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Preface

This book is written for the applied scientist and engineer who whants or
needs to learn about a subject but is not an expert in the specific field. It is
also written to accompany a first graduate course in digital signal processing.
In this book we have selected the field of adaptive filtering, which is an
important part of statistical signal processing. The adaptive filters have
found use in many and diverse fields such as communications, control, radar,
sonar, seismology, etc.

The aim of this book is to present an introduction to optimum filtering
as well as to provide an introduction to realizations of linear adaptive filters
with finite duration impulse response. Since the signals involved are ran-
dom, an introduction to random variables and stochastic processes are also
presented. ,

The book contains all the material necessary for the reader to study its
contents. An appendix on matrix computations is also included at the end
of the book to provide supporting material. The book includes a number of
MATLAB® functions and m-files for practicing and verifying the material in
the text. These programs are designated as Book MATLAB Functions. The
book includes many computer experiments to illustrate the underlying the-
ory and applications of the Wiener and adaptive filtering. Finally, at the end
of each chapter (except the first introductory chapter) numerous problems
are provided to help the reader develop a deeper understanding of the
material presented. The problems range in difficulty from undemanding
exercises to more elaborate problems. Detailed solutions or hints and sug-
gestions for solving all of these problems are also provided.

Additional material is available from the CRC Web site, www.crc-
press.com. Under the menu Electronic Products (located on the left side of
the screen), click Downloads & Updates. A list of books in alphabetical order
with Web downloads will appear. Locate this book by a search or scroll down
to it. After clicking on the book title, a brief summary of the book will appear.
Go to the bottom of this screen and click on the hyperlinked “Download”
that is in a zip file.

MATLABY is a registered trademark of The Math Works, Inc. and is used
with permission. The Math Works does not warrant the accuracy of the text
or exercises in this book. This book’s use or discussion of MATLAB® software
or related products does not constitute endorsement or sponsorship by The



Math Works of a particular pedagogical approach or particular use of the
MATLAB® software.
For product information, please contact:

The Math Works, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com
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chapter 1

Introduction

1.1 Signal processing

In numerous applications of signal processing and communications we are
faced with the necessity to remove noise and distortion from the signals.
These phenomena are due to time-varying physical processes, which some-
times are unknown. One of these situations is during the transmission of a
signal (message) from one point to another. The medium (wires, fibers,
microwave beam, etc.), which is known as the channel, introduces noise and
distortion due to the variations of its properties. These variations may be
slow varying or fast varying. Since most of the time the variations are
unknown, it is the use of adaptive filtering that diminishes and sometimes
completely eliminates the signal distortion.

The most common adaptive filters, which are used during the adaptation
process, are the finite impulse response filters (FIR) types. These are prefer-
able because they are stable, and no special adjustments are needed for their
implementation.

The adaptation approaches, which we will introduce in this book, are:
the Wiener approach, the least-mean-square algorithm (LMS), and the
least-squares (LS) approach.

1.2 An example

One of the problems that arises in several applications is the identification
of a system or, equivalently, finding its input-output response relationship.
To succeed in determining the filter coefficients that represent a model of
the unknown system, we set a system configuration as shown in Figure 1.2.1.

The input signal, {x(n)}, to the unknown system is the same as the one
entering the adaptive filter. The output of the unknown system is the desired
signal, {d(n)}. From the analysis of linear time-invariant systems (LTI), we
know that the output of linear time-invariant systems is the convolution of
their input and their impulse response.
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Unknown d(n e(n)
x() system (filter) ) >
h _

Adaptive y(n)

filter (system)
w

e(n) =d (n} ~y(n)

Figure 1.2.1 System identification.

Let us assume that the unknown system is time invariant, which indi-
cates that the coefficients of its impulse response are constants and of finite
extent (FIR). Hence, we write

N-1
d(n) = th x(n—k) (1.2.1)

The output of an adaptive FIR filter with the same number of coefficients,
N, is given by

N-1
y(n) = Zwkx(n —k) (1.2.2)
k=0

For these two systems to be equal, the difference e(n) = d(n) — y(n) must be
equal to zero. Under these conditions the two sets of coefficients are equal.
It is the method of adaptive filtering that will enable us to produce an error,
e(n), approximately equal to zero and, therefore, will identify that w"s = h,s.

1.3 Outline of the text

Our purpose in this text is to present the fundamental aspects of adaptive
filtering and to give the reader the understanding of how an algorithm, LMS,
works for different types of applications. These applications include system
identification, noise reduction, echo cancellation during telephone conver-
sation, inverse system modeling, interference canceling, equalization, spec-
trum estimation, and prediction. In order to aid the reader in his or her
understanding of the material presented in this book, an extensive number
of MATLAB functions were introduced. These functions are identified with
the words “Book MATLAB Function.” Ample numbers of examples and
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figures are added in the text to facilitate the understanding of this particular
important signal processing technique. At the end of each chapter, except
this introductory chapter, we provided many problems and either complete
solutions or hints and suggestions for solving them.

We have tried to provide all the needed background for understanding
the idea of adaptive filters and their uses in practical applications. Writing
the text, we assumed that the reader will have knowledge at the level of a
bachelor’s degree in electrical engineering. Although only a small amount
of new results is included in this text, its utility of the presented material
should be judged by the form of presentation and the successful transferring
of the fundamental ideas of adaptive filtering and their use in different areas
of research and development. !

To accomplish the above mentioned goals, we have started introducing
digital signals and their representation in the frequency domain and z-transform
domain in Chapter 2. Next, we present in block diagram form the three
fundamental discrete systems: finite impulse response (FIR), infinite impulse
response (IIR), and the combined system known as the autoregressive mean
average (ARMA).

Since most of the input signals in applications of adaptive filtering are
random signals, we introduce the notion of random variables, random
sequences, and stochastic processes in Chapter 3. Furthermore, we introduce
the concepts, and the approaches of finding the power spectral density of
random signals.

Chapter 4 develops the foundation for determining minimum mean-square
error (MSE) filters. The chapter introduces the Wiener filter, and the
“bowl-shaped” error surface. The Wiener filter is also used in a special
configuration named self-correcting filtering.

Since the magnitude of the difference between the maximum and min-
imum value of the eigenvalues of the correlation matrix plays an important
role in the rate of convergence of adaptation, Chapter 5 introduces the theory
and properties of the eigenvalues and the properties of the error surface.

Chapter 6 introduces the following two gradient search methods: the
Newton method and the steepest descent method. A derivation of the con-
vergence properties of the steepest descent method is presented, as well as
the valuable geometric analogy of finding the minimum point of the
“bowl-shaped” error surface.

Chapter 7 introduces the most celebrated algorithm of adaptive filtering,
the LMS algorithm. The LMS algorithm approximates the method of steepest
descent. In addition, many examples are presented using the algorithm in
diverse applications, such as communications, noise reduction, system iden-
tification, etc.

Chapter 8 presents a number of variants of the LMS algorithm, which
have been developed since the introduction of the LMS algorithm.

The last chapter, Chapter 9, covers the least squares and recursive least
squares signal processing.

Finally, an Appendix was added to present elements of matrix analysis.



chapter 2

Discrete-time signal
processing

2.1 Discrete-time signals

Discrete-time signals are seldom found in nature. Therefore, in almost all cases,
we will be dealing with the digitization of continuous signals. This process will
produce a sequence {x(nT)} from a continuous signal x(f) that is sampled at
equal time distance T. The sampling theorem tells us that, for signals that have a
finite spectrum (band-limited signals) and whose highest frequency is @y
(known as the Nyquist frequency), the sampling frequency @, must be twice as
large as the Nyquist frequency or, equivalently, the sampling time T must be
less than one half of its Nyquist time, 27/ wy. In our studies we will consider
that all the signals are band-limited. This is a reasonable assumption since we
can always pass them through a lowpass filter (pre-filtering). The next section
discusses further the frequency spectra of sampled functions.

Basic discrete-time signals

A set of basic continuous and the corresponding discrete signals are included
in Table 2.1.1.

Table 2.1.1 Continuous and Discrete-Time Signals

Delta Function

8(t)=0 120
jf S(tydt =1

1 n=0
S(nT)=
0

n+0

(Continued)
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Table 2.1.1 Continuous and Discrete-Time Signals (Continued)

Unit Step Function

1 t20
ut) =
{O t<0
1 n=20
u(nT) =
0 n<0

The Exponential Function

x(F) = e *u(h)

x(nT)=e ™ umT) = (e Y u(nT) = b"u(nT)

2.2 Transform-domain representation
of discrete-time signals
Discrete-time Fourier transform (DTFT)

Any non-periodic discrete-time signal x(t) with finite energy has a discrete-time
Fourier transform (DTFT), which is found by an approximation of the Fourier
transform. The transform is found as follows:

X" = F{x(nT)} = f " x(te Tt = Em f " x(t)dt
oo nT-T
e (2.2.1)
= T 2 x(nT)eAj(onT

where the exact integral from #T - T to »T has been replaced by the
approximate area T x x(nT). When T = 1, the above equation takes the
form

X(e”) = 2 x(n)e 7" (2.2.2)

H=—00

The relation X(e/®**?) = X(e/¢/")= X(¢/°) indicates that the DTFT produces
spectra that are periodic with period 2.

Example 2.2.1: Plot the magnitude and phase spectra for the time func-
tion x(n) = 0.9"u(n).
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Solution: The DTFT of x(n) is given by

Ue®) = 20.9"3"""”

n=0

=) (0.9¢7) = B
e 1-0.9¢”

1
~ (1-0.9cosw)+70.9sinw

= 1 — A(a))e/"”(“’)

. i -1 i —
J(1-0.9cos )2 +(0.9sin )/ O9sne/1-05cosw)

A(w)=1/(J1-09cos)? + (0.9sin )?),
¢(w)=—tan" (0.9sin w/(1- 0.9 cos w))

where A(w) is the magnitude spectrum and ¢(®) is the phase spectrum. In the
development we used the Euler’s identity e”’= cos(6) £ jsin(8). These two
spectra are shown in Figure 2.2.1. The plots are shown only for the period
- m <w <, which is the standard presentation of the spectra for digital signals.

10

A(w)
e [o]

&)
T

LO
|
8]
{
[\
|
—
g of
—
[\~
w
W

—
o
fad

9 {w)
[l

—4 -3 -2 -1 0 1 2 3 4
(b)

Figure 2.2.1 Nlustration of Example 2.2.1.
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The discrete Fourier transform (DFT)

The N-point discrete Fourier transform (DFT) of a finite signal x(f) sampled
at times T apart is given by

N-1 .27
X[kz—N’;):sz(nT)e’ N k=012, N-1 (2.2.3)

n=0

The inverse DFT is given by

N-1 on
x(nT)=~A§—TZX(k%T”—)e’}N n=0,1,2,--,N-1 (2.2.4)
k=0

For T =1, the above equations become

AR - -2k
X[kﬁ]:;x(n)e NY k=12, ,N-1

(2.2.5)

N-1
k=

2r /‘k%n
x(m= Yy X k?\f e’ n=1,2,--,N-1
Q

If we replace k in (2.2.5) by k + N we find that X(k) is periodic with period
N. Similarly, if we introduce n + N instead of n in the same equation, we
find that x(#) is also periodic with period N. This indicates that the DFT is
associated with periodic sequences in both time and frequency domain. To
obtain the DFTI of a sequence and the inverse DFT (IDFT), we use the
following MATLAB functions:

X=fft (x,N);
x=1fft (X,N};

Xis an N-point sequence (vector) and x is the input time sequence (vector).
The middle point N/2 of X is known as the fold-over frequency. Plotting X
vs. frequency (vs. k27m/N), where 27/N is the bin frequency, we find that 7
is the middle point and the frequency spectrum from 7 to 27 is a reflection
of the spectrum from 0 to #. Similarly we find that z/T is the fold over
frequency when T is different than one. This indicates that to approximate
the spectrum of a continuous signal close enough, we must use sampling
time T that is very small.

Example 2.2.2: Find the DFT of the signal x(f) = exp(-t)u(t).
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Solution: First we observe that we cannot take the DFT of the signal
from t = 0 to infinity. Because of this limitation, let us find the DFT of the
signal from t = 0 to t = 4 and with sampling time T =1 and T = 0.5. The
results will be compared with the exact FT of the signal. The FT of the signal
is given by

X(w) = J: exp(—H)u(t) exp(—jort)dt = JON exp(~(1+ jo))dt

[exp(=(1+ jo)t)[]

T —(1+jo)
_ 1 (0-1]= 1 _ 1 ) 2 A(g)e@
1+jw 1+jo  (1+o*)"?

where the polar form of the complex variable 1+ j@ =+/1> + " exp[jtan™ (%)]
was used. To find the DFT of the signal for T = 1, we used the following
Book MATLAB program:

t=0:1:4;

x=exp(-t);

dftxl=fft(x,32); % asked for 32 spectrum bins, MATLAB will
$pad 32-5 zeros the vector x;

w=0:2*pi/32:2*pi-(2*pi/32);

subplot (211) ; stem(w, abs (dftxl)) ;

FT1l=1./sqrt{(14w.”2);hold on;stem(w,abs(FT1), 'filled');

xlabel ("\omega') ;ylabel ('Magnitudes of FT and DFT');

title('(a)');axis ([0 2*pi 0 2]);legend('DFT','FT');

Next, we used the same Book MATLAB program but with a sampling
time T =1/2. Hence, the following changes were introduced into the program:

nt=0:0.5:4;

x=exp(-nt) ;

dftx2=0.5*fft(x,32);

w=0:4%pi/32:4%pi- (4*pi/32);

subplot (212) ;stem(w, abs (dftx2) ) ;

FT2=1./sqgrt(l+w."2);

hold on;stem{w,abs(FT2), ' 'filled');

xlabel ('\omega') ;vlabel ('Magnitudes of FT and DFT');
title('(b)');axis([0 4*pi1 0 1.51);legend('DFT', 'FT');

Figure 2.2.2a indicates the following: (a) The amplitude of the FT of
the continuous signal is constantly decreasing as it should be. (b) The
amplitude of the DFT of x(t), for the range 0<f<4 has a folding fre-
quency 7/1 (T =1 in this case). (c) The approximation by the DFT to the
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—© DFT

=
[
- D -—e
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Figure 2.2.2 Illustration of Example 2.2.2.

exact spectrum is up to the folding frequency. (d) For this set of condi-
tions there is a considerable difference in the two spectra. (e) If the DFT
command was fft(x,64), we would have found that the total points for
the same frequency range would have been twice as many but the
accuracy would have remained the same. (f) If, however, we had
increased the time range greater than 4, then the accuracy would have
improved.

Figure 2.2.2b shows improvement to the accuracy of the spectrum
due to decreasing of the sampling interval to T = 0.5 (increasing the
sampling frequency, o, = 27/ T). If, in addition, we had increased the time
range greater than 4, the approximation would have been even better.
However, since the largest frequency of this signal is infinite, no finite
value of T would have been able to produce the exact spectrum. If, on
the other hand, we had band-limited signal with its largest frequency wy
(Nyquist frequency), then we would have been able to sample the time
function at twice its Nyquist frequency, and the two spectra would have
been identical.
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Note that, although the spectrum of the continuous signal is continuous,
we have only plotted the values of the continuous spectrum at the same
frequency bins as the discrete one.

2.3 The Z-Transform

The z-transform of a sequence is a transformation of a discrete-time
function from its time domain to its frequency domain (and/or
z-domain). It is also a powerful tool to study linear time-invariant discrete
systems. The z-transform is defined by the following equation (see also
Problem 2.3.1):

X(z) = Z{x(n)} = Z X(n)z" (2.3.1)

The above equation and its inverse constitute a pair. However, when the
inverse of the transformed function is needed, we will use tables.

Example 2.3.1: Find the z-transform of the function x(n) = 0.9"u(n).

Solution: The z-transform is given by

o0

X(z) = Z 0.9"z" = Z (0.927)" =1+0.9z7" +(0.92 12 +... =

n=0 n=0

N
1-0.9z7
(2.32)

where we used the geometric series property (1 + x + x>+ ...) =1/(1 — x) if
Ixl < 1. For the sequence to be summed, the following inequality must be
satisfied

09z <1 or lzl>09

The absolute value of z is the distance from the origin of the complex plane
to a circle on the same plane with radius |z1. The whole region [z 1> 0.9 of
the z-plane for this example is known as the region of convergence (ROC).
The ROC is important if we are asked to find the inverse z-transform by
integration in the complex plane. If we set z = exp(jw) in (2.3.1), we obtain
the DTFT for the time function x(3).

There exists a family of z-transforms for which X(z)’s are rational
functions of z or, equivalently, z7. The roots of the numerator and denom-
inator of a rational function are known as the zeros and poles, respectively.
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Table 2.3.1 Properties of the Z-Transform

Property Time domain Z-domain
Notation x(n) X(2)
x,(n) X2
X,(1) Xy(n)
Linearity ax,(n)+bx,(n) aX,(zH+bX(z)
Time shifting x{n—k) zkX(z)
Scaling arx(n) X(a1z)
Conjugation x*(n) X*(z*)
Differentiation nx(n) —z(dX(z)/dz)
Convolution x(n)*h(n) X(z)H(z)
Initial value (if a sequence *(n,) = o X(Z)’Hw

is zero for n < ng)

Final value (if x(eo} exists) Yim x(n) = hIrll(l -z MX(z)

For example, the rational function in the above example has a zero at 0
and a pole at 0.9. The location of the poles and zeros in the complex plane
play an important role in the study of discrete signals and systems. Some
fundamental properties and some pairs of z-transforms are given in Table 2.3.1
and Table 2.3.2, respectively.

Table 2.3.2 Z-Transform Pairs

Time domain Z-domain ROC

&n) 1 all z

&n—k) zk all z
b4

u(n) 7-1 lzI>1
z

nu(n) (z—— l_)z fz1>1
z

a'u(n) - a fz1>a

z —_
cos(nawTyu(n) _ ZmzcoseT lzI>1

z*=2zcoswT +1

zsinwTl

z? —2zcoswT +1 lz1>1

sin(nl)u(n)

z
nau(n) —(z—a)z lzl>a
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2.4 Discrete-time systems

A discrete time-invariant system is a physical device or an algorithm that
transforms an input (or excitation) signal {x(n)} into another one, called the
output signal, {y(n)}. Every discrete system is defined by its response, known
as the impulse response /i(n) of the system, to a unit impulse input &n),
which is defined as follows:

1 n=>0
o(n)= (24.1)
0 nz0

The relationship that provides the output of a system, given its input,
is a mathematical relationship that maps the input to the output. This rela-
tionship is given by the convolution operation

y(n) = x(r) * h(n) = 2 x(mh(n—m)= 2 h(nt)x(n—m) (24.2)

m=—oo HI=—00

The above equation indicates the following operations required to find the
output y(n). (a) We select another domain m for x(n) and 4(n). (b) In this
domain, we represent one of the functions as it was in the # domain by
simply substituting each n with m. (c) We flip the other function in m domain
(see the minus sign in front of ) and shift it by 7. (d) Next, we first multiply
the two sequences term by term, as they were arranged by the shifting
process, and then add the results. (e) The result is the output of the system
at time . (f) We repeat the same procedure for all n’s and, thus, we find the
output for all times from minus infinity to infinity.

Example 2.4.1: Find the convolution of the following two functions:
fin) = u(n) and h(n) = a"u(n), lal< 1.

Solution: If we flip and shift the unit step function, we observe that when
n < 0, the two functions do not overlap and, hence, the output is zero.
Therefore, we find the output only if n is equal to or greater than zero. Hence,
(2.4.2) for this case takes the form

}/(n)=2u(n—m)a’”=Za'":1+a+a2+~-+a" 1

m=0 m=0

n+l

—a
1-a

where we used the formula for a finite geometric series. The step function
u(n — m) is zero for m > n and is equal to one for m<n.
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The two most important properties of the convolution operation are:

Linearity:

§(m) = (F()+ h(m) % y(n) = F(n) ¥ y(m) + h(m) () (2.4.3)

z-transform:
Z{f(n) = h(n)} = Z{h(n) * f(m)} = F(z)H(z) (24.4)

Transform-domain representation

Based on the above development, the output y(n) in the z-domain of any
system having impulse response k() and an input x(n) is given by

Y(z) = H(z)X(2) (2.4.5)

H(z) is known as the system function and plays a fundamental role in the
analysis and characterization of LTI systems. If the poles of H(z) are inside
the unit circle, the system is stable and H(¢/®) provides its frequency response.

A realizable discrete LTI and causal (its impulse response is zero for
n < 0) system can be represented by the following linear difference equation

q
y(n)+ ia(m)y(n —m)= Z b(m)x(n - m) (2.4.6)

m=0 m=0

To find the output of a discrete system, we use the MATLAB function

y=filter (b, a,Xx);%b=row vector of the b’'s; a=row vector of the a’s;
$x=row vector of the input {x(n)}; y=output vector;

Taking the z-transform of (2.4.6), and remembering that the transform
is with respect to n and that the functions k(.) and x(.) are shifted by n, we
obtain the following relation

q
: Y(z) 2z B(z)
—-m __ Z) _ m=0 _ z
H(=)= Zh(m)z “X@) " A)
m=0 1+ ia(m)z""

m=1

(24.7)

The above system is known as the Autoregressive Moving Average (ARMA)
system. If a’s are zero, then the system in time and in z-domain is given,
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respectively, by

q
y(m)= Y bm)x(n—m)

m=0

H(z)=B(z)

(2.4.8)

The above system is known as the Finite Impulse Response (FIR) or
nonrecursive. If the b’s are zero besides the b(0), then the system in time and
z-domain is given by

14
y(n)+ Y. almyx(n—m) = b(O)x(n)

HO=—3 T AG)
1+ 2 a(m)z™"

The above system is known as the Infinite Impulse Response (IIR) or

recursive.

Figure 2.4.1 shows the above three systems in their filter realization and
of the second order each. In this text we will be mostly concerned with the
FIR filters, since they are inherently stable.

y(n)
x(n) - R b(0) bO)x(n) /.

b(I)x(n-1)
x(n—1) b(1) t)
N
|
y £
B3
z! e
=y
x(n—-2) b(2)

Figure 2.4.1(a) FIR system.
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(n) y(n)
X{n b (O) @

Z—l

G) —aWym-D| \é
Z—l

=
I

2@y -2 ) =

Figure 2.4.1(b) IIR system.

x{(n)

y(n)
" b(o) ——(+ J (D -

b(1)x(n-1)

x(n-—-1)
Z
g\
O
I

x{n—2)

=
[
)
b(2) —a(2) |« ”
b(2)x(n-2)

-a(2)y(n—2)

(c)

Figure 2.4.1(c) ARMA system.
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Problems
2.2.1 Compare the amplitude spectrum at @ = 1.6 rad/s between the con-
ti.nl.JOus function x(t) = exp(~1tl} and DTFT of the same signal with sampling

interval T = 1sand T = 0.1s.

2.2.2 Repeat Problem 2.2.1 using the DFT. Assume the range for the DFT
is 6<t<6 ,and use sampling intervals T=1and T= 0.2 and @ = 7/2.
23.1 Find the z-transform of the functions (see Table 2.3.2): (a) cos(n@T)u(n);
(b) na"u(n)-

241 The transfer function of a discrete system is H(¢/”")=1/(1-¢ ") . Find

its periodicity and sketch its amplitude frequency response for T =1 and T
=1/2. Explain your results.

a+bz™l ez

2.4.2 Find the type (lowpass, highpass, etc.) of the filter H(z) = e

Hints-solutions-suggestions
2.2.1:

X(CO) = J. e'Meﬂ'wtdt _ j e—(ja)—l)fdt + J‘ e_(]'wﬂ)tdt

e 0

1 w1y 0 1 e
= = Jple-t —(jo+1)t
~(jo—-1) le , ] —(jo+1) le !
! ! 2 X(1.6)=-\2f2= 0.5618.

T jo-1 " (o) (+o?) 1416

= _1
X(TlT) — e’[”T‘ :X(ijT) = Tz E_MT‘E_/W'T - TZ e”Te‘fﬂmT

H=—co

+T e—nTe-—jmnT =-T+T (E—T+ju)T)n +T (E—T—ja)T)n =-T

T T 1-e e/ +1-e Tt
AT et —————=-T+T : :
1 _ E—Te]a)T 1 _ e—Te—/a)T 1_ e—Te]coT _ e—Te—]a;T + EQT

2-2¢7 . -
=T+T ¢ COSOT o116y = 07475, X(e**1) = 0.5635

1-2¢ " coswT +e 2!
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2.2.2:

Use the help of MATLAB for the frequency n/2. (a) T =1, n = —6:1:6; x =
exp(—abs(n)); X = 1*fft(x, 500). The frequency bin is 27/(500 — 1) and hence
k(27/500) = n/2, which implies that k = 125 and, hence, abs(X(125)) = 0.7674.
(b) Similarly, for T = 0.2 we find k = 25 and abs(X(125)) = 0.6194. The exact
value is equal to 2/(1 + (x/2)?) = 0.5768.

2.3.1:
— = ejan+ejan 1 ol ‘ 1 oo .
a cosnwlTz "=y — 7" == PO -yt 4~ T 51y
2 2 Ty e ey e
1 1 1 1 z? —zcos T
) jol -1 Ty el 2
21—z 2 e z" =2zcoswT +1
N N dz™" d d z e
b na"z" =Y a"——(-nz)=—z— Y a"z P =-z— =
) Zo z:;‘ dz e dz,zzo’ dz(zwj (z—a)
2.4.1:

By setting @=w+(27/T) we find that H(¢") is periodic with period 27/2.
From the plots of | H(¢/”") I we observe that the fold-over frequency is at 7/ T.

2.4.2:
All-pass



chapter 3

Random variables, sequences,
and stochastic processes

3.1 Random signals and distributions

Most signals in practice are not deterministic and can not be described by
precise mathematical analysis, and therefore we must characterize them in
probabilistic terms using the tools of statistical analysis.

A discrete random signal {X(n)} is a sequence of indexed random variables
(rv’s) assuming the values:

{x(0), x(1), x(2), ...} (3.1.1)

The random sequence with values {x(n)} is discrete with respect to sampling
index n. Here we will assume that the random variable at any time # is a
continuous function, and therefore, it is a continuous rv at any time n. This
type of sequence is also known as time series.

A particular rv, X(n), is characterized by its probability density function

(pdf) f(x(m))

oF (x(1))

fatm =" 0 (3.12)
and its cumulative density function (cdf) F(x (n))
x(n)
F(x(n)=p(X(n) < x(n)) = I fy(m)dy(n) (3.1.3)

19
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p(X(n) < x(rm)) is the probability that the rv X(») will take values less than or
equal to x(n) at time n. As the value of x(n) goes to infinity, F(x(n)) approaches
unity. Similarly, the multivariate distributions of rv’s are given by

Flx(ny), -+, x(n)) = p(X(n)) < x(n,), -, X(n,) < x(n,))

I F(x(n,), -, x(n,)) (3.1.4)
ox(n,) -+~ dx(n, )

fx(ny), -, x(m ) =

Note that here we have used a capital letter to indicate rv. In general, we
shall not keep this notation, since it will be obvious from the context.

To obtain a formal definition of a discrete-time stochastic process, we con-
sider an experiment with a finite or infinite number of unpredictable outcomes
from a sample space, 5(z, z,, ...), each one occurring with a probability p(z; ).
Next, by some rule we assign a deterministic sequence x(71, z; ), —o° <11 <e0, to
each element z; of the sample space. The sample space, the probabilities of each
outcome, and the sequences constitute a discrete-time stochastic process or random
sequence. From this definition we obtain the following four interpretations:

x(n,z) is an rv if n is fixed and z is variable.

x(1,z) is a sample sequence called realization if z is fixed and n is variable.
x(n,z) is a number if both n and z are fixed.

x(n,z) is a stochastic process if both n and z are variables.

Each time we run an experiment under identical conditions, we create
a sequence of rv’s {X(n)}, which is known as a realization and constitutes an
event. A realization is one member of a set called the ensemble of all possible
results from the repetition of an experiment.

Book MATLAB script file

To create a script file, we first create the file, as shown below, as a new
MATLAB file. Then we save the file named ‘realizations.m’, for example, in
the directory c:\aamatlab. When we are in the MATLAB command window,
we attach the above directory to MATLAB path using the following com-
mand: path(path,’c:\aamatlab’). Then the only thing we have to do is to
write: realizations and automatically the MATLAB will produce Figure 3.1.1,
which shows four realizations of a stochastic process with zero mean value.

$script file: realizations

for n=1:4

x{n,:)=rand(1,50)-0.5;%produces matrix x with 4 rows
%and 50 columns of zero mean white noise;

end;

m=0:49;

for i=1:4

subplot(4,1,1i);stem(m,x(i,:), 'k");%plots four rows of matrix x;
end;
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Figure 3.1.1 Four realizations of zero mean white noise.

Stationary and ergodic processes

It is seldom in practice that we will be able to create an ensemble of a random
process with numerous realizations so that we can find some of its statistical
characteristics, e.g., mean value, variance, etc. To find these statistical quan-
tities we need the pdf of the process, which, most of the time, is not possible
to produce. Therefore, we will restrict our studies to processes that are easy
to study and easy to handle mathematically.

The process that produces an ensemble of realizations and whose sta-
tistical characteristics do not change with time is called stationary. For exam-
ple, the pdfs of the rv’s x(n) and x(n + k) of the process {x(n)} are the same
independently of the values of 7 and k.

Since we are unable to produce ensemble averages in practice, we are left
with only one realization of the stochastic process. To overcome this difficulty
we assume that the process is ergodic. This characterization permits us to find
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the desired statistical characteristics of the process from only one realization
at hand. We refer to those statistical values as sample mean, sample variance, etc.

3.2 Averages

Mean value
The mean value or expectation value p, at time n of a random variable x(n)
having a pdf f(x(n)) is given by

p, = ELx(9) = [ x0 f(xm)x) (3:2.1)

—

where E{-} stands for expectation operator. We can also use the ensemble of
realizations to obtain the mean value using the frequency interpretation formula

N

. 1 _ o
M o= m{NZXi(n)} N = number of realizations (3.2.2)

i=1

where x,(n) is the i outcome at sample index n (or time #) of the i realiza-
tion. Depending on the type of the rv, the mean value may or may not vary
with time.

For an ergodic process, we find the sample mean (estimator of the mean)
using the time-average formula

fi= —zx(n) (3.2.3)

It turns out (see Problem 3.1.2) that the sample mean [ is equal to the
population mean and, therefore, we call the sample mean an unbiased estimator.

Correlation
The cross-correlation between two random sequences is defined by

1 ()= Elm), () = [ [ m ) xtom), ypxtddyn) (329
where the integrals are from minus infinity to infinity. If x(n) = y(n), the
correlation is known as the autocorrelation. Having an ensemble of realiza-

tions, the frequency interpretation of the autocorrelation function is found
using the formula

r (m,n)= g]lill {%in(m)xi(n)} (3.2.5)

Note that we use one subscript for autocorrelation functions. In case we have
cross-correlation we will use both subscripts.
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Example 3.2.1: Using Figure 3.1.1, find the mean for n = 15 and the
autocorrelation function for time difference of five, n =20 and n = 25.

Solution: The desired values are

4

1 1
. = szl_(w) =, (-045+0.1+02-01)=0.05
i=1
4

r (20,25) = ini(ZO)xiQS) = %[(— 0.4)(0.2) + (~0.1) (0.45) +(0.25)(0.2)

i=1

+(~0.45)(-0.3)] = 0.0150

Because the number of realizations is very small, both values found above
are not expected to be accurate.

Figure 3.2.1 shows the mean value at 50 individual times and the
autocorrelation function for 50 differences (from 0 to 49) known as lags.

Bl T
P L

-1 ; ' -0.1 L L
0 20 40 60 0 20 40 60

Mean of 10 realizations Mean of 400 realizations

Autoc. for 10 realizations Autoc. for 400 realizations

Figure 3.2.1 Means and autocorrelations based on frequency interpretation.
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These results were found using the MATLAB function given below. Note
that as the number of realizations increases, the mean tends to zero and the
autocorrelation tends to a delta function, as it should be, since the random
variables are independent (white noise).

Book MATLAB function to find the mean and autocorrelation function using
the frequency interpretation formula:

function[mx, rx]=aameanautocensemble (M, N)

$function{mx, rx]=aameanautocensenmble (M, N) ;

swe create an MxN matrix;M=number of realizations;
gN=number of time slots;easily modified for other types
%o0f pdf's;

x=randn (M, N) ; $randn=gives Gaussian distributed white noise
mx=sum(x,1l)/M;%with zero mean;sum(x,l)=sums all the rows;
for i=1:N %sum(x,2)=sums all the columns;
rx(i)=sum(x(:,1).*x(:,1))/M;

end;

To find the sample autocorrelation function from one realization we can
use the formula

N1
Z x(mx(n+m) m=0,1,-- ,N-1 (3.2.6)

n=0

1
N=|m

F(m)=

The absolute value of m ensures the symmetry of the sample autocorrelation
function at n = 0. Although this formula gives an unbiased autocorrelation
function, it sometimes produces autocorrelation matrices (discussed below),
which do not have inverses. Therefore, it is customary in practice to use any
one of the biased formulas

N-Jm-1

r(m):% z x(n)x(n+|m1) 0<m<N-1

or (3.2.7)
r(m) = %;x(n)x(n— m) 0<m<N-1

Book MATLAB function to find the unbiased autocorrelation function:

function|[rl=aasampleunbisedautoc (x, 1g)
%this function finds the unbiased autocorrelation function
%from 0 to lag lg;it is recommended that lg is about 20-30% of N;
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N=length(x) ; ¥x=data;
for m=1l:1g

for n=1:N+1-m

xs (m,n)=x (n-14m) ;
end;

end;

rl=xs*x';

for m=1:1g

den (m)=N+1-m;
end;

r=rl'./den;

Book MATLAB function to find the biased autocorrelation function:

function[r]l=aasamplebiasedautoc(x,1q)

¢this function finds the biased autocorrelation function
gwith lag from 0 to lg; it is recommended that lg is 20-30% of
BN ;

N=length(x) ; $x=data;lg=lag;

for m=1l:1g

for n=1:N+1l-m

xs (m,n)=x(n-14m) ;

end;

end;
rl=xs*x';
r=rl'./N

We can also use MATLAB function to obtain the biased or unbiased
sample autocorrelation and cross-correlation. The function is:

r=xcorr{x,y, 'biased’); % for the biased cased, and
r=xcorr(x,y, ‘unbiased’); % for the unbiased case.
x,y are N length vectors; r is a 2N-1 symmetric
cross-correlation vector;

in case the vectors do not have the same length, the

¢ 9@

o®  of

shorter one will be zero-padded;

Note: If none of the options (i.e., biased or unbiased) is used, the default value
is biased and the result will not be divided by N.

