands for Static Variable Initialization 

1 % initialize and assign static data
2 if isempty(static)
3 static_this = struct([]);
4 static_this(1).mLineWidthCounter = [];
5 static(static_this); % stores static_this as persistent
6 end

Code Listing 123, Direct-Access get case for mLineWidthCounter

1 case 'LineWidthCounter'
2 if isempty(this)
3 varargout = {};
4 else
5 static_this = static;
6 varargout = repmat({static_this.mLineWidthCounter}, 

length(this(:)));
7  end
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Lines 1–4 are identical to those used for any public or concealed variable. On line 1, the case
statement uses public name, and line 3 returns nothing when the object is empty. Line 5 is new,
and line 6 has been modified. Line 5 retrieves the entire structure of static variables with a single
call to static. Line 6 gets the appropriate value and repeats the value to match the number of
objects in the object array. There is only one copy of the static variables, but there may be more
than one object in the array. Line 6 also assigns the repeated value into varargout.

The important differences between a normal set and a static set occur in lines 2 and 15,
where static data are read and written. Lines 2 and 15 are the beginning and end of a read-modify-
write cycle, and lines 3–14 perform the modification. Line 2 retrieves the entire structure of static
variables with a single call to static. Lines 3–14 execute the standard direct-link set commands
with one substitution: static_this is used instead of this. Finally, line 15 passes the modified
value of static_this back to static.

20.1.1.3 Static Variables in display

The developer view option in display is a very convenient tool, particularly during development
and debugging. With a couple of additions to the developer_view subfunction, static variables
will be included in the developer view output. These additions are shown in Code Listing 125.

Code Listing 124, Direct-Access set case for mLineWidthCounter

1 case 'LineWidthCounter'
2 static_this = static;  % read
3 if length(index) > 1
4 if length(this(:)) == 1
5 static_this.mLineWidthCounter = ...
6 subsasgn(static_this.mLineWidthCounter, ...
7 index(2:end), varargin{end}); % modify
8 else
9 [err_id, err_msg] = array_reference_error(index(2). 

type);
10 error(err_id, err_msg);
11 end
12 else
13 [static_this.mLineWidthCounter] = varargin{end};
14 end
15 static(static_this);  % write

Code Listing 125, Static Variable Additions to developer_view

1 function developer_view(this, display_name)
2 disp('---- Public Member Variables ----');
3 full_display(struct(this), display_name);
4 disp('.... Private Member Variables ....');
5 full_display(this, display_name, true);
6
7 try
8 static_this = static;
9 catch
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The additional commands are found in lines 7–15. Lines 7–11 assign the structure of static
variables into static_this. If the call to static on line 8 fails, line 10 assigns empty. If
static_this is empty, there are no static variables to display. Otherwise, lines 12–15 display
the static variables using a call to full_display.

20.1.2 OVERLOADING LOADOBJ AND SAVEOBJ

We haven’t talked much about load and save (see Chapter 2), because up to this point they
worked fine without our intervention. We now have a situation where private data are stored outside
of the object’s private structure. If we want to save and load static data, the standard behaviors
for save and load are no longer adequate. Normally, if we want to change the behavior of a
built-in function, we simply include a tailored version of the function in the class directory. In this
case we can’t overload save and load, but we can overload saveobj and loadobj.

We can think of saveobj and loadobj as helper functions for save and load. During a
save, MATLAB calls saveobj; and during a load, MATLAB calls loadobj. By overloading
saveobj and loadobj, we get an opportunity to modify values in the object’s structure on its
way to and from a mat file. There are many potential uses for this behavior. In this example,
saveobj will copy static variables into the private structure and loadobj will extract static
variables from the private structure and pass them into static. To make all of this work, we need
three things: an element in the private structure where static data can be temporarily stored, a
tailored version of saveobj that will copy static data into the private structure, and a tailored
version of loadobj that will copy data from the private structure back into static.

Whenever static data are defined for a class, the class structure will include an element named
mTempStatic. In ctor_ini, the mTempStatic variable is initially assigned an empty value.
Tailored versions of saveobj and loadobj can now use mTempStatic during save and
load calls. The tailored version of saveobj is included in Code Listing 126, and the tailored
version of loadobj is included in Code Listing 127. 

10 static_this = [];
11 end
12 if ~isempty(static_this)
13 disp('.... Private, Static Member Variables ....');
14 full_display(static_this, display_name, true);
15 end

Code Listing 126, Tailored saveobj That Includes Static Data

1 function this = saveobj(this)
2 if ~isempty(this)
3 this(end).mTempStatic = static;
4 end

Code Listing 127, Tailored loadobj That Includes Static Data

1 function this = loadobj(this)
2 if ~isempty(this) && ~isempty(this(end).mTempStatic)
3 static(this(end).mTempStatic);
4 [this.mTempStatic] = deal([]);
5 end
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Line 3 calls static and assigns the static variable structure into mTempStatic of the last
object in the object array. As long as loadobj uses the same object, it doesn’t matter which object
holds the static data. Line 2 prevents us from copying static data into an empty object array.

Commands in loadobj simply reverse the process used by saveobj. Line 2 includes the
same check for an empty object array, but it also includes another isempty check. The second
check prevents loadobj from overwriting the static variable structure with empty. If this
contains objects and mTempStatic isn’t empty, line 3 passes the contents of mTempStatic
into static and line 4 empties the contents of every mTempStatic element in this.

20.1.3 COUNTING ASSIGNMENTS

Static data are now integrated into the framework. Member functions can read and write static
variables, public variables can be linked to static variables, and static variables can be saved and
loaded. All we need now is a link between mLineWidth and mLineWidthCounter. We will
add that link to the mutator section of @cLineStyle/private/LineWidth_helper.m.
Only the modifications are shown in Code Listing 128. 

The commands use the standard static variable read-modify-write cycle. Line 1 reads, lines
2–9 modify, and line 10 writes. Regardless of the code’s ultimate purpose, mutating static values
should always follow this cycle. The modify part of the cycle is usually the most involved, and
lines 2–9 are no exception. Line 2 loops over all linewidth values passed in through varargin.
The first time a particular width value is found, line 4 increases the length of the counter array and
sets the count for this new width to 1. Lines 6–7 increment the count for elements that already
exist. In the test drive, we will see what happens.

20.2 SINGLETON OBJECTS

With normal private member variables, every object gets its own, exclusive copy. Assigning a
private value in one object does not affect the private member variables in another. With static
variables, the situation is different. Assigning a value to a static variable in one object affects all
objects of that type. Equally important is the fact that static values are maintained even when there
are no objects of the class active in memory. Even if every object goes out of scope, static values
remain in the persistent variable inside static.m. Instantiate a new object, and it immedi-
ately has access to the previously stored static values.

A class may include any combination of private and static variables. Objects that store all their
data in static variables are called singleton objects because all objects of the class share a single

Code Listing 128, A Modification to LineWidth_helper That Counts LineWidth 
Assignments

1 static_this = static;
2 for width = [varargin{:}]
3 if length(static_this.mLineWidthCounter) < width
4 static_this.mLineWidthCounter(width) = 1;
5 else
6 static_this.mLineWidthCounter(width) = ...
7 1 + static_this.mLineWidthCounter(width);
8 end
9 end
10 static(static_this);
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copy of their variables. One potential use for singleton objects involves the creation of something
we can loosely call a name space. For our purposes, a name space is simply a named collection
of variables. For example, variables declared using the global keyword are stored in the global
name space. Global variables can be brought into any local workspace with the global command.
Variables stored in a singleton object represent a different name space. Singleton object variables
can be brought into any local workspace with a call to the constructor. In our framework, construc-
tion is cheap, so there is no serious penalty in constructing an object simply to gain access to its
static values.

 Compared to global variables, singleton objects have some significant advantages. Like it or
not, all modules that use the same name space are coupled. This means that all modules that declare
global variables are coupled. Often the coupling goes unnoticed; however, the risk of a name
clash and unpredictable behavior is always present. Singleton objects give us a way to reduce
coupling by splitting variables in the global name space into smaller, more manageable groups.
Another advantage for singleton objects is their interface. The global name space has no controlling
interface, while access into a singleton object is fully controlled by the group of eight. This gives
singleton objects the same public-versus-private protections enforced for any object.

20.3 TEST DRIVE

Adding static variables to cLineStyle should not affect previously existing behavior. The first
few commands in the test drive are used to verify that the additional features do no harm. The
outputs from these commands are not shown because they are identical to the outputs already
shown in Chapter 18.* The test drive for this chapter focuses on the new behavior. The new
commands along with their outputs are shown in Code Listing 129. 

*  If you want to see the outputs, the files for this chapter include a script that will generate them. Navigate into the
chapter_20 directory and execute the command test_drive_18.

Code Listing 129, Chapter 20 Test Drive Command Listing: Static Members

1 >> cd '/oop_guide/chapter_20'
2 >> set(0, 'FormatSpacing', 'compact')
3 >> clear classes; fclose all; close all force;
4 >> do_chapter_18 = false;   % change to true to repeat 

Chapter 18 commands
5 >> if do_chapter_18; test_drive_18; end;
6 >> clear classes; fclose all; close all force;
7 >>
8 >> style = cLineStyle;
9 >> style = set(style, 'mDisplayFunc', 'developer_view')
10 ---- Public Member Variables ----
11 style.Color = [0  0  1]';
12 style.LineWidth = [1];
13 style.LineHandle = [];
14 style.LineWidthCounter = [];
15 .... Private Member Variables ....
16 style.mDisplayFunc = 'developer_view';
17 style.mTempStatic = [];
18 style.mColorHsv = [0.66667           1           1]';
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The commands on lines 5–6 construct a cLineStyle object and force a developer view
version of the display. Line 11 displays the new public variable, LineWidthCounter, and lines
18–19 display the new static variable, mLineWidthCounter.* These variables are empty because
we haven’t yet changed a line width. Line 21 assigns a LineWidth value of seven, and line 22
shows the updated count. LineWidthCounter now contains seven elements, and the value at
index (7) is one. These values will remain available until either a cLineStyle object changes

19 style.mLineWidth = [1];
20 style.mLineHandle = [];
21 .... Private, Static Member Variables ....
22 style.mLineWidthCounter = [];
23 >>
24 >> style.LineWidth = 7;
25 >> style.LineWidthCounter
26 ans =
27 0     0     0     0     0     0     1
28 >>
29 >> clear style;
30 >>
31 >> star = cStar;
32 >> star = draw(star);
33 >> star.LineWeight = 'bold';
34 >> star = reset(star);
35 >> clear star;
36 >>
37 >> style = cLineStyle;
38 >> style.LineWidthCounter
39 ans =
40 1     0     1     0     0     0     1
41 >> 
42 >> save style style
43 >> clear classes; fclose all; close all force;
44 >> load style
45 >> style.LineWidthCounter
46 ans =
47 1     0     1     0     0     0     1
48 >>
49 >> shape = cShape;
50 >> save shape shape
51 >> clear classes; fclose all; close all force;
52 >> load shape
53 >> style = cLineStyle;
54 >> style.LineWidthCounter
55 ans =
56 1

*  The Class Wizard version of display.m includes additional code that allows ‘developer_view’ to display static
private variables.
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them or a clear all command deletes them. Deleting the only instance of cLineStyle (line
26) doesn’t affect them. The next few commands demonstrate this.

Lines 28–32 construct a default cStar object, draw it, set the weight of the line to ‘bold’,
close the figure, and remove star from the workspace. During all this activity, the constructor in
line 28 uses LineWidth to initialize the width to 1 and the LineWeight assignment in line 30
calls LineWidth with a ‘bold’ value of 3. These calls should have changed the count values
in cLineStyle’s static variables.

To confirm this, line 34 constructs a new cLineStyle object and lines 35–37 display the
values in LineWidthCounter. Index (1) logged the constructor’s call, index (3) logged
LineWeight’s call, and index (7) didn’t change. The count values are exactly what we expect.
Even more important, the static variable code appears to be working correctly.

Lines 39–44 confirm the operation of saveobj and loadobj. Line 39 saves the variable
style in a file named style.mat. During save, MATLAB calls saveobj, where we copy
the static variables into private variable reserved for that purpose. Line 40 clears the workspace,
and line 41 loads style back into the workspace. During the load, MATLAB calls loadobj,
where we restore the persistent variable in static.m back to its previous value. Lines 42–44
confirm that the static values were indeed restored.

Lines 46–53 demonstrate a load and save problem when objects are used in composition.
A cShape object uses a cLineStyle object in its private structure so that line 46 constructs
both a cShape object and a cLineStyle object. Line 47 saves the cShape object. Save should
follow the organization of the hierarchy by calling saveobj on every object. Unfortunately,
@cLineStyle/saveobj.m is never called.* As a result, static values aren’t copied into the
object’s private structure. The static variables never had a chance. 

In contrast, the load command appears to be correctly implemented. During the load on
line 49, MATLAB correctly calls @cLineStyle/loadobj.m, but by that time, it is too late to
recover. Since save failed to schedule a call to saveobj, the value stored in this.mTemp-
Static is empty. The output on line 56 displays the LineWidth change that occurred during
cShape construction. We really expected to see the same vector that was previously displayed on
line 47. This behavior is broken and needs to be fixed.

