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Preface 

The Algorithms such as SVD, Eigen decomposition, Gaussian Mixture 
Model, PSO, Ant Colony etc. are scattered in different fields. There is the 
need to collect all such algorithms for quick reference. Also there is the need 
to view such algorithms in application point of view. This Book attempts to 
satisfy the above requirement. Also the algorithms are made clear using 
MATLAB programs. This book will be useful for the Beginners Research 
scholars and Students who are doing research work on practical applications 
of Digital Signal Processing using MATLAB. 
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Chapter 1 

ARTIFICIAL INTELLIGENCE 
Algorithm Collections 

 
 

1. PARTICLE SWARM ALGORITHM 

Consider the two swarms flying in the sky, trying to reach the particular 
destination. Swarms based on their individual experience choose the proper 
path to reach the particular destination. Apart from their individual 
decisions, decisions about the optimal path are taken based on their 
neighbor’s decision and hence they are able to reach their destination faster. 
The mathematical model for the above mentioned behavior of the swarm is 
being used in the optimization technique as the Particle Swarm Optimization 
Algorithm (PSO). 

For example, let us consider the two variables ‘x’ and ‘y’ as the two 
swarms. They are flying in the sky to reach the particular destination (i.e.) 
they continuously change their values to minimize the function (x-10)2+(y-
5)2. Final value for ‘x’ and ‘y’ are 10.1165 and 5 respectively after 100 
iterations. 

The Figure 1-1 gives the closed look of how the values of x and y are 
changing along with the function value to be minimized. The minimization 
function value reached almost zero within 35 iterations. Figure 1-2 shows 
the zoomed version to show how the position of x and y are varying until 
they reach the steady state. 

1
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Figure 1-1.  PSO Example zoomed version

 

 
 

 
 
 
 
 
 
 

 
 
 

 
Figure 1-2.  PSO Example 

1.1 How are the Values of ‘x and y’ are Updated

The vector representation for updating the values for x and y is given in 
Figure 1-3. Let the position of the swarms be at ‘a’ and ‘b’ respectively as 
shown in the figure. Both are trying to reach the position ‘e’. Let ‘a’ decides 
to move towards ‘c’ and ‘b’ decides to move towards ‘d’. 

The distance between the position ‘c’ and ‘e’ is greater than the distance 
between ‘d’ and ‘e’. so based on the neighbor’s decision position ‘d’ is 
treated as the common position decided by both ‘a’ and ‘b’. (ie) the position 
‘c’ is the individual decision taken by ‘a’, position ‘d’ is the individual 
decision taken by ‘b’ and the position ‘d’ is the common position decided by 
both ‘a’ and ‘b’. 

in Every Iteration? 
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‘a’ based on the above knowledge, finally decides to move towards the 
position ‘g’ as the linear combination of ‘oa’ , ‘ac’ and ‘ad’  . [As ‘d’ is the 
common position decided].The linear combination of ‘oa’ and scaled ‘ac’ 
(ie) ‘af’ is the vector ‘of’. The vector ‘of’ combined with vector ‘fg’ (ie) 
scaled version of ‘ad’ to get ‘og’ and hence final position decided by ‘a’ is 
‘g’. 

Similarly, ‘b’ decides the position ‘h’ as the final position. It is the linear 
combination of ‘ob’ and ‘bh’(ie) scaled version of ‘bd’. Note as ‘d’ is the 
common position decided by ‘a’ and ‘b’, the final position is decided by 
linear combinations of two vectors alone. 

Thus finally the swarms ‘a’ and ‘b’ moves towards the position ‘g’ and 
‘h’ respectively for reaching the final destination position ‘e’. The swarm ‘a’ 
and ‘b’ randomly select scaling value for linear combination. Note that ‘oa’ 
and ‘ob’ are scaled with 1 (ie) actual values are used without scaling. Thus 
the decision of the swarm ‘a’ to reach ‘e’ is decided by its own intuition 
along with its neighbor’s intuition.

Now let us consider three swarms (A,B,C) are trying to reach the 
particular destination point ‘D’. A decides A’, B decides B’ and C decides 
C’ as the next position. Let the distance between the B’ and D is less 
compared with A’D and C’ and hence, B’ is treated as the global decision 
point to reach the destination faster. 

Thus the final decision taken by A is to move to the point, which is the 
linear combination of OA, AA’ and AB’. Similarly the final decision taken 

 

 

 

 

 

 

 

 

Figure 1-3.  Vector Representation of PSO Algorithm 
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by B is to move the point which is the linear combination of OB, BB’. The 
final decision taken by C is to move the point which is the linear 
combination of OC, CC’ and CB’. 

1.2 PSO Algorithm to Maximize the Function F (X, Y, Z)  

1. Initialize the values for initial position a, b, c, d, e 
2. Initialize the next positions decided by the individual swarms as a’, b’, c’ 

d’ and e’ 
3. Global decision regarding the next position is computed as follows. 

Compute f (a’, b, c, d, e), f (a, b’, c, d, e), f (a, b, c’, d, e), f (a, b, c, d’, e) 
and f (a, b, c, d, e’). Find minimum among the computed values. If f (a’, 
b, c, d, e) is minimum among all, the global position decided regarding 
the next position is a’. Similarly If f (a, b’, c, d, e) is minimum among all, 
b’ is decided as the global position regarding the next position to be 
shifted and so on. Let the selected global position is represented ad 
‘global’ 

4. Next value for a is computed as the linear combination of  ‘a’ , (a’-a) and 
(global-a) (ie) 

 
• nexta = a+ C1 * RAND * (a’ –a) + C2 * RAND * (global –a ) 
• nextb = b+ C1 * RAND * (b’ –b) + C2 * RAND * (global –b) 
• nextc = c+ C1 * RAND * (c’ –c) + C2 * RAND * (global –c ) 
• nextd = d+ C1 * RAND * (d’ –d) + C2 * RAND * (global –d ) 
• nexte = e+ C1 * RAND * (e’ –e) + C2 * RAND * (global –e ) 
 
5. Change the current value for a, b, c, d and e as nexta, nextb, nextc, nextd 

and nexte 
6. If f (nexta, b, c, d, e) is less than f (a’, b, c, d, e) then update the value for 

a’ as nexta, otherwise a’ is not changed.  
 
If f (a, nextb, c, d, e) is less than f (a, b’, c, d, e) then update the value for  
b’ as nextb, otherwise b’ is not changed 

       If f (a, b, nextc, d, e) is less than f (a, b, c’, d, e) then update the value       
       for c’ as nextc, otherwise c’ is not changed 
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7. Repeat the steps 3 to 6 for much iteration to reach the final decision.  
                         
The values for ‘c1’,’c2’ are decided based on the weightage given to 
individual decision and global decision respectively. 

Let  Δa(t)  is the change in the value  for updating the value for ‘a’ in t
iteration, then nexta at (t+1)th iteration can be computed using the following 
formula. This is considered as the velocity for updating the position of the 
swarm in every iteration. 

‘w ( t )’ is the weight at tth iteration. The value for ‘w’ is adjusted at every 
iteration as given below, where ‘iter’ is total number of iteration used.  

w(t+1)=w(t)-t*w(t)/(iter). 

Decision taken in the previous iteration is also used for deciding the next 
position to be shifted by the swarm. But as iteration increases, the 
contribution of the previous decision is decreases and finally reaches zero in 
the final iteration.  
 
 
 

 

       If f (a, b, c, nextd, e) is less than f (a, b, c, d’, e) then update the value       
       for d’ as nextd, otherwise d’ is not changed 

       If f (a, b, c, d, nexte) is less than f (a, b, c, d, e’) then update the value       
       for e’ as nexte, otherwise e’ is not changed 

 th  

nexta (t+1) =  (t) +

a(t+1) = c1 * rand * (a’ –a ) + c2 * rand * ( global –a ) + 
w(t)* Δa(t) 
Δ

a(t+1)Δ
where

 a
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1.3 M – program for PSO Algorithm            

psogv .m 
 
 
function [value]=psogv(fun,range,ITER) 
%psogv.m 
%Particle swarm algorithm for maximizing the function fun with two variables x 
%and y. 
%Syntax 
%[value]=psogv(fun,range,ITER) 
%example 
%fun='f1' 
%create the function fun.m 
%function [res]=fun(x,y) 
%res=sin(x)+cos(x); 
%range=[-pi pi;-pi pi]; 
%ITER is the total number of Iteration  
error=[]; 
vel1=[]; 
vel2=[]; 
 
%Intialize the swarm position 
swarm=[]; 
x(1)=rand*range(1,2)+range(1,1); 
y(1)=rand*range(2,2)+range(2,1); 
x(2)=rand*range(1,2)+range(1,1); 
y(2)=rand*range(2,2)+range(2,1); 
 
%Intialize weight  
w=1; 
c1=2; 
c2=2; 
%Initialize the velocity 
v1=0;%velocity for x 
v2=0;%velocity for y 
for i=1:1:ITER 
[p,q]=min([f1(fun,x(2),y(1)) f1(fun,x(1),y(2))]);  
if (q==1) 
    capture=x(2); 
else 
    capture=y(2); 
end 
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Continued… 
 
 
v1=w*v1+c1*rand*(x(2)-x(1))+c2*rand*(capture-x(1)); 
v2=w*v2+c1*rand*(y(2)-y(1))+c2*rand*(capture-y(1)); 
vel1=[vel1 v1]; 
vel2=[vel2 v2]; 
 
%updating x(1) and y(1) 
x(1)=x(1)+v1; 
y(1)=y(1)+v2; 
 
%updating x(2) and y(2) 
if((f1(fun,x(2),y(1)))<=(f1(fun,x(1),y(1)))) 
x(2)=x(2); 
else 
x(2)=x(1); 
end; 
if((f1(fun,x(1),y(2)))<=(f1(fun,x(1),y(1)))) 
y(2)=y(2); 
else 
y(2)=y(1); 
end 
error=[error f1(fun,x(2),y(2))]; 
w=w-w*i/ITER; 
swarm=[swarm;x(2) y(2)]; 
subplot(3,1,3) 
plot(error,'-') 
title('Error(vs) Iteration'); 
subplot(3,1,1) 
plot(swarm(:,1),'-') 
title('x (vs) Iteration'); 
subplot(3,1,2) 
plot(swarm(:,2),'-')   
title('y (vs) Iteration'); 
pause(0.2) 
end 
value=[x(2);y(2)]; 
 
__________________________________________________________________________ 

f1.m 
 
function [res]=f1(fun,x,y); 
s=strcat(fun,'(x,y)'); 
res=eval(s); 
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1.4 Program Illustration 

Following the sample results obtained after the execution of the program 
psogv.m for maximizing the function ‘f1.m’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Artificial Intelligence 9
 

 

2. GENETIC ALGORITHM 

Chromosomes cross over each other. Mutate itself and new set of 
chromosomes is generated. Based on the requirement, some of the 
chromosomes survive. This is the cycle of one generation in Biological 
Genetics. The above process is repeated for many generations and finally 
best set of chromosomes based on the requirement will be available. This is 
the natural process of Biological Genetics. The Mathematical algorithm 
equivalent to the above behavior used as the optimization technique is called 
as Artificial Genetic Algorithm. 

Let us consider the problem for maximizing the function f(x) subject to 
the constraint x varies from ‘m’ to ‘n’. The function f(x) is called fitness 
function. Initial population of chromosomes is generated randomly. (i.e.) the 
values for the variable ‘x’ are selected randomly between the range ‘m’ to 
‘n’. Let the values be x1, x2…..xL, where ‘L’ is the population size. Note that 
they are called as chromosomes in Biological context. 

The Genetic operations like Cross over and Mutation are performed to 
obtain ‘2*L’ chromosomes as described below. 

Two chromosomes of the current population is randomly selected (ie) 
select two numbers from the current population. Cross over operation 
generates another two numbers y1 and y2 using the selected numbers. Let 
the randomly selected numbers be  x3 and x9.  1
r)*x9. Similarly y2 is computed as (1-r)*x3+r*x9, where ‘r’ is the random 
number generated between 0 to1. 

The same operation is repeated ‘L’ times to get ‘2*L’ newly generated 
chromosomes. Mutation operation is performed for the obtained 
chromosomes to generate ‘2*L’ mutated chromosomes. For instance the 
generated number ‘y1’ is mutated to give z1 mathematically computed as 
r1*y, where r1 is the random number generated. Thus the new set of 
chromosomes after crossover and Mutation are obtained as [z1 z2 z3 …z2L]. 

Among the ‘2L’ values generated after genetic operations, ‘L’ values are 
selected based on Roulette Wheel selection. 

 

A basic element of the Biological Genetics is the chromosomes. 

Y  is computed as r*x3+(1-
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2.1 Roulette Wheel Selection Rule 

 

 

 

 

Consider the wheel partitioned with different sectors as shown in the 
Figure 1-4. Let the pointer ‘p’ be in the fixed position and wheel is pivoted 
such that the wheel can be rotated freely. This is the Roulette wheel setup. 
Wheel is rotated and allowed to settle down. 

The sector pointed by the pointer after settling is selected. Thus the 
selection of the particular sector among the available sectors are done using 
Roulette wheel selection rule. 

In Genetic flow ‘L’ values from ‘2L’ values obtained after cross over and 
mutation are selected by simulating the roulette wheel mathematically. 
Roulette wheel is formed with ‘2L’ sectors with area of each sector is 
proportional to f(z1), f(z2) f(z3)… and f(z2L ) respectively, where ‘f(x)’ is the 
fitness function as described above. They are arranged in the row to form the 
fitness vector as [f(z1), f(z2) f(z3)…f(z2L )]. Fitness vector is normalized to 
form Normalized fitness vector as [fn(z1), fn(z2) fn(z3)…fn(z2L )], so that sum 
of the Normalized fitness values become 1 (i.e.) normalized fitness value of 
f(z1) is computed as fn(z1) = f(z1) / [f(z1) + f(z2)+ f(z3)+ f(z4)… f(z2L)]. 
Similarly normalized fitness value is computed for others. 

Cumulative distribution of the obtained normalized fitness vector is 
obtained as    

 [fn(z1) fn(z1)+ fn(z2) fn(z1)+ fn(z2)+ fn(z3) … 1].  

Generating the random number ‘r’ simulates rotation of the Roulette 
Wheel. 

Compare the generated random number with the elements of the 
cumulative distribution vector. If ‘r< fn(z 1)’ and ‘r > 0’, the number ‘z1’ is 
selected for the next generation. Similarly if ‘r< fn(z1)+ fn(z2)’ and ‘r > fn(z1)’ 
the number ‘z2’ is selected for the next generation and so on. 

Figure 1-4.  Roulette Wheel 
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The above operation defined as the simulation for rotating the roulette 
wheel and selecting the sector is repeated ‘L’ times for selecting ‘L’ values 
for the next generation. Note that the number corresponding to the big sector 
is having more chance for selection. 

The process of generating new set of numbers (ie) next generation 
population from existing set of numbers (ie) current generation population is 
repeated for many iteration. 

The Best value is chosen from the last generation corresponding to the 
maximum fitness value. 

2.2 Example  

Let us consider the optimization problem for maximizing the function f(x) = 
x+10*sin (5*x) +7*cos (4*x) +sin(x) ,subject to the constraint x varies from 
0 to 9. 

The numbers between 0 and 9 with the resolution of 0.001 are treated as 
the chromosomes used in the Genetic Algorithm. (ie) Float chromosomes are 
used in this example. Population size of 10 chromosomes is survived in 
every generation. Arithmetic cross over is used as the genetic operator. 
Mutation operation is not used in this example Roulette Wheel selection is 
made at every generation. Algorithm flow is terminated after attaining the 
maximum number of iterations. In this example Maximum number of 
iterations used is 100. 

The Best solution for the above problem is obtained in the thirteenth 
generation using Genetic algorithm as 4.165 and the corresponding 
fitness function f(x) is computed as 8.443. Note that Genetic algorithm 
ends up with local maxima as shown in the figure 1-5. This is the 
drawback of the Genetic Algorithm. When you run the algorithm again, it 
may end up with Global maxima. The chromosomes generated randomly 
during the first generation affects the best solution obtained using genetic 
algorithm. 

Best chromosome at every generation is collected. Best among the 
collection is treated as the final Best solution which maximizes the 
function f(x). 

2.2.1  M-program for genetic algorithm  

The Matlab program for obtaining the best solution for maximizing the 
function f(x) = x+10*sin (5*x) +7*cos (4*x) +sin(x) using Genetic 
Algorithm is given below. 
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 geneticgv.m 
 
clear all, close all 
pop=0:0.001:9; 
pos=round(rand(1,10)*9000)+1; 
pop1=pop(pos); 
BEST=[]; 
for iter=1:1:100 
    col1=[]; 
    col2=[]; 
    for do=1:1:10 
    r1=round(rand(1)*9)+1; 
    r2=round(rand(1)*9)+1 ;    
    r3=rand; 
    v1=r3*pop1(r1)+(1-r3)*pop1(r2); 
    v2=r3*pop1(r2)+(1-r3)*pop1(r1); 
    col1=[col1 v1 v2]; 
    end 
    sect=fcn(col1)+abs(min(fcn(col1))); 
    sect=sect/sum(sect); 
    [u,v]=min(sect); 
    c=cumsum(sect); 
    for i=1:1:10 
    r=rand; 
    c1=c-r;      
    [p,q]=find(c1>=0); 
    if(length(q)~=0) 
    col2=[col2 col1(q(1))]; 
    else 
    col2=[col2 col1(v)]; 
    end 
    end 
pop1=col2; 
    s=fcn(pop); 
    plot(pop,s) 
    [u,v]=max(fcn(pop1)); 
    BEST=[BEST;pop1(v(1)) fcn(pop1(v(1)))]; 
    hold on 
    plot(pop1,fcn(pop1),'r.'); 
    M(iter)=getframe; 
    pause(0.3) 
    hold off 
    [iter pop1(v(1)) fcn(pop1(v(1)))] 
end 
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pop1=col2; 
    s=fcn(pop); 
    plot(pop,s) 
    [u,v]=max(fcn(pop1)); 
    BEST=[BEST;pop1(v(1)) fcn(pop1(v(1)))]; 
    hold on 
    plot(pop1,fcn(pop1),'r.'); 
    M(iter)=getframe; 
    pause(0.3) 
    hold off 
    [iter pop1(v(1)) fcn(pop1(v(1)))] 
end 
for i=1:1:14 
    D(:,:,:,i)=M(i).cdata; 
end 
figure 
imshow(M(1).cdata) 
figure 
imshow(M(4).cdata) 
figure 
imshow(M(10).cdata) 
figure 
imshow(M(30).cdata) 
 
___________________________________________________________________________ 
 
fcn.m 
 
function [res]=fcn(x) 
res=x+10*sin(5*x)+7*cos(4*x)+sin(x); 
 

 
Note that the m-file fcn.m may be edited for changing the fitness function  

 

2.2.2 Program illustration 

The following is the sample results obtained during the execution of the 
program geneticgv.m  
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Figure 1-5.  Convergence of population 

The graph is plotted between the variable ‘x’ and fitness function ‘f (x)’. The 
values for the variable ‘x’ ranges from 0 to 9 with the resolution of 0.001. The 
dots on the graph are indicating the fitness value of the corresponding 
population in the particular generation. Note that in the first generation the 
populations are randomly distributed. In the thirteenth generation populations 
are converged to the particular value called as the best value, which is equal to 
4.165, and the corresponding fitness value f (x) is 8.443. 



  

2.3 Classification of Genetic Operators 

              In genetic algorithm, chromosomes are represented as follows 
 

 Float form 
    The raw data itself acts as the chromosomes and can be used without 

without any modification.
  

 Binary form 

  Binary representation of the number is used as the chromosomes. Num- 
ber of Bits used to represent the raw data depends upon the resolu- 
tion required which is measure of accuracy in representation. 

1. Artificial Intelligence 15
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Suppose the requirement is to find the order in which sales man is 

traveling among the ‘n’ places such that total distance traveled by that 
person is minimum. In this case, the data is the order in which the characters 
are arranged. Example data = [a b e f g c]. This type of representation is 
called Order based form of representation. 

The tree diagram given above summarizes the different type of Genetic 
operators. The Examples for every operators are listed below 

2.3.1 Simple crossover  

from 0.1 to 0.4. 
Let the two chromosomes of the current population be C1 and C2 

respectively. 
Before crossover 
 C1 = [0.31 0.45 0.11] and C2 = [0.25 0.32 0.3] (say).  

After crossover 

C1 = [0.3100    0.3200    0.3000] 
C2 = [0.2500    0.4500    0.1100]  
Simple cross over can also be applied for Binary representation as 

mentioned below 

Before Crossover 
 

C1 = [‘10101’, ‘01010’,’01011’] 
C2 = [‘11111’, ‘01011’, ‘10100’] 
After Crossover  
 
C1 = [‘10101’,’01010’,’01100’] 
C2 = [‘11111’,’01011’,’10011’] 

 
Note that the crossover point is selected by combining all the binary string 
into the single string. 

2.3.2 Heuristic crossover 

from 0.1 to 0.4. 

 Order based form 

Suppose the requirement is to maximize the function f (x, y, z) subject to the 
constraints x varies from 0.2 to 0.4, y varies from 0.3 to 0.6 and z varies 

Suppose the requirement is to maximize the function f (x, y, z) subject to the 
constraints x varies from 0.2 to 0.4, y varies from 0.3 to 0.6 and z varies 
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Before crossover 
 
C1 = [0.31 0.45 0.11] and C2 = [0.25 0.32 0.3] (say) and the 

corresponding fitness value (ie) f(x,y,z)=0.9 and 0.5 respectively 
Heuristic crossover identifies the best and worst chromosomes as 

mentioned below 
Best chromosome is one for which the fitness value is maximum. Worst 

chromosome is one for which the fitness value is minimum. In this example 
Best chromosome [Bt] is [0.31 0.45 0.11] and Worst Chromosome [Wt] is 
[0.25 0.32 0.3]. 
 
Bt = [0.31 0.45 0.11] 
Wt = [0.25 0.32 0.3] 
 Bt chromosome is returned without disturbance (ie) After cross over, 

C1=Bt= [0.31 0.45 0.11] 

Second Chromosome after crossover is obtained as follows. 
 
1. Generate the random number ‘r’  
 
C2=(Bt-Wt)*r+Bt 
 
2. Check whether C2 is within the required boundary values (i.e.) first value 
of the vector C2 is within the range from 0.2 to 0.4, second value is within 
the range from 0.3 to 0.6 and third value is within the range from 0.1 to 0.4. 
3. If the condition is satisfied, computed C2 is returned as the second 
chromosome after crossover. 
4. If the condition is not satisfied, repeat the steps 1 to 3. 
5. Finite attempts are made to obtain the modified chromosome after cross 
over as described above. (i.e) If the condition is not satisfied for ‘N’ attempts, 
C2=Wt is returned as the second chromosome after crossover. 

2.3.3 Arith crossover 

respectively. 

Before crossover 
 
C1 = [0.31 0.45 0.11] and C2 = [0.25 0.32 0.3] (say) 
 

Let the two chromosomes of the current population be C1 and C2 
respectively. 

Let the two chromosomes of the current population be C1 and C2 
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Generate the random number r=0.3(say) 
 
C1=r*C1+(1-r)*C2= [0.2680    0.3590    0.2430] 
C2=(1-r)*C1+r*C2= [0.2920    0.4110    0.1670 ] 

3. SIMULATED ANNEALING 

The energy of the particle in thermodynamic annealing process can be 
compared with the cost function to be minimized in optimization problem. 
The particles of the solid can be compared with the independent variables 
used in the minimization function. 

Initially the values assigned to the variables are randomly selected from 
the wide range of values. The cost function corresponding to the selected 
values are treated as the energy of the current state. Searching the values 
from the wide range of the values can be compared with the particles 
flowing in the solid body when it is kept in high temperature. 

The next energy state of the particles is obtained when the solid body is 
slowly cooled. This is equivalent to randomly selecting next set of the 
values. 

When the solid body is slowly cooled, the particles of the body try to 
reach the lower energy state. But as the temperature is high, random flow of 
the particles still continuous and hence there may be chance for the particles 
to reach higher energy state during this transition. Probability of reaching the 
higher energy state is inversely proportional to the temperature of the solid 
body at that instant. 

In the same fashion the values are randomly selected so that cost function 
of the currently selected random values is minimum compared with the 
previous cost function value. At the same time, the values corresponding to 
the higher cost function compared with the previous cost function are also 
selected with some probability. The probability depends upon the current 
simulated temperature ‘T’. If the temperature is large, probability of 

After Crossover 
 

The process of heating the solid body to the high temperature and allowed to 
cool slowly is called Annealing. Annealing makes the particles of the solid 
material to reach the minimum energy state. This is due to the fact that when 
the solid body is heated to the very high temperature, the particles of the 
solid body are allowed to move freely and when it is cooled slowly, the 
particles are able to arrange itself so that the energy of the particles are made 
minimum. The mathematical equivalent of the thermodynamic annealing as 
described above is called simulated annealing. 
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iteration. The values obtained after the finite number of iteration can be 
assumed as the values with lowest energy state (i.e) lowest cost function 
Thus the simulated Annealing algorithm is summarized as follow.

3.1 Simulated Annealing Algorithm 

‘xmin ‘to ‘xmax’. ‘y’ varies from ‘y’ varies ‘ymin’ to ‘ymax’ .’z’ varies from 
‘zmin’ to ‘zmax’ 

 

3.2 Example 

selecting the values corresponding to higher energy levels are more. This 
process of selecting the values randomly is repeated for the finite number of 

The optimization problem is to estimate the best values for ‘x’, ‘y’ and 
‘z’ such that the cost function f (x, y, z) is minimized. ‘x’ varies from 

Consider the optimization problem of estimating the best values for ‘x’ such 
that the cost function f(x)= x+10*sin(5*x)+7*cos(4*x)+sin(x) is minimized 
and x varies from 0 to 5. 

Step 1: Intialize the value the temperature ‘T’. 
Step 2: Randomly select the current values for the variables ‘x’, ’y’ and ‘z’ 

from the range as defined above. Let it be ‘x c’, ‘yc’ and ‘zc’ 
respectively. 

Step 3:  Compute the corresponding cost function value f (xc, yc, zc). 
Step 4:  Randomly select the next set of values for the variables ‘x’, ’y’ and 

‘z’ from the range as defined above. Let it be ‘xn’, ‘yn’ and ‘zn’ 
respectively. 

Step 5:  Compute the corresponding cost function value f (xn, yn, zn). 
Step 6:  If f (xn, yn, zn)<= f (xc, yc, zc), then the current values for the random 

variables xc = xn, yc,= yn  and zc=z .n 
Step 7:  If f(xn, yn, zn)>f(xc, yc, zc), then the current values for the random 

variables xc = xn, yc,= yn  and zc=zn are assigned only when 
 

exp [(f (xc, yc, zc)- f(xn, yn, zn))/T] > rand 
 Note that when the temperature ‘T’ is less, the probability of selecting the 

new values as the current values is less. 

Step 8:  Reduce the temperature T=r*T. r’ is scaling factor varies from  
0 to 1. 

Step 9: Repeat STEP 3 to STEP8 for n times until ‘T’ reduces to the 
particular percentage of initial value assigned to ‘T’ 
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Figure 1-6  Illustration of simulated Annealing

Initially the random value is selected within the range (0 to 5). Let the 
selected value be 2.5 and the corresponding cost function is -3.4382. The 
variable ‘curval’ is assigned the value 2.5 and the variable ‘curcost’ is 
assigned the value -3.4382. Intialize the simulated temperature as T=1000. 

Let the next randomly selected value be 4.9 and the corresponding cost 
function is 3.2729. The variable ‘newval’ is assigned the value 4.9 and the 
‘newcost’ is assigned the value 3.2729. 

Note that ‘newcost’ value is higher than the ‘curcost’ value. As 
‘newcost’> ‘curcost’, ‘newval’ is inferior compared with ‘curval’ in 
minimizing the cost function. As the temperature (T) is large and 
exp((curcost-newcost)/T)>rand, ‘newcost’ value is assigned to ‘curcost’ and 
‘newval’ is assigned to ‘curval’. Now the temperature ‘T’ is reduced by the 
factor 0.2171=1/log(100), where 100 is the number of iterations used. This is 
the thumb rule used in this example. This process is said to one complete 
iteration. Next randomly selected value is selected and the above described 
process is repeated for 100 iterations. 

The order in which the values are selected in the first 6 iterations is not 
moving towards the local minima point which can be noted from the figure 
1-6. This is due to the fact that the initial simulated temperature of the 
annealing process is high.  

