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A BC Note

Students learn in a number of ways and in a variety of seutings. They learn
through lectures. in informal study groups, or alone at their desks or in [ront of
acomputer lerminal. Wherever the location. students learn most cificiently by
solving problems, with frequent feedback from an instructer, following a worked-
out problem as a model. Worked-out problems have a number of posHIve as-
pects. They can capture the essence of a key concept—oflen better than para-
graphs of explanation. They provide methods for acquiring new knowledge
and for evaluating i1s use. They provide a taste of real-life issues and demon-
strate technigues for solving real problems. Most important, they encourage
acuve participation in learning,

We created the BookWare Companion Series because we saw an unful-
lilled need for computer-based learning tools that address the computational
aspects of problem solving across the curriculum. The BC series concept was
also shaped by other forces: a gencral agreement among instructors thal Stu-
dents learn best when they are actively involved in their own learning, and the
realization that textbooks have not kept up with or matched student learning
needs. Educators and publishers are just beginning to understand that the amount
of material crammed into most textbooks cannot be absorbed, let alone the
knowledge to be mastered in four years of undergraduate study, Rather than
attempling to teach studenis all the latest knowledge, colteges and universittics
are now striving o teach them 1o reason: to understand the retationships and
connections belween new information and existing knowlege; and to cultivale
preblem-solving skills, intuition, and critical thinking. The BookWare Com-
panion Series was developed in response to this changing mission.

Specifically, the BookWare Companion Series was designed for educators
who wish 10 integrate their curriculum with computer-based learning tools, and
for students wheo find their current textbooks overwhelming. The former will
find in the BookWare Comnpanion Series the means by which to use powertul
software tools to support their course activities, without having 10 customice
the applications themseives. The latter will find relevant problems and examples
quickly and easily and have instant electronic access to them.

We hope that the BC series will become a clearinghouse for the exchange
of reliable teaching ideas and a baseline series for incorporating learning ad-
vances from emerging technoiogies. For example, we intend toreuse the kernel
of each BC volume and add electronic scripts from other software programs as
desired by customers. We are pursuing the addition of AlVExpert System tech-
nology to provide and inteiligent tutoring capability for future iterations of BC
volumes. We also anticipate a paperless environment in which BC content ¢an




flow freely over high-speed networks to support remote learning activities. In ozder
for these and other goals o be reatized, educators. students. software Jdevelopers.
network administrators. and publishers will need to communicate freely and actively
with each other. We encourage you Lo participate in these exciting developments and
hecome involved in the BC Series today. [f you have an idea for improving the effec-
tiveness of the BC concept, an example problem, a demoenstration using software or
multimedia, or an opportunity to cxplore, contact us.
We thank you one and all for your continuing support.

The PWS Electrical Engineering Team:
BBarter@pws.com Acquisinons Edior
Sleans @pws.com Assistant Editor
NWilbur@pws.com  Marketing Manager
PRockwell@pws.com Production Editor

TKelly @pws.com Editorial Assistant
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PREFACE

There are many texthooks on the market today that ireat the basic topics in analog and
digital communication systems, including coding and decoding algorithms and medulation
and demodulation techniques. The tocus of most of these textbooks is by necessity on the
theory that underlies the desizn and performance analysis of the various building blocks,
¢ g., coders, decoders, modulators, and demodulators, that constitute the basic elements of
a communication system. Relauvely few of the texthoeks, especially these written for un-
dergraduate students, include a number of applications that serve o motivate the students.

SCOPE OF THE BOOK

The objective of this book is to serve as a companion or supplement, 10 any of the com-
prehensive textbooks in communication systems. The book provides a variety of exercises
that may be solved on the computer {generally. a personal computer is sufficient) using
the popular student edition of MATLAB. The book 1s tnlended to be used primarily by
senior-level undergraduate students and graduate students in electrical engineering, com-
puter engineeriag and computer science. We assume that the student (or user) is familiar
with the fundamentals of MATLAB. Those topics are not covered, because several tutorial
books and manuals on MATLAB are available.

By design, the treatment of the various topics is brief. We provide the motivation and
a short introduction to each topic, establish the necessary notation, and then illustrate the
basic notions by means of an example. The primary tex: and the instructor are expected to
provide the required depth of the topics reated. For example, we introduce the matched
filter and the correlator and assert that these devices result in the optimum demodutation
of signals corrupted by additive white Gaussian noise (AWGN), but we do not provide a
proof of this assertion. Such a proof is generally given in most textbooks on communication
systems.

ORGANIZATION OF THE BGOK

The book consists of nine chapters. The first two chapters on signals and linear systems and
on random processes treal the basic background that is generally required in the study of
communication systems. There is one chapter on analog communication techniques, and
the remaining five chapters are focused on digital communications.

Chapter 1: Signals and Linear Systems

This chapter provides areview of the basic tools and techniques from linear systems analysis,
including both time-domain and frequency-domain characterizations. Frequency-domain-
analysis techniques are emphasized, since these techniques are most frequently used in the
treatment of communication systems.

X1
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Chapter 2: Random Processes

En this chupter we lustrate methods for ceacrating random varisbles and samples of ran-
dom processes. The opics mclude the generation of random variables with a specified
probability distribution tunction, the veneration vt samples of Gaussian und Gauss-Markoy
processes, and the charactenzaton of stationary random provesses in the time domain and
the frequency domain

Chapter 3: Analog Modulation

The performances of analoy medulation and demodulation techniques in the presence and
absenee of additive noise are treated 0 this chapter. Systems studied include amplitude
modulation (AM). such s double-sideband AM. single-sideband AM. and conventional
AM, and angle-modulation schemes, such as trequency modulation (FM) and phase mod-
ulation (PM).

Chapter 4: Analog-to-Digital Conversion

[n this chapter we treat various methods that are used to convert analog source signals into
digital sequences in an efficient way. This conversion process allows us to transmit or store
the signals digitally. We consider hoth lossy data compression schemes. such as pulse-code
modulation (PCM), and lossiess data compression, such as Huffman coding.

Chapter 5; Baseband Digital Transmission

The focus of this chapter is on the introduction of basehand digital modulation and demod-
ulatien techniques for transmiting digital information through an AWGN channel. Both
binary and noabirary modulation techniques are considered. The optimum demodulation
of these signals is described. and the performance of the demodulater is evaluated.

Chapter 6: Digital Transmission Through Bandlimited Channels

In this chapter we consider the characterization of bandlimited channets and the problem of
designing signal waveforms for such channels. We show that channel distortion results in
intersymbol interference (ISI), which causes errors in signal demodulation. Then, we treat
the design of channel equalizers that compensate for chaanel distortion.

Chapter 7: Digital Transmission via Carrier Modulation

Four types of carrier-modulated signals that are suitable for transmission through bandpass
channels are considered in this chapter. These are amplitude-modulated signals, quadrature-
amplitude-medulated signats, phase-shift keying, and frequency-shift keying.

Chapter 8: Channel Capacity and Coding

In this chapler we consider appropriate mathematical models for communication channels
and intreduce a fundamental quantity, called the channel capacity, that gives the limit on
the amount of information that can be transmitted through the channel. In particular, we
consider two channel models, the binary symmetric channel (BSC) and the additive white

X1il

Gaussian noise {AWGN) chanael. Thesa channel models are used in the treatment of block
and convolutional codes for achieving refiable communication through such channels.

Chapter 9: Spread Spectrum Communication Systems N

The basic elements of a spread spectrum digital communication system are treated in this
chapter. In particular. direct sequence (DS) spread spectrum and frequency-hopped (FH)
spread spectrum systems are considered in conjunction with phase-shift keying (PSK) and
frequency-shift keying (FSK) modulation, respectively. The generation of pseudonoise
(PN) sequences for use in spread spectrum systerns is also treated.

SOFTWARE

The accompanying diskette includes all the MATT.AB files used in the text. The files ate in
separate directories commespanding to each chapter of the book. In some cases a MATLABR
file appears in more thar one directory because it is used in more than one chapter, [n most
cases numerous comments have been added to the MATLAB files 10 ease their understand-
ing. It should be noted, however, that in developing the MATLAB files, the main objective
of the authors has been the clarity of the MATLAR code rather than its efficiency. In cases
where efficient code could have made it difficult to follow, we have chosen to use a less
efficient but more readabie code.

In order to use the software. copy the MATLAB files to your perscnal computer and add
the corresponding paths to your matlabpath environment (on an IBM PC compatible
rmachine this is usually done by editing the matlabre.m file). All MATLAB files have been
tested using version 4 of MATLAB.



Chapter 1

Signals and Linear Systems

1.1 Preview

In this chapter we review the basic tools and techniques from linear system analysis used
in the anatysis of communication systems. Linear systems and their characteristics in the
time and frequency domains, together with probability and analysis of random signals, are
the two fundamental topics whose thorough understanding is indispensable in the study
of communication systems. Most communication channels and many subblocks of trans-
mitters and receivers can be well modeled as linear and time-invariant (LTI) systems, and
so the well-known tools and techniques from linear system analysis can be employed in
their analysis. We emphasize frequency-domain aralysis tools, since these are the most
frequently used technigues. We start with the Fourier series and transforms; then we cover
power and energy concepts. the sampling theorem, and lowpass representation of bandpass
signals.

1.2 Fourier Series

The input-output relation of a linear time-invaniant system is given by the convolution
integral defined by

Y{0) = x(0) % h(2) ‘ (1.2.1)
:f h(D)x{t —T)dr

—G

where k() denotes the impulse response of the system, x(r) is the input signal, and y(r) is
the output signal. If the input x(¢) is a complex exponential given by

x(t) = Ael?hor (1.22)
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then the output is given by

&0 . "
y(r):[ AT 0y ap

0

o0
=A U h(t) e~ fur dr] el 3 fut (1.2.3)

—0

In other words, the output is a complex exponential with the same frequency as the input.
The (complex) amplitude of the output, however, is the {complex) amplitude of the input
amplified by

oo .
f hirye ST g0

o

Note that the above quantity is a function of the impulse response of the LTI system, k(r}, and
the frequency of the iaput signal, f5. Therefore, computing the response of LTI sysiems to
exponential inputs is particularly easy. Consequently, it is naturat in {inear system analysis
to look for methods of expanding signals as the sum of complex exponentials. Fourier
series and Fourier transforms are techniques for expanding signals in terms of complex
2xponentials,

A Fourier series ts the orthogonal expansion of periodic signals with period Ty when
the signal set {4 2m:t/Tu ]::vm is employed as the basis for the expansion. With this basis,
any periodic signal! x{f) with period T can be expressed as

20

(=Y x,eltih {12.4)

A==

where the x,’s are called the Fourier series coefficients of the signal x (1} and are given by

1 a+Tn X
Xy = Fo,[ x(r)e™ /2T gy (1.2.5)
a

Here & is an arbitrary constant chosen in such a way that the computation of the integral is
simplified. The frequency fo = 1/ Ty is catled the fundamental frequency of the periodic
signal, and the frequency £, = nfy is called the ath harmonic. Tn most cases eithera = 0
or o = —Ty/2 is a good choice,

This type of Fourier series is known as the exponential Fourier series and can be applied
to both real-valued and complex-valued signals x (t) as long as they are periodic. In general,
the Fourier series coefficients [x,} are complex numbers even when x(t) is a real-vahued
signal.

! A sufficient condition for the existence of the Fourier series is that «(¢) satisfy the Dirichlet conditions. For
details see [1].

L2, Fourier Series~ 3

When x(1) is a real-valued periodic signal we have

1 peTe (yed T T gy
X_p= — xityel-
TU o
1 au =Ty N . *
= I—j x(rye”/FTA L u‘r}
Ty LS
= (1.2.6)
From this it is obvious that
i_r,,l = |-‘-‘—n|
1.2.7)
l Xy = —Lx_, ¢

Thus the Fourier scries coefficients of a real-valued signal have Hermirian svinmerry; ie..
their real part is even and their imaginary part is odd {or, equivalently, their magnitude is
even and their phase is odd).

Another form of Fourier series, known as trigonometric Fourier series, can be applied
only to reatl, periedic signals and is obtained by defining

o an— by
X = —2 (1.2.8)
' D
oy = S0 (1.2.9)
2
which. after using Euler’s relation
~ane/ Ty _ zmi) —jsin{2e 2 1.2.10
¢ cos( 2 Jsi T T ( )
results in
2 =T n
a, = — x(1) cos (Z:r:—) dt
Ty Ja Ty
2 a=T "
by = — x(tysin| 27t~ | dr 1.2.11
=2 [ (a2 a2
and, therefore,
ao = 11 n
()= — " 2wt — | + by sin | 2wt — 212
x(1) 5 +¥la,cos( T To) ,,sm( g Tn) (1.2.12)

Note that for n = we always have by = 0. soag = 2xq.
By defining

en = \/a§+b§
(1.2.13)

b,
#, = —arctan —
iy
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and using the relation
. e b
acos ¢+ bsing = va- + b-cos | ¢ — arctan — (12.14)
d

Equation (1.2.12) can be written in the form

an = n
X)) = — + Cpuos | 27— + &, {1.2.15)
2 To

n=1

which is the third torm oi the Fourter series expansion for real and periedic signals. In
general the Fourier series cocllicients {x,} for real-valued signals are related to a,, by, ¢n,
and #, through

uy = 2Relx,]

by = —21Im[x,]

(1.2.16}
e = 14l
By = Xy

Plots of [x,| and /x, versus # or 1 fy are called the diserere spectrum of x(r). The plot of
L.} is uswally called the meagnitucde spectrum, and the plot of L, is referred to as the phase
spectrum.

If x{tyis reai and even—i.e. it x(—1) = x(t)—then laking « = —To/2, we have

2 gl f
Iy = — rysin | 2me— § dt 1.2.17
S j~‘r.u‘zx( ’ ( Tu)t ( )

which is zere because the integrand is an odd function of r. Therefore. for a real and even
signal x(¢). all x,’s arc real. In this case the trigonometric Fourier series consists of all

cosine functions. Similarly, if ¢(7) is real and odd—i.e., f x(—f) = —x(1)—then
2 u+Ty n
a, = — x(r)cos 2:1'!‘—) dr 1.2.18
Ty Ja ( Ty ( )

is zero and all x,'s are imaginary. In this case the trigonometric Fourier series consists of
all sine functions.