20.4 SUMMARY

At first, static member variables might seem like an unnecessary luxury; however, if industrial-
strength classes are the goal, static member variables are a necessity. Their ready availability in
other object-oriented languages encourages many object-oriented designers to include them in a
design. There are many object-oriented designs that use static variables to good effect, and lack of
support for static variables is a liability. Without the techniques in this chapter, implementing a
design with static variables involves global variables and all the headaches associated with them.
The techniques in this chapter represent a much better alternative.

Static variables also address issues related to software quality. Static variables and singleton
objects can be used to reduce the module-to-module coupling that often occurs when global
variables are used. Each singleton-object class loosely represents a unique name space separate
from global. The object-oriented interface makes these name spaces safer to use. Subject to
certain limits, it is also easier to save and load the values stored in a singleton object. Finally,
with the developer view format enabled, it is certainly easier to display their values.

It is also encouraging to notice how easily we added static variables to the framework. The
modular organization inherent in the group of eight and the functional-block arrangement in get
and set are proving to be very extensible. From the earliest chapters, we have been taking
advantage of that organization. The chapters that follow extend the organization even further.

*  MATLAB Version 7.1.0.246 (R14) Service Pack 3.
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20.5 INDEPENDENT INVESTIGATIONS

1. Use cLineStyle as a parent class and determine if the parent’s version of saveobj
is called when the child is saved. This will tell you whether the save process is broken
for inheritance in general or only for composition and secondary objects.

2. Make mFigureHandle a static variable of cShape and draw all shapes derived from
cShape in the same window.
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21

 

Pass-by-Reference Emulation

 

You are probably aware that MATLAB always passes function arguments by value. In a structured
design, pass-by-value works well. In an object-oriented design, strict adherence to pass-by-value
is at best inconvenient, and at worst it compromises the quality of a design. MATLAB doesn’t
support pointers; however, under certain conditions, a trio of commands gives a good approximation
to pass-by-reference. The three commands are 

 

inputname

 

, 

 

evalin

 

, and 

 

assignin

 

. These
commands are not limited to object-oriented programming, and the discussion in this chapter will
help sort out some of the general pitfalls of using them both inside and outside an object-oriented
implementation. 

 

21.1 ASSIGNMENT WITHOUT EQUAL

 

In attempting to achieve pass-by-reference behavior, we are not entering entirely uncharted waters.
MATLAB’s handle-graphics interface apparently uses pass-by-reference. You can see this by look-
ing at the handle-graphics set command. The syntax is defined as

 

set(H, ‘PropertyName’, PropertyValue, ...)

 

where 

 

H

 

 is a handle to a graphic object. Obviously, 

 

set

 

 is a mutator; however, there is no equal
sign and no left-hand side. The value returned by set does not need to be assigned because 

 

H

 

 is
assigned in place using pass-by-reference. Other graphics’ functions also use pass-by-reference.
The list includes, among others, 

 

plot

 

, 

 

grid

 

, 

 

title

 

, 

 

xlabel

 

, and 

 

ylabel

 

. If pass-by-reference
is good for handle graphics, perhaps it is also good for object-oriented programming.

The biggest difference between handle graphics and our group-of-eight MATLAB objects is
the use of 

 

subsref

 

 and 

 

subsasgn

 

 vs. 

 

get

 

 and 

 

set

 

. With handle graphics, 

 

get

 

 and 

 

set

 

 must
be used because the type of a graphics handle is 

 

double

 

. Dot-reference operators won’t work for
handles. By comparison, MATLAB objects can, and usually should, make an object look like a
structure by tailoring the operation of 

 

subsref

 

 and 

 

subsasgn

 

. Such tailoring allows clients to
use objects as a more powerful type of structure. Except under special conditions, such tailoring
also forces us to discourage clients from using 

 

get

 

 and 

 

set

 

 on objects.
For two reasons, investigating pass-by-reference isn’t necessarily a gee-whiz, look-what-I-can-

do exercise. The first reason is practical. There are some situations where the required behavior
simply can’t be implemented without it. These situations are rare, but when they occur, it is good
to know how to deal with them. The second is a concession to interface designs and to clients
converting to MATLAB from a language where references are ubiquitous. In particular, developers
converting from C++ are comfortable with pass-by-reference syntax and often complain about
MATLAB’s exclusive use of pass-by-value. These developers don’t care that pass-by-value syntax
helps isolate accessors from mutators because they are already accustomed to the small ambiguity
arising from pass-by-reference. Some programmers make fewer coding errors when the interface
uses pass-by-reference emulation. If it weren’t for the fact that these developers often contribute
to the object-oriented design, we could easily dismiss their whining. The potential for errors must
be balanced with the overhead inherent in the emulation.

On the other hand, many MATLAB developers are more comfortable using standard pass-by-
value syntax. They typically like the fact that the standard syntax reinforces the purpose of a
particular command. More importantly, MATLAB programmers are not accustomed to input
arguments that mysteriously change during the course of a function call. In a MATLAB-centric
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environment, pass-by-reference syntax can reduce code quality and interfere with debugging. If
you press me, I recommend that you use pass-by-reference very sparingly. Even so, if you decide
to include pass-by-reference syntax, it’s important to have a good strategy. In the examples that
follow, we will implement one possible strategy.

Currently all functions in the shape hierarchy use standard pass-by-value syntax. Consequently,
all mutators must return a copy of the modified object, and a user must assign the returned object
to a variable. This works well whenever it is obvious that a function is a mutator. For some functions,
it is difficult to decide at a glance whether the function is a mutator. In the shape hierarchy, 

 

draw

 

is a mutator but this fact is easy to forget. Calling 

 

draw

 

 modifies 

 

mFigureHandle

 

, but 

 

mFig-
ureHandle

 

 is an internal implementation detail. Clients should be shielded from internal details,
and pass-by-reference is another tool that can be used to help enforce the separation between public
and private.

The current implementation of 

 

draw

 

 includes the following test:

 

if nargout ~= 1

warning(‘draw must be called using: obj = draw(obj)’);

else

...

 

Since all side effects from 

 

draw

 

 are private, a client might reasonably expect to call 

 

draw

 

 without
assigning the return value. In the current implementation that would result in an error. The client
doesn’t get the desired result, but at least the error message tells what to do. With pass-by-reference
emulation, 

 

draw

 

 might still perform a 

 

nargout

 

 test; however, the result of the test would no
longer throw an error. Instead, pass-by-reference emulation would be used to modify the input
object in place. The change would be immediately reflected in the client’s workspace. In the
examples that follow, we will modify 

 

draw

 

 by allowing it to be called as a mutator or with pass-
by-reference syntax.

Like member functions, public member variables can include pass-by-reference capability. This
allows dot-reference operations with accessor syntax to include hidden side effects. These side
effects require pass-by-reference assignment of the input object. We will demonstrate this behavior
by modifying a class in the 

 

cShape

 

 hierarchy. Rather than change the operation of an existing
public variable, we will invent a new public variable called 

 

View

 

. When 

 

View

 

 is 

 

true

 

, the object
will display itself using developer view format; and when 

 

View

 

 is 

 

false

 

, normal display format
will be used. To demonstrate the pass-by-reference operation, anytime 

 

View

 

 is accessed, the
accessor will change the value stored in 

 

developer_view

 

. With standard pass-by-value, this
change would be lost; however, with pass-by-reference, changes to the object are preserved. 

 

21.2 PASS-BY-REFERENCE FUNCTIONS

 

The three commands used to implement pass-by-reference emulation are 

 

inputname

 

, 

 

assignin

 

,
and

 

 evalin

 

. These standard MATLAB functions are described as follows:

•

 

inputname(argument_number)

 

: This function looks in the caller’s workspace and
returns the name of the variable associated with the input argument at position

 

argument_number

 

. Thus, we can find the name of the object in the caller’s workspace
by calling 

 

inputname

 

 for 

 

this

 

.
•

 

assignin(‘caller’, ‘name’, value)

 

: This function assigns a value to a
variable in the caller’s workspace. To do this, you have to know the name of the variable
in the caller’s workspace. The name can be inferred from a standard naming convention,
or the name can be obtained using 

 

inputname

 

.
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•

 

evalin(‘caller’, ‘expression’)

 

: This function evaluates an expression in
the caller’s workspace. Almost any expression can be evaluated. 

 

Evalin

 

 allows a
function to gather a lot of information about the caller and the caller’s workspace.

 The biggest limitation in pass-by-reference emulation occurs when 

 

inputname

 

 returns an
empty string. This happens when the input is not a pure variable but rather the result of an operation.
Among others, some common syntax examples that results in an empty 

 

inputname

 

 are 

 

x(1)

 

,

 

x+y

 

, 

 

s.val

 

, and 

 

varargin{:}

 

. Anytime our code uses 

 

inputname

 

, we must remember to
check for an empty string and take the appropriate course of action. In most cases of pass-by-
reference emulation, the correct action is an error.

 

21.3 PASS-BY-REFERENCE DRAW

 

Currently 

 

draw

 

 throws an error when 

 

nargout is zero. By adding inputname and assignin,
we can still assign the mutated object even when nargout is zero. Additions to the beginning
and end of draw are provided in Code Listing 130. All tailored versions of draw must include
these additions. 

The same as before, line 3 checks the number of output arguments. If nargout is one, line
4 sets the variable do_assignin to false. Draw does not need to assign the object in place
because the caller is correctly using pass-by-value syntax. If there is no output argument, lines
6–10 initialize the pass-by-reference variables. Line 6 sets do_assignin to true because now
we want draw to assign the object before it exits. Line 7 tries to get the name of the object in the
caller’s workspace. If inputname returns an empty string, lines 8–10 throw an error.

The comment in line 13 is a placeholder for the body of code normally included in draw. We
have listed those commands before and don’t need to list them again. At the end of draw, if
do_assignin is true, line 16 performs the pass-by-reference assignment. The value of
callers_this is the name of the object in the caller’s workspace found on line 7.

Code Listing 130, An Approximation to Call-by-Reference Behavior

1 function this = draw(this, figure_handle)
2
3 if nargout == 1
4 do_assignin = false;
5 else
6 do_assignin = true;
7 callers_this = inputname(1);
8 if isempty(callers_this)
9 error('must be called using mutator or call-by-reference 

syntax')
10 end
11 end
12
13 % The guts of draw goes here
14
15 if do_assignin
16 assignin('caller', callers_this, this);
17 end
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Draw now supports mixed use of either call-by-value or call-by-reference syntax. The normal
call-by-value syntax doesn’t change. It still looks like the following:

shape = draw(shape);

The new call-by-reference syntax omits the assignment. Call by reference syntax looks like the
following:

draw(shape);

Supporting both methods is not a requirement, but it is usually the right thing to do.

21.4 PASS-BY-REFERENCE MEMBER VARIABLE: VIEW

If one member function can benefit from pass-by-reference behavior, maybe others can benefit too.
Functions outside the group of eight can use the same technique demonstrated for draw. Functions
included in the group of eight follow a different approach. For these functions, do_assignin
isn’t assigned based on nargout, but rather it is passed from a helper function into get or set.
The helper function must be the controlling source because MATLAB already uses syntax to decide
whether to call subsref or subsasgn.

The other wrinkle in pass-by-reference emulation involves the number of function calls typically
found between a client’s use of operator syntax and the helper. For example, dot-reference syntax
is converted into a call to subsref, which calls get, which potentially calls a parent version of
get, which finally calls the helper. If the helper needs to specify pass-by-reference operation, that
request must travel all the way back into subsref. The helper-function interface described in
Chapter 16 gives the helper a way to kick off the process. The intervening functions must now
accept the arguments and make the correct assignments.

As always, anchoring the example to some particular requirement makes the discussion easier
to follow. As previously described, we will create a new public member named View. When View
is true, the object displays using developer view format; and when View is false, the normal
display format is used. Like all public variables, the logical value of View may be assigned using
a dot-reference operator, by calling subsasgn, or by calling set.

Unlike other public variables, we are going to add pass-by-reference behavior to View and do
something that makes pass-by-reference relatively easy to observe. In this example, except for the
fact that it demonstrates pass-by-reference mechanics, the behavior is pointless. When View is
accessed, the helper will appear to use the ~ operator to reverse value of a private logical variable.
The helper returns this new value, the modified object, and do_assignin with a value of true.
Ultimately, the modified object is assigned into the client’s workspace. The assignment relies on
pass-by-reference code inserted into get and subsref by Class Wizard.