The figure 1-6 shows all possible cost function values corresponding to 
the ‘x’ values ranges from 0 to 5. The goal is to find the best value of x 
corresponding to global minima of the graph given above. Note that the 
global minima is approximately at x=0.8. 
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Figure1-7  Illustration of Simulated Annealing 1 

As iteration increases the simulated temperature is decreased and the 
value selected for the variable ‘x is moving towards the global minima point 
as shown in the figure 1-7.  

Thus values assigned to the variable ‘x’ for the first few iterations 
(about 10 iterations in this example) is not really in decreasing order of 
f(x). This helps to search the complete range and hence helps in 
overcoming the problem of local minima. As iteration goes on increasing 
the values selected for the variable ‘x’ is moving towards the global 
minima which can be noted from the figure 1-8. 
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Figure 1-8.  Illustration of Simulated Annealing 2 
 

Figure1-9.  Illustration of Simulated Annealing 3 
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3.3 M-program for Simulated Annealing 

___________________________________________________________ 
 
sagv.m 
 
x=0:1/300:5 
plot(x, minfcn(x)) 
hold    
curval=rand*5; 
curcost=minfcn(curval); 
T=1000; 
for i=1:1:100 
    newval=rand*5; 
   newcost=minfcn(newval); 
   if((newcost-curcost)<=0) 
       curval=newval; 
       curcost=minfcn(curval); 
    else 
       if(exp((curcost-newcost)/T)>rand) 
           curval=newval;                  
           curcost=minfcn(curval); 
       end     
   end 
T=T/log(100) 
plot(curval,minfcn(curval),'r*'); 
CURRENTVAL{i}=curval; 
M{i}=minfcn(curval); 
pause(0.2) 
end 
 
___________________________________________________________ 

 
        minfcn.m 
       
        function [res]=minfcn(x) 
        res=x+10*sin(5*x)+7*cos(4*x)+sin(x) 

 
 
 
 

Matlab program for minimizing the function f(x)= x+10*sin(5*x)+
7*cos(4*x)+sin(x),where x varies from 0 to 5 . 
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4. BACK PROPAGATION NEURAL NETWORK 

The model consists of layered architecture as shown in the figure 1-10. 

 

 

 

 

 

 

Figure 1-10  BPN Structure 

The mathematical model of the Biological Neural Network is defined as 
Artificial Neural Network. One of the Neural Network models which are 
used almost in all the fields is Back propagation Neural Network. 

‘I’ is the Input layer ‘O’ is the output layer and ‘H’ is the hidden layer. 
Every neuron of the input layer is connected to every neuron in the hidden 
layer. Similarly every neuron in the Hidden layer is connected with every 
neuron in the output layer. The connection is called weights. 

Number of neurons in the input layer is equal to the size of the input 
vector of the Neural Network. Similarly number of neurons in the output 
layer is equal to the size of the output vector of the Neural Network. Size of 
the hidden layer is optional and altered depends upon the requirement 

For every input vector, the corresponding output vector is computed as 
follows  

 
[hidden vector] = func ([Input vector]*[Weight Matrix 1] + [Bias1 ]) 
[output vector] = func ([hidden vector]*[Weight Matrix 2] + [Bias2 ]) 
 
If the term [Input vector]*[Weight Matrix 1] value becomes zero, the 

output vector also becomes zero. This can be avoided by using Bias vectors. 
Similarly to make the value of the term ‘[Input vector]*[Weight Matrix 1] + 
[Bias1]’ always bounded, the function ‘func’ is used as mentioned in the 
equation given above. 
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                          ___________ 
 
                            [1+exp(-x)] 
 
tansig(x) =                  2 
                        _____________ 
 
                           [1+exp(-2x)]     
 
The requirement is to find the common Weight Matrix and common Bias 

vector such that for the particular input vector, computed output vector must 
match with the expected target vector. The process of obtaining the Weight 
matrix and Bias vector is called training. 

Consider the architecture shown in the figure 1-9. Number of neurons in 
the input layer is 3 and number of neurons in the output layer is 2. Number of 
neurons in the hidden layer is 1.The weight connecting the ith neuron in the 
first layer and jth neuron in the hidden layer is represented as Wij The weight 
connecting ith neuron in the hidden layer and jth neuron in the output layer is 
represented as Wij’ . 

Let the input vector is represented as [i1 i2 i3]. Hidden layer output is 
represented as [h1] and output vector is represented as [o1 o2]. The bias 
vector in the hidden layer is given as [bh] and the bias vector in the output 
layer is given as [b1 b2]. Desired ouput vector is represented is [t1 t2] 

 
The vectors are related as follows. 
h1=func1 (w11*i1+w21*i2+w31*i3 + bh ) 
o1= func2 (w11’*h1 +b1) 
o2= func2 (w12’*h1 +b2) 
t1~=o1 
t2~=o2 

4.1 Single Neuron Architecture 

Consider the single neuron input layer and single neuron output layer. 
Output= func (input * W +B) 
Desired ouput vector be represented as ‘Target’ 
Requirement is to find the optimal value of W so that Cost function = 

(Target-Output)2 is reduced. The graph plotted between the weight vector 

 

 
commonly Usually used ‘func’ are 
 
logsig (x) =               1 

 

‘W’ and the cost function is given in the figure 1-11.  
Optimum value of the weight vector is the vector corresponding to the 

point 1 which is global minima point, where the cost value is lowest. 



26 Chapter 1
 

 

 

Figure 1-11  ANN Algorithm Illustration  

The slope computed at point 2 in the figure is negative. Suppose if the 
weight vector corresponding to the point 2 is treated as current weight vector 
assumed, the next best value (i.e) global point is at right side of it. Similarly 
if the slope is positive, next best value is left side of the current value. This 
can be seen from the graph. The slope at point 3 is a positive. The best value 
(i.e) global minimum is left of the current value.  

Thus to obtain the best value of the weight vector. Initialize the weight 
vector. Change the weight vector iteratively. Best weight vector is obtained 
after finite number of iteration. The change in the weight vector in every 
iteration is represented as ‘ΔW’.  

 
(i.e.) W (n+1) =W (n) + ΔW (n+1) 
 
W(n+1) is the weight vector at (n+1)th iteration W(n) is the weight vector 

at nth iteration and ΔW(n+1) is the change in the weight vector at (n+1)th 
iteration. 

The sign and magnitude of the ‘ΔW’ depends upon the direction and 
magnitude of the slope of the cost function computed at the point 
corresponding to the current weight vector.  
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Thus the weight vector is adjusted as following 
 
New weight vector = Old weight vector - μ*slope at the current cost value. 
 
Cost function(C) = (Target-Output)2 

 
⇒ C= (Target- func (input * W +B))2 
 
Slope is computed by differentiating the variable C with respect to W and 

is approximated as follows. 
 
2((Target- func (input * W +B))* (-input) 
 
=2*error*input 
 
Thus W(n+1) =W(n) - 2*μ*error*(-input) 
 
⇒  W(n+1) = W(n) + γ error * input 
 
This is back propagation algorithm because error is back propagated for 

adjusting the weights. The Back propagation algorithm for the sample 
architecture mentioned in figure 1-9 is given below. 

4.2 Algorithm  

 

Step 1:  Initialize the Weight matrices with random numbers. 
Step 2:  Initialize the Bias vectors with random numbers. 
Step 3: With the initialized values compute the output vector corresponding 

to the input vector [i1 i2 i3] as given below. Let the desired target 
vector be [t1 t2]  

 
h1=func1 (w11*i1+w21*i2+w31*i3 +bh) 
o1= func2 (w11’*h1 +b1) 
o2= func2 (w12’*h1 +b2) 
 

Step 4: Adjustment to weights  
 

a)  Between Hidden and Output layer. 
 
w11’(n+1) = w11’(n) + γO (t1-o1) *h1 
w12’(n+1) = w12’(n) + γO (t2-o2) *h1 
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Note if momentum is included during training updating equations are 

modified as follows. 
 

w11’(n+1) = w11’(n) + γO (t1-o1) *h1  + ρo * Δw11’(n) 
 
 

 
                                           Δw11’(n+1) 
 
 w12’(n+1) = w12’(n) + Δw12’(n+1) +   ρo * Δw12(n) 
 w11 (n+1) = w11 (n) +  Δw1(n+1) +   ρH * Δw11(n) 
w21 (n+1) = w21 (n) +  Δw21(n+1) +   ρH * Δw21(n) 

 

b) Between Input layer and Hidden layer 
 
w11 (n+1) = w11 (n) + γH * e* i1 

w21 (n+1) = w21 (n) + γH * e * i2 
w31 (n+1) = w31 (n) + γH * e * i3 

 
‘e’ is the estimated error at the hidden layer using the actual error 
computed in the output layer 
 
(i.e.)  e = h1 * (1-h1)* [(t1-o1) + (t2-o2)] 
 

Step 5: Adjustment of Bias 
 
                bh (n+1)= bh (n) +e* γH 

 
                b1 (n+1) = b1 (n) + (t1-o1)* γO 
                b2 (n+1) = b2 (n) + (t2-o2)* γO 
 

Step 6: Repeat step 3 to step 5 for all the pairs of input vector and the 
corresponding desired target vector one by one. 

Step 7: Let d1, d2 d3 …d n be the set of desired vectors and y1, y2 y3 yn be the 
corresponding output vectors computed using the latest updated 
weights and bias vectors. The sum squared error is calculated as  

 
SSE= (d1- y1)2 + (d2- y2)2 +(d3- y3)2 +(d4- y4)2 + … (dn- yn)2 
 

Step 8: Repeat the steps 3 to 7 until the particular SSE is reached. 
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w31 (n+1) = w31 (n) +  Δw31(n+1) +   ρH * Δw31(n) 
  
bh (n+1)= bh (n) +e* γH          + ρH * Δbh (n) 
 
                             Δ bh (n+1) 
 
b1 (n+1) = b1 (n) + Δ b1 (n+1) + ρO * Δb1 (n) 
 
b2 (n+1) = b2 (n) + Δ b2 (n+1) + ρO * Δb2 (n) 
 

 
ρH  and ρO are the momentums used in the hidden and output layer 

respectively. 

4.3 Example 

Consider the problem for training the Back propagation Neural Network 
with Hetero associative data as mentioned below 
 

Input Desired Output 
 
                                      0 0 0                          0 0 
                                      0 0 1                          0 1 
                                      0 1 0                          0 1 
                                      0 1 1                          0 1 
                                      1 0 0                          0 1 
                                      1 0 1                          0 1 
                                      1 1 0                          0 1 
                                      1 1 1                           1 1 
 
ANN Specifications 
 
Number of layers = 3 
Number of neurons in the input layer = 3 
Number of neurons in the hidden layer =1 
Number of neurons in the output layer = 2  
Learning rate =0.01 
Transfer function used in the hidden layer = ‘logsig’ 
Transfer function used in the output layer = ‘linear’ (i.e) output is taken as 
obtained without applying non-linear function like ‘logsig’,’ tansig’. 
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(See Figure 1-10) 
 
The Figure 1-12 describes how the Sum squared error is decreasing as 
iteration increases. Note that sum squared error is gradually decreasing from 
2.7656 as iteration increases and reaches 1.0545 after 1200 Iteration. 

Trained Weight and Bias Matrix 
 
W1 =    1.0374    
              0.9713 
              0.8236 
 
B1= [-0.5526] 
W2= [0.8499    1.3129] 
B2= [-0.4466   -0.0163] 
OUTPUT obtained after training the neural network  
   -0.1361    0.4632 
    0.0356    0.7285 
    0.0660    0.7756 
    0.2129    1.0024 
    0.0794    0.7962 

 

 

 

   Figure 1-12.  Illustration of  SSE decreases with Iteration  
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    0.2225    1.0172 
    0.2426    1.0483 
    0.3244    1.1747 
 
After rounding OUTPUT exactly matches with the Desired Output as shown 
below 
     0     0  
     0     1 
     0     1 
     0     1 
     0     1 
     0     1 
     0     1 
     0     1 

4.4 M-program for Training the Artificial Neural 
Network for the Problem Proposed in the Previous 

___________________________________________________________ 
anngv.m 
 SSE=[ ];  INDEX=[ ]; 
 INPUT=[0 0 0;0 0 1;0 1 0;0 1 1;1 0 0;1 0 1;1 1 0;1 1 1]; 
 DOUTPUT=[0 0;0 1;0 1 ;0 1;0 1;0 1;0 1 ;1 1]; 
 W1=rand(3,1);W2=rand(1,2); 
  B1=rand(1,1);  B2=rand(1,2); 
   for i=1:1:1200 
            for j=1:1:8 
     H=logsiggv(INPUT*W1+repmat(B1,[8 1])); 
     OUTPUT=H*W2 +repmat(B2,[8 1]); 
     ERR_HO=DOUTPUT - OUTPUT; 
     ERR_IH=H.*(1-H).*(sum(ERR_HO')'); 
     lr_ho=0.01; 
     lr_ih=0.01; 
     W2(1,1)=W2(1,1)+ERR_HO(j,1)*H(j,1)*lr_ho; 
     W2(1,2)=W2(1,2)+ERR_HO(j,2)*H(j,1)*lr_ho; 
     W1(1,1)=W1(1,1)+ERR_IH(j,1)*INPUT(j,1)*lr_ih; 
     W1(2,1)=W1(2,1)+ERR_IH(j,1)*INPUT(j,2)*lr_ih; 
     W1(3,1)=W1(3,1)+ERR_IH(j,1)*INPUT(j,3)*lr_ih; 
     B1=B1+ERR_IH(j,1)*lr_ih; 
     B2(1,1)=B2(1,1)+ERR_HO(j,1)*lr_ho; 

Section 
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     B2(1,2)=B2(1,2)+ERR_HO(j,2)*lr_ho; 
                 end   
      INDEX=[INDEX i]; 
     SSE=[SSE sum(sum(ERR_HO.^2))];      
      plot(INDEX,SSE,'r'); 
      xlabel('ITERATION') 
      ylabel('SSE') 
      pause(0.2) 
      end 
 H=logsig(INPUT*W1+repmat(B1,[8 1])); 
OUTPUT=H*W2 +repmat(B2,[8 1]); 
______________________________________________________________________ 
logsiggv.m 
 
function [res]=logsiggv(x) 
res=1/(1+exp(-x)); 

5. FUZZY LOGIC SYSTEMS 

Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday}. This is the 
set in which elements belongs to the set with 100% membership.  

Let us consider the set of rainy days ={Sunday (0.6), Monday (0.4), 
Tuesday (0.4), Wednesday (0.6), Thursday (0.2), Friday (0.6), Saturday 
(0.3)}. This is the set in which elements are associated with fuzzy 
membership. Sunday (0.6) indicates that the Sunday belongs to the set of 
rainy days with membership value 0.6. This is different from probability 
assignment because in case of probability assignment, Sunday belongs to 
non-rainy days with membership value 0.4. (ie) (1-0.6). But in case of fuzzy 
sets Sunday belongs to non-rainy days with membership value of not 
necessarily 0.4. It can be any value between 0 to 1. 

5.1 Union and Intersection of Two Fuzzy Sets 

Let us consider the example of computing union and intersection of fuzzy 
sets as described below. 
 
A={a (0.3), b (0.8), c (0.1), d (0.3)} 
  
B={a (0.1), b (0.6), c (0.9), e (0-.1)} 

Fuzzy is the set theory in which the elements of the set are associated with 
fuzzy membership. Let us consider the set of days = {Sunday, 
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The elements of the set AUB are the unique elements collected from both 
the sets A and B. The membership value associated with the elements of the 
set AUB is the maximum of the corresponding membership values collected 
from the set A and B. 
 

Thus AUB = {a (0.3), b (0.8), c (0.9), d (0.3), e (0.1)} 
 

Similarly the elements of the set A∩B are the common elements 
collected from the sets A and B. The membership value associated with the 
elements of the set AUB is the minimum of the corresponding membership 
values collected from the set A and B. 
 

Thus   A∩B= {a (0.1), b (0.6), c (0.1)} 

5.2 Fuzzy Logic Systems 

Let us consider the problem of obtaining the optimum value of the 
variable ‘Z’ obtained as the output of the fuzzy logic system decided by the 
values of the variable ‘X’ and ‘Y’ taken as the input to the fuzzy logic 
system using fuzzy logic algorithm. 

The values of the variable ‘X’ vary from Xmin to Xmax. Actual value of 
min to 

Xmax is grouped into 3 sets XSMALL, XMEDIUM, XLARGE. The 
relationship between the crisp value and fuzzy membership value is given in 
the figure 1-13. 

 

 
Figure  1-13.  Fuzzy system 

the variable is called crisp value. The group of the values ranges from X
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 Figure 1-14. Relaionship between crisp value and Fuzzy membership value for the variable X 

The crisp values ranges from 0 to x2 belong to the set Xsmall. The crisp 
values ranges from x1 to x3 belong to the set Xmedium. The crisp value 
ranges from x2 to x4 belongs to the set Xlarge. 

The crisp value from x1 to x2 of the Xsmall set and Xmedium set with 
different membership value as mentioned in the Figure 1-14. Corresponding 
membership value decreases gradually from 1 to 0 in the Xsmall set. But the 
corresponding membership value increases gradually from 0 to 1 in the 
Xmedium set. 

Similarly the relationship between the crisp value and Fuzzy member 
ship value for the variable ‘Y’ and the variable ‘Z’ are mentioned in the 
Figure 1-15 and Figure 1-16 respectively. 
 

 

Figure 1-15.  Relaionship between crisp value and Fuzzy membership value for the variable Y 
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 Figure 1-16. Relaionship between crisp value and Fuzzy membership value for the variable Z 

The identical relationship between the crisp value and fuzzy value of all 
the variables X, Y and Z are chosen for the sake of simplicity (see figure). 
Steps involved in obtaining the crisp value of the output variable for the 
particular crisp values for the variable X and Y are summarized below. 

5.2.1 Algorithm 

Step 1: Crisp to fuzzy conversion for the input variable ‘X’ and ‘Y’             

Let us consider the crisp value of the input variable X be Xinput the crisp 
value of the input variable Y be Yinput. Let Xinput belongs to the set 
Xsmall with fuzzy membership 0.7 (say) belongs to set Xmedium 0.3 (say) 
as shown in the Figure 1-17 and Figure 1-18 given below. 

 Figure 1-17.  Xinput as the crisp input   for the variable X 
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Similarly the Yinput belongs to the set Ymedium with fuzzy membership 0.7 
and belongs to the set Ylarge with 0.2 as shown in the figure given below 
Step 2: Fuzzy input to fuzzy output mapping using fuzzy base rule 
 
Fuzzy base rule is the set of rules relating the fuzzy input and fuzzy output 
of the fuzzy based system. Let us consider the Fuzzy Base Rule as shown in 
the table given below.  

Table 1-1. Fuzzy Base Rule 
 
                            Ysmall Ymedium Ylarge 

 small Zmedum Zmedium Zsmall 
Xmedium Zmedium Zlarge Zlarge 

Xlarge Zlarge Zlarge Zmedium 
 
Thus Fuzzy input set Xsmall = {Xinput (0.7) } 
                                  Xmedium = {Xinput (0.3) } 
                                  Xlarge = {Xlarge( 0 ) 
 
                                  Ysmall = {Yinput (0) } 
                                  Ymedium = {Yinput (0.7) } 
                                  Ylarge = {Xlarge(0.2) 
Fuzzy output set is obtained in two stages. 
 
1. Intersection of  Fuzzy sets 
• Xsmall ∩  Ysmall  =  Zmedium ={Zoutput(0)} 
• Xsmall ∩  Ymedium  =  Zmedium ={Zoutput(0.7)} 
• Xsmall ∩  Ylarge  =  Zsmall ={Zoutput(0.2)} 
• Xmedium ∩  Ysmall  =  Zmedium ={Zoutput(0)} 
• Xmedium ∩  Ymedium  =  Zlarge={Zoutput(0.3)} 

 

Figure 1-18.  Yinput as the crisp input for the variable Y 
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• Xmedium ∩  Ylarge  =  Zlarge ={Zoutput(0.2)} 
• Xlarge ∩  Ysmall  =  Zlarge ={Zoutput(0)} 
• Xlarge ∩  Ymedium  =  Zmedium ={Zoutput(0)} 
• Xlarge ∩  Ylarge  =  Zsmall ={Zoutput(0)} 
 
2. Union of Fuzzy sets 
 
• Zsmall = U(Zoutput(0.2), Zoutput(0))={ Zoutput(0.2) } 
• Zmedium = U(Zoutput(0), Zoutput(0.7), Zoutput(0),Zoutput(0)) 
    = {Zoutput (0.7)} 
• Zlarge = U(Zoutput(0.3), Zoutput(0.2), Zoutput(0))={Zoutput(0.3)} 
 
Thus Fuzzy output based on the framed fuzzy base rule is given as  
 
Zsmall      = {Zoutput(0.2)  
Zmedium  = {Zoutput(0.7} 
Zlarge       = {Zoutput(0.3)} 
 
Step 3: Fuzzy to Crisp conversion for the output variable Z using  
             Centroid method 

Figure 1-19.  Defuzzification 
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Truncate the portions of the Zsmall, Zmedium and Zlarge sections of the 
output relationship above the corresponding thresholds obtained from output 
fuzzy membership as shown in the figure. Remaining portions are combined 
with overlapping of the individual sections. Combined sections can also be 
obtained by adding the individual sections instantaneously as illustrated in 
the example given in the section 5.4 Obtain the crisp value Zout which 
divides the combined sections into two halves as shown in the figure. Thus 
crisp value Zout is obtained for the corresponding input crisp value Xinput 
and Yinput using Fuzzy logic system. 

5.3 Why Fuzzy Logic System? 

decide the output data. For example the automatic system is designed to 
maintain the temperature of the water heater by adjusting the heat knob 
based on the water level at that particular instant and temperature at that 
particular instant. In this example water level measured using the sensor at 
that particular instant and temperature measured using the sensor at that 
particular instant are the input to the control system. Control system uses the 
set of rules framed as given below for deciding the position of the heat knob 
which is the output of the control system 
 
• If T1<=Temperature <=T2 and W1<=Water level<=W2, Adjust the heat 

knob position to K1. (Say). 
•  If T0<=Temperature <=T1 and W0<=Water level<=W1, Adjust the heat 

knob position to K2. (Say) etc. 
 
 Suppose if the temperature is just less than T1, this rule is not selected. 
The small variation ‘ΔT’ makes the automatic control system not to select 
this particular rule. To overcome this problem instead of using crisp value 
for framing the rule, fuzzy values can be used to frame the rules (i.e) without 
using the actual values obtained through input sensors This is called fuzzy 
base rule as given below 
 
• If the temperature of the water is small and water level is high, place the 

heat knob in the high position. (say) 
• If the temperature of the water is medium and water level is less, place 

the heat knob in the less position. (say) etc. 
 

The Automatic system uses set of rules framed with the input data to 
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In this case the problem only fuzzy sets are used for decision making which 
makes the system to take decision like the human decision. 

To design the fuzzy based system, the knowledge about the system 
behavior is required to find the relationship between crisp value and the 
fuzzy value (see above) and to frame the fuzzy base rule. This is the 
drawback of the fuzzy based system when compared to ANN based system 
which doesn’t require any knowledge about the system behavior.

5.4 Example 

Let us consider the problem of obtaining the optimum value of the 
variable ‘Z’ obtained as the output of the fuzzy logic system decided by the 
values of the variable ‘X’ and ‘Y’ taken as the input to the fuzzy logic 
system using fuzzy logic algorithm. The crisp –fuzzy relationship is as 
mentioned in the section 5.2. The fuzzy base rule is as given in the table 1-1.  

The values for the variables used in the section 5.2 are assumed as 
mentioned in the table 1-2. 

Table 1-2. Assumed values for the variables used in the section 5.2 
 

X1 X2 X3 X4 Y1 Y2 Y3 Y4 Z1 Z2 Z3 Z4 
3 5 7 10 20 45 65 100 35 70 90 100 

 

 

 

 

 

 

 

 

 

Figure 1-20.  Relationship between crisp value and fuzzy membership for the Input variable X 

For the arbitrary input crisp values xinput=6 and yinput=50, zout is obtained 
as  78.8 using fuzzy logic system described in the section 5.2 

in the example
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Figure1-21.  Relationship between crisp value and fuzzy membership for the Input variable Y 

 

 Figure 1-22.  Relationship between crisp value and fuzzy membership for the Input variable Z 

Figure 1-23.  Defuzzification in the example

in the example

 in the example



1. Artificial Intelligence 41
 

 

5.5 M-program for the Realization of Fuzzy Logic

___________________________________________________________ 
fuzzygv . m 
 
posx=[0 3 5 7 10]; 
maxx=max(posx); 
posx=posx/max(posx); 
posy=[0 20 45 65 100]; 
maxy=max(posy); 
posy=posy/max(posy); 
posz=[0 35 70 90 100]; 
maxz=max(posz); 
posz=posz/max(posz); 
i=posx(1):1/999:posx(2); 
j=(posx(2)):(1/999):posx(3); 
k=(posx(3)):(1/999):posx(4); 
l=(posx(4)):(1/999):posx(5); 
xsmall=[1/posx(2)*i (-1/(posx(3)-posx(2))*(j-posx(3))) zeros(1,length([k l]))]; 
xmedium =[zeros(1,length([i])) (1/(posx(3)-posx(2))*(j-posx(2))) (-1/(posx(4)-

posx(3))*(k-posx(4))) zeros(1,length([l]))]; 
xlarge=[zeros(1,length([i j])) (1/(posx(4)-posx(3))*(k-posx(3))) (-1/(posx(5)-posx(4))*(l-

posx(5))) ]; 
 
figure 
plot([i j k l]*maxx,xsmall,':'); 
hold 
plot([i j k l]*maxx,xmedium,'-'); 
plot([i j k l]*maxx,xlarge,'--'); 
xlabel('crisp value') 
ylabel('fuzzy value') 
title('XINPUT') 
 
i=posy(1):1/999:posy(2); 
j=(posy(2)):(1/999):posy(3); 
k=(posy(3)):(1/999):posy(4); 
l=(posy(4)):(1/999):posy(5); 
ysmall=[1/posy(2)*i (-1/(posy(3)-posy(2))*(j-posy(3))) zeros(1,length([k l]))]; 

System for the Specifications given in Section 5.4 
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ymedium =[zeros(1,length([i])) (1/(posy(3)-posy(2))*(j-posy(2))) (-1/(posy(4)-
posy(3))*(k-posy(4))) zeros(1,length([l]))]; 

ylarge=[zeros(1,length([i j])) (1/(posy(4)-posy(3))*(k-posy(3))) (-1/(posy(5)-posy(4))*(l-
posy(5))) ]; 

 
figure 
plot([i j k l]*maxy,ysmall,':'); 
hold 
plot([i j k l]*maxy,ymedium,'-'); 
plot([i j k l]*maxy,ylarge,'--'); 
xlabel('crisp value') 
ylabel('fuzzy value') 
title('YINPUT') 
 
i=posz(1):1/999:posz(2); 
j=(posz(2)):(1/999):posz(3); 
k=(posz(3)):(1/999):posz(4); 
l=(posz(4)):(1/999):posz(5); 
zsmall=[1/posz(2)*i (-1/(posz(3)-posz(2))*(j-posz(3))) zeros(1,length([k l]))]; 
zmedium =[zeros(1,length([i])) (1/(posz(3)-posz(2))*(j-posz(2))) (-1/(posz(4)-

posz(3))*(k-posz(4))) zeros(1,length([l]))]; 
zlarge=[zeros(1,length([i j])) (1/(posz(4)-posz(3))*(k-posz(3))) (-1/(posz(5)-posz(4))*(l-

posz(5))) ]; 
 
figure 
plot([i j k l]*maxz,zsmall,':'); 
hold 
plot([i j k l]*maxz,zmedium,'-'); 
plot([i j k l]*maxz,zlarge,'--'); 
xlabel('crisp value') 
ylabel('fuzzy value') 
title('ZOUTPUT') 
 
xinput=[6]; 
xinput=round(((xinput/maxx)*1000)) 
yinput=[50]; 
yinput=round(((yinput/maxy)*1000)) 
%fuzzy values 
 
xfuzzy=[xsmall(xinput) xmedium(xinput) xlarge(xinput)]; 
yfuzzy=[ysmall(yinput) ymedium(yinput) ylarge(yinput)]; 
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%Output fuzzy values obtained using framed fuzzy base rule 
zfuzzys=max([(min([xfuzzy(1) yfuzzy(3)]))]); 
zfuzzym=max([(min([xfuzzy(1) yfuzzy(2)])) (min([xfuzzy(2) yfuzzy(1)])) 

(min([xfuzzy(3) yfuzzy(3)]))]); 
zfuzzyl=max([(min([xfuzzy(2) yfuzzy(2)])) (min([xfuzzy(2) yfuzzy(3)])) (min([xfuzzy(3) 

yfuzzy(1)])) (min([xfuzzy(3) yfuzzy(2)]))]); 
 
%Defuzzification 
zs=reshape((quantiz(zsmall,zfuzzys)*2-2)*(-

1/2),1,size(zsmall,2)).*zsmall+quantiz(zsmall,zfuzzys)'.*zfuzzys; 
zm=reshape((quantiz(zmedium,zfuzzym)*2-2)*(-

1/2),1,size(zmedium,2)).*zmedium+quantiz(zmedium,zfuzzym)'.*zfuzzym; 
zl=reshape((quantiz(zlarge,zfuzzyl)*2-2)*(-

1/2),1,size(zlarge,2)).*zlarge+quantiz(zlarge,zfuzzyl)'.*zfuzzyl; 
 
figure 
plot([i j k l]*maxz,zs,':') 
hold 
plot([i j k l]*maxz,zm,'-') 
plot(zl,'--') 
 
final=sum([zs;zm;zl]); 
 
figure 
plot([i j k l]*maxz ,final) 
title('DEFUZZIFICATION') 
 
S=cumsum(final) 
[p,q]=find(S>=(sum(final)/2)) 
zout=(q(1)/1000)*maxz; 
hold 
plot(ones(1,100)*zout,[0:1/99:1],'*') 
________________________________________________________________________ 
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6. ANT COLONY OPTIMIZATION 

The figure 1-24 is the top view of the ants moving from source to 
destination in search of food. There is the obstacle in the middle. There are 
two paths available so that the ants can choose to move from source to 
destination. As expected after some time duration ants prefer to choose 
path1, which is the shortest distance between source and destination. This is 
due to the fact that ants excrete the pheromones when they are moving. As 
more ants have crossed the shortest path within the stipulated time when 
compared to the other path, more pheromones are excreted in the shortest 
path. This helps the following ants to choose the shortest path to cross the 
obstacles. 