The reader is encouraged to find several interesting options in using the
xcorr command by writing help xcorr or doc xcorr on the MATLAB com-
mand window.

Covariance

The covariance of a random sequence is defined by

c (m,n)= E{(x(m) — ) x(1m)— /in)} (3.2.8)

= E{x(m)x(m)}—p p =7 (mn)—pu u
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The variance is found by setting m = n in (3.2.8). Hence,

c,(nm) =07 =E{(x(m—-p )’} =E{x*(m}- 12

If the mean value is zero, then the variance and the correlation function are
identical.

c(nn)=0*= E{xz(n)} =7 (n,n) (3.2.9)

Independent and uncorrelated rv’s

If the joint pdf of two rv’s can be separated into two pdf’s, f (m)f (n)
f. y(m, n)= f (m) fy(n) , then the rv’s are statistically independent. Hence,

E{x(m)x(n)} = E{x(m)}E{x(m)} = s, (3.2.10)

The above equation is a necessary and sufficient condition for the two
random variables x(m), x(n) to be uncorrelated. Note that independent
random variables are always uncorrelated. However, the converse is not
necessarily true.

If the mean value of any two uncorrelated rv’s is zero, then the random
variables are called orthogonal. In general, two rv’s are called orthogonal if
their correlation is zero.

3.3 Stationary processes

For a wide-sense (or weakly) stationary process, the cdf satisfies the relationship
F(x(m), x(n)) = F(x(m+k), x(n+k)) (3.3.1)

for any m, n, and k. If the above relationship is true for any number of rv’s
of the time series, then the process is known as strictly stationary process.

The basic properties of a wide-sense stationary process are (see
Problem 3.3.1):

un(n) = (= constant rx(k) = rx(—k)

r (m,n)=r (m-n) r(0)= r (k) 3.3.2)
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Autocorrelation matrix

If x = [x(0) x(1) .... x(p)]" is a vector representing a finite random sequence
then the autocorrelation matrix is given by

CE(x(0)x(0)} E{x(0)x(D)} - E{x(0)x(p)}
E(x(Dx(0))  Efx(D)x(1) - E{x()x(p)}

| E{ix(p)x(0)}  E{x(p)x(1)}--- E{x(p)x(p)} |
_ - (3.3.3)
r0) r(=1) - r(=p)

r.() r(0) rp+1

rp rp-1--r0)

Example 3.3.1: Find: (a) the unbiased autocorrelation with lag 20 of a 40
term sequence; (b) the biased autocorrelation with the same settings; and (c)
a 4 x 4 autocorrelation matrix. Use a sequence of rv’s having Gaussian
distribution and zero mean value.

Solution: We use the MATLAB function x = randn(1,40) to create the
sequence {x(n)} of 40 terms, which are white rv’s and Gaussian distributed.
Then we use the two MATLAB functions, which were given above,
ru=aasampleunbiasedautoc(x,20) and rb=aasamplebiasedautoc(x,20) to pro-
duce the results shown in Figure 3.3.1. To create the 4 x 4 autocorrelation
matrix we use the following MATLAB function: R = toeplitz (rb(1,1:4)’,
rb(1,1:4));.

[ 08613 —0.0363 —0.0232 02112

-0.0363 0.8613 —0.0363 -0.0232
R = (3.3.4)
~0.0232 -0.0363 0.8613 —0.0363

| 02112 -0.0232 -0.0363  0.8613

Note the symmetry of the matrix along the diagonals. This type of matrices
is known as Toeplitz.

Note: The output vector rb is a row vector, and the parenthesis (1,1:4)
instructs MATLAB to take the fist row of rb and the first four columns of
that row.
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Figure 3.3.1 llustration of Example 3.3.1.

Note: If we have a row vector x and need to create a row vector y with
elements of x from k to m only, we write

v=x(1,k:m);

If x is a column vector, and we need to find a column vector y with
elements of x from k to m only, we write

y=x(k:m,1);

Example 3.3.2: Let {v(n)} be a zero mean, uncorrelated Gaussian ran-
dom sequence with variance O'j(n) =0’ = constant.

a. Characterize the random sequence {v(n)}.

b. Determine the mean and the autocorrelation of the sequence
{x(n)} if x(n) = v(n) + av(n — 1), in the range « <n <co where 7 is
a constant.

Solution: (a) the variance of {v(n})} is constant and, hence, is independent
of the time, n. Since {v(rn)} is an uncorrelated sequence, it is also independent
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due to the fact that it is Gaussian sequence. From (3.2.8) we obtain
¢ (m, nmy=r (m,n)—p u =r (m,n) or 6> =r,nn) = constant. Hence, r,(m,n) =

ozg(m - n) which implies that {v(n)} is a WSS process. (b) Efx(n)} = 0 since
E{v(n)} = E{v(n-1)} = 0. Hence,

r (m, n) = E{[v(m) + av(m — DI[v(n) + av(n - DI} = E{v(m)o(n)}
+aE{o(m—Dv(m)}+ aE(o(m)o(n - D} + aEfo(m—1o(n— 1)} = 7 (m, n)

+ar (m=1,m)+ar (m,n-1)+a’r (m—1,n-1)= 6°8(n - n)+ac>5(m—-n+1)
+a*c*6(m—n) =1+ a*)c*6(l) +ac’6(1-1) +ac?5(1+1)

Since the mean of the process {x(#)] is zero {(constant), and its autocorrelation
is a function of the lag factor I =m — n, it is a WSS process.

3.4 Special random signals and probability
density functions
White Noise

A WSS discrete random sequence that satisfies the relation

Ax(0), x(1), ... )=Ax(ONAx(1))... (3.4.1)

is a pure random sequence whose elements x(#) are statistically independent
and identically distributed (iid). Therefore, the zero mean iid sequence has
the following correlation function

r (m—n)= E{x(m)x(n)} = 628(m - n) (3.4.2)

where o7 is the variance of the signal and &(m — n) is the discrete-time delta
function. For m##n, 8(m — n) =0 and, hence, (3.4.2) becomes

o’8(k) k=0
rk)y=4 " (3.4.3)
0 k+0

For example, a random process consisting of a sequence of uncorrelated
Gaussian rv’s is a white noise process referred to as white Gaussian noise
(WGN).
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Gaussian processes

The pdf of a Gaussian rv x(n) at time 7 is given by

(x(m)—p )?
205

fx(m) = ! = exp(- )=N(u,,02) (3.4.4)
\/?_nan

Example 3.4.1: Find the joint pdf of a sequence of WGN with 1 elements;
each one having zero mean value and the same variance.

Solution: The joint pdf is
fe),x(2),--, x(m)) = f,(x(1) £,(x(2))--- £, (x(n))

1 1 O
- (272.)71/20_;/ expl:-ﬁzx (k)

x k=1

} (3.4.5)

A discrete-time random process {x(n)} is said to be Gaussian if every
finite collection of samples of x(n) are jointly Gaussian. A Gaussian random
process has the following properties. (a) It is completely defined by its mean
vector and covariance matrix. (b) Any linear operation on the time variables
produces another Gaussian random process. (c) All higher moments can be
expressed by the first and second moments of the distribution (mean, cova-
riance). (d) White noise is necessarily generated by iid samples (indepen-
dence implies uncorrelated rv’s and vice versa).

To produce a WGN with zero mean and unit variance, the following
MATLAB function can be used:

x=randn(l,N);%$x is a row vector with N elements of WGN type
% with zero mean and unit wvariance;

In case it is desired to change the mean and the variance, we use the
following transformation of the vector x.

z=a*x+m; % the variance of z equals a?, and its mean equals m;

Exponential distribution

lexp(—x/b) 0<x<oo, b>0

fx)= (3.4.6)
0 otherwise
Algorithm
1. Generate u from a uniform distribution (0,1)
2. x =~bin(bu)

3. keep x
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Book MATLAB function

function[x,m,sd]=aaexponentialpdf(b,N)
gfunction[x,m, sd]l=aaexponentialpdf (b, N)

for l:l :N

X(i):-b*log(rand); %log is MATLAB function that gives the
%natural algorithm;

end;

m=mean (x) ; %$mean (x)=MATLAB function providing the mean value;
sd=std(x); %std(x)=MATLAB function providing the standard
sdeviation which is the sguare root of the variance;

Normal distribution

(x - )" ]
X ex 347
fx)= - \/— P( Py (3.4.7)
Algorithm
1. Generate two independent rv’s u; and u, from uniform distribution
(0 D
2. = (2In(u,))?cos(2mu,) (or x, = (-2Inu)%sin(2mu,))

3. Keep X, OT X,

Book MATLAB function

function[x]=aanormalpdf (m, s, N)
gfunction[x]=aanormalpdf (m,s,N);
%$s=standard deviation;m=mean value;
for i=1:N

rl=rand;

r2=rand;
z(i)=sqgrt(-2*log(rl)) *cos (2*pi*r2);
end;

X=g5*z4m;

Lognormal distribution
Let the rv x be N(i,6%). Then y = exp(x) has the lognormal distribution with pdf

2
L exp —(]ny_zﬂ) 0<y<oo
Fy)=12m0y 20 (34.8)
0 otherwise

The values of ¢ and y must take small values to form a lognormal-type
distribution.
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Algorithm
1. Generate z from N(0,1)
2. x=p+o0z (xis N(u,0%)

3.y =exp(x)
4. Keepy
Book MATLAB function

function|yl=aalognormalpdf (m, s,N)
$function(yl=aalognormalpdf (m,s,N) ;

gm=mean value;s=standard deviation;N=number of samples;
for i=1:N

rl=rand;

r2=rand;

z (1i)=sqrt(-2*log(rl)) *cos{2*pi*r2);

end;

XTm+s* 7 ;

y=exp (X) ;

Chi-Square distribution
If z, . z are N(0, 1), then

k
y= 2212 (3.4.9)
=1

has the chi-squared distribution with k degrees of freedom and is denoted by (k).
To produce graphically the pdf using any of the above functions, we
may use the following MATLAB function:

hist(x,b);% x 1s a vector consisting of the values of the rv’s; b 1is
% the number of bins required in finding the distribution of x;

3.5 Wiener—Khintchin relations

For a WSS process, the correlation function asymptotically goes to zero and,
therefore, we can find its spectrum using the discrete-time Fourier transform.
Hence, the power spectrum is given by

S (¢")= irx (kye 7 (3.5.1)

k=—co

This function is periodic with period 27 (exp(~jk(® +27)) = exp(—jkw)). Given
the power spectral density, the autocorrelation sequence is given by the relation

r k)= J' 5 () da (352)
x 27r» x
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For real process, r,(k) = r (—k) (symmetric function) and as a consequence the
power spectrum is even function. Furthermore, the power spectrum of WSS
process is nonnegative. These two assertions are given below in the form of
mathematical relations.

S (%) =5 (e7°)=S(e”)
(3.5.3)
5.(¢)20

Example 3.5.1: Find the power spectra density of the sequence x(n) =
sin(0.1*2*pi*n) + 1.5*randn(1, 32) withn=[0 1 2...31].

Solution: The following Book MATLAB program produced Figure 3.5.1.

n=0:31;

s=sin(0.1*2*pi*n);
v=randn(1,32);%Gaussian white noise;
x=s+v;

% L P.@ o

. o.z ﬁfﬁ? z Oivu%m%f&l%

-1 —4
0 10 20 30 40 0 10 20 30 40

n n

2 1.5
0 %%@QO ﬁ@% 19

s Al | Fs
-2 0 %U@A P e e
o

—4 -0.5
Q 10 20 30 40 0 10 20 30 40
n k, time lags
15
w u)x
40
Freq. bins Freq. bins

Figure 3.5.1 Illustration of Example 3.5.1.
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r=xcorr(x, 'biased’); $the biased autocorrelation is divided
%by N, here by 32;

fs=fft(s);

fr=fft(r,32);

subplot(3,2,1);stem(n,s, 'k’);xlabel

(*n’");ylabel (*s(n)’);
subplot (3,2,2);stem(n,v, 'k’);xlabel (®

(

")

n
n’');ylabel (‘v(n)’);
n');ylabel (‘x{(n) ") ;
;xlabel (‘k, time ...

subplot (3,2,3);stem(n,x, 'k’) ;xlabel

subplot (3,2,4);stem(n,r(1,32:63),
lags’);ylabel (*r(k)’);

subplot(3,2,5);stem{n,abs(fs), 'k’);xlabel (‘freq. bins’)...
;yvlabel (*S_s(e”{j\omegal’);

subplot (3,2,6);stem(n,abs(fr), 'k’);xlabel (*freq. bins’);
vlabel (*S_x(e”{j\omegal}l’);

3.6 Filtering random processes

Linear time-invariant filters are used in many signal processing applications.
Since the input signals of these filters are usually random processes, we need to
determine how the statistics of these signals are modified as a result of filtering.

Let x(n), y(n), and h(n) be the filter input, filter output, and the filter
impulse response, respectively. It can be shown (see Problem 3.6.1) that if
x(n) is a WSS process, then the filter output autocorrelation (k) is related
to the filter input autocorrelation r,(k) as follows.

r (k)= i i H(Iyr (m—1+ k)h(m) = 7, (k) * h(k)  h(~k) (3.6.1)

I=—com=—oo

The right-hand expression of (3.6.1) shows convolution of three functions.
We can take the convolution of two of the functions, and the resulting
function is then convolved with the third function. The results are indepen-
dent of the order we operate on the functions.

From Table 2.3.1, we know that the z-transform of the convolution of
two functions is equal to the product of their z-transforms. Remembering
the definition of the z-transform, we find the relationship (the order of
summation does not change the results)

Z{h(=k)) = Zh( k)z ™k = Zh(m)(z’l)’ — H(z") (3.6.2)

Hi=o0

Therefore, the z-transform of (3.6.1) becomes

R, (2)= Zlr, (k) = h(OVZ{h(=F) = R (2)H(:)H(z™) (3.6.3)
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If we set z = ¢i® in the definition of the z-transform of a function, we find the
spectrum of the function. Having in mind the Wiener-Khintchin theorem,
(3.6.3) becomes

5,() =5 ()| H(e™)| (3.6.4)

The above equation shows that the power spectrum of the output random
sequence is equal to the power spectrum of the input sequence multiplied
by the square of the absolute value of the spectrum of the filter transfer
function.

Example 3.6.1: An FIR filter is defined in the time domain by the differ-
ence equation: y(n) = x(n) + 0.5x(n — 1). If the input signal is a white Gaussian
noise, find the power spectrum of the output of the filter.

Solution: The z-transform of the difference equation is Y(z) = (1 + 0.5z1)X(z)
(see Chapter 2). Since the ratio of the output to input is the transfer function
of the filter, the transformed equation gives H(z) = Y(z)/X(z) =1 + 0.5z%. The
absolute value square of the spectrum of the transfer function is given by

L2 . . . .
‘H(e]“’)‘ =(14+0.5°)1+0.5¢7)=1+0.5(¢7* + &)+ 0.25=1.25+ cos w
(3.6.5)

where the Euler identity ¢/ = cos® + jsinw was used. Figure 3.6.1 shows
the sequence x{n}, the autocorrelation function r,{n}, and the power spec-
trums of the filter input and its output, 5(w) and S (w), respectively. Note
that the spectrums are symmetric around @ = 7.

Spectral factorization

The power spectral density S (e/“’) of a WSS process {x(n)} is a real-valued,
positive and periodic function of . It can be shown that this function can
be factored in the form

Sx(e/"”) = on(z)Q(z’l) (3.6.6)

where
1. Any WSS process {x(n)} may be realized as the output of a causal
and stable filter i(n) that is driven by white noise v(n) having variance
0. This is known as the innovations representation of the process.
2. If x(n) is filtered by the filter 1/H(z) (cuhztemng filter), the output is a
white noise v(n) having variance 0-. This process is known as the
innovations process and is given by

[GjH(Z)H(zl)]{m} =o’ (3.6.7)
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Figure 3.6.1 lllustration of Example 3.6.1.

where the first bracket is the input power spectrum, S(z), and the
second represents the filter power spectrum.

3. Since v(n) and x(n) are related by inverse transformations, one process
can be derived from the other and they contain the same information.

3.7 Special types of random processes
Autoregressive moving average process (ARMA)

A stable shift-invariant system with p poles and g zeros can be represented
in the general form

ib(k)z’k

H(z)= % == (3.7.1)

1+ Za(k)z’k

k=1
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If a white noise, v(n), with variance 0. is the input to the above filter, the
output process x(n) is a WSS process and its power spectrum is given by
(see (3.6.6))

S (Z)=O.2 B(Z)B(Z__l)
x v A(z)A(z™)
or (3.7.2)
e
N
\A(ef’”)

This process, which has the above power spectrum density, is known as the
autoregressive moving average process of order (p, g).

It can be shown that the following correlation relationship exists for this
process:

P 2
r()+ ;a(m)rx(k —m)= Gv;(k) 2 i : =4 (3.7.3)
q g-k
o)=Y bomntm—K)="Y b+ Ky(m) (3.7.4)

These equations are known as the Yule-Walker equations and can be written
in the following matrix form for k=0,1, ..., p + ¢

FA NS r(p | EOR
rd @ - ri=p+l) | (1)
1
a(1)
-1} .- —
r@  r(e-1) r(q-p) @ |=c o) 675
r(g+1) r(q9) r(g—p+1) a(p)_[ 0
r(gep) TigepeD) r@ | o]
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It is apparent from the above equation that knowing the autocorrelation of
a process produced by an ARMA model, we may be able to find the coeffi-
cients of the process. This task for the ARMA model is rather difficult due
to nonlinear terms that appear in (3.7.4).

Autoregressive process (AR)

A special and important type of the ARMA process results when we set g = 0.
Hence, from (3.7.1), (3.7.2), (3.7.3), and (3.7.4) we obtain the relations:

H(z)= —:’(L (3.7.6)
1+ Za(k)z"‘
S (e)=0c’ b(o_)22 (3.7.7)
jAce”)
r(k)+ ia(m)rx(k —m)= 62b(0)*8(k) k>0 (3.7.8)
@ () rnep 1] 1]
r.(1) r (0) o r(=p+D) |l a)) 0
= 62b(0)*| (3.7.9)
r®  rp-1 - (0 |Lalp)] 0]

Example 3.7.1: Find the AR coefficients a(1)-a(5) if the autocorrelation
of the observed signal {x(n)} is given. Assume the noise variance is equal to
one. Find the power spectrum of the process.

Solution: First we produce a WSS process {x(1n)} by passing a white noise
through a linear time-invariant filter. In this example we use a second order
AR filter: x(n) ~ 0.9x(n — 1) + 0.5x(n — 2) = v(n). The variance of the white
noise input to the filter, v(n), is one, and its mean value is zero. The results
are shown in Figure 3.7.1, where S(w)=|H(e/?)2. The Book MATLAB pro-
gram used to produce these results, and the AR coefficients is given below.

$Example 3.7.1
g=3.5*(rand(1,500)-0.5); % g: uniformly distributed WGN
of zero mean and unit variance.

e
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Figure 3.7.1 Illustration of Example 3.7.1.
x=filter(1,[1 -0.9 0.5]1,9); % x: observed signal
[rx,lagsl=xcorr{x,x,15, 'biased'); % rxl=autocorrelation of x.

R=toeplitz(rx(1l,1:6)); % we create the 6x6 autocorrelation
% matrix;

oe

Rl=inverse of R.

find b(0) sguared.

find the AR coefficients:
a(l) ... a(b);

H is the frequency response
of the filter.

Rl=inv (R) ;
b2=1/R1(1,1); bO=sgrt(b2);
a=b2*R1(2:6,1)

o0

o0

H=b0./(£ft([1 a'],512));

¢ de o

nn=0:511; w=2*pi*nn/512;

S=(H.*conj (H) ) /512; subplot(222); plot(w,S) ;xlabel ('\omega'); ..
ylabel ('S(w) ') ;

subplot (221); n=0:49; stem(n,x(1:50),'filled');xlabel
{('n'); ylabel('x[n]"');

subplot (223); stem(lags,rx, 'filled');xlabel('Lags');...
yvlabel ('rx[n]"');

subplot (224); Xl1=fft(x,512); Sx=X1.*conj(X1l)/512;...
plot (w, Sx) ;

xlabel ('\omega') ;ylabel ('Sx(w) ') ;
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Moving average process (MA)

The autocorrelation coefficient r,(k) depends nonlinearly on the filter coeffi-
cients b(k), and as a consequence, estimating the coefficients is a non-trivial
problem.

3.8 Nonparametric spectra estimation

The spectra estimation problem in practice is based on finite-length record
{x(1), ..., x(N)) of a second-order stationary random process. However, har-
monic processes having line spectra appear in applications either alone or
combined with noise.

Periodogram
The periodogram spectral estimator is based on the following formula:

N-1 2

Z x(n)e "

n=0

where S (¢) is periodic with period 27, - 7 <@ < 7, and X(e/®) is the DFT
of x(n) (see Section 1.5). The periodicity is simply shown by introducing @+ 2%
in place of @ in (3.8.1) and remembering that exp(j2n) = 1.

~ oy 1 _ 1 i 2
5, = ~N’X(e] ){ (3.8.1)

Correlogram

The correlogram spectral estimator is based on the formula
R N-1
5.() = Z F(mm)e Tom (3.8.2)
m=—(N-1)
where 7(m) is the estimate of the correlation (assumed zero mean value of
{x(n)}) given by (3.2.6). It can be shown that the correlogram spectral
estimator evaluated using the standard biased autocorrelation estimates

coincides with that of the periodogram spectral estimator. As in (3.8.1), the
correlogram is periodic function of @ with period 2.

Computation of S (¢)and S (¢*) using FFT

Since both functions are continuous functions of , we can sample the frequency
as follows:

wkzzlk k=0,1,2,,N-1 (3.8.3)
N

This situation reduces (3.8.1) and (3.8.2) to finding the DFT at those frequencies:

N~1 N-1

X(e/%) = Zx(n)e’j%”k - Zx(n)W"", 0<k<N-1 (3.8.4)

n=0 n=0
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and thus,

N-1 'Zlm
SE =Y Fmye N (3.8.5)

me—(N-1)

2
;

G (%% _i jy
5 (e )_N}X(a )

The most efficient way to find the DFT using FFT is to set N = 2" for some
integer r. The following two MATLAB functions give the windowed peri-
odogram and correlogram, respectively.

Book MATLAB function for the periodogram

function[sl}=aaperiodogram(x,w, L)

gfunction{sl=aaperiodogram(x,w,L)

sw=window {@name, length(x) )}, {name=hamming, kaiser,hann, rectwin,

sbartlett, tukeywin, blackman, gausswin,nattallwin, triang,
$blackmanharris) ;

$l=desired number of points (bins) of the spectrum;

%x=data in row form;s=complex form of the DFT;

Xw=xX.*w"';

for m=1:L

n=1:length(x);

s (m)=sum(xw.*exp(-Jj* (m-1)* (2*pi/L)*n));

end;

%as=((abs(s)).”2/length(x))/norm(w)=amplitude spectral
$density;

$ps=(atan (imag(s) . /real (s)) /length(x)) /norm(w)=phase spectrum;

To plot as or ps we can use the command: plot(0:2*pi/L:2*pi-(2*pi/L),as).

Book MATLAB function for the correlogram

function[s]=aacorrelogram(x,w, lg, L)

%function[s]=aacorrelogram{x,w, 1g,L);

%x=data with mean zero;w=window(@name,length(2*lg)), see
%aaperiodogram

$function and below this function);L=desired number of
%spectral points;

%lg=lag number<<N;rc=symmetric autocorrelation function;

r=aasamplebiasedautoc (x, 1qg) ;

re=[fliplr(r(1l,2:1g)) r 01;

rCw=rc.*w';

for m=1:L

n=-1g+l:1g;

s(m)=sum(rcw.*exp{-j* (m-1) *(2*pi/L) *n) ) ;

end;

%asc=(abs (s).”2) /norm(w)=amplitude spectrum;

%psc=(atan(imag(s))/real (s)) /norm(w)=phase spectrum;



42 Adaptive filtering primer with MATLAB

General Remarks on the Periodogram

1. The variance of the periodogram does not tend to zero as N—eo. This
indicates that the periodogram is an inconsistent estimator; that is, its
distribution does not tend to cluster more closely around the true
spectrum as N increases.

2. To reduce the variance and, thus, produce a smoother spectral esti-
mator we must: a) average contiguous values of the periodogram, or
b) average periodogram obtained from multiple data segments.

3. The effect of the sidelobes of the windows on the estimated spectrum
consists of transferring power from strong bands to less strong bands
or bands with no power. This process is known as the leakage problem.

Blackman—Tukey (BT) method

Because the correlation function at its extreme lag values is not reliable due
to the small overlapping of the correlation process, it is recommended to use
lag values about 30—40% of the total length of the data. The Blackman-Tukey
estimator is a windowed correlogram and is given by

S, (€)= Z w(m)?(m)e " (3.8.6)

m=—(L-1)

where w(m) is the window with zero values for Iml>L~-1and L << N. The
above equation can also be written in the form

Sar(e™)= Y wlm)r(me "

(3.8.7)
=S.(e")x W(e”) = 1 :[ Sc(e" YW (" )dr
2n

-
where we applied the DTFT frequency convolution property (the DTFT of
the multiplication of two functions is equal to the convolution of their
Fourier transforms). Since windows have a dominant and relatively strong
main lob, the BT estimator corresponds to a “locally” weighting average
of the periodogram. Although the convolution smoothes the periodogram,
it reduces resolution in the same time. It is expected that the smaller the
L, the larger the reduction in variance and the lower the resolution. It turns
out that the resolution of this spectral estimator is on the order of 1/L,

whereas its variance is on the order of L/N.

For convenience, we give some of the most common windows below.
For the Kaiser window the parameter f trades the main lobe width for the
sidelobe leakage; 8 = 0 corresponds to a rectangular window, and 8> 0
produces lower sidelobe at the expense of a broader main lobe.

Rectangle window
wn) =1 n=0,1,2,.,L-1



Chapter 3:  Random variables, sequences, and stochastic processes

Bartlett (triangle) window

n

—_— n=0,1,.,L/72
L/2

w(n)=
L-n n==+1,.,L-1
L2 2

Hann window
2n
w(")=0.5[1—cos[fﬂ)j| n=0,1,..,L-1
Hamming window
2r
w(n)=0.54 - 0.46 cos [T nj n=0,1,..,L-1

Blackman window

2

43

w(n)=042+0.5 cos[zf(n - %D + 0.08COS(2{2(71 - LD n=1,2,..,L-1

Kaiser window

1B 1.0—[Li/zj
w{n) = -(L-1)<n<L-1

1.(8)

2

k

X

I (x)= ~——| = zero-order modified Bessel function

0 k!
k=0 :

w(k) =0 for \k\ =L, w(k)=w(—k) and equations are valid for 0 < k< L-1

Note: To use the window derived from MATLAB we must write

w=window (@name, L)

name=the name of any of the following windows: Bartlett,
barthannwin, blackman, blackmanharris, bohmanwin, chebwin,

gausswin, hanning, hann, kaiser, natullwin,
rectwin, tukeywin, triang.
L=number window values
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0 L-1 2L-1 N-1
;I[ Periodogram 1 J
+
—->| Periodogram 2 I
+

, Periodogram K ;‘k

’7 Total/K I Averaging

PSD estimate

Figure 3.8.1 Bartlett method of spectra estimation.

Bartlett method

Bartlett’s method reduces the fluctuation of the periodogram by splitting up
the available data of N observations into K = N/L subsections of L observa-
tions each, and then averaging the spectral densities of all K periodograms
(see Figure 3.8.1). The MATLAB function below provides the Bartlett peri-
odogram.

Book MATLAB function for the Bartlett method

function([as,ps, s]l=aabartlettpsd(x, k,w,L)
$x=data; k=number of sections; w=window

% (@name, floor (length (x) /k) ) ;
%L=number of points desired in the FT domain;
$K=number of points in each section;
K=floor(length(x) /k);
5=0;
ns=1;
for m=1:k
s=s+aaperiodogram{x(ns:ns+kK-1) ,w, L) /k;
ns=ns+K;
end;
as=(abs(s))."2/k;
ps=atan (imag(s) ./real(s))/k;
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Welch method

Welch proposed modifications to Bartlett method as follows: data segments
are allowed to overlap and each segment is windowed prior to computing
the periodogram. Since, in most practical applications, only a single realiza-
tion is available, we create smaller sections as follows:

x(m)=x(D+mwn) 0sn<M-1, 0<i<K-1 (3.8.8)

where w(n) is the window of length M, D is an offset distance and K is the
number of sections that the sequence {x(n)} is divided into. Pictorially the
Welch method is shown in Figure 3.8.2.

The i periodogram is given by

2

L1
: 1 :
joy _ — —jan
5= ;xi(e ) (3.8.9)
and the average periodogram is given by
1 K-1
j@ - jo
S(E) = ;Si(e ) (3.8.10)
0 N-1
L-1 Data 1
Segment 1 1
leD—»] __ Segment 2 |

[ Segment K

N

»  Periodogram 1 l
+

ﬂ Periodogram 2 I

+

I Periodogram K I~

l Total/K Averaging

!

PSD estimate

Figure 3.8.2 Welch method of spectra estimation.
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If D = L, then the segments do not overlap and the result is equivalent to
the Bartlett method with the exception of the data being windowed.

Book MATLAB function for the Welch method

functionf{as,ps,s,Kl=aawelch(x,w,D, L)

$functionlas,ps, s,Kl=aawelch(x,w,D,L});

$M=length (w)=section length;

$L=number of samples desired in the freguency domain;

$w=window (@name, length of sample=length(w));x=data;

%$D=offset distance=fraction of length(w),mostly 50% of
%M; M<<N=length(x} ;

N=length(x);

M=length (w} ;

K=floor ( (N-M+D) /D) ; $K=number of processings;

s=0;

for i=1:K
s=s+aaperiodogram{x(1l, (1-1)*D+1: (i-1)*D+M) ,w,L) ;
end;

as=(abs(g))."2/(M*K) ; %as=amplitude spectral density;

ps=atan(imag(s)./real(s))/ (M*K); %phase spectral density;

The MATLAB function is given as follows:

P=spectrum(x, m)%$x=data; m=number of points of each section
%and must be a power of 2;the sections are windowed by a
%a hanning window;P 1s a (m/2)x2 matrix whose first column
%1s the power spectral density and the second is

%the 95% confidence interval;

Modified Welch method

It is evident from Figure 3.8.2 that, if the lengths of the sections are not long
enough, frequencies close together cannot be differentiated. Therefore, we
propose a procedure, defined as symmetric method, and its implementation is
shown in Figure 3.8.3. Windowing of the segments can also be incorporated.
This approach and the rest of the proposed schemes have the advantage of
progressively incorporating longer and longer segments of the data and thus
introducing better and better resolution. In addition, due to the averaging
process, the variance decreases and smoother periodograms are obtained.
Figure 3.8.4 shows another proposed method, which is defined as the asymmet-
ric method. Figure 3.8.5 shows another suggested approach for better resolution
and reduced variance. The procedure is based on the method of prediction and
averaging. This proposed method is defined as the symmetric prediction method.
This procedure can be used in all the other forms, e.g., non-symmetric. The
above methods can also be used for spectral estimation if we substitute the
word periodogram with the word correlogram.
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0 N-1
| Segment 1 17

1 Segment 2 '

|

Seg;nent K },

[ Periodogram 1

+

| Periodogram 2

+

0

I Periodogram K

| Total/K J Averaging

PSD estimate

Figure 3.8.3 Modified symmetric Welch method.
Figure 3.8.6a shows data given by the equation

x(n) = sin{0.37n) + sin(0.3247n) + 2(rand(1,128) - 0.5) (3.8.11)

and 128 time units. Figure 3.8.6b shows the Welch method using the MATLAB
function (P=spectrum(x,64)) with the maximum length of 64 units and

0 N-1
Data I

Segment 1 };

Segment 2

Segment K ]—

Periodogram 1

+

Periodogram 2

+

Periodogram K [¢

Total/K Averaging

PSD estimate

Figure 3.8.4 Modified asymmetric Welch method.
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l Periodogram 1
+
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+

— Y

| Periodogram K

‘ Total/K T Averaging

{
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Figure 3.8.5 Modified with prediction Welch method.

windowed by a hanning window. Figure 3.8.6¢ shows the proposed asym-
metric PSD method. It is apparent that the proposed method was successful
to differentiate the two sinusoids with small frequency difference. However
the variance is somewhat larger.

The Blackman—Tukey periodogram with the Bartlett window
The PSD based on the Blackman-Tukey method is given by

5, (€)= 2 w(m) 7 (m)e’™™

m=—L

Il (3.8.12)

0 otherwise

Book MATLAB function for the Blackman-Tukey periodogram with
triangle window

function [s]=aablackmantukeypsd(x,lg,L)
%$functionis]=aablackmantukeypsd(x,lg,L);

%$the window used is the triangle (Bartlett) window;
$x=data;lg=lag number about 20-40% of length(x)=N;
%Il=desired number of spectral points (bins);
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Figure 3.8.6 Comparison between Welch method (b) and modified Welch method (c).

[r]=aasamplediasedautoc (x,1g) ;
n=-{1lg-1):1:{lg-1);

w=1-(abs (n)/1g) ;
re=[fliplr(r(l,2:1g)) r];
rCw=rc.*w;

s=fft(rcw,L);

3.9 Parametric methods of power spectral estimations

The PSD of the output of a system is given by the relation (see also Section 3.7)
MW—Z)S (2) (3.9.1)
A)A(1/z)
If {h(n)} is a real sequence, then H(z)=H (z') and (3.9.1) becomes

§,(2)=H(z)H (1/2))S (2) =

_ B)B(1/2)
T AL 5.(2) (3.9.2)
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Since S (¢/°)= 02, then (3.8.1) takes the form

e BemBe®)

5 v j@ ~j@
e]“’)\ A(@®)A(e )

]a)
yA&MA( )=0 g,

(3.9.3)
e ()b e (¢)
=0, v T
e, (e”)aa ep(e )
1] 1]
e/’a) ej(u
ep(ej‘”)-—— L eq(ej“’)z ' (3.9.4)
_eipw | _ejqw_
a=[1a(l) a(2)-- a(p)]', b=[b(0) b(1) --- b()]" (3.9.5)
P 7
A@®)=1+ Y a(k)e”™, B(e”)="Y blk)e (3.9.6)

Moving average (MA) process
Setting a(k) =0 for k=1, 2,..., p, then
N _ 2. Hy jo H i@ = T
S yua(€)=0ZeM (e )bb"e (), b=[b(0) b(1) -+ b()] (3.9.7)
Autoregressive (AR) process
Setting b(k) =0 for k=1, 2, 3,..., 4, we obtain
1

S,(€)=0; W (3.9.8)

where b(0) was set equal to one without loss of generality. ]
From the above development we observe that we need to find the §
unknown filter coefficients to be able to find the PSD of the output of the §
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system. For the AR case the coefficients are found' using the equations.