21.4.1 HELPERS, GET, AND SUBSREF WITH PASS-BY-REFERENCE BEHAVIOR

The helper initiates pass-by-reference by mutating the object and passing back a true value in
do_assignin. Inside get, the do_assignin value triggers pass-by-reference commands
similar to those added to draw. There are a few differences because get is usually an intermediate
function. That is, get is usually called indirectly through subsref, not directly by the client. In
this situation, the proper assignment of do_assignin uses assignin. This is where code
organization in the group of eight proves its worth. The block organization in get and subsref
makes it easier to support a general method for call-by-reference emulation. The following example
code demonstrates the general implementation.
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21.4.1.1 Pass-by-Reference Behavior in the Helper

Earlier versions of cShape did not include a public variable named View. The example files in
this chapter’s directory include View as an addition. From previous experience, we know we can
add a new public variable without introducing unexpected side effects. In the Class Wizard Public
Variables … dialog, add a new public variable named View and enter %helper in both the
Accessor Expression and Mutator Expression fields. No further changes are required
because the value of View relies on private variables that already exist. Save the change and rebuild
the files. Class Wizard writes an initial version of View_helper.m into /@cShape/private/.
The initial version must always be tailored to match the desired behavior. The tailored version is
shown in Code Listing 131. 

Code Listing 131, Enabling a Helper with Call-by-Reference Behavior

1 function [do_sub_indexing, do_assignin, this, varargout] = 
...

2 View_helper(which, this, index, varargin)
3
4 switch which
5 case 'get'  % ACCESSOR
6 % input: index contains any additional indexing as a 

substruct
7 % input: varargin empty for accessor
8 do_sub_indexing = true;  % tells get.m whether to index 

deeper
9 do_assignin = true;  % !!! call-by-reference behavior
10 varargout = cell(1, nargout-3); % 3 known vars plus 

varargout
11  
12 % before the toggle [] means standard, load after-toggle 

values 
13 developer_sieve = cellfun('isempty', 

{this.mDisplayFunc});
14 % toggle the display function, remember false means standard
15 [this(developer_sieve).mDisplayFunc] = 

deal('developer_view');
16 [this(~developer_sieve).mDisplayFunc] = deal([]);
17  
18 % fill varargout with the "requested" data
19 varargout = num2cell(developer_sieve);
20  
21  case 'set'  % MUTATOR
22 % input: index contains any additional indexing as a 

substruct
23 % input: varargin contains values to be assigned into 

the object
24 do_sub_indexing = false;  % mutator _must_ do deep indexing
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First, let’s tackle ‘get’, the accessor. On line 8, accepting the value of true allows code
that already exists in get to handle any additional indices. On line 9, the value returned via
do_assignin controls pass-by-reference emulation. Here, the normal return value of false
has been changed to true. When get receives this true value, it will trigger a series of pass-
by-reference commands. Next, the helper implements the desired behavior. 

Line 10 preallocates varargout. Lines 13–19 use vector syntax to both toggle the value and
fill varargout. Vector syntax is always preferred because it is more efficient when this is
nonscalar. The value associated with the public variable View is determined by the value of the
private variable mDisplayFunc. Line 13 uses cellfun and ‘isempty’ to determine the
logical View values returned through varargout. Lines 15–16 toggle the view state by assigning
‘developer_view’ into the empty elements and empty into the others. This is where the
mutation occurs. In an ordinary accessor, this change would never make it back to the client;
however, the value returned due to change on line 9 means that this accessor is no ordinary accessor.
Line 19 assigns the public View values into varargout.

Mutator code is conventional. Lines 24–26 accept the code provided by Class Wizard. In each
object, View is scalar, so lines 28–30 throw an error if indexing deeper than the first dot-reference
level is detected. Nonscalar public variables often require a block of code to handle deeper indexing
levels. Line 32 converts the input cell array into a logical array, and lines 34–35 use the logical
array to assign either ‘developer_view’ or empty into the proper elements.

21.4.1.2 Pass-by-Reference Code in get.m

Commands in get are organized into blocks that represent public variables, concealed variables,
and parent slice and forward. Variables in each block are also classified as either direct-link or non-
direct-link. Direct-link variables associate one-to-one with private member variables, while non-
direct-link variables use a helper function. The distinction is important because pass-by-reference
behavior can only be initiated by a helper. Since direct-link variables don’t use a helper, they cannot
initiate pass-by-reference behavior. This is not a serious limitation because any direct-link variable
can be easily converted into a non-direct-link variable. There are no side effects, and Class Wizard
automatically generates most of the non-direct-link code.

25 do_assignin = false;  % leave false until you read book 
section 3

26 varargout = {}; % 'set' returns nothing in varargout
27  
28 if ~isempty(index)
29 error('Deeper levels of indexing is not supported');
30 end
31 % true in varargin means developer view
32 developer_sieve = logical([varargin{:}]); 
33 % set the display function
34 [this(developer_sieve).mDisplayFunc] = 

deal('developer_view');
35 [this(~developer_sieve).mDisplayFunc] = deal([]);
36  
37 otherwise
38 error('OOP:unsupportedOption', ['Unknown helper option: ' 

which]);
39 end

C911X_C021.fm  Page 318  Friday, March 2, 2007  10:07 AM



Pass-by-Reference Emulation 319

Inside get, each non-direct-link case includes a properly configured call to a helper function.
Values returned by the helper function may trigger pass-by-reference behavior. The primary pass-
by-reference code block can be found in chapter_0/@cShape/get.m beginning on line 175.
The pass-by-reference block has been copied into Code Listing 132. 

The test in line 175 guards entry into block. Pass-by-reference commands execute only when
do_assignin is true. The first pass-by-reference command, line 176, uses the inputname
command to obtain the client’s name for the object. If inputname(1) returns an empty string,
pass-by-reference assignment cannot be completed and lines 178–180 issue a warning. The con-
ditions that lead to an empty inputname value were discussed in §21.3. If inputname(1) is
not empty, lines 182–186 use the now familiar assignin command. As in draw, line 182 uses
assignin to assign the modified object in the caller’s workspace. Different from draw are the
additional commands found in lines 183–186. These additional lines indirectly forward
do_assignin to every caller except struct.m. Line 183 uses evalin to get the name of the
calling module. Line 184 uses strmatch to check for the string ‘struct’, and line 185 performs
the indirect assignment of do_assignin.

When a child class forwards get to a parent, the object is sliced and only the parent part is
passed. When a pass-by-reference operation is required, the parent’s get uses Code Listing 132
to assign both the mutated parent and do_assignin. The child must detect a change to its own
do_assignin variable and reattach the mutated parent. The parent forward block is shown in
Code Listing 133; only lines 151–154 are new. 

Code Listing 132, Pass-by-Reference Code Block in get.m

175 if do_assignin == true
176 var_name = inputname(1);
177 if isempty(var_name)
178 warning('OOP:invalidInputname', ...
179 ['No assignment: pass-by-reference can only be used ' ...
180 'on non-indexed objects']);
181 else
182 assignin('caller', var_name, this);
183 caller = evalin('caller', 'mfilename');
184 if isempty(strmatch(caller, {'struct'}))
185 assignin('caller', 'do_assignin', true);
186 end
187 end
188 end

Code Listing 133, Pass-by-Reference Parent Forward Assignment Commands

116 % parent forwarding block
117 if ~found
118  
119 if called_by_name
120 forward_index = index(1).subs;
121 else
122 forward_index = index;
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Line 117 guards entry into the parent forward block so that line 151 is skipped if the variable
has already been found. If the execution reaches line 151 and do_assignin is true, it means
the parent forward operation returned a mutated parent. Lines 152–153 assign the parent slice back
into the child. The true value that remains in do_assignin allows the commands in Code
Listing 132 to complete the task of indirectly assigning the mutated object into the caller’s
workspace. The complete process can be difficult to follow and thus difficult to debug and maintain.
Class Wizard takes care of the heavy lifting. All you need to do is return the correct value of
do_assignin from the helper.

123 end
124  
125 if nargout == 0
126 varargout = cell(size(this));
127 else
128 varargout = cell(1, nargout);
129 end
130  
131 for parent_name = parent_list'  % loop over parent cellstr
132 try
133 parent = [this.(parent_name{1})];
134 [varargout{:}] = get(parent, forward_index, 

varargin{:});
135 found = true;  % catch will assign false if not found
136 do_sub_indexing = false;  % assume parent did all sub-

indexing
137 found = true;  % catch will assign false if not found
138 break;  % can only get here if field was found
139 catch
140 found = false;
141 err = lasterror;
142 switch err.identifier
143 case 'MATLAB:nonExistentField'
144 % NOP
145 otherwise
146 rethrow(err);
147 end
148 end
149 end
150  
151 if do_assignin
152 parent = num2cell(parent);
153 [this.(parent_name{1})] = deal(parent{:});
154 end
155
156 end
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21.4.1.3 Pass-by-Reference Code in subsref.m

Pass-by-reference additions in subsref follow a similar pattern. The commands listed for get
in Code Listing 132 are also included in subsref. These commands can be found in
chapter_21/@cShape/subsref.m on lines 63–75. These commands give subsref the
ability to assign the object in the caller’s workspace. These commands take care of client workspace
assignments, but we aren’t quite finished with the array-reference case.

We need to add some commands that will ensure that an indirect assignment into
this_subset will be correctly copied back into this. To do this, we need to check the value
of do_assignin and take action when the value is true. The modified array-reference case is
shown in Code Listing 134. 

Lines 48–51 are the additional commands that support pass-by-reference emulation. Like normal,
line 47 forwards this_subset along with all remaining index values to subsref. When the
execution returns to line 48, the value of do_assignin is checked. If the value of do_assignin
is true, it means that the values now stored in this_subset were indirectly assigned into
subsref’s workspace. Line 50 copies the subset array back into its original indices. This captures
the change and allows the subsequent commands in lines 63–75 to assign the mutated object into
the client’s workspace.

21.4.2 OTHER GROUP-OF-EIGHT CONSIDERATIONS

Now that get and subsref have been modified to support pass-by-reference emulation, we are
in a good position to consider the potential impact on the remaining group-of-eight functions. There
is no impact on the mutators set and subsasgn because they already assign this. There is
also no impact on the constructor because it isn’t involved in pass-by-reference emulation. That
leaves display, struct, and fieldnames.

Display and struct both rely on the cellstr value returned by fieldnames and on
the operation of get. We already know that get is involved in pass-by-reference emulation, so
there might be an interaction among display, struct, fieldnames, and get. We explore
this interaction at the end of the test drive description.

Code Listing 134, Array Reference Case in subsref.m with Pass-by-Reference Commands

40 case '()'
41 this_subset = this(index(1).subs{:});
42 if length(index) == 1
43 varargout = {this_subset};
44 else
45 % trick subsref into returning more than 1 ans
46 varargout = cell(size(this_subset));
47 [varargout{:}] = subsref(this_subset, index(2:end));
48 if do_assignin
49 % the value of this_subset has also changed 
50 this(index(1).subs{:}) = this_subset;
51 end
52 end
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21.5 TEST DRIVE

There aren’t as many new items in this chapter as you might have expected. Pass-by-reference
support commands were discussed in this chapter; however, they have been lurking in the group-
of-eight functions since Chapter 18. Thus, all preexisting functions and variables have been well
tested with the pass-by-reference additions. New to this chapter are the View public variable and
the execution of pass-by-reference commands. The test drive commands in Code Listing 135 limit
their scope to test only these new elements. 

Code Listing 135, Chapter 21 Test Drive Command Listing: Pass-by-Reference Emulation

1 >> cd '/oop_guide/chapter_21'
2 >> set(0, 'FormatSpacing', 'compact')
3 >> clear classes; fclose all; close all force;
4 >>
5 >> star = cStar;
6 >>
7 >> get(star, 'mFigureHandle')
8 ans =
9 []
10 >> draw(star);
11 >> get(star, 'mFigureHandle')
12 ans =
13 1
14 >>
15 >> get(star, 'mDisplayFunc')
16 ans =
17 []
18 >> star
19 star = 
20 Size: [1 1]
21 ColorRgb: [0 0 1]
22 Points: [1x12 double]
23 LineWeight: 'normal'
24  View: 1
25 Title: 'A Star is born'
26 >> star.View
27 ans =
28 1
29 >> get(star, 'mDisplayFunc')
30 ans =
31 developer_view
32 >>
33 >> star
34 ---- Public Member Variables ----
35 star.Size = [1  1  ];
36 star.ColorRgb = [0  0  1  ];
37 star.Points = [ values omitted ];
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Line 5 constructs a default cStar object, and line 7 displays the handle to star’s figure
window. Since star has not yet been drawn, its figure handle is empty (lines 8–9). Line 10 uses
pass-by-reference syntax to draw the star. A figure window opens and a blue star is drawn. Now
the figure handle has a value (lines 12–13). Pass-by-reference emulation code assigned the mutated
object into the command window’s workspace even though line 10 contains no explicit assignment.

Next, we look at the pass-by-reference behavior added to View. The initial value of star’s
mDisplayFunc is empty (Lines 16–17), and the expected display format is normal. This can be
seen in lines 19–25. Now things start to get interesting. Line 26 accesses View and displays the
value. What isn’t so obvious is the fact that the access operation on line 26 also changed the object.
Lines 29–31 display the value of mDisplayFunc, and we see that it has changed. With this value,
we expect developer view format from display. That is exactly what we get in lines 34–53. 