The mathematical equivalent of this behavior is used in optimization 
technique as the Ant colony optimization. 
 

6.1 Algorithm

Consider the problem of finding the optimum order in which the numbers 
from 1 to 8 are arranged so that the cost of that order is maximized. Cost of 
the particular order is computed using the two matrices A and B as described 
below. 
 

Ant colony optimization techniques exploit the natural behavior of ants in 
finding the shortest path to reach destination from the source.  

 

 

 

 

 

 

 
Figure 1-24.  Illustration of Ant Colony 
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Figure 1-25.  Matrix A 

 
 

 

 

 

 

 

Figure 1-26.  Matrix B 

The  cost of the order [3 2 1 5 7 2 4 6  8]  is computed as the sum of the 
product of values obtained from the  positions (1,3) or (3,1), (2,2), (3,1), (4,5) 
or (5,4) , (5,7) or (7,5) ,(6,2), (7,4) and (8,6) of the matrices A and B . 

Cost ([3 2 1 5 7 2 4 6 8] )  = a6*b6 + a3*b3 + a6*a6 + a14*b14 + a26*b26 + 
a17*b17 +a25*b25 + a36*b36 
(see Matrix A and Matrix B ) 
 

The problem of finding the optimal order is achieved using Ant colony 
optimization technique as described below.  
 
Step 1: Generate the 5 sets of orders randomly which are treated as the 

initial values selected by the 5 Ants respectively. 

The following are the orders selected by the 5 ants along with the 
corresponding cost measured as described in the previous section. 
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Table 1-3. Initialization of 5 values to the 5 Ants (say) 

 
ANT ORDERS COST 

ANT 1 7  1  3  6  2  5  4  8 C1 
ANT 2 
ANT 3 
ANT 4  
ANT 5 

        2  4  8  6  3  7  5  1 
      7 2 3  5 1  6 4 8     
        1  5  4   8  7  3  2  6 
        4  8  5   3   6  2  7 1 

C2 
C3 
C4 
C5 

 

Pheromone matrix (n+1) = Pheromone matrix (n) + Updating Pheromone matrix 
 
 The value of the updating pheromone matrix must be high if the minimum 
cost is assigned. Hence the matrix is filled up with the inverse values of the 
corresponding cost as displayed below. 

Table 1-4. Updating Pheromone Matrix  
 
 1 2 3 4 5 6 7 8 

1 1/C4 1/C1 0 0 1/C3 0 0 1/C2+1/C5 

2 1/C2 1/C3 0 0 1/C1 1/C5 1/C4 0 

3 0 0 1/C1+1/C3 1/C5 1/C2 1/C4 0 0 

4 1/C5 1/C2 1/C4 0 0 0 1/C1+1/C3 0 

5 0 1/C4 1/C5 1/C3 0 1/C1 1/C2 0 

6 0 0 0 1/C1+1/C2 1/C5 1/C3 0 1/C4 

7 
8 

1/C1+1/C3 

0 

0 
1/C5 

0 
1/C2 

0 
1/C4 

1/C4 
0 

1/C2 
0 

1/C5 
0 

0 
1/C1+1/C3 

Step 2: Pheromone is the value assigned for selecting the ith number for the 
jth position of the sequence selected by all the ants.(i.e) it is the 
matrix in which the value at the index (i ,j) is the value assigned for 
selecting the ith number for the jth position of the order selected by 
all the ants. Initially the values of the matrix are completely filled up 
with ones. The values of the Pheromone matrix are updated in every 
iteration as 
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Let the order decided by the ant1 be represented as [u1 u2 u3 u4 u5 u6  
u7 u8 ] 
 
• The value for the u7 in the order as mentioned above is selected first as 

the first number of the randomly generated position sequence is 7. 
• To select the value for the u7, 7th column of the pheromone matrix is 

used .(Note that 7th column belongs to 7th position of the order generated) 
• 7th column of the pheromone matrix is rewritten below as Column7 

vector arranged in row wise for better clarity. 
 

Column7 = [0    1/C4    0      1/C1+1/C3    1/C2   0   1/C5  0] 
 
• Normalized value of the 7th column of the pheromone matrix is given 

below as Normalized vector7 arranged in row wise. This is also called as 
the probability vector used for selecting the value for the u7 in the order. 

      
      S = [0 + 1/C4 + (1/C1+1/C3) + 1/C2 + 1/C5] 

     Normalized vector7 = (Column 7) / S = [p1 p2 p3 p4 p5 p6 p7 p8] (say) 
 
Select the number corresponding to the position of the lowest value of the 
normalized vector. Suppose if p5 is the lowest among the values in the 
vector, the number 5 is assigned to the variable u7. 
 
• The next value in the position sequence is 8.Hence the value for the 

variable u8 is selected. But the value cannot be 5 as it was already 
assigned to the variable u7. 8th column of the pheromone matrix except 
the 5th row is used for selecting the value to be assigned to the variable u8 
as described below. 

• 8th column of the pheromone matrix is rewritten below as Column 8 
vector with 5th row filled up X indicating 5th row is not consider for 
selection. The vector is rearranged in row wise as displayed below 

 
Column 8= [ (1/C2 +1/C5)  0  0  0  X   1/C4   0   (1/C1+1/C3) ] 

 
• Normalized value of the 8th column of the pheromone matrix is  
 

S= [(1/C2 +1/C5) + 0 + 0 + 0 + 1/C4 + 0 + (1/C1+1/C3)] 
 

Normalized vector8 = (Column 8) / S = [q1 q2 q3 q4 q6 q7 q8] 
  

 

Step 3: Next set of orders selected by the ants is as described below. 
 
• Generate the position sequence randomly  
       7     8     2     3     6     4     1     5 (say) 
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Select the number corresponding to the position of the lowest value of the 
Normalized vector8. Suppose if q3 is the lowest among the values in the 
vector, the number 3 is assigned to the variable u8. 

This process is repeated to obtain the orders selected by the Ant 2, Ant3, 
An4 and Ant 5.This is called one iteration. 
 
Step 4: 
 
• The updating pheromone matrix for the second iteration is computed as 

described in the step 2 using the set of orders selected by the five ants in 
the first iteration. This is called as Updating pheromone matrix (2).    

 
• Pheromone matrix used in the 2nd iteration is computed as  
 
 Pheromone matrix (2) = Pheromone matrix (1) +Updating Pheromone matrix (2) 
 

 
Note that best among the best set of orders selected by the five ants 

in the last iteration is selected as the global best order. 

6.2 Example 

particular order is computed as described in the section 6.1. The matrices A and 
B are given below. 

 
A=   9     0     0     0     0     0     0     0     0 
        0     9     0     0     0     0     0     0     0 
        0     0     9     0     0     0     0     0     0 
        0     0     0     9     0     0     0     0     0 
        0     0     0     0     9     0     0     0     0 
        0     0     0     0     0     9     0     0     0 
        0     0     0     0     0     0     9     0     0 
        0     0     0     0     0     0     0     9     0 
        0     0     0     0     0     0     0     0     9 

Consider the problem of finding the optimum order in which the numbers from 
1 to 8 are arranged so that the cost of the order is maximized. Cost of the 

Step 5:  Next set of orders selected by the five ants are computed as 
described in the step 3. 

 
Step 6:  The step 3 to step 5 is repeated for the particular number of 

iterations. Thus best set of orders selected by the five ants are 
obtained using Ant colony optimization. 
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B=   9     0     0     0     0     0     0     0     0 
        0     9     0     0     0     0     0     0     0 
        0     0     9     0     0     0     0     0     0 
        0     0     0     9     0     0     0     0     0 
        0     0     0     0     9     0     0     0     0 
        0     0     0     0     0     9     0     0     0 
        0     0     0     0     0     0     9     0     0 
        0     0     0     0     0     0     0     9     0 
        0     0     0     0     0     0     0     0     9 

 
 
Initial orders selected by the four ants are displayed below. 
 
ANT1:  5     4     2     1     3     6     7     8 
ANT2:  3     7     8     5     2     1     4     6 
ANT3:  5     1     7     2     4     3     6     8 
ANT4:  6     1     7     2     8     5     3     4 
 

Number of ants used to find the optimum order is 4. The orders selected 
by the four ants after 50 Iterations are displayed below. 

 
ANT1:     1     2     3     4     5     6     7     8 
ANT2:     1     2     3     4     5     6     7     8 
ANT3:     3     2     7     4     1     6     5     8 
ANT4:     4     2     3     7     1     6     5     8 

 
Note that ANT1 and ANT2 found the best order as expected using Ant 

colony technique. 
Initially the cost values are having more changes. After 40th iteration, 

cost value gradually increases and reaches maximum which is the optimum 
cost corresponding the optimum order selected using Ant colony 
technique. 
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Figure 1-27.  Iteration (vs.) Best Cost selected by the 4 ants 

6.3 M-program for Finding the 
r the Specifications given in the 

________________________________________________________ 
antcolonygv.m 
 
%Consider the problem of finding the optimum order in which the numbers from 1 to 8  

  are arranged so that 
%the cost of that order is decreased .Cost of the particular order is computed using the  

  two matrices A and B as described below. 
%The  cost of the order [3 2 1 5 7 2 4 6  8]  is computed as the sum of the product of   

  values  
%obtained from the  positions (1,3) or (3,1),(2,2),(3,1) ,(4,5) or (5,4) , (5,7) or (7,5) ,(6,2), 

  (7,4) and (8,6) of the matrices A and B . 
%Cost ([3 2 1 5 7 2 4 6 8] )  = a6*b6 + a3*b3 + a6*a6 + a14*b14 + a26*b26 + a17*b17  

  +a25*b25 + a36*b36 see Matrix A and Matrix B  
 
%Form the matrices given below  
matA=diag([ones(1,9)*9]); 

Optimal Order using Ant 

Section 6.2 
Colony Technique fo
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matB=diag([ones(1,9)*9]); 
     
%Initializing the orders selected by 4 Ants 
 
[p1,ANT1]=sort(rand(1,8)); 
[p2,ANT2]=sort(rand(1,8)); 
[p3,ANT3]=sort(rand(1,8)); 
[p4,ANT4]=sort(rand(1,8)); 
 
%Intializing the Pheromone matrix 
%columns are the positions 
%rows are the value of the position 
ANTS=[ANT1;ANT2;ANT3;ANT4]; 
P=ones(8,8); 
col=[]; 
figure 
hold 
for i=1:1:50   
    %Updating pheromones 
c1=computecost(ANTS(1,:),matA,matB); 
c2=computecost(ANTS(2,:),matA,matB); 
c3=computecost(ANTS(3,:),matA,matB); 
c4=computecost(ANTS(4,:),matA,matB); 
col=[col max([c1 c2 c3 c4])]; 
plot(col) 
pause(0.01) 
c=[c1 c2 c3 c4]; 
for i=1:1:8 
for j=1:1:8 
[x,y] = find(ANTS(:,i)==j); 
for k=1:1:length(x) 
P(j,i)=P(j,i)+(1/c(x(k))); 
end 
end 
end 
 
ANTS=[]; 
    for i=1:1:4 
        P_cur=P; 
        tempant=zeros(1,8); 
        notation=[1 2 3 4 5 6 7 8]; 
        [p,position]=sort(rand(1,8)); 
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        for i=1:1:8 
        temp=P_cur(:,position(i)); 
        temp=temp/sum(temp); 
        [value,index]=min(temp); 
        tempant(position(i))=notation(index); 
        P_cur(index,:)=[]; 
        notation(index)=[]; 
        end 
        ANTS=[ANTS;tempant];    
    end     
c1=computecost(ANTS(1,:),matA,matB); 
c2=computecost(ANTS(2,:),matA,matB); 
c3=computecost(ANTS(3,:),matA,matB); 
c4=computecost(ANTS(4,:),matA,matB); 
end 

_____________________________________________________________ 
computecost.m  
 function [s]=computecost(A,P,Q) 
  s=0; 

 for i=1:1:8 
 s=s+P(max(i,A(i)),min(i,A(i))).*Q(max(i,A(i)),min(i,A(i))); 
end 
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PROBABILITY AND RANDOM PROCESS 
Algorithm Collections 

 
 

1. INDEPENDENT COMPONENT ANALYSIS 

combination of  ‘n’ independent signals  x1(t) ,  x2(t) … xn(t) , where n>=m is 
given below.  
 
y1(t) = a11 x1(t) + a12 x2(t) + a13 x3(t) + …a1nxn(t) 
y2(t) = a21 x1(t) + a22 x2(t) + a23 x3(t) + …a2nxn (t) 
y3(t) = a31 x1(t) + a32 x2(t) + a33 x3(t) + …a3nxn(t) 
y4(t) = a41 x1(t) + a42 x2(t) + a43 x3(t) + …a4nxn(t) 
… 
ym(t) = am1 x1(t) + am2 x2(t) + am3 x3(t) + …amnxn(t) 
 

Independent signals are obtained from the mixed signals using 
Independent Component Analysis (ICA) algorithm as described below 

1.1 ICA for Two Mixed Signals 

The samples of the signals x1(t) and x2(t) are represented in the  vector 
form as x1=[x11 x12 x13 …x1n] and x2=[x21 x 22 x23 … x2n] respectively. The 
signals y1(t)=a11*x1(t)+a12*x2(t) and y2(t)=a21*x1(t)+a22*x2(t) are represented 
in the vector form as y1=[y11 y12 y13 …y1n] and y2=[y21  y22 y23 … y2n] 

Consider ‘m’ mixed signals y1(t), y2(t)…ym(t) obtained from the linear 
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respectively. Thus the ICA problem can be represented in the form of matrix 
as described below. 

 
                                

                                
         y11  y21                                                          x11  x21                      
         y12  y22                                                          x12  x22 
         y13  y23                                                          x13  x23                    
         y14  y24                                                          x14  x24                                  a11       a21   
         y15  y25                                                          x15  x25                                    
         y16  y26           =                                           x16  x26                                  a12      a22 

                      . 

                      . 

                      . 
 
         y1n  y2n                                                          x1n  x2n        

 

 

 
       [Y]T              =                                [X]T                             [A]T 
 

Given the matrix [Y], obtaining the matrices [X] and [A] such that the 
columns of the matrix [X]T are independent to each other is the ICA problem. 

 

Consider three independent signals and the corresponding mixed signals 
along with the kurtosis values are displayed below. 
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Kurtosis is the statistical parameter used to measure the Gaussian nature 
of the signal. Kurtosis is inversely proportional to the Gaussianity of the 
signal. Note that the kurtosis values are maximum for independent signals 
compared to the mixed signals. (i.e.) Independent signals are more non-
Gaussian compared with mixed signals. Mathematically kurtosis is 
computed using the formula as displayed below, where E[X] is the 
expectation of the vector X 
 
 
 

ICA problem is to obtain the matrices [X] and [A] such that column 
vectors of the matrix [X]T are independent to each other. (i.e.) Kurtosis 
values computed for the column vectors are maximum. 

 [Y] T = [X] T [A]T 

( i.e.) [Y] = [A] [X] 

[X] = [A]-1  [Y] 

[X]=[B][Y] 

X1 and X2 are the two column vectors of the matrix [X]T  

(i.e.)  [X]T = [X1 X2] 

Kurtosis measured for the Column vector [X1] is given as 

E [X14]-3{E [X12]} 2 

Similarly kurtosis measured for the column vector [X2] is given as 

E [X24]-3{E [X22]} 2 
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Estimating the best values for the matrix [B] such that kurtosis measured 
for the column vectors of the matrix [X]T = [[B][Y]]T as defined above is 
maximum 

We require another constraint about the matrix [B] to obtain the values of 
the matrix [B] which is described below 

The covariance matrix (COV(Y)) computed for the group of vectors 
collected row-by-row of the matrix YT is  computed using the formula as 
displayed below 

Let M  =     (y11 + y12 +y13+…y1n) / n 

                    (y21 + y22 +y23+…y2n) / n 

COV(Y) = 

 y11          y11  y21          +   y12       y12  y22         + …  y1n            y1n  y2 n     /n   -  MMT
     

      y21                                       y22                                                    y2n 

 

(i.e) COV(Y) = E[YYT] - MMT
     

 
The matrix computed is of size 2x2. The value at the position (1,1) 

conveys the information about how the first elements of the collected vectors 
are correlated with itself (variance). The value at the position (1,2) conveys 
the information about how the first elements are correlated with second 
elements of the collected vectors. 

For example the covariance matrix computed for 2D vectors collected 
from the particular independent signals and the corresponding mixed signals 
are given below. 

COVindependent =   
0.2641 x 10-006      -0.1086 x 10-006

 

                     
-0.1086 x 10-006      0.5908 x 10-006

 

COVmixed  =   0.1086    0.0613 

                0.0613    0.0512  

Chapter 2
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To compare the covariance matrix, correlation coefficient is used. It is the 
normalized covariance matrix whose (m, n) element is computed as
COV( m, n) / (sqrt(COV(m,m)*COV(n,n)) 

The correlation co-efficient for the above covariance matrix (COV) is given 
below 

CORRindependent =     1            -0.2750 
                               -0.2750    1 

     CORRmixed =   1     0.822 

                       0.822      1 
 

Note that cross correlation value is less for independent signals compared to 
the mixed signals. This fact is used as the source for second constraint. (i.e.) 
the correlation coefficients matrix of the independent signals is almost 
identity matrix. Also if the variances of the signals are unity the covariance 
matrix and the correlation co-effients are identical. 

The mean and variance of the mixed signals are made 0 and 1 respectively 
so that the mean and variance of the row vectors of the matrix [Y] are 0 and 
1 respectively. [Refer Mean and variance Normalization Section 4 of 
Chapter 2]  

The matrix [Y] can be transformed into another matrix [Z] such that the 
covariance matrix computed for the 2D vectors collected from the matrix [Z] 
as described above is almost unit vector (diagonal) using KLT (Refer 
Hotelling transformation). (i.e.) E[[Z][Z]T]=[I] 

Let us define the transformation matrix [T], which transforms the matrix 
[Y] into [Z] as described below. 

[Z]=[T][Y] implies 

[Y]=[T]-1 [Z] implies 

[Y]=[U] [Z] 

Also, [X]=[B][Y] 
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[X]=[B][U][Z] 

[B][U][Z]=[X] 

[B][U][B][B]-1[Z]=[X] 

[A][Z]={[B][U][B]}-1 [X]    

Note that A=[B]-1 

Column vectors of the transformation matrix [U] are orthonormal to 
each other. (ie) [U] T  =  [U]-1 

If E [XXT] = [I] (Identity Matrix) 
((i.e.) Covariance matrix of the Independent signals with mean zero and 

variance one is Identity matrix ) 

Computing Covariance Matrix of the RHS of the equation 

[A][Z]={[B][U][B]}-1 [X] 

E [({[B][U][B]}-1 [X])  ({[B][U][B]}-1 [X])T] 

= E [({[B][U][B]}-1) [X] [X]T ({[B][U][B]}-1)T ] 

= ({[B][U][B]}-1) E [XXT] ({[B][U][B]}-1)T 

= ({[B][U][B]}-1) ({[B][U][B]}-1)T 

= ([B]-1[U]-1[B]-1) ( [B]-1[U]-1[B]-1)T 

=[B]-1[U]-1[B]-1 [B-1]T[U-1] T[B-1]T 

Chapter 2
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If the columns of the B matrix is orthonormal to each other  

( i.e.)  [B]-1 = [B]T 

[B]-1[U]-1[B]-1 [B-1]T[U-1] T[B-1]T 

=[B]-1[U]-1[U-1] T[B-1]T 

= [B]-1[B-1]T (Because [U]T=[U]-1) 

=[B]-1[B] 

= [I] (Identity Matrix ) 

Computing Covariance Matrix of the LHS of the equation 

[A][Z]={[B][U][B]}-1 [X] 

E (([A][Z]) ([A][Z])T) 

=AE[ZZT]AT 

= [A][I][A]T 

= [B]-1[B-1]T 

= [I] 

(Because [B]-1=[B]T is assumed ) 

Thus Covariance matrix of the LHS and RHS are Identity matrix if 

• E[XXT] is the Identity matrix  (Assumed) 
• E[ZZT] is the Identity matrix (Property) 

• [B]-1= [B]T   (Assumed) 
• [U]-1=[U]T (Property) 
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In other words, If the Columns of the matrix [B] are orthonormal to each 
other (i.e) [B]-1 = [B]T ,  then E[XXT]=[I] (i.e) Covariance Matrix of the 
independent signals is the Identity Matrix.(Required). 

[A][Z]={[B][U][B]}-1 [X]    

When [A] is estimated such that covariance matrix of the LHS and RHS are 
Identity Matrix, [A][Z]=[X] (ie) {[B][U][B]}-1 becomes the Identity matrix. 
 

Thus ICA Problem is the optimization problem as mentioned below. 
 
Given the matrix [Y], estimating the best values for the matrix [B] such 

that kurtosis measured for the row vectors of the matrix [X] = 
[A][Z]=[BT][Z] is maximum. 

Subject to the constraint BTB=[I] (i.e) column vectors of the matrix B is 
orthonormal to each other. 

 
Let [B] =   b11   b12 
                  b21   b22 
 
 
Z =    z11  z12    z13 … z1n 
 
          z21  z22  z23 … z2n 

 

[B]T[Z] =   b11   b21               z11  z12    z13 … z1n  
                  b12   b22               z21  z22  z23 … z2n 
         

  =  b11z11+b21z21   b11z12+b21z22  … b11z1n+b21z2n 

      b12z11+b22z21   b12z12+b22z22  … b12z1n+b22z2n 

Kurtosis of the first row  = E[(b11z1i+b21z2i )4] – 3 {E[(b11z1i+b21z2i )2]}2 

Kurtosis of the second row= E[(b12z1i+b22z2i )4] – 3 {E[(b12z1i+b22z2i )2]}2 

Chapter 2
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Constraint [B]T[B]=[I ] 

(i.e ) b11 b11+b21 b21 =1 
         b12 b12+b22 b22 =1 

Thus Iterative approach to estimate the best values for B matrix using 
Lagrange’s method is described below. 

Partial differentiating the function   

E[(b11z1i+b21z2i )4] – 3 {E[(b11z1i+b21z2i )2]}2     +λ (b11 b11+b21 b21 –1) 

with respect to the unknown constants b11, b 21 and equate to zero. 

With respect to b11 

E[4(b11z1i+b21z2i )3  z1i ]-3 *2{E[(b11z1i+b21z2i )2]}E[2(b11z1i+b21z2i ) z1i] 

+λ*2*b11 =0 

E[(b11z1i+b21z2i )2] is the variance of the independent signal. This can be 
assumed to be  1. 

Also E (z1i z1i) is the variance of the first mixed signal and hence it is 1. E 
(z1i z2i) is the covariance between the two mixed signals and the value is 
zero.  

Therefore the above equation becomes 

4*E[(b11z1i+b21z2i )3  z1i ]-6*2 *b11+λ*2*b11 =0 

Let the Lagrange multiplier λ be (-2). [For More Details Refer 
Estimation Techniques] 

Thus Iteration equation becomes 

b11(t+1) = E[(b11 (t)z1i+b21(t)  z2i )3  z1i ]-3*b11 (t) 

b11(t) is the value for b11 in tth iteration 

b11(t+1) is the value for b11 in (t+1)th iteration 

Similarly iteration equation for other elements of the matrix B are 
computed and are displayed below 
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b11(t+1) = E[(b11 (t)z1i+b21(t)  z2i )3  z1i ]-3*b11 (t) 

b21(t+1) = E[(b11 (t)z1i+b21(t)  z2i )3  z2i ]-3*b21 (t) 

b12(t+1) = E[(b12 (t)z1i+b22(t)  z2i )3  z1i ]-3*b12 (t) 

b22(t+1) = E[(b12 (t)z1i+b22(t)  z2i )3  z2i ]-3*b22 (t) 

Recall that the columns of the matrix B are made orthonormal to each 
other. This can be explicitly performed in every iteration, after updating the 
values using the equation given above. 

1.1.1 ICA  algorithm 

 

 

 

Chapter 2

Step 1:  Given mixed signals y1(t) and y2(t)  are converted into z1(t) and 
z2(t) using Hotellilng transformation such that the covariance matrix 
computed using the converted signals z1(t) and z2(t) is the identity 
matrix.[Use Hotelling Transformation] 

Step 2: Initialize the values for the matrix B such that BTB=[I] 

Step 3: Update the elements of the matrix B using the Iteration formula  
displayed above. 

Step 4: Columns of the matrix B is made orthonormal to each other as 
mentioned below. 

  B = B * real(inv(B' *B)^(1/2)); 

Step 5: Repeat step 3 and step 4 for ‘N’ Iteration. 

Step 6: Independent signals are obtained by multiplying BT with the Z 
matrix 
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Example: Independent signals x1 (t) and x2 (t) are mixed to get the 
signals y1 (t)=0.3*x1 (t)+0.7*x2 (t), y2 (t)=0.7*x1 (t)+0.3*x2 (t) as shown 
in the figure given below 
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Using ICA independent signals are obtained in two stages with 
decorrelated signals z1(t) and z2(t) in the first stage and the Independent 
estimated signals x1(t) and x2(t) in the second stage as displayed below. 
Number of Iterations (N) used is 10000. 