ILLUSTRATIVE PROBLE

[Mustrative Problem 1.1 [Fourier series of a rectangular signal train] Let the periodic
signal x(r), with period T, be detined by

A tl <y
t A .
.\(t):Ai’[(E) = E P =Ty (1.2.1%)
0, otherwise

1.2, Founer Seres 5

for lt! < Ty/2. where 1y < Tp/2. The rectangular signal [1(¢) 15, as usual, defined by

1. il < %
M =44, =44 (1.2.20)
0. otherwise
A plot of x(7) is shown in Figure {.1.
x(1)
A
— |
i - LT
L | ? . ,
- —lo i Ty

Figure |.1: The signal x(r). in lllustrative Probtem 1.1,

Assuming A =1. Ty =4 andrg = 1:

1. Determine the Fourier sertes coefficients of x(r} in exponential and trigonometric
form.

2. Plot the discrete spectrum of x(£).

S SOLUTION g

1. To derive the Fourier series coefficients in the expansion of x{(r), we have

it
X, = _/ ewﬁnnr,’ddl
-1

3
1 —2anjd jira/d
Sy [e —e ] (1.2.21)
= %sinc (%) (1.2.22)
where sinc(x} is defined as
sing(xy = 2207 (1.2.23)
mx

A plot of the sinc function is shown in Figure 1.2.
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1 - 12 T T o T T
f 'tll n=1 nen
08 I 7
I 1 ; i
| | ! | ! fo | £{t)
06 L | \ ! "i'/
0.8 L =
i
! \ 06 4
82 r | EE
|
¢ 7 /\. /(\wl r‘ L 1/\\ '/\\/ ialle 1
YRR
wel YR
0.2 L -
o4 . . . ‘
0 8 B 4 -2 a 2 4 € L] e H
[
Figure 1.2: The sinc signal. W
0, T g1 os n W5 : s 2

Obviously, all the x,'s are real (since x(r)is real and even), so ) ) ‘ ) ) ) )
Figure 1.3: Various Fourier series approximations for the rectangular pulse in Illustrative

an, = sinc(ﬁ) Problem 1.1,
2
bn =0 : LH . . ; r
" (1.2.24)
n o= |sinc | = ' ou | J
e = [sine (3}, |
I = 0, as 4
Note that for even n's, x, = (} {with the exception of n = 0, where ag = ¢g = | and "
xp = %). Using these coefficients we have . o3 | f
o oz ]
£ = =sinc —) glianitd
x{t) H-Z_m s ( ' o2 L
l +§ inc (7) (2m:2) (1.2.25) T ]
= - stnc| = Jcos (2mr— 2.
2 — 2 4 o -
A plot of the Fourier series approximations to this signal over one period for n = oot ] I
0.1,3.5,7.9 is shown in Figure 1.3. Note that as n increases, the approximation - A1 ‘ l l l RN T
becomes closer to the original signal x(¢). I = ..; m 3 : 3 O W =
- Note that x, is always real. Therefore. depending on its sign, the phase is either zero ! . . f the siznal in Ti1 ive Probl
or 7. The magnitude of the x,’s 1s % ]sinc {'2—')| . The discrete spectrum is shown in Figure 1.4: The discrete spectrum of the signal in Illustrative Problem 1.1.

Figure 1.4.
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The MATLAB script for piotting the discrete spectrum cf the signal is given below

. V-FLE g

% MATLAB rcript for Rlustrative Probiem |, Chaprer I
n=[-20:1:20];

x=abs(sinc(r/2)};

stem(n,x);

When the signal x{¢) is described cn one period between 2 and b. as shown in Figure
1.5, and the signal in the interval [a, b] is given in an m-file, the Fourier series coefficients
can be obtained using the m-file fseries.m given below

function xx=Ffseries{funfen,a,b,n,tol,p1,p2,p3)

FFSERIES Returns the Faurier series coefficients.

XX = FSERIES(FUNFCNABNTOLPIP2P)
Junfen = The given funcuon, in an m-file

It can depend un up o three paraneters

pl. p2. and p3. Tke function is given

over one perind extending from 'a' o b’

xx = vector of fength n + 1 of Fourier Seriex
Coefficients. xxf), xxf. .. . xxn

pl. p2, p3 = paramerers of funfcn.

tol = the error level

SRR RAFSF

j=sqr{—1).

args=(];

for nn=1:nargin—5
args=largs,” , p " .in2serinn)],

end

args=(args,” ) ' I;

t=b—2a;

xx(P=eval((* L/ (- .num2ser(t), } . *quad (funfcn,a,b, eol, [ ]° .args));

for i=1:n
newfun=[‘exp (-j*2*pi*x~ {‘.int2str(i).’ )/t *.num2str(t)," 1) . * *funfen)
xx(i=1)=eval([- 1/ (" .num2str(r),* } . *quad{newfun.a,b,tol, { | "args])

end

ILLUSTRATIVE PROBLE

Nlustrative Problem 1.2 [The magnitude and the phase spectra] Determine and plot
the discrete magnitude and phase spectra of the periodic signal x (r) with a period equal to
8 and defined as x(t) = A(t) for [t] < 4.

B SOLUTION 4

Since the signal is given by an m-file lambda.m, we can choose the interval [a, b] =
[—4. 4] and determine the coefficients. Note that the m-file fseries.m determines the Fourier
series coefficients for nonnegative vaiues of n, but since here x(r) is real-valued, we have
%—y = x}. In Figuze 1.6 the magnitude and the phase spectra of this signal are ploued for
a choice of n = 24.

1.2. Fourier Series 9

Figure 1.53: A periodic signal.
2 P g

The MATLAB script for determining and plotung the magnitude and the phase spectra
is given belaw.

—

% MATLAB script for Hiustrative Priblem 2. Chapler ]
echo on

function="Lambda "

a=—4;

b=4;

n=24;

tol=C.1,

xx=fseries{funcrion,a,b.n.toli:

xxl=xx{n+1:-12);

xxl=[conjlxxl}xx];

absxx l=abs(xx 1)

pause %o Press uny key 1o see u plot of the magruude spectrum
nl=(—n:n);

stern{nl.absxx1)

title( - zhe discrete magnitude spectrum’)
phasexx|=angle{xx 1)

pause To Press uny kev 1o see a plor of the phase
stemn(nl.phasexx1}

tale(’ the discrete phase spestrum’}

ILLUSTRATIVE PROBLE

[ltustrative Probiem 1.3 [The magnitude and the phase spectra] Determine and plot
the magnitude and the phase spectra of a periodic signal with a period equal to 12 that is
given by

| 2
) = ——e"""

V2T

in the interval [—6, 6]. A plot of this signal is shown in Figure 1.7.
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# e | j Figure 1.7 The periodic signal in Hlustrative Problem [ 3.
2 9
|
o scoensesetT?g ol | L 12,077 190000000,
40 20 10 [ 1 ) 0
o The signal is equai to the density functicn of 2 zero-mean unit-variance Gaussian (nor-
2y ! 1 mai) random variable given in the m-file normal.m. This file Teguires two parameters, m
and 5. the mean and the standard deviation of the random variable, which in the above
H 1 problem are 0 and 1. respectively. Therefore, we can use the following MATLAB script to
obtain the magnitude and the phase plots shown in Figure 1.8.
it . :
i ;
; % MATLAB script for Miustrative Problem 3, Chaprer |
0 ! echo on
H function="normal *;
gk J B a=-6;
I n=24;
2 b g 3 toi=0.1;
l xx=fseries{function.a.b.n.tol.0,1):
3 xx[=xx(n+1:-1:2);
ER 1 xxl=[conj(xx[)xx};
1 absxx | =abs(xx1);
) ) ) ) . pause % Press any key to see a plot of the magniiude
Yo 20 J10 0 10 20 0 al=[—n:n];
stem(nl,absxx|)

Figure 1.6: The magnitude and the phase spectra in Tllustrative Problem 1.2.

title(* the discrete magnitude spectrum-)
phasexx1=angle(xx 1);

pause % Press any key o see u plot of the phase
stem{ni phasexx|}

tille{* the discrete phase spectrum’)
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1.2.1 Periodic Signals and LTI Systems
When a periodic signal x(r) is passed througha linear time-invartant (LT1) system, as shown
in Figure 1.9, the output signal ¥(r) is also periodic, usually with the same period as the
input signal® (why?), and therefore it has a Fourier series expansion.

If x(¢) and () are expanded as

=
) = Z el 2T

(1226)
H=—rx)
20

¥l = Z e AT (1.2.27)
=0

then the relation between the Fourier series coefficients of x (r) and y(r) can be obtained by
employing the convolution integral

o0
¥y} = f x(r - ki) dr

-~

X
xned?r=OTap oy de

0 =m0
>
— Z % (fm h(r)e—jlnnr/ﬂ)dr) e Fn(Th
A=—00 i
2 .
- Z ype 2R/ (1.2.28)
n=—-mng
From the above relation we have
o = knH (i) (1.2.29)
1y

where H ( f) denotes the transter function® of the LTI system given as the Fourier transform
of its impulse response A(¢).

A=t . -
H(f) = f hitye = qy (1.2.30)

-

2We say usually with the same period as the input signal. Can you give an example where the period of the
output is different from the penoed of the input?
3 Also known as the frequency response of the system.

1.2

Fourier Series

0.09
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002 -

001 +

B

=10

3

Figure 1.8; Magnitude and phase spectra for lllustrative Problem 1.3,
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xr 143
D misysem b YO

Figure 1.9: Pericdic signals through LTI systems.

ILLUSTRATIVE FROBLEM

THustrative Problem 1.4 [Filtering of periodic signals] A triangular pulse train x{r) with
period Tp = 2 is defined in one period as

1, -l =r<0
Aty=4—1+1, D<r=<t (L.2.30)
0, otherwise

1. Determine the Fourier series coefficients of x(z).
2. Plot the discrete spectrum of x{f).

3. Assuming that this signal passes through an LTI system whose impulse response is
given by

< 1
piny= {0 05f< (1.232)
0, otherwise

plot the discrete spectrum and the output y(z). Plots of x(r) and A(r) are given in
Figure 1.10.

Xt} Al

-1 t

Figure 1.10: The input signal and the system impulse response.

1.2. Fourier Series 15
I. We have
1 T2 el '
5 = 7'/ cine™ 2T gy (1.2.3%)
T Jonn
| ! —jtut
== Alnye M dr {1.2.34)
200
l o
== [ Altye™ gy (1.2.35)
27
1
= ;}-{.\(H]f:,,u (1.2.36)
I Az -
= S,\In\: (;) (1.2.37

where we have used the face that A (¢) vanishes cutside the [—1, 1} interval and that
the Fourier transform of A(r) is sinc?( f). This result can also be obtained by using
the expression for A(r) and integrating by parts. Obviousty, we have 1, = 0 for all

even values of n except forn = 0.

2. A plot of the discrete spectrum of x (1) is shown in Figure 1.11.

I r . T 1 . T ' .
1 i

10 ] s a -2 o z . 5 n o

Figure 1.11: The discrete spectrum of the signal.

3. First we have to derive H (). the transfer function of the system. Although this can
be done analytically, we will adopt a numerical approach. The resuiting magnitude
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of the transfer function and also the magnitude of Hin/Tn) = H(n/2) are shown in

98 r T T T T T T
Figure 1.12. R
1. To derive the discrete spectrum of the output we employ the relation
24 | 4
Yu = Xn = 1.2.38) ‘
sl 1 T;) ) { . }] I
1 . .yn n oa L \HW ]
= isln(. (E)H(E) (1.2.3%) i I‘
The resulting discrete spectrum of the culpot s shown in Figure 1.13. as b ‘ " 1
i
The MATLAB script for this problem follows. [l
—REED . ]
- LR L
% MATLAB script fov Mustrative Problem 4, Chaprer 1. IF‘ i
echo on .’ \
n=[-20:1:20); ar | §

T Fourier series coefficients of aft) vectn

x=5w(sinc(n/2))." & —_/1/ g
G sumpling interval ) j
1s=1740; -

020 B —1ﬂl -5 a 5‘ lé ‘IS =
%o rime vector Freguency
1=[-.5:5:1.5]; o8 _ . i . . ‘
% impulse response
fs=1/1s;
h=({zeros{1.200.1(21.61) .zeros(1.200);
T (runsfer function 85 |

H=ffi(h)/ 5.

% frequency resolution
df=fs/80, on L i
t={0:df:fs] - fs/2;

% rearrange H
HI=ffishift{H);
y=aH1(21 81, : 03 | ]
% Plotting commands follow .

1.3 Fourier Transforms ' T ]

The Fouricr transform is the extension of the Fourier series 1o nonperiodic signals. The l \ ]
Fourier transtform of a signal x(¢) that satisfies cerrain conditions. known as Dirichlet’s : tr H |
conditions 1], is denoted by X (f) or, equivalently, F [x{¢)] and is defined by l l

1

flil

|
1

l l “HHSI’H'HI'I!IiE{I}'l‘li’l'l‘l'j‘n{l‘!vn'rm'!“

e i o Lerryr et Hlm
Flein)] = X() =f (e~ gy (1.3.1) & " E E ° =
o i
i
The inverse Fourier transform of X {f) is x(1). given by :

Figure 1.12: The transfer function of the LTI system and the magnitude of H (%)
o

FUX() = <0 = f X(Fe df (132)
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Figure 1.13: The discrete spectrum of the output.

If x(t) is a real signal, then X ( f) satisfies the Hermitian symmetry, i.e.,
X(-fr=X"(f) (1.3.3)

There are certain properties that the Fourier transform satisfies. The most important prop-
erties of the Fourier transform are summarized as follows.

I. Linearity: The Fourier transform of a linear combination of two or maore signals is
the linear combination of the corresponding Fourier transforms.

Flox () + Bxz(1)] = aF ()] + BF{x2(1)] (1.3.4)

2. Duality: If X(f) = F[x{)]. then
FlX{O)) =x(-5H {13.5)

3. Time shift: A shift in the time domain results in a phase shift in the frequency
domain. If X(f} = F[x(t)], then

Fla@ ~ 1)) = e~ ox () (1.3.6)

4. Scaling: An expansion in the time domain results in a contraction in the frequency

domain, and vice versa. If X{f) = F[x(r)]. then

Filxtat)i=—X (i) a#0 (1.3.7

i
la| a

[RUEVV T TR ERITI
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5. Modulation: Multiplication by an exponential in the time domain coresponds to a
frequency shift in the frequency domain, If X( f) = F[x{1)], then

Fle M) = X(F ~ fo) n
(1.3.8)

!
Fledt)cos(2a for)] = E[X(f — fod+ X(f + foll

6. Differentiation: Differentiation in the rime domain corresponds to multiplication by
jlm f in the frequency domain. If X(f)= Fix(r)}, then

Fi' Ol =j2rfX () (1.3.9)
dn
F [Fm}] =YX () (1.3.10)

7. Convolution: Convolution in the time domain is equivalent to multiplication in the
frequency domain, and vice versa. If X(H=Fx®Oland Y{f) = Fly{£)], then

Flay =y = X(AHY () (1.3.1D
Flx(yt)l = X(fH«Y{H (1.3.12)

3. Parseval’s relation: HX(fy=Flx]and Y(f) = Fy(t)], then

f x(tyy"(e)dt =f X(Hrndf (13.13)
oo oo
o0 o0

f lx¢e)? de =f X(H1E drf (1.3.14)
—0Q —00

The second telation is also referred to as Rayleigh's relation.

Table 1.1 gives the most useful Fourier transform pairs. In this table u_, (r) denotes the
unit step function, §(1) is the impulse signal, sgn(r} is the signum function, defined as

1, t>0
sgnit) = { 0. t=0 (£.3.15)
-1, t=<0

and 5"(t) denotes the nth derivative of the impulse signal.

For a periodic signal x(f), with period Ty, whose Fourier series coefficients are given
by xq, i.e.,

)
x(t) = Z Xped 2T To

N=—og
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x(t) X(H
31 1
1 5N
8(r — ) e IEThy
eﬂ«"']'n 5(f —_ fl))
cos(2 for) 180 — )+ 3807 + fo)
sin(27 fol) 180 = o) — ;81 + fo)
(1) sinc{ f)
sinc(t) {fy
AL sine?( )
sine” (1) AlS}
e™Mu_(n, a=0 a‘:jlﬁj
re—®u_y (1), o=>0 m
ety =0 ;z-;%g;ﬁr
T P
sgn{!) J_rlrf'
Wy () 3+ 7
51} j2xf
FICHTS) (j2nfy
L3 —aTy) pmmn080f = 7))

Table 1.1: Table of Fourier transform pairs.