We should also be able to assign star.View using mutator syntax. Line 55 uses a dot-
reference operator to assign false into View. Internally, false is converted into an mDis-
playFunc value of empty. The assignment changes the display format back to normal. Indeed,

38 star.LineWeight = 'normal';
39 star.View = [0];
40 star.Title = 'A Star is born';
41 .... Private Member Variables ....
42 star.mTitle = 'A Star is born';
43 star.cShape.mDisplayFunc = 'developer_view';
44 star.cShape.mSize = [1  1  ]';
45 star.cShape.mScale = [1  1  ]';
46 star.cShape.mPoints(1, :) = [ values omitted  ];
47 star.cShape.mPoints(2, :) = [ values omitted  ];
48 star.cShape.mFigureHandle = [];
49 star.cShape.mLineStyle.mDisplayFunc = [];
50 star.cShape.mLineStyle.mTempStatic = [];
51 star.cShape.mLineStyle.mColorHsv = [0.666666666666667  1  1  ]';
52 star.cShape.mLineStyle.mLineWidth = [1];
53 star.cShape.mLineStyle.mLineHandle = [];
54 >>
55 >> star.View = false;
56 >> star
57 star = 
58 Size: [1 1]
59 ColorRgb: [0 0 1]
60 Points: [1x12 double]
61 LineWeight: 'normal'
62 View: 1
63 Title: 'A Star is born'
64 >>
65 >> get(star(1), 'View')
66 Warning: No assignment: pass-by-ref. can't be used on indexed 

objects
67 > In cStar.get at 124
68 ans =
69 0
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the display in lines 57–63 uses normal format. Finally, lines 65–69 demonstrate the warning that
occurs when inputname can’t resolve the name.

That ends the test drive, but before moving to the next chapter, we need to explore a subtle
interaction that occurs during the command on line 18 among display, struct, and field-
names. Recall what happens when we enter the command star without a trailing semicolon.
MATLAB converts the syntax into a call to display. Display calls struct(this), struct
calls get, and get calls the helper function. If the helper function requests pass-by-reference
behavior, what happens?

To answer that question, work from the helper function back toward display. The helper
function sets do_assignin to true, and get receives the value. A true value will cause the
execution to enter the block of commands added to get earlier in this chapter. In Code Listing
132, line 183 finds that the caller is ‘struct’ and thus skips the assignin command on line
185. The mutated object is assigned into struct’s workspace, but the true value in
do_assignin is not assigned. Thus, the mutated object is not passed from struct into dis-
play. In most situations, this is the right behavior because we usually don’t expect a command
like struct or display to change the object. In the next chapter, we will examine an even
more perilous pass-by-reference situation.

21.6 SUMMARY

Under the right set of circumstances, pass-by-reference emulation can make up for certain limita-
tions in MATLAB’s pass-by-value architecture. Prime candidates for pass-by-reference emulation
are mutator functions for which the mutation is hidden or at least not immediately obvious. In the
cShape hierarchy, draw represents one of these functions because mutations occur only within
the private variables. It is easy to forget the assignment and annoying to receive an error. As the
class designer, you can choose to use pass-by-reference emulation or you can halt the execution
and throw an error. The overhead involved in both options are comparable, but handling the error
is a lot more user-friendly.

Pass-by-reference emulation with public variables yields a public variable syntax that is more
familiar to many object-oriented programmers. The trade-offs between risks and benefits aren’t
clear. The benefit side includes a command syntax that is less verbose and easier to use. The risk
side includes lack of support for certain variable names and uncertainty about the return from
display, struct, and fieldnames. Either way, Class Wizard already generates the support
commands for pass-by-reference emulation. Changing one logical value in the output of a helper
function triggers the emulation. The behavior is rather adaptable. In the next chapter, we will look
at a different twist for the combination of member variables and pass-by-reference.

21.7 INDEPENDENT INVESTIGATIONS

1. Edit fieldnames and remove View from the list of public variable names. Rerun the
test drive and note any differences. After you finish, add View back to the fieldnames
list.

2. Modify struct and display so they operate using pass-by-reference behavior. (Hint:
you probably need to change the way get assigns do_assignin.)

3. How would you set up pass-by-reference conditions so that a client, rather than the
helper, is in control? (Hint: suppose the existence of a do_assignin variable in the
caller’s workspace somehow makes its way into the helper.) Can struct and dis-
play use this approach to determine when to perform assignin?

4. Modify set.m so that when nargout == 0, the function will use pass-by-reference
emulation to assign the mutated this in the caller’s workspace.
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5. Modify other mutator functions so that when nargout == 0, they assign the mutated
this into the caller’s workspace. Is the modification better or worse than throwing an
error when nargout == 0? Can you think of examples where throwing an error
would be more appropriate?

6. Add a non-direct-link public member variable named Reset. Inside Reset_helper,
call the reset public member function. For this exercise, it doesn’t matter if Reset
uses pass-by-reference emulation, but in an industrial-strength class, it probably would.
Create a shape and draw it. Access the Reset variable and confirm that it does the same
thing as the member function. Redraw the shape. Display the contents of the shape
variable by typing the variable name without a trailing semicolon. Did the shape figure
disappear? What can you do to change this behavior?

7. Change the visibility of all reset.m modules from public to private by moving the
modules into private directories. What other changes are necessary to allow this change
to work? Does every child class still need a private reset.m module?

8. Create another public member variable named Draw and link its helper function to
draw.m. Can you make draw.m private as reset.m was made private in investigation
7? How does the fact that cStar objects’ draw method changes the figure title make
the implementation of public variable Draw different from the implementation of public
variable Reset?
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22

 

Dot Functions and Functors

 

In the previous chapter, we introduced a member variable with unusual behavior. The behavior was
unusual because the variable didn’t really behave like a variable. Instead, it seemed like 

 

View

 

 was
really a member function dressed up to look like a variable. In this chapter, we explore how dot-
reference member variable syntax might be used to call a member function. The first thing we need
to investigate is operator conversion. We need to understand what happens to the arguments when
MATLAB converts operator notation into a function call. We already have a good understanding
of 

 

substruct

 

, but we don’t really know the variable types supported. Armed with this knowledge
we will be able to tear down the wall that currently exists between member variables and member
functions. This will allow us to investigate another common object-oriented specialty class, the
functor.

 

22.1 WHEN DOT-REFERENCE IS NOT A REFERENCE

 

Strictly speaking, MATLAB dot-reference operators aren’t true references because MATLAB
always converts the operators into a function call, either to 

 

subsref

 

 or to 

 

subsasgn

 

. These
functions are usually configured to give the appearance of a reference, but such an appearance is
not required. The operators convert into 

 

subsref

 

 or 

 

subsasgn

 

, but what happens to the
operator’s arguments and indices? In general, we know that arguments are packaged into a special
structure called a 

 

substruct

 

 and passed into the function as an index. Some of the indices are
used inside 

 

subsref

 

 or 

 

subsasgn

 

, some are used inside 

 

get

 

 or 

 

set

 

, and some are passed into
a helper function. Typically, the helper function has little use for the indices and simply passes
them back to the calling function for further evaluation. So far, we haven’t made much use of the
fact that the helper function can elect to use these indices. In this chapter, the indices are the central
theme.

Suppose we want to redeploy dot-reference syntax so that, in addition to accessing public
member variables, it can be used as the public interface to a member function. Of course, this is
already the case. The difference in appearance is the behavior of the helper function. Currently,
helper functions are implemented with a behavior that makes them look like variable references.
We could just as easily implement helper functions with general member-function behavior. 

 

Draw

 

is a good function to investigate because it has no arguments. Consider the 

 

draw

 

 syntax used in
the following, functionally equivalent commands. Both use pass-by-reference emulation.

 

>> draw(shape);

>> shape.draw;

 

While both examples are functionally equivalent, there is an important difference with respect
to ambiguity. For functions with two or more arguments, the relative superiority among the
arguments can introduce ambiguity. Recall that “standard” syntax doesn’t demand that the object
be the first argument. As long as an object has the highest relative priority, it can occur anywhere
in the argument list. Among like-named functions, we aren’t certain which will be selected until
the relative superiority of all arguments is sorted out. By convention, we always try to place the
object first in the argument list and we try not to modify the relative superiority through 

 

supe-
riorto

 

 and 

 

inferiorto

 

. This convention has allowed us to sidestep many issues related to
superiority. Operator overloading is the only place where superiority was an issue. With dot-
reference syntax (e.g., 

 

shape.draw

 

) there is no ambiguity. MATLAB always calls the version
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of 

 

draw_helper

 

 associated with 

 

shape

 

. The conversion from dot-reference syntax guarantees
it. This fact alone helps justify the new syntax.

Gauging run-time performance between member functions using normal syntax and those using
dot-reference syntax is a complicated matter. For a flat hierarchy with little or no inheritance, the
run-time difference is not significant. With inheritance, run time is better for the normal syntax
only when the class restricts itself to scalar objects. In the face of both inheritance and nonscalar
objects, both versions must implement parent–child slicing at every level. It doesn’t matter whether
this slicing occurs inside 

 

get

 

 or inside another member function; the effect on run time is the
same. The fact that 

 

get

 

 already includes slice-and-forward code is another good argument for dot-
reference syntax.

For convenience, we need a name for dot-reference function syntax. It doesn’t fit the definition
of a public member variable, and it doesn’t fit MATLAB’s definition of a public member function.*
Until someone invents a better name, I will refer to member functions invoked using dot-reference
syntax as 

 

dot member functions

 

. Generically, a dot member function is simply a member function.
Thus, it is okay to use the generic term as long as the context is clear or the context doesn’t matter.

Earlier, I said, “

 

Draw

 

 has no arguments.” Of course, that isn’t exactly true because the object
itself must be an argument so that MATLAB can find the function. When 

 

draw

 

 is called using
dot-operator syntax, MATLAB packages arguments into a 

 

substruct

 

 index. These indices are
passed from the command line, into 

 

subsref

 

, into 

 

get

 

, and finally into the helper function.
When 

 

shape.draw

 

 reaches its helper, the index array is empty. What I should have said is “

 

Draw

 

has no 

 

indices

 

.” As we will soon see, for dot member functions, arguments and indices refer to
exactly the same thing.

Operator conversion and the group-of-eight implementations support indexing to any level.
This also means that helper function associated with a dot member function can receive any number
of indices. We know we can construct indices using integers and logicals; however, if the same
limits are placed on the indices passed into dot member functions, they won’t be very useful. Since
there is virtually no documentation on operator syntax conversion, we have to build a class that
contains a dot member function and experiment.

Let’s start with a new class so we can better focus on the important details. The complete class
implementation is included on the companion disk in 

 

/chapter_22

 

, or you can create the new
class from scratch. If you want to create one from scratch, open Class Wizard and create a class
named 

 

cBizarre

 

. In the 

 

Public Variables …

 

 dialog box, give 

 

cBizarre

 

 one public
member variable named 

 

show_arg

 

. Give 

 

show_arg

 

 in both the 

 

Accessor Expression

 

and 

 

Mutator Expression

 

 fields the value 

 

%helper

 

. Click 

 

Done

 

 to return to the main Class
Wizard dialog. Click 

 

Build Class Files

 

 and navigate to an appropriate location. Make sure
you name the new class directory 

 

@cBizarre

 

. Exit Class Wizard and try out the class. See line
5 in Code Listing 137 for an example. At this point, receiving a warning is normal because the
helper function is still a stub.

To support our investigation of 

 

substruct

 

, modify the content of 

 

show_arg_helper.m

 

.
We are only interested in the 

 

‘get’

 

 case. The complete function is quite simple and is shown in
Code Listing 136. 

 

*  Outside of MATLAB, it would be very common to find 

 

shape.draw

 

 classified as a member function and

 

shape=draw(shape)

 

 classified as a friend function. This can sometimes lead to confusion when discussing object-
oriented designs.

 

Code Listing 136, Helper Function to Experiment with input–substruct Contents

 

1 function [do_sub_indexing, do_assignin, this, varargout] = 
...

2 show_arg_helper(which, this, index, varargin)

 

C911X_C022.fm  Page 328  Friday, March 2, 2007  10:29 AM



 

Dot Functions and Functors

 

329

 

In line 6, 

 

do_sub_indexing

 

 has been changed from 

 

true

 

 to 

 

false

 

. This change prevents
errors due to unexpected values in the 

 

substruct

 

 index. In line 7, the value of 

 

do_assignin

 

stays set to 

 

false

 

. Change the value to 

 

true

 

 if you want to use pass-by-reference emulation.
Line 8 sets the helper’s return values to 

 

[]

 

. In this case, returning empty is perfectly acceptable
because we are only interested in the display. Line 9 gives us the functionality we desire. Here we
are reusing 

 

full_display

 

 to write the entire contents of 

 

substruct

 

 

 

index

 

 to the screen.
This will let us experiment with the input syntax because 

 

full_display

 

 gives us a complete
picture of the indices. In case 

 

varargin

 

 isn’t empty, lines 10–12 display the full content of a
nonempty 

 

varargin

 

. Lines 17–20 repeat the same commands for the 

 

‘set’

 

 case.
 Sample commands and their outputs are shown in Code Listing 137. In short, MATLAB does

not check the variable type when it converts from operator syntax to 

 

substruct. The responsi-
bility for checking lies with the function that ultimately uses the indices. This means we can use
dot-reference syntax to pass virtually any input into the member function. 