R a=-r , a=-Rlr

yp yp yp yp
rry(O) ry(_l) Ty(l—p) ] _a(l)— _ry(l)_
S L B A C A A I ) B A (3.9.9)
w : ;A= : , ryp =
=D (-2 10 | Lap)] 7))
Then, the variance is found from the relation
4
r (0)+ Y r(kjak)=o’ (3.9.10)
Problems
0 x<=2

3.1.1 If the cdf is F(x(n))=40.6 —2<x(n) <1, find its corresponding pdf.
1 1< x(n)

3.1.2 Show that the sample mean is equal to the population mean.

3.2.1 Find the autocorrelation of the rv x(n) = acos(nw + 6), where a and @
are constants and 6 is uniformly distributed over the interval -z to x.

3.3.1 Prove the following properties of a wide-sense stationary process:

a) u(n)=u = constant
b) 7 (-k)=r(k)
o) r(mmn)=r(m-n)

d) 7(0)>r(k)
3.3.2 Using Problem 3.2.1, find a 2 x 2 autocorrelation matrix.

3.4.1 Find the mean and variance of an rv having the following pdf:

Flx(m) = (N4 ) exp(~(x(n) — 2)°/4).
3.4.2 Let the rv x(n) has the pdf

Fan) = %(x(n) +1) —2<x(nm)<2

0 otherwise

Find the mean and variance of x(n).
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343 Iftherv x(n)is N(u ,07), 0. >0, then show that the rv w, = (x(n)—p,)/0,
is a N(O, 1).

3.4.4 The Rayleigh pdfis givenby f(x(n))= "(E;‘) e Z"ﬁu(x(n)), where u(x(n))
is the unit step function. !

a) Plot f(x(n)) by changing the parameter o,.
b) Determine the mean and variance.

Hints-solutions-suggestions

3.1.1:
F(x)=0.65(x+2)+0.45(x~ 1)
3.1.2:
. 1% 1+ 1
Elj) = E{ﬁ;xw} = E;E{xm» =ﬁ;u —pu
3.2.1:

1t = E{x(n)} = E{asin(ne + )} = a_[ sin(nw+ ) d6 = 0.
" 2

v (m,n) = E{a* sin(mw + 6) sin(nw + )} = (1/2)a” E{cos[(m — n)o] - (1/2)
x cos[(m + nyw + 28]} = (1/2)a* cos[(m — n)w]

because the ensemble of the cosine with theta is zero and the other cosine
is a constant independent of the rv theta.

3.3.1:

a) E{x(n+qg)}=E{x(m+q)} implies that that the mean must be a constant.

b) r (k)=E{x(n+k)x(n)} = E{x(mx(n+k)} =7 (n—n—k)=r_(-k)
c) r(mmn)= T I x(m)x(n) f(x(m + k)x(n + k)dx(m)dx(n) = v (m+k,n+k)

=1 (m=1,0) =7 (m—)
d)  Ellxr+ k)= x(iP} =7 (0)~ 27, (k) +7.0)2 0 or 7 (0)2 7 (K).
3.3.2:
R - (ﬂz/z{l cos w}

cos@ 1
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3.4.1:

1 oy 1 I s
= | x——c¢ dx,set x—2=y=>u =—— | (y+2p¥’*d
o _[447: TR Y ’

1
—0+—=2Jr=2
Jr

since y is an odd function and the first integral vanishes. The second integral
is found using tables.

o = J‘ (x=2)* 1 o2ty
. Nar

2 ,-y*/

r jy fdy = \/~ 2(1/ 5 \/ﬂ 2 (using tables)

3.4.2:

2
:1,

2

-2

i = J' x(1) f (x(m)dx(m) = J'x(n)(l/4)(x(n) T 1)dx(m) = ﬂ@ . @}

oo

o2 = j xz(n)%(x(n)nh Ddx(n)=1

—co

3.4.3:
x(n)— p
Ww )=cdf =Pr(———<w J=Prix(m)<w o +u} =
" O' n n n n

w o+

Wew, )= 1 (x(m) - #)

dx
o_n\/gexp 207 )dx ().

Change variables y = (x(m)—p )/ o, =

dW(w )
dw

i3

Wiw )= J’%e‘yi”dyn.zaut flw )= -
T

f(wn)z\é;exp(—wi/Z) —o<W <oo =

w_ isN(0,1)
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3.4.4:

)i, = | ¥ alwat) = | D exp(x/20%)tatn

—oo 0 n

- _J x(myd(e™ ")
0

oo

= —x(nyexp(-x*(n) / 20'5)’;’ + jexp(—xz(n) /20 )dx(n)

0

ol = j(x(n) -0, \/E)z X(Tzl) exp(=x* (/207 )dx(n)

=-{ -, \E)Zd(exp(—x%n) /26%))
= ~(x(m) - 0, Jx/2) exp(~x(m) / 20%) |7

+JZ(x(n) — 02 \[7/2) exp(—x* (n)/267 )dx(n)

=-02(n/2) -0’7~ G:Jd(exp(—XZ(n)/Zdj) =0’ %+ o
0



chapter 4

Wiener filters

4.1 The mean-square error

In this chapter we develop a class of linear optimum discrete-time filters known
as the Wiener filters. These filters are optimum in the sense of minimizing an
appropriate function of the error, known as the cost function. The cost function
that is commonly used in filter design optimization is the mean-square error
(MSE). Minimizing MSE involves only second-order statistics (correlations) and
leads to a theory of linear filtering that is useful in many practical applications.
This approach is common to all optimum filter designs. Figure 4.1.1 shows the
block diagram presentation of the optimum filter problem.

The basic idea is to recover a desired signal d(n) given a noisy observation
x(n) = d(n) + v(n), where both d(n) and v(n) are assumed to be WSS processes.
Therefore, the problem can be stated as follows:

Design a filter that produces an estimate d(n) of the desired signal d(n)
using a linear combination of the data x(n) such that the MSE function
(cost function)

J=El(d(n)- gi(n))zl = Ele*(n)) (4.1.1)
is minimized.

Depending on how the data x(n) and the desired signal d(n) are related,
there are four basic problems that need solutions. These are: Filtering,
Smoothing, Prediction, and Deconvolution.

4.2 The FIR Wiener filter

Let the sample response (filter coefficients) of the desired filter be denoted
by w. This filter will process the real-valued stationary process {x(n)} to
produce an estimate d(n) of the desired real-valued signal d(rn). Without loss
of generality, we will assume, unless otherwise stated, that the processes
{x(n)}, {d(n)), etc., have zero mean values. Furthermore, assuming that the

55
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w(n), W(z)

Figure 4.1.1 Block diagram of the optimum filtering problem.

filter coefficients do not change with time, the output of the filter is equal to
the convolution of the input and the filter coefficients. Hence, we obtain

zAi(n) = Zwmx(n -m)=w'x(n)

where M is the number of filter coefficients, and
w=[w, w, - w1, x(n)=[x(n) x(n-1) - x(n- M+
The MSE is given by (see (4.1.1))

J(w) = Efe*(n)} = E{[d(n) - wx(n)}’}
= E{[d(n) — w x(m)][d(m)— w x(m)]"
= E{d*(n)— w'x(n)d(n) - d(n)x" (n)w + w x(n)x " (n)w}
= E(d*(m)} - 2w E{d(m)x(m)} + W E{x(n)x" (n)}w

2 T T
=0,~-2wp,+w R w
where

w'x(n) = x" (n)w = scalar
0'5 = variance of the desired signal, d(n)

pdx = [pdx (O) pdx (1) o pdx (M - 1)]T

= cross<correlation vector between d(n) and x(n)

pdx (0) = rdx(o)’ pdx (1) = rdx (1)’ oy pdx (M - 1) = rdx (M - 1)

(4.2.1)

(4.22)

(4.2.3)

4.2.4)
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[ x()
x(n-1)
R, =E ) [x(n) x(n—=1) -+ x(n—-M+1)]
| x(n—M+1) |
(E{x(n)x(n)} E{x(n)x(n-1)) -+ E{x(m)x(n- M +1)}
E{x(n—"1)x(n)} Elx(n-Dx(n-1)} -~ E{x(n—-1x(n-M+1))

| Efx(n — M + Dx(n)} E{x(n — M+ Dx(n - 1)} - E(x(n - M+ Dx(n - M+ 1)} |

[7.(0) r.(1) e (M=1)]
T -1 rx(O) T (M-2)

U’x(”M+1) r.(-M+2) .- 1(0)
(4.2.5)

The above matrix is the correlation matrix of the input data, and it is
symmetric because the random process is assumed to be stationary, and
hence, we have the equality, r,(k)=r (=k). Since in practical cases we have
only one realization, we will assume that the signal is ergodic. Therefore,
we will use the sample autocorrelation coefficients given in Section 3.2.

Example 4.2.1: Let us assume that we have found the sample autocorre-
lation coefficients (7,(0) = 1.0, (1) = 0) from given data x(n), which, in addition
tonoise, contain the desired signal. Furthermore, let the variance of the desired
signal 07=24.40 and the cross-correlation vector be pg=[2 4.5]" It is desired
to find the surface defined by the mean-square function J(w).

Solution: Substituting the values given above in (4.2.3), we obtain

2 10} w,
J(w)=24.40-2[w, wl]{ }+[wO wl]{ H }
4.2 0 1] w, (4.2.6)

=24.40~ 4w, — 9w, + w + w}

Note that the equation is quadratic with respect to filter coefficients, and
it is true for any number of filter coefficients. This is because we used the
mean-square error approach for the minimization of the error. Figure 4.2.1
shows the schematic representation of the Wiener filter. The data are the sum
of the desired signal and noise. From the data we find the correlation matrix
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v(n) d(n)

d(n) x(n) d(n) e(n)
w(n), W(2)

Figure 4.1.1 Block diagram of the optimum filtering problem.

filter coefficients do not change with time, the output of the filter is equal to
the convolution of the input and the filter coefficients. Hence, we obtain

d(n) = Zwmx(n —m)=w'x(n)

m=0

where M is the number of filter coefficients, and
w=lw, w, - w, 1", x(n)=[x(n) x(n-1) - x(n-M+D["
The MSE is given by (see (4.1.1))

J(w) = E{e*(n)} = E{[d(n) — w ()]}
= E{[d(n) - wx(m)][d(rn) — w x(n)]"
= E{d*(n) — w'x(n)d(n) — d(n)x" (n)w + wx(n)x " (m)w)
= E{d*(n)} - 2w Eld(n)x(n)} + w E{x (n)x" (n)}w

_ 2 T T
=0;-2wp,+WRwW
where

w'x(n) = x" (n)w = scalar
o5 = variance of the desired signal, d(n)

pdx:[pdx(o) pdx(]‘) pdr(M‘]‘)]T

= crosscorrelation vector between d(n) and x(n)

pdx(o):rdx(o)’ pdx(]‘):rdr(l)’ ’pdx(M_]‘):rdx(M_l)

@.2.1)

(4.2.2)

(4.2.3)

(4.2.4)
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) _
x(n-1)
R =E . [x(n) x(n—1) -+ x(n— M +1)]
| x(n—M+1) |
[ E{x(m)x(n)} E{x(n)x(n—1)} <o E{x(n)x(n— M +1)}
E{x(n—1)x(n)} E{x(n—-1Dx(n-1)} - E{x(n—1Dx(n—M~+1)}

| E{x(n— M+ D)x(n)} E{(x(n - M+ Dx(n—1)} ---E(x(n = M+ D)x(n— M+ 1)} |

[#.(0) r.(1) T (M=1)]
r(-1) 10 e T(M=-2)

r(M+1) r(-M+2) -+ 1(0)
(4.2.5)

The above matrix is the correlation matrix of the input data, and it is
symmetric because the random process is assumed to be stationary, and
hence, we have the equality, r (k) = 7 (—k). Since in practical cases we have
only one realization, we will assume that the signal is ergodic. Therefore,
we will use the sample autocorrelation coefficients given in Section 3.2.

Example 4.2.1: Let us assume that we have found the sample autocorre-
lation coefficients (+(0) = 1.0, (1) = 0) from given data x(n), which, in addition
tonoise, contain the desired signal. Furthermore, let the variance of the desired
signal o= 24.40 and the cross-correlation vector be py =12 4.5]%. It is desired
to find the surface defined by the mean-square function J(w).

Solution: Substituting the values given above in (4.2.3), we obtain

2 1 0| w,
J(w)=24.40-2[w, wl]{ }+[wO wl]{ }[ }
4.2 01w, (4.2.6)

=24.40- 4w, - 9w, + W +w;

Note that the equation is quadratic with respect to filter coefficients, and
it is true for any number of filter coefficients. This is because we used the
mean-square error approach for the minimization of the error. Figure 4.2.1
shows the schematic representation of the Wiener filter. The data are the sum
of the desired signal and noise. From the data we find the correlation matrix
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v(n)

d(n) x{n)

Filter, w

Figure 4.2.1 A schematic presentation of Wiener filtering.

and the cross-correlation between the desired signal and the data. Note that to
find the optimum Wiener filter coefficients, the desired signal is needed.
Figure 4.2.2 shows the MSE surface. This surface is found by inserting different
values of w; and w, in the function J(w). The values of the coefficients that
correspond to the bottom of the surface are the gptimum Wiener coefficients.
The vertical distance from the w-w; plane to the bottom of the surface is known
as the minimum error, J ., and corresponds to the optimum Wiener coefficients.
We observe that the minimum height of the surface corresponds to about w,=2
and w; = 4.5, which are the optimum coefficients, as we will learn how to find
them in the next section. Figure 4.2.3 shows an adaptive FIR filter.

'?
*’#
N’
%‘ ‘t‘%
@

S

l L

: : o ﬂ{f@wfﬁ’
: &'1 ﬂﬂ'
5 , < / f"fﬁ‘*"ﬁ' 7

Figure 4.2.2 The mean-square error surface.
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x(n) x(n~-1) ?(“(n—M+2)

Z—l Zfl ’—»

Adjusting
M weights
algorithm

Figure 4.2.3 An adaptive FIR filter.

4.3 The Wiener solution

From Figure 4.2.2, we observe that there exists a plane touching the parabolic
surface at its minimum point, and it is parallel to the w-plane. Furthermore,
we observe that the surface is concave upward, and therefore, the first
derivative of the MSE with respect to w, and w; must be zero at the minimum
point, and the second derivative must be positive. Hence, we write

J(w,, w;) JI(w,, w,)
*ﬁawo =0 7&01 =0 (a)
(4.3.1)
Gz(wo,wl) -0 82}(w0,w1) 50 (b)
0w, 0*(w,)

For a two-coefficient filter, (4.2.3) becomes

J(w,, w,) = wérx(O) +2w,w,r (1) + wlzrx(O) —2w,r, (0)—=2w,r, (1)+ 0'5

X

(4.3.2)

Introducing (4.3.2) in part (a) of (4.3.1) produces the following set of
equations

2wer, (0)+ 2w;r (1) —2r, (0)=0 (a)
(4.3.3)
2w (0)+ 2wyr (1) - 2r, (1)=0 (b)
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The above system can be written in the following matrix form, called the
Wiener-Hopf equation:

R W’ =p,, (4.3.4)

where the superscript “o” indicates the optimum Wiener solution for the
filter. Note that to find the correlation matrix we must know the second-order
statistics. If, in addition, the matrix is invertible, which is the case in most
practical signal processing applications, the optimum filter is given by

w* =R'p,, (4.3.5)

For an M-order filter, R, is an M x M matrix, w° is an M x 1 vector, and p
isan M x 1 vector.

If we differentiate (4.3.3) once more with respect to w; and w; (i.e., differ-
entiating J(w) twice), we find that the result is equal to 2r,(0). Since r,(0) =
Elx(m)x(m)} = o’f >0, the surface is concave upward. Therefore, the extreme is
the minimum point of the surface. Furthermore, if we substitute (4.3.5) in (4.2.3),
we obtain the minimum error in the mean-square sense (see Problem 4.3.1)

]min = 0-5 - p:-xwo = O-j - p:xR;lpdx (43'6)

which indicates that the minimum point of the error surface is at a distance
Jnin @bove the w-plane. The above equation shows that if no correlation exists
between the desired signal and the data, the error is equal to the variance
of the desired signal.

The problem we are facing is how to choose the length of the filter M.
In the absence of a priori information, we compute the optimum coefficients,
starting from a small reasonable number. As we increase the number, we
check the MMSE, and if its value is small enough, e.g.,, MMSE < 0.01, we
accept the corresponding number of the coefficients.

Example 4.3.1: We would like to find the optimum filter coefficients w,
and w, of the Wiener filter, which approximates (models) the unknown
system with coefficients by= 1 and b, = 0.38 (see Figure 4.3.1).

Solution: The following Book MATLAB program was used:

% exampled _3_1 m-file

v =0.5*(rand(1,20)-0.5);%v=noise vector (20 uniformly

;
i

$distributed rv‘'s with mean zero);

x=randn (1,20) ;% x=data vector entering the system and
$the Wiener filter (20 normal

%distributed rv's with mean zero);
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I System (plant)
zZ1 : " to be modeled
{

|
|
I
N
I L Adjusting
___________________ - weights

Wiener filter algorithm

Figure 4.3.1 [lustration of Example 4.3.1.

sysout=filter ({1 0.38],1,x);% sysout=system output
swith x as input; filter(b,a,x) is a

$MATLAB function, where

$b is the vector of the coefficients of the ARMA
$numerator, a is the wvector of

%the coefficients of the ARMA denominator (see (2.4.7);
dn=sysout +vVv;

rx=aasamplebiasedautoc(x,2) ;%¥boock MATLAB function with
%lag=2;

Rx=toeplitz(rx);%toeplitz() is a MATLAB function that
%gives the symmetric autocorrelation matrix;
pdx=xcorr (x,dn, 'biased’) ;%xcorr() a MATLAB function
$that gives a symmetric biased crosscorrelation;
p=pdx(1,19:20) ;

w=inv (Rx)*p’;

dnc=aasamplebiasedautoc(dn, 1) ;% s2dn=variance of the
%desired signal;

imin=dnc-p*w;

Some representative values found in this example are: R,= [0.9778
0.0229 0.0229 0.9675], p = [0.3916 1.0050], w = [1.0190 0.3767]; [, = 0.0114.
We observe that the Wiener filter coefficients are close to those of the
unknown system.
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Orthogonality condition

In order for the set of filter coefficients to minimize the cost function J(w),
it is necessary and sufficient that the derivatives of J(w) with respect to w,
be equal to zero for k=0, 1, 2,..., M1,

a%k = aj}kE{e(n)e(n)) = 2E{e(n)(§£:)} =0 4.3.7)
But
M-1
e(n) = d(n) - Zwmx(n —m) (4.3.8)
m=0
and, hence, it follows that
el =—x(n—k) (4.3.9)
ow,
Therefore, (4.3.7) becomes
Efe’(m)x(n-k)}=0 k=0,1,2,., M-1 (4.3.10)

where the superscript “0” denotes that the corresponding w,’s used to find the
estimation error ¢°(11) are the optimal ones. Figure 4.3.2 illustrates the orthogo-
nality principle, where the error e°(n) is orthogonal (perpendicular) to the data
set {x(n)} when the estimator employs the optimum set of filter coefficients.

d(n)
(1) = d () - d°(n)
wox(n)
> X(n)
/
/
A /
£ 7/
wix(n—1) /

x(n—1)

Figure 4.3.2 Pictorial illustration of the orthogonality principle.
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4.4 Wiener filtering examples

The examples in this section will illustrate the use and utility of the Wiener
filters.

Example 4.4.1 (Filtering): Filtering of noisy signals (noise reduction) is
extremely important, and the method has been used in many applications,
such as speech in noisy environment, reception of data across a noisy chan-
nel, enhancement of images, etc.

Let the received signal be x(n) =d(n) + v(n), where v(n) is a noise with
zero mean, variance 67, and it is uncorrelated with the desired signal,
d(n). Hence,

P (m) = E{d(n)x(n—m)} = E{d(n)d(n — m)} + E{d(m)}E{v(n — m)}
(4.4.1)
= E{d*(m)} =7,(m)

Similarly, we obtain
r.(m) = E{x(n)x(n —m)} = r,(m) +r,(m) (4.4.2)

where we used the assumption that d(n) and v(#) are uncorrelated, and v(n)
has zero mean value. Therefore, the Wiener-Hopf equation (Equation 4.3.4)
becomes

(R, +R,)W* =p,, (4.4.3)

The following Book MATLAB program was used to produce the results
shown in Figure 4.4.1.

$exanpled 4 1 m-file

n=0:511;

d=sin(.1*pi*n) ;%desired signal
v=0.5*randn (1,512) ; $white Gaussian noise;
x=d+v;%input signal to Wiener filter;
rd=aasamplebiasedautoc (d,20) ; 3rdx=rd=biased autoc.
$function of the desired signal(see 4.4.1);
rv=aasamplebiasedautoc (v, 20) ;%rv=biased autoc. func-
%$tion of the noise;
R=toeplitz(rd(l,1:12))+toeplitz (rv(l,1:12)) ;%see(4d.4.
%3);

pdx=rd(1,1:12) ;

w=inv (R) *pdx";

yv=filter(w',1,x);%output of the filter;
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Figure 4.4.1 Nlustration of Example 4.4.1.

But
ol=07+0.; (02=7,0),0,=r/0), 0> =r,(0) (4.4.4)
and, hence, from the MATLAB function var we obtained var(d) = var(x) —
var(v) = 0.4968 and ], = 0.4968 — pow° = 0.0320.
We can also use the Book MATLAB function [w,jmin] = aawienerfirfil-
ter(x,d,M), to obtain the filter coefficients and the minimum MSE.
Example 4.4.2 (Filtering): It is desired to find a two-coefficient Wiener
filter for the communication channel shown in Figure 4.4.2. Let v,(n) and
v,{n) are white noises with zero mean, uncorrelated with each other and with
d(n), and have the following variances: o; =0.31, o, =0.12. The desired signal
produced by the first filter shown in Figure 4.4.2 is
d(n)=-0.796d(n-1) +v,(n) (4.4.5)

Therefore, the autocorrelation function of the desired signal becomes
E{d(n)d(n)} = 0.796° E{d*(n — 1)} — 2 X 0.796 E{d (1 — 1D)E{v, (n)}+ E{Uf(n)}
or

0;=0.7960;+0; or o,=031/(1-0.796")=0.8461 (44.6)




Chapter 4: Wiener filters o5

Signal
processing ->| I'— Communication —>|<- Wiener ﬁlter-hl
filter channel

Algorithm
adjusting
wp's
Figure 4.4.2 Mustration of Example 4.4.2.
From the second filter we obtain
d(n)=u(n)—0.931u(n—-1) (44.7)
Introducing (4.4.7) in (4.4.5) we obtain
u(n)—0.135u(n—1)—-0.7411u(n - 2) = v,(n) (4.4.8)

But x(1) = u(n) + v,(n) and, hence, the vector form of the set becomes x(n) =
u(n) + v,(n). Therefore, the autocorrelation matrix R, becomes

Efx(mx"(m}=R_=E{[u(n)+v,mlu"(n)+v;(0)]}=R + R, (449

where we used the assumption that u(s) and v,(1) are uncorrelated zero-mean
random sequences, which implies that E{v,(n)u'(n)} = E{v,(n)}Efu(n)} = 0.

Next, we multiply (4.4.8) by u(n—m) and take the ensemble average of
both sides, which results in the following expression

r (m)—0.1357,(m~1)—-0.7411r (m-2)=r, (m)= E{v,(mu(n—-m)} (4.4.10)

U1H
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Setting m = 1 and m = 2, the above equation produces the following
system:

F © -, Hﬂﬁmo} {—n, (1)}
= = Yule~Walker equation  (4.4.11)
r.(1) (0 | -0.7411 -7,(2)

since v,(n) and u(n—m) are uncorrelated. If we set m =0 in (4.4.10), it becomes
r,(0)—0.1357 (1) - 0.7411r, (-2) = E{v,(n)u(n)} (4.4.12)

If we, next, substitute the value of u(n) from (4.4.8) in (4.4.12), taking
into consideration that v and u are independent rv’s, we obtain

o2 =r,(0)—0.135r,(1)- 0.7411r,(2) (4.4.13)

where we used the symmetry property of the correlation function. From the
first equation of (4.4.11) we obtain the relation

0.135 0.135
ST SR 2 4414
1072119 = 02589 % (44.14)

¢y

Substituting the above equation in the second equation of the set of (4.4.11),
we obtain

r(2)= 0135010
u 0.2589

o2 +0.7411¢6> (4.4.15)

Hence, the last three equations give the variance of u

. ol 031

ol = = =0.9445 (4.4.16)
©7 03282 0.3282

Using (4.4.16), (4.4.14), and the value 0'5 = (.12, we obtain the correlation
matrix

0.9445 0.4925:' {0.12 0 } [1.0645 0.4925
4+ =

4.417) 4
04925 1.0645 E

Rx:Ru+RV{

0.4925 0.9445 0 0.12

From Figure 4.4.2 we find the relation

u(n)~0.931u(n—1)=d(n) (4.4.18)
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Multiplying (4.4.18) by u(n) and then by u(n-1), and taking the ensemble
averages of the results, we obtain the vector py, equals to

p,, =[0.4860~-0.3868]" (4.4.19)

Minimum mean-square error (MSE)

Introducing the above results in (4.2.3), we obtain the MSE-surface (cost
function) as a function of the filter coefficients. Hence,

0.4860 1.0645 0.4925
J(w)=10.8461-2[w, w,] +{w, w,]
—0.3868 0.4925 1.0645

= 0.8461 +0.972w, — 0.7736w, +1.0645w7 +1.0645w? + 0.985w,w,
(4.4.20)

The MSE surface and its contour plots are shown in Figure 4.4.3.

Optimum filter (w°)
The optimum filter is defined by (4.3.5), and in this case takes the following form:

1.1953 —-0.5531| 0.4860 0.7948 w,
w() — R;(lpdx = = (4421)
-0.5531 1.1953 || -0.3868 -0.7311 w,

Figure 4.4.3 The MSE surface and its corresponding contour plots of Example 4.4.2.
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x(n}) h d(n)
x(n) e(n)
x(n) din)
w

Figure 44.4 System identification set up.
The minimum MSE is found using (4.3.6) that, in this case, gives the value

Join = 0'3 —pdeR;lpdx
1.1953 —0.5531[ 0.4860}

=0.8461-[0.4860 —0.3868]
—0.5531 1.1953

—0.3868

=0.1770
(4.4.22)

Example 4.4.3 (System identification): It is desired, using a Wiener filter,
to estimate the unknown impulse response coefficients /s of a FIR system
(see Figure 4.4.4). The input {x(n)} is a zero mean iid rv’s with variance O'f )
Let the impulse response h of the filter be: h=[0.9 0.6 0.2]". Since the input
{x(n)} is zero mean and iid rv’s, the correlation matrix R, is a diagonal matrix
with elements having values 7. The desired signal d(n) is the output of the
unknown filter, and it is given by (see Section 2.4): d(n) = 0.9x(n) + 0.6x(n — 1)
+ 0.2x(n — 2). Therefore, the cross-correlation output is given by:

p(0) = Eld(n)x(n—i)} = E{[0.9x(n)+ 0.6x(n—1)+0.2x(n—2)]x(n—1)}
= 0.9E{x(n)x(n— i)} +0.6E{x(n —D)x(n~i)} + 0.2E{x(n - 2)x(n—1i)}
=097 (i)+0.6r (i-1)+0.2r (x-2)

(4.4.23)

Hence, we obtain (r,(m)=0 for m=0): p, (0)= 0902, p,.(1)=0.60>. The opti-
mum filter is

1 0]f09 0.9 1
w'=R]'p, =(c2)"’ =(c?)" , and the MMSE is
) 0 1)j0.6 0.6 ;

(assuming 67 =1)
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1 0]09
J o =03 —[0.9 0.6] .
1]/ 0.6

But,

0'5 = E{d(n)d(n)} = E{[0.9x(n) + 0.6x(n— 1) + 0.2x(n — 2)]*}

=0.81+0.36+0.04 =121 and, hence, ], =1.21-(0.97 +0.67) = 0.04.

Book MATLAB function for system identification (Wiener filter)
function|[w, jm]=aawienerfirfilter(x,d,M)

gfunction[w, jm]=aawienerfirfilter (x,d,M);

gx=data entering both the unknown filter (system) and
sthe Wiener filter;

2d=the desired signal=output of the unknown system;
length(d)=1length (x) ;

$M=number of coefficients of the Wiener filter;
sw=Wiener filter coefficients;jm=minimum mean-square
%error;

pdx=xcorr(d,x, 'biased"');

p=pdx (1, (length(pdx) + 1) /2: ((length(pdx)+1)/2)+M-1);
rx=aasamplebiasedautoc (x,M);

R=toeplitz(rx);

w=inv (R) *p';

jm=var (d) -p*w;% var() is a MATLAB function;

By setting, for example, the following MATLAB procedure: x =
randn(1,256); d = filter([0.9 0.2 — 0.4],1,x); [w,jm] = aawienerfirfilter(x,d,4); we
obtain: w = [0.9000 0.2000 —0.3999 —0.0004], ] ;. = 0.0110. We note that, if we
assume a larger number of filter coefficients than those belonging to the
unknown system, the Wiener filter produces close approximate values to
those in the unknown system and produces values close to zero for the
remaining coefficients.

Example 4.4.4 (Noise canceling): In many practical applications there
exists a need to cancel the noise added to a signal. For example, we are using
the cell phone inside the car and the noise of the car or radio is added to
the message we are trying to transmit. A similar circumstance appears when
pilots in planes and helicopters try to communicate, or tank drivers try to
do the same. Figure 4.4.5 shows pictorially the noise contamination situa-
tions. Observe that the noise added to the signal and the other component
entering the Wiener filter emanate from the same source but follow different
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Noise source vy(n)
(cockpit noise)

Figure 4.4.5 Illustration of noise canceling scheme.

Signal source d(n) x(n) = n o~ =dmtvi(n) - 01(”)‘
(pilot) () * >

paths in the same environment. This indicates that there is some degree of
correlation between these two noises. It is assumed that the noises have zero
mean values. The output of the Wiener filter will approximate the noise
added to the desired signal and, thus, the error will be close to the desired

signal. The Wiener filter in this case is

szw =p

Vivy

because the desired signal in this case is v,.
The individual components of the vector p, , are

Viva

Poyv, (M) = E{v,(n)v, (n —m)} = E{(x(n) — d(n))v, (11— m)}

= E{x(m)v,(n—m)}— E{d(n)v,(n—m)}=p,,, (m)
Because d(n) and v,(n) are uncorrelated,
E{d(n)v,(n—m)} = E{d(n)}E{v,(n —m)} = 0.

Therefore, (4.4.24) becomes

R, w’=p,

¥

(4.4.24)

(4.4.25)

(4.4.26)

To demonstrate the effect of the Wiener filter, let d(n) = 0.99" sin(0.1n7x +
0.27), ©v,(n)=0.8v,(n—-1)+v(n) and v,(n)=-0.95v,(n - 1)+ v(n), where v(n) is
white noise with zero mean value and unit variance. The correlation
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Figure 4.4.6 lllustration of Example 4.4.4.

matrix R, and cross-correlation vector p,, are found using the sample biased
correlation equations

N-1
rpzaz(k)=%202(n)vz(n—k) k=0,1,--,K-1, K<< N

n=0

(4.4.27)

N-1
vaz(k)=%zx(n)vz(n—k) k=0,1,-,K-1, K< N

n=0

Figure 4.4.6 shows simulation results for three different-order filters using
the Book MATLAB given below.

Book MATLAB function for noise canceling

function[d,w, xn]=aawienernoisecancelor(dn,al,a2,v,M,N)
%[d,w,xn]=aawienernoisecance=
%lor(dn,al,a2,v,M,N);dn=desired signal;

%al=first order IIR coefficient,a2=first order TIIR
%coefficient;

gv=noise;M=number of Wiener filter coefficients;N=num-
%$ber of sequence
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$elemets of dn(desired signal) and v(noise);d=output
%desired signal;
$w=Wiener filter coefficients;xn=corrupted sig-
%nal;en=xn-vl=4;
v1(1)=0;v2(1)=0;
for n=2:N
vli{n)=al*vl(n-1)+v(n-1);
v2(n)=az*vZ2(n-1)+v(n-1);
end;
vZ2autoc=aasamplebiasedautoc (v2, M) ;
xn=dn +vl;
Rv2=toeplitz(v2autoc) ;
pl=xcorr (xn,v2, 'biased');
if M>N
disp(['error:M must be less than N']);
end;
R=Rv2(1:M,1:M);
p=pl(l, (length(pl)+1l)/2: (length(pl)+1l)/2+M-1);
w=inv(R) *p"';
yw=filter(w,1,v2);
d=xn-yw(:,1:N);

Example 4.4.5 (Self-correcting Wiener filter (SCWF)): We can also
arrange the standard single Wiener filter in a series form as shown in
Figure 4.4.7. This configuration permits us to process the signal using filters
with fewer coefficients, thus saving in computation. Figure 4.4.8a shows
the input to the filter, which is a sine wave with added Gaussian white
noise. Figure 4.4.8b shows the output of the first stage of a self-correcting
Wiener filter and Figure 4.4.8c shows the output of the fourth stage of the
self-correcting Wiener filter (each stage has ten coefficients).

d(n)

y

Figure 4.4.7 Self-correcting Wiener filter (SCNF).




Chapter 4: Wiener filters 73

2 T T T T T T T T
=
s
—+
E 0
a1
I
G
[ 1 S 1 1 1 1 W 1 1
0 20 40 60 80 100 120 140 160 180 200
n
(a)
1 T T T T T T T T T
E
»
-1 I I 1 1 3 L ] I 1
0 20 40 60 80 100 120 140 160 180 200

_1 1 i 1 i L 1 1 I |

0 20 40 60 80 100 120 140 160 180 200

Figure 4.4.8 Tllustration of Example 4.4.5.

Problems
431 Verify (4.3.6).