 

 

Chapter 2
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1.2 M-file for Independent Component Analysis 
___________________________________________________________ 
icagv.m 
 
%ICA WITH THREE COMPONENTS 
 
close all 
clear all 
i=0:1/10:1000; 
a=sin(0.1*pi*i); 
a=a(1:1:10000); 
a=meanvarnorm(a,0,1) 
b=randn(1,10000); 
b=meanvarnorm(b,0,1); 
i=0:1/10:1000; 
c=exp(0.001*pi*i); 
c=meanvarnorm(c,0,1); 
c=c(1:1:10000); 
s1=0.9*a+0.6*b+0.6*c; 
s1=meanvarnorm(s1,0,1); 
s2=0.6*a+0.9*b+0.6*c; 
s2=meanvarnorm(s2,0,1); 
s3=0.6*a+0.6*b+0.9*c; 
s3=meanvarnorm(s3,0,1); 
figure 
subplot(3,1,1) 
plot(a); 
subplot(3,1,2) 
plot(b); 
subplot(3,1,3) 
plot(c); 
figure 
subplot(3,1,1) 
plot(s1); 
subplot(3,1,2) 
plot(s2); 
subplot(3,1,3) 
plot(s3); 
%ICA START 
data1=[s1;s2;s3]; 
MEANMAT=repmat(mean(data1')',1,length(data1)); 
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c1=cov(data1'); 
[T1,E1]=eig(c1); 
data2=T1'*(data1-MEANMAT); 
%data2=T1*(data1); 
c2=cov(data2'); 
[T2,E2]=eig(c2); 
data=E2^(-1/2)*data2; 
T=E2^(-1/2)*T1; 
c=cov(data'); 
figure 
subplot(3,1,1) 
plot(data(1,:)); 
subplot(3,1,2) 
plot(data(2,:)); 
subplot(3,1,3) 
plot(data(3,:)); 
%ICA STARTS 
w11=rand(1); 
w12=rand(1); 
w13=rand(1); 
w21=rand(1); 
w22=rand(1); 
w23=rand(1); 
w31=rand(1); 
w32=rand(1); 
w33=rand(1); 
W1=[w11 w21 w23]'; 
W2=[w12 w22 w32]'; 
W3=[w13 w23 w33]'; 
W=[W1 W2 W3]'; 
W = W * real(inv(W' * W)^(1/2)); 
w11=W(1,1); 
w12=W(1,2); 
w13=W(1,3); 
w21=W(2,1); 
w22=W(2,2); 
w23=W(2,3); 
w31=W(3,1); 
w32=W(3,2); 
w33=W(3,3); 
for i=1:1:40000 
    w11=sum(((w11*data(1,:)+w21*data(2,:)+w31*data(3,:)).^3).*data(1,:))/length(data); 

Chapter 2
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    w21=sum(((w11*data(1,:)+w21*data(2,:)+w31*data(3,:)).^3).*data(2,:))/length(data); 
    w31=sum(((w11*data(1,:)+w21*data(2,:)+w31*data(3,:)).^3).*data(3,:))/length(data); 
    w12=sum(((w12*data(1,:)+w22*data(2,:)+w32*data(3,:)).^3).*data(1,:))/length(data); 
    w22=sum(((w12*data(1,:)+w22*data(2,:)+w32*data(3,:)).^3).*data(2,:))/length(data); 
    w32=sum(((w12*data(1,:)+w22*data(2,:)+w32*data(3,:)).^3).*data(3,:))/length(data); 
     w13=sum(((w13*data(1,:)+w23*data(2,:)+w33*data(3,:)).^3).*data(1,:))/length(data); 
    w23=sum(((w13*data(1,:)+w23*data(2,:)+w33*data(3,:)).^3).*data(2,:))/length(data); 
    w33=sum(((w13*data(1,:)+w23*data(2,:)+w33*data(3,:)).^3).*data(3,:))/length(data); 
    w11=w11-3*w11; 
    w12=w12-3*w12; 
    w13=w13-3*w13; 
    w21=w21-3*w21; 
    w22=w22-3*w22; 
    w23=w23-3*w23; 
    w31=w31-3*w31; 
    w32=w32-3*w32; 
    w33=w33-3*w33; 
W1=[w11 w21 w23]'; 
W2=[w12 w22 w32]'; 
W3=[w13 w23 w33]'; 
W=[W1 W2 W3]'; 
W = W * real(inv(W' *W)^(1/2)); 
w11=W(1,1); 
w12=W(1,2); 
w13=W(1,3); 
w21=W(2,1); 
w22=W(2,2); 
w23=W(2,3); 
w31=W(3,1); 
w32=W(3,2); 
w33=W(3,3); 
W*W'; 
end 
W=[w11 w12 w13;w21 w22 w23;w31 w32 w33]; 
y=W'*data; 
figure 
subplot(3,1,1) 
plot(y(1,:)); 
subplot(3,1,2) 
plot(y(2,:)); 
subplot(3,1,3) 
plot(y(3,:)); 
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2. GAUSSIAN MIXTURE MODEL 

Let us consider the data collected from the certain group of people about 
their age and height are represented in two-dimensional vectors. Let the first 
element of the vector be the age and the second element is the height of the 
corresponding person, as described below. P1 = [a1 h1], P2 = [a2 h2] ... Pm = 
[am hm]. Now let us define the problem for classifying the collected group of 
vectors into ‘n’ category called as ‘n’ clusters, such that the centroids of the 
clusters are away from each other and the data belonging to the same cluster 
are nearer to each other as shown in the figure. The dots in the Figure 2-1 
belong to the centroid of the individual clusters. The problem defined is 
called clustering the data, otherwise called as grouping the data. 

Let us model the probability of the particular vector ‘x’ from the 
collected data as the Linear combination of Multi Variate Gaussian density 
function. 

(ie) p(x) = p(c1) * Gaussian density function of ‘x’  with mean vector 
‘m1’ and covariance matrix ‘cov1’ + p(c2) * Gaussian density function of ‘x’ 
with mean vector ‘m2’ and covariance matrix ‘cov2’ + … p(cn) * Gaussian 
density function of ‘x’ with mean vector ‘mn’ and covariance matrix ‘covn’ 
where p(cn) is the probability of the clustern n. 

 
The model described above is called as Gaussian Mixture Model. Given 

such that the probability of the collected data is maximized is the task to be 
performed for modeling. As the collected data are independent to each other, 
the probability of the collected data (p) is represented as the product of p(x1), 
p(x2)…p(xm) (ie) PD=p(x1) p(x2)…p(xm) 
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(ie) p(x)  =  p(c1) p(x/c1)  +  p(c2) p(x/c2) + p(c3 )  p(x/c3) +. . . p(cn)  

p(x/cn) 

the data (x1, x2, x3, x4… xm ) , obtaining the mean vectors m1, m2, … and the 
covariance matrices c1, c2, … and the probability of clusters p(c1), p(c2)… 
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Figure 2-1.  Clustering Example with Four Clusters 

Estimating the best values for mean vectors and covariance matrices such 
that the probability PD is maximized is described below. 

 
m1=    [(p(c1/x1)*(x1) + p(c1/x2)*(x2)+ p(c1/x3)*(x3)+…… p(c1/xm)*xm)] 

   ______________________________________________________                                         
                          p(c1/x1)+ p(c1/x2)+ p(c1/x3)+…… p(c1/xm) 
 
where p (c1/x1) is computed as [p(x1/c1) * p (c1)] / [p(x1)] 
 
Note that p(x1/c1) is the probability of ‘x1’ computed using Gaussian 

density function of ‘x’ with mean ‘m1’ and covariance ‘cov1’. Also p(x1) = 
p(c1) p(x1/c1) + p (c2) p(x1/c2) + p(c3 )  p(x1/c3)  +  . . . p(cn)  p(x1/cn) 

 

Maximization is obtained by differentiating PD = PD=p(x1) p(x2)…p(xm) 
with respect to the unknown parameters m1, m2, m3, … mn, cov1, cov2, 
cov3…covn and equate to zero. Solving the above set of obtained equations 
gives the best estimate of the unknown parameters, which are listed below 
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The requirement is to estimate the best value for m1.But for computing 
the best value requires p(c1/x1), which in further requires p(x1/c1) as discussed 
above. p(x1/c1) requires m1 for computation. [Surprise!]. 

To proceed further, an iteration approach called as Expected – 
Maximization algorithm is used to estimate the best value for m1 as 
described below. 

2.1 Expectation-maximization Algorithm 
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1. Initialize the mean vectors randomly m1, m2, m3,… mn 

2. Find the Euclidean distance between the x1 vector and the mean vectors 
m1 m2 …mn are computed as ‘d1’, ‘d2’, … ‘dn’ respectively.  If the 
distance d2 is smaller among all, the x1 vector is treated as the vector 
belongs to the 2nd cluster. In general if the dk is smallest among all, x1 

vector belongs to the kth cluster. Thus cluster index assigned to the vector 
x1 is ‘k’. Similarly cluster index is obtained for the entire data vector. 

3. Let the number of data belongs to the first cluster be ‘k’. (ie) Number of 
data vectors having cluster index 1 is ‘k.  Then p (c1) = probability of the 
cluster 1 is computed as  
                                
                                        p (c1) =          k1 
                                                  ________________    
                                                 Total Number of data 
     and p(c2) is computed as 
                                        p (c2) =          k2 
                                                  ________________    
                                                 Total Number of data 
     and so on 
 

4. Covariance matrix of the cluster 1 is computed as cov1 = E ([X-μX]  
[X-μX

T]) = E (XXT)-μXμX
T. For instance, let us consider the vectors x1, x3, 

x7, and x9 arranged in the column format, belongs to cluster1 and the 
corresponding covariance matrix is computed as follows.    
 

                                                 μX = [x1 + x3 + x7 +x9 ]/4. 
   
                                             E (XXT) = [x1 x1

T + x2 x2
T + x3 x3

T + x4 x4
T]/4 

 
Thus cov1 is computed as E (XXT) - μXμX

T. 
 

5. Similarly, the covariance matrices cov2, cov3, cov4 … covn  are computed. 
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2.1.1 Expectation Stage 

Using the above initialized values,  

            [ p (c1/x1), p (c1/x2) p (c1/x3)… p (c1/xm) 
              p (c2/x1), p (c2/x2) p (c2/x3)… p (c2/xm) 
              p (c3/x1), p (c3/x2) p (c3/x3)… p (c3/xm) 
              p (c4/x1), p (c4/x2) p (c4/x3)… p (c4/xm) 
              …   
              p (cn/x1), p (cn/x2) p (cn/x3)… p (cn/xm)] 
are computed. This is called Expectation stage of the E-M algorithm. 

2.1.2 Maximization stage 

Maximization stage of the E-M algorithm belongs to maximizing the  
probability  PD. That is obtained by differentiating the probability PD with 
respect to unknown parameter and equating them to zero. Solving the set of 
obtained equations gives the best estimate of unknown parameters which are 
listed below. 

 
               [(p(c1/x1)*(x1) + p(c1/x2)*(x2)+ p(c1/x3)*(x3)+…… p(c1/xm)*xm)] 
  m1= ____________________________________________________ 
                                p(c1/x1)+ p(c1/x2)+ p(c1/x3)+…… p(c1/xn) 
  
 
              [(p(c1/x1)*(x1) + p(c1/x2)*(x2)+ p(c1/x3)*(x3)+…… p(c1/xm)*xm)] 
  m2= ____________________________________________________ 
                                 p(c1/x1)+ p(c1/x2)+ p(c1/x3)+…… p(c1/xn) 
 
             [(p(c1/x1)*(x1) + p(c1/x2)*(x2)+ p(c1/x3)*(x3)+…… p(c1/xm)*xm)] 
 m3= ____________________________________________________ 
                                 p(c1/x1)+ p(c1/x2)+ p(c1/x3)+…… p(c1/xn) 
 
 
              [(p(c1/x1)*(x1) + p(c1/x2)*(x2)+ p(c1/x3)*(x3)+…… p(c1/xm)*xm)] 
 m4= ____________________________________________________ 
                                p(c1/x1)+ p(c1/x2)+ p(c1/x3)+…… p(c1/xn) 
 
 
                   [(p(cn/x1)*( [x1-μX1] [x1-μX1]T) + …… p(cn/xm)* ( [xm-μXm] [xm-μXm]T)] 
covn=        ____________________________________________________________ 
                                     p(cn/x1)+ p(cn/x2)+ p(cn/x3)+…… p(cn/xm) 
 



72 
 

 

The computed values are the current best estimates of means and 
covariance matrices. Using this Expectation stage is executed, followed by 
Maximization stage. Thus Expectation stage and Maximization stage is 
repeated for N iterations and hence best estimate of the means and 
covariance matrices are obtained using E-M algorithm. 

Using the estimated means   p(c1), p(c2), p(c3)…p(cn) are obtained and 
hence the Gaussian Mixture Model of the collected is obtained. 

2.2 Example 

Two dimensional vectors are randomly generated and the Gaussian 
Mixture Model of the generated data is obtained using the algorithm 
described above is displayed below. 

About 350 vectors are randomly generated. Among which 100 vectors 
are with mean [0.9 0.8], 100 vectors are with mean [0.7 0.6] and 150 vectors 
are with mean [0.5 0.4].  

The elements of the individual vector are generated independently and 
hence the estimated covariance matrices are diagonal in nature. 

Estimated values of the GMM model after 10 Iterations are given below 
 
Mean vector 1 = [0.9124    0.7950] 
Mean vector 2 = [0.7125    0.6091] 
Mean vector 3 = [0.4994    0.3990] 
 
Covariance matrix 1 
                                      0.0045   -0.0001 
                                     -0.0001    0.0047 
 
Covariance matrix 2 
                                       0.0048   -0.0003 
                                      -0.0003    0.0048 
 
Covariance matrix 3 
                                        0.0055   -0.0005 
                                       -0.0005    0.0054 
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2.3 Matlab Program 
___________________________________________________________ 
 
gmmmodelgv.m 
 
%GMM MODEL  
cluster1=clustercol([0.9 0.8],100); 
cluster2=clustercol([0.7 0.6],100); 
cluster3=clustercol([0.5 0.4],150); 
clustertot=[cluster1 cluster2 cluster3]; 
%[p,q]=kmeans(clustertot',3);This may be used for initializing the means 
q(1,:)=[0.83 0.79]; 
q(2,:)=[0.76 0.74]; 
q(3,:)=[0.6 0.3]; 
 
%To Estimate  q ,cov1,cov2,cov3 
[p]=clusterno(clustertot,q); 
[m1,n1]=find(p==1); 
collect1=clustertot(:,n1); 
if(length(n1)~=0) 
cov1=cov(collect1'); 
else 
    cov1=diag([1 1]); 
end 
[m1,n1]=find(p==2); 
collect2=clustertot(:,n1); 
cov2=cov(collect2'); 
if(length(n1)~=0) 
cov2=cov(collect2'); 
else 
    cov2=diag([1 1]); 
end 
[m1,n1]=find(p==3); 
collect3=clustertot(:,n1); 
cov3=cov(collect3'); 
if(length(n1)~=0) 
cov3=cov(collect3'); 
else 
    cov3=diag([1 1]); 
end 
plot(collect1(1,:),collect1(2,:),'r*') 
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hold on 
plot(collect2(1,:),collect2(2,:),'g*') 
hold on 
plot(collect3(1,:),collect3(2,:),'b*') 
hold on 
pause(0.3) 
w1=length(find(p==1))/length(p); 
w2=length(find(p==2))/length(p); 
w3=length(find(p==3))/length(p); 
for j=1:1:10 
pw1x=[]; 
pw2x=[]; 
pw3x=[]; 
for i=1:1:length(clustertot) 
pw1x=[pw1x (w1*pxw(clustertot(:,i),q(1,:),cov1))/... 
    (w1*pxw(clustertot(:,i),q(1,:),cov1)+... 
     w2*pxw(clustertot(:,i),q(2,:),cov2)+... 
     w3*pxw(clustertot(:,i),q(3,:),cov3))]; 
pw2x=[pw2x (w2*pxw(clustertot(:,i),q(2,:),cov2))/... 
    (w1*pxw(clustertot(:,i),q(1,:),cov1)+... 
     w2*pxw(clustertot(:,i),q(2,:),cov2)+... 
     w3*pxw(clustertot(:,i),q(3,:),cov3))]; 
pw3x=[pw3x (w3*pxw(clustertot(:,i),q(3,:),cov3))/... 
    (w1*pxw(clustertot(:,i),q(1,:),cov1)+... 
     w2*pxw(clustertot(:,i),q(2,:),cov2)+... 
     w3*pxw(clustertot(:,i),q(3,:),cov3))]; 
end 
q(1,1)=sum(pw1x.*clustertot(1,:))/sum(pw1x); 
q(1,2)=sum(pw1x.*clustertot(2,:))/sum(pw1x); 
q(2,1)=sum(pw2x.*clustertot(1,:))/sum(pw2x); 
q(2,2)=sum(pw2x.*clustertot(2,:))/sum(pw2x); 
q(3,1)=sum(pw3x.*clustertot(1,:))/sum(pw3x); 
q(3,2)=sum(pw3x.*clustertot(2,:))/sum(pw3x); 
cov1(1,1)=sum(pw1x.*[(clustertot(1,:)-q(1,1)).*... 
    (clustertot(1,:)-q(1,1))])/sum(pw1x); 
cov1(1,2)=sum(pw1x.*[(clustertot(1,:)-q(1,1)).*... 
    (clustertot(2,:)-q(1,2))])/sum(pw1x); 
cov1(2,1)=sum(pw1x.*[(clustertot(2,:)-q(1,2)).*... 
    (clustertot(1,:)-q(1,1))])/sum(pw1x); 
cov1(2,2)=sum(pw1x.*[(clustertot(2,:)-q(1,2)).*... 
    (clustertot(2,:)-q(1,2))])/sum(pw1x); 
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cov2(1,1)=sum(pw2x.*[(clustertot(1,:)-q(2,1)).*... 
    (clustertot(1,:)-q(2,1))])/sum(pw2x); 
cov2(1,2)=sum(pw2x.*[(clustertot(1,:)-q(2,1)).*... 
    (clustertot(2,:)-q(2,2))])/sum(pw2x); 
cov2(2,1)=sum(pw2x.*[(clustertot(2,:)-q(2,2)).*... 
    (clustertot(1,:)-q(2,1))])/sum(pw2x); 
cov2(2,2)=sum(pw2x.*[(clustertot(2,:)-q(2,2)).*... 
    (clustertot(2,:)-q(2,2))])/sum(pw2x); 
 
cov3(1,1)=sum(pw3x.*[(clustertot(1,:)-q(3,1)).*... 
    (clustertot(1,:)-q(3,1))])/sum(pw3x); 
cov3(1,2)=sum(pw3x.*[(clustertot(1,:)-q(3,1)).*... 
    (clustertot(2,:)-q(3,2))])/sum(pw3x); 
cov3(2,1)=sum(pw3x.*[(clustertot(2,:)-q(3,2)).*... 
    (clustertot(1,:)-q(3,1))])/sum(pw3x); 
cov3(2,2)=sum(pw3x.*[(clustertot(2,:)-q(3,2)).*... 
    (clustertot(2,:)-q(3,2))])/sum(pw3x); 
 
[p]=clusterno(clustertot,q); 
w1=length(find(p==1))/length(p); 
w2=length(find(p==2))/length(p); 
w3=length(find(p==3))/length(p); 
[m1,n1]=find(p==1); 
collect1=clustertot(:,n1); 
[m1,n1]=find(p==2); 
collect2=clustertot(:,n1); 
[m1,n1]=find(p==3); 
collect3=clustertot(:,n1); 
close all 
plot(collect1(1,:),collect1(2,:),'r*') 
hold on 
plot(q(1,1),q(1,2),'co') 
plot(collect2(1,:),collect2(2,:),'g*') 
plot(q(2,1),q(2,2),'mo') 
plot(collect3(1,:),collect3(2,:),'b*') 
plot(q(3,1),q(3,2),'yo') 
pause(0.3) 
totcol1{j}=collect1; 
totcol2{j}=collect2; 
totcol3{j}=collect3; 
qcol{j}=q; 
end 
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___________________________________________________________ 
 
clustercol.m 
 
function [res] =clustercol(pos,N) 
x1=rand(1,N)/4-(0.25)/2; 
y1=rand(1,N)/4-(0.25)/2; 
res=[x1+pos(1);y1+pos(2)]; 
_______________________________________________________________________ 
clusterno.m 
 
function [q]=clusterno(clustertot,q) 
d1=(clustertot'-repmat(q(1,:),length(clustertot),1)).^2; 
d1=sum(d1'); 
d2=(clustertot'-repmat(q(2,:),length(clustertot),1)).^2; 
d2=sum(d2'); 
d3=(clustertot'-repmat(q(3,:),length(clustertot),1)).^2; 
d3=sum(d3'); 
[p,q]=min([d1;d2;d3]); 
 
________________________________________________________________________ 

2.4 Program Illustration 
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3. K-MEANS ALGORITHM FOR PATTERN 
RECOGNITION 

If the groups of n-dimensional vectors are given, there is the need to classify 
the vectors into ‘k’ category. The centroid vectors of each group are used to 
represent the identity for ‘k’ category. (i.e) If the new vector is to be 
classified among the ‘k’ category, the distance between the new vector with 
all the centroids are computed. The centroid corresponding to the smallest 
distance is treated as the identified group. The centroids of all the groups are 
obtained using K-means algorithm as described below. 

Consider the set of normalized marks (i.e. the mark ranges from 0 to 1) 
scored by the 100 students in the class for particular subject. Each mark is 
treated as the vector with one-dimensional. There is the need to classify the 
collected marks into 6 groups for allocating 6 grades. This is done using k-
means algorithm as described below. 

3.1 K-means Algorithm 

3.2 Example 

The particular sets of marks (data) are subjected to k-means algorithm Final 
clusters along with clusters obtained at every iteration are displayed below. 
Note that after 6th iteration, clusters are not changed.  

 
 
 
 
 
 

Step 1:  Initialize the 6 centroids randomly corresponding to 6 grades . 
Step 2:  Classify the marks and identify the grade for the individual marks 

using the initialized 6 centroids as described in the section 3. 
Step 3:  Find the mean of the marks collected in the particular grade say ‘1’. 

This is treated as the centroid corresponding to the grade 1 used for 
the next iteration. This process is repeated to compute the new sets 
of centroids corresponding to the individual grade. 

Step 4:  Go to step 2. 
Step 5:  The process involved from Step 2 to Step 4 is considered as the one 

iteration and this process is repeated for finite number of iterations to 
obtain the final centroids corresponding to each grades. 
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 Figure 2-2.  Illustration of K-Means Algorithm 

Figure 2-3.  Data along with the final  centroids obtained by k-means algorithm 

In the above-mentioned example, the data ranges from 0.0067 to 0.9925 
and the six centroids obtained in the 10th  iteration are displayed below. 
0.0743    0.2401    0.4364    0.6115    0.7763    0.9603 (see the Figure 2-3). 

3.3 Matlab Program for the K-means Algorithm 
Applied for the Example given in Section 3.2 

kmeansgv.m 
________________________________________________________________________ 
 
a=rand(1,100); 
plot(a,zeros(1,100),'*');    
b=rand(1,6); 
for iter=1:1:10 
hold off 
M=[(a-b(1)).^2;(a-b(2)).^2;(a-b(3)).^2;(a-b(4)).^2;(a-b(5)).^2;(a-b(6)).^2;]; 
[P,CLUSTERNO]=min(M); 
u=['r','g','b','c','m','y'];   
figure 
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for i=1:1:6 
[x,y]=find(CLUSTERNO==i); 
col=[]; 
for k=1:1:length(x) 
col=  [col a(x(k),y(k))];   
end 
plot(col,zeros(1,length(col)),strcat(u(i),'*')) 
hold on 
b(i)=mean(col); 
end 
pause(0.01) 
end 
 
________________________________________________________________________ 

4. FUZZY K-MEANS ALGORITHM FOR PATTERN 
RECOGNITION 

Consider the problem described in the section 3 for classifying the 
normalized marks into 6 clusters for the assignment of grades.                       
In fuzzy k-means technique, fuzzy set theory is used to obtain the optimal 
values of the centroid. 

In this technique the particular vector (In this problem it is the 
normalized mark scored by the student) belongs to all the 6 clusters with 
different membership values. For instant the vector 0.3 belongs to the 
different clusters with different membership values as given below 

 
Cluster 1 = {0.3 (0.0001)}   
Cluster 2 = {0.3 (0.0448)}   
Cluster 3 = {0.3 (0.0022)}   
Cluster 4 = {0.3 (0.0031)}   
Cluster 5 = {0.3 (0.9492)}   
Cluster 6 = {0.3 (0.0007)}   
 
The numbers in bold letters are the corresponding membership values. 

(i.e.) 0.3 belongs to the cluster 1 with membership value 0.0001 and belongs 
to the cluster 2 with membership value 0.0448 and so on. Note that sum of 
the membership values is 1. 
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Consider the  vector x1 belongs to the cluster 1 whose centroid is c1, then 
(x1-c1)^2 must be minimized. But if the x1 belongs to cluster 1 with the 
membership value m1, then m1*(x1-c1)^2 has to be minimized. Similarly x1 
belongs to the cluster 2 whose centroid is c2. Also x1 belongs to the cluster 2 
with membership value m2. Thus the term m2*(x1-c2)^2 also has to be 
minimized.  

Thus the fuzzy k-means problem is treated as the optimization technique 
for obtaining the membership values along with the centroids of the 
individual clusters such that  

 
                  100    6 

Σ   Σ    M ik  2*  (xi-ck ) 
2 

is minimized  
                  i=1  k=1             

 
Mij is membership value of the vector xi belongs in the cluster k. Xi is the 

ith vector. ck is the kth centroid. 
The algorithm for obtaining the centroids along with membership values 

is displayed below. 

4.1 Fuzzy K-means Algorithm 

 
M11   = 1/   [((vector 1-c1)2  / (vector1 –c1)2)2  +   
                ((vector 1-c1)2  / (vector1 –c22)2     + 
                ((vector 1-c1)2  / (vector1 –c32)2     + 
                ((vector 1-c1)2  / (vector1 –c42)2     + 
                ((vector 1-c1)2  / (vector1 –c52)2     + 
                ((vector 1-c1)2  / (vector1 –c62)2  ]    

 

 

Chapter 2

Step 1: Intialize the membership values (Mij) randomly. 
Step 2:  Compute the centroids of the 6 clusters.  

C1=[Vector1* (the member ship value of the vector 1 belongs to the 
cluster 1)2 (i.e.) M11 

2 + Vector2* (the member ship value of the vector 2 
belongs to the cluster 1)2 (i.e.) M12 

2  +… Vector100* (the member ship 
value of the vector 100 belongs to the cluster 1)2 (i.e.) M1,100 

2]/ 
Sum of the squared values of the membership values belonging to the 

cluster 1. 
Similarly the centroids C2, C3, C4, C5 and C6 are obtained. 

Step 3: Update the membership values M using the current values of the 6 
centroids as given below. 
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M45   = 1/   [((vector 4-c5)2  / (vector4 –c1)2)2  +   
                ((vector 4-c5)2  / (vector4–c22)2     + 
                ((vector 4-c5)2  / (vector4 –c32)2     + 
                ((vector 4-c5)2  / (vector4 –c42)2     + 
                ((vector 4-c5)2  / (vector4 –c52)2     + 
                ((vector 4-c5)2  / (vector4 –c62)2  ]    

 Similarly other membership values are computed. 
 

4.2 Example 

The particular sets of marks (data) are subjected to Fuzzy k-means 
algorithm. Final clusters along with clusters obtained at every iteration are 
displayed below.  

Figure 2-4. Illustration of Fuzzy K-means algorithm 

Step 4:  Compute the sum of the squared difference between the previous 
membership value and the current membership value. If the computed 
value is not less than the threshold value go to step 2 to compute the 
next set of centroids and followed by next set of membership values. If 
the threshold value is less than the threshold value, stop the iteration. 
Thus the centroids are obtained using fuzzy k-means algorithm. Using 
the computed centroids, clustering can be obtained as described in the 
section 3. 
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 Figure 2-5. Data and the final centroids obtained using Fuzzy k-means algorithm 

 
 

 
 In the above mentioned example data ranges from 0.0099 to 0.9883. 

The final centroids obtained after 10 iteration using fuzzy k-means 
algorithm is displayed below 0.0313    0.2188    0.3927    0.5317    0.6977    
0.8850 (see figure 2-5). Also the graph between the sum of the squared 
difference between the previous membership value and the current 
membership value (vs.) Iteration number is displayed below. 

 

 

 

 

 

 

 

 

 

 
Figure 2-6. Illustration of change in the membership value in every iteration 
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4.3 Matlab Program for the Fuzzy k-means Algorithm 
Applied for the Example given in the Section 4-2 

___________________________________________________________ 
fuzzykmeansgv.m 
 
%Fuzzy k-means algorithm 
a=rand(1,100); 
s=[]; 
fm=[]; 
for i=1:1:100 
    r=rand(1,6); 
    r=r/sum(r); 
fm=[fm;r]; 
end 
%Computation of centroids using fuzzy membership 
 
for l=1:1:10 
for i=1:1:6 
    cen{i}=sum((fm(:,i).^2).*a')/sum(fm(:,i).^2); 
end 
%Updating fuzzy membership value (fm) 
fm1=[]; 
for p=1:1:6 
    for q=1:1:100 
        temp=0;         
        for r=1:1:6 
        temp =temp+(((a(q)-cen{p})^2)/((a(q)-(cen{r}))^2))^2; 
        end 
        fm1(q,p)=1/temp; 
    end 
end    
s=[s sum(sum((fm-fm1).^2))]; 
fm=fm1; 
b=cell2mat(cen); 
M=[(a-b(1)).^2;(a-b(2)).^2;(a-b(3)).^2;(a-b(4)).^2;(a-b(5)).^2;(a-b(6)).^2;]; 
[P,CLUSTERNO]=min(M); 
u=['r','g','b','c','m','y'];   
figure 
for i=1:1:6 
[x,y]=find(CLUSTERNO==i); 
col=[]; 
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for k=1:1:length(x) 
col=  [col a(x(k),y(k))];   
end 
plot(col,zeros(1,length(col)),strcat(u(i),'*')) 
hold on 
end 
pause(0.01) 
end 
figure 
plot(s) 
xlabel('Iteration') 
ylabel('Change in the membership values 

5. MEAN AND VARIANCE NORMALIZATION 

Suppose in the speech recognition system the two speech signals 
corresponding to the same word are to be compared. Two signals are not 
recorded exactly with the same volume (i.e.) the two signals are not with the 
same energy. Thus before extracting features from the speech signals, there 
is the need to normalize the speech signal in terms of mean and variance so 
that two speech signals are made recorded with the same volume. 