1.3, Fouricr Transiorms 21

the Fourier transtorm is obtained by

Xif)y=Flei)

~
=F z rﬂfjl‘mr;ﬁ
n=—=x
~
- Z ‘:H_.;_-[e,-lrmt,’ﬂ.]
n=—n

~~

=Y ws (f - %) (13.16)

LEain 4

In other words the Fourier transform of a periodic signat consists of impulses at multiples
of the fundamental frequency (harmonicst of the original signal.

It is also possible to express the Fourier series coefficients in terms of the Fourier
transform of the truncated signal by

1 n
==X —_ 3.
n Tn HY (T()) (L.3.17)

where by definition X7, (f) is the Fourier transterm of x5, (1), the truncated signal, defined
by

ki Tu
xi(ty, —F <1 =+
xRy = booTEsiEg (L3.18)
Q. otherwise

The Fourier transform of a signal is called the spectrum of the signal. The spectrum of
a signal in general is a complex function X { f): therefore, te plot the spectrum, usually two
plots are provided—the magnitude spectrum |X ( f)| and the phase spectrum Z X (f).

ILLUSTRATIVE PROBLEM

INustrative Problem 1.5 [Fourier transforms] Plot the magnitude and the phase spectra
of signals x| (+) and x2(1) shown in Figure 1.14.
x (1) T i)

1 1= -

Figure 1.14: Signals x; (/) and xa(r}.
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g SOLUTION

Since the signais are similar except for a time shift, we would expect them to have the same
magnitude specira. The common magnitude spectrum and the two phase spectra plotted on
the same axis are shown in Figures 1.15 and 1.186, respectively.

ost j

osh /

|

FR— 2 3 ) 1 2 3 ) s
Freyuency

hO

ey

Figure 1.15: The common magnitude spectrum of the signals x; (t) and x3(1).

The MATLAB script for this problem is given below. In Section 1.3.1 we show how to
obtain the Fourier transform of a signal using MATLAB.

%o MATLAB scripe for [Hustrative Problem 3. Chapter 1.
df=0.01;

fs=10:

ts=1/fs;

t=[—51s:5);

x| =zeros(size());

x1(41:51)=t(41:57)+1:

x14{52:61)=0nes(size(x 1{52:61)));

x1=zeros(size(r));

x2(51.71)=x1{41:61)

IX Lxli,df]|=fftseq(x ] .ts.df);

1X2.x21,df2)=fftseq(x2.t5.df).

X11=X1/fs:

21=X2/fs;

£=[0:df1:df ] =(length{x I ) — 1))~ fs/2,

plot(f,ffishift¢abs{ X 11)))

plot(f(500:5286), fMshift(angle(X l(500:525))).[(500:525),fﬁshiﬁ(nngle(xzI(500:525))). caaty
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e

Frequenc
.| ‘ , Froquency |
215 al 08 3 nog o 018

Figure 1.16: The phase spectra of the signals x| (¢} and xa(t).

1.3.1 Sampling Theorem

The sampling theorem is one of the most important results tn signal and system analysis; it
forms the basis for the relation between continuous-time signals and discrete-time signals,
The sampling theorem says that a bandlimited signal—i.e., asignal whose Fourier transform
vanishes for | f| > W for some W—can be completely described in terms of its sample
values taken at intervals 7, as longas T, < [/2W. Ifthe sampling is done at intervals T, =
1/2W, known as the Myguist interval (or Nyquist rate}, the stgnal x(r) can be reconstructed

from the sample values {x[r] = x(n TN _.as

20
)= 3 x(nT)sinc @W(r ~ nT}) (1.3.19)

=00
This result is based on the fact that the sampled waveform x;{t) defined as

o0

w0 = 3 x(nTDé(t — nT}) (1.3.20)
n=-2g
has a Fourier transform given by
1 X2 n
X&(f)=ﬁ Z X(f-ﬁ) forall 7
n=—00

1

=7 XU for {f] < w (13.21)
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s0 passing it through a lowpass filter with a bandwidth of W and a gain of 7, in the passband
wili reproduce the original signal. X

Figure 1.17 is a representation of Equation {1.3.19) for T, = 1 and {x[rl},_._3 =
(1,1,-1,2,-2,1, 2}. In other words,

() = sinc{r + 3) 4 sinc{t + 2) — sinc{t -+ 1) + 2 sinc(t)
— 2sinc(t — 1) + sinc(t — 23 + 2sinc{r — 2)

s e

Y dmear - 3

. Lo e
P

STt - 1

“dumctr = 1)

Time

Figure 1.17: Representation of the samnpling theorem.

The discrete Fourier transform (DFT) of the discrete-time sequence x[r] is expressed
as

Xy(fy= Y xlnlems3mt (1.3.22)

==
Comparing Equations (1.3.22) and (1.3.21) we conclude that
X(H) =TLX«) for [fl < W (1.3.23)

which gives the relation between the Fourier transform of an analog signal and the discrete
Fourier transform of its corresponding sampled signal.

Pl b R R e BNl R

1.3. Fourier Transforms 25

Numerical computation of the discrete Fourier transform is done via the well-known fast
Fourter transform ( FFT} algorithm. In this algorithm a sequence of length N of samples of
the signals x (1) taken at intervals of T, is used as the representation of the signal. The result
1s a sequence of length N of samples of X4{f) in the frequency intervai [0, f;1, where
fe = 1/T, = 2W is the Nyquist frequency. When the samples are Af = f,/N apart, the
value of Af gives the frequency resolution of the resulting Fourier transform. In order to
improve the frequency resclution, we have to increase N, the length of the input signal.
The FFT algorithm is computationalty efficient if the tength of the input sequence, N, is a
power of 2. In many cases if this length s not a power of 2, it is made to be a power of 2
by techniques such as zero-padding. Note that since the FFT algorithm essentially gives
the DFT of the sampled signal, in order to get the Fourier transform of the analog signal we
have to employ Equation (1.3.23). This means that after computing the FFT, we have to
multiply it by 7., or, equivalently, divide it by f,, in order to cbtain the Fourier transform
of the original analog signal.

The MATLAB function fftseq.m., given below, takes as its input a time sequence m, the
sampling interval r,, and the required frequency resolution df and returns a sequence whose
length is a power of 2. the FFT of this sequence M. and the resulting frequency resolution.

functien [M,m,df|=ffiseq(m.s.df)

R [M.m.dt] = Hitceglmicdf)
k) [M.m.df} = fltcegtmrs)
®RFFTSEQ Generates M, the FFT of the sequence m
% The sequence 15 zero-pudded T meer the reyuired frequency resolutice df.
% tx is the sumpling infervel The oupue df is the final frequency resolution.
% Output m i+ the cero-pudded version of mput m. M it the FFT.
fs=1/1s;
if nargin == 2
nl=0;
else
ni=fs/df:
end
nZ=length(m).
n=2"(max(nextpow2(n!).nextpow2{n2i)):
M=fft{m.n);
m={m.zeros(1.n—n2);
df=fs/n;

ILLUSTRATIVE PROBLE

Mlustrative Problem 1.6 [Analytical and numerical derivation of the Fourier trans-
form] The signal x{¢} is described by
r+ 2, —2=r=<-1
o=1" clersld (1324)
=14 1ers2 >

0, otherwise

and is shown in Figure 1.18.
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x(1)

1

Figure 1.18: The signal x(f).

i. Determine the Fourier transform of x{r) analytically and plot the spectrum of x(r).

2. Using MATLAB, determine the Fourier transform numerically and plot the result.

. SOLUTION 2

l. The signal x(r} can be written as

.r(r)=2A(%) — Al (1.3.25)

and therefore

X(f)=4sinc}2f) - sinc*(f) {1.3.26)
where we have used, linearity, scaling, and the fact that the Fourier transform of A{r)
is sinc?( ). Obviously the Fourier transform is real. The magnitude-spectrum is
shown in Figure [.19.

2. In order to determine the Fourier transform using MATLAB, we first give a rough
estimaie of the bandwidth of the signal. Since the signal is relatively smooth, its
bandwidth is proportional to the inverse time duration of the signal. The time duration
of the signal is 4. To be on the safe side we take the bandwidth as ten times the inverse
time duration, or

BW =10 x % =25 (1.327)

and therefore the Nyquis frequency is twice the bandwidth and is equal to 5. Hence,
the sampling interval is T, = 1/f, = 0.2. We consider the signal on the interval
{—4,4] and sample it at T, intervals. With this choice, using a simple MATLAB
script employing the fftseq.m function, we can derive the FFT numericatly. We have
chosen the required frequency resolution to be 0.01 Hz, so the resulting frequency
resolution returned by fftseq.m is 0.0098 Hz, which meets the requirements of the

1.2 Fourfer Transforms 27

25 L 1
| 4

i
o5 ! 1 4
| 1

25 -2 D -1 <35 o a5 1 s 2 25
Frequeney

Figure 1.19: The magnitude-spectrum of x{r} derived analytically.

problem. The signal vector x, which has length 41, s zero-padded to a length of 256
to meet the frequency-resolution requirement and also o make it a power of 2 for

. computational efficiency. A plot of the magnitude-spectrum of the Fourier transform
3 is given in Figure 1.20.
5
i The MATLAB script for this problem is given below.
i
E % MATLAB scripr for Mustrative Problem 8, Chuprer |
¥ eche on
H 15=0 2; % sei parmmneiers
' fs=1/1s;
¥ df=0.01;
x:[z:rns(1.10].[0‘0,2:1].0nes(1.9).[1:-0.2'0].2::05(1.10)};
[X.x.dfl)=fftseq{x.15.df). % derive the FFT
X1=X/fs: % scaling
. T={0:df1-df I =(lengthi)— 13— fs,2; % frequency vector for FFT
. fI={-2.5:0.001:2.5], % frequency vector for anolviic approuch

y=d»(sinc(2af1)). " 2—(sine(f1))." 2;

% exuct Fourier transfurm

pause % Press a key to see the plul of the Fuurier Transform derived analyticaliv
<lf

subplot(2.1,1)

plot(fl.absiyp;

xlabel(* Frequency )

fitle(* Magnitude-pectrum of x{t] derived analytically”)

pause % Press akey o see the plot of the Fourier wransfem derived numerically
subplo1(2,1.2}
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Figure 1.20: The magnitude-spectrum of x{r) derived numerically.

plot(f,fitshifi(abs(X1)));
xlabel{ ' Frequency ")
wle* Magnitude-pectrum of x(r) derived numericaliy ")

1.3.2 Frequency Domain Analysis of LTI Systems

The output of an LTI system with impulse response /() when the input signat is x(¢) is
given by the convolution integral

¥y = x(r} w ki)

(1.3.28)
Applying the convolution theorem we obtain
YN =XNEN (1.3.29)
where
oo ey
H(f) = Flhin) =f R{e 2T gy (1.3.30)
=00

is the transfer function of the system. Equation {1.3.29) can be written in the form

( YR = IX(OUHO

(1.33D)
YN =LX{NH+HLHD

which shows the relation between magnitude and phase spectra of the input and the output.
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ILLUSTRATIVE PROBLEM

Ilustrative Problem 1.7 [LTIsystem analysis in the frequency domain] The signal x{!}
whose plot is given in Figure 1.21 consists of some line segments and a sinusoidal segment.

te(r)

RN

Figure 1.21: The signal x(1).

r

:

wl - — —
=

1. Determine the FFT of this stgnal and plot it.

[

. Ifthe signal is passed through an ideal lowpass filter with a bandwidth of 1.5 Hz, find
the output of the filter and plot it.

3. If the signal is passed through a filter whose impulse response is given by
t. 0=t1 <1
hloy=41. i<1=<2

(1.3.32)
0, otherwise

derive an expression for the filter output.

First we derive an expression for the sinusoidal part of the sigral. This is a sinusoidal
whose half-period is 2: therefore. it has a frequency of fp = } = (.25 Hz. The signal has
an amplitude of 2 and is raised by 2, so. the general expression for itis 2 cos(2w x 0.25¢ +

8) + 2 = 2cos{0.57r + #) + 2. The value of the phase € is derived by employing the
boundary conditions

2+ 2cos{0.571 +8)_; =0

(1.3.33)
or & = (. Therefore. the signal can be written as
r+ 2, -2=<r=0
1. OQ<r=<l
(1) =324 2cos8(05mt). l <1 <3 {1.3.34)
1. <t =4
Q, otherwise

Having a complete description of the signal we can proceed with the solution.
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I. The bandwidth of the signal has been chosen to be 5 Hz. The required frequency 25
resolution is 0.01 Hz. The plot of the magnitude-spectrum of the signal is given in .
Figure 1.22

N 2

I i
| | -

Freyuency Time

Figure 1.22: Magnitude-spectrum of the signal. Figure 1.23: The output of the lowpass fiter.

2. Here f. = 5Hz. Since the bandwidth of the lowpass filter is 1.3 Hz, its transfer ‘ " T
function is given by i
i 7k
1, 0=f=<15 H
H(fy=10, 15<f <35 {1.3.35)
1. 35<f<5 r 1
which is multiplied by X(f) to generate Y (f), the Fourier transform of the output, sl
Using this transfer function gives the output shown in Figure 1.23.
3. Here we obtain the output of the filter by a simple convolution. The result is shown LS j
in Figure 1.24.
The MATLAB script for this problem is given betow, ‘r
L -
% MATLAB scripe for Hlustrative Problem 7, Chapter [
echo on
df=0.01; % frey. resolution 1 - . ) 2 5 z n 3 o
fs=5; % sumipling frequency Time
ts=1/fs; % sumpling interval
t=[ = 5:15:5]; % time vectar . . : . .
x=zeros(1 lengthiD}: % inpur signal nitiation Figure 1.24: The output signal in the third part of the problem.
x{16:26)=1(16:26)+2;
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x(27:31)=2+0nes(1.5),

x(32:41)=242xcos(0.5+pi+1(32:41)):

%(42:46)=2%ones(1,.5)%

% parr !