3
4 switch which
5 case 'get'  % ACCESSOR
6 do_sub_indexing = false; % tells get.m not to index deeper
7 do_assignin = false; % no reason to use pass-by-reference
8 varargout = cell(1, nargout-3); % [] okay for return
9 full_display(index); % simply displays the full syntax
10 if nargin > 3
11 full_display(varargin);
12 end
13 case 'set'  % MUTATOR
14 do_sub_indexing = false; % always false in 'set'
15 do_assignin = false; % mutator usually isn’t pass-by-

reference
16 varargout = {}; % mutator return is in this, not varargout
17 full_display(index); % simply displays the full syntax
18 if nargin > 3
19 full_display(varargin); % displays full syntax
20 end
21 otherwise
22 error('OOP:unsupportedOption', ['Unknown helper option: ' 

which]);
23 end

Code Listing 137, Chapter 22 Test Drive Commands for Dot Member Functions

1 >> cd '/oop_guide/chapter_22'
2 >> set(0, 'FormatSpacing', 'compact')
3 >> clear classes; fclose all; close all force;
4 >>
5 >> b = cBizarre
6 index = [];
7 b = 
8 show_arg: []
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9 >> b.show_arg;
10 index = [];
11 >>
12 >> struct(b);
13 index = [];
14 >>
15 >>get(b, 'show_arg');
16 index = [];
17 >>
18 >>b.show_arg.name;
19 index.type = '.';
20 index.subs = 'name';
21 >>
22 >> b.show_arg(1:3, 5);
23 index.type = '()';
24 index.subs{1, 1} = [1  2  3  ];
25 index.subs{1, 2} = [5];
26 >>
27 >> b.show_arg{1:3, 5};
28 index.type = '{}';
29 index.subs{1, 1} = [1  2  3  ];
30 index.subs{1, 2} = [5];
31 >>
32 >> b.show_arg{1:3, 5}(1, 2);
33 index(1, 1).type = '{}';
34 index(1, 1).subs{1, 1} = [1  2  3  ];
35 index(1, 1).subs{1, 2} = [5];
36 index(1, 2).type = '()';
37 index(1, 2).subs{1, 1} = [1];
38 index(1, 2).subs{1, 2} = [2];
39 >>
40 >> b.show_arg(pi);
41 index.type = '()';
42 index.subs{1} = [3.14159265358979];
43 >>
44 >> b.show_arg(1.5, exp(1), @whos, 'a string');
45 index.type = '()';
46 index.subs{1, 1} = [1.5];
47 index.subs{1, 2} = [2.71828182845905];
48 index.subs{1, 3} = @whos;
49 index.subs{1, 4} = 'a string';
50 >>
51 >> b.show_arg(0:0.25:1, struct('a', 1.1, 'b', 'a string'), 

{1 'another'});
52 index.type = '()';
53 index.subs{1, 1} = [0  0.25  0.5  0.75  1  ];
54 index.subs{1, 2}.a = [1.1];
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Line 5 constructs an object of type cBizarre, leaving off the trailing semicolon. The display
shows that show_arg_helper received an empty index value. An empty index also occurs
when show_arg is accessed with no arguments (line 9), when struct(b) is called (line 12),
and when show_arg is accessed with get (line 15). As a rule, all dot member functions must
be able to handle the empty-input case.

The syntax on line 18 indexes show_arg as a structure. As the output on lines 19–20 shows,
structure indexing is okay as long as the dot member function expects it. The function can determine
the index operator by examining index.type. Any number of strings may be passed by using
additional levels of dot-reference syntax. Experiment with the syntax and examine the organization
in the output.

Lines 22, 27, and 32 display the conversion for normal integer indices. With a single set of
array- or cell-reference operators, the indices for each dimension are organized into a separate cell.
In this way, each element of index.subs{} represents an input. Think about the way varargin
is organized because index.subs is the same. Again, experiment with different command syntax
and observe the organization. You can even use end and ‘:’ syntax, but you may not get the
results you expect. See the independent investigations at the end of this chapter for more detail.

We didn’t expect any trouble with integer indices, and lines 40 and 44 demonstrate that trouble-
free conversion extends to noninteger scalar values. In line 44, a real, the result from a function
call; a function handle; and a string are all converted and packaged into separate cells (lines 45–49).
Line 51 demonstrates the same trouble-free conversion of complicated types. Here a real vector, a

55 index.subs{1, 2}.b = 'a string'
56 index.subs{1, 3}{1, 1} = [1];
57 index.subs{1, 3}{1, 2} = 'another';
58 >>
59 >> get(b, 'show_arg', substruct('()', {1.5  0:0.25:1}));
60 index.type = '()';
61 index.subs{1, 1} = [1.5];
62 index.subs{1, 2} = [0  0.25  0.5  0.75  1  ];
63 >>
64 >> get(b, substruct('.', 'show_arg', '()', {1.5  0:0.25:1}));
65 index.type = '()';
66 index.subs{1, 1} = [1.5];
67 index.subs{1, 2} = [0  0.25  0.5  0.75  1  ];
68 >>
69 >> b.show_arg(0:0.25:1, 'option') = 10;
70 index.type = '()';
71 index.subs{1, 1} = [0  0.25  0.5  0.75  1  ];
72 index.subs{1, 2} = 'option';
73 varargin{1} = [10];
74 >>
75 >> b.show_arg(0:0.25:1, 'option') = {10  'a string'  @whos};
76 index.type = '()';
77 index.subs{1, 1} = [0  0.25  0.5  0.75  1  ];
78 index.subs{1, 2} = 'option';
79 varargin{1}{1, 1} = [10];
80 varargin{1}{1, 2} = 'a string';
81 varargin{1}{1, 3} = @whos;
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structure, and a cell array are all successfully packaged into separate cells. This is good news
because it means MATLAB places no restrictions on the type of input converted from operator
syntax.

Lines 59 and 64 demonstrate an alternate but more cumbersome syntax. This syntax must be
used when normal operator syntax is not available, for example, when trying to call a dot member
function from another member function. The syntax on line 59 can be used to access public dot
member functions, and the syntax on line 64 extends access to concealed dot member functions
(which, strictly speaking, are not really dot member functions because they can’t be called using
a dot).

Indexing for access is no different from indexing for mutation. MATLAB converts and packages
indices the same way for both. Group-of-eight implementations of subsasgn and set use the
same method of index passing used by subsref and get. When the dot member function is
called for ‘set’ versus ‘get’, the biggest difference is a nonempty varargin. Lines 69–73
show an example with one input. Lines 75–81 show an example with three inputs. The mutator
case has to manage the index values passed through index and the input values passed through
varargin. 

Much is possible, and you are the final judge concerning the options supported by your classes.
The same is true regarding the functionality included in dot member functions versus normal
member functions. Aside from how they are invoked, there is virtually no difference in functionality.
As a starting point, consider the following guidelines.

• Don’t use nonstandard index values in the left-hand side of an assignment (e.g., lines 69
and 75 above). Standard index values are integers. Everything else is nonstandard. One
notable exception might occur when a string is used like an enumerated value. Another
notable exception might occur when the index is a single, fixed-range, floating-point
value.

• Don’t use operator-function, mutator syntax if more than one input value must be passed.
For this guideline, a matrix, structure, or cell array can often be considered as a single
input. If you implemented the operator-member function as a normal member function,
would the input value be passed as one argument or more than one? If the answer is
more than one, don’t use operator-function, mutator syntax.

• Don’t use operator-member-function syntax for complicated functions. Here, compli-
cated can mean a lot of input values or an algorithm that is computationally intensive.

• Don’t use operator-member-function syntax for functions that return more than one
output for a scalar object. It is okay for a function to return N outputs for an object array
containing N objects.

• Use operator-member-function syntax rather than resorting to calls to superiorto or
inferiorto.

These guidelines encourage the use of relatively simple dot member functions. 

22.2 WHEN ARRAY-REFERENCE IS NOT A REFERENCE

If you look at MATLAB’s object-oriented requirements in Chapter 2, there is no mention of
subsref or subsasgn. These functions are critical to the object-oriented implementation but
they are nothing more than the functional form of an operator. Our classes achieve a structure-like
interface because of the way we elected to implemented subsref and subsasgn. As long as
we can live with the constraints imposed by their arguments, we are free to define the behavior of
subsref and subsasgn to be anything we want.
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When subsref and subsasgn implement a structure-like interface, array-reference index
values are limited to integers or logicals. Based on results from §22.1, we realize that this is a self-
imposed limit. MATLAB passes all index types into subsref and subsasgn, and it is up to us
to define the behavior. We already know how to achieve structure-like indexing behavior, but it is
also easy to make array-reference behave like a function call. Simply treat the indices as arguments
and use them to calculate a value or perform some operation. You can even include pass-by-reference
emulation.

22.2.1 FUNCTORS

In this section, we examine classes that overload the array-reference operator to execute a function.
Using the array-reference syntax as a function call changes the central focus of the class. Normally,
this focus divides evenly between states (a.k.a. the data) and behavior (a.k.a. the functions).
Redefining array-reference syntax so that it evaluates an expression tilts the focus in favor of
behavior, so much so that everything about the class centers on the evaluation of the principal
function. In computer science, an object that can be used as a function is called a functor. 

Recall that the main difference between a structure and a class is the class’ close association
between data and function. A functor has the same close association between data and function;
however, the functor’s main function is the one associated with the array-reference operator. Much
of the data associated with the evaluation of the main function are stored in private member variables
of the class. The data are very similar to persistent data used by a normal function except that every
instance of the functor gets its own unique copy. Compared to persistent data, functor data are also
easier to assign because variables are accessed through the public interface. The data are also easier
to load and save. In a functor, all the advantages of a class come along for free.

Let’s implement a functor so we can experiment with its syntax. We can get Class Wizard to
provide us with the bulk of the implementation, but a few last-minute tweaks to subsref will be
required. The functor example will calculate a polynomial based on private variable coefficients.
The coefficient array will have a public interface, and array-operator syntax will request an eval-
uation. Build the functor using Class Wizard or use the files available on the companion disk in
/chapter_22/@cPolyFun.

Open Class Wizard and create a class named cPolyFun. In the private variable dialog, add
m_coef as a variable and set its initial value to zeros(1,0). In the public variable dialog, add
coef as a variable and set both the Accessor Expression and Mutator Expression
to m_coef. Build the class in a new @cPolyFun directory and exit Class Wizard. Now open
@cPolyFun/subsref.m and replace the case ‘()’ commands with those shown in Code
Listing 138. After making this change, be careful if you need to regenerate the class because, by
default, Class Wizard overwrites subsref. Uncheck the subsref box in the “Group of Eight”
button group to prevent this. 

Code Listing 138, cPolyFun Array-Reference Operator Implementation

1 case '()'
2 if numel(index) > 1 || numel(index.subs) > 1
3 error('cPolyFun:invalidInput', 'Only one input argument is 

allowed');
4 end
5 x = reshape(index.subs{1}, [], 1);  % x reshaped as a col
6 coef = repmat(this.m_coef(:)', numel(x), 1);
7 power = repmat((0:numel(this.m_coef)-1), numel(x), 1);
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The polynomial function evaluation takes place in line 9. The equation for the right-hand
expression can be written as

The other lines check inputs, copy values, reshape matrices, and allow the expression on line 9 to
be written in vectorized form. Line 2 checks the number of inputs against the number supported
by the functor. The first check, numel(index) > 1, throws an error if the function call includes
index operators beyond the initial ‘()’. This check is usually acceptable. The second check,
numel(index.subs) > 1, limits the number of input arguments to 1. In general, functors
can accept any number of arguments, and numel(index.subs) serves the same purpose as
nargin. Line 5 reshapes the input argument as a column. Line 6 duplicates the vector of
coefficients, one row for every element in the column of x. Line 7 performs the same duplication
for the array of powers. Line 8 repeats the column of x values, one column for every column in
coef. The local variables x, coef, and power are now the same size. Line 9 uses element-by-
element operators to produce a value for every input and then resizes the result to match the input
size.

22.2.2 FUNCTOR HANDLES

Now that we have something that behaves a lot like a function, it is natural to wonder where
appearances give way to reality. For example, you can’t use the @ character to create a function
handle to the functor function. The commands

p = cPolyFun;

p_func = @p;

result in an error because MATLAB will not allow p to be both a variable and a function. By this
point in our object-oriented odyssey, you might look at the second command above and wonder
whether you can overload the @ operator and return the correct handle. Sadly, as far as I have been
able to determine, you can’t overload the @ operator. Anonymous functions provide a solution,
albeit with a small increase in syntax complexity. The following commands yield the desired handle:

p = cPolyFun;

p_func = @(x)p(x);

Anonymous function syntax forces us to declare the number of inputs, so it isn’t as flexible as a
general function handle. Anonymous function syntax also forces us to assign all private member
variables prior to creating the anonymous handle. During handle construction, MATLAB makes a
copy of the object and associates the copy with the handle. MATLAB does not give you a handle to
p but rather a handle to a copy of p. Even with these limitations, an anonymous function handle
allows us to use commands that require a function handle. For example, the command
quad(@(x)p(x), 1, 0) will integrate a cPolyFun object over the limits [0 1]. As in this
example, if you need to pass a function handle, it is safer to create the anonymous handle on the fly.
It is too hard to remember where the handle points, and that can lead to errors that are very difficult
to diagnose. For many situations, there is another option that is more elegant: overload feval.