Mean and variance normalization of the signal is obtained as described 
below. Consider the speech signal ‘A(t)’ with mean ‘md’ and variance ‘vd’ 
and speech signal ‘B(t)’ with mean m and variance ‘v’. The requirement is to 
normalize the speech signal B(t) so that the mean and variance are changed 
to the desired mean ‘md’ and desired variance ‘vd’ respectively. The 
procedure for the mean and variance normalization is given below. 

5.1 Algorithm 

 
 Let Δi be the value calculated for the  ith sample of the signal ‘A’ 

(original signal) and is computed as described below. 

Chapter 2

Step 1: Create the vector completely filled up desired mean ‘md’. Number of 
elements of the vector is equal to the number of samples in the 
speech signal. 

Step 2: Each and every element of the vector is added with +Δ or -Δ. If the 
sample value in the original vector is greater than mean ‘m’, add +Δ 
to the corresponding sample in the vector created. Otherwise the 
value is added with ‘-Δ’. The value of the ‘Δ’ is computed using the 
sample value, mean ‘m’, variance ‘v’ of the signal ‘A (t)’ and the 
desired variance ‘vd’ . 

___________________________________________________________ 
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The value A (i) is deviated from ‘m’ with (A (i)-m) when the standard 
deviation of the signal is v(1/2), then the deviation of the signal from the 
desired mean ‘md’ with  the standard deviation of the signal vd

(1/2) is given by  
 

Δi  =(vd  /v)(1/2)*(A(i)-m) 

5.2 Example 1 

Consider the speech signal A(t) with mean=0.0062 and variance=0.0057 
which is kept as the reference signal. Consider speech signal  
B(t) corresponding to the same word with mean=0.0061 and 
variance=0.0094. The speech signal B(t) is subjected to mean and variance 
normalization as described above to obtain B(t) with desired mean and 
variance as shown in the figure below. 

Figure 2-7. Illustration of Mean and Variance Normalization of the speech signal 
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Note that the signal at the top and the bottom of the figure 2-7 are  almost 
identical. This preprocessing stage is normally used before extracting 
features from the signal for pattern recognition. 

5.3 M-program for Mean and Variance Normalization 

________________________________________________________ 
meanvarnormgv.m 
 
%a is the speech signal to be modified 
%b is the reference signal with desired mean and variance. 
% res is the normalilzed version of signal ‘a’ with desired mean and variance 

      m=mean(a); 
v=sqrt(var(a)); 
md=mean(b); 
vd=sqrt(var(b)); 
delta=abs((a-m)*vd/v); 
res=ones(1,length(a))*md; 
[p]=quantiz(a,m); 
p=p';  p=p*2-1; 
res=res+p.*delta; 
________________________________________________________________________ 
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NUMERICAL LINEAR ALGEBRA 
Algorithm Collections 

 
 

1. HOTELLING TRANSFORMATION 

Consider the set of n-dimensional vectors collected in which the elements of 
the vector are dependent to each other (i.e.) the covariance matrix computed 
for the collected vectors are not the diagonal matrix. The co-variance matrix 
is computed as follows.  

co-variance matrix is computed using E[(X-µx) (X-µx)T] = E(XXT)- µx µx
T, 

where µx is the mean vector computed using the collected vectors (ie) 
µx=[x1+x2+x3+…xm]/m. 

Hotelling Transformation transforms the set of vectors x1, x2,…xm  into 

computed for the transformed vectors is diagonal in nature. 

 
 
 

 

 
 
 

Covariance Matrix  (CM)            a1 b1  c1  d1  
b1 b2  c2  d2 
c1 c2  c3  d3   
d1 d2  d3  d4  

Let x1, x2,…xm be the collection of ‘m’, ‘n-dimensional vectors. The  

another set of vectors (ie)  y1, y2,…ym, such that the covariance matrix 
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The element a1 in the above matrix gives the information about how the 
first elements of the collected vectors are correlated to each other. Similarly 
c1 gives the information about how the first elements are correlated with 
third element. Thus if the matrix is the diagonal matrix, then the elements of 
the vectors collected are made independent to each other.  

 

1.1 Diagonalization of the Matrix ‘CM’  

1. Compute the Eigen values and the corresponding Eigen vectors of the 
matrix ‘CM’ 

Number of  Eigen values obtained is equal to the size of the matrix. For 
instance the size of the above mentioned matrix is 4 and hence number of 
Eigen values = 4. Let it be λ1, λ2, λ3 and λ4 

 
2. Compute the Eigen vector ‘X1’corresponding to the Eigen value ‘λ1’ 

by solving the equation   [CM. - λ1] X1=0.The size of the Eigen vector ‘X1’ 
is 1X4 for the above example. 

 
3. Similarly Eigen vectors X2, X3 and X4 are computed. 
 

tion Matrix (say ‘TM’) 
 
5. Transformed Vector ‘Y1’ is obtained using the transformation matrix 

as mentioned below. 

matrix is computed for the transformed set of vectors [(i.e.) Y1, Y2, Y3 … 
Ym] the covariance matrix is almost diagonal. 

 

1.2 Example  

of the Black pixel in the image as the two dimensional vectors. Xposition 
and Yposition are the elements of the vector considered. Hotelling 
transformation is applied as described above to get another set of vectors 
called as transformed positions. The Binary image with all pixels valued ‘1’ 
(i.e.) white is created. Replace the pixel value of the transformed positions in 

  Eigen values are computed by solving the determinants | CM-λI| = 0. 

4. Eigen vectors are arranged rowwise in the matrix to form Transforma-

      Y1= TM*( X1- µx).Similarly Y2,Y3, …Ym are obtained. If covariance 

Let us consider the Binary image of size 50x50. Let us collect the positions 
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Figure 3-1. Hotelling transformation for binary image rotation 

Note in the original Binary image, the Xpositions and Ypositions  are 
dependent to each other and hence the co-variance matrix is not the diagonal 
matrix as mentioned below  

 
CM= 
 
  102.2500   -80.9500 
  -80.9500   102.2500 
 
But in the transformed Binary image, Xpositions and Ypositions are 

independent to each other and hence the covariance matrix computed is the 
diagonal matrix as given below 

 
CT = 
 
   21.3000    0.0000 
    0.0000  183.2000 
 
 Note that the Diagonal values are Eigen values of the covariance 

matrix C. 

 
the Binary image created with ‘0’ (i.e.) Black. The image obtained is called 
Transformed binary image using Hotelling transformation. Realize that the 
Xposition and Yposition of Black pixels in the Transformed binary image 
are independent to each other. 
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Note that CM = TM’ *  CT  * TM 
 
As the pixel positions of the image are represented as positive integers, 

are transformed vectors are properly biased and rounded off.        

1.3 Matlab Program 

___________________________________________________________ 
 
hotellinggv.m 
 
A=imread('Binimage','bmp'); 
A=double(A); 
[x,y]=find(A==0); 
vector=[x y]; 
Meanvector=sum(vector)/length(vector); 
CM=(vector'*vector)/length(vector); 
CM=CM-Meanvector'*Meanvector; 
%Covariance matrix for the original set of vectors is CM 
[E,V]=eig(C); 
%Transformation Matrix 
TM=E'; 
transvector=TM*(vector'-repmat(Meanvector',1,length(vector))); 
xposition=fix(transvector(1,:)+abs(min(transvector(1,:)))+1); 
yposition=fix(transvector(2,:)+abs(min(transvector(2,:)))+1); 
B=zeros(50,50); 
for i=1:1:length(xposition) 
    B(xposition(i),yposition(i))=1; 
end 
%Covariance matrix computed for transformed vectors is computed as CT 
MeanvectorT=sum(transvector')/length(transvector'); 
CT=(transvector*transvector')/length(transvector'); 
CT=CT-MeanvectorT'*MeanvectorT; 
figure 
subplot(2,1,1) 
imshow(A) 
title('ORIGINAL IMAGE') 
subplot(2,1,2) 
imshow(uint8(B*255)) 
title('TRANSFORMED IMAGE USING HOTELLING TRANSFORMATION') 
___________________________________________________________ 
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2. EIGEN BASIS 

Group of vectors are described as the vector space. All the vectors in the 
space are spanned by the particular set of orthonormal basis known as Eigen 
basis as described below. (i.e) Any vector in the space is represented as the 
linear combination of Eigen basis. 

 

2.1 Example 1 

The two dimensional vector are randomly generated and are plotted as given 
below. The vectors mentioned in the diagram are the Eigen vectors. It is 
computed as follows. 

Figure 3-2. Vector space along with Eigen vectors  

• Compute the co-variance matrix of the generated two 
dimensional vectors 

• Compute the Eigen values and the corresponding Eigen vectors. 
• Direction of the Eigen vectors computed are parallel to the 

vectors mentioned in the diagram. Note that they are orthonormal 
to each other. 

In the above described example, Eigen vectors are E1= [-0.2459 -0.9693] 
and E2 =[-0.9693    0.2459]. 
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Also, any vector in the generated vector space is represented as the linear 
combination of E1 and E2. The co-efficients are obtained as the inner product 
of vector and the corresponding Eigen vector. 

 
For instance, the vector V1=[20 16]  is represented as  

 
C1E1+C2E2 

 
C1 is obtained as the inner product of E1 and V1 

C2 is obtained as the inner product of E2 and V2 

 
C1 = -20.4269  
C2 = -15.4513 
 
Thus V1 = C1E1+C2E2   

= -20.4269 *[-0.2459   -0.9693]+ -15.4513 *[-0.9693    0.2459]. 
 
Eigen vectors corresponding to the insignificant Eigen values are 

contributing less to the vector representation. In such situation number of 
orthornormal Eigen basis to represent the particular vector is reduced. 

Note that the vectors mentioned in the figure 3-3 is obtained by applying 
KLT transformation to the vector space mentioned in the Fig 3-2. The Eigen 
vectors for this space are E1=[1 0] and E2=[0 1] 

 
    

 

 
 
 
 
 
 
 
 
 

 

 

Figure 3-3. Vector space after KLT and the corresponding eigen vectors  
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3. SINGULAR VALUE DECOMPOSITION (SVD) 

As discussed earlier any real  square matrix ‘A’ can be diagonalized using 
eigen matrix  ‘E’  (every column vector is the eigen vector of the matrix ‘A’)  

 
A=E D ET 

 
where ‘D’ is the diagonal matrix filled with Eigen values in the diagonal 
 
Suppose if the matrix ‘A’ is the rectangular matrix of size mxn, then the  

matrix ‘A’ can be represented as the follows 
 
A=U ^ VT  . This is called as Singular Value Decomposition. 
 
AAT is the square matrix with size mxm. Using Eigen decomposition 
AAT = U D1 UT 

 Similarly ATA of size nxn can be reprersented using Eigen 
decomposition as 

ATA= V D2 VT 
 

If A = U ^ VT   
AT =V ^ TUT 

Note that ^ and ^T  are the same as the matrix is the diagonal matrix. 

AAT = U ^ VT V ^T UT 
   

             = U ^^T UT   [Expected Result]  
Similarly  
 
ATA = V ^T UT U ^VT 
   

             = V ^T^ VT   [Expected Result] 

The  diagonal elements of the matrix ^ is obtained as the positive square 
root of the diagonal elements of the matrix D1 or D2. Note that the diagonal 
elements of the matrix D1 and D2 are same except the addition  or deletion of 
zeros. 

Thus the matrix A is represented as the product of the Eigen matrix 
obtained from the matrix AAT , Eigen matrix obtained from  the matrix ATA 
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and the Diagonal matrix ^ obtained as the positive square root of the 
elements of the eigen values computed for the matrix AAT (or) ATA 

 
(i.e.) The Eigen values are same for both the matrices. 

3.1 Example 

The matrix A is applied to SVD as follows. 

A = 
     1     2     3 
     4     5     6 

U = 
   -0.3863   -0.9224 

   
-0.9224

    
0.3863

 
V = 
    -0.4287    0.8060    0.4082 
   -0.5663    0.1124   -0.8165 
   -0.7039   -0.5812     0.4082 

^ = 
    9.5080         0          0 
         0     0.7729         0 

U*^*V' = 
 
    1.0000    2.0000    3.0000 
    4.0000    5.0000    6.0000 

Eigen values of (A'*A) = E1  
-0.0000 
0.5973 

90.4027 

Eigen values of (A*A’) = E2 
 
0.5973 

90.4027 
 
Note that the diagonal elements of the ^  is obtained as the square root of  

E1 or E2 . 
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4. PROJECTION MATRIX 

4.1 Projection of the Vector ‘a’ on the Vector ‘b’ 

 

 

 

 

 

 
Figure 3-4. Projection Illustration 

Consider two vectors a  and  b. The projection of the vector ‘a’ on ‘b’ is the 
scaled version of the vector ‘b’ (i.e) Pb. The vector e is orthogonal to the 
vector b as shown in the figure 3-3. 

e=a-Pb 
 
⇒ bT (a-Pb)  =0  
 
⇒ bTa =PbTb 

 
⇒P = (bTa) / (bTb) 
 
Therefore the projection of the vector ‘a’ on ‘b’ is given as                          bP = [b( bTa) ] / 

[(bTb)]. 
 
The Projection matrix (In this case, ,it is the single element matrix) is 

given as (bbT)/( bT b) = [PM] 
 
Thus the projection of the vector ‘a’ on ‘b’ is given as [PM] a 
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4.2 Projection of the Vector on the Plane Described  

 

 

 
 
 
 
 
 
 
 
 

Figure 3-5. Projection of the vector on the plane 

 
 Consider the vector ‘a’ projected on the plane described by the vectors 

‘x1’ and ‘x2’. Note that the matrix X =[x1 x2]. The vector ‘p’ can be 
represented as the linear combination of the vector ‘x1’ and ‘x2’ (i.e) 
column vectors of the matrix X as illustrated in the figure 3-4 

 
p=u1*x1+u2*x2 
 
p=[X]    u1 
              u2 
 
p=[X][s] 
 
Also the error vector  [a-p] is orthogonal to x1 and x2 as illustrated in the 

figure. 

⇒(a-Xs)T x1  =0   and  (a-Xs)T x2  =0 
 
Jointly represented as [a-Xs]T X =     0 
                                                           0  
⇒aT X =(Xs)TX 

by Two Column Vectors of the Matrix ‘X’ 

The Linear combination of certain number of n-dimensional independent 
vectors forms the vector space. Thus vector space is defined as the space 
spanned by the set of independent vectors. 
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⇒XTa = XT (Xs) 
 
⇒s=(XT X)-1XTa 
 
Therefore the projected vector p=[X][s]=X(XT X)-1XTa 
 
Thus projected matrix PM  is defined as X(XT X)-1XT  .Also the projected 

vector p is represented as [PM] a 
In general projection of the vector ‘a’ on the vector space spanned by the 

column vectors of the matrix ‘A’ is given as A(AT A)-1AT a 
 

4.2.1 Example 

Consider the vector space spanned by the column vectors of the matrix  
 
 
A=   1    3    7     6  
 
        4     6    2     4  
 
        1     7     6     4  
 
The projection of the vector a= [1 2 3] T                                                            

 
      on the vector space spanned by the column vectors of the matrix A is 
given using the formula A(AT A)-1AT a is given below 

 
 
Projection matrix 
 
PM = A(AT A)-1AT  =  
 
-0.2813   -0.5625   -0.6563 
-0.1875    1.1250    0.0625 
 0.0313    0.1875    1.5313 
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     Projected vector is computed as A(AT A)-1AT a 

             

             =  -3.3750 
            2.2500 
            5.0000 

4.2.2 Example 2 

The column vectors A, B and C are displayed below. 
 
A=[10     2     6     5     9     8     5     0     8     4]T 
 
B= [6     8     9     7     2     4     9     9     4     9]T 
 

C=[43    26    44    29    32    34    35    24    35    32]T 

 
 The column vector C is related to the column vectors A and B as the 
linear combination as displayed below C = m*A+ n*B. The requirement is 
to find the optimal value for the scaling constant m and n.  

If C is in the space spanned by the column vectors of A and B, unique m 
and n values can be computed easily. But if C is not in the space spanned by 
the column vectors of A and B, the constants ‘m’ and ‘n’ are the best 
estimated values such that C’=m*A+n*B is in the space spanned by the 
column vectors A and B.  

Also the mean squared error (i.e) E {(C-C’) 2] is minimized. This is 
obtained using projection matrix as described below. 

The column vector C’ is the projection of the vector ‘C’ on the space 
spanned by the vectors A and B. 

Representing the vectors A and B in the matrix column wise to form the 
matrix ‘P’. 

 
Thus P=  10     6 
        2     8 
        6     9 
        5     7 

     9     2 
     8     4 
     5     9 
     0     9 
     8     4 

4 9 
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The projection matrix is computed as PM=P*inv ((P*PT))*PT. Using the 
projection matrix, the C’ column vector is obtained as the projection of the 
column vector C as C’=PM*C. 

 
C’=   44.3140 
     25.6450 
      39.9154 

32.0289 
31.4915 
33.4768 
36.9648 
22.2118 
33.4768 

      34.0142 
 
 

Thus the best estimated values of the variable ‘m’ and ‘n’ are computed 
as  

10 6      -1    44.3140 
 
         2          8           25.6450   
 
 
=          2.9506 
   
             2.4680 
 
 
 

find the alternate values for the variables ‘m’ and ‘n’ which gives MSE less 
than the 4.1678. 

 
 
 
 

MSE is computed as E [(C-C’) 2] = 4.1678. Note that it is not possible to 
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5. ORTHONORMAL VECTORS 

The vectors a, b, c are defined as the orthogonal vectors if their inner product 
matrix is the diagonal matrix. (i.e) dot product of the vector a with itself is 
some constant, whereas the dot product of the vector a with b is 0. 

If the diagonal matrix obtained is the identity matrix, then the vectors are 
called as orthonormal vectors. 

5.1 Gram-Schmidt Orthogonalization Procedure 

Consider the set of independent vectors v1, v2 and v3 which spans the 
particular vector space ‘S’. (i.e) All the vectors in the space ‘S’ are repre-
sented as the linear combination of the independent vectors (v2, v2, v3). 
They are called basis. 

It is possible to identify the another set of independent vectors o1, o2 and 
o3 which spans the space S such that the vectors o1, o2 and o3 are 
orthonormal to each other. The steps involved in obtaining the orthornormal 
vectors corresponding to the independent vectors are described below. 

 

 

 

 

 
Figure 3-6. Gram-Schmidt Orthogonalization procedure 

Let ‘v1’ and ‘v2’ be the independent column vectors. The vector ‘v1’ is 
treated as the reference vector. (i.e) Normalized ‘v1’ is treated as the one of 

From the figure 3-5 p=v2- [(o1T v2) / (o1T o1)] o1. The orthonormal 
vector is the normalized form of the vector ‘p’. 

o2 = p / ||p|| 
Similarly the orthonormal vector ‘o3’ corresponding to the vector ‘v3’ is 

obtained as follows.  

the orthonormal vector ‘o1’= ‘v1/||v1||’. The orthogonal vector ‘p’ is 
computed using the projection of the vector ‘v2’ on the vector ‘v1’. 



3. Numerical Linear Algebra 101
 

 

q= v3- [(o1T v3) / (o1T o1)] o1] - [(o2T v3) / (o2T o2)] o2] 
 

o3 =q / ||q|| 

5.2 Example 

Consider the set of independent column vectors v1, v2 and v3  as displayed 
below. 

     
       1           2          4 
   v1=  2      v2=   1    v3 =  2 
       3            4          3 
 
The corresponding set of orthonormal vectors computed using Gram-

Schmidt orthogonalization procedure is given below.  
 
              0.2673             0.5203             0.8111 
    o1 =   0.5345   o2 =  -0.7804     o3 =  0.3244 
              0.8018             0.3468            -0.4867 

The dot product of the vectors o1, o2 and o3 is displayed in the matrix 
form for illustration. 

  1.0000   -0.0000    0.0000 
   -0.0000    1.0000    0.0000 
    0.0000    0.0000    1.0000 

Note that the matrix obtained is the identity matrix as expected.                                            

5.3 Need for Orthonormal Basis 

Suppose the vector ‘V’ in the vector space ‘S’ is represented as the linear 
combination of the orthonormal basis computed in the section 5.1 

 
         9 
V =   6 
        14 

 
 

The co-efficients are obtained as the inner product of the vector ‘V’ and 
the corresponding orthonormal basis. 
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The co-efficients are 
 
c1= VT *o1   = 16.8375 
c2=VT *o2  = 4.8558 
c3 =VT *o3  = 2.4333 

 
Thus the vector V is represented as 
 
V = c1*o1+c2*o2+c3*o3 
 
Computing the co-efficients become easier if the basis are orthonormal to 

each other and hence orthonormal basis is required. 
If adding few more independent vectors increases the number of 

independent vectors spanning the space, the space spanned by these vectors 
also increases. The corresponding orthonormal vectors obtained using Gram-
Schmidt orthogonalization procedure shows that the orthonormal basis are 
the same as that of the earlier except the inclusion of additional few 
orthogonal basis corresponding to the additional independent vectors. Hence 
the co-efficients of the already existing basis remains the same. 

In the previous example if the vector chosen in the space spanned by the 
vectors v1 and v2.  

 
         6 

    6       (say) 
    14 

 
The vector can be represented as the linear combination of ‘o1’ and 

‘o2’ with the corresponding co-efficients 16.0357 and 3.2950 respectively. 
They are computed using inner product technique. Suppose the same vector 
is represented as the linear combination of ‘o1’ ‘o2’ and ‘o3’, the 
corresponding co-efficients are obtained as 16.0357, 3.2950 and 4.4409e-
015 respectively. Note that first two co-efficients remains unchanged and 
also note that the value of the third co-efficient is almost insignificant for 
representing the vector. This property is used in compression techniques in 
which the significant co-efficients are stored rather than the vector itself. 
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5.4 M-file for Gram-Schmidt Orthogonalization 

Procedure 

gramgv.m 
 
%Given the independent vectors as the input,Orthonormal vectors as the 
%output computed using Gram-Schmidt Orthogonalization procedure 
%Input vectors are arranged rowwise 
 
function [res]=gramgv(x) 
 
o{1}=x(1,:)/sqrt(sum(x(1,:).^2)); 
for k=2:1:size(x,1) 
    s=x(k,:); 
    for  m=1:1:k-1 
            s=s - ((o{m}*x(k,:)')/(o{m}*o{m}'))*o{m} ; 
    end 
    o{k}=s/sqrt(sum(s.^2)); 
end 
res=o; 
 

 
6. COMPUTATION OF THE POWERS

Consider the matrix A =  3    4 .  The matrix A100 is computed as  
1    2  

 
described below. 
 
The matrix ‘A’ can be diagonalized using eigen matrix ‘E’ (every column 

vector is the eigen vector of the matrix ‘A’) as described in the section 3 

OF THE MATRIX ‘A’ 
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A=E D E-1 

 
Where ‘D’ is the diagonal matrix filled with Eigen values in the diagonal. 
 
Consider the computation of the matrix A2  =A A=EDE-1 EDET=EDDET 
=ED2ET 
 
In general A100 is using  ED100ET 

 
For the given matrix ‘A’, eigen matrix ‘E’ is computed as  
 
E=   0.9315   -0.8421    and the diagonal matrix D is given as follows 
       0.3637    0.5393 
 
 
D = 4.5616         0 
         0                  0.4384 
 

 
Therefore A100 is computed as ED100E-1 =  
 
    5.06471.0e+065     7.90871.0e+065  
           
    1.97721.0e+065     3.08751.0e+065  
 

 
Note that if all the eigen values in the Diagonal matrix described above is 

less than 1, the matrix An  converges to the value zero when n tends to 
infinity. 

 
  

7. DETERMINATION OF KTH  ELEMENT
IN THE SEQUENCE

Let us consider the sequence 0, 1, 2, 3, 6, 11, 20, 37… in which fourth 
element is the summation of three previous numbers. Fifth value is the 
summation of 2, 3 and 4 value of the sequence and so on. 
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The problem  is to obtain the value of the 100th element of the above 
mentioned sequence. This is achieved using Eigen decomposition as 
described below. 

 
Let Pk be the value of the kth position of the sequence.  

 
Pk = Pk-1 + Pk-2  +Pk-3 

 
Let us define the matrix Uk =   Pk+2 

                                                                   Pk+1 

                                                                        Pk 
         Pk+3                                      

Uk+1 =   Pk+2 

                      Pk+1 
 

 
Uk+1    = 1 1 1    UK 
            1 0 0    
             0 1 0               
 
U0   =  2 
             1 
             0 
Let the matrix A be        1 1 1 
                                       1 0  1              
                                       0 1 0 
 

Represent the vector U0 as the linear combinations of Eigen vectors of 
the matrix A. 

The Eigen values and the corresponding Eigen vectors are computed and 
displayed below.  

 
Eigen values = [λ1 λ2 λ3 ] 
= [1.8393      -0.4196 + 0.6063i   -0.4196  - 0.6063i] 

 
 

 
Eigen vectors arranged in columnwise =[ E1 E2 E3] = 
 
    -0.8503            -0.1412 - 0.3752i    -0.1412 + 0.3752i 

  -0.4623            -0.3094 + 0.4471i    -0.3094 - 0.4471i 
  -0.2514             0.7374                0.7374           
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Represent the matrix Uo as the linear combinations of Eigen vectors. 
     

2                      
    1         =               
    0 
 
   

    -0.8503            -0.1412 - 0.3752i    -0.1412 + 0.3752i            c1 
  -0.4623            -0.3094 + 0.4471i    -0.3094 - 0.4471i             c2 
  -0.2514             0.7374                0.7374                              c3  
 
 
  c1          -2.0649 + 0.0000i 
  c2     =    -0.3520 + 0.1929i        
  c3            -0.3520 - 0.1929i       

 
U1 = A Uo 

U2 = A2 Uo 

… 
Uk  = AkUo 
 
Uo = c1*E1+c2*E2+c3*E3 
 
AUo = c1*A*E1+c2*A*E2+c3*A*E3 
         
          = c1*λ1*E1+c2*λ2*E2+c3*λ3*E3 

Similarly    
 

Uk = AkUo  = c1*λ1
k*E1+c2*λ2

k*E2+c3*λ3
k*E3 

 
Therefore U100 is computed as  
 
U100 =  1.0e+026     

   5.1220 - 0.0000i 
   2.7848 - 0.0000i 
   1.5140 - 0.0000i 

 
     Therefore the 100th term in the sequence is given as 1.51401.0e+026 

Let us compute 6th term using the method given above  
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U6=68.0000 - 0.0000i 
      37.0000 - 0.0000i 
      20.0000 - 0.0000i 
 

Therefore 6th term is 20 as expected (see the sequence). 

8. COMPUTATION OF EXPONENTIAL

Let A be the matrix, which can be diagonalizable using Eigen matrix as  
A=EDE-1 . eA can be  computed using series expansion as given below. 

 
eA  = I + A +(A2 )/2! +(A3 )/3!+….. 
 