[X.x1.df1]=ftseq(x 15.41); % specirum of the tnpur
[=[0-3f1dfi#{length(x 1) — 1] —15/2; T frequency vector
X1=X/fs; T scaling

% purt 2

T filter transfer function

H=fones(1,ceitt 1.5/df 1) zerost 1 length( X )—2+ceil{1.5/df 1)) onest 1.crl (15740101

Y=X»H; T omipur specrram
y1=iffe(Y); B vutpur of the filter
% part 3

G LTI system tmpulse response

h={zeros{1.ceil(5/1s{caili5/1s)+ Liceil B, 1s),onest 1 cell(7 /5)—ceil(B/1s)).zerost 1,51 —cell(7 /ts))];
y2=convih,x); Yo output uf the LTI svsrem

pause % Press u key to see spectrum of the input

plot(f. fitshift{abs( X))

pause %o Press o key o sec the vuipui of the lwwpuss fplter

plot(t,abs(y 1L 1 -length(t))))

pause % Press a kev to see the outpur of the LTI system

plotf(~10us:10),y2),

1.4 Power and Energy

The energy and the power contents of areal signal x (1}, denoted by E'x and Py, respectively,

are defined as
= el
f xo(tYyde
-

- (1.4.1)
=l - x-(rydt
Px TTmTf_”:t()

A signal with finite energy is called an energy-fype signal, and a signal with positive and
finite power is a power-type signal. For instance x(¢) = TI{t) is an example of an energy-
type signal, whereas x(i} = cos(!) is an example of a power-type signal. All periodic
signals’ are power-type signats. The energy spectral density of an energy-type signal gives
the distribution of energy at various frequencies of the signal and is given by

Eyx

It

gx () = X1} (1.4.2)

Therefore,

Ex=fm0 Sx(fidf (1.4.3)

—oa

4There exist signals that are neither energy type nor power type. One example of such signals is z(f) =
efu_q().
5The only exception is those signals that are equal to zero almost everywhere.
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Using the convolution theorem we have
Exifl =F[Ryit)] (1.4.4)

where Ry(1) is the autocorrelation furction of xir) defined as '

S
RyitT) = ] XX+ tyde
-
=x{ri»vi—1) i1.4.3)

for real-valued signats. For power-tvpe signals we define the time-average awocorrelation
Jfunction as

I [
Ryirty= lim —[ it +rydr (1.4.6}

|
T—~xT T
and the power spectred density is in general given by
Sxify = FlRx(1)] (147
The total power is the integral of the power spectral density given by
%
Py = j Syl frdf (1.4.8)
-

For the special case of a periodic signal .x(r) with period Ty and Fourier series coefficients
Xn. the power spectral density 15 given by

-~

Sx(f)= 3y IS (f—%) (14.9)

==

which means all the power is concentrated at the harmonics of the fundamental frequency,
and the power at the ath harmonic {11/ Tp} is Ix.17 . ie. the magnitude square of the corre-
sponding Fourier series coefficient.
When the signal x(¢) passes through a filter with transfer function H(f), the cutput
energy spectral density, or power spectral density, is obtained via
3y(f)—!H(f)\1§x(f) (14.10)
Sy{f) = |H{ WSkl f)

If we use the discrete-lime (sampled) signal, the energy and power refations equivalent o
Equation (1.4.1) in terms of the discrete-time signal become

Exy =T, i n)

H=—10
v (L4l
R
Py = ;vllpm ol n;\’x [n]
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and if the FFT is emploved—i.c.. if the length of the sequence is finite and the sequence is
repeated—then

E

=

N1
=T} x'n]
n=0
[

2
Py = FZ_(:JX [n]

(1.4.12)

The following MATLARB function power.m gives the power content of a signat vector.

function p=power{x)

/ P = powerix)

TPOWER Rerurns the power in tignel ©
p=tnorm(x)*2)/lengihix )

It X4(f} is the DFT of the sequence x{n}, then the energy spectral density of x(1), the
equivalent analog signal, is obtained by using the Equation (1.3.23) and is given by

gx{f) =T} 1Xa( P (1.4.13)
where T is the sampling interval. The power spectral density of a sequence x[n} is most
easily derived by using the MATLAB function spectrum.m.

ILLUSTRATIVE PROBLE

Tllustrative Problem 1.8 {Power and power spectrum] The signal x(r) has a duration of
10 and is the sum of two sinusoidal signals of unit amplitude. one with frequency 47 Hz
and the other with frequency 219 Hz.

) cos(2r x 471 +cos(2mr x 2191), 0 <r <10
X =
0, otherwise
This signal is sampled at a sampling rate of 1000 samples per second. Using MATLAB,
find the power content and the power spectral density for this signal,

. SOLUTION

Using the MATLAB function pewer.m the power content of the signal is found 1o be
1.0003 W. By using spectrum.m and specplot.m. we can plot the power spectral density of
the signal, as shown in Figure 1.25, The twin peaks in the power spectrum correspond to
the two frequencies present in the signal.

The MATLAB script for this problem follows.

Bl ] e sl kB S
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Figure 1.25: The power spectral density of the signal consisting of two sinusoidal signals
at frequencies f; =47 and f> = 219 Hz.

—EEEED

% MATLAB script for Rlustrartive Pmblem 8, Chuprer 1.
t5=0.001;

fs=1/1s;

t={0:15:10];

x=COS(2xpi«d7 a1} +cos(2npin2 1Tut);

p=power(x);

psd=spectrum{x,1024);

pause % Press o key to ser the power in the signal

P
pause % Precy a key (o tee the power spectrum
specplot(psd.fs)

1.5 Lowpass Equivalent of Bandpass Signals

A bandpass signal is a signal for which all frequency components are located in the neigh-
borhood of a central frequency fy (and, of course, — Jo). In other words, for a bandpass
signal X(f) = 0 for |f + fol > W, where W < f5. A lowpass signal is a signal for
which the frequency components are located around the zero frequency; i.e., for | f| > W,
we have X(f) = 0.

Corresponding to a bandpass signal x{t) we can define the analytic signal z{t), whose
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Fourier transform is given as

Z(f) =2u (X (1.5.1)

where u_( f)is the unit step function. in the time domain this relation is written as

2oy = x(0) + jx(n (1.5.2)
where £ () denotes the Hilbert transformof x () defined as £ (1) = x () % in the frequency
domain it 1s given by

X(fy=~/sen{NX( ) (1.5.3)

We note that the Hilbert transform function in MATLAB, denoted by hilbert.m, generates
the complex sequence z(r). The real part of z(f) is the original scquence, and its imaginary
part is the Hilbert transform of the original sequence.

The lowpass equivalent of the signal x{r}, denoted by x;{r}, is expressed in terms of
z{t) as

xi{e) = z(e)e 3! (1.5.4)
From this relation we have
x{1) = Relxs(rye! >
EE:; = Imixiirie“”"'i (13.5)
In the frequency domain we have
XA = Z(F + o) =2u(f + fo X{f + fo) (1.56)
and
X{N=X{f-fo+X{-f-f) (1.5.7)

The lowpass equivalent of a real bandpass signal is, in general, a complex signal. Its real
part, denoted by x.(t), is called the in-phase component of x(t) and its imaginary part is
called the quadrature component of x{¢) and is denoted by x.{r}; 1¢.,

xp{t) = xt) + fx e} (15.8)
In terms of the in-phase and the quadrature components we have
x(t) = x{r) cos(Zx for) — x:(4) sin(2r for} (159)
(1) = x,(tycos(2n far} + k(1) sin{2m for)
If we express x;{t) in polar coordinates, we have
x() = V(eSO (15.10)
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where V(r) and @(r} are called the envelope and the phase of the signal x(t). In terms of
these two we have

x(t) = V{tycos(2x for + O()) (15.11)
The envelope and the phase can be expressed as
Vi = Jx20 + D
(0 (1.5.12)
B} = arctan ——
240
or, equivalently,
ViD= v+ 3
(15.13)

()
©(1) = arctan — — 27 fot
x(t}

It is obvious from the above relations that the envelope is independent of the choice of fp,
whereas the phase depends on this choice.

We have written some simple MATLAB files to generate the analytic signal, the lowpass
representation of a signal, the in-phase and quadrature compenents, and the envelope and
phase. These MATLARB functions are analytic.m, loweq.m, quadcomp.m, and env_phas.m,
respectively. A listing of these functions is given below.

function z=anaiytic(x)

% z = unalyricfx}

RANALYTIC Returns the anaivtic tignal corresponding to signal x.
%

z=hilbert(x):

function xI=loweq{x,ts,f0)

% x = foweqix 510}

BLOWEQ Returns the luwpass equivalent of the sighal ©
% JO i the center frequency.

% tx ix the sumpling interval.

%

t=[0:ts:ts=(length(x)-1)];
z=hilbent(x);
xl=z sexp(—j*2eptxf0xt);

function [xc,xsi=quadcompq{x,ts,f0}
% frcas] = qwadcompix.is Q)
RQUADCOMP  Returns the in-phuse and quadrafure comporents of
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% the signal x. f0 is the center frequency. Is is the
% sampling inferval,

%

z=loweq(x,ts, f);

xc=real(z);

xs=imag(z);

— =D

function [v,phiJ=env_phas(x is,0)
% [vphi] = env_phasix,t5./0)

% v = env_phas(xs f0)
FENY _PHAS Returns the envelope und the phase of the bundpass sipnal x,
% SO is the center frequency.
% ts is the sampling interval.
%
if nargout ==
r=loweg(x,1s,10);
phi=angle(z);
end

v=absthilbent{x));

ILLUSTRATIVE PROBLE

Dlustrative Problem 1.9 {Bandpass to lowpass transformation] The signal x(¢) is given
as

x(¢} = sinc(100t) cos(2;7 x 2001) (1.5.14)
1. Plot this signal and its magnitude spectrum.

2. With fy = 200 Hz, find the lowpass equivaient and plot its magnitude spectrum. Plot
the in-phase and the quadrature components and the envelope of this signal.

3. Repeat part 2 assuming fp = 100 Hz.

. SOLUTION o

Choosing the sampling interval to be ¢, = 0.001s, we have a sampling frequency of
fs = 1/t; = 1000 Hz. Choosing a desired frequency resolution of df = 0.5 Hz. we have
the following.

L. Plots of the signal and its magnitude spectrum are given in Figure 1.26. Plots are
generated by MATLAB,

2. Choosing fy = 200 Hz, we find the lowpass equivalent to x(¢) by using the loweq.m
function. Then using fftseq.m we obtain its spectrum; we plotits magnitude-spectium
in Figure 1.27.
It is seen that the magnitude spectrum is an even function in this case, because we
can write

x() = Re[sinc(100r)e/ 27 x 200 {1.5.15)

B M4 gl 3 B el 0 el b

i

o

. Lowpass Equivalemt of Bandpass Signals 19

Figure 1.26: The stgnal x{r) and its magnitude-spectrum.
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Figure 1.27: The magnitude-spectrum of the lowpass equivalent to x(¢) in Ilustrative
Problem 1.9 when f3 = 200 Hz.
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Comparing this 10

x(t) = Refx (1ye! 7% Jof) (15.16)

we conclude that

x;(2) = sinc(1000) {1.5.17)

which means that the lowpass equivalent signal is a real signal in this case. This, in

turn, means that x.(¢) = x;{) and x,(t} = 0. Also, we conclude that
Vi) = |xc ()]

0, x()y=10 (1.5.18)

Qi) =
o T, x (Y <0

Plots of x.(r} and V (¢} are given in Figure 1.28,

o [~

Figure 1.28: The in-phase component and the envelope of x ().

Note that choosing this particular value of fp, which s the frequency with respect to
which X (f) is symmetric, yields in these resuits.

. If fo = 100 Hz, then the above results will not be true in general, and x; (¢} will be a

complex signal. The magnitude spectrum of the lowpass equivalent signal is plotted
in Figure 1,29, As its is seen here, the magnitude spectrum lacks the symmetry
present in the Fourier transform of real signals. Plots of the in-phase components of
x(t) and its envelope are given in Figure 1.30.
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Figure 1.29: The magnitude spectrum of the lowpass equivalent to x(f) in Illustrative
Problem 1.9 when fp = 100 Hz.
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Figure £.30; The in-phase component and the envelope of the signal x (¢} when fz = 100
Hz.
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Problems

1.1 Consider the periodic signal of Nlustrative Problem 1.1 shown in Figure 1.1. Assuming
A=1,Tp = 10, and o = |, determine and plot the discrete spectrum of the signal. Com-
pare your resuits with those obtained in Illustrative Problem 1. and justify the differences.

1.2 In Illustrative Problem 1.1, assuming A = 1, Ty = 4, and 15 = 2, determine and plot
the discrete spectrum of the signal. Compare your results with those obtained in Ilusirative
Problem 1.1 and justify the differences.

1.3 Using the m-file fseries.m, determine the Fourier series coefficients of the signal shown
inFigure .l with A = |, Ty = 4, and 5y = é for —24 < n < 24. Plot the magnitude
spectrum of the signal. Now using Equation (1.2.5) determine the Fourier series coefficients
and plot the magnitude spectrum. Why are the results not exactly the same?

1.4 Repeat Problem 1.3 with Ty = 4.6, and compare the results with those obtained by
using Equation (1.2.5). Do you observe the same discrepancy between the two resulis here?
Why?

L5 Using the MATLAB script dis_spet.m, determine and plot the phase spectrum of the
periodic signal x(t) with a period of 5 = 4.6 and deseribed in the interval [—2.3,23] by
the relation x(t) = A(t). Plot the phase spectrum for —24 < n < 24, Now, analytically
determine the Fourier series coefficients of the signal, and show that all coefficients are
nonnegative teal numbers. Does the phase spectrum you plotied earlier agree with this
result? If not, explain why,

1.6 In Problem 1.5, define x(r) = A(f) in the interval [-1.3,3.3}; the period is still
Ty = 4.6. Determine and plot the magnitude and phase spectra using the MATLAB script
dis_spct.m. Note that the signal is the same as the signal in Problem 1.5. Compare the
magnitude and the phase spectra with that obtained in Problem 1.5. Which one shows a
more neticeable difference, the magnitude or the phase spectrum? Why?

1.7 Repeat Nlustrative Problem | .2 with {a, 5] = [—4, 4] and x (1) = cos(m!/8) forlf| < 4.

1.8 Repeat [llustrative Problem 1.2 with [a, b] = [—4, 4] and x(z) = sin(rr/8) for [t| < 4
and compare your results with those of Problem 1.7.

1.9 Numerically determine and piot the magnitude and the phase spectra of a signal x(r)
with a period equal to 10~% seconds and defined as

~105+05, O<r<Sx10-7

x(t)y = )
) otherwise

inthe interval 1| < § x 1077,

Stk o Y | LA A M —
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L1t A periodic signal x(t) with period Ty = 6 is defined by x(f) = T1(i/3) for It = 3.
This signal passes through an LTI system with an impulse response given by

—i/2 <t <4
hy=]" T 0=rs
0. otherwise
Numerically determine and plot the discrete spectrum of the output signal.

1.11 Repeat Problem 1.10 with x{t) = ¢~ for || < 3 and

[, 0=r=<4
h(t) = )
0, otherwise

1.12 Verity the convolution theorem of the Fourier transform for signals x(t) = TI(r) and
¥(t) = A(1) numerically, once by determining the convolution directly and once by using
the Fourier transforms of the two signats.

1.I3 Plot the magnitude and the phase spectra of a signal given by

1, —2=t=<-1
fel, el =<1

X)) =
® 1, lst<2

0,  otherwise

1.14 Determine and plot the magnitude spectrum of an even signal x () which for positive
values of 7 is given as

t+1, O0<r=<l

2, l=t=<2
x(t) =

—t+4, 2=<r=<4

0, otherwise

Determine your result both analytically and numerically and compare the results.

1.15 The signal described in Problem 1.14 is passed through an LTI system with an impulse
response given by

1, 0=t=2
A(ty=32, 2<t<3
0, otherwise

Determine the magnitude and the phase spectra of the output signal,
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1.16 The signal

cos(Zm x 47r) + cos(2T % 219¢), O =<t <10

0 = 0, otherwise

is considered. As in Illustrative Problem 1.8, assume this signal is sampled at a rate of 1000
samples/second. Using the MATLAB M-file butter.m, design a lowpass Butterworth filter
of order 4 with a cutoff frequency of 100 Hz and pass x(t) through this filter. Determine
and sketch the cutpui power spectrum and compare it with Figure 1.25. Now design a
Butterworth filter of order 8 with the same cutoff frequency, and determine the output of
this filter and plot its power spectrurr. Compare your resulls in theses two cases.