8 x = repmat(x, 1, size(coef, 2));
9 varargout = {reshape(sum(coef .* x.^power, 2), 

size(index.subs{1}))};
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22.2.3 FUNCTOR FEVAL

Many commands in the quad category allow you to pass the function as a handle, a string, or an
inline object. In fact, when a function’s help text demands a function handle, you can usually
pass a handle, a string, or an object.* For the object-input option, the intended type is @inline;
however, an object of any class that overloads feval will usually work just as well. If we write
a cPolyFun-specific feval, we can sidestep most of the problems related to anonymous function
handles. The commands for feval are provided in Code Listing 139. 

The lines in Code Listing 139 implement feval so that any functor can reuse it as is. In line
1, varargin and varargout support reuse. Line 2 preallocates varargout with the correct
number of outputs. We have used this technique before. Line 3 forwards the input arguments to
the array-reference operator and collects return values in the elements of varargout. Line 3
highlights the relationship between subsref index and the function’s input arguments. With
feval in place, we can integrate a cPolyFun object using simple syntax. For example, the
command would be quad(p, 0, 1), a big improvement over the anonymous handle syntax
described in the previous section. In the test drive, we will demonstrate some of these commands.

22.2.4 ADDITIONAL REMARKS CONCERNING FUNCTORS

As a group, functors represent a special-purpose class with a relatively narrow scope. Similar to
inline, everything defined for a functor should support the principal, array-referenced function.
As a starting point, the following guidelines help keep functors lean and mean.

• Always overload feval so that it performs the same operation as the array-reference
operator. This will guarantee the same behavior regardless of how the primary function
is called.

• Nonscalar functors are difficult to manage, and they don’t work particularly well as an
extension of inline. Prevent the inadvertent creation of nonscalar functor objects by
overloading horzcat, vertcat, cat, and repmat. 

• Don’t allow nonstandard function-call syntax. For example, don’t support indexing
syntax beyond the required ‘()’. 

• All member variables (public and private) and all member functions (public, dot, and
private) should relate to the evaluation of the primary function. Instead of adding elements
unrelated to the principal function, think about using a functor in composition.

• Avoid using subsasgn syntax for functors. We didn’t discuss the possibility of putting
the functor on the left-hand side of an assignment. While possible, the syntax is probably
too bizarre to be useful.

*  Any function that processes the function handle input with fcnchk will accept a function handle, a string, or an object.
See help fcnchk for more information. Functions that use isa(x, ‘inline’) to look for inline objects will
usually throw an error when passed an object of any other type. Functions in this category include fminbnd, fminsearch,
fzero, ezgraph3, and ezplot.

Code Listing 139, Functor feval Listing

1 function varargout = feval(this, varargin)
2 varargout = cell(1, max([1 nargout]));
3 [varargout{:}] = subsref(this, substruct(‘()’, varargin));
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23.3 TEST DRIVE

The test-drive commands used to discover how MATLAB collects and passes index arguments
were shown in Code Listing 137. The commands in Code Listing 140 demonstrate functor syntax
using cPolyFun. 

Line 5 constructs a cPolyFun object. Line 6 initializes the polynomial coefficients with values
that yield a polynomial equal to x^2. Line 7 generates an anonymous function handle using a copy
of p. Lines 10 and 11 plot the function, and the result of both commands is a very recognizable
parabola. I didn’t include the plots as figures. If you want to see the resulting plots, you’ll have to
enter the commands.

The expression p(x) on line 10 also demonstrates that the functor can accept a range of inputs
and produce an equal number of outputs. On line 11, ezplot is an example of a function that
demands a function handle but will actually accept an inline object. Unfortunately, ezplot
will not accept any object type, forcing us to create an anonymous handle. As we will soon see, it
is safer to create the handle as it is needed.

Line 13 uses quad to integrate the functor from zero to five. We expect the answer to be

Code Listing 140, Chapter 22 Test Drive Command Listing: functor

1 >> cd '/oop_guide/chapter_22'
2 >> set(0, 'FormatSpacing', 'compact')
3 >> clear classes; fclose all; close all force;
4 >>
5 >> p = cPolyFun;
6 >> p.coef = [0 0 1];  % y = 0 + 0*x + 1*x^2
7 >> p_func = @(x)p(x);
8 >>
9 >> x = -5:0.1:5;
10 >> plot(x, p(x));
11 >> ezplot(@(x)p(x), -5, 5);
12 >>
13 >> [quad(p_func, 0, 5)  quad(@(x)p(x), 0, 5)  quad(p, 0, 5)]
14 ans =
15 41.6667   41.6667   41.6667
16 >>
17 >> p.coef(3) = 2 * p.coef(3);
18 >> [quad(p_func, 0, 5)  quad(@(x)p(x), 0, 5)  quad(p, 0, 5)]
19 ans =
20 41.6667   83.3333   83.3333
21 >>
22 >> objectdirectory
23 cPolyFun (3 instances)
24 >>
25 >> p2_func = @(x)p(x);
26 >> objectdirectory
27 cPolyFun (4 instances)
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and this value matches the values displayed on line 15. Calling quad with a precomputed anonymous
handle, an anonymous handle created at the time of the call, or a functor object produces the same
result. Using the unadulterated functor object produces the easiest syntax. Line 17 doubles the x^2
coefficient, and as a result, the integration of p over the same limits should double. Values from
the repeated quad commands are displayed on line 20. The value associated with the previously
saved anonymous handle didn’t change. The assignment in line 17 didn’t affect p_func.

The next few lines provide some insight into this behavior. Lines 22–23 display a complete
summary of all objects in the workspace. Chapter 24 discusses objectdirectory in more
detail. Line 25 explicitly created an anonymous function handle, and behind the scenes, line 25
created a copy of p. Lines 26–27 display the evidence. The anonymous function handle isn’t
connected to p, but rather to a copy of p. That’s why the first value in line 20 didn’t change. That
is also why it is dangerous to create anonymous function handles to functor objects before they
are needed.

22.4 SUMMARY

We are approaching the end of our journey, and this chapter provides some of the tools you will
need to survive on your own. The examples in this chapter push the syntax beyond current
convention. Dot member functions have certain advantages over typical member-function syntax
and very few disadvantages. The primary advantage is that dot-member-function syntax helps
eliminate ambiguity. The function selected is always associated with the referenced object inde-
pendent from the superiority of the input arguments. The primary disadvantage is that MATLAB
doesn’t officially recognize dot-member-function syntax. Because of this, dot-member-function
syntax doesn’t match with MATLAB’s call-by-value model. This is particularly true when a member
function takes advantage of call-by-reference emulation.

Functors are a very convenient way to create functions that rely on many parameters. A non-
object-oriented implementation might store the parameters as a global or persistent variable. Stored
as a global or persistent, every function evaluation uses the same parameters. Functors are not
subject to this limitation because every functor has its own set of values. In the conventional
implementation, evaluation with different parameters requires passing the parameters along with
the input variables. This leads to overly complicated input checking code that all too often is
inadequate. Functors can get around this problem by creating a set of atomic, orthogonal public
member variables. The values are checked when they are assigned; and once checked, the principal
function can use them without checking them again. Not only does this reduce complexity; it also
often improves run time. This is particularly true for parameters that are set once, because once
assigned into the functor, they don’t need to be checked during every function call. The danger in
using functors is the potential lack of support inside built-in functions. If built-in functions alter
their interface to accept only inline objects, the syntax becomes more cumbersome, and existing
calls that use functors would break.

22.5 INDEPENDENT INVESTIGATIONS

1. Input the commands b.show_arg(1:end) and b.show_arg{1}(end), and
observe the output. Did you get the index values you expected? Put a breakpoint at the
beginning of subsref and repeat the commands. How many times is subsref called
for each command? Examine the value of index passed into subsref. Based on the
indices, what is the initial call to subsref trying to obtain? What would happen if

1
3

3
0
5 1

3
3 35 0 41 667x = −( ) = .
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show_arg didn’t support an empty-input call? (Hint: how does MATLAB convert end
to a numeric value?)

2. Input the commands b.show_arg{:} and b.show_arg{1}(:), and observe the
output. Did you get the index values you expected? How many times is subsref called
in this investigation? How are the index inputs ‘:’ and end different? 

3. Add a concealed member variable named cshow_arg with an “accessor expression”
and a “mutator expression” of %helper. Copy the contents of show_arg_helper
into cshow_arg_helper. Repeat the command examples from Code Listing 137, but
replace show_arg with cshow_arg. Do all the commands work without error? Why?

4. Modify cPolyFun so that you can optionally pass in the coefficient array during
construction.

5. Add a member function to cPolyFun named fc_handle that will return an anony-
mous function handle to the class’ primary function. For this investigation, use either
normal member function or operator-member-function syntax. After adding the function,
try the following commands:

 p = cPolyFun;

 p_func = fc_handle(p);

 feval(p_func, 1)

The answer should be zero. If the answer instead lists coef as an element, you assigned
the wrong handle. (Hint: inside a cShape member function, think about the difference
between this.color and subsref(this, substruct(‘. ‘, ‘color’)).
Why does the first return an error and the second return a value?)

6. Use the command which inline to locate the directory. Look at the list of files
defined for @inline. Some of these names will look very familiar, and some unfamiliar.
Open some of these files and examine their content. Are there any modules we should
tailor for every functor? You can create a functor that uses inline as the parent class.
Is this a good idea? What would you need to overload to make everything work correctly? 

7. Change the indexing behavior for cPolyFun.coef. Match the index to the power of
x in the polynomial. That is, p.coef(0) is the constant, p.coef(1) multiplies x,
p.coef(2) multiplies x^2, and so on. You will need to use a helper function, and the
helper function will need to remap the indices.

8. Add a constructor to cPolyFun that accepts as inputs a coefficient array and “x” values,
for example, cPolyFun([0 0 1], 1). Ordinarily the cPolyFun constructor
returns a cPolyFun object. Is that the correct return type for this constructor? If you
decide to return something other than a cPolyFun object, can you implement the
constructor? Try it and see if there are any showstoppers.

9. Create a class named cF2C and overload times so that the following command correctly
converts degrees F into degrees C:

 deg_c = [32 212] .* cF2C;

Is cF2C a functor? Does this syntax have any benefit vs. a function call?
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23

 

Protected Member Variables 
and Functions

 

In trying to bring MATLAB’s object-oriented capability in line with conventional object-oriented
theory, some areas are easy, some are difficult, and some are like trying to fit a square peg into a
round hole. Coercing MATLAB to supply protected visibility fits into the latter category. This is
mostly because MATLAB has no organic support for protected visibility. If you apply enough
pressure, you can push a square peg through a round hole. Similarly, with a reasonably small
increase in complexity, the group of eight can be extended to provide protected visibility. Every
class must first include a pair of private functions that support protected variables in the same way

 

get

 

 and 

 

set

 

 support public variables. Next, the child and its parents must exchange a set of
function handles corresponding to the set of member functions with protected visibility. The best
time to execute this exchange occurs during construction. Finally, the child’s member functions
must be able to locate and use the appropriate function handles.

 

23.1 HOW PROTECTED IS DIFFERENT FROM OTHER VISIBILITIES

 

Public and private visibilities enable a class to create an impregnable interface. Objects of the class
have access to both public and private members, but clients are restricted to public members only.
Introducing parent–child inheritance also introduces a level of visibility between public and private.
Protected visibility is the name for this middle ground where a child class has access but clients
do not. Visibility restrictions for public and private don’t change but the visibility of protected
members changes depending on the user. For a client, protected means the same as private; and
for a child, protected means the same as public. Here we lay out a prescription for protected
visibility and investigate its implementation. The implementation is difficult because it relies on
the correct organization of function handles across an inheritance hierarchy. Often it hardly seems
worth the effort. This is particularly true when you consider that concealed visibility already
provides much of the needed functionality and that protected visibility adds quite a lot of code and
complexity.

Currently, Class Wizard does not include the ability to build class hierarchies with protected
functions or protected variables. Even so, Class Wizard–generated files may be modified to include
some level of protected visibility. The classes implemented on the companion disk in

 

oop_guide/chapter_23

 

 provide a working example. The highlights are examined below. 

 

23.2 CLASS ELEMENTS FOR PROTECTED

 

Before we can design a solution for protected access, we need to understand what we are dealing
with. Some of the considerations include the following:

• Both member variables and member functions may have protected visibility.
• Multiple inheritance means a child may have more than one parent. Any parent may

define a protected member, and if more than one parent defines the same protected
member, there is ambiguity.
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• In a hierarchy with multiple levels of inheritance, any particular protected member may
be defined at any level. If more than one level defines the same protected member, there
is ambiguity.

• To a child, public and protected members should exhibit the same behavior. This means
the implementation strategy must consider both direct-link and non-direct-link protected
variables.

• Ideally, it would be impossible for a client to gain direct access to protected members.