= I +EDE-1 +(EDE-1 EDE-1) /2! +(EDE-1 EDE-1 EDE-1)/3!+… 
 
= ED0E-1+EDE-1 + (ED2E-1)/2! +(ED3E-1)/3! +… 
 
= E[D0 + (D/1! )+(D2 /2!) + (D3 /3!)  +(D4 /4!) +…] E-1 
 
= E eD  E-1 

8.1 Example 

A =   1   1         = EDE-1 
         1   0      

 

 0.5257   -0.8507           -0.6180        0                0.5257   -0.8507 
-0.8507    -0.5257            0                 1.6180      -0.8507   -0.5257 

   
Therefore eA is computed as 

 
E eD  E-1    = 

 
 0.5257   -0.8507           e-0.6180                        0.5257   -0.8507 
-0.8507   -0.5257            0            e1.6180           -0.8507    -0.5257 

 
 

=  3.7982    2.0143 
2.0143    1.7839 

0

OF THE MATRIX 
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9. SOLVING DIFFERENTIAL EQUATION USING 
EIGEN DECOMPOSITION 

Consider the problem of solving the third order  differential equation as  
given below. 

 
∂3u / ∂t3 +2 ∂2u / ∂t2     - ∂u / ∂t  +u = 0 with the initial condition given  
U’’(0)=3,  U’(0)=1, U(0)= -1. 

Representing the above equation in the form of matrix representation.  
 
 
V  =        U’’ 
               U’ 
               U 
 
V’ =        U’’’ 
               U’’ 
               U’ 
 
V’=      -2     1     1       V 
                      1    0         0 
              0    1      0  
 

V  =  c1 eλ1 t   E1 +c2 eλ2 t  E2 + c3 eλ3 t  E3 
 

Where c1, c2 and c3 are the constants obtained using initial conditions. 
E1, E2 and E3 are the eigen vectors of the matrix A corresponding to the 
eigen values λ1,λ2,λ3 respectively. 

The Eigen vectors and the eigen values of the matrix A are displayed 
below. 

 
λ1    = -2.2470  λ2 = 0.8019 λ3= -0.5550 
 
E1= [-0.8990    0.4001   -0.1781]T 
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E2= [-0.4484   -0.5592   -0.6973]T 
 
E3= [0.2600   -0.4686    0.8443]T 

 
Thus V=   U’’ 
                 U’      is obtained as follows 
                 U 
 
 

U’’= c1 e-2.2470 t   (-0.8990) + c2  e0.8019  t   (-0.4484) + c3 e-0.5550 t  (0.2600)    
 
U’= c1 e-2.2470 t   (0.4001) + c2  e0.8019  t   (-0.5592) + c3 e-0.5550 t  (-0.4686)    
 
U= c1 e-2.2470 t  (-0.1781) + c2  e0.8019  t   (-0.6973) + c3 e-0.5550 t  (0.8443)    
 

The values of the constants can be solved using the initial conditions 
using the set of equations given below. 

 
U’’(0) =3 =(-0.8990) c1 + (-0.4484) c2   + (0.2600) c3   
 
U’(0) =1 = (0.4001) c1 + (-0.5592) c2   + (-0.4686) c3   
 
U(0) = -1 = (-0.1781)c1 +  (-0.6973)c2   + (0.8443) c3   
 
Thus c1= -3.4815, c2= -1.5790, c3= -3.2227 
 
 
 10. COMPUTATION OF PSEUDO INVERSE

Let us consider the matrix A =    2     3     4 
                                                     3     4     5 
 
Decompose the matrix ‘A’ using Singular Value Decomposition. 

OF THE MATRIX 
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A= [P ][ Q ][ RT ] 
 
A=      -0.6057   -0.7957        8.8839   0             0                 
           -0.7957    0.6057              0       0.2757     0 
 

 
-0.4051   -0.5628   -0.7205 
0.8181    0.1288   -0.5605 
0.4082   -0.8165    0.4082 

 
 
Pseudo inverse matrix A+ is given as  
 
A+ = {[R] [Q+][PT]} 
 
[Q+] =  1/ 8.8839         0                     
                   0         1/ 0.2757          
                   0                0      

       =   0.1126          0                  
                0          3.6268          
                0                  0  
 
QQ+     =   1   0 
                  0   1 
 
A+    =   -2.3333   1.8333 
               -0.3333   0.3333     
                1.6667   -1.6667  
 
 
AA+ =   1   0 
                 0   1  
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11. COMPUTATION OF TRANSFORMATION 
MATRICES 

If the vectors in the space1 are spanned by the independent vectors u1, u2, 
u3, … un. Also if the vectors in the space2 are spanned by the independent 
vectors v1, v2 …vn . They are called basis of the respective spaces. 

Suppose the vector ‘u’ in the space 1 is mapped to the vector v in the 
space 2. 

(i.e.) T (u) = v. The vector ‘v’ can be represented as the linear 
combinations of the independent vectors v1, v2, …vn. 

Similarly the transformation of the basis vector u1 in the space1 can be 
represented as the linear combinations of v1, v2, v3…vn. 

 
Therefore T (u1) =a11 v1+ a12v2+ a13 v3+ a14v4 + … a1n vn 
 
Similarly T (u2) =a21 v1+ a22v2+ a23 v3+ a24v4 + … a2n vn 
 
… 
    T (un) =an1 v1+ an2v2+ an3 v3+ an4v4 + … ann vn 
 
The co-efficients of the vector v1, v2, v3 .. vn in the above mentioned 

equation are arranged in the vector form and are called co-efficient vector as 
given below. 

The vector [a11 a12 a13 a14 … a1n] is the co-efficient vector associated with 
the vector T(u1) which is in the space 2. Similarly the vector                       
[a21 a22 a23 a24 … a2n] is the co-efficient vector associated with the vector 
T(u2). 

Consider the vector u1 in the space 1 which can also be represented as 
the linear combinations of the basis vectors u1, u2, u3, …un as given below. 

 
u1=1*u1+0*u2+0*u3+….0*un. 
 
In this case [1 0 0 0 …0] is the co-efficient vector associated with the 

vector u1 in the space1. 
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As mentioned earlier the any vector  ‘u’ in the space 1 and the 
corresponding mapped vector v in the space 2 can also have their associated 
coefficient vectors. Let [p1, p2, p3, …pn] be the  co-efficient vector associated 
with the vector ‘u’ and [q1, q2, q3…qn] be the co-efficient vector associated 
with the vector ‘v’. 

The matrix relating the co-efficient vector of the particular vector in the 
space 1 and the co-efficient vector of the corresponding mapped vector in 
the space 2 is called transformation matrix and is computed as described 
below. 

 
(i.e.)  
 
[p1 p2 p3 p4 …pn]T [TM] = [q1 q2 q3 q4 … qn]T 
 

The transformation matrix is obtained using the co-efficient vectors 
computed for the T(u1), T(u2),…T(un) in the space 2 where u1,u2 u3,..un 
are the independent vectors which spans the space 1. 

 
Thus TM =    a11   a21   a31   a41   a51  …an1 
                      a12   a22   a32   a42   a52  …an2 
          a13   a23   a33   a43   a53  …an3 
          a14   a24   a34   a44   a54  …an4 
     …  
       a1n   a2n   a3n   a4n  a5n  …ann  
 
For example the vector u1 with co-efficient vector [1 0 0 0 0 0 0…0] is 

mapped to the vector  T(u1) whose co-efficient vector is obtained using TM 
as 

 
 
 
  

    a11   a21   a31   a41   a51  …an1       1            a11   
                    a12   a22   a32   a42   a52  …an2      0            a12 

  
      a13   a23   a33   a43   a53  …an3      0      =    a13 

  
      a14   a24   a34   a44   a54  …an4      0            a14 

     …  

  
   a1n   a2n   a3n   a4n  a5n  …ann       0             a1n  

 
The co-efficient vector obtained is as expected. 
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11.1 Computation of Transformation Matrix

 
Consider that the vector space 1 is spanned by the 4 basis as given below. 

 
  1                        0                   0                    0  
v1=      0            v2=    1         v3=    0         v4=     0          
            0                       0                   1                    0     
            0                       0                    0                    1    
 
 
 
Every vector in the space spanned by the basis vector given above is 

mapped to the vector in  vector space 2 called as Fourier space. Fourier 
transformation of the basis vectors v1, v2, v3, v4 are given as  

 
T(v1)  = [1     1     1     1 ]T 
 
T(v2)  =  [1.0000     0 - 1.0000i       -1.0000    0 + 1.0000i ]T 
 
T(v3)  =  [1    -1     1    -1]T  
 
T(v4) =   [1.0000     0 + 1.0000i        -1.0000     0 - 1.0000i ]T 
 
The basis vectors of the Fourier space is given as 
 
f1  = (1/2)*  [1     1     1     1 ]T 
 
f2  =  (1/2) * [1.0000     0 - 1.0000i       -1.0000    0 + 1.0000i ]T 
 
f3  =  (1/2) * [1    -1     1    -1]T  
 
f4 =  (1/2)* [1.0000     0 + 1.0000i        -1.0000     0 - 1.0000i ]T 

 

 

The transformed vector T(v1) is represented as the linear combination of 
f1, f2, f3, f4. Note that the basis are orthonormal basis   

for the Fourier Transformation 
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The co-efficient vector is obtained as the inner product of the vector 
T(v1) with the corresponding basis. 

 
[T(v1)]T f1* = [2] [Note that the inner product complex numbers ‘a’  
and ‘b’  is computed as aTb*] 
 
[T(v1)]T f2* = [0] 
 
[T(v1)]T f1* = [ 0] 
 
[T(v1)]T f1* = [0] 
 
Therefore the co-efficient vector associated with the vector T(v1) is 

given as [2 0 0 0]T 
 
Similarly the co-efficient vector associated with the vector T(v2), T(v3) 

and T(v4)  is given as [0 2 0 0]T, [0 0 2 0]T and [0 0 0 2]T respectively. 
 
Thus the transformation matrix for the Fourier transform is given as 
 
            2 0 0 0 
            0 2 0 0 
            0 0 2 0 
            0 0 0 2 
 
 As the transformation matrix is the diagonal matrix with ‘2’ as the 

diagonal elements, the co-efficient vector for any vector in the Vector space 
1 is ‘coef ’ then the co-efficient vector for the corresponding mapped vector 
in the Vector space 2 (Fourier domain) is given be 2*c. 

Thus the Fourier transformation of the vector [2 3 4 1] is given as the  

  
   1   1   1   1           2 * 2              10 
   1   -i    -1      i           3 * 2             -2-i 
(1/2) 1   -1   1   -1           4 * 2      =      2 
   1    i   -1   -i           1 * 2             -2+2i 
 

In the same fashion, DCT, DST the transformation matrix is the diagonal 
matrix and hence the transformation values can be easily obtained using 
simple matrix multiplication as described above. 
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11.2 Basis Co-efficient Transformation 

Consider the 4-dimensional vector space which are spanned by the basis 
u1=[1 0 0 0]T, u2=[0 1 0 0]T and u3=[0 0 1 0]T  and u4=[0 0 0 1]T. Consider 
another set of orthonormal basis which spans the space. 

 
v1  = (1/2)*  [1     1     1     1 ]T 
 
v2  =  (1/2) * [1.0000     0 - 1.0000i       -1.0000    0 + 1.0000i ]T 
 
v3  =  (1/2) * [1    -1     1    -1]T  
 
v4 =  (1/2)* [1.0000     0 + 1.0000i        -1.0000     0 - 1.0000i ]T 

 
Any vector in the space can be represented as the linear combination of 

u1, u2, u3 and u4. The same vector in the space can be represented as the 
linear combination of v1, v2, v3 and v4. 

Consider the transformation T which transforms the vector v is 
represented as T(v) and is equal to v.  

 
v is represented as the linear combination of u1 u2 u3 and u4.Let the co-

efficient vector be [p1 p2 p3 p4] 
 
T(v)=v is represented as the linear combination of v1,v2,v3,v4.Let the 

co-efficient vector be [q1 q2 q3 q4]. 
 
The transformation matrix which converts the co-efficient vector                    

[p1 p2 p3 p4] into the co-efficient vector [q1 q2 q3 q4] is transformation 
matrix for the change of basis. It is obtained as described below. 

 
T([1 0 0 0])=[1 0 0 0] is represented as 0.5*v1+0.5*v2+0.5*v3+0.5*v4 
 
T([0 1 0 0])=[0 1 0 0] is represented as                                                     
0.5*v1 + ( 0.5 i )*v2+ (-0.5)*v3+ (-0.5 i)*v4 
 
T([0 0 1 0])=[0 0 1 0] is represented as                                                     
0.5*v1 + (- 0.5)*v2+ (0.5)*v3+ (- 0.5 ) *v4 
 
T([0 0 0 1])=[0 0 0 1] is represented as                                                     
0.5*v1 + (- 0.5 i)*v2+ (- 0.5)*v3+ ( 0.5 i) *v4 
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There the transformation matrix which converts the co-efficients of the 
particular basis into the co-efficients of the another set of basis belongs to 
the same space is given as  

 
                                     

                  0.5    0.5     0.5      0.5 
                     0.5    0.5i   -0.5    -0.5i                     
                     0.5   -0.5     0.5    -0.5 
                     0.5   -0.5i    -0.5      0.5i 
 
 
 
For instant consider the vector [2 3 4 5] can be represented using the 

basis u1, u2, u3, u4 with co-efficients [2 3 4 5]. The vector [2 3 4 5] can be 
represented using the basis v1, v2, v3, v4 using the co-efficients computed 
as    

 
                                     

                  0.5    0.5     0.5      0.5           2                7  
                     0.5    0.5i   -0.5    -0.5i           3     =      -1-i 
                     0.5   -0.5     0.5    -0.5             4               -1 
                     0.5   -0.5i   -0.5     0.5i           5            -1+i 
 
 
 
(i.e.) 7*(v1)+(-1-I)*v2+(-1)*v3+(-1+i)*v4 = [2 3 4 5] 
 
Thus the transformation matrix which converts the co-efficients  of the 

particular vector represented using the basis  ‘u’  into the co-efficients of the 
same vector represented using the basis ‘v’. 

 If there are only few significant co-efficients obtained when represented 
using the particular set of basis, data compression is achieved. (See chapter 
4). This property is called data compaction property of the transformation. 
Discrete Cosine Transformation (DCT) is having very high data compaction 
property. Hence JPEG (Joint Photographic expert group) is using DCT for 
image compression. Also JPEG2000 standard is using DWT (Discrete 
Wavelet Transformation) for image compression. 
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11.3 Transformation Matrix for 

Consider the group of two dimensional vectors collected randomly forms the 
vector space. This is consider as the subspace spanned by the independent 

basis E1=[-0.2459   -0.9693]T and E2 =[-0.9693    0.2459]T (see section 2-1). 
The vector [1 0] is represented as the linear combination u1 and u2 as [1 

0] = 1*u1+0*u2.The transformed vector of [1 0] is the same vectors itself 
(i.e.)[1 0].The vector [1 0] is represented as the linear combinations of Eigen 

[0 1] is represented as the linear combination of u1 and u2 as [0 1]T = 
0*u1+1*u2 and its transformed vector [0 1] is represented as the linear 
combination of E1 and E2 as given by  -0.9693*E1 +0.2459*E2.  

Thus the transformation matrix which converts the co-efficients of  the 
basis  u1 and u2 into the co-efficients of the Eigen basis E1 and E2 for the 
particular vector in the space. 

 
 
TM   =  -0.2459   -0.9693 
        
     -0.9693   -0.2459 
 
 

  Note that the transformation matrix consists of Eigen basis arranged 
row wise.   

 

11.4 Transformation Matrix for 

Consider the 8-dimensional space spanned by the 8 independent vectors  
 
u1= [1 0 0 0 0 0 0 0]T  u2= [0 1 0 0 0 0 0 0]T  u3= [0 0 1 0 0 0 0 0]T 

u4= [0 0 0 1 0 0 0 0]T  u5= [0 0 0 0 1 0 0 0]T  u6= [0 0 0 0 0 1 0 0]T 

u7= [0 0 0 0 0 0 1 0]T  u8= [0 0 0 0 0 0 0 1]T   

 

Obtaining Co-efficient  
of Eigen Basis 

Obtaining Co-efficient 
of Wavelet Basis 

vectors u1 = [1 0 ]T and   u2=[0 1] T. The subspace  is spanned by the Eigen 

basis given by -0.2459*E1+(-0.9693)*E2 =[ 1  0 ]. Similarly the vector  
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Consider any vector in the space can also be represented as the linear 
combination of Wavelet basis as described below. Note that orthonormal 
basis 

 
w1=  (1/sqrt(8)) [1 1 1 1 1 1 1 1]T  

w2=  (1/sqrt(8)) [1 1 1 1 -1 -1 -1 -1]T  

w3= (1/sqrt(4)) [1 1 -1 -1 0 0 0 0]T 

w4= (1/sqrt(4)) [0 0 0 0 1 1 -1 -1]T  

w5=  (1/sqrt(2)) [1 -1 0 0 0 0 0 0]T   

w6= (1/sqrt(2)) [0 0 1 -1 0 0 0 0]T 

w7= (1/sqrt(2)) [0 0 0 0 1 -1 0 0]T  

w8= (1/sqrt(2)) [0 0 0 0 0 0 1 -1]T 

 

As described in the section 11.3 the transformation matrix which 
converts the co-efficient of the basis u1,u2,…u8 into the co-efficient of the 
basis w1, w2, w3,…w8 for the particular vector is computed and is displayed 
below. 

 
0.3536   0.3536   0.3536     0.3536   0.3536   0.3536   0.3536   0.3536   
0.3536   0.3536   0.3536     0.3536   -0.3536   -0.3536   -0.3536   -0.3536   
0.5000   0.5000   -0.5000    -0.5000    0 0 0 0 
0 0 0 0 0.5000  0.5000   -0.5000  -0.5000  
0.7071  - 0.7071   0 0 0 0 0 0 
0 0 0.7071    0.7071  0 0 0 0 
0 0 0 0 0.7071  0.7071  0 0 
0 0 0 0 0 0 0.7071   0.7071  

 
 
Note that the transformation matrix consists of the wavelet basis arranged 

row wise. 
 

12. SYSTEM STABILITY TEST USING
EIGEN VALUES 

 

Input signal and output signal of the system are usually related with 
differential equation. The output signal is solved using the eigen 
decomposition as described in the section 9. The general expression of the 
output signal is of the form output (t)=c1 eλ1 t   E1 +c2 eλ2 t  E2 + c3 eλ3 t  E3. 
where λ1, λ2 and λ3 are the eigen values. E1, E2 and E3 are the eigen 
vectors of the matrix described in the section 9. 
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From the above equation it is observed that Output (t) is bounded only 
when all the eigen values are less than 0 (i.e.) negative values. This is the test 
for stability of the system using eigen values. 

13. POSITIVE DEFINITE MATRIX TEST FOR 
MINIMA LOCATION OF THE FUNCTION    
 F (X1, X2, X3, … XN) 

Represent the equation as the product of three matrices 
 
[x1 x2 x3]       2     -1     0          x1 
                     -1      2     -1          x2 
                      0      -1      2          x3  
 
 
If the matrix     2    -1    0     is the positive definite matrix, then the  
                        -1    2    -1       
                         0    -1     2  

 
function f(x) = 2 x1

2  + 2 x2
2  +2 x3

2 -2 x1 x2 -2 x2 x3  is the minima function 
and the minima occurs at the point where the slope is zero (i.e.) first 
derivative is zero. If all the eigen values of the matrix are positive, then the 
matrix is positive definite matrix. Thus sign of all the eigen values of the 

14. WAVELET TRANSFORMATION USING

The 1D signal can be analyzed by using wavelet transformation. This can be 
used to compress the data and to denoise the signal. Wavelet transformation 
of the 1D signal contains the information regarding the low frequency 
content of the signal, which is called approximation co-efficients and the 

Consider the function 2 x1
2  + 2 x2

2  +2 x3
2 -2 x1 x2 -2 x2 x3. To find the 

minima of the function f(x), partial differentiate the function with respect to 
x1, x2, x3 and equate to zero and solve for x1, x2, x3 to get (x0, y0, z0). The 
slope at this point (x0, y0, z0) is  zero. To confirm that the points so obtained 
are minima, all the partial second derivative values are positive. This is 
tested using matrix technique as described below. 

matrix defined above decides whether the point (x0, y0, z0) at which the slope 
is zero is minima or not. 

MATRIX METHOD 
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information regarding high frequency content of the signal, which is called 
detail co-efficients. The wavelet transformation of the signal using matrix 
method is described below. 

 

14.1 Haar Transformation 

Consider the signal with number of samples N. Form the Haar matrix with 
size NXN and with the diagonal matrices filled up with the matrix given 
below.  

 
                              ½          ½ 
                              ½        - ½ 
          
 
For N=8, the matrix obtained is  
 
      
              ½     ½     0      0       0     0      0      0  

½  - ½    0     0      0      0      0     0 
     0     0     ½     ½     0     0     0     0 

TM1                                 0     0     ½    -½    0     0     0     0 
     0     0     0     0      ½    ½    0     0 
     0     0     0     0      ½   - ½    0      0  
     0     0     0     0      0     0     ½    ½ 
     0     0     0     0      0     0     ½    -½ 

 
Multiply the matrix TM1 with the is the signal data [d0 d1 d2 d3 d4 d5d6 

d7 ] to obtain first level decomposition of Haar transformation. 
 
I level Haar decomposition of the signal 
 
[½ (d0+d1)   ½ (d2-d3)   ½ (d4+d5) ½ (d6-d7) ] 
 
The samples ½ (d0+d1) ½ (d4+d5) are the average samples. They are 

called approximated co-efficients of the signal at the first level. The samples 
½ (d2-d3) ½ (d6-d7) are called detail co-efficients of the signal at the first 
level. 

 
Thus Approximation 1 = [½ (d0+d1) ½(d4+d5)] 
 
Detail 1= [½ (d2-d3) ½(d6-d7) ] 
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 The approximated co-efficients of the signal obtained in the first level 
(Approximation 1) is further decomposed using Haar transformation to 
obtain approximation and detail co-efficients of the second level using the 
transformation matrix as given below. 

 
    ½     ½    0    0 

TM2    =             ½   -½    0     0  
 0     0     ½    ½ 
 0     0    ½  -½  

 
Multiply the matrix [TM2] with the approximated data obtained in the 

first level decomposition to obtain approximation and detail co-efficient of 
the signal at the second level. 

 
Thus second level approximation is given as  
 
Approximation 2 = [½ ( ½ (d0+d1) + ½ (d4+d5) )]   
                                            
                            =  ¼ [ d0+d1+d4+d5] 
 
Detail 2 =    [½ ( ½ (d0+d1) - ½ (d4+d5) )]   
 
               =  ¼ [d0 + d 1 - d4 - d5] 
  
 
Note that approximation co-efficient in the first level and second level 

are the low frequency information derived from the signal. Similarly the 
detail co-efficient in the first level and the second level are the high 
frequency information derived from the signal. 

The Approximation 2, Detail 1 and Detail 2 completely describes the 
signal. It is possible to reconstruct the signal using Approximation 2, Detail2 
and Detail 2 co-efficients of the signal. 

 
Reconstruction of the signal is obtained using the inverse Haar matrix   
Formed with the diagonal matrices filled up with the matrix 
 

1   1 
1  -1 
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For instance steps involved in reconstructing the signal for N=8 is given 
below. 

 
• Form the vector with the elements filled up with approximation 2 and 

detail 2 
 
  [¼ [ d0+d1+d4+d5]    ¼ [d0 + d 1 - d4 - d5] ] 

 
• Form the Inverse transformation matrix 1 
     
          1     -1      0     0 
                 1     -1      0    0 
[ITM1] =          0     0      1    1 
             0     0      1    -1  
 
 
• Multiply the vector with the matrix to obtain Approximation 1 and detail 

1 in the jumbled order as [½ (d0+d1)   ½ (d2-d3)   ½ (d4+d5) ½(d6-d7) ] 
 
• Form the inverse transformation matrix ITM2 

 
[ITM2]     =    1     1     0     0     0     0     0     0 
           1     -1     0      0      0     0      0     0 
            0     0      1     1      0     0      0     0  
                        0     0      1     -1      0      0      0     0  
                        0     0      0      0     1     1      0     0  
                        0     0      0      0     1    -1      0     0  
                        0     0      0      0     0     0      1      1  
                        0     0      0      0      0      0      1      -1  
 
 

• Multiply the vector obtained in jumbled order as mentioned above with 
the matrix [ITM2] to obtain the original signal [d0 d1 d2 d3 d4 d5 d6 d7] 

 

14.1.1 Example  

Consider the signal x(n) =a=sin(2*pi*n)+sin(2*pi*100*n) with number 
of samples =512 and sampling frequency Fs =512.  The Haar 
transformation is applied to the signal. The approximation and detail co-
efficients are obtained as described above and is displayed below for 
illustration. Note that approximation co-efficients is the low frequency 
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Figure 3-7. Original signal used for Haar decomposition 

Figure 3-8. Approximation co-efficients obtained using Haar transformation  

information derived from the signal and detail co-efficients is the high 
frequency information derived form the signal. 

The signal is reconstructed back using inverse Haar transformation and 
the original signal along with reconstructed signal is displayed below. 
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Figure 3-9. Detail co-efficients obtained using Haar transformation 

 

Figure 3-10. Illustration of Inverse Haar Transformation 
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14.1.2 M-file for haar forward and inverse transformation 

___________________________________________________________ 
 
haartrans.m 
 
i=0:1/511:1; 
a=sin(2*pi*i)+sin(2*pi*100*i); 
plot(a) 
figure 
s=length(i); 
for i=1:1:log2(s) 
    temp=createhaarmatrix(length(a))*a'; 
    temp=reshape(temp,2,length(temp)/2); 
    approx{i}=temp(1,:); 
    det{i}=temp(2,:); 
    a=approx{i}; 
end 
for k=1:1:(length(approx)-1) 
subplot((length(approx)-1),1,k) 
plot(approx{k}) 
title(strcat('approx',num2str(k))) 
end 
subplot( 
figure 
for k=1:1:(length(approx)-1) 
subplot((length(approx)-1),1,k) 
plot(det{k}) 
title(strcat('detail',num2str(k))) 
end 
___________________________________________________________ 
createhaarmatrix.m 
 
function [res]=createhaarmatrix(m) 
temp1=[ones(1,m/2);(-1)*ones(1,m/2)]; 
temp1=reshape(temp1,1,size(temp1,1)*size(temp1,2)); 
d1=temp1.*(1/2); 
temp2=[ones(1,m/2);zeros(1,m/2)]; 
temp2=reshape(temp2,1,size(temp2,1)*size(temp2,2)); 
d2=(1/2)*temp2(1:1:length(temp2)-1); 
res=diag(d1)+diag(d2,1)+diag(d2,-1); 
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haarinvtrans.m   
 
app=approx{8}; 
for i=(log2(s)-1):-1:1 
    a=[app;det{i}]; 
    a=reshape(a,1,size(a,1)*size(a,2)); 
    app=createinvhaarmatrix(length(a))*a'; 
    app=app'; 
end 
figure 
subplot(2,1,1) 
i=0:1/511:1; 
a=sin(2*pi*i)+sin(2*pi*100*i); 
plot(a) 
title('Original signal'); 
subplot(2,1,2) 
plot(app) 
title('Reconstructed signal'); 
                               
__________________________________________________________ 
 
createinvhaarmatrix.m 
 
function [res]=createinvhaarmatrix(m) 
temp1=[ones(1,m/2);(-1)*ones(1,m/2)]; 
temp1=reshape(temp1,1,size(temp1,1)*size(temp1,2)); 
d1=temp1; 
temp2=[ones(1,m/2);zeros(1,m/2)]; 
temp2=reshape(temp2,1,size(temp2,1)*size(temp2,2)); 
d2=temp2(1:1:length(temp2)-1); 
res=diag(d1)+diag(d2,1)+diag(d2,-1); 
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14.2 Daubechies- 4 Transformation 

Consider the signal consists of N samples. Form the Daubechies 
Transformation Matrix [DTM 1] with diagonal matrices filled up with the 
matrix ‘D’ given below. 

 
 
              [(1+√3) / 4√2]    [(3+√3) / 4√2]    [(3-√3) / 4√2]    [(1-√3) / 4√2]     
 
              [(1-√3) / 4√2]    -  [(3-√3) / 4√2]     [(3+√3) / 4√2]   -(1+√3) / 4√2]  
 
                                
For simplicity matrix D is represented as follows. 
 

a0 a1 a2 a3 
         D = 

b0 b1 b2 b3 
 

 
For N=8, the matrix ‘DTM1’ is formed as given below. 
 

 
a0 a1 a2 a3 0 0 0 0 0 0 
b0 b1 b2 b3 0 0 0 0 0 0 
0 0 a0 a1 a2 a3 0 0 0 0 
0 0 b0 b1 b2 b3 0 0 0 0 
0 0 0 0 a0 a1 a2 a3 0 0 
0 0 0 0 b0 b1 b2 b3 0 0 
0 0 0 0 0 0 a0 a1 a2 a3  
0 0 0 0 0 0 b0 b1 b2 b3  

 
 

Note that the matrix ‘D’ are arranged with overlapping in the diagonal of 
the matrix ‘DTM 1’. Compare with the Haar transformation in which the 
matrix are arranged without overlapping. Also note that the size of the 
matrix is of size 8X10 for the signal of size 1x8. So 1x8 sized signal is 
extended to the size 1x10 with 9th and 10th samples are filled up with 1st and 
2nd samples respectively. [Assuming that the signals are repeated cyclically]. 