1.17 Repeat Problem 1.16, but this time design highpass Butterworth filters with the same
orders and the same cutoff frequencies. Plot your resulis and make the comparisons.

1.18 Consider the signal

cos(2r x 4Tt) +cos{2m x 2191), O0<r <10

x(n = 0, atherwise

a. Determine the analytic signal corresponding to this signal.
b. Determine and plot the Hitbert transform of this signal.
¢. Determine and plot the envelope of this signal.

d. Once assuming fy = 47 and once assuming fy = 219, determine the lowpass
equivalent and the in-phase and the quadrature components of this signat.

e e ——— e e - -
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Chapter 2

Random Processes

2.1 Preview

In this chapter we illustrate methods for generating random variables and samples of random
processes. We begin with the description of a method for generating random variables with a
specified probability distribution function. Then, we consider Gaussian and Gauss-Markov
processes and illustrate a method for generating samples of such processes. The third topic
that we consider is the characterization of a stationary random process by its autocorrefation
in the time domain and by its power spectrum in the frequency domain. Since linear filters
play a very important role in communication systems, we also consider the antocorrelation
function and the power spectrum of a linearly filtered random process. The final section of
this chapter deals wiih the characteristics of lowpass and bandpass random processes.

2.2 Generation of Random Variables

Random number generators are often used mn practice Lo simulate the effect of noiselike
signals and other random phenomena that are encountered in the physical world. Such noise
is present in ¢lectronic devices and systems and usually limits our ability to communicate
over large distances and 1o detect relatively weak signals. By generating such noise on a
computer, we are able to study its effects through simulation of communication systems
and to assess the performance of such systems in the presence of noise.

Most computer software libraries include a uniform random number generator. Such
arandom number generaior generates a number between ( and 1 with equal probability.
We call the output of the randem number generator a random variable. If A denotes such a
random variable, its range is the interval 0 < A < 1.

We know that the numerical cutput of a digital computer has limited precision, and
as a consequence it is impossible 1o represent the continuum of numbers in the interval
0 = A < 1. However, we may assume that our computer represents each output by a
large number of bits in either fixed point or floating point. Consequently, for all practical
purposes, the number of cutputs in the interval 0 < A < 1 is sufficiently large, so that we

45
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are justified in assuming that any value in the interval is a possible output from the generator.

The uniform probability density function for the random variable A, denoted as JF(A),
1s illustrated in Figure 2.1(a). We note that the average value or mean value of A, denoted
asma,ismy = % The integral of the probability density function, which represents the
area under f(A), is called the probabiliry distribution function of the random variable A
and is defined as

A
F(A) = f flx)dx 2.2.1)

For any random variable, this area must always be unity, which is the maximum value that
can be achieved by a distribution function. Hence, for the uniform random variable A4 we
have

|
F(l)y= [ flx}ydx =1 (2.2.2)

and the range of F(A)is0 < F(A) < 1 for0 < A < 1. The probability distribution
function is shown in Figure 2.1(b).

fA) F(A)

@ )

Figure 2.1: Probability density function f(A} and the probability distribution function
F(A) of a uniformly distributed random variable 4,

If we wish to generate uniformly distributed noise in an interval (&, b + 1), it can be
accomplished simply by using the output A of the random number generator and shifting
it by an amount &. Thus a new random variable 8 can be defined as

B=A+b (2.2.3)

which now has a mean value mg = b+ % For example, if b = —%. the random variable B

is unifermly distributed in the interval (——%, %), as shown in Figure 2.2(a). Its probability
distribution function F{B) is shown in Figure 2.2(b).
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A uniformly distributed random variable in the range (0,1) can be used to generate
random variables with other probability distribution functions, For examptle, suppose that

we wish to generate a random variable C with probability distribution function F(C), as
illustrated in Figure 2.3. '

fiB} FiB)

0 L -
(a) (b}

.
w
[ES
S
.

Figure 2.2: Probability density function and the probability distribution function of a zero-
inean uniformly distributed randor variable.

Figure 2.3: Inverse mapping from the uniformly distributed random variable A to the new
random variable C.

Since the range of F(C) is the interval (0,1), we begin by generating a uniformly
distributed random variable A in the range (0,1). If we set

FiCy=A (2.2.4)

then

C=rla (2.2.5)
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Thus we solve (2.2.4) for €, and the sclution in (2.2.5) provides the value of C for which

F{C) = A. By this means we obtain a new random variable C with probability distribution

F(C). This inverse mapping from A to C is illustrated in Figure 2.3.
ILLUSTRATIVE PRCOBLEM

Blustrative Problem 2.1 Generate a random variable C that has the linear probability
density function shown in Figure 2.4(a); 1.,

o 1€, 0=C =2
SO = 0, otherwise
A FIC)
s j
|
: Hyd
y ]
|
c ‘ c
o 1 ol 2
(a) (b}

Figure 2.4: Linear probability density function and the corresponding probability distribu-
tion function.

—E=ETD

This random variable has a probability distribution function

0, C <0
F(Cy=41iC? 0=C=2
1, C=2

which is illustrated in Figure 2.4(b). We generate a uniformly distributed random variable
A andset F(C) = A. Hence

F(C) = ﬁcz =4 (2.2.6)

Upon solving for C, we obtain

c=2v/4 (221
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Thus we generate a random variable C with probability function F{C), as shown in Figure
2.4(b).

In Illustrative Problem 2.1 the inverse mapping € = F!{A) was simple. In some
cases it is not. This problem arises in trying to generate random numbers that have a normal
distribution function.

Noise encountered in physical systems is often characterized by the normal, or Gaussian,
probability distribution, which is illusirated in Figure 2.5. The probability density function
is given by

l 192
FIO) = — e~C -0 < C < oo (2.2.8)
Vina

where o? is the variance of €. which is a measure of the spread of the probability density
function f(C). The probability distribution function F{C) is the area under f(C) over the
range (—2¢, C). Thus

c
F(C) = f flx)ydx 2.2.9

Fi{o] FIC)

o of
(a) (b)

Figure 2.5: Gaussian probability density function and the corresponding probability distri-
bution function.

Unfortunately, the integral in (2.2.9) cannot be expressed in terms of simpie functions.
Consequently, the inverse mapping is difficult to achieve. A way has been found 10 circum-
vent this problem. From probability theory it is known that a Rayleigh distributed random
variable R, with probability distribution function

0, R <0
F(R) = L (2.2.10
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is related to a pair of Gaussian random variables C and [ through the transformation

C=Rcos®
D= Rsin®

(2.2.11)
(2.2.12)

where @ is a uniformly distributed variable in the interval {0, 2). The parameter o2 is the
variance of C and D. Since (2.2.10) is easily inverted, we have

F(R) = | — ™R8 _ 4 (2.2.13)

and hence

R =22 In[1/(1 - A)]

where A is 2 uniformly distributed random variable in the interval (0, 1). Now, if we generate
a second uniformiy distributed random variable B and define

(2.2.14)

O =28 (2.2.1%5)

then from (2.2.11) and (2.2.12), we obtain two statistically independent Gaussian distributed
random variables C and D.

The method described above is often used in practice to generate Gaussian distributed
random variables. As shown in Figure 2.5, these random variables have a mean value of
zero and a variance o 2. [f a nonzero mean Gaussian random variable is desired, then € and
D can be translated by the addition of the mean value.

The MATLAB script that implements the method above for generating Gaussian dis-
tributed random variables is given below.

function [gsrv1,gsrv2i=gngauss{m,sgma)
% [gsrvlgsrv2] = gngaussim.sgma)
% [gsrvlgsrv2] = gngauss(sgma)
% [gsrvlgsrv2] = gngauss
% GNGAUSS  generutes two independent Gaussian rundom variables with mean
% m und stundard deviesivn sgma. If one of the igpur argumentt is missing
% il fakes the mean as 0.
% If neither mean nor the variance is given, it generates two stunderd
% Guussian random variables.
if nargin == 0Q,
m=0; sgma=1;
elseif nargin == 1,
sgma=m; m=0;
end;
u=rand; % o uniform random variable in {0,1)
z=sgman{sqet(2«log(/(1—u))); % a Ruayleigh distributed randem variable
u=rand; % another uniform random variable in (0.1)
gstvl=m+z+cos(2xpisu);
gsrvi=m+zasin(2xpisu);
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2.3 Gaussian and Gauss-Markov Processes

Gaussian processes play an important role in communication systems. The fundamental
reason for their importance is that thermal noise in electronic devices, which is produced
by random movement of electrons due 10 thermal agitaticn, can be closely modeled by a
Gaussian process. The reason for the Gaussian behavior of thermal noise is that the current
intreduced by movement of electrons in an electric circtit can be regarded as the sum of
small cuerents of a very large number of sources, namely, individual electrons. It can be
assumed that at least a majority of these saurces behave independently and, therefore, the
total current is the sum of a large number of independent and identically distributed (i.i.d.)
random variables. By applying the central limit theorem, this total current has a Gaussian
distribution,

Apart from thermal noise, Gaussian processes provide rather good models for some
information sources as well. Some interesting properties of the Gaussian processes, which
are given below, make these processes mathematically rractable and easy 1o deal with. We
begin with a formal definition of a Gaussian process.

Definition: A random process X{f)isa Gaugssian processifforallnandall (¢, 12, ..., 1,,),
the random variables {X(e1))]_, have a jointly Gaussian density function, which may be
expressed as

I
fixy = 7 exp[—-z-(x-m)'C"(r—m)] (2.3.1)

1
(2 )2 (der( )]
where the vector x = (x|, x3.... , x4)' denotes the n random variables x; = X)), mis
the mean value vector, i.e., m = E(X). and C is the n x n covariance matrix of the random
variables (x|, x2, ..., x,;) with elements

cj = E[{xi —mi)(x; —m )] {2.3.2)
The superscript £ denotes the transpose of a vector or a matrix and C~! is the inverse of the
covartance matrix €.

From the above definition it is seen, in particular, that at any time instant tp the random
variable X (#g) is Gaussian, and at any two points fy, f3 the random variables (X (1), X))
are distributed according 1o a two-dimensional Gaussian random variable. Moreover, since
a complete statistical description of {X{#1)}7=, depends only on the mean vector m and the
covariance matrix C, we have the following property.

Property 1: For Gaussian processes, knowledge of the mean m and covariance € provides
a complete statistical description of the process,

Another very important property of a Gaussian process is concerned with its character-
istics when passed through a linear time-invariant system, This property may be stated as
follows.
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Property 2: If the Gaussian process X (¢} is passed through a linear, time-invariant (L'TT)
system, the output of the system is also a Gaussian process. The effect of the system on
X {1} 1s simply reflecied by a change in the mean value and the covanance of X (7).

ILLUSTRATIVE PROBLE

Ilustrative Problem 2.2 [Generation of samples of a multivariate Gaussian process)
Generate samples of a multivariate Gaussian random process X (r) having a specified mean
value m, and a covariance C, .

S SOLUTION

First, we generate a sequence of n statistically independent, zero-mean and unit variance
Gaussian random variables by using the methed described tn Section 2.2, Let us denote
this sequence of n samples by the vector ¥ = (y1, ..., . v, ). Secondly, we factor the
desited n % r covariance mairix €, as

172

c, =/l (23.3)
Then, we define the lincarly transformed (n x |} vector X as

X =CYY +m, (2.3.4)
Thus the covanance of X is
C,=E[X —mHX —mc))
= £ YT (cY)
= CPE YNy
=iy (2.3.5)

The most difficull step in this process is the factorization of the covariance matrix C,. Let
us demonstrate this procegure by means of an example that employs the bivariate Gaussian
distribution. Suppose we begin with a pair of statistically independent Gaussian random
variables y| and y2, which have zero mean and unit variance. We wish to transform these
into a pair of Gaussian random variables x; and xz with mean m = 0 and covariance matrix

C= al2 po07
paIG7 crz2

L3
= 3 (2.3.6)

where 012 and 0'22 are the variances of x| and xz, respectively, and p is the normalized
covariance, defined as

B - m)(Xa —ma)] _ ‘i
o= o103 o161

(2.3.7

RS
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The covariance matrix C can be factored as

CZCI;'E(CI/Z)J

where

VAV

Therefore,

a5 Al

ml_ﬁ[(ﬁﬂ)yw(\/i—l)y:]
AL - Dy + 3+ 0n

The MATLAB scripts for this computation are given below.

(2.3.9)

% MATLAB script for Iliustrative Problem 2. Chapter 2.
echo on
mx=[0 0] ;
Cx={1 1/2:1/2 1),
x=mulo_gp(mx.Cx}.
% Compusation of the pdf of {x], 2} follows
delta=0.3;
al=-3:delta:3;
x2=—3:delta3;
for i=1:length(x1).
for j=1:ength(x2),
L=t /((2epidedet(C0)" 1/2)=expi{—1/2)=(([x1(1) x2()]-mx "1 *inv(Cx} " ([x1(i}; x2(j)]—mx)),
end:
end;
% piotting commund for pdf follows
mesh(x1,x2,1);

— =G

function [x] = muld_gp{m,C}

% f[x] = muli_gpim,C)

% MULTI_GP generutes a multivariate Gaussian random

% process with mean vector m (column vector), and covariance matrix C.
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N=length(m);

for i=1:N,
yli)=gngauss;

end;

Y=y

x=sqrrm{ Chey+m;

Figure 2.6 illustrates the joint pdf f (x;, x3) for the covariance matrix € given by (2.3.6).

05

Figure 2.6: Joint probability density function of x| and x3.

As indicated above, the most difficult step in the computation is determining €142,
Given the desired covariance matrix, we may determine the cigenvalues {A¢, | < k < n}
and the corresponding eigenvectors {vg, 1 < & < n}. Then, the covariance matrix € can
be expressed as

n
C=) My} (2.3.10)
k=1

and since € = CL2¢C' /2, it follows that

n
€' =3 1 v (23.11)
k=1
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Definition: A Markov process X {r) is a random process whose past has no influence on
the future if its present is specified. That is, if iy > l,_1, then
PX(a} S0 | X00) 12 tay] = PX(ta) < Xn | X (i) {23.12)

From this definition, it follows that if £| « I < - <1y, then

PLX) < 0 | Xlte), X () X(0]) = P{XG) 2 0 | XCao)]  (23.13)

Definition: A Gauss-Markov process X (1) is a Markoy process whose probability density
function is Gaussian.

The simplest method for generating a Markov process is by means of the simple recursive
formula

Xn=pXo |+ wn (2314
when wy, is a sequence of zero-mean i.1.d. (white) random variables and p 13 4 parameter
that determines the degree of comelation between X, and X, ;. That is,

E(XpXa-1) = pE(X2_)) = pa?_, (23.15)

If the sequence {w,) is Gaussian, then the resulting process X {t) is a Gauss-Markov process.
ILLUSTRATIVE PROBLEM

Dlustrative Problem 2.3 Generate a sequence of 1000 {equally spaced) samples of a
Gauss-Markov process from the recursive relation

Xn =095X,.1 + wa. n=12,. .,1000 (2.3.16)

where Xo = 0 and {w,} is a sequence of zero mean and unit variance i.i,d. Gaussian random
variables. Plot the sequence {X,, 1 <n < 1000} as a function of the time index n and
the autocorrelation

N—rm
1
Re(m) = ——— 3 XnXnim,  m=0,1,...,50 23.17)

—m
n

=1
where N = 1000.

g SOLUTION o

The MATLAB scripts for this computation are given below. Figures 2.7 and 2.8 illustrate
the sequence (X,) and the autocorrelation function R, {m).
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e M-FILE g

%o MATLAB script for Mlustraive Problem 3, Chaprer 2.
echo on

tho=0.95.