For public variables, 

 

get

 

 and 

 

set

 

 represent an implementation strategy that already considers
issues related to multiple inheritance, multilevel hierarchies, and direct-link vs. non-direct-link
variables. We can avoid an entirely new design pattern by reusing this strategy. The implementation
for protected variables centers on two protected functions: 

 

pget

 

 and 

 

pset

 

. The contents of 

 

pget

 

and 

 

pset

 

 closely mimic the contents of 

 

get

 

 and 

 

set

 

, respectively. The differences are small and
include the following:

• A protected-variable block instead of a private-variable block
• No concealed-variable block
• A slice-and-forward block that calls 

 

pget

 

 or 

 

pset

 

 instead of 

 

get

 

 or 

 

set

 

23.2.1 P

 

ROTECTED

 

 F

 

UNCTIONS

 

 

 

AND

 

 A

 

DVANCED

 

 F

 

UNCTION

 

 H

 

ANDLE

 

 T

 

ECHNIQUES

 

MATLAB provides two built-in levels of visibility: public and private. Protected visibility is neither.
If we locate protected functions in the public area, they become part of the public interface. There
are other reasons why this location is a bad choice, but keeping the public interface simple is chief
among them. The only other choice is to locate protected functions in the private directory. Functions
located in the parent’s private directory are not usually available to the child; however, function
handles can be used to circumvent the usual restrictions.

One function-handle feature, often overlooked, is the relationship between a function handle
and the function search path. A function handle uses the function path that was in effect at the time
the handle was created, not at the time the handle is evaluated. For example, a parent class can
create a function handle to one of its private functions and pass the handle to a child. When the
child evaluates this handle, MATLAB executes the module located in the parent’s private directory.
The function handle already knows the path to its function, so it goes there with no exception.

 

23.2.2 P

 

ASSING

 

 P

 

ROTECTED

 

 H

 

ANDLES

 

 

 

FROM

 

 P

 

ARENT

 

 

 

TO

 

 C

 

HILD

 

A protected function-handle strategy hinges on one detail: passing an array of protected functions
from the parent to the child. The function used to pass the protected function-handle array must
be public, otherwise the child would not be able to call it. On the other hand, we don’t want to
use a public function because we don’t want to give clients an opportunity to access the protected
handle array. To avoid giving a client too many opportunities to grab the handle array, we will
return the protected handle array only during object construction. Code inside the constructor will
check a very strict set of conditions before populating the array. Returning the array from the
constructor requires a second output argument. The modified prototype is

 

function [this, handles] = constructor(varargin)

 

Since all current code expects the constructor to provide only one output, this change will not
trigger any errors. The commands in Code Listing 141 are also added to the end of the current
constructor. 

In Code Listing 141, line 6 assumes that Class Wizard created the child class so that the child-
class constructor calls each parent-class constructor from 

 

private/ctor_ini

 

. This allows the
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protected handle test to use the strings 

 

‘ctor_ini’

 

 and 

 

‘private’

 

. If the constructor is called
from any 

 

private/ctor_ini.m

 

, it is okay to return the set of protected function handles. This
assumption is the only place where this implementation is less secure compared to language-
enforced protected visibility. Lines 7–14 assign the function handles into the output argument.
Lines 7–12 find all handle references to 

 

pget

 

 and 

 

pset

 

 for parents of this class. Line 14 adds
references to this class’ 

 

pget

 

 and 

 

pset

 

 functions and adds all parent handles except 

 

pget

 

 and

 

pset

 

. This substitution must occur or we risk the possibility of sending the wrong slice to a parent
function. It is now up to the child-class constructor helper to call parent-class constructors with
two output arguments and save the protected function handles. For an example, see the code in

 

chapter_23/@cChild/private/ctor_ini.m

 

23.2.3 A

 

CCESSING

 

 

 

AND

 

 M

 

UTATING

 

 P

 

ROTECTED

 

 V

 

ARIABLES

 

From inside a member function we are already familiar with the use of 

 

get or set

 

 to access
or mutate public member variables. Protected variables require the same treatment except that

 

pget

 

 and 

 

pset

 

, respectively, substitute for 

 

get

 

 and 

 

set

 

. Following this approach, let’s use the
same indexing techniques for both public and protected variables. Doing so also allows us to reuse
large sections of 

 

get

 

 and 

 

set

 

 in the implementations of 

 

pget

 

 and 

 

pset

 

. The only significant
changes occur inside the parent slice-and-forward blocks. The implementation for the slice-and-
forward block inside 

 

pget

 

 is shown in Code Listing 142. The complete class implementations
can be found on the companion disk in the 

 

chapter_23

 

 directory. 
Many of the commands in 

 

pget

 

’s slice-and-forward block are identical to the commands
already detailed for 

 

get

 

. The first difference occurs in lines 11–13, where indices for the parent
handles to 

 

pget

 

 are found. Lines 11–12 use 

 

cellfun

 

 to loop through the handles in

 

Code Listing 141, Protected Function Modifications to the Constructor

 

1 if nargout == 2
2 stack = dbstack('-completenames');
3 caller = stack(end-1);
4 [call_path, call_name] = fileparts(caller.file);
5 [dc, private_name] = fileparts(call_path);
6 if strcmp(call_name, 'ctor_ini') && strcmp(private_name, 

'private')
7 % omit pget and pset handles for any parents
8 handle_str = cellfun(@func2str, 

this.m_protected_func_array, ...
9 'UniformOutput', false);
10 omit = [strmatch('pget', handle_str, 'exact')  ...
11 strmatch('pset', handle_str, 'exact')];
12 include = setdiff(1:numel(handle_str), omit);
13 % include pget and pset for this class
14 handles = {@pget; @pset; 

this.m_protected_func_array{include}};
15 else
16 handles = {};
17 end
18 end
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Code Listing 142, Parent Forward Inside Protected pget 

 

1 % parent forwarding block
2 if ~found
3 if nargout == 0
4 varargout = cell(size(this));
5 velse
6 varargout = cell(1, nargout);
7 end
8  
9 % get the indices of all parent pget functions they should 

be in the
10 % same order as parents in parent list.
11 handle_str = cellfun(@func2str, 

this(1).m_protected_func_array, ...
12 'UniformOutput', false);
13 pget_index = strmatch('pget', handle_str, 'exact');
14  
15 parent_name = parent_list';
16 for pk = 1:numel(parent_name)
17 try
18 parent = [this.(parent_name{pk})];
19 parent_pget_index = pget_ index(pk);
20 pget_func = this(1).m_protected_func_array 

{parent_pget_index};
21 [varargout{:}] = feval(pget_func, parent, index);
22 found = true; % catch will assign false if not found
23 do_sub_indexing = false; % assume parent did all sub-

indexing
24 break; % can only get here if field was found
25 catch
26 found = false;
27 err = lasterror;
28 switch err.identifier
29 case 'MATLAB:nonExistentField'
30 % NOP
31 otherwise
32 rethrow(err);
33 end
34 end
35 end
36 if do_assignin
37 parent = num2cell(parent);
38 [this.(parent_name{1})] = deal(parent{:});
39 end
40 end
41
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m_protected_func_array

 

 and turn them into equivalent strings. Line 13 then finds the
indices using 

 

strmatch

 

 with the 

 

‘exact’ 

 

option. During construction, as long as every parent
returns a handle to 

 

pget

 

, the indices in 

 

pget_index will line up with the parent classes returned
from parent_list. An improvement to this implementation would store the protected handles
as a persistent variable inside parent_list. That way, the handles and parent classes would
always be synchronized.

Lines 16–35 are similar to the parent-class loop in get. Instead of looping over the names
directly, line 15 gets the list of parent names and the loop beginning on line 16 uses indices. Line
18 uses dynamic field-name syntax to slice off the parent class and uses assignin to shove it
into parent. Lines 19 and 20 get the corresponding handle to pget from the protected function
array. Line 21 uses feval to call the parent version of pget, passing it both the parent class and
the index. Here is where the function-handle magic occurs. The fully qualified path to pget is
stored in the function handle. Since this path was established from inside the parent-class construc-
tor, the fully qualified path points to the parent-class private directory. After the function handle is
established, MATLAB does not reapply path search rules.

The call to pget in line 21 will either return a value or throw an error. If it returns a value,
the remaining lines in the try block set some logical flags and break out of the loop. As with get,
potential ambiguity is handled by keeping only the value from the first parent that provides one.
Also similar to get, if pget throws an error, the catch block in lines 25–34 checks the error and
either continues the parent-class loop or rethrows the error. Lines 36–39 are identical to those in
get.

Modifications to pset proceed along a similar path. First, copy set.m to pri-
vate/pset.m. The public-variable section becomes the protected-variable section, the concealed-
variable section is deleted, and the parent-forward block uses feval on each parent version of
pset. Code on the companion disk includes a full example.

23.2.4 CALLING PROTECTED FUNCTIONS

The parent-forward block in Code Listing 142 demonstrates the general procedure for calling
protected functions. First, find the index into this.m_protected_func_array that corre-
sponds to the desired function. As in the parent-forward code, converting handles into strings with
cellfun and then using strmatch to find candidate indices is a good idiom. Next, use feval*
to call the protected function. The example function, used later in the test drive, can be found in

/chapter_23/cChild/call_parent_protected.m

This public member function of cChild, calls the protected function located in

/chapter_23/cParent/private/protected_function.m

The potential for ambiguity enters into this general procedure because the strmatch command
may find the same protected function defined by more than one parent. One way to avoid this
problem is by not allowing the same protected function to be defined by more than one parent.
This approach can’t be universally applied because there are certain protected functions that require
the object as an input. If the class hierarchy supports object arrays, the same slicing issues we
encountered in public member functions also occur for protected functions. 

Recall that object slicing adds certain limitations to inheritance. Ideally, we should be able to
include a class, without modification, anywhere in a hierarchy. With scalar objects, we can achieve
this goal. With nonscalar objects, however, we are forced to include some additional functions.
Each child class needs to include a public slice-and-forward function for public member functions

*  Newer versions of MATLAB support a syntax that allows you to call the function without using feval. See help
function_handle for details.
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defined by the parent. The same rule applies to protected functions except that the function is placed
in the child’s private directory and is typically included in the list of protected function handles.
Dot member functions are exempt because pget already includes slice-and-forward code in the
parent-forwarding block.

23.3 TEST DRIVE

In this test drive, we make use of two classes in /chapter_23: cParent and cChild. After
Class Wizard generated the initial set of files, the constructors were modified to pass protected
handles from parent to child. The child class also includes three public member functions that
demonstrate accessing protected variables, mutating protected variables, and calling a protected
function. The test drive (Code Listing 143) demonstrates results from these functions. 

Code Listing 143, Parent Forward Inside Protected pget 

1 >> cd '/oop_guide/chapter_23'
2 >> set(0, 'FormatSpacing', 'compact')
3 >> clear classes; fclose all; close all force;
4 >>
5 >> child = cChild;
6 >> objectdirectory
7 cParent (2 instances)
8 cChild (2 instances)
9 >>
10 >> private_struct = builtin('struct', child);  % use only 

for debug
11 >> private_struct.m_protected_func_array
12 ans = 
13 @pget              
14 @pset              
15 @protected_function
16 >> 
17 >> functions(private_struct.m_protected_func_array{1})
18 ans = 
19 function: 'pget'
20 type: 'scopedfunction'
21 file: 'C:/oop_guide/chapter_23/@cParent/private/pget.m'
22 parentage: {'protected_function'}
23 >>
24 >> access_parent_protected(child)
25 ans =
26 NaN
27 >>
28 >> child = mutate_parent_protected(child, 'It Worked!');
29 >> access_parent_protected(child)
30 ans =
31 It Worked!
32 >>
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After changing directories and clearing the workspace, line 5 instantiates an object of type
cChild. Calling objectdirectory on line 6 shows us that the instantiation created two
cParent objects and two cChild objects. The local variable child contains one pair of
cParent and cChild objects, and the other objects are stored as persistent variables in the
constructor.

Lines 10–22 display some of the internal details and allow us to confirm that the construction
process worked as we expected. Line 10 uses the dangerous builtin command to return a copy
of the private structure. Lines 11–15 display the list of function handles passed into the child-class
constructor from the parent. This list resulted from code added to the end of /@cParent/cPar-
ent.m. Lines 17–22 provide more detail on the @pget handle. The important field to note is the
file field. When the handle is used, this is the module that will be executed; no function search
is involved. Use functions if you want to examine the other handles in the array.

Lines 24–35 use public member functions of cChild to demonstrate protected variable access,
protected variable mutation, and protected function execution. The protected variable is stored in
the cParent private structure, and the protected function is stored in the cParent private
directory. The techniques discussed in this chapter give cChild visibility into these otherwise
private members. Clients, however, do not have visibility into these private members. To demonstrate
their use, public member functions in cChild provide an interface to the protected members. 