The steps involved in obtaining the approximation and detail co-
efficients are as described in the section 14.1 for Haar transformation. 
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Similarly to reconstruct the signal, inverse Daubechies matrix is formed 
with the diagonal matrices filled up with the matrix [ID] as given below. 

 
 

[ID] =     a3   b3   a1   b1 
                a4    b4   a2   b2  

 
 

For N=8 the second level Inverse Daubechies matrix DITM2 is given as  
 

a3 b3 a1 b1 0 0 0 0 0 0 
a4 b4 a2 b2 0 0 0 0 0 0 
0 0 a3 b3 a1 b1 0 0 0 0 
0 0 a4 b4 a2 b2 0 0 0 0 
0 0 0 0 a3 b3 a1 B1 0 0 
0 0 0 0 a4 b4 a2 B2 0 0 
0 0 0 0 0 0 a3 B3 a1 b1 
0 0 0 0 0 0 a4 B4 a2 b2 

 

Similar to the DTM 1,size of the matrix is 8x10. Also similar to forward 
transformation, 1x8 sized wavelet co-efficients obtained in the forward 
transformation is extended to 1x10-sized co-efficients with 1st and 2nd co-
efficients filled up with the last two co-efficients of the wavelet co-efficients. 

The steps involved in reconstructing the signal are same as that of the 
Haar transformation except that in Daubechies matrix the diagonal matrices 
are arranged with overlapping whereas in Haar matrix there is no 
overlapping.  

 

14.2.1 Example 

Consider the signal x(n) =a=sin (2*pi*n)+sin(2*pi*100*n) with number of 
samples = 128 and sampling frequency Fs = 128. The Daubechies 
transformation is applied to the signal The approximation and detail co-
efficients are obtained as described above and is displayed below for 
illustration. Note that approximation co-efficients is the low frequency 
information derived from the signal and detail co-efficients is the high 
frequency information derived from the signal. 
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Figure 3-11. Original signal used for Daubechies 4 wavelet decomposition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-12. Approximation co-efficients at different levels 
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Figure 3-13 Detail Co-efficients at different levels  

 

 

 

 

 

 

 

 

 

Figure 3-14 Illustration of Inverse Daubechies 4 transformation 
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14.2.2 M-file for daubechies 4 forward and inverse transformation 

___________________________________________________________ 
daub4trans.m 
 
i=0:1/127:1; 
a=sin(2*pi*i)+sin(2*pi*100*i); 
plot(a) 
figure 
s=length(a); 
for i=1:1:log2(s) -2  
    a=[a a(1:2)]; 
    i 
    temp=createdaubmatrix(length(a)-2)*a'; 
    temp=temp(1:1:length(temp)); 
    temp=reshape(temp,2,length(temp)/2); 
    approx{i}=temp(1,:); 
    det{i}=temp(2,:); 
    a=approx{i}; 
end 
for k=1:1:(length(approx)-1) 
subplot((length(approx)-1),1,k) 
plot(approx{k}) 
title(strcat('approx',num2str(k))) 
end 
figure 
for k=1:1:(length(approx)-1) 
subplot((length(approx)-1),1,k) 
plot(det{k}) 
title(strcat('detail',num2str(k))) 
end 
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______________________________________________________________________ 
createdaubmatrix.m 
 
function [res]=createdaubmatrix(m) 
a=[(1+sqrt(3))/(4*sqrt(2)) (3+sqrt(3))/(4*sqrt(2))  (3-sqrt(3))/(4*sqrt(2))                               
(1-sqrt(3))/(4*sqrt(2))];    
b=[(1-sqrt(3))/(4*sqrt(2)) -(3-sqrt(3))/(4*sqrt(2))  (3+sqrt(3))/(4*sqrt(2))                                    
-(1+sqrt(3))/(4*sqrt(2))];    
t1=repmat([a(2) b(3)],1,(m/2)); 
t2=repmat([a(3) b(4)],1,m/2); 
t3=repmat([a(4) 0],1,m/2); 
t4=repmat([b(1) 0],1,m/2); 
res=diag(repmat([a(1) b(2)],1,m/2)) + diag(t1(1:1:m-1),1)                                   
+diag(t2(1:1:m-2),2)+diag(t3(1:1:m-3),3)+diag(t4(1:1:m-1),-1) ; 
res=[res   [zeros(1,m-2) res(1,3) res(2,3)]'  [zeros(1,m-2) res(1,4) res(2,4)]']; 
______________________________________________________________________ 
 
daub4invtrans.m 
 
app=approx{log2(s)-2}; 
for i=(log2(s)-2):-1:1 
    a=[app;det{i}]; 
    a=reshape(a,1,size(a,1)*size(a,2)); 
    a=[ a(length(a)-1:1:length(a))  a]; 
    app=createdaubinvmatrix(length(a)-2)*a'; 
    app=app'; 
end 
figure 
subplot(2,1,1) 
i=0:1/127:1; 
a=sin(2*pi*i)+sin(2*pi*100*i); 
plot(a) 
title('Original signal'); 
subplot(2,1,2) 
plot(app) 
title('Reconstructed signal'); 
 
________________________________________________________________________ 
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createdaubinvmatrix.m 
 
function [res]=createdaubinvmatrix(m) 
a=[(1+sqrt(3))/(4*sqrt(2)) (3+sqrt(3))/(4*sqrt(2))  (3-sqrt(3))/(4*sqrt(2))                                

  (1-sqrt(3))/(4*sqrt(2))];    
b=[(1-sqrt(3))/(4*sqrt(2)) -(3-sqrt(3))/(4*sqrt(2))  (3+sqrt(3))/(4*sqrt(2))                                     

-(1+sqrt(3))/(4*sqrt(2))];    
t1=repmat([b(3) a(2)],1,(m/2)); 
t2=repmat([a(1) b(2)],1,m/2); 
t3=repmat([b(1) 0],1,m/2); 
t4=repmat([a(4) 0],1,m/2); 
res=diag(repmat([a(3) b(4)],1,m/2)) + diag(t1(1:1:m-1),1)                                   

+diag(t2(1:1:m-2),2)+diag(t3(1:1:m-3),3)+diag(t4(1:1:m-1),-1) ;     
res=[res   [zeros(1,m-2) res(1,3) res(2,3)]' [zeros(1,m-2) res(1,4) res(2,4)]']; 
________________________________________________________________________ 
 
 
 

 
 
 
 

 



 

Chapter 4 

SELECTED APPLICATIONS 
Algorithm Collections 

 
 

1. EAR PATTERN RECOGNITION USING

Ear pattern recognition is the process of classifying the unknown ear image 
as one among the finite category. The following is the report on the 
experiment done on ear pattern recognition with the small database. The 
experiment uses twelve ear images collected from four persons. Three 
images are collected from each person. Among them, eight images are used 
to train the classifier. Remaining four images are used to test the classifier. 
The steps involved in Ear pattern recognition using Eigen ears are 
summarized below. 

1.1 Algorithm 

Step 1: Mean and variance of the collected ear images are made almost 
equal using mean and variance normalization technique described in 
the section 3-5. Mean and variance of one of the image from the 
collections is treated as desired mean and desired variance. (See 
figure 4-1) 

EIGEN EAR 
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 Step 2: Reshape the matrix into the vector whose elements are collected   
column by column from the matrix. 

 
Step 3: Co-variance matrix of the collected vectors is computed. Eigen 

values of the co-variance matrix and the Eigen vectors 
corresponding to the significant Eigen vectors are computed (In this 
example 6 Eigen vectors are computed) 

 
Step 4: Eigen vectors are reshaped into the matrix of the original size. They 

are called Eigen ears as given in the figure 4-2 
 
Step 5: The Eigen ears are orthogonal to each other. They can be made 

orthonormal to each other by normalizing the vectors. 
 
Step 6: For every ear image matrix, feature vectors are obtained as the inner 

product of eigen basis vectors and the reshaped ear image matrix . 
 
Step 7: Mean vector of the feature vectors collected from the same person is 

treated as the template assigned to that corresponding person. This is 
repeated for other persons also. Thus one template is assigned to 
every person and they are stored in the database. 

 
Step 8: To classify the unknown ear image as one among the four cate-

gories, template is computed as the inner product of Eigen basis 
vectors (Eigen ears) with reshaped normalized unknown ear image. 
The template thus obtained is compared with the group of templates 
stored in the database using Euclidean distance. 

 
Step 9: Template corresponding to the minimum Euclidean distance is 

selected and the person corresponding to that template is declared as 
the identified person. 
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Figure 4-1

Figure 4-2

. Sample Ear Images before and after normalization 

. Eigen Ears corresponding to the largest Eigen values 
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1.2 M-program for Ear Pattern Recognition  

___________________________________________________________ 
earpatgv.m 
 
clear all                                                                                                      
close all 
k=1; 
md=117; 
vd=139; 
for i=1:1:4 
    for j=1:1:1 
        s=strcat('ear',num2str(i),num2str(j),'.bmp'); 
        temp=imread(s); 
        temp=rgb2gray(temp); 
        temp1=reshape(temp,1,size(temp,1)*size(temp,2)); 
        temp1=double(temp1); 
        temp1=meanvarnorm(temp1,md,vd); 
        final{k}=temp1; 
    k=k+1;   
    end 
end 
f=cell2mat(final'); 
f=double(f); 
c=cov(f);         
[E,V]=eigs(c); 
for i=1:1:6 
F=reshape(E(:,i),85,60); 
subplot(2,3,i) 
colormap(gray) 
imagesc(F) 
end 
 
%Feature vector 
 
for i=1:1:4 
    s=strcat('ear',num2str(i),num2str(1),'.bmp'); 
    s=imread(s); 
    s=rgb2gray(s); 
    s=double(s); 
    s1=reshape(s,1,size(s,1)*size(s,2)); 
    s1=meanvarnorm(s1,md,vd); 
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    F=[];     
    for j=1:1:6 
    F=[F sum(s1.*E(:,j)')]; 
    end 
    FEA{i}=F; 
end 
save FEA FEA E md vd 
 
___________________________________________________________ 
 
testinggv.m 
 
load FEA 
%Testing 
[filename, pathname, filterindex] = uigetfile('*.bmp', 'Pick an BMP-file'); 
s=imread(strcat(pathname,filename)); 
s=rgb2gray(s); 
s=double(s); 
s1=reshape(s,1,size(s,1)*size(s,2)); 
s1=meanvarnorm(s1,md,vd); 
F=[];     
for j=1:1:6 
F=[F sum(s1.*E(:,j)')]; 
end 
S=[sum((FEA{1}-F).^2) sum((FEA{2}-F).^2) sum((FEA{3}-F).^2) sum((FEA{4}-F).^2)]; 
[P,Q]=min(S); 
switch Q 
    case 1 
    A=imread('ear11.bmp');         
    A=rgb2gray(A); 
    g=gray(256); 
    msgbox('First person','Pattern Recognition','custom',A,g) 
    case 2 
    A=imread('ear21.bmp');         
    A=rgb2gray(A); 
    g=gray(256); 
    msgbox('Second person','Pattern Recognition','custom',A,g)   
    case 3 
    A=imread('ear31.bmp');         
    A=rgb2gray(A); 
    g=gray(256); 
    msgbox('Third person','Pattern Recognition','custom',A,g) 
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            case 4 
    A=imread('ear41.bmp');         
    A=rgb2gray(A); 
    g=gray(256); 
    msgbox('Fourth person','Pattern Recognition','custom',A,g)         
end 
_______________________________________________________________________ 

1.3 Program Illustration 
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2. EAR IMAGE DATA COMPRESSION USING 

Collected ear images as mentioned in the section 1 are represented as the 
group of 85x60 sized matrices. The elements of the matrices are stored with 
the numbers ranging from 0 to 255.8 bits are required to store every number. 
(i.e.) 8*85*60=40800 bits are required to store the single gray image. 
Therefore there is the need to identify the technique for storing the image 
data with reduced number of bits. This technique of representing the data 
with reduced number of bits by removing the redundancy from the data is 
called Image data compression. 

Ear image data compression using eigen basis is the compression 
technique which exploits psycho visual property of the eye. This technique is 
used to compress the similar images belong to the particular group. In the 
experiment described below, the group considered is the ear images 
collected from many persons. The steps involved in Image data compression 
using Eigen basis are described below. 

2.1 Approach 

Step 1: 8x8 sized subblocks of the ear image matrix are collected randomly 
from the ear image database. 

 
Step 2: Reshape the subblock matrix into the vector of size 1x64. 
 
Step 3: Thus set of 100 vectors are collected randomly as described in step1 

and step2. 
 
Step 4: Co-variance matrix is computed for the collected vectors.  
 
Step 5: Eigen values are computed for the covariance matrix. Eigen vectors 

corresponding to the significant Eigen values are computed. They are 
called Eigen basis, which spans the Ear vector space, which consists of 
all the vectors available as the reshaped sub blocks in the ear images. 
Note that Eigen vectors thus obtained are orthonormal to each other. 

 
Step 6: Number of Eigen basis obtained as described in the step 4 is less 

than 64 (vector size). This number is called as the dimension of the 
Ear vector space. 

  
Step 7: To compress the ear image, ear image matrix is divided into 

subblocks of size 8x8. Reshape every sub block into the vector of 

EIGEN BASIS
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size 1x64.  Represent this vector as the linear combination of Eigen 
basis obtained as described in the step 4. The co-efficients are 
obtained as the product of transformation matrix with the vector. 
Transformation matrix is the matrix filled up with Eigen basis 
arranged in the row wise. Number of Eigen co-efficients obtained is 
equal to the dimension of the Ear vector space. 

  
Step 8: Thus every 1x64 sized vector obtained from every sub blocks of the 

ear image is mapped into the vector of size [1Xb], where ‘b’ is the 
dimension of the ear vector space which is less than 64. Thus every 
sub blocks of the ear image is stored with ‘b’ values which is very 
much less than 64. In this experiment, the value of ‘b’ is 
20<<64. Thus compression with the ratio 3.2:1 is achieved using 
eigen basis technique. 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-3. Ear image compression with the ratio 3.2:1 using Eigen basis 

Step 9: Every sub blocks of the decompressed image are obtained as the 
linear combinations of Eigen basis with the corresponding co-
efficients associated with that sub block. The compressed and 
decompressed image of the sample ear image is displayed in the 
figure 4-3. 
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2.2 M-program for Ear Image Data Compression 

_________________________________________________________ 
earcompgv.m 
 
m=1; 
for i=1:1:4 
    for j=1:1:3 
        for k=1:1:20  
        s=strcat('ear',num2str(i),num2str(j),'.bmp'); 
        temp=imread(s); 
        temp=rgb2gray(temp); 
        x=round(rand*((size(temp,1)-8)))+1; 
        y=round(rand*((size(temp,2)-8)))+1; 
        t=temp(x:1:(x+7),y:1:(y+7)); 
        final{m}=double(reshape(t,1,64)); 
    m=m+1;   
    end 
end 
end 
data=cell2mat(final'); 
c=cov(data); 
[E,V]=eig(c); 
%Collecting significant Eigen values 
E=E(:,45:1:64); 
%Transformation matrix 
TM=E'; 
save TMEIG TM 
%Image to be compressed 
A=imread('ear11.bmp'); 
B=rgb2gray(A); 
C=blkproc(B,[8 8],'compresseig(x)'); 
D=blkproc(C,[size(E,2), 1],'decompresseig(x)'); 
figure 
subplot(2,1,1) 
imshow(B) 
title('EAR IMAGE BEFORE COMPRESSION') 
subplot(2,1,2) 
D=D(1:1:size(B,1),1:1:size(B,2)); 
imshow(uint8(D)) 
title('CORRESPONDING EAR IMAGE AFTER COMRESSION USING EIGEN BASIS') 
_______________________________________________________ 
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compresseig.m 
 
function [res]=compresseig(x) 
x=double(reshape(x,1,64)); 
load TMEIG 
res=TM*x'; 
________________________________________________________________________ 
 
decompresseig.m 
 
function [res]=decompresseig(x) 
load TMEIG 
res=reshape(TM'*x,8,8); 
________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-4. Basis  used for Ear Image Compression 
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3. ADAPTIVE NOISE FILTERING USING 

BACKPROPAGATION NEURAL NETWORK   

Consider the signal transmitted through the noisy channel gets corrupted 
with the noise. The corrupted signal is given as the input to the FIR filter as 
given below to filter the noisy part of the signal. 

Let x(n) be the noisy corrupted input signal to the system, y(n) be the 
output signal of the system which is the filtered signal and h(n) is the impulse 
response of the system. They are related mathematically as given below. 

y(n) = x(n)*h(n) 
 
⇒  

                                                  N-1 
y(n) =  Σ   h(k)x(n-k) 

                                                   k=0 
 
‘*’ is the convolution operator.  ‘N’ is the order of the filter.   For 

instance if the order of the filter is 11, 
  
y(n) = h(0)x(n) +  h(1)x(n-1) + h(2)x(n-2) + h(3)x(n-3) + h(4)x(n-4)+ 

…h(10) x(n-10) 
 
The h(0), h(1), … h(10) are the impulse response of the system, otherwise 

called as the filter co-efficients of the system. 
Obtaining the values of the filter co-efficients is the task involved in 

designing the digital filter to do specific operation. To obtain the values 
there is the need to study about the nature of the noise of the channel.  

In practical situations the reference signal is sent through the channel and 
the corresponding corrupted signal obtained as the output of the channel is 
stored. These are used for determining the filter co-efficients of the FIR 
filter. Once filter co-efficients are obtained, they are used to filter the real 
time noisy signal corrupted due to channel transmission at the receiver side. 

Figure 4-5. FIR FILTER 
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FIR Filter block as described above can also be replaced with the Back 
propagation Neural Network block as mentioned in the chapter 1 to perform 
filtering operation as described below. In this experiment the reference 
signal and its corresponding corrupted signal are assumed to be known. 

3.1 Approach 

Step 1: Back propagation neural network (see chapter 1) is constructed with 
11 input Neurons and 1 output neuron and 5 Hidden neurons (say) 

  
Step 2: In signal processing point of view, input of the neural network is the 

corrupted signal and the output of the neural network is the filtered 
signal.  

 
Step 3: During the training stage, the elements of the Input vectors are the 

samples collected from the corrupted reference signal. Similarly 
element of the output vector is the corresponding sample collected 
from the reference signal.  

 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 4-6.
 

BPNN Filter Structure
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 The Hetero association table relating the sample input vector and the 
corresponding output vector used for training the constructed ANN is given 
below. Note that x is the corrupted reference signal and y is the reference 
signal 

 
Step 4: Train the Artificial Backpropagation Neural Network as described 

in the chapter 1. Store the Weights and Bias. 
 
Step 5: Now the BPNN filter is ready to filter the original corrupted signal. 
 

3.2 M-file for Noise Filtering Using ANN 

_______________________________________________________ 
 
noisefiltuanngv.m 
 
%Noise filtering using ANN 
A=wavread('C:\Program Files\NetMeeting\Testsnd'); 
B=A(:,2); 
B=B(6001:1:7000,1); 
B=B'; 
B=(B+1)/2; 
 

Table 4-1. Sample Hetero Association table relating input vectors and output vectors

 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 Y 

X(10) X(9) X(8) X(7) X(6) X(5) X(4) X(3) X(2) X(1) X(0) Y(0) 

X(11) X(10) X(9) X(8) X(7) X(6) X(5) X(4) X(3) X(2) X(1) Y(1) 

X(12) X(11) X(10) X(9) X(8) X(7) X(6) X(5) X(4) X(3) X(2) Y(2) 

…            

X(16) X(15) X(14) X(13) X(12) X(11) X(10) X(9) X(8) X(7) X(6) Y(16) 

X(17) X(16) X(15) X(14) X(13) X(12) X(11) X(10) X(9) X(8) X(7) Y(17) 

X(18) X(17) X(16) X(15) X(14) X(13) X(12) X(11) X(10) X(9) X(8) Y(18) 

X(19) X(18) X(17) X(16) X(15) X(14) X(13) X(12) X(11) X(10) X(9) Y(19) 

X(20) X(19) X(18) X(17) X(16) X(15) X(14) X(13) X(12) X(11) X(10) Y(20) 
…            

of the BPNN 
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%Assumed channel characteristics which is disturbing the signal. 
 
H=[0.7071  -0.7071]; 
C=conv(H,B); 
 
%Collections 
 
INPUTVECTOR=[ ]; 
OUTPUTVECTOR=[ ]; 
 
for i=1:1:5000 
    x=round(rand*(100-12))+1; 
    INPUTVECTOR=[INPUTVECTOR;C(x:1:x+10)]; 
    OUTPUTVECTOR=[OUTPUTVECTOR;B((x+11))]; 
end 
 
W1=rand(5,11); 
B1=rand(5,1); 
W2=rand(1,5); 
B2=rand(1,1); 
nntwarn off 
[W1,B1,W2,B2]=trainbpx  

(W1,B1,'logsig',W2,B2,'logsig',INPUTVECTOR',OUTPUTVECTOR',[250 100000 0.02 
0.01]); 

save WEIGHTSNOISEFILT W1 B1 W2 B2 
D=blkproc(C,[1 1],[0 5],'dofilter(x)'); 
D=(D-0.5)*2; 
figure 
subplot(3,1,1) 
plot(B) 
title('Original signal') 
subplot(3,1,2) 
plot(C) 
title('Corrupted signal') 
subplot(3,1,3) 
plot(D) 
title('Retrieved signal') 
_________________________________________________________ 
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________________________________________________________________________ 
dofilter.m 
 
function [res]=dofilter(x) 
load WEIGHTSNOISEFILT 
res=simuff(x',W1,B1,'logsig',W2,B2,'logsig'); 

3.3 Program Illustration 

Figure 4-7 Noise Filtering using BPNN 

Note that low frequency information is lost and that is not retrieved  in  the 
filtered signal. This is due to the fact that first 100 samples are used to train 
the ANN. If the training sequence is increased, low frequency information 
can also be preserved in the filtered signal. Also note that MATLAB Neural 
Network toolbox is used to train the network. 

________________________________________________________________________ 
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4. BINARY IMAGE ROTATION USING 
TRANSFORMATION MATRIX 

 

Figure 4-8. Vector basis for Binary Image Rotation 

 
Consider the vector space spanned by the basis [1 0]T and [0 1]T . 
Transformation of the   vector [1 0] is the vector [0.7071 0.7071] that is in 
the same space. Transformed vector   is represented as the linear 
combination of the basis [1 0]T and [0 1]T  with vector co-efficient 0.7071 
and 0.7071 respectively. Similarly the transformation of the vector [0 1]T is 
the vector [-0.7071 0.7071] that is in the same space.  

The transformed vector [-0.7071 0.7071] is represented as the linear 
combination of the basis [1 0]T  and [0 1]T  with co-efficient –0.7071   and 
0.7071 respectively. 

The transformation described above rotates the vector counter clockwise 
by 450 as mentioned in the figure 4-7. 

Thus the transformation matrix used to rotate the vector counter 
clockwise by 450  is computed using the method described in the chapter 3 is 
given below. 

 
0.7071  0.7071 
0.7071  -0.7071 
 
 



4. Selected Applications 151
 

 

4.1 Algorithm 

Step 1: Read the Binary image. 
 
Step 2:  Find the position vectors of the black pixels of the Binary image. 
 
Step 3: Transform the position vectors using the transformation matrix to 

obtain the new sets of positions. 
 
Step 4: Create the blank image completely filled up with white pixels. Fill 

the selected pixels of the blank image described by the positions 
obtained in step 3 with black to obtain the rotated image. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-9. Binary Image Rotation 
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4.2 M-program for Binary Image Rotation  
with 45 Degree Anticlockwise Direction 

___________________________________________________________ 
 
binimrotationgv.m 
 
A=imread(selectfig8','bmp'); 
TM=[0.7071 0.7071;-0.7071 0.7071]; 
[X Y]=find(A==0); 
VECT=[X Y]; 
TRANSVECT=TM*VECT'; 
TRANSVECT=round(TRANSVECT-min(min(TRANSVECT))+1); 
m=max(max(TRANSVECT)); 
B=ones (m, m); 
for k=1:1:length(TRANSVECT) 
    B(TRANSVECT(1,k),TRANSVECT(2,k))=0; 
end 
figure 
subplot(2,1,1) 
imshow(A)     
title('ORIGINAL IMAGE') 
subplot(2,1,2) 
imshow(B)     
title('IMAGE AFTER 45 degree ROTATION') 

___________________________________________________________         
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5. CLUSTERING TEXTURE IMAGES USING                 
K-MEANS ALGORITHM 

To retrieve the similar images from the database, sample image looking like 
the same is used as the key. The low level features extracted from the key 
image is used as the index for searching. So the data base has to be 
maintained based on the low level feature vectors derived from the images.  
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Consider 23 texture images are  stored in the database. They are indexed 
using the low level features collected from the image itself, so that 23 texture 
images are stored under 4 categories. K-means algorithm is used to classify 
the collected texture into 4 categories so that each image in the database is 
associated with the number indicating the category. (i.e.) 1 indicates first 
category, 2 indicates second category and so on. This is called texture 
grouping and is done as described below. 

5.1 Approach 

Step 1: Every texture image in the database is divided into sub blocks of 
size 8x8. The variance of every sub blocks are calculated. They are 
arranged in the vector form of size 1x64. This is called Low-level 
feature vector extracted from the image itself. Note that elements of 
the low level feature vector can also be any other statistical 
measurements measured from the image. 

 

Step 2: The collected Low-level feature vectors are subjected to k-means 
algorithm to classify the images into four categories as described in 
the chapter 2 

 

Step 3: Thus the index number is identified for every image in the database.  
Also the centroids of the individual category are also stored. The 
centroid is the vector which is of the same size as that of the feature 
vector. [Refer chapter 2] 

 

Step 4: To retrieve the images from the indexed database that looks like the 
image which is given as the key image is described below. 

 

• Extract the low level feature vector from the key image as described in 
the step 1. 

• Compute the Euclidean distance between the computed feature vector 
and all the centroids corresponding to the individual category. The 
category corresponding to smallest Euclidean distance is selected. 

• All the images in that category is retrieved using the index number 
associated with every images 
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Figure 4-10. Texture images - Cluster 1 

Figure 4-11. Texture images - Cluster 2 

 

 
Figure 4-12. Texture images - Cluster 3 

 

Figure 4-13. Texture images - Cluster 4 
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5.2 M – program for Texture Images Clustering 

___________________________________________________________ 
 
patclasgv.m 
 
for i=1:1:23 
S=strcat(num2str(i),'.bmp'); 
temp1=rgb2gray(imread(S)); 
A{i}=temp1(1:1:40,1:1:48); 
temp2=blkproc(A{i},[8 8],'var2(x)'); 
FEA{i}=reshape(temp2,1,size(temp2,1)*size(temp2,2)); 
end 
FEAVECT=cell2mat(FEA'); 
P=kmeans(FEAVECT,4); 
for i=1:1:4 
figure     
[x,y]=find(P==i); 
for j=1:1:length(x) 
subplot(1,length(x),j) 
imshow(A{x(j)}) 
end  
end 
 
_________________________________________________________ 
 
var2.m 
 
function [res]=var2(x) 
res=var(reshape(x,1,64)); 
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6. SEARCH ENGINE USING INTERACTIVE   
GENETIC ALGORITHM 

 
Consider the small Image database stored with Low-level feature vectors 
associated with every image. Low-level feature vector associated with every 
image is the 1D vector whose elements are the statistical measurements like 
variance, kurtosis, and higher order moments etc., computed from the sub 
blocks of the image. Low-level feature vector associated with every image in 
the database acts as the index for searching the particular image from the 
database. Interactive Genetic algorithm based searching procedure is 
described below. 

6.1 Procedure 

1. The front panel of the search engine consists of finite number of images 
displayed. (Say 8 images) as shown in the figure given below. 

2. The user is asked to assign the rank for the individual images. The value 
ranges from 0 to100 based on the user’s interest. (i.e.) User assigns higher 

Figure 4-14. Sample front panel 
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rank if user likes that image and expecting the similar images in the next 
iteration. 