4.3.2 Find the Wiener coefficients w, and w; that approximate (models) the
unknown system coefficients (see Figure 4.3.1), which are b, = 0 9 and
b, = 0.25. Let the noise {v(n)} be white with zero mean and variance o = 0.15.
Further, we assume that the input data sequence {x(n)} is stationary white
process with zero mean and variance 0' =1, In addition, {v(n) and {x(n)} are
uncorrelated and {v(#)} is added to the output of the system under study.

4.3.3 Find ], using the orthogonality principle.

4.41 Let the data entering the Wiener filter are given by x{(n) = d{(n) + v(n).
The noise v(n) has zero mean value, unit variance, and is uncorrelated with the
desired signal d(n). Furthermore, assume r,(in) = 0.9" and r (m) = &(m). Find
the following: pa., W, ..., Signal power, noise power, signal-to-noise power.
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Algorithm

Algorithm

(@) {b)

Figure p4.4.3 Wiener filters of Problem 4.4.3.

4.4.2 Repeat Example 4.4.4 with the difference that a small amount of the
signal is leaking and is added to v,(n) noise. Use the following quantities
and state your observations: 0.05d(r), 0.1d(n), 0.3d(n), and 0.6d(n).

4.4.3 Find the cost function and the MSE surface for the two systems shown
in Figure p4.4.3. Given: E[s(n)} = 0.9, E(s(n)s(n—1)} = 0.4, E[d¥(n)} = 3,
E{d(n)s(n)} = -0.5, and E{d(n)s(n—1)} = 0.9.

Hints-solutions-suggestions
43.1:

] =0, -2w"R w’ =07 -w'R w’ =0, —(R'w)' w’ =07 - (R, w°)"w°
=0, -pLw° =0, -p,R'p, (R, is symmetricand wand p,_are vectors)
4.3.2:

1 0

= ={ } (1) Since {x(n)} and {v(n)}
E(x(n-1x(m} E{x*(n)} 01

are white processes implies that

E{x(n-1)x(n)} = E{x(m)x(n — 1)} = E{x(n - 1)x(n)} = E{x(m)}E{x(n - 1)} =0,

El2(n)) E{x(n)x(n—l)}}
R —

E{x*(m)) = E{x*(n — 1)} = 1, E{x(n)o(n)} = E{x(n)}E{fo(n)} = 0,

E{x(n — 1)o(n)} = E{x(n — 1)}E{v(n)} =0,
we obtain

E{[o(n) + 0.9x(1) + 0.25x(n — 1)]x(n)} } 0.902 {0.9 } o
_ = 2),

Pu ™ E{[o(n)+ 0.9x(n) + 0.25x(n — D)]x(n - 1)} ) 0.2507 0.25
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= E{d*(n)} = E{[v(n)+ 0.9x(n) + 0.25x(n — D)][v(11) + 0.9x(n) + 0.25x(n —1)]}
= E{v*(n)} + 0.81E{x*(n)} + 0.0625E{x* (1 — 1)} = 0.15+ 0.81+ 0.0625 = 1.0225

3).
Introducing (1), (2), and (3) in (4.2.3) we obtain

0.9 1 0| w,
J =1.0225 - 2[w, wl][ }+[w0 wll{ H ]
0.25 01w |

=1.0225 —1.8w, — 0.5w, + w? + w?

The optimum Wiener filter is given by (see (4.3.5))

1 009 0.9
w=Rp, = = , and the minimum error is given by
0 11025 0.25

0.9

J o =05 —pa w=1.0225-[0.9 0.25]{ ] =1.0225-0.8725=0.15.

0.25

4.3.3:

M-1
| = E{e(m)[d(n)— Zwmx(n —m)]} = E{e(m)d(n 2 w,_ Ele(n)x(n—m)). If the
m=0 m=0
coefficients have their optimum value, the orthogonality principle states that
E{e(m)x(n — m)} =0 and,

hence, | . = Ele(n)d(n)} = E{d(n)d(n)— Zw,‘;x(n —myl(n)} =

m=0
M-1
2 E{d(n)x(n—m)) = zw’”pd* (m)=7,(0)—py w* =7,(0)- p;.R'p,,
m=0 m=0
4.4.1

P, (m) = Eld(n)x(n—m)} = E{d(n)d(n— m)} + E{(d(m)}E{v(n —m)} = r,(m) (1)

since d(n) and v(n) are independent and WSS. Also, r(m) = E{x(n)
x(n—m)} =r,(m)+r,(m), where again the independence and the zero mean
properties of the noise were introduced. Therefore, the Wiener equation
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becomes: Ry + R, = pg,. From the relation pg,(m) = ry(m) (see (1)), and the
given relations in the problem, we find that the Wiener equation and its
inverse are given by

2 09][w,] 1 w,] 1 [119] [0373
09 2 |lw | |09 |w | 319009 | |o282]
The minimum error is

J o = 7:(0) =, R'W® = 7,(0)—pl w® = 0.373. Since r,(0)=0; =1 and ¢’ =1,

the power of the desired signal and noise are equal and, hence, 10log(1/1) =0.
After filtering x(n) we find that the signal power is

1 09w
09 1

= 0.408, and the noise power

o

Eld*(0)) = w*'R,,w° = [ w;]{
w,

is

N 1 0| wg
E{0*(0)} = w''R, w° =[w] w!] =0.285.
0 1w

Therefore, SNR = 10log(0.408/0.285) = 1.56, which shows that the Wiener
filter increased the SNR by 1.56 dB.

4.4.3:
a)j = E{(d(n) - [s(n) + w s(n -1}
= E{d*(n)—[s(n) + w,s(n— D) — d(m)[s(n) + w, s(n—-1)J)
= E{d*(n)} - E{s*(n)} - wéE{sz(n — 1)} - 2w E{s(m)s(n — 1)} - 2E{d(n)s(n)}
— 2w E{s(n)s(n - 1)}

=3- 0.9—w§0.9—2w00.4+2><0.5—2w00.4 = 3.1—0.9103 —0.6w, =

——=-09x2w_-1.6=0=>w_ =0.889.(b)Similar to (a)
aa) 0 0




chapter 5

Eigenvalues of R, — properties
of the error surface

5.1 The eigenvalues of the correlation matrix

Let R, be an M x M correlation matrix of a WSS discrete-time process
computed from a data vector x(r). This symmetric and non-negative matrix
(see Problem 5.1.1) can be found using MATLAB as follows: we find the data
vector x(n) = [ —0.4326 -1.6656 0.1253 0.2877 -1.1465 1.1909 1.1892
-0.0376  0.3273  0.1746 ] using the MATLAB command: x = randn(1, 10).
From this data vector we find its autocorrelation function r(m) = [0.7346
0.0269 —0.1360] using the Book MATLAB function: rx = aasamplebiasedau-
toc(x, 3). Next, we obtain the correlation matrix

0.7346 0.0269 -0.1360
R = 0.0269 07346 0.0269
—-0.1360 0.0269 0.7346

using the MATLAB function: R, = toeplitz(rx). Having found the correlation
matrix R,, we wish to find an M x 1 vector q such that

R q=1q (5.1.1)

for some constant A. The above equation indicates that the left-hand side
transformation does not change the direction of the vector q but only its
length. The characteristic equation of R, is given by

det(R q-AI)=0 (5.1.2)

77
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The roots 4,,4,,---, A,, of the above equation are called eigenvalues of R,.
Therefore, each eigenvalue corresponds to an eigenvector g; such that

Rgq=4q, i=12- M (5.1.3)
The MATLAB function

[Q,D]=eig(R); (5.1.4)

gives the diagonal matrix D (D = A) containing the eigenvalues of R (R=R))
and gives the matrix Q with its columns equal to the eigenvectors of R.
Using the 3 x 3 matrix above in (5.1.4), we obtain

0.6842 0.1783 -0.7071 0.5886 0 0
Q=-0.2522 0.9677 -0.0000 |, D= 0 0.7445 0
0.6842 0.1783  0.7071 0 0 0.8706

In Table 5.1.1 below, we give the eigenvalue properties of WSS processes.
Continuing with our correlation matrix using MATLAB, we also find that

>Q(:;, 1) *Q(:,3) =5.5511e — 17 % Q (;, 1)’'= row of the first column

% of Q, Q (1:,3) = third column of Q,
% the results verify the orthogonality

% property;
Table 5.1.1 Eigenvalue Properties
x(n)=[x(n) x(n—1)---x(n— M +1)] Wide-sense stationary stochastic process
R, = E{x(n)x"(n)) Correlation matrix
A The eigenvalues of R, are real and positive
q/q;=0 Two eigenvectors belonging to two different

eigenvalues are orthogonal

Q'Q=1 Q=I[q, q,--'qy,]; Q is a unitary matrix
M-1
R, = QAQ' = Ef) A4 qiT A=diag[Ay A, A, Ay ]
tr{R )= Afl A, tr{R} = trace of R = sum of the diagonal
; i=0

elements of R
Ay S8 = max S (e”)

A
m —nLo<n

A zs;"“ = min S (¢/)

i —nLw<n
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0.7346 00269 —0.1360
Q+A*Q' =| 00269 07346  0.0269 |=R, as it should be.
~0.1360 00269  0.7346

5.2 Geometrical properties of the error surface

The cost function J (see Section 4.2) can be written in the form
w'R w-2p"w—(J-03)=0 (5.2.1)

If we set values of | > ], the w plane will cut the second order surface, for
a two-coefficient filter, along a line whose projection on the w-plane are
ellipses arbitrarily oriented as shown in Figure 5.2.1. To obtain the contours,
we used the following Book MATLAB program:

w0=-3:0.05:3;

wl=-3:0.05:3;

[%,y]=meshgrid(w0,wl) ;
3=0.8461+0.972*%x-0.773*y+1.0647*x.72+1.064*y."2+0.985x.*y;
contour (x,v,3,30);%30 is the number of desired contours

Figure 5.2.1 MSE contours in the w- and &-planes.
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If we introduce the MATLAB function contour(j, [2.3 3.1 5] in the
command window, we produce three contours at heights 2.3, 3.1, and 5.

The first simplification we can do is to shift the origin of the w-axes to
another one whose origin is on the center of the ellipses. This is accomplished
using the transformation: £ = w — w°. If we introduce this transformation in
(5.2.1) and setting J = 2] .., we obtain the relationship (see Problem 5.2.1)

E'RE-2] . +0,-p'Ww =0 (5.2.2)
But o —p'w’=]__, and thus, the above equation becomes

ERE=] (5.23)

We can further simplify (5.2.3) by a linear transformation such that the major
axes are aligned with a new set of axes, (§,&). The transformation is
accomplished by the linear relationship

£=Q¢ or &=Q%¢ (5.24)

where Q is a matrix whose columns are the eigenvectors of the corre-
lation matrix R,. The matrix Q is unitary having the property: Q"= Q™
(see Table 5.1.1). Substituting next (5.2.4) in (5.2.3) and setting R_= QAQ"
or Q'R Q= A, we obtain the equation

ENE =T i (5.2.5)
The matrix is a diagonal matrix whose elements are the eigenvalues of the

correlation matrix R,.

Example 5.2.1: Let A, =1, 4,=0.5, and ] ;, = 0.67. The ellipse in the (&, &)
plane is found by solving the system

o TE L 5 V. &
% éfo][o 0.5} ¢ =0.67 or [\/0.67/1] +[ﬁ.67/o.5] =
(5.2.6)

where 0.67/0.5 is the major axis and 0.67/1 is the minor one. Hence, for
the case | = 2], the ellipse intersects the 5(') axis at 0.67 and the & at 1.34.
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If we start with (5.2.1) and apply the shift and rotation transformations,
we obtain the relationships

J=],, +(W-w)'R (w-w)=]  +ERE

=] . +E'QAQT)E=] +E&TAL

(5.2.7)

Notes:

* The contours intersect the &-axes at values dependent upon the
eigenvalues of R, and the specific MSE value chosen. The rotation
and translation do not alter the shape of the MSE surface.

» If the successive contours for the values 2., 3]...., etc., are close to
each other, the surface is steep, which in turn indicates that the
mean-square estimation error is very sensitive to the choice of the
filter coefficients.

* Choosing the filter values w is equivalent to choosing a point in the
w-plane. The height of the MSE surface above the plane at that point
is determined only by the signal correlation properties.

Problems

5.1.1 Prove that a correlation matrix from a WSS process is positive definite.
That is, aTRa = 0 for any vector a.

5.1.2 Show that if 4;, 4, ... Ay denote the eigenvalues of the correlation
matrix R,, then the eigenvalues of R* are equal to A, /l;, -+ AL forany k> 0.

5.1.3 Show that if the eigenvectors qy, q,, ... Gy correspond to distinct eigen-
values A, 4,, ... , Ay of an M x M matrix R, then the eigenvectors are
linearly independent.

5.1.4 Show that if the M x M correlation matrix R, has M eigenvalues, these
eigenvalues are real and non-negative.

5.1.5 Show that if the correlation matrix R, has M distinct eigenvalues and
eigenvectors then the eigenvectors are orthogonal to each other.

5.1.6 Show that an M x M correlation matrix R, can be written in the form
Q"R QO =A whereQ=[q; q, ... qulisa matrix whose columns are the
eigenvectors of the correlation matrix and A is a diagonal matrix whose
elements are the distinct eigenvalues of the correlation matrix.

5.1.7 Show that the trace of the correlation matrix is equal to the sum of its
eigenvalues.

52.1 Verify (5.2.2).
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5.2.2 Find the ellipses if the following data are given:

R 2! 0 > =28
= , = , o, = .
x 1 3 pdx 7 d

5.2.3 A Wiener filter is characterized by the following parameters:

Al

o7 =2.1t is requested to explore the performance surface as the ratio A,/
varies. This is accomplished using different values of a and b.

Hints-solutions-suggestions
5.1.1:
a"Ra 20 =a"E{xxTa = E{(a"x)(xa)} = E{(a"x)*} 2 0

5.1.2:

Repeated pre-multiplication of both sides of (5.1.1) by the matrix R, yields
R *q = A*q. This shows thatif Ais an eigenvalue of R,, then A*is an eigenvalue
of R* and every eigenvector of R, is an eigenvector of R*.

5.1.3: M
Suppose that ¥ a.q,= 0 holds for certain not all zero scalars a,'s. Repeated mul-
i=1

tiplication of this equation and using results of Problem 5.1.2, the following

M
set of M equations are found: §1 arq, =0,k=1,2, ---, M. This set of equa-

tions may be written as follows: [ q, a,q, - «,q,,]V=0 (1).

2..

1 A A2 o AMY]
1 A, /122 e A

The matrix V = . is a Vandermonde matrix, which is
11 Ay Ao e /lj\‘f“l |

nonsingular (has an inverse) if the eigenvalues are distinct. Next, we post-
multiply (1) by V7 to obtain [ q, 9, -~ @,q,,]=0. Equating the corre-
sponding columns, we find that a,q; = 0. Since g,’s are nonzero, the equations
can be satisfied if the 4;'s are zero. This contradicts the assumption, and thus,
the eigenvectors are linearly independent.

5.1.4:

The it eigenvalue is found from the relation Rq; = Aq;fori=1, 2, ... M(1).
Pre-multiplying (1) by q}' (H stands for the Hermitian transpose and is
substituted with T for real symmetric matrices) we find q/'R q, = A.q/'q,
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Because the matrix is positive definite, the left-hand side of the equation
is positive or equal to zero. The eigenvalue product on the right-hand side
is the Euclidean norm (distance), and it is positive. Hence, the eigenvalues
are positive or zero (non-negative).

5.1.5:

Two eigenvectors are orthogonal if q q; =01 # j. From the eigenvalue-eigen-
vector relationship we write: R q, = ﬂ.q (ODR ;= ﬂ.q (2). Mulhplymg (1) b
the Hermitian form of the j e1genvector we obfain q R q,=4 q q; (3). Next
we take the conjugate transpose of (2) and mcorporate the con]ugate trans-
pose equivalence property of the correlation matrix. We, next, multlply these
results with q; from the right to find the relation qHR q; = ﬂ,q q; (4). Sub-
tracting (3) from (4) we obtain the relation (4, - /l) q,'q, = =0 (5). Because the
eigenvalues are distinct, (5) implies that the vectors are orthogonal.

5.1.6:

We assume that the eigenvectors are orthonormal (see Problem 5.1.5). For
each eigenvalue and the corresponding eigenvector, there is the relation-
shipR q. = /li,q/.,i=1,2, ---,M (1). Hence, the set of equations of (1) can be
written in the form R Q = QA (2) because the eigenvectors are orthonormal
we find that Q'Q =T (3). Equivalently we may write (3) as follows: Q' =
Qf (4). If a matrix obeys condition (4) we say that the matrix is unitary.
Multiplying (2) by Q" from the left, we obtain the relation: QURQ = A. This
transformation is called the unitary similarity transformation.

5.1.7:

M
tr{Q“RxQ}ztr{A}zzz.=tr{RxQ Q) = tr{R 1} = (R}

5.2.1:

(w — wo+ wWO)TR(wW — w° + w°) — 2pT(w — w° + w°) — 2] .+ 62 = ({+wo)T
R(&+wo) = 2pT(E+wWo) - 2] i + O2 With Rwe=p, w°Tp = p™we® = number and
02— p'we = ] ;. the equation is easily proved.

5.2.2:

2-4 1
3-1

=2-A)3-4)-1=0,

J=] i+ ETAE and ], -p'we,[R- A=

1,=1.382,

[2 1]wg ﬂ wg (11/5J {11/5}
A,=3618 = |, = ] =28-[6 7] =36
1 3w | (7] |w?]| 85 8/5

1328 0 ||&
0 3618 || &

J=36+[& & =3.6+1.382& +3.618¢/
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5.2.3:

1 d a| W,
The MSE surface is givenby: [ =2-2[w  w ]| |+[w, w|] ,and the

1 a djlw
1 1 ]
w; d a|l |1 |d+a
optimum tap weights are: =R'p= = . Therefore, the
wlo a d 1 1
d+a

minimum MSE surface is:]min=05—w°Tp:2—[d+a il T

1 1 1}:2d+a—1.

We also have the relation

d al$
]:]mm+(w—w°)TR(w—w°)=2d;ri:1+[§0 Q]L Z] .

1

d-A a

From the relation =0, we obtain the two eigenvalues 4, =d + a,

a d-A
and A, = d - a. By incorporating different values for a and d we can create
different ratios of the eigenvalues. The larger the ratio the more elongated
the ellipses are.




chapter 6

Newton and steepest-descent
method

6.1 One-dimensional gradient search method

In general, we can say that adaptive algorithms are nothing but iterative
search algorithms derived from minimizing a cost function with the true
statistics replaced by their estimates. To study the adaptive algorithms, it is
necessary to have a thorough understanding of the iterative algorithms and
their convergence properties. In this chapter we discuss the steepest descent
method and the Newton’s method.

The one-coefficient MSE surface (line) is given by (see (5.2.7))

J(@) = J i + 7. (ONw = w° ) (6.1.1)

and it is pictorially shown in Figure 6.1.1. The first and second derivatives are

8](30) — 27’(0)(?,0 _ wO) IZ); 8‘21(221,—7) = 2rx(0) >0 b) (612)
ow ow

Since at w = w’ the first derivative is zero and the second derivative is greater
than zero, the surface has a global minimum and is concave upward. To find
the optimum value of w, we can use an iterative approach. We start with an
arbitrary value w(0) and measure the slope of the curve J(w) at w(0). Next,
we set w(1) to be equal to w(0) plus the negative of an increment proportional
to the slope of J(w) at w(0). Proceeding with the iteration, we will eventually
find the minimum value w°. The values w(0), w(1), ... , are known as the
gradient estimates.

85
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Initial guess -

w)|w() |
25 3

Figure 6.1.1 Gradient search of one-dimensional MSE surface.

Gradient search algorithm

Based on the above development, the filter coefficient at iteration n, w(n), is
found using the relation

of(w) j
ow 1= (6.1.3)

= w(n)+ p[-V](w(n))] = w(n) - 2ur, O)w(n) - w’)

wn+1)=wn)+ ,u(—

where y is a constant to be determined. Rearranging (6.1.3), we find

w(n+1)=(1-2ur (0)w(n)+ 2ur (0)w’ (6.1.4)

The solution of the above difference equation, using the iteration approach
(see Problem 6.1.1), is

w(n) = w° + (1-2ur. (0))* (w(0)— w°) (6.1.5)

The above equation gives w(n) explicitly at any iteration in the search pro-
cedure. This is the solution to the gradient search algorithm. Note that if we
had initially guessed w(0) = w’, which is the optimum value, we would have
found w(1) = w9 and this gives the optimum value in one step.

To have convergence of w(n) in (6.1.5) we must impose the condition

[1-2pr(0) <1 (6.1.6)
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The above inequality defines the range of the step-size constant y so that the
algorithm will converge. Hence, we obtain

-1<1-2ur (0)<1lor 0<2ur,(0)<20r O< p <% (6.1.7)
7

X

Under this condition, (6.1.5) converges to the optimum value w° as
n — oo, If u >1/r (0), the process is unstable and no convergence takes place.

When the filter coefficient has a value w(n) (i.e., at iteration n), then the
MSE surface (here a line) is (see (6.1.1))

Jm)=]_. +r.0)wn)-w') (6.1.8)

Substituting the quantity w(n) — w° of (6.1.5) in (6.1.8) we obtain
J(n)=] . +,0)w(0)—w’)*(1-2ur (0)* (6.1.9)

The above two equations show that w(n)u” as n increases to infinity, and the
MSE undergoes a geometric progression toward [ ;.. The plot of the perfor-
mance surface (1) vs. the iteration number # is known as the learning curve.

Newton's method in gradient search

Newton’s method finds the solution (zeros) to the equation f{w) = 0. From
Figure 6.1.2 we observe that the slope at w(0) is

, df (w) f(w(0))
o) = _ 6.1.10
0= =4 a0 = 0 oD (6-1.10)
f(w)
4 f(w)
Tangent
) |
| flw(0)]
| w -
_ : ol w(0) - w(l)
= |
ETTTTTTTTTTS | :
e | |
| |
| |
| |
| 1
1 >
w(l) w(0) w

Figure 6.1.2 Newton’s method for finding a zero of flw).
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where w(0) is an initial guess. The above equation is the result of retaining
the first two terms of Taylor’s expansion and setting the rest of them equal
to zero. This equation can be written in the form

f(w(0))
f(w(0))
From (6.1.11), it is clear that if we know the value w(0) and the values

of the function and its derivative at the same point, we can find w(1). Hence,
the n' iteration of the above equation takes the form

w(1) = w(0)— (6.1.11)

— () L) -
w(n+1)=w(n) Flwin) n=0,1,2 (6.1.12)

But f'(w(n)) =[f(w(n)) - f(w(n-1))/[w(n)-wn-1)], and hence, (6.1.12)
becomes

fw(m)w(n) - w(n -1)]
fw(n)) = f(w(n-1))

As we have mentioned above, Newton’s method finds the roots of the
function f(w). That is solving the polynomial f{w)= 0. However, in our case
we need to find the minimum point of the performance surface (here line).
This is equivalent to setting o] (w)/0w = 0. Therefore, we substitute the deriv-
ative df(w)/dw for f(w) in (6.1.12) and for f'(w) we substitute the second
order derivative 9°J(w)/dw”. Hence, (6.1.12) becomes

wn+1)=w(n)- 6.1.13)

] (w(n))
ow(n)
9 (w(n))
ow?(n)

wn+1)=wn)— n=0,1,2-.- (6.1.14)

Newton’s multidimensional case

In the previous chapter, it was found that the optimum filter is given by (see
(4.3.5))

w®=R]p, (6.1.15)
Furthermore, (4.3.1a), (4.3.3a), and (4.3.3b) can be written in the form
9f(w)
dw, r.(0) rx(l)}{wo} [rdx(O)
=2 -2 (6.1.16)
9J(w) r 0w 7 (1)

Hw,)
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or equivalently for M coefficients in the vector form (ry, = py,)

d

ow
9

Vi(w)=2R w-2p,, V=|o¥

0
1

(6.1.17)

The reader should refer to Appendix A for vector and matrix differentiations.
Multiplying (6.1.17) by the inverse of the correlation matrix and using
(6.1.15), we find

w® =w— UR'V](w) (6.1.18)

where we have substituted the constant 1/2 with the step-size parameter.
If we introduce the new gradient R;IV] (w) in (6.1.3), we obtain

w(n+1) = w(n)— uRVj(w(n)) (6.1.19)

This equation is a generalization of (6.1.3). Based on the observed correspon-
dence between quantities we can substitute w’s with their vector equivalents,
the autocorrelation »,(0) with the correlation matrix R,, and 27, (0)(w(n) — w°)
with the gradient vector of J(w). Hence, we obtain

w(n+1)=w(n)-2uR (w(n)-w’)=w(n)-uvVj(w) (6.1.20)

The presence of R, causes the eigenvalue spread problem to be exaggerated.
This is because, if the ratio of the maximum to the minimum eigenvalues
(i.e., eigenvalue spread) is large, the inverse of the correlation matrix may have
large elements, and this will result in difficulties in solving equations that
involve inverse correlation matrices. In such cases, we say that the correlation
matrices are ill-conditioned.

To overcome the eigenvalue spread problem, Newton’s method simply
substitutes g with uR." in (6.1.20) to obtain (6.1.19). This substitution has the
effect of rotating the gradient vector to the direction pointing toward the
minimum point of the MSE surface as shown in Figure 6.1.3.
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—RAT(w)

Figure 6.1.3 The gradient and Newton vectors.

Substituting (6.1.17) in (6.1.19) we obtain

w(n+1)=w(n) - uR'(2R w(n)—-2p, )=(1-2u)w(n)+2R'p,,

(6.1.21)
=(1-2u)w(n)+2uw®
Subtracting we from both sides of the above equation we find
w(n+1) —w® =(1-2u)w(n)—w°) (6.1.22)

For n=0 and p=1/2, we obtain w° in one step. However, in practice
VJ(w) and R;l are estimated and, therefore, the value of the step-size
parameter must be less than 0.5.

Setting w —w*® =& in (6.1.22) we find the relation

S +1)=(1-2u)é(n) (6.1.23)
which has the solution (see also Problem 6.1.1)

Sm)=(1-2w)"50) or w(n)—w®=(1-2)"(W(0)-w") (6.1.24)




k.

Chapter 6:  Newton and steepest-descent method 91

Using (5.2.7) in connection with (6.1.24) we obtain (see Problem 6.1.3)

J(n) = ] i+ (=20 (JO) = ] 1) (6.1.25)

where J(0) is the value (height) of the performance surface when w is equal
to w(n) at iteration n.
To obtain a decaying equivalent expression, we introduce the relation

(1-2u)"=e © (6.1.26)

where is the time constant. Under the condition 2u<<1, we can use the approx-
imation In(1 — 2u) = —2u. Therefore, the time constant has the value

T=— (6.1.27)

The above equation shows that Newton’s algorithm has only one mode
of convergence (one time constant).

6.2 Steepest-descent algorithm

To find the minimum value of the MSE surface, [ ., using the steepest
descent algorithm, we proceed as follows: a) We start with the initial value
w(0), usually using the null vector. b) At the MSE surface point that corre-
sponds to w(0), we compute the gradient vector V](w(0)). c) We compute the
value —uVJ(w(0)) and add it to w(0) to obtain w(1). d) We go back to step
b) and continue the procedure until we find the optimum value of the vector
coefficients.

If w(n) is the filter-coefficient vector at step n (time), then its updated
value w(n + 1) is given by (see also (6.1.3))

wn+1)=wn)—- uvVJj(w(n)) (6.2.1)
The gradient vector is equal to (see (6.1.17))

Vi(w(n))=-2p, +2R w(n) (6.2.2)
and, hence, (6.2.1) becomes

w(n+1)=w(n)+2ulp, —R w(n)]=w(n)+u'[p, —R w(n)]

) (6.2.3)
=[I- &'R Iw(n)+ 1'p,,
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wn+1)

71

Figure 6.2.1 Signal-flow-graph representation of the steepest-descent algorithm.

where we set 4" = 2, and I is the identity matrix. The value of the primed
step-size parameter must be much less than 1/2 for convergence. The signal-
flow-graph of (6.2.3) is shown in Figure 6.2.1.

To apply the method of steepest descent, we must find first estimates of
the autocorrelation matrix R, and the cross-correlation vector pg, from the
data. This is necessary, since we do not have an ensemble of data to find R,
and Pay.

Stability (convergence) of the algorithm
Let

&(n)=w(n)-w° (6.2.4)

be the difference between the filter-coefficient vector and its optimum Wiener
value w°. Next we write the first part of (6.2.3) in the form

wn+1)-w’ =w(n)—w’+ ' [R w®*—R w(n)] or &n+1)=[I-u'R J&n)
(6.2.5)

But since R, = QAQT (see Table 5.1.1) and I = QQ7, (6.2.5) becomes:

&n+1)=[1- 'QAQ" ()

or

Q™ ém+1)=[1-u'AIQ"&(n) (6.2.6)
or

Em+1)={1- Al (n)
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where the coordinate axis & ’s are orthogonal to ellipsoids (see Chapter 5),
and is a diagonal matrix with its diagonal elements equal to the eigenvalues
of R,. The k' row of (6.2.6), which represents the k™ natural mode of the
steepest descent algorithm, is (see Problem 6.2.1)

Sm+1)=[1-pAlE () (6.2.7)

The above equation is a homogeneous difference equation, which has the
following solution (see also Problem 6.1.1)

Smy=QA-wAyyg k=01,--,M-1, n=1,2,3,-- (62.8)
For the above equation to converge (to be stable) as 7 — oo, we must set
-1<1-pA <1 k=0,1,2,---,M-1 (6.2.9)

From the right side of the inequality we obtain —p’A, <0 or u’>0, since A,
are real and positive. From the left side of the inequality we obtain
WA <2or u <2/4,, and hence

O<u' <2/4 k=01,--,M-1 or O<pu<1/A k=01, ,M-1
(6.2.10)

Under the above conditions and as 1 — o, (6.2.8) becomes im & (1) =0
or £ =0 since Q" # 0 and, thus, w(e) = w°. Since (6.2.8) decays eiﬁ%nentially
to zero, there exists a time constant that depends on the value of ¢’ and the
eigenvalues of R,. Furthermore, (6.2.8) implies that immaterially of the initial
value &(0), w(n) always converges to w° provided, of course, that (6.2.10) is
satisfied. This is an important property of the steepest-descent algorithm.
Since each row of (6.2.7) must decay as 11 — oo, it is necessary and sufficient
that ¢” obeys the following relationship

O<p' < 12— (6.2.11)

max

Since (1-p’A, )" decays exponentially, there exists an exponential function
with time constant 7, such that (e y =(1- WA orl—p'A = e/ =

1- % + 2,12 — -+ Therefore, for small 4" and 4, (large 7,), we have
Afk

HA, <«<1 (6.2.12)
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In general, the k™ time constant 7, can be expressed in the form

1
= 6.2.1
Tk ]Il(l — ‘U//lk) ( 3)

Transient behavior of MSE

Using (5.2.7) at time 1 we obtain the relation

M-1
JOW() = oy +ETAE =]+ D AEE () (6.2.14)
k=0
Substituting the solution for &/ (1) from (6.2.8) in (6.2.14), we find the relation
M-1
JOW) = ]y + D A (1= A E3(0) (6.2.15)
k=0

It is obvious from the above equation (the factor in parenthesis is assumed
to be less than one) that

lim J(w() = ], (6.2.16)

From (6.2.14) we observe that the learning curve (plot of [(w(n)) vs. 1) consists
of a sum of exponentials, each one corresponds to a natural mode of the

algorithm.

Solution of the vector difference equation

If we set n = 0 in (6.2.3), we obtain
w(l)=[I-u'R Iw(0)+1'p,, (6.2.17)
Similarly, if we set n =1, we find
w(2)=[I- 'R w(l)+'p,, (6.2.18)

If we substitute (6.2.17) in (6.2.18) we obtain

W) =[1- WRPFWO+p'p, + 1~ 'R J'p,,

L . 6.2.19)
=[I—u’Rx]ZW(O){Z[I—u’RX]’]u’pdx (
j=0

Therefore, at the nth step we obtain

w(n) =[I- 'R J"w(0)+ (Z[I -fR ] ],u'pdx (6.2.20)

=0
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The above equation does not provide us with a way to study the convergence
of w(n) to w® as 1 — . We must decouple the equations and describe them
in a different coordinate system. To accomplish this task we translate and
then rotate the coordinate system.

After finding the eigenvalues and eigenvectors of R,, we create a diag-
onal matrix consisting of the eigenvalues of R, and a matrix Q made up of
the eigenvectors of R, (see Chapter 5). Since Q'Q = QQT =1, (6.2.3) takes the

form
w(n+1)=Q[I - 'AlQ w(n)+ wp,, (6.2.21)

To uncouple the weights (coefficients), we multiply both sides of the above
equation by Q. Hence,

w/(n+1)=[I- @' Alw'(n)+ 1'p}, (6.2.22)
where we define the following quantities
w(n+1)=Q w(n+1), w(n)=Q w(n), p, =Q'p,,, w” =Q'w® (6.2.23)
Next, we obtain the relation
wol= QTwo — QTR;lpdx = QT (QAQT)—I de
- QTQAleTde — A—lpslx

since Q7 = QT and (QAQT)™ =(AQN) Q' =(QT)'A7Q" =QATQ".
The i equation of the system given by (1.2.21) is

(6.2.24)

w(n+1)=[1-whlw(m)+u'p,  0<isM-1 (6.2.25)

By iteration, the above equation has the following solution (see Problem
6.2.2):

w(n)=(1- WA Y w(0)+1'p), {2(1 - ;m,,)f] (6.2.26)

j=0
If we set o, =1— p’A,, then (6.2.26) becomes

n—1 n

, —al
wi(n)=olw/(0)+u'p;, E o] =olw/(0)+u'p;, . aL (6.2.27)
i=0 i

’ 2 a7 l—aln 1
wi(n):#pidx 1- =T

1

[1-(1-wr)] (6.2.28)

since the sum is a finite geometric series.
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Example 6.2.1: For the development of this example we used the help of
MATLAB. Hence, the data were found using x = randn(1,10), and the desired
ones were found using d = conv([1 0.2],x) or d = filter([1 0.2],1,x). The correla-
tion matrix was found using the function R = toeplitz(xc(1,10:11)), where xc =
xcorr(x,'biased’). Similarly, we found the pdx cross-correlation. Hence,

[0.7346  0.0269

10.0269 0.7346

Q-

[-0.7071 0.70711 [0.7077 0 }
;A=

| 07071 0.7071 0 0.7071

and y’ <2/0.7071 = 2.8285 for the solution to converge. We next choose
[w, w,]" = [0 0]" and hence w’(0) = Q" w(0) = 0. Therefore, (6.2.27) becomes

14 2.7 1_aln 1 4 4 n
w[(”):.u Pidx 1-«a =Tpidx[1—(1_ll/li) ]

From (6.2.23) we obtain

—0.7071 0.7071“ 0.7399} {—0.5234}

p::lx = QTpdx =
0.7071 0.7071

—-0.0003 0.5230

Therefore, the system is (we set u” = 3 for convergence)

w)(n) = Floﬁ(—o.szy;)[l —(1-2 x 0.7071)"]

w!(n) = 5716740.5230[1 —(1-2 x 0.7614)"]

Since w’(1) = Q"w(n) and QT = Q" we find w(n) = Q w’(11) and at the limit
value when n approaches infinity, the filter coefficients take the values

~0.5234
w) - [—0.7071 0.7071} 0.7077 [1.0087]
W =

0.7071 0.7071 || 0.5230 -0.0373
0.7614

Problems
6.1.1 Verify (6.1.5).