Line 24 calls access_parent_protected, which uses pget to access the direct-link
protected variable named protected_var. To get a feel for the way the child forwards the
request to the parent, set a break point inside access_parent_protected and single-step
through the various functions. The value shown in line 26 is the initial value assigned to
m_protected_var in ctor_ini. Line 28 changes the value from NaN to ‘It Worked!’
by calling mutate_parent_protected. Lines 29–30 confirm the change. The command in
line 33 forwards the input to /@cParent/private/protected_function.m, where it is
simply echoed to the output. The result on line 35 is a direct result of this behavior.

23.4 SUMMARY

The techniques in this chapter can be used to give member variables and member functions protected
visibility. For variables, using protected visibility seems very natural because pget and pset
access and mutate protected variables the same way get and set access and mutate public
variables. While we didn’t demonstrate the use of helper functions and protected variables, protected
helper function syntax is the same as their public counterparts. This is true for the functions
themselves and for the case commands inserted in pget and pset. The complexity involved in
accessing and mutating the private variables corresponding to each protected-variable case is
encapsulated inside pget and pset. Potential ambiguity in protected variables is also manageable
because a set of rules can be established in advance. The implementation for protected member
variables is a good fit. 

Protected member functions, on the other hand, have several issues that are more difficult to
resolve. The first issue involves slicing with scalar versus nonscalar objects. This issue comes down
to the fact that MATLAB will not slice a nonscalar object. This limitation forces us to face some
difficult trade-offs. If we want to take advantage of both inheritance and nonscalar objects, child-
class functions must be responsible for slicing. While this issue affects both public and protected
functions, it is more critical for protected functions because MATLAB does not automatically select
a function based on type. After slicing, we are responsible for matching the slice with the correct

33 >> call_parent_protected(child, ['Copies input to output'])
34 ans =
35 Copies input to output
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protected handle. The second issue involves ambiguity. Adopting the same first-found rule used for
protected variables is simple; however, it isn’t always the correct choice. At the risk of making a
complex implementation even more complicated, we could design and implement a way to disam-
biguate the calls.

It has been a long time since we last added pieces to our object-oriented puzzle. The last time
we added a piece, the puzzle was almost complete. Since then, we have investigated object-oriented
elements and investigated various techniques that would not have been possible without the final
pieces. Your creativity and imagination complete the puzzle shown in Figure 23.1. Writing software
is inherently a creative process, and inventing meaningful object-oriented relationships takes a great
deal of imagination. I hope that the implementation mechanics discussed in this book help you
focus less on writing code and more on creating solutions.

23.5 INDEPENDENT INVESTIGATIONS

1. Instead of storing protected function handles in the private structure, store them as a
persistent variable inside parent_list.m. Would it also be a good idea to
convert the function handles to strings and store the array of strings with the handles? 

2. Add a protected dot member function to cParent and try to access it from inside a
cChild member.

3. Try to obtain the list of protected function handles without actually inheriting cParent.
Can you do it without defining a class? What additional checks could you add to the
constructor to close the holes you find?

FIGURE 23.1 The complete picture.
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Potpourri for $100

 

Focusing on the big issues has allowed some smaller items to go unnoticed. In this chapter, we try
to correct that situation by mentioning a few of the more obscure commands and techniques. The
fact that these topics weren’t included in the examples implies nothing about their general impor-
tance. What it does imply is that MATLAB includes object-oriented tools and capability beyond
what we have already discussed. Some of the topics are only useful during debug, while others are
only useful under very specific conditions. The brief discussion for each topic provides a starting
point. The help browser and other third-party resources help fill in the gaps.

 

24.1 A SMALL ASSORTMENT OF USEFUL COMMANDS

 

During development and debug, it is often convenient to observe features associated with classes
and objects. Class Wizard–generated classes provide some online help by calling 

 

get

 

 and 

 

set

 

with one argument. From time to time, we have also used 

 

builtin

 

 with 

 

‘struct’

 

 to examine
the values in otherwise inaccessible private variables. The commands that follow are a few more
that might be useful. The help browser offers additional detail on most of them. 

 

24.1.1

 

OBJECTDIRECTORY

 

The 

 

objectdirectory

 

 command may be used to obtain a full accounting of all objects in the
workspace. It is different from 

 

whos

 

 because it also accounts for objects stored in global variables,
in persistent variables, and in an inheritance hierarchy. As a side note, 

 

objectdirectory

 

 also
accounts for Java objects. Apparently, 

 

objectdirectory

 

 takes no input arguments and can
return only one output. The output is a structure with element names corresponding to instantiated
types and element values corresponding to the number of instances. Called with no output argument,

 

objectdirectory

 

 will display types and instances even if you include a trailing semicolon.
Above, I use the word “apparently” because there is no help for 

 

objectdirectory

 

. In
trying to locate the command, MATLAB generates the following response:

 

>> which objectdirectory

built-in (undocumented)

 

24.1.2

 

METHODS

 

 

 

AND

 

 

 

METHODSVIEW

 

The 

 

methods

 

 command returns a complete list of an object’s public member functions. Even
when the public member functions are spread over several directories, 

 

methods

 

 finds them all.
The input can be the name of a class or an instantiated object, and the output is a cell array of
strings, for example:

 

star_methods = methods(‘cStar’)

star_methods = methods(star)

 

Adding the string 

 

‘-full’

 

 as a second argument causes methods to include inheritance infor-
mation along with the function names. See 

 

help methods

 

 for more information. This option
is useful for scalar-object hierarchies where member functions exist only in the appropriate parent
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class. Slice and forward functions in nonscalar hierarchies will cause 

 

methods

 

 to return an
incomplete picture of inheritance.

The 

 

methodsview

 

 command is a graphical version of 

 

methods

 

. Instead of returning a cell
array, 

 

methodsview

 

 opens a window and displays function information. The 

 

methodsview

 

display is tailored for Java objects but the command will also work for MATLAB objects. See

 

help methodsview

 

 for more information. 

 

24.1.3

 

FUNCTIONS

 

The 

 

functions

 

 command returns detailed information on a function handle. Many advanced
object-oriented techniques use function handles, and the information provided by 

 

functions

 

 is
useful during development. The input is a function handle and the output is a structure with fields
that list a handle’s 

 

name

 

, 

 

type

 

, 

 

path

 

, and 

 

parentage

 

. See 

 

help functions

 

 for more
information. When the 

 

path

 

 element contains a fully qualified module name, the search path is
not reevaluated when the handle is used. When the path element is empty or contains something
other than a fully qualified name, search path conditions at the time of 

 

feval

 

 are used.

 

24.2 OTHER FUNCTIONS YOU MIGHT WANT TO OVERLOAD

 

Along with the group of eight, concatenation, and overloaded operators, there are a few other built-
in overload candidates. The first topic discusses a technique you can use to tailor the behavior of
any function normally associated with a built-in type. The fact that MATLAB treats built-in types
as objects makes this possible. The remaining topics discuss several special-purpose functions that
support the implementation of unique, narrowly focused classes.

 

24.2.1 F

 

UNCTIONS

 

 

 

FOR

 

 B

 

UILT

 

-

 

IN

 

 T

 

YPES

 

If you search the directory tree where MATLAB is installed, you will find many directories that
begin with 

 

@

 

. All of these are class directories. There are two notable features of these directories.
The first notable feature is the number of class directories with the same name. §2.2.1.1 discussed
the use of multiple class directories, and between then and now it wasn’t discussed further. By
now, you have developed a very good understanding of how MATLAB orders the function search
path. With multiple class directories, the search order is essentially the same except that more than
one class directory must be included. Since class directories are not included on the path, their
order is determined based on the order of the directory that contains the class directory. A class
directory in 

 

pwd

 

 has higher priority than a class directory in a directory on the path. The example
below capitalizes on this behavior.

The second notable feature is the fact that all standard built-in types appear to be associated
with class directories. The list includes 

 

/@double

 

, 

 

/@char

 

, 

 

/@logical

 

, and all the rest. Does
this mean that all MATLAB data types are objects? It’s a question with no easy answer; however,
in at least one important way they act like objects: the function search path includes the class
directories associated with built-in types. Searching proceeds the same as if built-in types were
objects; the type of a function’s leftmost input argument determines the class directory searched.
This behavior makes it very easy to redefine the behavior of almost any built-in function. The
following example demonstrates when redefinition might be useful.

Suppose you are plotting the result of a long run and see the following warning,

 

Warning: Imaginary parts of complex X and/or Y arguments 
ignored.
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Your software isn’t designed to use complex numbers, so there is an error somewhere. You
are reasonably sure the square root of a negative number is causing the problem. It would be
time-consuming to find the error by setting break points on every 

 

sqrt

 

 call, and stepping through
line by line is out of the question. Instead, you can temporarily redefine the behavior of 

 

sqrt

 

 so
that in addition to performing the square root, it uses 

 

isreal

 

 to inspect the result. Create a

 

@double

 

 directory in 

 

pwd

 

 and add to it the 

 

sqrt.m

 

 function shown in Code Listing 144. Rerun
the program and line 4 will display the call stack every time the square root result is complex. 

In an equally important way, built-in types don’t act like objects: built-in types can’t be used
as a parent.

 

24.2.2

 

SUBSINDEX

 

The built-in versions of 

 

subsref

 

 and 

 

subsasgn

 

 call 

 

subsindex

 

 when an object is used as
an array-reference index or as a cell-reference index. For example, if 

 

x

 

 is an array of doubles and

 

k

 

 is an object, the syntax 

 

x(k)

 

 attempts to convert 

 

k

 

 into an integer index by calling 

 

subsindex

 

.
There are two odd things about 

 

subsindex

 

. At least in versions 6.5, 7.0, and 7.1, the input
is odd because the only argument passed in is the object. Without access to both the object and
the array being indexed, it is difficult to create index values compatible with the size of the array
being indexed. Since the built-in versions of 

 

subsref

 

 and 

 

subsasgn

 

 appear to pass in only one
argument, 

 

subsindex is not very useful for indexing built-in types. The output required by the
built-in versions of subsref and subsasgn is also odd because the first index is zero instead
of one.

Another way to use subsindex is to create a pair of dependent classes. One class is an array
class and the other is a so-called iterator class. The classes depend on one another because the
array class needs an iterator object as the array-reference index. Inside the array-reference case,
the command 

array_index = subsindex(index.subs, this);

can be used to calculate the correct integer index. Here the inputs aren’t odd because both the
iterator object and the object being index are passed into subsindex. The output isn’t odd because
subsindex is designed to return a suitable value.

24.2.3 ISFIELD

A close relative of fieldnames is isfield. With respect to objects, testing for the presence
or absence of a public member variable should never be necessary. Objects of a particular type
always have the same set of public variables, and either class or isa may be used determine
the type. Even so, you sometimes need to yield to client demand. If you want to enhance an object’s
structure-like interface, overload isfield. 

Code Listing 144, Redefined Behavior for sqrt 

1 function x = sqrt(x)
2 x = builtin('sqrt', x);
3 if ~isreal(x)
4 dbstack
5 end
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24.3 SUMMARY

Contrary to much of the conventional wisdom, MATLAB has a wealth of object-oriented features
and commands. It is obvious from the help text that certain features are intended for Java object
support; however, they work just as well with MATLAB objects. It is also interesting to note the
current similarity between built-in types and user-defined types. The number of object directories
in MATLAB continues to grow with every new release. There is no reason to believe that this trend
will change. Even though it is not universally recognized as such, MATLAB is a very complete,
extremely capable, object-oriented programming environment. The expertise required to create a
robust MATLAB class and run-time concerns are partially to blame for the lack of recognition. By
capturing much of the required expertise, Class Wizard goes a long way toward making the
implementation of MATLAB classes much less of a burden. The use of vectorized, nonscalar objects
and object-oriented designs tailored to MATLAB’s peculiarities answers many of the run-time
complaints. For the future, we can expect that MATLAB’s organic support for object-oriented
programming will increase. This will allow more users to migrate toward object-oriented techniques
and increase the chance for internal changes that will improve run time.

24.4 INDEPENDENT INVESTIGATIONS

1. Change into the chapter_18 directory and instantiate a cStar object. Enter the
objectdirectory command and observe the output. Call methods and meth-
odsview on the cStar object and observe the output.

2. Look at the difference between functions(@draw) and functions(@ver). Both
handles are simple, but for one the file element is empty. What does that mean?

3. Instantiate a cStar object and a cDiamond object. Save the function handle for @draw
in a variable, for example, draw_func = @draw. Use this handle to draw both shapes,
for example, star = feval(draw_func, star). If the function path is stored
with the handle, how can the same handle be used to call member functions from different
classes? Does the output from functions(draw_func) provide any clues?

4. In the §24.2.1 example, suppose that sqrt isn’t the source of the complex value. What
other functions can produce a complex value? What about x^(1/2) and x.^(1/2)?
Can you redefine the behavior of these operators so that they too check for a complex
result? (Hint: help ops.)

5. In the @double directory, temporarily redefine rand so that instead of returning random
numbers from 0 to 1, it always returns 0.5. Can you think of a debugging scenario where
this might be useful?

6. Build a simple class named cIterator and overload subsindex. Inside the over-
loaded subsindex function, display the value of nargin and add a keyboard
command. Enter the following commands and confirm that nargin is one and that the
only input is the cIterator object.

>> x = 1:5;

>> iter = cIterator;

>> x(iter);
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