X0=0,

N=1000;

X=gaus.mar(X0,rho,N);

M=50;

Rx=Rx_est(X M),

T ploting commandy follow

. M-FILE

Junetion (X [=paus martX0,rho N)
G (X ]=paus_mariX0.rbo N}

ol GAUS MAR  generutes u Gauss-Markov process of length M.
kL the noive process is tuken to be white Gaussian
% Hoise with rero mmean und unir veriance
for i=1:2:N,
[Wsti) Wsii+1)j=gngauss; % yenerate the noise process
end;
X(1=rhos X0+Ws( 1), % firse element in the Guuss-Markov process
for i=2:N,
X()=rhoxX{i—1+Ws(i}; T the remaining elements
end;

Figure 2.7: The Gauss-Markov sequence.

s |
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o - N
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Figure 2.8: The autocorrelation function of the Gauss-Markov process.

2.4 Power Spectrum of Random Processes and
White Processes

A stationary random process X (1) is characterized in the frequency domain by its power
spectrum &, (), which is the Fourier transform of the autocorrelation function R (z) of
the random process. That is,

o0
S;(f)=] R (x)e~ 1" dr (24.1)

fo =}

Conversely, the autocorrelation function R, (1) of a stationary random process X () is
obtained from the power spectrum §:{ /) by means of the inverse Fourier transform; i.e.,

Re(7) = f S (fref i af (2.4.2)

In modeling thermal noise that is generated in electronic devices used in the imple-
mentation of communication systems, we often assume that such noise is a white random
process. Such a process is defined as follows.

Definition: A random process X (r) is called a white process if it has a flat power spectrum,
i.e., if 8:(f) is a constant for all f.

As indicated above, the importance of white processes stems from the fact that thermal

noise can be closely modeled as spectrally constant over a wide range of frequencies. Also,
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anumber of processes that are used to describe a variety of informarion sources are modeled
as the output of LT1 systems driven by a white process.
We observe, however, that if §,(f) = C forall £, then

f' s,[(f;df=f’ Cdf = x (2.4.3)

50 that the total power is infinite. Obviously. no real physical process can have infinite
power and, therefore, a white process may not be a meaningful physical process. However,
guantum mechanical analysis of the thermal noise shows that 1t has a power-spectral density
given by

hf

S S— 244
z(ehffk'l" -1} { )

Su(f) =
in which A denotes Plarck’s constant (egual 10 6.6 x 107 Jx s} and & is Boltzmann's
constant (equal to 1.38 x 10~} I/K). T denotes the temperature in kelvins. This power
spectrum is shown in Figure 2.9.

o’

s | 4

04 b J

nr L

Figure 2.9: Plot of 8, (f) in{2.4.4).

The above spectrum achieves its maximum at £ = 0, and the value of this maximum
is 47 The spectrum goes to 0 as f goes (o infinity, but the rate of convergence to 0 is very
low. For instance, at room temperature {T = 300K), S,(f) drops to 90% of its maximum

at about f = 2 x 102 Hz, which is beyond the frequencies employed in conventional
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communication systems. From this we conclude that thermal neise, although not precisely
white. can be modeled for all practical purposes as a white process with the power spectrum
equaling %I The value kT is usually denoted by Ny; therefore, the power-spectral density
of thermal noise is usually given as 8,(f) = Q;ﬁ and is sometimes referred to as the mwo-
sided power-speciral densiry, emphasizing that this spectrum extends to both positive and
negative frequencies. We will avoid this terminology throughout and simply use power
spectrum or power-spectral densiey,

For a white random process X {r) with power spectrum 8,(f)} = No/2, the autccormre-
lation function R (1) is

o - No [ N
R (1} =f S (fref™r g = ijﬂf efmit gp 7“.5(:) (2.4.5)
—-x

where 8(z) is the vnit tmpulse, Consequently for all T # 0, we have B, (1) = 0 ie., if
we sample a white process at two points 1y and 13 (f # t2). the resulting random var:ables
will be uncorrelated. If. in addition to being white, the random process is also Gaussian,
the sampled random variables will be statistically independent Gaussian random variables.

ILLUSTRATIVE PROBLE

INustrative Problem 2.4 Generate a discrete-time sequence of ¥ = 1000 i.i.d. uniformly

distributed random numbers in the interval (-1 1}) and compute the autocorrelation of the

sequence { X}, defined as )

N-m
1
R.r(m)=—N_m;x,.X,,+,,.. m=01...M
] N
=¥ 3 XoXusm. m=-1,-2,....-M (2.4.6)
A=|m|

Also, determine the power spectrum of the sequence { X,,} by computing the discrete Fourier
transform (DFT) of R, (m). The DFT, which is efficiently computed by use of the fast Fourier
transform (FFT) algorithm, is defined as

M
S:(f)= Y Relm)e/2n/mi@M+D 247

m=—M

B SOLUTION g

The MATLAB script that implements the generation of the sequence {X,}, the com-
putation of the autocorretation, and the computation of the power spectrum 8¢ ( f) is given
below. We should note that the autocorrelation function and the power spectrum exhibit a
significant variability. Therefore, it is necessary to average the sample autocorrelation over
several realizations. Figures 2.[0 and 2.11 illustrate Re{m) and 8, f) cbtained by running
this program using average autacomelation over 10 realizations of the random process.
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— G

% MATLAB script for IMustrative Problem 4, Chapter 2.
echo on

N=1000,

M=50;

Rx._av=zeros(1,M+1),

Sx_av=zeros(1.M+1),

for j=1:10, % take the ensemble average over [0 realizations
K=rand(1,N)-1/2; % N Lid uniformly distributed random variobles
% berween -1j2 and 142
Rx=Rx_est(X. M} % autocorvelation of the realization
Sx=Mtshift{abs(fr(Rx))); % power spectrum of the realization
Rx_av=Rx_av+Rx; % sum of the autocorrelations
Sx_av=Sx_av+Sx, % sum of the spectrums

end;

Rx_av=Ra_av/10; T ensemble average autacorrelaiion
Sx_av=Sx_av/10; % ensemble averuge spectrum

% plotiing comments follow

2 L] 10 15 0 2% 0 as 4Q 45 50

Figure 2.10: The autocorrelation function in [llustrative Problem 2.4,

A bandlimited random process X (f) has the power spectrum

M
M. ifi<B 248

$:(f) = 0. 1fl>8

Let us determine its autocorrelation function. From (2.4.1) we have

2.4. Power Spectrum of Random Processes and White Processes 6l

Figure 2.11: The power spectrum in [{lustrative Problem 2.4.

BN
R.(T) =j __Oe.'?.:rfr df
-5 2

— NoB Sin2:rBr) (2.49)
= 27 Bt o

Figure 2.12 illustrates R (7).
MATLAB may be used 1o compute R;(r) from S, (f) and vice-versa. The fast Fourier
transform (FFT) algoritim may be used for this computation.

ILLUSTRATIVE PROBLE

Dlustrative Problem 2.5 Compute the autocorrelation R () for the random process whose
power spectrum is given by (2.4.3),

B SOLUTION

To perform the computation, we represent ¢ ( f) by N samples in the frequency range
1 f] < B, with each sampte normalized to unity. The result of computing the inverse FFT
with N = 32 is illustrated in Figure 2.13. Note that we obtain only a coarse representation
of the autocorrelation function R, (t), because we sampled 8;(f) only in the frequency
range | f| < B. The frequency separation in this example is Af = 2B/N. If wekeep Af
fixed and increase the number of samples by including samples for | f| > B, we obtain
intermediate values of R, (7). Figure 2.14 illustrates the resuit of computing the inverse
FFT with Ny = 256 samples, of which N = 32 are unity.
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Figure 2.13: Inverse FFT of the power spectrum of the bandlimited random process in

Ilustrative Problem 2.5 with 32 samples.
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Figure 2.14: Inverse FFT of the power spectrum of the bandlimited random process in
MMustrative Problem 2.5 with 256 samples.

2.5 Linear Filtering of Random Processes

Suppose that a stationary random process X (1) is passed through a linear time-invariant filter
that is characterized in the time domain by its impulse response i (r}and in the frequency
domnain by its frequency response

H =f R(rye™ it gy (2.5.1)

- O

It follows that the output of the linear filter is the random process

Y(r)=f Xt — vy de (252)
-

The mean value of Y (¢) is
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m, = E[Y()]

=[ E[X(v3]h(r —T)ldr

&3
™~
=m_(j h(r —1)dr
—2C
x
=mtj hit)dr
—0
=m,H{0) (2.5.3)

where H(0) is the frequency response H( f) of the filter evaluated at f = 0.
The autocorrelation function of ¥ (¢) is
Ru(r) = E[Y ()Y it + T)
o0 (=7}
=[ f E[X({t)X(a)h(t — D)h(t + T —a}drda
Y =
(=] W
= j j Rt —a)h(t — T}h{t + 1 —a)dr de (2.5.4}
—ng o0
In the frequency domain, the power spectrum of the output process ¥ () is related to the

power spectrum of the input process X (1) and the frequency response of the linear filter by
the expression

$,(f) = S OIHUNE 2.5.5)

This is easily shown by taking the Fourier transform of (2.5.4).
ILLUSTRATIVE PROBLEM

Illustrative Problem 2.6 Suppose that a white random process X (t) with power spectrum
8.(f) = 1forall f excites a linear filter with impulse response

e, =0
= ’ - (2.5.6)
h(@) . t <0

Determine the power spectrum 8, (f} of the filter cutput.

— =

The frequency response of the filter is easily shown to be

1
=— 5.7
H(f) T+ jinf (2.5.7)
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Hence,
S, ) =iH(HI
1
= m (2.5.8)

The graph of 8, f) is illustrated in Figure 2.15. The MATLAB script for computing 8,( f}
for a specified S¢( ) and H{f) is given below.

G MATLAB cworpt for Mustrative Problem 8. Chupler 2,
2cho on

delta=0.01.

F._min=—2;

F_max=2,

f=F_min:delta:F_max,

Sx=ones{ 1 lengthif)y:

H=1./{1+{2#pixf}."2);

Sy=Sx.«H."2;

a1 | 4
a9 A 1 L It n
2 15 B Rk o as 1 15 2
f
Figure 2.15: Plot of §,(f) given by (2.5.8}.
ILLUSTRATIVE PROBLE

Dlustrative Problem 2.7 Compute the autocorrelation function R,(r) corresponding to
8,(f) in the Illustrative Problem 2.6 for the specified 5:(f) = 1.
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., SO-UTION

Inthis case, we may use the inverse FFT algorithm on samples of 8, ( f) given by (2.5.8).
Figure 2.16 illustrates this compuration with & = 256 frequency samples and a frequency
separation Af = 0.1. The MATLAB script for this computation is given below.

% MATLAB script for ilustrative Problem 7, Chapter 2.

eche on
N=256; % number of sumples
deltaf=0.1; % frequency separation

=[0:deltaf (N /2)=deitaf, —(N/2-1}+deltaf deltaf: —deltaf];

% swap the firsr haif
Sy=1.2(1+(2pisi) " 2); % sampled specmoum
Ry=ifft(Sy); % autacerrelution of ¥
% plotting command follows
plor(ffeshift(real(Ry));

002

dma

oors

go1e |

0012

0.008

o.008

0.004 L

0.002

Figure 2.16: Plot of Ry (r} of llustrative Problem 2.7.

Let us now consider the equivalent discrete-time problem. Suppose that a stationary
random process X (1) is sampled and the samples are passed through a discrete-time linear
filter with impulse response h{n). The output of the linear filter is given by the convolution
sum formula

Y(m) =Y h()X(n k) (2.5.9)
k=0
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where X(n) = X(1,) are discrete-time values of the input random process and ¥ (n) is the
output of the discrete-time filter. The mean value of the oulput process is

m ¥

E[¥Y(m)]

fl

Zh(k}E[X(n -k}

k=0

o2
=m, Zh(k)
k=0

=m,H({O) (2.5.10)

where H(0) is the frequency response H(f) of the filter evaluated al £ = 0 and

20
H(f) =Y hime™intn (25.11)
=0

The autecorrelation function of the output process is

Ry(m) = E(Y(m)¥ (n + m)]

[» =2 = o]
=3 S hORMDEX(r ~ )X (n +m ~1)]
k=0 /=0

o B~ +]
= ZZh(k)h(l)R,(m —I+k) (2.5.12)
k=0 (=0

The corresponding expression in the frequency domain is

3,0) = S OIHP (2.5.13)

where the power spectra are defined as

S(f)= 3 Relmye~i¥nim (2.5.18)
and
= .
5(f)= Y Ry(me f2nfm (25.15)
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ILLUSTRATIVE PROBLE

Illustrative Problem 2.8 Suppose that a white randem process with samples {X{n)} is
passed through a linear filter with impulse response

{0.95", =0

=10, <0

Determine the power spectrum of the output process (¥ (a3},

B SOLUTION

Tt is easily seen that

Hify =) hime /7"
=0

>
=3 (0.95e™ /)"
n=0
= : (2.5.16)
T 1= 0.55e—i -
and
HHE = :
T 1 - 095~
- ! 2.5.17)
19025 — 1.9 cos(27f)
Therefore, the power spectrum of the output process is
Sy(£) = H(OP 8 f) (2.5.18)
: {2.5.19)

= 19025 - 1.9cos(27))

where we assumed S, ( f) is normalized 1o urity. Figure 2.17 illustrates §,(f). Note that
8,(f) is periodic with period 27, The MATLAB script for this computation 1s given below,

% MATLAB script for {llustrative Problem 8, Chupter 2.
delta_w=2#pi/ 100,

w=—pi:delta_w:pi, % one perivd of Sy
Sy=1./(1.8025—1.9xcos(w)};
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408

200 -

-3 2 B o 1 2 a

Figure 2.17: Plot of 8, (f) of Hliustrative Problem 2.8.

%o plotting command foliows
plot(w.Sy):

The autocorrelation of the output process {Y(n)} may be determined by taking the
inverse FFT of 8,{f). The student will find it interesting to compare this autocorrelation
with that obtained in Hlustrative Problem 2.3.

2.6 Lowpass and Bandpass Processes

Just as in the case of deterministic signals, random signals can also be characterized as
lowpass and bandpass random processes,

Definition: A random process is called lowpass if its power spectrum is large in the vicinity
of f =0 and small (approaching 0) at high frequencies. In other words, a lowpass random
process has most of its power concentrated at low frequencies.

Definition: A lowpass random process X (1} is bandlimited if the power spectrum §,{ f) = 0
for | | > B. The parameter B is called the bandwidth of the random process.