6.1.2 Plot (6.1.5) for the following positive values of j1: (a) 0 < p < 2%(0) byu=
2’1:(0) (C)ﬁ <H< ’,\-10) with 7,(0) = 1. Identify the type of your plots.
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613 Verify (6.1.25).
6.1.4 Using Newton'’s algorithm, find the third root of 8. Start with w(0) = 1.2.

6.1.5 Let the MSE is given by the non-quadratic equation | =2 — &
[(1 — w?)(4.5 + 3.5w)]. Find and plot the recursive Newton’s algorithm for
the coefficient w(n), n = 0, 1, 2, ... Start with w(0) = 2.

6.2.1 Verify (6.2.7).

6.2.2 Verify (6.2.26).

71 07
6.2.3 LetR, 2{ ] and p, =[0.7 05]" are the estimates derived
0.7 1

from the data. Find the vector w(n).

6.2.4 Find an equivalent expression of [(w(n))=] . +&'(n)AL’(n) as a func-
tion of w(n), pa(#), and R,.
1 0.85
6.2.5 The correlation matrix of the filter input isR = with
0.85 1
eigenvalues 4;= 1.85 and A, = 0.15. Plot the learning curve in a semi-log
format and find the two time constants. Compare the results obtained from

the graph and those given analytically (see (1.2.12)).

6.2.6 Plot!1-p'A_ land|1-pu’A__ |vs. u’ for two hypothetical values of
Amin =04and 4, = 0.8. Find the optimum value y; ,, which is given by the
intersection of the two curves. All the other values of the eigenvalues create
lines between the above two. When 1’ =i’ , the speed of convergence of
the steepest-descent algorithm is determined by the factor c =1-2u’ 4

opt” “min *

Hints-solutions-suggestions
6.1.1:

w(1) = aw(0)+ bw’(a=1-2ur(0),b = 2ur(0)), w(2) = aw(l) + bw’

= a(aw(0)+ bw’ )} + bw’

= d*w(0) + abw’ + bw’ = w(n) = a"w(0)+ (@ +a"* + -+ Dbw

= a"w(0)+ 11‘ L b,

o

—a
butl- a=b>=>whn)=ad"w0)+w’ -a"w’ =w’+(w(0)—w’)a".
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6.1.2:
Answer: (a) over-damped case. (b) critically damped. (c) under-damped case.

6.1.3:
J() =+ ERE= T +(1=20)" T (OR, (1~ 20)"§(0)
= J o +(1=20)*"ET(O)R, £(0)

where (5.2.7) and (6.1.24) were used. But éT(O)Rxé(O) =J(0)-J,,, and Prob-
lem 6.1.3 is proved.

6.1.4:
Hint: f{x) = x> - 8§, hence x(n + 1) = x(n) — [x3(n) — 8]/[3x%(n)]

6.1.5:
105w’ () + 9w(n) - 3.5

w(n+1) = w(n) - [(9f (w)Pw)(9* [ (w)/ow® )] = w(n)

2lw(n)+9
6.2.1:
[Em+1) | ([1 001 [A4 0 ONN&M] [A-wur)&n)
éjl’(n+1) 0 1---0 0 Al--- 0 éjl’(n) (1—;111)&51’(11)
. = -u o= .
Gt ([0 01 |0 0 Ay ) & | [ 1Ay )6 ()

and the results are found since the equality of two vectors means equality
of each corresponding element.

6.2.2;
Start with n=0 = w/(1) = (1- @A ¥ w/(0)+ &'/, , next set n=1= w/(2)
= (1= WA= WA O0)+ 1P, T+ v,
= (1= @A) w/(O)+ w'p), [1+(1-uA)]
2-1 .
= A=A YW+ 1y, | D (A-wA)
j=0
and, therefore, at the n" iteration we obtain (1.2.26).
6.2.3:
Using the MATLAB function [v,d] = eig(R), we obtain the following eigen-

values and eigenvectors: A, = 0.3000, A, = 1.7000, q, = [-0.7071 0.7071]%, q, =
[0.7071 0.7071]". The step-size factor must be set equal to: ¢’ <2/1.7 =1.1765,
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so that the solution converges. Choosing w(0) = 0, implies that
w(0)=Q'w(0)=0 =

, . -0.7071 0.7071 0.7 -0.1414
pdx = Q de = =
0.7071 0.70714 0.5 0.8485
‘()= 0.141 1-p0.3)"w (0)= 1084 "1.7)"
wo(n)—@(— 1414)[1-(1- 0. )]/wl(O)—ﬁ 8485[1 - (1-p'1.7)"].

Since

w(n)=Q™w(n), QT =Q™, w(n)=Q w’'(n), we find

1 7 7
03 (04N - (1-10.3)']

1

{wo(n) [-0.7071 0.7071
0.84851 1 ‘Ll/l.: i
1.7 1= V]

w,(n)| | 07071 0.7071

~0.7071 .
I (=0.1414)1 - (1 — 103"+ 27971 gagsp1 - (1-p1'1.7)"]
| 03 17

0.7071 0.7071

= (=0.1414)[1 = (1= 2/0.3) |+ ——20.8485[1 — (1 - 1’1.7)"
_0'3( )[(u)]+1‘7 [1-(1-u17)"]

6.2.4:

j(w(n) =02 —pl w®+&mQQTR,QQ"E(n)
=0’ - p;xw0 +(w(m) - w”)R_ (w(1)—-w°)
—py W +[W' (1) - w°IR [w(1)-w"°]
=0, -p, W'+ W 'R w(n)—-w"R w(n)-w'(mR w°
+w TR w°.
But (R, w®)" =w°'RT =w*'R_=p] ,R w’=p_,p. w°
=w’Tp 4, and, hence,

J(w(n) = 0% —2wT(n)p, +w' (MR w(n).

d

6.2.5:
Hint: The time constants are found from the two slopes of the graph.

6.2.6:

Hint 1!, = 2/[A + Al 0 = (A /A =1/ A /A +1)

max ] max



chapter 7

The least mean-square
(LMS) algorithm

7.1 Introduction

In this chapter, we present the celebrated least mean-square (LMS) algorithm,

developed by Widrow and Hoff in 1960. This algorithm is a member of

stochastic gradient algorithms, and because of its robustness and low com-

putational complexity, it has been used in a wide spectrum of applications.
The LMS algorithm has the following most important properties:

1.

It can be used to solve the Wiener-Hopf equation without finding
matrix inversion. Furthermore, it does not require the availability of
the autocorrelation matrix of the filter input and the cross correlation
between the filter input and its desired signal.

Its form is simple as well as its implementation, yet it is capable
of delivering high performance during the adaptation process.

Its iterative procedure involves: a) computing the output of an FIR
filter produced by a set of tap inputs (filter coefficients), b) generation
of an estimated error by comparing the output of the filter to a desired
response, and c) adjusting the tap weights (filter coefficients) based
on the estimation error.

The correlation term needed to find the values of the coefficients
at the n + 1 iteration contains the stochastic product x(n)e(s) without
the expectation operation that is present in the steepest-descent method.
Since the expectation operation is not present, each coefficient goes
through sharp variations (noise) during the iteration process. There-
fore, instead of terminating at the Wiener solution, the LMS algorithm
suffers random variation around the minimum point (optimum
value) of the error-performance surface.

It includes a step-size parameter, y, that must be selected properly
to control stability and convergence speed of the algorithm.

It is stable and robust for a variety of signal conditions.

101
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7.2 Derivation of the LMS algorithm

In Chapter 6 we developed the following relations using the steepest-descent
method

w(n+1)=wn) - uvj(w(n)) (7.2.1)
V](w(n)) =-2p,. +2R w(n) (7.2.2)

The simplest choices of estimators for R, and pg, are the instantaneous
estimates defined by:

R, =x(nm)x"(n), pg, =dm)x(n) (7.23) 1

Substituting the above valuesin (7.2.2) and then combining (7.2.1) and (7.2.2),
we obtain :

w(n+1) = w(n)+ 2ux(n)[d(n) - x" (n)w(n)]

= w(n)+2ux(n)d(n) - w' (n)x(n)] (7.24)
= w(n)+2ue(n)x(n)
where
y(n)=w"(n)x(n) filter output (7.2.5)
e(n)=d(n)—y(n) error (7.2.6)
w(n) = [w,(n) w,(n)--w,, (W] filter taps at time n (7.2.7)

x(n)=[x(n) x(n-1) x(n-2)---x(n-M+1)]" inputdata (7.2.8) &

The algorithm defined by (7.2.4), (7.2.5), and (7.2.6) constitute the adaptive |
LMS algorithm. The algorithm at each iteration requires that x(n), d(n), and
w(n) are known. The LMS algorithm is a stochastic gradient algorithm if the
input signal is a stochastic process. This results in varying the pointing
direction of the coefficient vector during the iteration. An FIR adaptive filter
realization is shown in Figure 7.2.1. Figure 7.2.2 shows the block-diagram §
representation of the LMS filter. Table 7.2.1 presents the LMS algorithm.

Book LMS MATLAB function

function([w,y,e,J]l=aalms (x,dn,mu, M)
$function(w,y,e,J]=aalms (x,dn,mu, M) ;
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x{n—1)

x(n—-1)

win+1)

W1(’1)‘

2 pte(m)x(n) + wo(n) = wo(n + 1

wo(n)x(n)

g ix(n—-M+1)

x(n—-M+1)

wo(r)x(n) + wy(n)x(n—1)

103

2 pe(n) =

Figure 7.2.1 FIR LMS filter realization.

2 pld(n) - y(n)]

%all quantities are real-valued;
gsx=input data to the filter;
¢gM=order of the filter;

smu=step-size factor;

%length;
N=length (x) ;
y=zeros (1,N) ;
w=zeros (1,M);
for n=M:N

7

x1l=x(n:-1:n-M+1);

x and dn must be of the same

dn=desired signal;

%initialized output of the filter;

%initialized filter coefficient vector;

x(n)

5

d(n)

5

2u @ < xL(n)
{V
S5 w(n)
©) B
-~ 2
+
“:’ P | win) » win)
v
win+1)

Figure 7.2.2 Block diagram representation of the LMS algorithm.

$for each n the vector x1 1is
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% of length M with elements from x in reverse order;
yi{n)=w*x1l"';
e(n)=dn(n)-y(n);
w=w+2*mu*e (n) *x1;

end;

J=e.”2;%J is the learning curve of the adaptation;

The book MATLAB function aalmsl.m provides the changing values of
the filter coefficients as a function of the iteration number n. The learning
curve is easily found using the MATLAB command: J = e.”2;

Book LMS MATLAB function to provide changing values
function(w,y,e,J,wl]=aalmsl (x,dn,mu, M)
sfunction[w,vy,e,J,wl]l=aalmsl (x,dn,mu,M) ;

%this function provides also the changes of two filter
%coefficients versus iterations;

%$all quantities are real-valued;

gx=input data to the filter; dn=desired signal;
$M=order of the filter;

mu=step-size; x and dn must be of the same length;
%each column of the matrix wl contains the history
%0f each filter coefficient;

N=length(x) ;

y=zeros(1l,N);

w=zeros(1l,M); %initialized filter coefficient vector;
for n=M:N
xl=x(n:-1:n-M+1); %for each n the vector xl1 of

%length M is produced with elements

%from x in reverse order;
yin)=w*x1l"’;
e(n)=dn(n)-vy(n);
w=w+2*mu*e(n) *x1;
wl(n-M+1, :)=w(l, :);

end;

J=e.”2;%J 1is the learning curve of the adaptive
$process; each column of the matrix wl
%depicts the history of each filter coefficient;

7.3 Examples using the LMS algorithm

The following examples will elucidate the use of the LMS algorithm to
different areas of engineering and will create an appreciation for the versa-
tility of this important algorithm.
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Table 7.2.1 The LMS Algorithm for an M*-Order FIR Adaptive Filter

Inputs: M = filter length
1t = step-size factor
x(n) = input data to the adaptive filter
w(0) = initialization filter vector = 0

Outputs: y(n) = adaptive filter output = wT(n)x(n) = cAl(rl)

e(n) = d(n) — y(n) = error
w(n + 1) = w(n) + 2ue(n)x(n)

Example 7.3.1 (Linear Prediction): We can use an adaptive LMS filter
as a predictor as shown in Figure 7.3.1. The data x(1) were created by passing
a zero-mean white noise v(1) through an autoregressive (AR) process described
by the difference equation: x(n) = 0.6010x(r — 1) — 0.7225x(n — 2) +v(n). The
LMS filter is used to predict the values of the AR filter parameters 0.6010
and —0.7225. A two-coefficient LMS filter predicts x(1) by

x(n) = Z w,(m)x(n—1-1) = y(n) (7.3.1)

Figure 7.3.2 shows the trajectories of w, and w, vs. the number of itera-
tions for two different values of step-size (u = 0.02 and p = 0.005). The

v(n) H) x(n) o e(n)
-1 w
e x(n — 1)' LMS y(n)
(2)
x(n—1) | x(n-2)
Z
Pl 4
wo(n) wy(n) x(n)
g x(n) e(n)

(b)

Figure 7.3.1 (a) Linear predictor LMS filter. (b) Two-coefficient adaptive filter with
its adaptive weight-control mechanism.



106 Adaptive filtering primer with MATLAB

i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
n

Figure 7.3.2 Convergence of two-element LMS adaptive filter used as linear predictor.

adaptive filter is a two-coefficient filter. The noise is white and Gaussian
distributed. The figure shows fluctuations in the values of coefficients as
they converge to a neighborhood of their optimum value, 0.6010 and 0.7225,
respectively. As the step-size ¢ becomes smaller, the fluctuations are not as
large, but the convergence speed to the optimal values is slower.

Book one-step LMS predictor MATLAB function

functionlw,y,e,J,wl]=aalmsonesteppredictor (x,mu,M)
gfunction[w,J,wl]l=aalmsonesteppredictor(x,mu,M) ;
$x=data=signal plus noise;mu=step size factor;M=number
gof filter
$coefficients;wl is a matrix and each column is the
$history of each
3filter coefficient versus time n;
N=length (x) ;
y=zeros (1,N);
w=zeros(1,M);
for n=M:N-1
x1l=x(n:-1:n-M+1);
vin)=w*xl";
)-y(n);
w=w+2*mu*e(n) *x1;
wl(n-M+1, :)=w(l, :);

e(n)=x(n+l

end;
J=e."2;
%J 1s the learning curve of the adaptive process;

Example 7.3.2 (Modeling): Adaptive filtering can also be used to find
the coefficients of an unknown filter as shown in Figure 7.3.3. The data x(n) |
were created similar to those in Example 7.3.1. The desired signal is given 1
by d(n) = x(n) — 2x(n — 1) + 4x(n — 2). If the output y(n) is approximately
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d(n)
1-2271 +4272
() (n) A
Xin
= Hy(2) y
y(n)
wy+ wlz’1 + w22‘2 + w3z’3

Figure 7.3.3 ldentification of an unknown system.

equal to d(n), it implies that the coefficients of the LMS filter are approxi-
mately equal to those of the unknown system. Figure 7.3.4 shows the ability
of the LMS filter to identify the unknown system. After 500 iterations, the
system is practically identified. For this example we used u = 0.01. It is
observed that the fourth coefficient is zero, as it should be, since the system
to be identified has only three coefficients and the rest are zero.

Example 7.3.3 (Noise Cancellation): A noise cancellation scheme is
shown in Figure 7.3.5. In this example, we introduce the following values:
H,(z) =1 (or h(n) = 8(n)), v,(n) = white noise = v(n), L =1, s(n) = sin(0.2xn).
Therefore, the input signal to the filter is x(n) = s(n — 1) + v(n — 1) and the
desired signal is d(n) = s(n1) + v(n).The Book LMS MATLAB program named
aalms was used. Figure 7.3.6 shows the signal, the signal plus noise, and the
outputs of the filter for two different sets of coefficients: M =4 and M = 12.

Example 7.3.4 (Power Spectrum Approximation): If a stochastic process

is the output of an autoregressive (AR) system when its input is a white
noise with variance o7, e.g.,

x(n) = z a,x(n— k) +0(n) (7.3.2)

T T T T T
Wo w3 |
1 . . I R L i
0 100 200 300 400 500 600 700 800 900 1000

n

Figure 7.3.4 LMS adaptive filter coefficients for system modeling.
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s(n)

vy(n) () v(n) %Jr d(n) = s(n) + v(n)

L

x(n) -

Figure 7.3.5 Adaptive LMS noise cancellation scheme.
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Figure 7.3.6 Noise cancellation of adaptive LMS filter.
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the power spectrum corresponding to the stochastic process is given by (see
Kay, 1993)

2

: (o)
S (e/®) = o 7.3.3
)= e (7.3.3)
where
AE?)=1-) ae ™ (7.3.4)
k=1

Equation (7.3.2) is also written in the form

v(n) = x(n) - 2 ax(n—k) (7.3.5)

k=1

where v(n) is the non-predictable portion of the signal or the innovations of
the AR process. Because v(n) is the non-predictable portion of x(n), it suggests
to use an adaptive linear predictor for spectrum estimation. If the stochastic
process is the result of an AR process, the LMS filter coefficients will be much
closer to those of the AR system, and the two spectra will also be very close
to each other.

The steps that closely approximate the coefficients of (7.3.2), using an
LMS adaptive filter, are:

1. Use the adaptive LMS filter in the predictive mode (see Figure 7.3.7)

2. Average the K most recent values of @
3. Compute the power spectrum

(7.3.6)

AR

Figure 7.3.7 LMS adaptive filter for power spectrum estimation.
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Let an exact stochastic process be created by an AR system having poles
at(z,,z,)= 0.95¢*"/* To find the difference equation, which characterized the
AR system, apply the definition of the system in the z-domain. Hence, we
write

H(z)= output _ X(z)
input oV (z)

1 1

- B 7 ) 1-1.343527 +0.902527
1-095¢" %z || 1-0.95¢ "4z

The above equation can be written as:

X(z)— 1.34352 ' X(z) +0.90252 2 X(z) = 62V (2)

Taking the inverse z-transform of both sides of the above equation, we obtain
the difference equation describing the AR system given by

x(n)=1.3435x(n—1)—0.9025x(n — 2) + ofv(n) (7.3.7)

The power spectrum is given by (see (7.3.3))

O.2

S (€)= — .
y1 —1.3435¢ /® + 0.9025¢772

‘ (7.3.8)

0.2

v

- [1-1343527 + 0.90252

2

z=el®

Figure 7.3.8 shows the true spectrum and the approximate one. We
assumed that the desired signal was produced by the AR filter given by
(7.3.7). The approximate spectrum was found using the following constants:
g =002, M =3, N=1000, avn = 3, x(n) = dn(n ~ 1), and o> = 0.3385. The
function aapowerspctraavl will average the output w over a number of times
as desired by the reader. If we had guessed M = 2 and avn = 5, the two
curves will be approximately equal and the filter coefficients are also approx-
imately equal: 1.3452, —0.8551.

Book MATLAB function to obtain power spectra
functionlwal, v] —aapowerspectraavl (al,a2,a3,mu,M,N, avn, vr)
$aapowerspectraavl (al,a2,a3,mu,M,N,avn, vr) ;
wa=zeros(1l,M);
dn=zeros(1,N);x=zeros(1,N);
for k=l:avn

for n=4:N

v{n)=vr* (rand-.5);
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T T
AR spectra 4

Adaptive spectra

Spectral densities
o
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Figure 7.3.8 Power spectrum approximation using the LMS filter.

dn{n)=-al*dn(n-1)-a2*dn(n-2)-a3*dn(n-3)+v(n) ;
x{n)=dn(n-1);

end;

[w]=aalms (x,dn,mu, M} ;

wa=wa+w;
end;
wal=wa/avn;
%this function gives averaged w's to be used for
%finding
%the approximate spectrum of the output of an AR filter
sup to the third order;M=number of LMS coefficients;
gN=length of desired signal and input signal to LMS
3filter;
%avn=number of times w's are averaged;the function 1is
%easily
gmodified for AR filter with more coefficients;vr=con-
$trols the
$variance of the white noise, multiplies the quantity
{rand-.5);
the function up to the first end produces the output

S S

from
%the AR filter with coefficients al,a2 and a3;

Plotting the spectra:

sx=fregz(var(v), [l -[wall],512);
n=0:pi1/512:pi-(pi/512);

plot{n,abs(sx)); xlabel (‘Radians’);ylabel ('Power...
spectrum’ ) ;

$this function is useful up to three coefficients
%AR model;

%var controls the variance of the input noise;

111
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Figure 7.3.9(a) Creating an inverse system using an LMS filter.

Example 7.3.5 (Inverse System Identification): To find the inverse of an
unknown filter, we place the adaptive filter in series with the unknown
system as shown in Figure 7.3.9a. The delay is needed so that the system is
causal. Figure 7.3.9b shows a typical learning curve. In this example we used
four coefficients FIR filter, and the input to the unknown system was a sine
function with a white Gaussian noise.

7.4  Performance analysis of the LMS
algorithm

By subtracting the Wiener filter w° (see (4.3.5)) from both sides of (7.2.4), we
obtain the following equation

w(n+1)—w’ =w(n)—w’ + 2e(n)x(n) (7.4.1)

The vectors &(n+1)=w(n+1)— w® and &(n) =w(n) - w® are known as the
weight-error vectors, which are described on a coordinate system shifted by

2 T — T T T
1.5 N
o
2 :
0.5 h
L LTS LY L T TP T VRV WSRO U U TIY V00 W TV
0 100 200 300 400 500 600 700 800 900 1000
Iteration number, n
(b)

Figure 7.3.9(b) The learning curve of the inverse system problem.
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wo on the w plane. Therefore, (7.4.1) becomes
S(n+1) = &(n) + 2pe(n)x(n) (7.4.2)

e(n) = d(n) - y(n) = d(n) - w' (m)x(n) = d(n) ~ x" (n)w(n)

=d(n) - x* (mw(n) - x"(m)w* +x" (n)w°

= d(n)— xT (Wyw* - xT (n)[w(n) — w°] (7.4.3)
= *(n) — X" (m)E(n) = e° (1) ~ ET (m)x(n)
where
e’ (n)=d(n) - x" (mw® (7.4.4)

is the error when the filter is optimum. Substituting (7.4.3) in (7.4.2) and
rearranging, we obtain

&(n+1) = &(n)+ 2ule” (n) - x" (m)&(n)Ix(n)
= §(n)+ 2ux(m)e’ (n) - x" (m&(n)] (7.4.5)
= (1= 2ux(m)x" (m)l&(n) + 2 e’ (n)x(n)

where I is the identity matrix and e°(n) —x"(n)é(n) is a scalar. Next, we take
the expectation of both sides of (7.4.5)

E(§(n+1)) = E{{I - 2ux(n)x" (m)]&(m)} + 2uE{e” (n) x(n)}
= E{[1~ 2pux(n)x" (n)}&n)}

Since e°(n) is orthogonal to all data (see Section 4.3), the last expression is
identically zero. The expression

(7.4.6)

E{x(mx" (n)&(n)) = E{x(m)x" (n)}E{&(n)} (7.4.7)

is simplified by incorporating the independence assumption, which states: the
present observation of the data (x(n), d(1)) are independent of the past obser-
vations (x(n-1), d(n-1)), (x(n-2), d(n-2)), ... where

x(n) =[x(n) x(n—1) x(n—-2) --- x(n— N +1)] (7.4.8)
x(n-D=[x(n-1) x(n-2) --- x(n- N)] (7.4.9)

Another way to justify the independence assumption is through the fol-
lowing observation: The LMS coefficients w(#n) at any given time are affected
by the whole past history of the data (x(n — 1), d(n - 1)), (x(n - 2), d(n - 2)), ...

and, therefore, for smaller step-size parameter u, the past N observations of
the data have small contribution to w(n) and, thus, we can say that w(n) and

I EEE—EREwEEEEEEEE———mm——
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x(n) are weakly dependent. This observation clearly suggests the approxima-
tion given by (7.4.7). Substituting (7.4.7) into (7.4.6) we obtain

E{g(n+1)} = [I~ 2uE{x(mx" (m)}IE{E(n)}

(7.4.10)
=[I-2uR ]E{E(m)}

The mathematical forms of (7.4.10) and (6.2.5) of the steepest-descent
method are identical except that the deterministic weight-error vector &(1)
in (6.2.5) has been replaced by the average weight-error vector E{§(n)} of the
LMS algorithm. This suggests that, on the average, the present LMS algorithm
behaves just like the steepest descent algorithm. Like the steepest-descent
method, the LMS algorithm is controlled by M modes of convergence, which
are dependent on the eigenvalues of the correlation matrix R,. In particular,
the convergence behavior of the LMS algorithm is directly related to the
eigenvalue spread of R, and, hence, to the power spectrum of the input data
x(1). The more flatness of the power spectrum, the higher speed of convergence
of the LMS algorithm is attained.

Learning Curve

In the development below we assume the following: a) the input signal to
LMS filter x(n) is zero-mean stationary process; b) the desired signal d(n) is
zero-mean stationary process; ¢) x(1) and d(n) are jointly Gaussian-distributed
random variables for all #; and d) at times #, the coefficients w(n) are inde-
pendent of the input vector x(n) and the desired signal d(n). The validity of
d) is justified for small values of u (independent assumption). Assumptions
a) and b) simplify the analysis. Assumption c) simplifies the final results so
that the third-order and higher moments that appear in the derivation are
expressed in terms of the second-order moments due to their Gaussian
distribution.

If we take the mean-square average of the error given by (7.4.3), we
obtain

J(n)= Ele? (m)} = Efle’ (m)~ & (mx(m)][e” (m) = x" (mE(m)]}
= Ele’*(m)) + E{&" (mx(m)x" (m)&(m)} = 2E{e’ (m) &' (mx(m)}

(7.4.11)

For independent random variables we have the following relations:
E{xy} = E{x}E{y} = E{xE{y}} (7.4.12) -

E(x"y’) = EGCIE(Y’) = EIXEly?)) = ElxE(y)x) (7.4.13) « |
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Based on the above two equations, the second term of (7.4.11) becomes

(x"()&(n) =T (mx(n) = number)

E{(&T (myx(n))*} = E{&’ (71)X(H)XT(H)§(71)}=E{ &N (ME{x(n)x T (m)}&(n))
= E{§'R &(m)} = tr{E{E" (MR, S(m)}) (7.4.14)
Eftr{& (mR, é(n) E{tr{&n)&" (MR }}
= tr{E(En) ET )R _} = tr{K(mR _}

where we used the following properties: a) the trace of a scalar is the scalar
itself, b) the trace, fr, and the expectation, E, operators are linear and can be
exchanged, c) the trace of two matrices having M x N and N x M dimensions,
respectively, is given by

tr{AB} = tr{BA} (7.4.15)

The third term in (7.4.11), due to the independence assumption and due to
the fact that e°(n) is a constant, becomes

{e® (ME (mx(n)} = E{ET (m)x(n)e® (n)} = E{E (M) Elx(n)e®(n)} =0 (7.4.16)

The second term is equal to zero due to the orthogonality property (see
Section 4.3).
Substituting (7.4.16) and (7.4.15) in (7.4.11) we obtain

J(m) = Ele*(m)} = ]y, + r{K(n)R_} (7.4.17)

where [ . = E{(e°(n))*}is the minimum mean-square error. However,
R, = QAQT, where Qis the eigenvector matrix and A is the diagonal eigenvalue
one (see Section 5.1). Hence, (7.4.17) becomes

J(1) = ] g + r{K(mQAQT} = ], + r{Q K (m)QA}

= Imm + tr{E{QT&(n) éT(n)Q A} (7.4.18)
min FHAEE M ET (YA} =] o + (K (M)A}
where
K'(n) = E{&'(m) & (n)} (7.4.19)

Recall that &'(n) is the weight-error vector in the coordinate system
defined by the basis vectors, which are specified by the eigenvectors of R.
Since A is diagonal, (7.4.18) becomes

()= ] + lex,,(n i + O AEER () (7.4.20)

where x;(n) is the ijth element of the matrix K’(n).
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The learning curve can be obtained by any one of the equations: (7.4.17), :
(7.4.18), or (7.4.20). It turns out that, on the average, the learning curve above -

is similar to the one given by the steepest-descent algorithm.

The general solution of &'(n) is given by (6.2.15). Hence, (7.4.20) becomes :

J) = J i+ D A (1202 ELE (O) (7421)

Example 7.4.1: The filter H,(z), which produces the desired signal d(n) :

= x(n), is represented by the difference equation x(n} + a,x(n — 1) + ax(n - 2)
= v(n), where a, and a, are the system coefficients, and v(n) is a zero-mean

white noise process of variance o-. To obtain 4, and a, we use the adaptive .

predictor. The LMS algorithm for this case is given by (u" = 2)
wi(n) = w(n)+ u'x(n—1e(n) (7.4.22)
where

e(n)=d(n)—w  (mx(n-1) = x(n) — w' (n)x(n —1) (7.4.23)

The learning curves, /(n) = E{e*(n)}, are shown in Figure 7.4.1 using the
following constants: M =2, 4, =-0.96, 2,= 0.2, o’_i =033, 4 =004, and ' =
0.004. The curves were averaged over 120 runs. The following MATLAB

function was used:

Book MATLAB function for Example 7.4.1

functionlems]=aaexample741 (mu,M, an)
$function|ems]=aaexample7741 (mu, M) ;
%this function produces figures like in example 7.4.1;

1 T T T T T T T T T

Mean-squared error
© o ©
N

.

o
¥

<
b

0 50 100 150 200 250 300 350 400 450 500

Number of iterations

Figure 7.4.1 Learning curves for two different step-size parameter values.
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gM=number of filter coefficients;an=number of times the
gserror to be averaged;
eav=zeros(1l,1000) ;
dn(1)=0;dn(2)=0;x(1)=0;x(2)=0;
for k=l:an
for n=3:1000
dn(n)=0.96*dn(n-1)-0.2*dn(n-2)+2* (rand-0.5);
x(n)=dn(n-1);
end;
[w,y,e]l=aalms (x,dn,mu, M) ;
eav=eav+e."2;
end;
ems=eav/an;

The coefficient-error or weighted-error correlation matrix

Since the mean-square error (MSE) is related to weight-error correlation
matrix K(n), the matrix is closely related to the stability of the LMS algorithm.
Therefore, J(1) is bounded if the elements of K(#n) are also bounded. Since
K(n) and K'(n) are related, the stability can be studied by using either one.

Multiply both sides of (7.4.5) by QTand use the definitions & (1) = Q"&(n)
and x’(n) = Q"x(1) to obtain (see Problem 7.4.1)

En+1) = (I-2ux' (n)x’ T (1) () + 2 e’ ()X () (7.4.24)

Next multiply (7.4.24) by its own transpose, and take the ensemble average
of both sides to obtain (see Problem 7.4.2)
K'(n+1) = K'(n) - 2uE(X (m)x" T (& () &' (n)}

— 2UE(E (m) & (m)x (m)x"" (m)}

+ 47 E(x (mx" T ()& (m) & (mx (m)x" T (n)}

+2uEle’ (mx' (& ()

+24E(e’ (m& (mxT (m)}

— 417 Efe” (m)x’(m&T (mx(m)x"" ()

— 41 Ee’ (n)x’(m)x"" (n)& (n)x"" (n)}

(7.4.25)

+4u*Ele” (n)x’(n)x’* (n)}

Based on the previous independent assumption, we note the following:
(1) (n) is independent of the data x(n) and the desired signal d(rn), which is
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also true for the transformed variables x’(n) ; 2) £'(n) is independent of x'(n)
and d(n); 3) d(n) and x’(n) are zero-mean and are jointly Gaussian since d(x)
and x(n) have the same properties; 4) applying the orthogonality relationship,
we obtain E{e’(n)x'(n)} = E{e’(n)Q " x(n)} = Q" E{e’(n)x(n)} = Q" 0=10 ;5) e°(n)
depends only on d(n) and x(n); 6) from 4) e°(n) and x’(#1) are uncorrelated
(Gaussian variables are also independent); 7) e°(n) has zero mean. With the
above assumptions in mind, the factors of (7.4.25) become as follows:

EX(mx T(mE ()& ()} = Ex'x" () EIE (m) & (m)}

= E{Q"x(n)x" (mQJK'(n) = Q"R, QK'(11) = AK'(n)

E{ (& (mx' (mxT (n)} = K'(mA (7.4.27)

(7.4.26)

E(x(mx T ()& (n) T (m)x (mx(n)} = 2AK (m)A + tr{AK/(n)A  (7.4.28)

(see Problem 7.4.3).
Because e°(n), x'(n1), and (1) are mutually independent, and E{e°(n)} = 0
then (7.4.29) to (7.4.32) are true.

Ele’(n)x’(m)& " (n)} = E{e’(n)E(X'(m)E T (n)} =0 (M x M matrix) (7.4.29)

Ele° ()& (m)x"T(n)} =0 (7.4.30)
Efe (mx/ (m)& T () (m)x T (1)} = 0 (7.431)
E{e’(n)x’(n)x’ " (n)& (n)x""(n)} = 0 (7.4.32)

E{e”*(nm)x'(n)x’T(n)} = E{e”*}JE{x’(m)x’T(n)} = ]_. A (7.4.33)

min

Substituting (7.4.26)—(7.4.33) in (7.4.25) we find

K'(n+1)=K'(n) - 2 u(AK’(n) + K’'(n)A) + 8> AK’(n)A

(7.4.34)
+ AUt AK (M)A +44°] . A

min

Concentrating on the i1 component of both sides of (7.4.34) we find (see
Problem 7.4.4)

1

M-1
K. (n+1) = (1— 4uh, + 822K, (1) + 4;1,2,1,2 Ak (m)+ 4] A, (7.4.35)
=0

Since K’(n)is a correlation matrix, k/* <k, (mk;; (m)for all values of i and j,
and since the update of k (n) is incfependent of the off-diagonal elements
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of K’(n), the convergence of the diagonal elements is sufficient to secure the
convergence of all the elements and, thus, guarantees the stability of the
LMS algorithm. Therefore, we concentrate on (7.4.35) withi=0,1,2,... , M —1.