3. 4 Images are selected from the 8 images using Roulette wheel selection 
(Refer chapter 1) as described below. 

 
• Let the rank values assigned for the eight images are represented as the 

vector as given below. 
 

[10 90 10 10 10   90 10 90] 
 
• Normalized vector is computed as 
 
    [0.0313 0.2813 0.0313   0.0313 0.03133 0.2813 0.0313 0.2813] 
 
 
• Simulate Roulette wheel 
 
Cumulative summation of the above-normalized vector is displayed below. 
[0.0313    0.3125    0.3438   0.3750   0.4063   0.6875   0.7188   1] 
 Random number is generated as ‘r’. If r is in between ‘a’ and ‘b’ in the 
cumulative summation vector song corresponding to the value ‘b’ is selected 
as mentioned below. 

Generated random number = 0.9501(say) 
Therefore select 8th image. 

Generated number =0.2311(say) 
Therefore select 2nd image. 

Similarly. 
0.6068-----------------------------------6th image 
0.0185-----------------------------------1st  image. 
 
4. Thus the selected images are 8,2,6,5 
 
5. Low level features corresponding to the image number 8,2 6 and 5 are 

computed. The vectors thus obtained are randomly chosen and is 
subjected to cross over and mutation operation as described below.   

Low level feature (LLF) vector before and after crossover  
Vector 1 = [a b c d e f]                
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Vector 2 = [A B C D E F]    (say) 
 
Note that the number of elements shown in the vector is considered as 6. 
[Actually the size of the vector is around 200] 
 
Low level feature (LLF) vector after crossover 
 
Vector 1’= [a b c d E F] 
Vector 2’ = [A B C D e f] 
 
6. Thus 8 Low level feature vectors for the second generation are obtained 

as mentioned below. 
     LLF1, LLF2, LLF3, LLF4, LLF5, LLF6, LLF7 and LLF8 (say) 
 
7. Compute the Euclidean distance between the feature vector LLF1 with 

all the low level feature vectors in the database. Retrieve the image 
corresponding to the LLF vector in the database whose Euclidean 
distance is smallest. Repeat the procedure for the feature vectors 
LLF2, LLF3, … LLF8 

 

 
9. Repeat the step from 1 to 8 until the user is satisfied with the images 

obtained in the latest iteration. 

6.2 Example 

Consider the Image database consists of 94 Natural sceneries. Every image 
is truncated to the standard size 200x200. The feature vector for the 
particular image is computed as described below. 

The image is divided into sub blocks of size 50x50 with overlapping size 
of 8x8.The first feature namely  variance of the histogram of the hue content, 
are computed for the all the overlapping sub blocks of the image. This is 
treated as first part of the feature vector corresponding to the image. 
Similarly other features are computed for all the overlapping sub blocks of 
the image to obtain other parts of the feature vector. All the parts belonging 
to the individual features are combined to obtain the feature vector 
corresponding to that particular image. 

Thus feature vectors are computed for all the images in the data base. 
 

8. Thus the image selected for the next iteration is listed below. 
9, 4, 3, 13, 18, 45, 43 (say). Note that 9 in the selected list indicates

th
       16,

9   image in the database. 
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 6.2.1 List of low level features computed in every sub blocks

1. Variance of the histogram of the hue content of the particular subblock is 
computed. 
 
2. Measurement of uniformity 

 
p(zi) is the probability of gray value zi in the particular sub block of the 

image. The uniformity of sub block of the image is measured using the 
formula given below. 

  
 
 
 
3. Measurement of Average Entropy 
 

Average entropy is computed as described below. 
 
 
 

 
4. Measurement of Relative smoothness 
 
 
 
 
 
where, σ(z ) is the standard deviation of the gray values z in the 
particular sub block of the image. 
 
5, 6, 7, 8. Variance of the approximation Wavelet co-efficient 
 
 The image is subjected to discrete wavelet transformation (DWT) to 
obtain approximation co-efficient (app), horizontal detail co-efficient (hor), 
vertical detail co-efficient (ver) and diagonal (both horizontal and vertical) 
detail co-efficient(dia) The variance of the approximation co-efficient ‘app’ 
is computed and considered as 5th feature. Similarly the variance of the detail 
co-efficient ‘hor’,’ver’ and ‘dia’ are considered as the 6th, 7th and 8th features 
respectively. 

of the image
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9. Skewness 
 
   The Skew ness of the gray values is computed for every sub block of 

the image as mentioned below. 
 
 
 
 
 
10. Kurtosis 
 
  The Kurtosis of the gray values is computed for every sub block of the 

image as mentioned below. 
 
 

6.3 M-program for Interactive Genetic Algorithm 

__________________________________________________________ 
igagv.m 
 
r=round(rand(1,8)*94); 
figure 
for k=1:1:8 
subplot(4,2,k) 
title('Assign the rank') 
s=strcat(num2str(r(k)),'.jpg'); 
A=imread(strcat('E:\Naturepix\',s)); 
imshow(A) 
title(strcat('Image',num2str(k))); 
end 
for iter=1:1:10 
s1=input('Enter the rank for image 1(Between 0 to 100)'); 
s2=input('Enter the rank for image 2(Between 0 to 100)'); 
s3=input('Enter the rank for image 3(Between 0 to 100)'); 
s4=input('Enter the rank for image 4(Between 0 to 100)'); 
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s5=input('Enter the rank for image 5(Between 0 to 100)'); 
s6=input('Enter the rank for image 6(Between 0 to 100)'); 
s7=input('Enter the rank for image 7(Between 0 to 100)'); 
s8=input('Enter the rank for image 8(Between 0 to 100)'); 
vect=[s1 s2 s3 s4 s5 s6 s7 s8]/100; 
normvect=vect/sum(vect); 
c=cumsum(normvect); 
u=[ ]; 
for i=1:1:4 
r1=rand; 
c2=c-r1; 
[x,y]=find(c2>0); 
if(y(1)==1) 
    u1=1 
else 
    u1=y(1)-1 
end 
u=[u u1]; 
end 
 
load NATUREFEATURE 
for i=1:1:4 
feature{i}=FEATURE(r(u(i)),:); 
end 
%Cross over to obtain 8 feature vectors 
k=1; 
for i=1:1:4 
p1=round(rand*159)+1 
r=round((rand*3)+1); 
d1=feature{r}; 
r=round((rand*3)+1); 
d2=feature{r} 
nextfeature{k}=[d1(1:1:p1)   d2(p1+1:1:160)]; 
k=k+1; 
nextfeature{k}=[d1(1:1:p1)   d2(p1+1:1:160)]; 
k=k+1; 
end 
r=[]; 
for l=1:1:8 
        n=nextfeature{l}; 
        d=(FEATURE-repmat(n,94,1)).^2; 
        s=sum(d') 
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        [m1,n1]=min(s); 
        r=[r  n1]; 
end 
 
for k=1:1:8 
subplot(4,2,k) 
title('Assign the rank') 
s=strcat(num2str(r(k)),'.jpg'); 
A=imread(strcat('E:\Naturepix\',s)); 
imshow(A) 
title(strcat('Image',num2str(k))); 
end 
end 
___________________________________________________________ 
 
igaimagegv.m 
 
for i=1:1:94 
    s=strcat(num2str(i),'.jpg'); 
    A=imread(strcat('E:\Naturepix\',s)); 
    B{i}=naturefeature(A); 
end 
FEATURE=cell2mat(B'); 
save NATUREFEATURE  FEATURE 
_________________________________________________________ 
naturefeature.m 
 
function [res]=naturefeature(x) 
x=x(100:1:size(x,1),1:1:size(x,2)-100,:,:); 
x=imresize(x,[200 200]); 
y=rgb2hsv(x); 
h=y(:,:,1); 
res=blkproc(h,[32 32],[8 8],'huevar(x)'); 
res1=reshape(res,1,size(res,1)*size(res,2)); 
y=rgb2gray(x); 
res=blkproc(y,[32 32],[8 8],'unif(x)'); 
res2=reshape(res,1,size(res,1)*size(res,2)); 
res=blkproc(y,[32 32],[8 8],'entropy(x)'); 
res3=reshape(res,1,size(res,1)*size(res,2)); 
res=blkproc(y,[32 32],[8 8],'relativesmooth(x)'); 
res4=reshape(res,1,size(res,1)*size(res,2)); 
res=blkproc(y,[32 32],[8 8],'wavelet(x)'); 
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res5=reshape(res,1,size(res,1)*size(res,2)); 
res=blkproc(y,[32 32],[8 8],'skew(x)'); 
res6=reshape(res,1,size(res,1)*size(res,2)); 
res=blkproc(y,[32 32],[8 8],'kurt(x)'); 
res7=reshape(res,1,size(res,1)*size(res,2)); 
res=[res1 res2  res3 res4  res5 res6 res7 ]; 
________________________________________________________ 
 
huevar.m 
 
function [res]=huevar(x) 
x=hist(reshape(x,1,size(x,1)*size(x,2),500); 
res=var(x); 
___________________________________________________________ 
 
unif.m 
 
function [res]=unif(x) 
z=reshape(x,1,size(x,1)*size(x,2)); 
h=hist(double(z),256); 
h=h/sum(h); 
res=sum(h.^2); 
 
__________________________________________________________ 
entropy.m 
 
function [res]=entropy(x) 
z=reshape(x,1,size(x,1)*size(x,2)); 
h=hist(double(z),256); 
h=h/sum(h); 
res=(-1)*sum(h.*log2 (h+eps)); 
 
___________________________________________________________ 
relativesmooth.m 
 
function [res]=relativesmooth(x) 
z=reshape(x,1,size(x,1)*size(x,2)); 
res=1-(1/(1+var(z))); 
 
___________________________________________________________ 
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wavelet.m 
 
function [res]=wavelet(x) 
x=double(x); 
[c,l]=wavedec2(x,1,'db6'); 
a=appcoef2(c,l,'db6',1); 
v1=var(reshape(a,1,size(a,1)*size(a,2))); 
d1=detcoef2('h',c,l,1); 
v2=var(reshape(d1,1,size(d1,1)*size(d1,2))); 
d2=detcoef2('v',c,l,1); 
v3=var(reshape(d2,1,size(d2,1)*size(d2,2))); 
d3=detcoef2('d',c,l,1); 
v4=var(reshape(d3,1,size(d3,1)*size(d3,2))); 
res=[v1 v2 v3 v4]; 
 
_________________________________________________________ 
 
skew.m 
 
function [res]=skew(x) 
x=double(x); 
z=reshape(x,1,size(x,1)*size(x,2)); 
h=hist(double(z),256); 
h=h/sum(h); 
m=mean(z); 
res=sum(((z-m).^3).*h(z+1)); 
 
___________________________________________________________ 
 
kurt.m 
 
function [res]=kurt(x) 
x=double(x); 
z=reshape(x,1,size(x,1)*size(x,2)); 
h=hist(double(z),256); 
h=h/sum(h); 
m=mean(z); 
res=sum(((z-m).^4).*h(z+1)); 
 
___________________________________________________________ 
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  6.4 Program Illustration 

__________________________________________________________ 
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7. SPEECH SIGNAL SEPARATION AND DENOISING 
USING INDEPENDENT COMPONENT ANALYSIS 

Consider the two speakers talking in the meeting simultaneously with no 
background noise. Two microphones are used for recording. One kept very 
close to the first person. Another microphone is kept near to the second 
person. The recorded signals of both the microphones can be treated as the 
linear combinations of independent sources. [Two speech signals] Hence 
ICA algorithm can be used to separate the two independent signals [Refer 
chapter 2]. 

Consider the second situation in which single speaker is talking with the 
background noise. Two microphones are used to record the signal. One 
microphone kept near to the speaker. Another microphone kept near to the 
assumed noise source. The recorded signals of both the microphones can be 
treated as the linear combinations of independent sources [Speech signal + 
Noise ].Similar to the above ICA algorithm can be used to separate the two 
independent signals. Hence the ICA algorithm can be used to separate the 
two independent signals and hence denoising is achieved.  

 

7.1 Experiment 1 

Two speech signals x1(t) and x2(t) are linearly mixed to get two mixed 
signals y1(t) and y2(t) as given below. 

 
y1(t)=0.7*x1(t) +0.3*x2(t) 
y2(t)=0.3*x1(t)+0.7*x2(t) 
 
The mixed signals are subjected to ICA algorithm. The independent 

signals x1(t) and x2(t) are obtained as shown below. Note that FASTICA 
toolbox is used to run the ICA algorithm. 

Figure 4-15. Original speech signals 
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Figure 4-16. Mixed signals 

Figure 4-17 Separated speech signals using ICA 

7.2 Experiment 2 

Speech signal x(t) and noise n(t) are linearly mixed to get two mixed signals 
y1(t) and y2(t) as given below. 

 
y1(t) =   0.7*x(t) + 0.3*n(t) 
y2(t) =   0.3*x(t)+ 0.7*n(t) 
 
The mixed signals are subjected to ICA algorithm to obtain the speech 

signal and noise signal separately. 
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Figure 4-18

Figure  4-19. Mixed signals 

Figure 4-20. Retrieved speech and noise signals using ICA 

 

. Speech signal and Noise signal before mixing 
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7.3 M-program for Denoising 

___________________________________________________________ 
 
noiseicagv.m 
 
a=wavread('C:\MATLAB7\work\audio\revsam\ram1.wav'); 
b=rand(length(a),1); 
m=min(length(a),length(b)); 
a=a(1:1:m); 
b=b(1:1:m); 
mixed1=0.7*a+0.3*b; 
mixed2=0.3*a+0.7*b; 
mixed=[mixed1'; mixed2']; 
[signal]=fastica(mixed); 
figure 
subplot(2,1,1) 
plot(mixed1) 
title('Mixed signal1') 
subplot(2,1,2) 
plot(mixed2) 
title('Mixed signal2') 
figure 
subplot(2,1,1) 
plot(a) 
title('speech signal') 
subplot(2,1,2) 
plot(b) 
title('noise signal') 
figure 
subplot(2,1,1) 
plot(signal(1,:)) 
title('Retrieved speech signal obtained using ICA') 
subplot(2,1,2) 
plot(signal(2,:)) 
title('Retrived noise signal obtained using ICA') 
 
 
Note that the signal b(n) in the above program is another speech signal in 

case of speech signal separation. The rests of the program remains same. 
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8. DETECTING PHOTOREALISTIC IMAGES 
USING INDEPENDENT COMPONENT  
ANALYSIS BASIS 

The digital images captured using the camera are called as photographic 
images and the images which are not captured using the camera are called as 
photorealistic images. ICA basis are used in classifying the produced image 
into photo graphic or photo realistic images as described below. 

 
 

 Figure 4-21

 
 

Figure 4-22. Sample photographic images 

 

. Sample photo realistic images  
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8.1 Approach 

• The 10 photographic images and the 10 photo realistic images are 
collected (see figure 4-3 and figure 4-4). The sub blocks of the image 
sized 16x16 are randomly collected from both the categories. 500 sub 
blocks are collected from photographic images and 500 subblocks are 
collected from the photorealistic images. 
  

• The subblock thus obtained is reshaped into the size 1x256. Auto 
Regressive (AR) co-efficients of size 1x10 are obtained from the 
reshaped subblock. This is repeated for all the collected sub blocks. The 
set of AR vectors collected from photographic images and the photo 
realistic images are subjected to ICA analysis and 10 ICA basis each of 
size 1x10 are obtained. [Refer chapter 2]  
 

• Every AR co-efficient vector obtained from the particular subblock of the 
images is represented as the linear combination of 10 corresponding ICA 
Basis.  The co-efficient of the ICA basis are obtained using the inner 
product of ICA basis with the corresponding AR co-efficients. This is 
called feature e vector of that particular subblock of the image. 
 

• Thus 500 feature vectors are collected from photographic images and the 
500 feature vectors are collected from the photorealistic images. The 
centroid of the feature vectors collected from the photographic images is 
computed as C1. Similarly the centroid of the feature vectors collected 
from the photo realistic images are computed as C2. 
 

8.1.1 To classify the new image into one among the photographic

The image is divided into sub blocks. Feature vectors are extracted form 
every sub blocks using ICA basis as described above. The Euclidean 
distance between the feature vector obtained from the particular subblock 
and the centroids ‘C1’ and ‘C2’ are computed as ‘d1’ and ‘d2’ respectively. 
Assign the number 1 to that particular subblock if ‘d1’ is lowest Otherwise 2 
is assigned to that subblock. This is repeated for all the sub blocks of the 
image to be classified. 

Count the number of ‘1’s and the number of ‘0’s assigned to the 
subblocks of the image to be classified. If the number of 1’s is greater than 

or photorealistic image
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0’s, decide that the image is photographic image. Otherwise the image is 
classified as photo realistic image. 

 

8.2 M-program for Detecting Photo Realistic Images 
Using ICA Basis 

___________________________________________________________ 
 
photorealisticdetgv.m 
 
k=1; 
for  i=1:1:20 
    s=strcat('C:\Documents and Settings\user1\Desktop\Photorealistic\',num2str(i),'.jpg'); 
for  j=1:1:50 
    temp=imread(s);     
    temp=rgb2gray(temp); 
    temp=temp(101:1:200,101:1:200); 
    r1=round(rand*(size(temp,1)-8))+1; 
    r2=round(rand*(size(temp,2)-8))+1; 
    temp=reshape(temp(r1:1:r1+7,r2:1:r2+7),1,64);; 
    temp=double(temp); 
    A{k}=lpc(temp,16); 
    k=k+1; 
end 
end 
 
 
temp=cell2mat(A'); 
temp=temp(:,2:1:17); 
I=fastica(temp); 
save  I   I 
 
k=1 ; 
for i=1:1:20 
    s=strcat('C:\Documents and Settings\user1\Desktop\Photorealistic\',num2str(i),'.jpg'); 
for j=1:1:100 
    temp=imread(s);     
    temp=rgb2gray(temp); 
    temp=temp(101:1:200,101:1:200); 
    r1=round(rand*(size(temp,1)-8))+1; 
    r2=round(rand*(size(temp,2)-8))+1; 
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    temp=reshape(temp(r1:1:r1+7,r2:1:r2+7),1,64); 
    temp=double(temp); 
    temp=lpc(temp,16); 
    temp=temp(2:1:17); 
    a=[ ]; 
    for n=1:1:size(I,1)  
     a= [a  sum(temp.*I(n,:)) ]; 
    end  
    feaext1{k}=a; 
     k=k+1; 
    end 
end 
 
FEA=cell2mat(feaext1'); 
C1=mean(FEA(1:1:1000,:)); 
save C1 C1 
 
C2=mean(FEA(1001:1:2000,:)); 
save C2 C2 
 
_______________________________________________________________________ 
phototest.m 
 
for i=1:1:20 
s=strcat('C:\Documents and Settings\user1\Desktop\Photorealistic\',num2str(i),'.jpg'); 
A=imread(s); 
B=rgb2gray(A); 
B=B(101:1:300,101:1:300); 
imshow(B) 
C=blkproc(B,[8 8],'assigncenno(x)'); 
if(length(find(C==1))>length(find(C==0))) 
    disp('The image is photorealistic image') 
else 
    disp('The image is photographic image') 
end 
end 
_______________________________________________________________________ 
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assigncenno.m 
 
 
function [res]=assigncenno(x) 
x=double(x); 
load C1 
load C2 
load  I 
x=reshape(x,1,64); 
p=lpc(x,16);; 
temp=p(2:1:17); 
a=[ ]; 
for n=1:1:size(I,1) 
     a=  [a  sum(temp.*I(n,:)) ]; 
end 
d1=sum((C1-a).^2); 
d2=sum((C2-a).^2); 
if(d1<d2) 
    res=0; 
else 
    res=1; 
end 
___________________________________________________________ 

8.3 Program Illustration 
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9. BINARY IMAGE WATERMARKING USING 
WAVELET DOMAIN OF THE AUDIO SIGNAL 

The process of hiding the information like text, binary image, audio etc. into 
another signal source like image, audio etc. is called watermarking. The 
approach involved in watermarking the binary image signal in the wavelet 
domain of the audio signal is described in the example given below. 

9.1 Example 

Step 1: Consider the audio signal sampled with the sampling rate of 11025 Hz. 
 
Step 2: The audio signal is divided into frames with 1024 samples. Decompose 

every frame of the speech signal using ‘db4’ wavelet transformation 
[See wavelet transformation in chapter 3]. Hide the first bit of the 
binary data collected from the binary image into the third level detail 
co-efficients obtained using wavelet decomposition of the first audio 
frame. This is done by changing the values of the third level detail co-
efficients such that mean of the third level detail co-efficients is 
modified to ‘m+k’ if the binary value is ‘1’ or to ‘m-k’ if the binary 
value is ‘0’.Note that variance remains same.[See Mean and variance 
normalization in Chapter 2]. The variable ‘m’ is the mean of the fifth 
level detail co-efficients. The value for the constant ‘k’ is chosen as 
1/5th of the energy of the third level detail co-efficients.  

 
Step 3: This is repeated for the other frames of the speech signal for hiding 

the entire bits obtained from the binary image. 
 
Step 4: Thus Binary image is hidden in the wavelet domain of the audio 

signal. 
 
Step 5: The hidden binary data is retrieved by comparing the mean of the 

corresponding detail co-efficients computed before and after hiding. 
If the mean of the third level detail co-efficient of the particular 
frame corresponding to the original signal is greater than the  mean 
of the third level detail co-efficients of the respective frame 
corresponding to the watermarked signal, the bit stored is 
considered as ‘1’,otherwise ‘0’. 

 
Step 6: Note that the duration of the audio signal is chosen such that all the 

binary data collected from the binary image are hidden in the audio 
signal. 
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In this example length of the audio signal used for hiding binary image 

data is 11488 samples. It is repeated 100 times so that the length of the audio 
signal becomes 1148800 samples. The size of the Binary image used is 
45X45.Binary image is stored at the rate  of 1 bit in 256 samples of the audio 
signal. 

9.2 M-file for Binary Image Watermarking  
in the Wavelet Domain of the Audio Signal 

___________________________________________________________ 
 
audiowatermarkdb4gv.m 
 
A= wavread ('C:\WINDOWS\Media\Microsoft Office 2000\glass.wav'); 
A=repmat(A,100,1); 
 A=A'; 
len=fix(length(A)/256); 
for k=1:1:len-1 
    temp=A((k-1)*256+1:1:(k-1)*256+256); 
    col{k}=daub4water(temp); 
end 
I=imread('BINIMAGE.bmp'); 
I=I(1:1:45,1:1:45); 
I=reshape(I,1,45*45); 
 
for k=1:1:length(I) 
      switch I(k)         
        case 0 
            temp=col{k}{2}{3}; 
            e=sum(temp.^2)/5; 
            m=mean(temp); 
            v=var(temp); 
            col{k}{2}{3}=meanvarnorm(temp,(m-e),v);                        
        case 1 
            temp=col{k}{2}{3}; 
            e=sum(temp.^2)/5; 
            m=mean(temp); 
            v=var(temp); 
           col{k}{2}{3}=meanvarnorm(temp,(m+e),v); 
    end 
end 
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s=256; 
signal=[]; 
for k=1:1:length(I) 
    approx=col{k}{1}; 
det=col{k}{2}; 
app=approx{log2(s)-2}; 
for i=(log2(s)-2):-1:1 
    a=[app;det{i}]; 
    a=reshape(a,1,size(a,1)*size(a,2)); 
    a=[ a(length(a)-1:1:length(a))  a]; 
    app=createdaubinvmatrix(length(a)-2)*a'; 
    app=app'; 
end 
signal=[signal app]; 
end 
figure 
subplot(3,1,1) 
plot(signal(1:1:5520)); 
title('Original signal') 
subplot(3,1,2) 
plot(A(1:1:5520),'r'); 
title('Watermarked signal'); 
subplot(3,1,3) 
plot(signal(1:1:5520)-A(1:1:5520)) 
title('Difference signal') 
 
save signal signal 
_________________________________________________________ 
 
daub4water.m 
 
function [res]=daub4water(x) 
a=x; 
s=length(a); 
for i=1:1:log2(s) -2  
    a=[a a(1:2)]; 
        temp=createdaubmatrix(length(a)-2)*a'; 
    temp=temp(1:1:length(temp)); 
    temp=reshape(temp,2,length(temp)/2); 
    approx{i}=temp(1,:); 
    det{i}=temp(2,:); 
    a=approx{i}; 
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end 
res{1}=approx; 
res{2}=det; 
________________________________________________________________________ 
 
gethiddenimage.m 
 
% size of the Binary hidden image is 45x45 
A= wavread ('C:\WINDOWS\Media\Microsoft Office 2000\glass.wav'); 
A=repmat(A,100,1); 
A=A'; 
len=fix(length(A)/256); 
for k=1:1:len-1 
    temp=A((k-1)*256+1:1:(k-1)*256+256); 
    col1{k}=daub4water(temp); 
end 
 
load signal 
A=signal; 
len=fix(length(A)/256); 
for k=1:1:len 
    temp=A((k-1)*256+1:1:(k-1)*256+256); 
    col2{k}=daub4water(temp); 
end 
 
temp=[]; 
for   k=1:1:45*45 
    m1=mean(col1{k}{2}{3}); 
    m2=mean(col2{k}{2}{3}); 
    if(m1>m2) 
        temp=[temp 0]; 
    else 
        temp=[temp 1]; 
    end 
end 
temp1=reshape(temp,45,45); 
figure 
imshow(temp1); 
______________________________________________________________________ 
 
 
 



4. Selected Applications 179

 

 

meanvarnorm.m 
 
function [res]=meanvarnorm(a,md,vd) 
m=mean(a); 
v=sqrt(var(a)); 
vd=sqrt(vd); 
delta=abs((a-m)*vd/v); 
res=ones(1,length(a))*md; 
[p]=quantiz(a,m); 
p=p'; 
p=p*2-1; 
res=res+p.*delta; 
 
__________________________________________________________ 
 
createdaubmatrix.m 
 
function [res]=createdaubmatrix(m) 
 
a=[(1+sqrt(3))/(4*sqrt(2)) (3+sqrt(3))/(4*sqrt(2))  (3-sqrt(3))/(4*sqrt(2))  … 
(1-sqrt(3))/(4*sqrt(2))];    
 
b=[(1-sqrt(3))/(4*sqrt(2)) -(3-sqrt(3))/(4*sqrt(2))  (3+sqrt(3)) /(4*sqrt(2)) …  
-(1+sqrt(3))/(4*sqrt(2))];    
 
t1=repmat([a(2) b(3)],1,(m/2)); 
t2=repmat([a(3) b(4)],1,m/2); 
t3=repmat([a(4) 0],1,m/2); 
t4=repmat([b(1) 0],1,m/2); 
res=diag(repmat([a(1) b(2)],1,m/2)) + diag(t1(1:1:m-1),1)+… 
diag(t2(1:1:m-2),2)+diag(t3(1:1:m-3),3)+diag(t4(1:1:m-1),-1) ; 
 
res=[res   [zeros(1,m-2) res(1,3) res(2,3)]'  [zeros(1,m-2) res(1,4) res(2,4)]']; 
________________________________________________________________________ 
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______________________________________________________________________ 
 
createdaubinvmatrix.m 
 
function [res]=createdaubinvmatrix(m) 
a=[(1+sqrt(3))/(4*sqrt(2)) (3+sqrt(3))/(4*sqrt(2))  (3-sqrt(3))/(4*sqrt(2))  (1-sqrt(3))/(4*sqrt(2))];    
b=[(1-sqrt(3))/(4*sqrt(2)) -(3-sqrt(3))/(4*sqrt(2))  (3+sqrt(3))/(4*sqrt(2))  -(1+sqrt(3))/(4*sqrt(2))];    
t1=repmat([b(3) a(2)],1,(m/2)); 
t2=repmat([a(1) b(2)],1,m/2); 
t3=repmat([b(1) 0],1,m/2); 
t4=repmat([a(4) 0],1,m/2); 
res=diag(repmat([a(3) b(4)],1,m/2)) + diag(t1(1:1:m-1),1)+ … 
diag(t2(1:1:m-2),2)+diag(t3(1:1:m-3),3)+diag(t4(1:1:m-1),-1) ;     
 
res=[res   [zeros(1,m-2) res(1,3) res(2,3)]' [zeros(1,m-2) res(1,4) res(2,4)]']; 
 
___________________________________________________ 

9.3 Program Illustration 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4-23. Audio signal before and after watermarking 
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Figure 4-24

 

 

 

 

Figure 4-25. Hidden and Retrieved Binary image  

. Original and watermarked signal in zoomed level 
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