ILLUSTRATIVE PROBLE

Ilustrative Problem 2.9 Consider the problem of generating samples of a lowpass random
process by passing a white noise sequence { X} through a lowpass filter. The input sequence
is an i.i.d. sequence of uniformly distributed random variables on the interval (—%, %). The
lowpass filter has the impulse response
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09", a=0

b =
i 0, n<Q
and is characterized by the input-output recursive (difference} equation

¥ =09¥ + Xp. nxl, yo1 =4

Compute the output sequence { v, } and determine the autocorrelation functions R {(m) z}nd
Ry(m), as indicated in (2.4.6). Determine the power spectra §.( ) and §, ( f) by computing
the DFT of R (m}) and Ry(m).

. SOLUTION S

The MATLAR scripts for these computations are given below. Figures 2,18 and 2.19
illustrate the autocorrelation functions and the power spectra. We note that the plots of
the autecorrelation function and the power spectra are averages over 10 realizations of the
random process.

% MATLAB scripr for Nlustrative Problem 9, Chapter 2.

N=1000; G the maximum value of n
M=50;

Rxav=zeros{1 M+1};

Ryav=zeros{1.M+1);

Sxav=zeros(1.M+1);

Syav=zeros(1.M+1);

for i=1:10, %o Tuke the entemble average ove [0 realizations
X=rand(3,N)—(1/2); % Generute d uniform nwmber sequence on (-1/2.172)
Y(1)=0;
for n=2:N,
¥in) = 0.9xY(n—1) + X(n); %o Note that Y(n} means ¥(n-{j
end:
Rx=Rx_est(X,M); Fo autocorrelation of {Xn)
Ry=Rx_est{Y M}, %o autocorrelation of {¥n}
Sx=ffshifi(abs(fftiRx D). %o power spectrum of (Xn}
Sy=fitshift(abs{{ft(Ry)); % Power spectrum of {Ya)
Rxav=Rxav+Rx:

Ryav=Ryav+Ry;
Sxav=5xav+SK.
Syav=Syav+Sy.
end;
Rxav=Rxav/10;
Ryav=Ryav/10,
Sxav=Sxav/10;
Syav=Syav/10.
% ploting commands follow
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— -

Sfunetion {Rx}=Rx_esi(X M}
G {Rx] = Rx_esti X M)

To RX_EST  Estimutes the autocorrelurion of the sequence of rundom
R variubles ygiven in X Only Ret@Q), Rxfl), ..., RxtM) ure computed.
% Note thar Re{m) actually means Refm-1)

N=length(X3;

Rx=zeros(1.M+1):

for m=1:M+1,

for n=1:N-m+1,
Rxtm)=Rx{m)+X{n)*X{n+m—1);

end,
Rx{m)=Rx(m)/iN~-m+1},
€nd;
am N
. b
]
: T
=k INEERNCTL
] e
4 .
i
s
o) Rrimn) B
ei EE)
o0 B
e W LI S —-1 [ R R e

T
m

Figure 2.18: Autocarrelation functions R, {m) and Ry (m) in lllustrative Problem 2.9.

Definition: A random process is called bandpass if its power spectrum is large in a band of
frequencies centered in the neighborhoed of a central frequency = f; and relatively small

outside of this band of frequencies. A random process is called narrowband if its bandwidth
B < fo.

Bandpass processes are suitable for representing modulated signals. In acommunication
system, the information-bearing signal is usually a lowpass random process that modulates
a carrier for transmission over a bandpass (narrowband) communication channel. Thus, the
modulated signal is a bandpass random pracess.

As in the case of deterministic signais, a bandpass randem process X (¢) can be repre-
sented as

X(t) = X (t)cos 2m for — X,(t) sin 2% fot (2.6.1)
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oir
i) . sth2

Figure 2.19: Power spectra § (/) and §,(f) in [llustrative Problem 2.9.

where X (1) and X,(¢) are called the in-phase and quadratic components of X{). The
random processes X () and X, (1) are lowpass processes. The following theorem, stated
without procf, provides an imporiant relationship among Xy, X (r) and X (£).

Theorem: If X (1) is a zero-mean stationary randorm process, the processes X, (1) and X;(t)
are also zero-mean, jointly stationary processes.

In fact, it can be easily proved (see [ 1]} that the autocomelation functicns of X () and X {r)
are identical and may be expressed as
Ro(T) = Ry(1) = Re(r)c0s 27 for + R, (7) sin 2m for (2.6.2)

where R, (1) is the autocorrelation function of the bandpass process X{) and R, (t) is the
Hilbert transform of R;(t), which is defined as

k= +]
Rty = }1?[ RO 4 (2.6.3)

e T—1

Also, the cross-correlation function of X (¢) and X, {¢) is expressed as
Rea(7) = Re{t) sin2m for — Re(T) 008 27 fot (2.6.4)

Finally, the autocorrelation function of the bandpass process X (f) is expressed in terms of
the autocomrelation function R.(r)} and the cross-correlation function Re.(t) as

R.(t) = Ry{t)cos 2m fy1 — Ree(T)sin 2m for (2.6.5)
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ILLUSTRATIVE PROBLE

MMustrative Problem 2.10 [Generation of samples of a bandpass random process) Gen-
erate samples of a bandpass random process by first generating samples of two statistically
independent random processes X.{r) and X, {r) and using these to modulate the quadrature
carriers ¢os 2 fys and sin 2.7 fyf, as shewn in Figure 2.20.

. | Lowpass
WaN filter
X.(rycos 2uf ¢
—X,(¢)sin le’uj
. Lowpass
WON filter

sin 2o for

Figure 2.20: Generation of a bandpass random process.

—EETETD

On a digitat computer samples of the lowpass processes X,.(¢) and X, (r) are generated
by filtering two independent white noise processes by two identical lowpass filters. Thus,
we oblain the samples X.(#) and X,(n}. corresponding to the sampled values of X.(r)and
X (1). Then, X.(n) modulates the sampled carrier cos 27 fynT and X (#) modulates the
quadrature carrier sin 2m fon T, where T is the appropriate sampting interval.

The MATLAB script for these computations is given below. For illustrative purposes,
we have selected the lowpass filter 10 have a transfer function

1

H@ = 7055

Also, we selected T = 1 and fp = %—Q. The resulting power spectrum of the bandpass
process is shown in Figure 2.21.

% MATLAB script for llustrative Problem [0, Chupter 2.
N=1000; % number of samples
for i=1:2:N.
[X 1y X1{i+1)]=gngauss;
[X2() X2(i+1)]=gngauss:
end; G standurd Gaussian inpuf noise processes
A=[1 —0.9]; G lowpass filter parameters
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B=1.
Ke=filter(B.A X 1); .
Xs=filtertB,AX2),
fe=1000/pi: %% currier freguency
for i=1:N,
band_pass_processii)=Xc{iycosi 2«pixteri)— Xs(i}asin{ 2xpixfcxi);
end: % T=! is ussumed
St delermine the cautocorrelution und the spectrum of the bundpuss process
M=50;

bpp_autocorr=Rx_estiband _pass_process. MY,
bpp_spectrums=fishifitabsi fft{bpp_autocormy;
% ploting commands folfow

1o

01 W ) e ] 0 n ul a1 [ [X]

Figure 2.21: The power spectrum of the bandpass process in Illustrative Problem 2.10.
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Problems

2.1 Generate a set of 1000 uniform random numbers in the interval [0, 1] using the MAT-
LAB function rand(l, M) function. Plot the histogram and the probability distribution
function for the sequence. The histogram may be determined by quantizing the interval
in 10 equal-width subintervals covering the range [0, 1] and counting the numbers in each
subintervat.

2.2 Generate a set of 1000 uniform random numbers in the interval (-1 1 using the

MATLARB function rand(i, N). Plot the histogram and the probability distribution function
for the sequence.

2.3 Gererate a set of 1000 uniform random numbers in the interval [—2.2] by using the
MATLAB function rand(1. &). Plot the histogram and the probabiiity distribution functicn
for the sequence.

2.4 Generate a set of 1000 random numbers having the linear probability density function

7 0=2x=2
0, otherwise

fl=

Plot the histogram and the probability distribution function.

2.5 Generate a set of 1000 Gaussian random numbers having zero mean and unit variance
using the method described in Section 2.2. Plotthe histogram and the probability distribution
function for the sequence. In determining the histogram, the range of the random numbers
may be subdivided into subintervals of width o s, beginning with the first interval covering
the range —0%/10 < x < a2/10, where o2 is the variance,

2.6 Generate a set of 1000 Gaussian random numbers having zero mean and urit vari-
ance by using the MATLAB function randn{1. ¥). Plot the histogram and the probability
distribution function for the sequence. Compare these results with the results obtained in
Problem 2.5,

2.7 Generate 1000 pairs of Gaussian random aumbers {x1, x) that have mean vector

1
m=Ely 1= [5 %]

and covariance matrix

(3]

0l
™
P~ —

i
| IS
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a. Determine the means of the samples {xy;, x5}, i = 1, 2,... , 1000 defined as
R | Lo
my = m EILE
1000

. 1
my = m ZIZI

i=1

Also, determine their variances,

1000
) ~ 2
= e Xy —mip)*
= 0% g( L 1)
1 1000
oy = 1000 2(121 - ma)
and their covariance,
1000
(t'” = m Z(-“-’ll‘ -y vy — #3)

t=1
b. Compare the values cbtained from the samples with the theoretical values.

2.8 Generate a sequence of 1000 samples of a Gauss-Markov process described by the
recursive refation

Xp=pXno1+W,, n=12..,1000

where Xg = 0, o = 0.9, and {W,} is a sequence of zero-mean and unit variance 1.1.d.
Gaussian random variabies.

2.9 Repeat Hlustrative Problem 2.4 with an i.id. sequence of zero-mean, unit variance,
Gaussian random variables.

2.10 Repeat Tllustrative Problem 2.5 when the power spectrum of a bandlimited random
process is

1= <B
S‘(f):l(} & b

otherwise

2.11 Repeat Illustrative Problem 2.6 with a linear filter that has impulse response

e—Jtl t 2(}
h(s) = 0. r<0
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2.12 Determine numerically the autocorrelation function of the random process at the output
of the linear filter in Problem 2.11.

2.13 Repeat lllustrative Problem 2.8 when

hin) =

08", n=0
0. n <

2.14 Generate an i.1.d. sequence {x,} of & = 1000 uriformly distributed random numbers
inthe interval [— % %]. This sequence is passed through a linear filter with impulse response

f =
) n<{

lm%w,nzo
The recursive equation that describes the output of this filter as a function of the input is

o =095y, + xn, n =0, vy =49

Compute the autccorrelation functions R¢(m) and R,(m) of the sequences {x,} and {y,)}
and the correspending power spectra 8, ( f) and 8, (f) using the relations given in (2.4.6)
and (2.4.7). Compare this result for §,( ) with that obtained ir Hllusteative Problem 2.8.

2.15 Generate two i.i.d. sequences {w.n} and {wen} of N = 1000 uniformly distributed

random numbers in the interval [— {;. %]A Each of these sequences is passed through a linear
filter with impulse response
hin) = I(

0, n<Q

t2A—
S’
3
=3
v
<

whose input-output charactenstic is given by the recursive relation
x,,=§x,,_|+w,,. 21, xp=0

Thus, we obtain two sequences, {x..} and {x;n}. The output sequence {x;,} modulates
the carrier cos{x/2)}n, and the output sequence {x;,} modulates the quadrature carrier
sin{ /2)n. The bandpass signal is formed by combining the modulated components as in
(2.6.1).

Compute and plot the autocorrelation components R.(m) and R, (m) for jm| < 10 for
the sequences {x.,} and (x;,}, respectively. Compute the autocorrelation function Ry {(m)
of the bandpass signal for |[m| < 10. Use the DFT (or the FFT algorithm) to compute

the power spectra 8.{f). 8:(f) and 8,(f}. Plot these power spectra and comment on the
results.



Chapter 3

Analog Modulation

3.1 Preview

In this chapler we will study the performance of various analog modulation-demodulation
schemes, both in the presence and in the absence of additive noise. Systems studied in this
chapter include amplitude-modulation (AM) schemes, such as DSB-AM, S8B-AM, and
conventional AM, and angle-modulation schemes, such as frequency and phase modulation.
Each member of the class of analog modulation systems is characterized by five basic
properties:

1. Time-domain representation of the modulated signal;

2. Frequency-domain representation of the modulated signal;
3. Bandwidih of the modulated signal;

4. Power content of the modulated signal;

5. Signal-to-noise ratio (SNR) after demodulation.

These properties are obviously not independent of each other. There exists a close rela-
tionship between time- and frequency-domain representations of signals expressed through
the Fourier transform relation. Also, the bandwidth of a signal is defined in terms of its
frequency characteristics.

Due to the fundamental difference between amplitude- and angle-modulation schentes,
these schemes are treated separately and in different sections. We begin this chapter with
the study of the simplest medulation scheme, amplitude modulation.

3.2 Amplitude Modulation (AM)

Amplitude modulation (AM), which is frequently referred 1o as linear modulation, is the
family of modulation schemes in which the amplitude of a sinusoidal carrier is changed

79
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as a function of the modulating signal. This class of modulation schemes consists of
DSB-AM {double-sideband amplitude medulation), conventional amplitude modulation,
S3B-AM (single-sideband amplitude modulation), and ¥5B-AM (vestigial-sideband am-
plitude modulation). The dependence between the modulating signal and the amplitude of
the modulated carrier can be very simple, as, for example, in the DSB-AM case, or much
more complex, as in $SB-AM or VSB-AM. Amplitude-modulation systems are usually
characterized by a relatively low bandwidth requirement and power inefficiency in com-
parison to the angle-modulation schemes. The bandwidth requirement for AM systems
varies between W and 2W, where W denotes the bandwidth of the message signal. For
$5B-AM the bandwidth is W, for DSB-AM and conventional AM the bandwidth is 2W,
and for VSB-AM the bandwidth is between W and 2W. These systems are widely used in
broadcasting { AM radio and TV video broadcasting), point-to-peint communication (S5B),
and multiplexing applications (for example, ransmission of many telephone channels over
microwave links).

3.2.1 DSB-AM

[n DSB-AM, the amplitude of the modulated signat 1s proportional 1o the message signal.
This means that the time-domain representation of the modulated signal is given by

ult)y = Acmir)cos(2x f.0) {3.2.1)
where
c{f) = Accos(2r f.0) (3.2.2)

is the carrier and m(t) is the message signal. The frequency-domain representation of
DSB-AM signal is obtained by taking the Fourier transform of «(¢) and results in

. Ae
vif = %ﬁM(f—fE)+7M(f+f() (323

where M(f) is the Fourier transforrn of m(r). Obviously, this type of modulation results in
ashift of &£ f,; and a scaling of —i in the spectrum of the message signal. The transmission
bandwidth denoted by Br is 1w1ce the bandwidth of the message signal:

Br =2W (3.2.4)

A typical message spectrum and the spectrum of the corresponding DSB-AM modulated
signal are shown in Figure 3.1.

3.2. Amplitude Modulation (AM) g1

M
A 1
f
—W W
Ui
A
— \ \ 7 s

Figure 3.1: Spectrum of DSB-AM modulated signal.