Equation (7.4.35) can be written in the following matrix form (see
Problem 7.4.4)

K'(n+1)=Fk'(n)+4u*]__ A (7.4.36)
where
K= [k, (1) k(1) - Koy s 00T (7.4.37)
A=[A, A - Ay I (7.4.38)
F=diaglf, f, « fu )+ 4 AA" (7.4.39)
fi=1-4uA +8u* A} (7.4.40)

It has been found that if the eigenvalues of F are all less than one, the LMS
algorithm is stable or equivalently the elements k'(n) remain bounded. An
indirect approach to obtain stability is given below.

Excess mean-square error and misadjustment

According to (7.4.17), we may write the expression of the difference between
the mean-squared error and the minimum mean-square error as follows:

Joe () =J (1) = ]y, = tr{K(m)R (7.4.41)
The steady state form of (7.4.41) is

Jer(00) = J(20) = ] iy = tr{K(=)R  } (7.4.42)

and it is known as excess MSE. Equation (7.4.20) gives another equivalent
form, which is

M-1
] ()= 2 Ak (o) = ETK (o) (7.4.43)
i=0
As n— oo, we set k'(n+1) = k’(n) and, hence, (7.4.36) becomes

K'()=4p*]  (I-F)'4 (7.4.44)



120 Adaptive filtering primer with MATLAB

As a result, (7.4.43) becomes
J. (o) =4’ AT I-F)'4 (7.4.45)
which indicates that ], is proportional to [ ;.. The normalized /(=) is equal to

J (=)
]

which is known as the misadjustment factor.
If A(N x N), B(M x M), and C(N x M) are matrices that have inverses, then

M= =4 A"I-F)'A (7.4.46)

min

(A+CBCH'=A"-A'CB'+C'A'C)'C'A? (7.4.47)

But

1-f, 0 0

0 1-f 0
I-F=| =4°AAT =F +aA A" (7.4.48)

0 0 '”1_fM—1_

where a = —442. Therefore, (7.4.46) takes the form (see Problem 7.4.5)

[ FAATEY
M==aA"(F +aA A A=—gAT|F1o—1 " "1 |}
! U 1+aATEA
\T (7.4.49)
HA 4.
AFIAATF! 2 1242,
= a'l]‘ Ffl + 1 1 = i=0
Yo1-a'ATE'A o
1- 2 1—2;11‘

wherein (7.4.47)weset C=4, B=1,0"=—4, and A = F1 .Small M implies that
the summation on the numerator is small. If, in addition, 2u 4, <<1, we
obtain the following result

M-1 ‘Ul M-1
= A, = uir{R 7.4.50
it uz uirlR, ) (7.4.50)

=0 i

Hence, (7.4.49) becomes

HirR }

Sy (7.4.51)
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In addition, for M << 0.1 the quantity ptr{R } is small and (7.4.51) becomes
M=utriR } (7.4.52)

Since 7,(0) is the mean-squared value of the input signal to an M-coefficient
filter, we write

M= uMr (0) = puME{x*(n)} = pM(Power input) (7.4.53)

The above equation indicates that to keep the misadjustment factor small
and at a specific desired value as the signal power changes, we must adjust
the value of .

Stability
If we set
L- Mi—‘L (7.4.54)
i1 -2p A,
then
M= % (7.4.55)

We observe that L and M are increasing functions of i and L, respectively
(see Problem 7.4.6). Since L reaches 1 as M goes to infinity, this indicates
that there is a value u, that g cannot surpass. To find the upper value of
i we must concentrate on an expression that can easily be measured in
practice. Therefore, from (7.4.55) we must have

M-1

Ui
7.4.56
Z 1-2 u /1 ( )

i=

The above equation indicates that the maximum value of ¢ must make
equation (7.4.56) an equality. It can be shown that the following inequality
holds.

A e
> Phi_ o = (7.4.57)
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Hence, if we solve the equality

— =1 (7.4.58)

for u, then (7.4.56) is satisfied. The solution of the above equality is

1 1 1
= = = 7.4.59
Pnax = i1 3tr{R }  3(Input Power) ( )

and, hence,

O<pu< (7.4.60)

3tr(R )

LMS and the steepest-descent method

The following similarities and differences exist between the two methods:

1. The steepest-descent method reaches the minimum MSE J ..
as n — oo and w(n) - w°.

2. The LMS method produces an error [(e) that approaches ..
as n — oo and remains larger than /..

3. The LMS method produces a w(n), as the iterations n — oo, that is
close to the optimum we.

4. The steepest-descent method has a well-defined learning curve con-
sisting of a sum of decaying exponentials.

5. The LMS learning curve is a sum of noisy decaying exponentials,
and the noise, in general, decreases the small values the step-size
parameter u takes.

6. In the steepest-descent method, the correlation matrix R, of the data
x(n) and the cross-correlation vector pg,(#) are found using ensemble
averaging operations from the realizations of the data x(n) and de-
sired signal d(n).

7. In the LMS filter, an ensemble of learning curves is found under
identical filter parameters and then averaged point by point.

Example 7.4.2 (Channel Equalization): Figure 7.4.2 shows a base-band

data transmission system equipped with an adaptive channel equalizer and ]
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v(n)

/

s(n) Channel x(n) | Equalizer y(n) s(n)

H(z) W(z)
e(n)

Training d(n)
sequence
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(a)

=

s(n) 1 s(n—L) =d(n)

Random independent
binary (+ or 1)
generator

Adaptive
LMS fileer LS
W(z) -

Figure 7.4.2 (a) Base-band data transmission system equipped with an adaptive
channel equalizer and (b) a training system.

s(n) Channel
H(z)

(b)

a training system. The signal s(n) transmitted through the communication
channel is amplitude or phase modulated pulses. The communication chan-
nel distorts the signal (the most important one is the pulse spreading) and
results in overlapping of pulses and, thus, creating the intersymbol interference
phenomenon. The noise v(n) further deteriorates the fidelity of the signal. It
isideally required that the output of the equalizer is the signal s(n). Therefore,
an initialization period is used during which the transmitter sends a
sequence of training symbols that are known to the receiver (training mode).
This approach is satisfactory if the channel does not change characteristics
rapidly in time. However, for slow changes the output from the channel can
be treated as the desired signal for further adaptation of the equalizer so
that its variations can be followed (decision directed mode).

If the equalization filter is the inverse of the channel filter, W(z) = 1/
H(z), the output will be that of the input to the channel, assuming, of
course, that noise is small. To avoid singularities from the zero of the
channel transfer function inside the unit circle, we select an equalizer such
that W(z)H(z) = z ". This indicates that the output of the filter W(z) is that of
the input to the channel shifted by L units of time. Sometimes, more general
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filters of the form Y(z)/H(z) are used where Y(z) # z “. These systems are
known as the partial-response signaling systems. In these cases, Y(z) is
selected such that the amplitude spectra are about equal over the range of
frequencies of interest. The result of this choice is that W(z) has a magnitude
response of about one, thereby minimizing the noise enhancement.

Figure 7.4.2b shows a channel equalization problem at training stage.
The channel noise v(n) is assumed to be white Gaussian with variance 05.
The equalizer is an M-tap FIR filter and the desired output is assumed
to be delayed replica of the signal s(n), s(n — L). The signal s(r) is white,
has variance 052 =1, has zero mean value, and is uncorrelated with v(n).
The channel transfer function was assumed to take the following FIR
forms:

H(z)=H,(z)= 034+ 2" - 0.34z7

(7.4.61)
H(z)=H,(2)=0.34+08z" +0.1z7

The solution of the two systems above, were selected based on the

eigenvalue spread of their output correlation matrix. Figure 7.4.3a shows the

learning curve with a channel system of the form H(z) = 0.34 + z7' — 0.34z7

5
g
b= 1
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&
=]
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&
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g 05
Z
_
0
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Figure 7.4.3 Learning curves of the channel system.




Chapter 7:  The least mean-square (LMS) algorithm 125

and two different step-size parameters and ¢ = 0.5. The variance of the noise
was 0. = 0.043. Figure 7.4.3b shows the learning curve with channel system
of the form H(z) = 0.34 + 0.8z + 0.1z 2 and with the same step-size parameter
and noise variance as in case (a) above. In both cases, the curves were
reproduced 20 times and averaged. The delay L was assumed to be 3, and
the number of filter coefficients were 12. The curves were produced using
the following MATLAB function:

Book MATLAB function for channel equalization
function[Jav,wav,dn, e, x]=aaequalizer(av,M,L,h, N, mu,c)
sfunction[Jav,wav,dn, e, x]=aaequaliz-
ger(av,M,L,h,N,mu,c)
sthis function solves the example depicted
$in Fig. 7.4.2;av=number of times to average e(error or
$learning curve)and w(filter coefficient) ;N=length
%0f signal s;L=ghift of the signal s to become
%dn; h=assumed
¢impulse response of the channel system;mu=step fac-
%tor;
$M=number of adaptive filter coefficients;c=constant
gmultiplier;
wl=[zeros(1,M)];
J=[zeros(1,N)1;
for i=l:av
for n=1:N

v(n)=c*randn;

s(n)=rand-.5;

if s(n)<=0

s{n)y=-1;
else

end;
dn=[zeros(1,L) s(:,1:N-L)1;
ych=filter(h,1,s);
x=ych(1l,1:N)+v;
[w,y,el=alms (x,dn,mu,M) ;
wl=wl+w;
J=J+e."2;

end;

Jav=J/av;

wav=wl/av;

It is recommended that the reader changes the input values to observe
the effect on the learning curve.
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7.5 Complex representation of LMS algorithm

In some practical applications it is mathematically attractable to have com-
plex representation forms of the underlying signals. For example, base-band
signals in quadrature amplitude modulation (QAM) format are written as a
summation of two components: real in-phase component and imaginary
quadrature component. Furthermore, signals detected by a set of antennas
are also written in their complex form for easy mathematical manipulation.
For this reason, we shall present in this section the most rudimentary deri-
vation of the LMS filter assuming that the signals are complex.

In the case where complex-type signals must be processed, we write the
output of the adaptive filter in the form

M-1
y(m)= Y wi(mx(n-k) (7.5.1)
k=0
and the error is given by
e(n) = d(1)— y(n) (7.5.2)
Therefore, the MSE is
] = Efe(n)e * (n)} = E{ le(n)*) (7.5.3)

Let us define the complex filter coefficient as follows:
w, = a.(n)+ jb (1) k=0,1,---,M-1 (7.5.4)
Then the gradient operator V has the following k* element:

d

\% L=
o, (i)

w

>3

\Y

k=0,1,---,M-1 (7.5.5)

k *
db (n)

which will produce the following k' element of the multi-element gradient

vector VJ:

oy 9
V= .07 +] %, (1) (7.5.6)

It is noted that the gradient operator is always used to find the minimum
points of a function. The above equation indicates that a complex constraint
must be converted to a pair of real constraints. Hence, we set

J
an (n)

g
0, Xl 0 (7.5.7)
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The k™ element of the gradient vector, using (7.5.3), is

%*(n) e* (1) + *(n)() i de(n) e* () + ] *(n)e(n)} (758)

V.]=E
= E e 5 %, (n) %, (n)

Taking into consideration (7.5.1) and (7.5.2), we obtain

M-1

oe(n)  ad(n) &wk(n) dla (0~ jb, (m)]
= =0- —-k) (7.59
() ) L ) X R 059
which can be written as
%((r% =-x(n—k) (7.5.10)
%
o) _ o det(n) )
%, () = jx(n-—k), . (1) =—x*(n , %, (1) =—jx*(n-k) (7.5.11)

Introducing (7.5.10) and (7.5.11) into (7.5.8), we find the relationship
V] =V, J(wn) =-2E{x(n—k)e* (n)} (7.5.12)
and, thus, the gradient vector becomes
V. J(w(n) = 2E{e* (m)[x(n) x(n—1) - x(n— M +1)]"} (7.5.13)

If w(n) is the filter-coefficient vector at step n (time), then its update
value w(n + 1) is given by (see (6.1.3))

wn+1)=wn)—uV_J(w(n)) (7.5.14)

Next, we replace the ensemble average in (7.5.13) by the instantaneous
estimates ¢*(1)x(n) to obtain

w(n+1)=w(n)+2ue*(n)x(n) (7.5.15)
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Table 7.5.1 Complex Form of the LMS Algorithm

Parameters: M = number of filter coefficients
U = step — size factor
x(n) =[x(n) x(n — 1) ---x(n - M+ 1)7]
Initialization: w=10
Computation: Forn=0,1,2, ...
1. y(n) = wH(n)x(n) H: Hermitian = conjugate transpose
2. e(n) = d(m) — y(n)
3. win + 1) = w(n) + 2ue*(n)x(n)

which is the LMS recursion formula when we are involved with complex-
valued processes. For complex signal it has been shown that the misadjust-
ment factor M is given by

M-1 #lk
A
M= 304 —H% (7.5.16)
LN HA
k=0 I-p lk
provided, also, that
1
O<u< T (7.5.17)
and
M-1
A
: a - (7.5.18)
k=0 KAy

The LMS algorithm for complex signals is shown in Table 7.5.1.

Book MATLAB function for complex LMS algorithm

functionlw,vy,e,J,wl]=aacomplexnlms (x,dn, mubar,M, c)
$functionlw,y,e,J,wl]=aacomplexnlms (x,dn, mubar, M, c)
$x=input data to the filter;dn=desired signal;
$M=filter order;c=constant;mubar=step-size egquivalent
$parameter;
%$x and dn must be of the same length;J=learning curve;
N= length( x);
yv=zeros (1,N);
M)

w:zeros( ;%initialized filter coefficient vector;
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Figure 7.5.1 Results of Example 7.5.1 using the LMS complex-valued form.

for n=M:N
x1=x{n:-1:n-M+1) ;%for each n wvector x1 is of length
M with elements from X 1in reverse order;
yv{n)=conj(w)*x1l";
e(n)=dn(n)-y(n);

w=w+ (mubar/ (c+conj(xl)*x1"')) *conj{e(n))*x1;
wl(n-M+1, :)=w((l, :);

end;

J=e."2;

$the columns of the matrix wl depict the history of the
$filter coefficients;

Example 7.5.1: With the input signal x(n) = sin(0.27n) + j1.5(rand—-0.5), the
desired signal d(n) = sin(0.2 zn), u = 0.01 and number of coefficients M = 16,
we obtain the results shown in Figure 7.5.1.

Problems
7.2.1 Develop the LMS algorithm for complex-valued functions.

7.3.1 If an AR system has poles at 0.85¢"™* with input of white noise v(n),
find its discrete-time representation.
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7.4.1 Verify (7.4.24).
7.4.2 Verify (7.4.25).
7.4.3 Verify (7.4.28).

7.4.4 Verify (7.4.36).
7.4.5 Verify (7.4.49).

7.4.6 Verify that (7.4.54) and (7.4.55) are increasing functions of ¢ and L,
respectively.

7.4.7 Use the average eigenvalue to obtain the average time constant for the
LMS algorithms and state your observations for M.

7.4.8 Discuss the effect of the initial value w(0) on the transient behavior of
the LMS algorithm.

7.4.9 Develop the LMS algorithm using the steepest-descent method and
setting J(n) = e*(n) instead of E{¢*(n)).

7.4.10 (a) Let the impulse response of a FIR channel (see Figure 7.4.2b) have
the values h =[0.22 1 0.22]T and n =1, 2, 3 and zero otherwise. The random
binary generator produces a Bernoulli sequence with s(n) = 1 having zero
mean a unit variance. The sequence v(#) is white with zero mean and vari-
ance o> = 0.01. The equalizer is FIR filter with 5 coefficients. Find the corre-
lation matrix R, and the eigenvalues. Next find the step-size parameter based
on the spread of the eigenvalues. b) Repeat part a) but with h =[0.39 1 0.39]".

Hints-solutions-suggestions

7.2.1:

R =x(n)x"(n), P, = X(Md *(n), V[ = 2x(n)d * (n)+ 2x(mxH(mw(n) ,
w(n+1)= w(n)+ 2ux(mld * (n) - X" (mw(m)], y(n) = w" ()x(n) = x" (m)w(i)
e(n) = d(n) — y(n), w(n+1) = w(n) +2ux(n)e * (1), H = conjugate transpose (or
Hermitian).

7.3.1:
H(z)=X(z)/V(z)=1/[(1-0.85ei"4z-1)(1 - 0.85e 4z )] or V(z) = X(z)[1-1.7 % z!

+(0.85)*z2]. Hence, the inverse Z-transform gives v(n) = x(n) — 1.202x(n — 1)
+ 0.7225x(n — 2).
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7.4.1:

Q'&(n+1) = Q[&(n) — 2ux(m)x" (m&(m)]+ 2 e’ (MQ " x(1) = Q"&(m)

—2uQ x(m)xT (MQTQTEM)] + 2 e (n)x'(n) = &'(1n) = 24Q T x(n)(Q x(n))" &'(n)

+ 2’ ()X’ (n) = [1 - 2ux’(n)x’ T ())& (n) + 2ue’ (n)x’ (n).
Note:Q "=(Q")" =(Q")' =0

7.4.2:
Hint: &T(n+1)=&"(n)—2u&" (n)x' (m)x’T (n) + 2ue’ (n)x’ (n).

7.4.3:

Because x’(n) and &'(n) are independent E{x'(n)x"T ()& (n)&" x'(n)x"™ (n)}

= EX'(mx " (E(E (m)& " (m)x'(m)x " (n) = Ex'(m)x"T (K’ (m)x' (m)xT ()} (1)

M-1 M-1

x T(n)K'(n)x'(n) = Z“x7 (nx (nk n)

i=0 j=0

C(n) = M x Mmatrix = x'(n)x"" ()K'(n)x’(n)x"" (1)

M-1 M—-1
C]m(n xl (n x (m xz (n x (n k (Tl
=0 j=0
M-1 M-1
Elc, (m} = Y D Elx/(n)x,,(mx/(n)x; )1k (n)
=0 j=0

For Gaussian random variables we have

E{x,x,x,x,} = E{x,x,}E{x;x,} + E{x,x;}E{x,x,} + E{x,x }E{x,x,}

El () () = 28— J)

2)

@)

)

©)

(6)

@)
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The above equation is due to the relation E{Q™x(n)x"(m)Q}=Q RQ=A,
Rq,=1q

E{x{(m)x, (m)x/(m)x} ()} = AyA,8(1 — m)8(i — ) + A, 81— i)S(m — f)

. . @®
+ LA, 61— j)6(m —i)
Substitute (8) in (5) to find
M-1 M-1 M-1 M-1
Elc, (n)) = ZZ AA8(1—m) 8(i — k7 (n) + ZZ Jy Ay, (1) 8(m— k! (n)
=0 j=0 =0 j=
M-1 M-1 M-1
£ Y Ay A, 8= ) Sm =ik (m) = A, 80 =m) D A0+ A, A K, ()
i=0 j=0 i=0

+A A K () forl=0,1,..., M-landm=0,1,..., M-1.Butk; (n)=k/,(n) and

17 m" mi

M-1
Zlik,.’i(n): {AK'(n)) and A, A_k; (m)+ A, A kI (n)=2A4 A k/ (n). Based on
i=0

I m 17 m m T m
these results, (7.4.28) is apparent.
7.4.4:
[ , 1T 2,2, 2 2 ]
kOO(n+1) kOl(n+1) fO +4u /10 4u /11 /10 R 87] /IM—l/IO
, , 2,2 4,2
klo(”+1) kll(n+1) /10/11 fl +4u /11 Y7} /IM_l/ll

K’ n+1 2.2
i MMl [ aody s ARy ey A
AO
K (n+1) K (n+1) -
A0
o| kiy(n+1) ki (n+1) - +4u’]
K, o (n+1)
M-1,M~1 1M71

where the i component of both sides is

k. (n+1) = FA (1) + 42 A LA KL (1) + 2P Ak, (1) + -+ 4R, kL, ()]

+ 4luzjmin)'i

which is identical to (7.4.36).
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7.4.5:
The a” in (7.4.49) has been substituted with # in the development below.

1

— 0 L

) -1, Yoro oM 1-£ A

a[Ay 4]
1 A A4 1 A

— 0 0o — "1 M 0o —
= A 1-f 1-f
a[/lozll] +
1A 1y
1—f1 l_fo /10
l—a[/loxll]
1 /11
1—f1
A A? A? A?
al ——+—1-|l1-a| ——+—-||+()
_ 1—f[) 1_f1 1_f0 1_f]
- 12 12
e T
1—f0 1—f1
=|a % + A - A ~—a Gy ~—2a" AAT —24* % >
1_f0 1_](1 (1_fo) (1_f1) (1_](0)(1‘](1) (1_](0)
P PR R }/H NS
I-f0-£) " Q=f)A-f)  @=£)7) 1-f, 1-f,
2 2 2-1
a 4, " A z M,
_ -/ -/ _ _liz0 1_2Mi
AZ AZ 2-1
1-dy? 0 — — 4y 1 = 1_2 M,
1-(1-4uh +84°22) 1-(1- A, +8022%) &i-20,
which confirms (7.4.49) for M = 2.
7.4.6:

Hint: Take derivatives with respect to y and L, respectively, and note the
positive values of g—i and aa%

7.4.7:

1v, |1 1
A =—»A=—"mwR.)r1._ = see (6.2.12)) and,
av M ; 1 M { X} se,a ZM ( ( ))

therefore, M= uMA_ =M/ (2t ). Observations: (1) M increases linearly
with filter length for a fixed /lavj (2) the setting time of the LMS algorithm is
proportional to 7, . and, hence, M is inversely proportional to the settling
time, (3) M is proportional to ¢ and inversely proportional to 7, , , but u
and 7 are inversely proportional to each other. Careful consideration

mse ,.au

must be given when we are considering values for M, p and 7

mse ,av"
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7.4.8:
The averaged learning curve of the LMS algorithm is close to the steep-
est-descent method. Hence, we write (6.2.15) in the form:

J1) = oo+ Y A (1= 202" E2(0) M

If we set
E0)=w(n)—w°®=0-w°, then &(n)=Q"0)=-Q"™W°=-w° (2

Hence, (1) becomes

JO)= Ty + > A (L= AV ) 3)

Equation (3) indicates that if w?’s corresponding to the smaller eigenvalues
of R, are all close to zero, then the transient behavior of the LMS algorithm
is determined by the larger eigenvalues whose associated time constants are
small, and thus, a fast convergence takes place. If, however, the wZ”s corre-
sponding to the smaller eigenvalues of the correlation matrix are significantly
large, then we will observe that the slower modes will dominate.

7.4.9:
From (6.2.1) we find

w(n+1)=w(n) - 1 Ve?(n) (1)

where 7 is the iteration number, and

ow, dw, ow

V{i 9 .09 J , wn)=lw,(n) w,(n) - w,,_, W]
0 1 M-1
But

Gez(n)/&wi = 2e(n)oe(n)/ow, = 2e(n)dld(n) — y(n))/ow, = 2e(n)dy(n)/ow, = —2e(n)

d {2 w,(m)x(n— i)jl /ow.(n) = 2e(n)x(n—1i) and hence,

Ve (n) = 2e(n)x(n)
where
x(n) =[x(n) x(n-1) x(n-2) --- x(n— M+ 1D]".
Therefore, (1) becomes

w(n+1)=w(n)+ 2ue(n)x(n)



Chapter 7:  The least mean-square (LMS) algorithm 135
7.4.10:

3
x(n) = Z W(k)s(n—k)+ov(n) and hence, we obtain

k=1

E{x(mx(n-m)} =7 (m) =

EY. 1k)s(n—K)+ o(mll Y h(s(n - m—i)+v(n—m))
k=1 k=1

- Z Z h(k)h()E{s(n — k)
s(n—m—i)+ Z h(i)E{o(n)s(n—m —i)])

+Z h(k)E{s(n — kyo(n — m)} + E{o(n)o(n — m))
k

=) 1K) )28 +i— )+ 628(m) = 02 Y h(k)h(k - m)+ 52 5(rm)
k i k=1

=o’r,(m)+ 6-8(m)
since s(n) and v(n) are uncorrelated with zero mean value. Hence,

r(0)=r,(0)+02 = Zh(k)h(k) +02 =12(1)+ 12(2)+ K (3)+ 02 = 1.168

k=1
r(1)=r,1)= Z h(kYh(k —1) = h(2)h(1) + h(3)H(2) = 0.44, 7,(2) = r,(2) = 0.0484
k=1

r(3)=13)=0, r.(4)=7,(4) =0 and the correlation matrix becomes

1.168 0.44 0.0484 0 0
0.44 1.168 0.44 0.0484 0
R, =} 0.0484 0.44 1.168 0.44 0.0484 |.
0 0.0484 0.44 1.168 0.44
| 0 0 0.0484 0.44 1.168 |

The maximum and minimum eigenvalues are: A,;, = 0.7031, 4, = 1.9869
and, hence, the eigenvalue spread is X(R )=A__ /A = 4.3014. The value of
the step-size parameter is found using (7.4.58):

1 =1/3tr{R _}) = 0.095. Part b) is found using similar steps.



chapter 8

Variations of LMS
algorithms

8.1 The sign algorithms

This chapter covers the most popular modified LMS-type algorithms pro-
posed by researchers over the past years, as well as some recent ones pro-
posed by the authors. Most of these algorithms were designed on an ad hoc
basis to improve convergence behavior, reduce computational requirements,
and decrease the steady-state mean-square error. We start with this section
by introducing the sign algorithms.

The error sign algorithm

The error sign algorithm is defined by

w(n+1)=w(n)+2u sign(e(n))x(n) (8.1.1)
where
1 n>0
sign(m)=< 0 n=0 (8.1.2)
-1 n<0

is the signum function. By introducing the signum function and setting y to
a value of power of two, the hardware implementation is highly simplified
(shift and add/subtract operation only).

Book MATLAB function for sign algorithm

functioniw,y,e,J,wl]l=aalmssign(x,dn,mu, M)
$function(w,y,e,J,wll=aalmssign(x,dn,mu, M) ;
%all guantities are real-valued;

%gx=input data to the filter;dn=desired signal;
sM=order of the filter;

137
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grmu=step-size parameter;x and dn must be of the same length
N=length (x);
y=zeros (1,N) ;
w=zeros (1,M) ;%initialized filter coefficient vector
for n=M:N
xl=x(n:-1:n-M+1);%for each n the vector x1 is produced
%0of length M with elements from x 1in reverse order;
y(n)=w*x1l"';
e(n)=dn(n)-y(n):
w=w+2*mu*sign(e(n)) *x1;
wl(n-M+1, :)=w(l, :);
end;
J=e."2;
%the columns of wl depict the history of the filter

scoefficients;

The normalized LMS sign algorithm

The normalized LMS sign algorithm is (see below for normalized LMS
algorithm)

w(n+1)=w(n)+2u w (8.1.3)
e+ Hx(n)H
Book MATLAB function for normalized LMS sign algorithm

function[w,y,e,J,wll=aanormlmssign(x,dn,mu,M, ep)
$function(w,vy,e,J,wll=aalmssign(x,dn,mu,M, ep);
%all quantities are real-valued;

%x=1nput data to the filter;dn=desired signal;

$M=order of the filter;

gmu=step~-size parameter;x and dn must be of the same length;
Fep=sm

N=length(x) ;
y=zeros (1l,N);
w=zeros (1,M);%initialized filter coefficient vector
for n=M:N
xl=x(n:-1:n-M+1) ;%for each n the vector xl1 is produced
%20f length M with elements from x 1n reverse order;
y(n)=w*x1l';
e(n)=dn(n)-y(n);
w=wt+2*mu*sign(e(n)) *x1l/ (ep+x1*x1"') ;
wl{n-M+1, :)=w(l,:);
end;
J=e."2;
%$the columns of wl depict the history of the filter
%coefficients;
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Signed-regressor algorithm

The signed-regressor or data-sign algorithm is given as follows
w(n+1) = w(n)+ 2ue(n)sign(x(n)) (8.1.4)
where the sign function is applied to x(n) on element by element basis.

Sign-sign algorithm
The sign-sign algorithm is given by

w(n +1)=w(n) + 2usign(e(n))sign(x(n)) (8.1.5)

Book MATLAB function for sign-sign algorithm

function{w,y,e,J,wl]l=aalmssignsign (x,dn,mu,M)
$function(w,y,e,J,wl]l=aalmssignsign (x,dn,mu,M)
%all quantities are real-valued;
$x=input data to the filter;dn=desired signal;
$M=order of the filter;
smu=step-size parameter;x and dn must be of the same length
N=length (x) ;
yv=zeros(1l,N) ;
w=zeros(1,M);%initialized filter coefficient wvector
for n=M:N
xl=x(n:-1:n-M+1);%for each n the vector x1 is produced
%$0of length M with elements from x 1n reverse order;
y{n)=w*xl"';
e(n)=dn(n)-y(n);
w=wt+2*mu*sign{e(n)) *sign(xl);
wl(n-M+1, :)=w(l, :);
end;
J=e."2;
$the columns of wl depict the history of the filter
$coefficients;

8.2 Normalized LMS (NLMS) algorithm
Consider the LMS recursion algorithm

w(n+1)=w(n)+ 2u(n)e(n)x(n) (8.2.1)
where the step-size parameter y(n) varies in time. We have observed in

Chapter 7 that the stability, convergence, and steady-state behavior of the LMS
algorithm, are influenced by the filter length and the power of the signal.
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Therefore, we can set

11

K= ) 2xin?

(8.2.2)

in (8.2.1) to find the recursion

wn+1)=wn)+ X ) o )e(n)x(n) (8.2.3)

The above equation can be found using a posteriori error (see Farhang-
Boroujeny, 1999) minimization (see Problem 8.2.1) or using a constrained opti-
mization procedure (see Haykin, 2001). Although (8.2.3) is appealing, in practice
amore relaxed recursion is used that guarantees reliable results. Hence, we write

_ u
w(n+1)=w(n)+ PR D) e(n)x(n) (8.2.4)

where [t and € are constants. The small constant € prevents division by a
very small number of the data norm.
The normalized TMS (NLMS) algorithm is shown in Table 8.2.1.

Book MATLAB function for LMS algorithm with complex data
function|w,vy,e,J,wl]=aacomplexnlms (x,dn,mubar,M, c)
$functionlw,y,e,J,wl]=aacomplexnlms (x,dn,mubar,M, c¢)
$x=input data to the filter;dn=desired signal;
gM=filter order;c=constant;mubar=step-size equivalent

$parameter;
%x and dn must be of the same length;J=learning curve;
N=length (x) ;
y=zeros (1,N) ;
w=zeros (1,M) ;%initialized filter coefficient vector;
for n=M:N

xl=x(n:-1:n-M+1);%for each n vector x1 is of length

$M with elements from x in reverse order;

y(n)=conj (w)*x1";

e(n)=dn(n)-y(n);

w=w+ (mubar/ (ctconj (x1)*x1"')) *conj{e(n))*x1;
wl{n-M+1, :)=w(l, :};

end;

J=e."2;

$the columns of the matrix wl depict the history of the
$filter coefficients:
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Table 8.2.1 The NLMS Algorithm

Real-valued functions Complex-valued functions
Input:
Initialization vector: w(n)=0
Input vector: x{r)
Desired output: d(n)
Step-size parameter: u
Constant: €
Filter length: M
Output:
Filter output: y(n)
Coefficient vector: wi(n+1)
Procedure:
1) y(n) = w' (n)x = w(n)x" (n) 1) y(n) = wh (m)x(n)
2) e(n) = d(n) - y(n) 2) e(n) =d(n) — wH(n)x(n)
3 w(n+1)=w(n)+ WT# e(n)x(n) 3 win t D =wn)
e+x (m)x(n) I

x(n)e*(n)

e+x"(n)x(n)

Note: The superscript H stands for Hermitian, or equivalently conjugate transpose.

8.3 Variable step-size LMS (VSLMS) algorithm

The VSLMS algorithm was introduced in 1986 to facilitate the conflicting
requirements, whereas a large step-size parameter is needed for fast conver-
gence and a small step-size parameter is needed to reduce the misadjustment
factor. When the adaptation begins and w(n) is far from its optimum value, the
step-size parameter should be large in order for the convergence to be rapid.
However, as the filter coefficients w(r) approaches the steady-state solution,
the step-size parameter should decrease in order to reduce the excess MSE.

To accomplish the variation of the step-size parameter, each filter coef-
ficient is given a separate time-varying step-size parameter such that the
LMS recursion algorithm takes the form

w(n+1)=w.(n)+2u,(me(m)x(n-i) i=0,1,..., M-1 (8.3.1)

where w,(n) is the it coefficient of w(n) at iteration n and y,(n) is its associated
step-size. The step-sizes are determined in an ad hoc manner, based on mon-
itoring sign changes in the instantaneous gradient estimate e(n)x(n — i). It was
argued, that successive changes in the sign of the gradient estimate, indicates
that the algorithm is close to its optimal solution and, hence, the step-size
value must be decreased. The reverse is also true. The decision of decreasing
the value of the step-size by some factor ¢, is based on some number m,
successive changes of e(n)x(n — i). Increasing the step-size parameter by some
factor c,is based on m, successive sign changes. The parameters m, and m,can
be adjusted to optimize performance, as can the factors ¢; and c,.
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Table 8.3.1 The VSLMS Algorithm

Input:
Initial coefficient vector: w(0)
Input data vector: x(n) = [x(n) x(n = 1) ... x(n—M+ 1]
Gradient term: gy(n — 1) =e(n — x(n — 1), gy(n— 1) =e(n - ix(n - 1), ...,
(1 — 1) = e(n — 1)x(n — M)
Step-size parameter: po(n — 1), uy(n — 1), ..., pyy(n — 1)
a = small positive constant
Umax = POSsitive constant
Outputs:
Desired output: d(n)
Filter output: y(n)
Filter update: w(n + 1)
Gradient term: go(n), g1(n), ..., gy (1)
Update step-size parameter: piy(n), (1), ..., py_({i1)
Execution:

1) y(n) = wi(n)x(n)
2) e(n) = d(n) - y(n)
3) Weights and step-size parameter adaptation:
Fori=0,1,2,...M-1
&i(n) = e(m)x(n — 1)
i) = pi(n — 1) + assign(gi(n))sign(gi(n))
lf ]’li(n) > Hmaxs ]’li(n) = Vmax
If 24:(1) < Vins H5 = Horin
win + 1) = wn) + 2p(n)g;(n)
end

The set of update Equations (8.3.1) may be written in the matrix form
w(n +1)=w(n)+2u(n)e(n)x(n) (8.3.2)

where p(n) is a diagonal matrix with the following elements in its diago-
nal: y,(n),u,(n), -+, u,, ,(n). The VSLMS algorithm is given in Table 8.3.1.

8.4 The leaky LMS algorithm

Let us assume that x(1) and d(n) are jointly wide-sense stationary processes
that determine when the coefficients w(11) converge in the mean to w°=R_'p,, .
That is

lim E(w(n)} = w® =R.'p,_ (8.4.1)

H—yoe

We start by taking the expectation of both sides of the LMS recursion as
follows:

E{w(n +1)} = E{w(n)} + 2uE{d(n)x(n)} — 2uE{x(n)x" (n)w(n)}  (8.4.2)




Chapter 8:  Variations of LMS algorithms 143

where y(n) = x}(n)w(n). Assuming that x(n) and w(n) are statistically
independent (independence assumption), (8.4.2) becomes

E{w(n+1)} = E{w(m)} + 2uE{d(n)x(n)} = 2uE{x(n)x" (n)}E{w(n)}
=(1-2uR JE{w(n)} + 2up, (1)

which is similar to the steepest-descent method equation, see (6.2.3), with
the difference that here we have ensemble average. This suggests that the
steepest-descent method is applicable to ensemble average E{w(n + 1)}.
Rewriting (6.2.8) in its matrix form we obtain

(8.4.3)

Em)y=1-2uAN)"&0) k=01, ,M-1, n=1,23,- (8.4.4)

We observe that w(n) —» w’if &(n) = w(n)-w’ — 0 as n — « or when &'(n) =
Q"&(n) converges to zero. The k row of (8.4.4) is

Sm=(1-2u4)"5(0) (84.5)
which indicates that &/ (n) — 0 if
1-2uA|<1 k=0,1,--,M-1 (8.4.6)

or

O<u< € (8.4.7)
A

To be more restrictive, we must set the value of u to obey the inequality

O<u< (8.4.8)

A

max

If 2, = 0, (8.4.5) indicates that no convergence takes place as n approaches
infinity. Since it is possible for these undamped modes to become unstable,
itis important for the stabilization of the LMS algorithm to force these modes
to zero. One way to avoid this difficulty is to introduce a leakage coefficient
into the LMS algorithm as follows:

wn+1)=(1-2uy)w(n)+2ue(n)x(n) (8.4.9)

where 0 < y << 1. The effect of introducing the leakage coefficient vy is to force
any undamped modes to become zero and to force the filter coefficients to zero
if either e(n) or x(n1) is zero (the homogeneous equation w;(n + 1) = (1 — 2 uy)w,(n)
has the solution w{n) = A(1 — 2uy)", where A is a constant).

We write (8.4.9) in the form (e(n) =d(n) — x"(n)w(n))

w(n+1)=[I-2u[x(n)x" (n)+ yIlw(n) + 2ud(n)x(n) (8.4.10)
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By taking the expected value of both sides of the above equation and using
the independence assumption, we obtain

Efw(n+1)} = [1-24[R_ +yTE{w(n)}+2up, (n) (8.4.11)

Comparing the above equation with (8.4.3), we observe that the auto-
correlation matrix R, of the LMS algorithm has been replaced with R_+ y1.
Since the eigenvalues of R, + yI are A, + ¥, and since 4, >0, all the modes
of the leaky LMS algorithm will be decayed to zero. Furthermore, the con-
straint for the step-size parameter becomes

1
O<pc———o 8.4.12
u Aty ( )

Asn — o, w(n+1)= w(n) and, hence, (8.4.11) becomes

lim E{w(n)} =[R , + 71 'p,, (8.4.13)

H—oo

which indicates that the leakage coefficient introduces a bias into steady-state
solution R'p, . For another way to produce the leaky LMS algorithm see
Problem 7.4.3.

Book leaky LMS MATLAB function

function[w,y,e,J,wll=aaleakylms (x,dn, mu, gama, M)
$functionw,y,e,J,wl]l=aaleakylms (x,dn,mu, gama, M)
%all signals are real valued;x=input to filter;
$y=output from the filter;dn=desired signal;
gmu=step-size factor;gama=gamma factor<<l;
$M=number of filter coefficients;wl=matrix whose M
$rows give the history of each filter coefficient;
N=length (x);
y=zeros (1,N) ;
w=zeros (1,M);
for n=M:N
x1l=x(n:-1:n-M+1) ;
y(n)=w*xl";
e(n)=dn(n)-y(n);
w=(1l-2*mu*gama) *w+2*mu*e (n) *x1;
wl{(n-M+1, :)=w(l,:);
end;
J=e."2;

Figure 8.4.1 shows the input data {x(n)} to the leaky LMS filter, the output
of the filter and the learning curve. The following signals and parameters
were used: dn = desired signal = sin(0.17n), v = 2(rand-0.5), x =data=dn + v,
=001, y=01 M=16.
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Figure 8.4.1 The input data, the output signal, and the learning curve of an adaptive
filtering problem using leaky LMS algorithm.

8.5 Linearly constrained LMS algorithm

In all previous analyses of Wiener filtering problem, steepest-descent
method, Newton’s method, and the LMS algorithm, no constrain was
imposed on the solution of minimizing the MSE. However, in some appli-
cations there might be some mandatory constraints that must be taken into
consideration in solving optimization problems. For example, the problem
of minimizing the average output power of a filter while the frequency
response must remain constant at specific frequencies (Haykin, 2001). In this
section, we discuss the filtering problem of minimizing the MSE subject to
a general constraint.
The error between the desired signal and the output of the filter is

e(n)=d(n)-w'(n)x(n) (8.5.1)
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We wish to minimize this error in the mean-square sense, subject to the
constraint

cw=a (8.5.2)

where q is a constant and ¢ is a fixed vector. Using the Lagrange multiplier
method, we write

] =E{e*(n)}+ Ac"w—a) (8.5.3)

c

where A is the Lagrange multiplier. Hence, the following relations

V=0 and Pecp 8.5.4
wlc an a/l_ ()

must be satisfied simultaneously. The term 9] /dA produces the constraint
(8.5.2). Next we substitute the error (1) in (8.5.3) to obtain (see Problem 8.5.1)

Jo= T + ERE+ AcTE~a) (8.5.5)
where
Emy=w(m-w’, w’'=Rlp,., R, =EXmx"(n)} (8.5.6)
and
P = Eldmx(n)l, a’=a-c'w’ (8.5.7)

The solution now has changed to V,/ =0 and dl/dA =0 . Hence, from (8.5.5) we
obtain )

- o
o, 281 + 261, + - + 28, 1, c
ngc =| : =| Do+ Al s [=0 (8.5.8)
ai 2§1rM + Zéer—l +"'2§Mrl Cym
| 9

or in matrix form

IR £ +c=0 (8.5.9)
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where c’,‘c" is the constraint optimum value of the vector & In addition, the
constraint gives the relation

e _ rpo_ s
87_(: 5[ a=0 (8510)

Solving the system of the last two equations for 4 and &’ we obtain

’ p-1
A=— 2a g = aR ¢
"R “ ¢Rc

x

(8.5.11)

Substituting the value of Ain (8.5.5) we obtain the minimum value of ], to be

a/2

+ — 8.5.12
c¢'Rc ( )

]c:]min

But w(n) = (n)+w" and, hence, using (8.5.11) we obtain the equation

’ -1
o [ a RX C
¢ c¢'Rc

(8.5.13)

Note: The second term of (8.5.12) is the excess MSE produced by the
constraint.

To obtain the recursion relation subject to constraint (8.5.2), we must

proceed in two steps:

Step 1:
W/(n) = w(n)+ 2te(m)x(n) (8.5.14)

Step 2:
w(n+1) = w(n)+1(n) (8.5.15)

where (1) is chosen so that ¢’w(n +1) = a while ' (n)r(n) is minimized. In
other words, we choose the vector 7(n) so that (8.5.2) holds after Step 2,
while the perturbation introduced by 7(n) is minimized. The problem can
be solved using the Lagrange multiplier method that gives

()= A=< W) (8.5.16)

c'c
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Thus, we obtain the final form of (8.5.15) to be

a—c'w'(n)
c'c

w(n+1)=w'(n)+ (8.5.17)

The constraint algorithm is given in Table 8.5.1.

Table 8.5.1 Linearly Constrained LMS Algorithm

Input: Initial coefficient vector, w(0) =0
Input data vector, x(1)
Desired output, d(n)
Constant vector, ¢
Constraint constant, a
Output: Filter output, y(n)
Procedure: y(n) = wi(n)x(n)
e(n) = d(n) - y(n)
w’'(n) = w(n)+2ue(n)x(n)
a—c¢'w'(n)

wn+1)=w(n)+ -
c'e

Book constraint LMS MATLAB function

functionw,e,y,J,w2]=aaconstrainedlms (x,dn, c,a,mu, M)
$functionlw, e,y,J,w2]=aaconstrainedlms (x,dn,c,a,mu, M) ;
$x=data vector;dn=desired vector of equal length with x;
$c=constant row vector of length M;a=constant, e.g.
%a=0.8;mu=step~
%$size parameter;M=filter order (number of filter
%coefficients);
$w2=matrix whose columns give the history of each
$coefficient;
w=zeros {1,M);
N=length (x) ;
for n=M:N;
v(n)=w*x(n:-1:n-M+1) ';
e(n)=dn(n)-y(n);
wl=w+2*mu*e(n)*x(n:-1:n-M+1) ;
w=wl+((a-c*wl')*c/(c*c'));
w2 (n-M+1, :)=w(l, :);
end;
J=e.”2;

Figure 8.5.1 shows the results of a constrained LMS filter with the following
data: dn = sin(0.1n7); v = noise = 2(rand-0.5); x = data = dn + v; ¢ = ones(1, 32);
a=08;u=001M=32

As an example of solving a constrained optimization problem using
Lagrange multiplier method, the NLMS recursion can be obtained as a
solution of the following problem:
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Figure 8.5.1 The input data, the output signal, and the learning curve of an adaptive
filtering problem using constrained LMS algorithm.

Minimize mjn lw(11)— w(n—1)ll* subject to the constraint d(m) = w" (n+1)x(n)
The first step in the solution is to write the cost function as:

J(n) = | aw ] + Ald(n) — w(n +1)x(n)] (8.5.18)
where
Aw = w(i + 1) — w(in) (8.5.19)

Differentiating the cost function with respect to w(n + 1) leads to

oJ(n)

wne1) 2(w(n +1) - w(n))— Ax(n) (8.5.20)

Setting this results to zero results in

w(n+1) :w(n)+%lx(n) (8.5.21)
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Substituting this last result into the constraint d(1n) = w' (1 + 1) x(11), we obtain

d(n)= (w(n) + %xlx(n)) x(rn)
(8.5.22)

=w’' (n)x(n)+ %AH x(n)Hz
Since e(n) = d(n) — w'(n)x(n), solving Equation (8.5.22) for 4 leads to

PR (8.5.23)

x|’

Substituting Equation (8.5.23) in (8.5.21) results in

w(n +1)=w(n) + e(n)x(n) (8.5.24)

[x(m)|*

Finally, introducing a factor p in Equation (8.5.24) to control the change in
the weight vector, we obtain

w(n+1) = w(n) +—E— e(n)x(n) (8.5.25)
[x(n)]

Clearly, Equation (8.5.25) is the conventional NLMS algorithm.

8.6  Self-correcting adaptive filtering (SCAF)

One way by which we may improve the output of the adaptive filter so that
it is approximately equal to the desired one is to use a self-correcting adaptive
filtering as shown in Figure 8.6.1. In this proposed configuration the desired

. SeAv
din) [ |
| o |
) 1
! , I
L ]
i *G:)—— eq(n) - ea(n) 76—?_ : e(n)
! 2 . / i
x(n) | w, ¥1(n) w5 Ya(n) G i(n) .
| |
! 1

Figure 8.6.1 Block diagram of the SCAF method.
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signal is compared with signals that become closer and closer to the desired

one. The output of the i stage is related to the previous one as follows:
Y=y, *w,, (86.1)

Book MATLAB function for self-correcting LMS algorithm

function|w,y,e,J]=aaselfcorrectinglms (x,dn,mu,M, I)
sfunction[w,vy,e,J]laaselfcorrectinglms (x,dn, mu, M, I);

fw(l,:),y(1,:),e(l,:)]l=aalms (x,dn,mu,M);

for 1=2:I%I=number of iterations, I<8-10 is sufficient;
[w(i,:),yv(i,:),e{i,:)]=aalms(y(i-1,:),dn,mu,M);

end;

J=e."2;

Figure 8.6.2a shows the input data into the self-correcting filter, Figure 8.6.2b
shows the output, y,(1), of the first stage of the self-correcting filter, and
Figure 8.6.2c shows the output, y,o(n), of the filter at its tenth stage. The data
for these results were: dn = desired signal = sin(0.1nx); v = noise = randn;
x = input data = dn + v; mu = 0.01; M = 10, I = number of stages = 10.

1
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1 z
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n

()

Figure 8.6.2 Noise reduction with a self-correcting filter.
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Book MATLAB function for the self-correcting sign regressor

function|w,y,e,J]=aaselfcorsignregreslms (x,dn,mu,M,I)

$functioniw,y,e,J]=aaselfcorsignregreslms (x,dn, mu, M, I);

%x=input data to the filter;dn=desired sig-

nal;length(x)=length(dn) ;

$y=output of the filter an Ixlength(x) matrix;J=error

$function an

%$Ixlength(x) matrix;I=number of stages;

[w(l,:),yv(1l,:),e{(l,:),J(1,:)]l=aalmssignedregressor...

(x,dn,mu,M) ;

for 1=2:1
[w(i,:),yv(i,:),e(i,:),J(1,:)]l=aalms(y(i-1,:),dn,mu,M);

end;

J=e.”2;

Figure 8.6.3 shows the learning curves for the output of the first and
fourth stages. It is apparent that the self-correcting adaptive filter improves
with the number of stages used. The data were: dn = desired signal =
sin(0.2nn), v = noise = 1.5(rand-0.5), x=dn + v, # = 0.01, M =8, and [ = 4.
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Figure 8.6.3 Learning curves of the first and fourth stages of a self-correcting filter.
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Book MATLAB function for self-correcting sign-sign algorithm

function(w,y,e,J]=aaselfcorsignsignlims (x,dn,mu,M, I)
sfunction|w,y,e,J]=aaselfcorsignsignlms(x,dn,mu,M,I);
gsx=input data to the filter;y=output data from the filter,
%y 1is an Ixlength(x) matrix; J=learning curves, an Ix-
%length (x)

smatrix;mu=step-size parameter;M=umber of coefficients;I=
snumber of stages;w=an Ixlength(x) matrix of filter coef-
gficients;

sdn=desired signal;

[w(l,:),y{(1l,:),e(l,:),d(1,:)]l=aalmssignsign(x,dn,mu, M) ;

for i=2:1
[w(i,:),yv(i,:),e{(i,:),d(i,::)]=aalms(y(i-1,:),dn, mu,M);

end;

J=e."2;

The self-correcting adaptive filtering can easily be implemented by using
all types of adaptive filters such as normalized, constrained, transform
domain, etc.

8.7 Transform domain adaptive LMS filtering

The implementation of the LMS filter in the frequency domain can be accom-
plished simply by taking the Discrete Fourier Transform (DFT) of both the
input data, {x(n)}, and the desired signal, {d(1)}. The advantage of doing this
is due to the fast processing of the signal using the Fast Fourier Transform
(fft) algorithm. However, this procedure requires a block-processing strategy,
which results in storing a number of incoming data in buffers, and thus,
some delay is unavoidable.

The simplest approach is that given by Dentino et al. (1978), and it is
shown in Figure 8.7.1. The signals are processed by block-by-block format,
that is {x(n)} and {d(n)} are sequenced into blocks of length M so that

x,(m)=x(iM+n), d(n=diM+n) n=0,1,--,M-1; i=0,1,-- (87.1)
The values of the i block of the signals {x,(n)} and {d{(n)} are Fourier trans-
formed using the DFT to find Xi(k) and D;(k), respectively. Due to DFT
properties, the sequences X(k) and D,(k) have M complex elements corre-
sponding to frequency indices (‘bins’) k=0,1, ... , M -1

M-1 2mnk
X (k)= DFT{x,(n)} = Zx,.(n)e”T k=0,1---,M-1 (8.7.2)

n=0

M- 2mnk
D.(k)= DFT{d.(n)} = Zdl.(n)e” M k=01, M-1 (8.7.3)

n=0
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Figure 8.7.1 Frequency domain adaptive filter (the circle indicates multiplication
term by term and the subscript i indicates the i block of data).

During the it block processing, the output in each frequency bin of the
adaptive filter is computed by

Y,(k)=W, X,(k) k=0,1,2,--,M-1 (8.7.4)

where W, is the k™ frequency bin corresponding to the /™ update (corre-
sponding to the /" block data). The error in the frequency domain is

E(k)=D.(k)-Y, (k) k=0,1,2,--,M~-1 (8.7.5)
The system output is given by

2nnk

M-1
y.(n) = y(iM +n) = IDFT{Y, (k)} = ﬁZY,(k)e] M 1=0,1,2,--M—-1 (8.7.6)
k=0

To update the filter coefficients we use, by analogy to LMS recursion,
the following recursion:

w,,, =W, +2uE,. X; (8.7.7)
where
W, = [I/VH],O I/Vi+l,l I/V[H,M—I]T
W, :H/Vi,o I/Vi,l I/Vi,M—l]T

E=[E(0) EQ) - EM-1]

X, =[X(0) X1 - X(M-DJ
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The dot (.) in (8.7.7) implies element-by-element multiplication and *

stands for complex conjugate. If we set X in the form

XKO) 0 . 0
X, =diagiX,(0) X;(1) - X, (M-1)}= 0 )z(i(l) - 8
0 0 X,(M-1)

then (8.7.7) becomes

Wi, =W+ ZHX:Ei

(8.7.8)

(8.7.9)

Therefore, the Equations (8.7.1)-(8.7.7) constitute the frequency domain of
the LMS algorithm. The Book MATLAB function that gives the coefficients

after I blocks (or iterations) is given below.

Book MATLAB Fourier transform LMS algorithm
function[Al=aaftlms (x,d,M, I, mu)
gfunction[Al]l=aaftlims (x,d,M, I, mu);
wk=zeros (1,M) ;
for 1=0:I $I=number of iterations (or blocks);
if I*M>length(x)-1
('error:I*M<length(x)-1")

end;
$M=number of filter coefficients;
x1=x (M* (i+1) :-1:i*M+1) ;
dl=d(M* (i4+1):-1:1*M+1) ;
xk=fft(x1);
dk=£fft(dl);
vk=wk. *xKk;
ek=dk-vk;

wk=wk+2*mu*ek. *conj (xk) ;

A(i+1, :)=wk;
end;
%all the rows of A are the wk's at an increase order
%0f iterations{blocks);
%to filter the data, wk must be inverted in the time
%domain, convolve with the data x and then plot the

%real part of the output y, e.g. wnd=the forth iteration

$=1ifft(A(4,:)),ynd=filter(wnd/4,1,x) for even M;

Example 8.7.1: The following Book MATLAB program produced the

outputs that are presented in Figure 8.7.2.

M=32; I=10; mu=0.01;
n=0:999;
d=sin(0.1*pi*n); v=1l.5*randn(1,1000);
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Figure 8.7.2 Adaptive filtering with FI' LMS algorithm.

x=d+v;
[Al=aaftlms (x,d,M,I,mu);
wn8=ifft (A(8,:));% the inverse fft of row 8 of A;

yn8=filter(wn8,1,x);

subplot(2,1,1);plot(x(1,1:200));xlabel(*n’);ylabel...
("x(n)");

subplot(2,1,2);plot(real (yn8(1,1:200))) ;xlabel('n’); ...
vlabel (‘y(n)’);

Convergence

Let the signals x(n) and y(n) be jointly stationary, and let the initial filter
coefficient be zero, W= 0. Substituting (8.6.4) and (8.6.5) in, we obtain (see
Problem 8.7.1)

W, =(1-2uX, Z)V\C,k +2uD, (k)X (k) (8.7.10)

The expected value of (8.7.10), assuming W;, and X(k) are statistically inde-
pendent, is given by

E{W }:(1—ZyE{in(k)‘z})E{Wi,k}+2uE{Di(k)X;(k)} (8.7.11)

i+1,k
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Because x(n) and x(k) are stationary, their statistical characteristics do
not change from block to block and, therefore, the ensembles E{IX, (k)lz}
and E{D, (k)X (k)} are mdependent of i but depend on k. Taking the Z- trans-
form of (8 7. 11) with respect to 7 of the dependent variable W,,, we find the
relation (see Table 2.3.1 and Problem 8.7.2)

(), 21ED, ()X (K))
1 z~1

(z)_-zuE{p( wf } (8.7.12)

Applying the final value theorem (see Table 2.3.1 and Problem 8.7.2), we
obtain the steady-state value for the filter coefficients

E(W-) - EID,(k)X; ()} (8.7.13)

Let the mean filter coefficient error E{k) be defined by
E.(k)=E{W, - E{W} (8.7.14)

k

Then, using (8.7.13) and (8.7.11), we find (see Problem 8.7.3)

E, (k)= (1-2uE{X, (k] DE,(k) k=0,1,2, -, M~1 (8.7.15)

Using the iteration approach for the solution of the above difference equa-
tion, we find

E (k)= (1- E{(X,(] WE,(k) k=0,1,2, -, M~1 (8.7.16)
The solution converges if
11 - ZuE{‘Xl.(k)‘z}‘ <1 or O<p<—1t _ (8.7.17)
ElX,(k)]'}

which shows that the power of the input plays a fundamental role in con-
vergence and stability.
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8.8 Error normalized LMS algorithms

A new class of LMS algorithms based on error normalization has been reported
by the authors in IEEE conferences in 2004 and 2005. These algorithms are:

1. Error Normalized Step-Size (ENSS) LMS Algorithm

£ x(m)en) (8.8.1)

wn+1l)=whn)+ ——
Lo, )]

2. Robust Variable Step-Size (RVSS) LMS Algorithm

e, (m)]°
afe(m)|’ +(1-a)|x(n)

w(n+1)=wn)+ ”2 x(n)e(n) (8.8.2)

3. Error-Data Normalized Step-Size (EDNSS) LMS Algorithm

u

w(n+1)=wn)+ 5 > x(m)e(n) (8.8.3)
afe (m)| +1-a)|x(n)]
where
HeL(n) AN le(n—i)| (8.8.4)
and
le)| =D Je—i)|’ (8.8.5)
i=0
Comments

* The parameters ¢, L, and pin all of these algorithms are appropriately
chosen to achieve the best trade-off between rate of convergence and
low final MSE. L could be constant or variable (L = #, for example),
depending on whether the underlying environment is stationary or
nonstationary.

* The variable step-sizes in all of these algorithms should vary between
two predetermined hard limits. The lower value guarantees the ca-
pability of the algorithm to respond to an abrupt change that could
happen at a very large value of iteration number #, while the maxi-
mum value maintains stability of the algorithm.
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Figure 8.8.1 Adaptive plant identification.

Simulations

The ENSS algorithm using an error vector of increasing length (L = n) is
compared first with the NLMS algorithm in system identification shown in
Figure 8.8.1. The adaptive filter and the unknown system are both excited
by a zero-mean white Gaussian signal of unit variance. The length of the
unknown system impulse response is assumed to be N = 4. The internal
unknown system noise v(n) is assumed to be white Gaussian with mean = 0
and variance o5, = 0.09. The optimum values of g in both algorithms are
chosen to obtain the same exact value of misadjustment, M = 2%. The value
of M is estimated by averaging excess mean-square error (EMSE) over n
after the algorithm has reached steady-state, and dividing the result by o7,.
Simulation plots are obtained by ensemble averaging of 200 independent
simulation runs. Figure 8.8.2 shows the learning curves of the two algorithms.
While retaining the same level of misadjustment, the ENSS algorithm

1 ENSS
2 NLMS

MSE in dB

-12 L 1 i 1
0 200 400 600 800 1000

Iteration number

Figure 8.8.2 MSE learning curves of the ENSS and NLMS algorithms for white
Gaussian input.
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clearly provides faster speed of convergence than the NLMS algorithm. A MAT-
LABm file for the ENSS algorithm, which produces Figure 8.8.2, is shown below.

Book MATLAB function of the ENSS algorithm

ENSS Algorithm in System Identification (See Figure
8.8.1)

NN is the length of the error vector e, in the ENSS
algorithm.

mu: variable step-size of the ENSS algorithm.

mul: the dimensionless step-size of the ENSS algorithm.
N: length of the adaptive filter.
I: number of independent simulation runs used in the
plot of the learning curve.
LL: total number of iterations.
h: the impulse response of the unknown plant.

x 1is the input signal to both the adaptive filter and
the unknown system.
dd is the output of the unknown system.

n: the internal noise of the unknown plant.
J i1s the MSE.
clear all;

d° 90 0 I G0 P A0 P I° 90 O° OGP IP 9O P 9°

randn ('state',0);
I=200; LL=1000; J=zeros(l,LL};
Jminn=zeros (1,LL) ;Jex=zeros(1,LL) ;
N=4; NN=10*N; h=[1 0.7 0.5 -0.2];
for i=1:I
y=zeros (1l,LL); w=zeros{l,N); e=zeros(l,LL);
X=zeros (N,1l); D=zeros (NN, 1);
x=sgrt (1) *randn (1,LL) ;
denn=0; n=sqgrt(0.09)*(randn(1l,LL));

for k=1:LL,
dd=filter(h,1l,x);
X={x(k); X(1:N-1)]; den=X'*X; y=w*X;

e(k)=dd(k)4+n(k)-y ;
mul=0.8; denn=denn+e(k)"2;mu=(mul/ (l+mul*denn)) ;
w=wHmu*e (k) *X "' ;
J(k)=J(k)+(abs(e(k)))"2;
Jminn (k)=IJminn (k)+n{k)"~2;
end;
end;
J=J/I; Jminl=dminn/I;Jmin=sum(Jminl)/LL; Jex=J-Jmin;
Jinf=(1/200) *sum(J(LL-199:LL)) ;JSSdB=10*10gl0 (Jinf) ;
Jexinf=abs (Jinf-Jmin) ; JexinfSSdB=10*1ogl0 (Jexinf) ;
MM=Jexinf/Jmin; Mpercent=MM*100;
[mul,Jinf,Jmin, JSSAB, JexinfSSAdB, Mpercent]
nn=0:LL-1;plot(nn,10*logl0(abs((J))));
hold on;plot(nn,10*1logl0(Jmin)) ;




Chapter 8:  Variations of LMS algorithms 161
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Figure 8.8.3 MSE learning curves of the RVSS and NLMS algorithms for an abrupt
change in the plant parameters.

A comparison of the RVSS algorithm with the NLMS algorithms is dem-
onstrated next for white Gaussian input in system identification setup. It is
assumed that o = 0.5, and L = 10N in the RVSS algorithm. The length of the
adaptive filter is assumed to be N = 10. The internal unknown system noise
is white Gaussian with mean = 0 and variance O f equals to 0.01. Simulation
plots are obtained by ensemble averaging of 200 independent simulation runs.
Figure 8.8.3 shows the learning curve of both algorithms for the case with an
abrupt change in the impulse response of the plant, h. In particular, it is
assumed that all the elements of h are multiplied by (-1) at iteration number
1500. Figure 8.8.4 shows the plot of the ensemble average trajectories of the
fifth coefficient of the adaptive filter. The actual value of the corresponding
unknown system coefficient to be identified is 0.5. The superiority of the RVSS
algorithm is evident. A MATLAB m file for the RVSS algorithm with this
assumed abrupt change in the plant parameters is shown below.

Book MATLAB function of the RVSS algorithm
RVSS Algorithm in System Identification (See Figure
8.8.1)
NN is the length of the error vector e; in the RVSS
algorithm
mu: variable step-size of the RVSS algorithm.
mul: the dimensionless step-size of the RVSS algorithm.
a= ¢ in the algorithm.

N: length of the adaptive filter.

I: number of independent simulation runs used in the

A0 0P 0 IO O° P o° oP

o0 oe

plot of the learning curve.
LL: total number of iterations.

o 9e

h: the impulse response of the unknown plant.
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Figure 8.8.4 Ensemble averages of the 5th coefficient of the adaptive filter in the RVSS
and NLMS algorithms for the case with an abrupt change in the plant parameters.

oe

X is the input signal to both the adaptive filter and
the unknown system.
dd is the output of the unknown system.

o° o0 o°

n: the internal noise of the unknown plant.
J is the MSE and Jex 1s the excess MSE.
Mpercent 1s the misadjustment percentage.
JSSDB is the steady state MSE in dB.
clear all;
randn ('state',0);

I=200; LL=3000; J=zeros(l,LL);
Jminn=zeros (1,LL);Jex=zeros (1,LL);
N=10; NN=10*N;

o

o0 o

for i=1:1I
h=[0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.171;
yv=zeros(1l,LL); w=zeros(l,N); e=zeros(l,LL);

X=zeros(N,1l); D=zeros(NN,1);
x=sqgrt (1) *randn(1l, LL) ;
denn=0; n=sqgrt(0.01)*(randn(l,LL));
for k=1:LL,
dd=filter(h,1,x);
X=[x(k); X(1:N-1)1; den=X'*X; y=w*X;
e(k)=dd(k)+n(k)-y ;
if k==1500;
h=-[0.1 0.2 0.3 0.4 0.5...
0.4 0.3 0.2 0.11;
end;
mul=0.07; D=[e(k); D(1:NN-1)];denx=(D'*D}; a=0.5;
denn=denn+e (k) "2; mu={(mul*denx)/...
((a*denn+(1-a)*den) ) ;

’,
|
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w=wt+mu*e (k) *X';

J(k)=J(k)+(abs(e(k)))"2;

Jminn(k)=IJminn(k)+n(k)"2;

end;

end;
J=J/1I; Jminl=Jminn/I;Jmin=sum(Jminl)/LL; Jex=J-Jdmin;
Jinf=(1/200) *sum(J (LL-199:LL) ) ;JSSdB=10*10gl0(Jinf) ;
Jexinf=abs (Jinf-Jmin) ; JexinfSSdB=10*1ogl0 (Jexinf) ;
MM=Jexinf/Jmin; Mpercent=MM*100;
[mul,Jinf,dmin, JSSAB, JexinfSSdB, Mpercent]
nn=0:LL-1;plot(nn,10*1ogl0(abs((J))));
hold on;plot{nn,10*logl0 (Jmin));

Finally, the performance of the EDNSS algorithm is compared with the
NLMS algorithm in an adaptive noise canceller shown in Figure 8.8.5. The
simulations are carried out using a male native speech saying “sound editing
just gets easier and easier” sampled at a frequency of 11.025 kHz. The number
of bits per sample is 8, and the total number of samples is 33000 or 3 sec of real
time. The same value of step-size (1 =0.1) was used in both algorithms to achieve
a compromise between small EMSE and high initial rate of convergence for a
wide range of noise variances. In the EDNSS algorithm, we used o= 0.7 and
L =20N. The order of the adaptive filter was assumed to be N = 10. Figure 8.8.6,
from top to bottom, shows the original clean speech, corrupting noise
with 0' = 0.01, speech corrupted by noise, and the recovered speech after noise
cancellation using EDNSS algorithm. Listening tests show that the recovered
speech is of a high quality and is very close to the original speech. Figure 8.8.7
compares the performance of the EDNSS algorithm with that of the NLMS for
the case when 62 =0.01. The figure shows plots of the EMSE in dB for that
noise level of the two algorithms. While both algorithms have almost the same
initial rate of convergence, the average EMSE in EDNSS is less than that of the
NLMS by 10.6 dB. The values of EMSE were measured in both algorithms over
all samples starting from sample number 2000, where the transient response has
approximately ended. A MATLAB m file for the EDNSS algorithm in adaptive
noise canceller for the above mentioned values of parameters is shown below.

Stn) SN dem TN eln)
N ~
V1(”)
hy y(n)
gn)
h, Voln) w ]

Figure 8.8.5 Adaptive noise canceller.
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Figure 8.8.6 From top to bottom: Original clean speech S(n), noise that corrupts
speech v (n), corrupted speech S(n) + v (n), recovered speech e(1) using EDNSS
algorithm (o =0.01).

EDNSS Algorithm in Adaptive Noise Canceller (see Figure
8.8.5).

S: Speech signal vector and M is its length.

LL=total number of iterations =M= total number of speech
samples.

N: length of the adaptive filter.

o0 0P oe

<

P P

% fs: sampling frequency

% nbits: number of bits per second

% NN 1is the length of the error vector e, in the EDNSS
% algorithm.

% hl is the impulse responses of the autoregressive (AR)
% filter between the reference input and the primary

% microphone

h2 is the impulse responses of the AR filter between

o0 oe

the reference input and the adaptive filter w.

o

JZ is the excess MSE smoothly averaged over NI samples.

<

Mu: Dimensionless step-size of the EDNSS algorithm.
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Figure 8.8.7 Excess mean-square error of the EDNSS and NLMS algorithms
(o7 =0.01).

% alpha: a parameter used in the EDNSS algorithm.
% el is the excess error.
[S,fs,nbitsl=wavread('C:\sound_editing') ;
S=5(9500:42500) ;
S=S'; M=length(S); rl=(S*S')/M;
randn ('state',0);rand('state',0);
hi={1 -0.3 -.11; h2=[1 -0.21;
N=10; NN=20*N; N1=200; LL=M;
J=zeros(1l,LL); Jl=zeros(l,LL); JZ=zeros(l,LL);
g=sgrt (0.01)*randn(1,M) ;
vli=filter(1l,hl,g); v2=filter(l,h2,g);
e=zeros (1,LL}); y=zeros(l,LL);w=zeros(l,N);
V=zeros (N,1);El=zeros (N1,1);D=zeros (NN, 1);
d=s+vl;
for k=1:1LL,
v=[v2(k); V{(1:N-1)1; den=v'*V; vi{k)=w*V;
e(k)=d(k)-y(k); el (k)=e(k)-s(k);
alphal=0.7; Mu=0.1; D=[e(k); D(1:NN-1)}];denx=(D'*D};
w=w+ (Mu/ {alphal*denx+(l-alphal) *den)) *e(k)*V"';
BEl={el(k); E1(1:N1-1)1; J2(k)=0Z(k)+((E1'*El) /N1);
end
JZ=J7/1; F=2000;
JJZzex=(1/(LL-F)) *sum(JZ (F:LL-1)) ;JJZexdB=10*10ogl0 (JJZex) ;
rl1l1=(1/(LL-F))*S{(F:LL-1) )} *S((F:LL-1})";
MM3=JJZex/r11l;
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[Mu,MM3*100,JJZexdB]
J11=J1(1:LL) ;nn=0:LL-1;

plot(nn,10*1logl0(abs((J2))));

Adaptive filtering primer with MATLAB

Table 8.8.1 shows a summary of the LMS-type algorithms presented in

this chapter.

Table 8.8.1 Summary of the LMS Algorithms Presented in Chapter 8

x(n) =[x(m)x(n=1) --- x(n— M, w(n) = [w(m)w, (1) - w,, ()], e(n) = d(n) - y(n)

Algorithm
1. LMS
2. LMS with complex data

3. Sign LMS

4. Sign-regressor LMS
5. Sign-sign LMS

6. Normalized LM

9a. e-Normalized LMS

9b. e-Normalized LMS
with complex data

10. Normalized LMS sign algorithm

11. Leaky LMS

12. Constrained LMS

13. Self-correcting LMS

14. Transform domain LMS

15. Self-correcting adaptive
filtering (SCAF)

16. ENSS Algorithm

17. RVSS Algorithm

18. EDNSS Algorithm

Recursion
w(n+1)= wn)+2ue(n)x(n)
w(n+1)=w(n)+2ue*(n)x(n)
y(n)= wh(n)x(n)(H = conjugate transpose)
w(n+1) = w(n)+ 2usign(e(n))x(n)
w(n+1) = w(n)+ 2ue(n)sign(x(n))
w(n+1) = w(n)+ 2usign(e(n))sign(x(n))

1
W(Tl +1) = W(Tl) + W
with pi(n) =1/2x" (n)x (1]
w(n+1)=w(n)+ -

—_———¢
_ _ +x" (m)x(n)
M = step-size parameter

e(n)x(n)

(m)x(n)

€ = prevents division by very small number

w(n+1)=w(n)+ e*(n)x(n)

- K
e+x"(n)x(n)
H = conjugate transpose
sign(e(n))x(n)
e+|x(m)

w(n+1)=1-2uy)wn)+2ue(n)x(n)
0<<<1

w(n+1)=w(n)+2u

T ’
a-c¢ Tw (n) c
c'e
w'(n) = w(n)+2ue(n)x(n)
¢ = constant vector, a = constant
Yia(1) = yi(ny wyy,
see also the m-file in the text
see Sec. 8.7

see Sec. 8.6

w(n+1)=w'(n)+

see Sec. 8.8
see Sec. 8.8
see Sec. 8.8
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Problems
8.1.1 Show that the step-size of a sign algorithm is equivalent to

w'(my= p/1e(n)l. Discuss the value of u’(n) for stability.

8.2.1 Minimize the posteriori error e, (n)= d(n)— w'(n +1)x(n) to obtain the
normalized LMS algorithm.

8.4.1 To find the leaky LMS algorithm, apply the LMS gradient descent
algorithm to minimize the error J(n) = &*(n)+ yw" (n)w(n).

8.5.1 Verify (8.5.5).
8.7.1 Verify (8.7.10).
8.7.2 Verity (8.7.12).

8.7.3 Verify (8.7.15).

Hints-solutions-suggestions

8.1.1:

We write (8.1.1) in the form w(n +1) = w(n)+ 2u(e(n)/ ’e(n)‘)x(n). We observe that
wn)y= 2,u]%I increases as |e(n)‘ decreases. Therefore, u must be very small
for the logarithm to converge. If we choose very small y, we automatically
choose very small ¢'(n), and thus, the convergence at the beginning is slow.
But as p’(n) increases the convergence becomes faster.

8.2.1:
Substituting the LMS recursion equation in 3,;5(”) we obtain eps(n):

[1=2u(m)x" (n)x(n)le(n).

%2, (n)
Hence, 9u(n)
=1/[2x" (n)x(n)].

=0=2x"(n)x(n) -2x"(m)x(n) + 8u(n)x* (Mx(n)x" (m)x(n) or u(n)

or

8.4.1:

J) =[d(m) = w' (x(m)]* + yw" (m)w(n) = d*(n) ~ 2d(n)w" (n)x(n)

+w! xw! (m)x(n) +yw" (mw(n) (1)
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(Note that [w”(n)x(n)]? = wT(n)x(n)[w'(n)x(n)] since w"x(n) is a number.) The it
component of (1) is J(n)= dz(n)—Zd(n)wi(n)xi(n) + [w[.(n)xz.(n)]2 + yw,z(n) 2).
Therefore, d(n)/ow, =0 = -2d(n)x,(n) + 2w,(n)x,(n) + 2yw,(n) (3). In matrix
form it becomes V[ = —e(n)x(n) + v w (n) (4). Introducing (4) into the recursion
equation of the gradient descent algorithm, we obtain

w(n+1)=w(n)— uV] = wn)+ pe(m)x(n) - g yw(n) = (1- py)wn)+ pe(n)x(n).
8.5.1:
[ = Eld(m) - w (mx(m))[d(n) - x" (m)w(m)]+ A" w(n) - a)}
= E{d?(m)—d(mw" (mx(n) - d(m)x" (mw(n)+w" (mx(m)x" (myw(n)
+ A" w(n)— Aa)
=05 = W' (ME{d(n)x(m)} — wEld(n)x(m)} + w" (m)E{x(n)x" (n)w(n)
+Ae"w(n)— Aa
=0 —2w' (mp +w (MR, w(n)}+Ac w(n)- Aa
=0, = 2w (n)p, +(w(n)~w*) R, (W(n)- w')+ w R w(n)+w' (R, w*
+WTR W+ Ae! (w(n)—w*)—(a—c"w’)]
=02 —-w'p, +&'R E+A("E~a)
where R, w* =p_, (W' R, w(n))' = w'(mR,w* (R, = symmetric)

8.7.1:
The ktt value is

Wy o =W, + 2uXCE, = W +2uX][D,(k) = Y,(k)] = W, , + 2uX; (KD, (k)
- W, X (k)]
= W, + 20X (6)D, (k) = 21W, , | X,(k) = (1 21| X, (k) YW,

+2uD, (k)X (k)

8.7.2:
The z-transform and the ensemble are linear operations and can be inter-
changed. Therefore, the other z-transform is

ZW, (2) — 2W, , = (1 - 24E{ X, (k) PYW, (2) + [2HEID,(R)X; (k)1 - 2] (),
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where W =0 since_it was assumed that the initial conditions have zero
values, and W, (z) = 2E{W jz™'. Multiplying (1) by z7! and (z — 1), and apply-
ing the final value theorem (see Table 2.3.1), we obtain

EIW?) = tim{z - W, (2) = 2uUED, (k)X (k) :Ewﬁngb}
Z%1u,mmxm[ E{X,(k))

8.7.3:
E,.(k) = E(W,, ) = E{W."} = (1 - 2uE{|X, () DEIW, ) + 2uE(D, (K)X; (k)

_ED0X (k) zEDwa»

= (1-20E(X, (0 DEW,  } - (1 24E(X (0 )

= (1-2uE(X, (0] DE, ()



chapter 9

Least squares and recursive
least-squares signal processing

9.1 Introduction to least squares

The Wiener and adaptive filters belong to the statistical framework since the
signal statistics are being invoked and it is required that a priori knowledge
exists of the second-order moments. On the other hand, the method of least
squares belongs to the deterministic frame. In addition, this method requires
that both the input signal and the desired one be measured. There are several
important cases that such restrictions of signal measurements can be applied,
such as modeling applications, linear predictive coding, and communica-
tions, where the desired signal is taken to be the training set.

9.2 Least-square formulation

We consider a linear adaptive filter with coefficients at time n
w(n)= [wl(n) w,(n) - wM(n)]T, a measured real-valued input vector

x(n) =[x (n) x,(n) - Xy, (n)]", and a measured desired response d(n).

Note that no structure has been specified for the input vector x(n), and
therefore, it can be considered as the successive samples of a particular
process or as a snapshot of M detectors as shown in Figure 9.2.1. Hence, the
problem is to estimate the desired response d(n) using the linear combination

M
Y= wi(x(m) = Y w (x,(n) n=1,2,,N ©2.1)
k=1

171
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@ || %@ (N) R
X,(1) x,(2) X,(N) [>_7 2
D) ) XMiN) [>“' M
Time ~
(@
x(1) x(2) x(3) x(M) x((M+1) x(M+2) ... x(N-1) x(N)

Figure 9.2.1 (a) Multisensor application. (b) Single sensor application.

The above equation can be represented by a linear combiner as shown in
Figure 9.2.2. The estimation error is defined by the relation

e(n)=d(n)~ y(n) = d(n)— w' (n)x(n) (9.2.2)

The coefficients of the adaptive filter are found by minimizing the sum of
the squares of the error (least squares)

J=E= gme*(n) 9.23)

W2(n)
w8
2 »(X) %®——> y(n)

wy(n)
X3(ﬂ)

Figure 9.2.2 Linear estimator (M-parameter system).
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where g(n) is a weighting function. Therefore, in the method of least squares
the filter coefficients are optimized by using all the observations from the
time the filter begins until the present time and minimizing the sum of
the squared values of the error samples that are equal to the measured
desired signal and the output signal of the filter. The minimization is valid
when the filter coefficient vector w(n) is kept constant, w, over the mea-
surement time interval 1<# < N. In statistics, the least-squares estimation
is known as regression, e{(n) are known as signals, and w is the regression
vector.
We next define the matrix of the observed input samples as

%, (1) x,(2) - x(N) |
; x,(1) x,(2) - x,(N) !
X = —  data records (M x N)
: : : snapshots
_xM(l) x,,(2) xM(N)J

(9.2.4)

where we assume that N > M. This defines an over-determined least-squares
problem.

For the case in which we have one dimensional input signal, as shown
in Figure 9.2.1b, the data matrix takes the form

(M) x(M+1) - x(N) 1
x(M-1) x(M) -- x(N-1)
XT=|x(M=-2) x(M-1) --- x(N-2) (9.2.5)
| x(1) x2) - X(N-M+1) |

The output y, the error e, and the data vectors x,, are:

y=Xw (9.2.6)

e=d-y 9.2.7)
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where

y=[y) y2) - y(N)]" = filter output vector (N x 1)

d=[d(1) d(2) --- dN)}
e=[e(1) e(2) -+ e(N)]" = error vector (N x1)

x=[x,(n) x,(n) - x (m)]" =snapshot (N x1)

x, =[x, (1) x,(2) -+ x,(N)]' =data vector, k=1,2,-,\M

- w,,]" =filter coefficients, (M x1)

X=[x xz---xM]T =(NxM)

1

In addition, with g(n) = 1 for all n, (9.2.3) takes the form

J=ele=(d-y)(d~y)=(d-Xw) (d-Xw)
=d"d-w'X"d-d'Xw+w'X'Xw
=E,-~w'p-p'wWt+wRw=E -2p'w+w'Rw

where
.
E,-d'd= ;d(n)d(n)
N

R=X"X= Z x()x(1) (M x M)

n=1

p=X'd= Z x(n)d(n) (Mx1)

n=1

M
y=Xw=Zwkxk (Nx1)

k=1

(9.2.8)

(9.2.9)

(9.2.10)

(9.2.11)

9.2.12)

(9.2.13)

(9.2.14)

(9.2.15)

(9.2.16)

(9.2.17)

(9.2.18)

9.2.19)
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The matrix R becomes time averaged if it is divided by N. In statistics, the
scaled form of R is known as the sample correlation matrix.

Setting the gradient of | with respect to the vector coefficients w equal
to zero, we obtain (see Problem 9.2.1)

Rw=p; p'=w' R"=w'R (R is symmetric) (9.2.20)

or

~

w=R7p (9.2.21)

Therefore, the minimum sum of squared errors is given by
J=d'd=2p'R'p+w'RR'p=E —p'R'p=E -p'w (9.2.22)

since R is symmetric. For the solution given in (9.2.21) see Problem 9.2.3 and
Problem 9.2.4.

Example 9.2.1: Let the desired response be d=[1 1 1 1], and the two
measured signals be x; =[0.7 1.4 04 1.3]7, x,=[1.2 0.6 0.5 1.1]~. Then we

obtain

(07 1.2]
0.7 14 04 13|14 06| [430 331
R=X'X= =
12 06 05 1.1J04 05| {331 326
|13 1.1
X1 0.3704
p=X'd= , W=Rp= T =0.3252
3.4 0.6669

y=Xw=[1.0595 09187 0.4816 1.2150]

The least-squares technique is a mathematical procedure that enables us
to achieve a best fit of a model to experimental data. In the sense of the
M-parameter linear system, shown in Figure 9.2.3, (9.2.1) is written in the
form

ym=wx mrwx,m+ - +w x ) n=12., N (9223
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x| ———
1 System parameters
X,

W1 Wi oo s Wi

—_—p
XM

Figure 9.2.3 An M-parameter linear system.
The above equation takes the following matrix form
y=Xw (9.2.24)

To estimate the M parameters w;, it is necessary that N> M. If N =M,
then we can uniquely solve for w to find

w=X"y (9.2.25)

provided X! exists. w is the estimate of w. Using the least-error-squares we
can determine w provided that N > M.
Let us define an error vector e=[e, ¢, eN]T as follows:

e=y-Xw (9.2.26)

Next we choose W in such a way that the criterion

N
J= Zeg =eTe (9.2.27)
is minimized. To proceed we write

J=(y—Xw)' (y - Xw)

=y'y-w' X'y—yXw+w' X'Xw

(9.2.28)

Differentiating | with respect to w and equating the result to zero for deter-
mining the conditions on the estimate w that minimizes J. Hence,

a] T T ~
/|  =2X'y+2X Xw=0 9.2.29
ow v=w y ( )

X"Xw = X"y (9.2.30)
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from which we obtain
W= (XTX)’lXTy (9.2.31)

The above is known as the least-squares estimator (LSE) of w. (9.2.30) is known
as the normal equations.

If we weight differently each error term, then the weighted error criterion
becomes

] =e'Ge=(y—Xw) G(y - Xw) (9.2.32)

The weighting matrix G is restricted to be symmetric positive definite
matrix. Minimizing ], with respect to w results in the following weighted
least-squares estimator (WLSE) w:

w=(X"GX)'X"Gy (9.2.33)

If G=1then w=wG.

Statistical properties of least-squares estimators
We rewrite (9.2.26) in the form (X = deterministic matrix)

and assume that e is a stationary random vector with zero mean value,
E[e] = 0. Furthermore, e is assumed to be uncorrelated with y and X. There-
fore, on the given statistical properties of e, we wish to know just how good,
or how accurate, the estimates of the parameters are.

Substituting (9.2.34) in (9.2.31) and taking the ensemble average we
obtain

E{w} = E{w +(X"X)™" X e} = E{w} + E{X"X)"X| E{e}
(9.2.35)
=w  (Ele}=0)

which indicates that w is unbiased.
The covariance matrix corresponding to the estimate error w—w is

C, =E{(w-w)w-w)")=E[[(X'X)' X'y - wl(w-w)"}
=E{X"X)" X" (Xw +e) - w](w — w)"}
= Ef[(X™X)7 (X"™X)w + (XTX) e — wi[w - w]"}
(9.2.36)
= E{[(X™X) ' XTe][(X™X) " X e]"}
=(X"™X) "X E{eeT}IX(X"X)!

=(XTX)TX'R X(XTX)" (R, is the error correlation marix)
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If the noise samples e(i) for i = 1, 2, 3... are normal, identical distributed
with zero mean and variance o7 ((e = N(0, ol)), then

R_=E{ee'}=0"1 (9.2.37)

and, hence,
C, = o X™X)™ (9.2.38)

Using (9.2.34), and taking into consideration that e is a Gaussian random
vector, then the natural logarithm of its probability density is given by

cwr=tn| Lol oLy xwyic iy - }
In p(e; w) h{@n)wz ‘Ce‘exp[ Z(Y Xw)'C_(y Xw)}

(9.2.39)
=-InRro?)V? - Tiz(y ~Xw)(y -~ Xw)

since C= ¢’ and IC_| implies the determinant of C,. Next, we differentiate
(9.2.39) with respect to the parameter w. Hence, we find

dln(e; w) 1 0, 1 T ToT
—— = 2y Xw+w' X' X 9.2.4
3 o7 5 ly'y—2y Xw+w w] (9.2.40)

since y"™Xw = wTX%y = scalar. Using the identities below (see Appendix A)

obTw owTAw
ow ow

=2Aw (A issymmetric) (9.241)

(9.2.40) becomes

dnpesw) _ 1

o p (XTy - X"Xw] (9.2.42)

Assuming that X"X is invertible, then

Inple; ' : T
a_%fve_rﬂ - ’;_ZX[(XTX)-IX y-wl=Iw)[gw)-w]  (9.2.43)




Chapter 9:  Least squares and recursive least-squares signal processing 179

From the Crame-Rao lower bound (CRLB) theorem, w is the minimum
variance unbiased (MVU) estimator, since we have found that

w=(X"X)"X"y=g(w) (9.2.44)

and (9.2.43) takes the form

. T
amg(;, w) _ XGZX (W—w) (9.2.45)

The matrix

I(w) = X" X/o? (9.2.46)

is known as the Fisher information matrix. The Fisher matrix is defined by the
relation

[K(w)], = E{%} (9.2.47)
iy

in the CRLB theorem, and thus, the parameters are shown explicitly. Com-
paring (9.2.38) and (9.2.46), the MVU estimator of w is given by (9.2.44) and
its covariance matrix is

C, =I"w=0’X"X)" (9.2.48)

The MVU estimator of the linear model (9.2.34) is efficient since it attains the
CRLB or, in other words, the covariance matrix is equal to the inverse of the
Fisher information matrix.

Let us rewrite the error covariance matrix in the form

2 -1
C =oz(xTX)'1=0[lex] (9.2.49)
w N\N

where N is the number of equations in the vector equation (9.2.34). Let
l\ij[(l/N)XTX]’1 = A where A is a rectangular constant matrix. Then

2
imC = lim ZA

Noew W  Now N

=0 (9.2.50)
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Since the covariance is zero as N goes to infinity implies that w = w. The
above convergence property defines w as a consistent estimator.

The above development shows if a system is modeled as linear in the
presence of white Gaussian noise, the LSE approach provides estimators that
are unbiased and consistent.

9.3  Least-squares approach

Using the least-squares (LS) approach we try to minimize the squared dif-
ference between the given data (or desired data) d(n) and the output signal
of a LTI system. The signal y(n) is generated by some system, which in turn
depends upon its unknown parameters w;'s. The LSE of w,'s chooses the
values that make y’s closest to the given data. The measure of closeness is
defined by the LSE (see also (9.2.15)). For the one-coefficient system model,
we have

N
J@)="Y (@)~ y(n))’ 9.3.1)

and the dependence of | on w is via y(n). The value of w that minimizes the
cost function J(w) is the LSE. It is apparent that the performance of LSE will
depend upon the statistical properties of the corrupting noise to the signal
as well as any system modeling error.

Example 9.3.1: Let us assume that the signal is y(n) = acos(,n), where @,
is known and the amplitude a must be determined. Hence, the LSE mini-
mizes the cost function

N
J(@)= )Y (d(n)—acosm n)" (9.3.2)
1

1=

Therefore, we obtain

Ja) <
Laa@ = ;(—)2 cos @ n{d(n)—acosw n)=0

N
Zd (n)cosw n

=

N
E COSCU n

n=1

a=
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Let us assume that the output of a system is linear, and it is given by
the relation y(n) = x(n)w, where x(n) is a known sequence. Hence, the L.SE
criterion becomes

Jw) =Y @) x(mw)’ 933

The estimate value of w is
w= £1N~—— (9.3.4)

and the minimum LS error is given by (Problem 9.3.2)

N

Zd(n)x(n)]

S = 1) = Zdz(”) wzd(m(n Zd (m)- (”w
Y

n=1

(9.3.5)

Example 9.3.2: Consider the experimental data shown in Figure 9.3.1. It
is recommended that a linear model, y(n) = a + bn, for the data be used.
Using the LSE approach, we find the cost function

N
Jwy="Y" (@d(m)—a—bn)® =(d-Xw)'(d- Xw) (9.3.6)
where
11 ]
{1 1 2
w=| |, X= 9.3.7)
b P
L.l N...

From (9.2.31), the estimate value of w is

w=(X"X)"X"d (9.3.8)
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0 10 20 30 40 50 60 70 80 9 100
Figure 9.3.1 Illustration of Example 9.3.2.

and from the data shown in Figure 9.3.1

. |lal| |1.6147
W=| . [=
b| (0.0337
The straight line was also plotted to verify the procedure of LSE. The data
were produced using the equation d(n) = 1.5 + 0.0357 + randn for n = 1 to 100.

9.4 Orthogonality principle

To obtain the orthogonality principle for the least-squared problem we follow
the procedure developed for the Wiener filters. Therefore, using the
unweighted sum of the squares of the error, we obtain

a](wlrwzr”'/w )_ 8 m) _
S o, {ze(m)e(m)J 224 Yy k21,2, M

k m=1 m=1

(94.1)
But (9.2.6) is equal to (w has M coefficients)

e(m) = d(m) - zwkxk (m) (9.4.2)
k=1
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and, therefore, taking the derivative of e(m) with respect to w, and introduc-
ing the results in (9.4.1), we obtain

N

i
——==2) e(m)x (m 9.43
aw, mE=1 (m)x, (m) (9-4.3)
We note that when w = w (the optimum value) we have the relation-

ship J_—0fork=1,2, ..., M, and hence, (9.4.3) becomes

N
Zé(m)xk(m) =éx, k=12,-,M (9.4.4)
where
e=[61) &Q) #@3) - AN) =d-7 (9.4.5)
x=[x,1) x,2) - x, (N k=12, M (9.4.6)

the estimated error é(m) is optimum in the least-squares sense. The above
result is known as the principle of orthogonality.

Corollary

Equations (9.2.6) may be written as the sum of the columns of X as follows

y:

M
x, (m)w, n=12, ---,N (9.4.7)

k=1

Multiplying (9.4.7) by e and taking into consideration, we obtain

&'y =0 (9.4.8)

The above corollary indicates that when the coefficients of the filter are
optimum in the least-squares sense, then the output of the filter and the error
are orthogonal.

Example 9.4.1: Using the results of Example 9.2.1, we find

[1.05953819523825

0.91864528560697 | R S
; e'x, =2505x107°; e&'x, =1.457x10"

>
Il

u
1

>
1

0.48159639439564

| 1.21506254286554 |
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9.5 Projection operator

Projection operator gives another from of interpretation to the solution of the
least-squares problem. Let us, for clarity, assume that we have 2 (N vectors
in the N* dimensional case) vectors x, that form two-dimensional subspace
(see Figure 9.5.1). The vectors x, and x, constitute the column space of the
data matrix X.

We note the following:

1. The vector d is obtained as a linear combination of the data column
space x,,X,, -+, x, of X that constitutes the subspace of M.

2. From all the vectors in the subspace spanned by X X, Xy the
vector d has the minimum Euclidian distance from d.

3. The difference e =d —d is a vector that is orthogonal to the subspace.

2/

We also note that y satisfies the above three properties. From (9.4.7) we
observe that y is a linear combination of the data column space, which spans
the subspace. Next, minimizing e'e, where e =d -d, is equivalent to mini-
mizing the Euclidian distance between d and y. The third property is satis-
fied by (9.4.8). Therefore, we can conclude that y is that the projection of d
into the subspace spanned by the vectors x_, x,, -+, X,

Equation (9.4.7) may also be written in the matrix form

¥ =Xw =X(X"X)"X"d (9.5.1)

X3

W3X3

X1

Figure 9.5.1 Vector space interpretation of the least-squares problems for N =3
(data space) and M = 2 (estimation subspace).




Chapter 9:  Least squares and recursive least-squares signal processing 185

where we set w =R7p (see (9.2.21)), R~ = (X™X)! (see (9.2.17)), and p = X"d
(see (9.2.18)). Since the matrix

P=XX"X)"'X" (9.5.2)

projects the desired vector in the N-dimensional space to y in the M-dimen-

sional subspace (N > M), it is known as the projection matrix or projection

operator. The name is due to the fact that the matrix P projects the data vector

d onto the column space of X to provide the least-squares estimate y of d.
The least-squares error can be expressed as

¢=d-y=d-Pd=(1-P)d (9.5.3)

where I is an N x N identity matrix. The projection matrix is equal to its
transpose (Hermitian for complex matrix) and independent, that is

P=P"; P?=P"P=P (9.5.4)

The matrix I-P is known as the orthogonal complement projection operator.
The filter coefficients are given by

w= R'lp =(X"™)'Xx"d (9.5.5)
where

X" = (X™X) X" (9.5.6)

is an M x N matrix known as the pseudo-inverse or the Moore-Penrose gen-
eralized inverse of matrix X (see Appendix A).

Example 9.5.1: Using the data given in Example 9.2.1, we obtain

0.7278 -02156 02434 0.3038 |

P = X(X™X) X" -0.2156  0.7762 0.0013 0.3566
02434  0.0013 0.0890 0.1477

| 03038 0.3566 0.1477 0.4068 |

y=Pd=[1.0595 0.9186 0.4815 1.2150]
e=(-P)d=[0.0595 0.0813 0.5184 —0.2150]"
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9.6 Least-squares finite impulse response filter
The error of the filter is given by

M

e(n)=d(n) —Z w, x(n—k)=d(n)-wx(n) (9.6.1)

k=1

where d(n) is the desired signal,
x(n)=[x(n) x(n-1) - x(n—-M+1)]" (9.6.2)
is the input data to the filter, and

w=lw, w, - w,]' (9.6.3)

is the filter coefficient vector.

It turns out that the exact form of e, d, and X depends on the range
N, <n<N, of the data to be used. Therefore, the range of the square-error
summation then becomes

n=N .

JAE- Z () =eTe (9.6.4)

The least-squares finite impulse response filter is found by solving the
least-squares normal equations (see (9.2.20) and (9.2.30))

X"™X)w=X'd=p (or Rw=p) (9.6.5)
with the minimum least-squares error

J AE =E -p™w (9.6.6)

min min d
where E; = d'd is the energy of the desired signal. The elements of the

time-averaged correlation matrix R are given by (the real averaged correla-
tion coefficients must be divided by N;— N;)

Ny

ri],=xiij:Zx(n+1—i)x(n+1—j) 1<i, j<M 9.6.7)
n=N.
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There are two important different ways to select the summation range
N, <n<N,, which are exploited in Problem 9.6.1. These are the no-window
case, where N;=M —1and N;=N -1, and the full-window case, where the
range of the summation is from N; =0 to N;= N + M - 2. The no-window
method is also known as the autocorrelation method, and the full-window
method is also known as the covariance method.

The covariance method data matrix D is written as follows:

[x(M)  x(M+1) - x(N)

M-1 M co x(N=1
DT:[X(M) X(M+1) X(M)]: x( ) x( ) x( )

| x(1) x(2) o X(N=M+1) |
(9.6.8)

Then the M x M time-averaged correlation matrix is given by

R= x(n)xT(n)=D'D (9.6.9)

I

Book MATLAB function for covariance data matrix
function[dT]=aadatamatrixcovmeth (x,M)
3function[dT]=aadatamatrixconvmeth (x, M)
gM=number of filter coefficients;x=data vector;
$dT=transposed data matrix;
for m=1:M

for n=l:length(x)-M+1

dT (m, n)=x (M-m+n) ;

end;

end;

Example 9.6.1: If the data vector is x = [0.7 14 04 1.3 0.1]" and the
data filter has three coefficients, then

04 13 0.1
D'=/14 04 13 (D" is Toeplitz matrix)
07 14 04
1.8600 1.2100 2.1400
R=D'D=|1.2100 3.8100 2.0600
21400 2.0600 2.6100
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The data matrix in (9.6.8) has the following properties:

Property 1: The correlation matrix R is equal to its transpose (for
complex quantities, R is Hermitian R = RT). The proof is directly
found from (9.6.9).

Property 2: The correlation matrix is nonnegative definite, a’Ra>0 for
any M x 1 vector a (see Problem 9.6.1).

Property 3: The eigenvalues of the correlation matrix R are all real and
nonnegative (see Section 5.1).

Property 4: The correlation matrix is the product of two rectangular Toeplitz
matrices that are the transpose of each other (see Example 9.6.1)

The following book MATLAB function will produce the results for the
no-window method FIR filter:

Book MATLAB function no-window LS method
function[R,w,Jmin]=aanowindowleastsqufir (x,M, d)
$x=data of length N;M=number of filter coefficient;
%3d=desired signal=[d (M) d(M+1) . d(N)Y1"';
N=length(x);
for i=1:M

for j=1:N-M+1

D(i,])=x(M-i+]);

end;
end;
Dt=D"';
R=D*Dt;
p=D*d (1,1:N-M+1) ' ;
w=inv (R) *p;
Jmin=d'*d-p' *w;

9.7 Introduction to RLS algorithm

The least-squares solution (9.2.21) is not very practical in the actual imple-
mentation of adaptive filters. This is true, because we must know all the past
samples of the input signal, as well as the desired output must be available
at every iteration. The RLS algorithm is based on the LS estimate of the filter
coefficients w(n — 1) at iteration 1 — 1, by computing its estimate at iteration n
using the newly arrived data. This type of algorithm is known as the recursive
least-squares (RLS) algorithm. This algorithm may be viewed as a special case
of the Kalman filter.

To implement the recursive method of least squares, we start the com-
putation with known initial conditions and then update the old estimate
based on the information contained in the new data samples. Next, we
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minimize the cost function J(n), where n is the variable length of the observed
data. Hence, we write (9.2.3) in the form

Jon)= Z n (ke(k), 1, (k)= weighting factor (9.7.1)
=
where
e(k) = d(k) - y(k) = d(k) — w™ (k)x(k) (9.7.2)
x(k) = [x(k) x(k=1) - x(k-M+D)]" 9.7.3)
w(n)=[w,(n) w,(n) -+ w, ()] (9.7.4)

Note that the filter coefficient are fixed during the observation time 1<k <n
during which the cost function J(r) is defined.

In standart RLS algorithm, the weighting factor 7,(k) is chosen to have
the exponential form

nn(k) = /l"ik k= 1/ 2/ R (975)

where the value of A is less than one and, hence, 7,(k) is confined in the range
O<n(k)<lfork=1,2,.., n The weighting factor 1 is also known as the
forgetting factor, since it weights (emphasizes) the recent data and tends to
forget the past. This property helps in producing an adaptive algorithm with
some tracking capabilities. Therefore, we must minimize the cost function

J(n) = i A" *e? (k) (9.7.6)
k=1

The minimum value of J(n) is attained (see Section 9.2) when the normal
equations (see (9.2.20)

R (mw=p,(n) (W=R]p,(n) (9.7.7)

are satisfied and where the M x M correlation matrix R,(n) is defined by (see
Problem 9.7.1)

R, (n)= Z A x(k)x" (k) = XTAX (9.7.8)
k=1



190 Adaptive filtering primer with MATLAB

and

p,(n) = Za'i-kx(k)d(k) =X"Ad; A=diag[A™ A"2.1]  (9.7.9)

k=1

Note that R;(n) differs from R in the following two respects: 1) the common
matrix x(k)x'(k) is weighted by the exponential factor A**, 2) the use of
prewindowing is assumed, according to which the input data prior to time
k=1 are zero and, thus, k = 1 becomes the lower limit of the summation; the
same is true for p,(n).

The minimum total square error is (see Problem 9.3.2)

] . =d"(mAd(n)-w'(n)p ()= Zﬂ”‘kdz(k) —-wi(mp,(n) (9.7.10)
pa

Next, we wait for a time such that n > M, where in practice R, is nonsingular,
and then compute R; and p,(n). Next we solve the normal Equations (9.7.7) to
obtain the filter coefficients w(n). This is repeated with the arrival of the
new pairs {x(n), d(n)}, that is, at times n + 1, n + 2, ....

If we isolate the term at k = n, we can write (9.7.7) in the form

1n—1

R, (n)=4 {z A”'lkx(k)xT(k)} +x(m)xT (1) 9.7.11)

By definition the expression in the bracket is R;(# — 1), and thus, (9.7.11)
becomes

R, (n)= AR, (n—1)+x(n)x" (n) (9.7.12)

The above equation shows that the “new” correlation matrix R,(n) is updated
by weighting the “old” correlation matrix R,(n — 1) with the factor and adding
the correlation term x(n)x™(n).

Similarly, using (9.7.9) we obtain

p,(n)=4ip,(n-1)+x(n)d(n) (9.7.13)

which gives an update of the cross-correlation vector.
Next, we try to find w by iteration and thus avoid solving the normal
Equations (9.7.7).
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The matrix inversion lemma

There are several relations, which are known as the inversion lemma. Let A
be an M x M invertible matrix and x and y be two M x 1 vectors such that
(A + xy") is invertible. Then we have (see Problem 9.7.3)

Aflx TAfl
Atxy) =AT-2 T 2 9.7.14
( y) 1+ yTA’lx ( )
Next, let A and B be positive-definite M x M matrices related by
A=B'+CD'C' (9.7.15)

where D is a positive-definite matrix of N x M and C is another M x N
matrix. The inversion lemma tell us that (see Problem 9.7.4)

A7'=B-BCMD+C"BO'C"B (9.7.16)

Furthermore, (9.7.14) can also be in the form

_ 4 aA'xxTA™?
(A+LZXXT) 1 =A 1_ m (9717)
) ATy Trg-14-1
(A +xxTy! = pia1 - A A X (AZAT) (9.7.18)

1+ 17'xTA %

The RLS algorithm

To evaluate the inverse of R;(n) we set A = AR,(n — 1) and comparing (9.7.12)
and (9.7.18) we find

AR (n—Dx(m)x" (MR} (n—1)
1+ 27X ()R (= 1)x(n)

R (m)=A"R}(n-1)- (9.7.19)

The same relation is found if we set A =R,(n), B! = AR, (n — 1), C = x(n), and
D =1in (9.7.16). Next we define the column vector g(n) as follows:

3 /lflel(n —Dx(n) B Rf(n -1)x(n)
1+ AXT ()R (n—1)x(n) A+ x' (MR (n—1)x(n)

g(n) (9.7.20)

This vector is known as the gain vector.
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