The power content of the modulated signal is given by

1T
P, = lim — wi{t)dr
T-xT -T2
] TI’Z T2 2
= lim — Aim(1) cos”(2m fety dt
T=oa T -T2
1 T 4
= lim = Almign LS8Rl
T T -T2 2
1 (T2 mla IBRIL A for
matlgim LD g L[ SRS,
Twoo T -T2 2 T—oo T -T/2 2
T2 2 (,)
= A lim [ 325
TLoo T Tz ( )
Az
= 7CPrn (3.2.6)

where Py, is the power content of the message signal and Equation (3.2.5) follows from the
fact that m(r) is a lowpass signal with frequency contents much less that 2 ., the frequency
content of cos(dx f.1); therefore, the integral

by}
f iy ZSGTLD (327

goes to zero as T — oo, Finally, the SNR for a DSB-AM system is equal to the baseband
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SNR;1e., itis given by

> i (3.2.8)
J.:\llr 'D_ N[}W o

where Pp is the received power (the power in the modulated signal at the receiver), %‘i is

the noise power spectral density {assuming white noise), and W is the message bandwidth.
ILLUSTRATIVE PROBLEM

Ilustrative Problem 3.1 [DSB-AM modulation] The message signal m(t} 1s defined as

Iy
I, 0=g1<7

:
mir) = { -2, %{IE%

0, otherwise

This message DSB-AM modulates the carrier ¢{t) = cos 27 f,¢, and the resulting modulated
signal is denoted by u(¢). It is assumed that 15 = 0.15 s and fo = 250 Hz.

1. Obtain the expression for u(1).
2. Dernive the spectra of m(1) and u(r).

3. Assuming that the message signal is periodic with period Ty = ¢, determine the
power Iin the modulated signal.

4. If a noise is added to the modulated signal in part (3) such that the resulting SNR is
10 dB, find the noise power.

R SOLUTION

l. m(t) can be written as m{¢) = I1 (’;:;3 '5) —20 (%%3) therefore,

1 —0.025 t —0.075
= —_— ] - —_— 500 2.
t(t) [I’I ( 505 ) 211 ( 0.05 )] ¢0s(500m t) (3.2.9)

2, Using the standard Fourler transform relation #[I1({)] = sinc(r) together with the
shifting and the scaling theorems of the Fourier transform, we obtain

fo _; ! fo _; . r
-?"_[M{I)I = _Dg_fnfrl}.l'rjsinc (G_f) _ E_EE—_;?[fqulnc ('{}Tf)

3 3 3
= {;E—fﬂfﬂlﬂsinc ({%{) (1 _ zg*fzﬂ'ffnfﬁ!) {3210)

Substituting f5 = (.15 s gives

Flm()] = 0.05¢ =%/ 5inc(0.05 ) (1 ~ 26047/ ) (3211

A

3.2. Amplitude Modulation (AM) %3

For the modulated signal u{r) we have

U(f) = 0.025e 0PI ~Jdgine (0.05(f ~ £.)) (1 — zg"ﬂ-lf'frff-ﬁ-))

+ 0.025¢ P T fesing (0.05(f + £.) (1 - ze-”-'mﬁfd)

Plots of the magnitude of the spectra of the message and the modulated signals are
shown 1n Figure 3.2.

LN

T ™ T T r T T r b T T v T T T T
LYR N F oo ! J
- | 1w J

imr |
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MEp E hl | ) m =) m -] [ ]
Frnguta Prrypyany 1y

Figure 3.2: Magnitude spectra of the message and the modulated signals in Llustrative
Problem 3.1.

3. The power in the modulated signal is given by

Al [

where P, is the power in the message signal;

2tof3 | [1p 4ty 5
Py = — zl'df:—- — | = -=1].
" o Jo m(} f{}(3+3) 3 1.666
and
I.666
Pu=_=0.833
2
Here

P
10)og,q (Tﬂﬁ) =10

A

or Pp = P, = 10P,, which results in £, = P,/10 = 0.0833.
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The MATLAB script for the above problem follows.

% dsbim
% Matlab demonstration script for DSB-AM modulation. The messuge signal
% ois +1 for 0 < t < 10§32 for 03 < ¢ < 200/3 and zero otherwise.

echo on

=15, % signal durarion
15=0.001; % sumpling interval
fc=250, o carrier frequency
sar=20; e SNR in dB (logurihrc)
fs=1/ts, T sampling frequency
df=0.3. % desired freq. resolution
t=[(sad], Fo time vectar
snr_lin=10"(snc/ 10%; G linear SNR

% message signul
m=[ones{ 1.10/(3#ts)), —2wones( 110/ (3xts)).zeros{ 1.10/(3xs)+ 1],

c=cos 2xpisfc.st), % carrigr signal

U=m.*<; % modulated signal
[M,m.df1{=Fffiszq(m ts,df }; % Fourter fransform

M=M/fs: T sculing

{U.u,df1=ffseq{u.ts df ). T Fourier transform

U=U/fs: %o scaling

(Cc dfl]=fftseqic,ts,dl); %o Fuurier transform

f=(0:df [:dfL «(length{m)— 1)]—fs/2; o freg. vector

signal _power=power{u{1:length(t)}), % power in modulated signul
noise_power=signal_power /snr_lin; % Compuie noise power
noise_std=sqri{noise_power): % Compute noise stundard deviahon
noise=noise_sid*randn(1 length{u})y % Generaie noise

r=u+neise; % Add nuoise to the moduluted signal
[R.r.df1])=fftseq(r.ts,df); % spectrum of the signal+nanise
R=R/[s; % sculing

pause % Press a key v show the modulated signal power

signal_power

pause T Press uny key o see o plot of the message

cif

subplot(2,2,1}

plott.m(1:1ength(t)))

xlabel(* Time ")

title{ ' The message signal”)

pause % Press any key to see a plot of the carrier

subplor(2,2.2)

plot(t,e{ 1:length(t)))

xlabel(' Time '}

iitle(* The carrier’)

pause % Press any key to see a plot of the moduluted signal

subplot(2,2.3)

plot{tu(1:lengthit)})

xlabel{* Time '}

title(* The modulated signal')

pause % Press uny key 1 see¢ a plus of the magnitude of the messege und the
% modulated sigral in the frequency domain.

subplot{2.1,1)

plot(f,abs{fftshuft(M)}}

xlabel(* Frequency*)

3.2, Amplitude Modulaton (AM) 85

titlel * Speczrum of —he rTessage sigral’)
subplot{2.1,2)

ploti £.abs(fftshifti U113

title(* Spacrrim of the modulated signal”
xlabel(’ Frequency i

pause % Press u kev o see a nuise sumple
subplot(2.1,1}

plot(t,noised 1:lengthirn)

title{ * noise sample’)

xlabel{* Tima ",

pause Gk Presv u key b ocee the medulared speal amd noise
subplot{2.1.2)

plotit,ri 1:lengthit)y;

title(* Sigral and noize’)

xlabel{* Time ")

pause G Press a kev To see the medilated sivnad and mease w preq. domam
subplot{2.1,1}

plot £abstffishuit Ly

rtle(*Signal! spectrum’)

xlabel(* Freguency )

subplor(2,1.2}

plot{fabs(ifishift(R))r

tide{ " Signal and noise speczrim’)

xlabel(* Frequency '}

ILLUSTRATIVE PROBLE

Tllustrative Problem 3.2 [DSB modulation for an almost bandlimited signal] The mes-
sage signal m(¢) is given by

sinc(100ry, |1l 1o
mit) = .
\ otherwise

where 15 = 0.1. This message modulates the carrier ¢(¢) = cos(2Zm ft), where f. = 250
Hz.

1. Determine the modulated signal u(r).
2. Determine the spectra of m{t) and u(t).

3. If the message signal is periodic with period T = 0.2, s determine the power in the
medulated signat.

4. Tf a Gaussian noisc is added to the modulated signal such that the resulting SNR. is
10 dB. find the noise power.
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1. We have

u(t) = mtic(t)

sine (100 cos{5001), ] < 0.1

0,

= sinc( 100N TT(51) cos(500r )

(3.2.12)
otherwise

(3.2.13)

A plot of the spectra of m(t) and u(r) is shown in Figure 3.3.

As the figure shows, the message signal is an almost bandlimited signal with a band-

width of 50 Hz.

2. The power in the modulated signal is half of the power in the message signal. The

power in the message signal is given by

2.1

Pn= —
"7 02 /5,

sincz( 100¢) ot

The integral can be computed using MATLAB’s quad8.m m-file, which results in

P = 0.0495 and, hence, £, = 0.0247.
3. Here

10log,g (%) =10 => P, = 0.1Pz = 0.1Py = 0.00247
L

The MATLAB script for the above problem follows.

— D

% dsb2.m

% Matlab demonstration script for DSB-AM modulution.
P (s mit) = sinclJOGi).
echo on

10=.2;

ts=0.0G1;

fc=250;

snr=20;

fs=1/1s;

df=0.3;
t=[—10/2:ts:20/2];
sor.lin=10" (snr/10);
m=sinc{100=t);
c=cos(2+pixnfe.at);

UL 4

M. m.dfL }=fftseg(m,ts,df);
M=M/fs;
[U,u.df1]=fftseq(u,ts,df); %

RARAFRRAFRFIAANR
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Figure 3.3: Spectra of the message and the modulated signals in Illustrative Problem 332
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Us=Li/fs: % scaling
f=[0:dfL:dfl#(lengthim)—1)]—fs/2, G frequency vecror

signai-power=power(ul 1 .length{t})); % compute modulated signal power
noise_power=signal .power /snr_tin;, % Compute noise power
roise_std=sqrt(noise.power), S Compute nnise standard deviation
noise=noise_std=randn{ 1 length{u)); % Generate noise sequence
r=u+noise; % Add noise 1o the moduluted signal
IR, cdfl]=tfrseqiresdf), G Fourier transform

R=R/fs; T sculing

pause %o Press u kev to show the mudulated signul power

signal _power

pause  TPress uny kev ro see a plor of the messuge

clf

subplo(2,.2,1)

plot{t,m{1:length{t))}

xlabel{' Time’}

titlef - The message signal’)

pause Fo Press any key te see u plot of the carrier

subplot(2.2.2)

plotire(1:length{))

xiabel(* Time "}

title{ " The carrier’)

pause % Press any key to sec a plot of the modulated signal

subplot(2,2.3)

plot(t,u{ T:length(1)))

xlabel( - Time’)

title(* The modulated signal’)

pause % Press uny key to vee u plot of the mugnitude of the messuge and the
% modulured signal in the frequency domain.

subpiot{2,1,1)

plot(f.abs(ffrshift(M)))

xlabel{ ' Frequency’)

title(* Spectrum of the message signal’)

subplot{2.1.2)

plot( F.abs( ftshift(U)))

title( * Spectrum of the modulated signal’}

xlabel(* Fregquency )

pause % Press u key w see a noise sample

subplot{2,1,1}

plot{t.noise{1:length(t))

title( ' noise sample-)

xlabel( ' Time')

pause % Press a key to see the modulated signal and noise

subplot(2,1,2)

plot(t,r(1:length{t}})

title{* Signal and noise’}

xlabel{ ' Time")

pause % Press u key o see the modulated signal and noise in freq. domain

subplot(2,1.1)

plot(f,abs(fftshift(U)})

tide(* Signal spectrum’)

xlabei(* Frequency*)

subplot(2,1,2)

plot{ f.abs(ffishife(R)))

titte{’ Signal and noise spectrum’)

Alabel(* Frecquency )

3.2, Amplitude Modulation {AM) 8%

. HATIF? g

What happens if the duration of the message signal 1y changes; in particular, what is the
effect of having large o's and small f5's? What is the effect on the bandwidth and signal
power”?

The m-file dsh.mod.m given below is a general DSB modulator of the message signal
given in vector m on a camrier of frequency f.

— G-

function u=dsb_mod{m 15, fc)

T u = dshomudim.esfe)

F%DSB_MOD rakes sigral m sumpled ot s and varrier

freq. fo ux inpur and returns the DSB modulated
wypnal. 13 << 1/2e The moduluted signal

ic normalized (o have half the messuge power
the mestage signal starts ar O

EECE

t=[0:length{m)—1]=t3;
u=m_scos(2+pixl);

3.2.2 Conventional AM

Tn many respects conventional AM is quite similar to DSB-AM; the only difference is that
in conventional AM, m(r) is substituted with [1 + am,{£)], where m, (1) is the normalized
message signal (i.e., ima ()] = 1), and a is the index of moduiation, which 1s a positive
constant between 0 and 1. Thus we have

wi{ty = A [l + amu(t)]cos{2af.t) (3.2.14)

and

Ac
Ui = 7[5(f —ftaMa(f — fO+ 8+ f)+aMa(f+ Sl (3215)

The net effect of scaling the message signal and adding a constant to it is that the term
[1 4 am,(t)} is always posttive. This makes the demodulation of these signals much easier
by employing envelope detectors. Note the existence of the sinusoidal component at the
frequency £, in U/{f). This means that a (usually substantial) fraction of the transmited
power is in the signal carrier that does not really serve the transmission of information. This
fact shows that compared to DSB-AM, conventional AM is a less economical modulation
scheme in terms of power utilization. The bandwidth, of course, is equal to the bandwidth
of DSB-AM and is given by

Br =2IW (3.2.18)

Typical frequency-domain plots of the message and the corresponding conventional AM
signal are shown in Figure 3.4.
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Figure 3.4: Spectrum of conventional AM.

The power content of the modulated signal, assuming that the message signal is a zero-
mean signal, is given by

A?
Po=5t [1+a%Pn) (3217

which comprises two parts, %2. which denotes the power in the carrier, and A—fzalen , which
is the power in the message-bearing part of the modulated signal. This is the power that
is really used to transmit the message. The ratio of the power that is used to transmit the
message to the total power in the modulated signal is called the modulation efficiency and
is defined by

a? P,

= Trair. (3.2.18)

n

Since Im,(1)| = 1anda < 1, we always have n < 0.5, In practice, however, the value of
7 is around 0.1, The signal-to-noise ratio is given by

S Pr
-] =n—— 32.19

where 7 is the modulation efficiency. We see that the SNR is reduced by a factor equal to g
compared to a DSB-AM systemn. This reduction of performance is a direct consequence of
the fact that a significant part of the total power is in the carrier {the deltas in the spectrum),
which does net carry any information and is filtered out at the receiver.

3.2 Amplitude Modulation (AM) 51

ILLUSTRATIVE PROBLE

Hlustrative Problem 3.3 [Conventional AM] The message signai

I O=<t
Tz
miy=4-2 Yoargp
0, otherwise

modulates the carrier ¢(1) = cos$(27 f.r) using a conventional AM scheme. It is assumed
that f. =250 Hz and ) = 0.15; the modulation index is & = 0.85.

1. Derive an ¢xpression for the modulated signal.
2. Determine the spectra of the message and the modulated signals.

3. If the message signal is periodic with a peried equal to 1o, determine the power in the
modulated signal and the modulation efficiency.

4. If anoise sigral is added to the message signal such that the SNR at the output of the
demodulaior is 10 dB, find the power content of the noise signal,

. SCLUTION 2

1. First note that max |m(1)j = 2; therefore, m, (1} = m{t)/2. From this we have

u{r) = [E +0.85m—;!—):|cos(2nf‘-:)

r—0.025 t —0.075
=11 42 —_— |} =0. _
{ +0.42511 ( 008 ) 08500 ( 005 )] cos{500m1)

2. A plot of the message and the modulated signals is shown in Figure 3.5.
3. For the message signal we have

Flm{n)] = 0.05¢ 957 §inc(0.05 f)(l - ze-"-'f”f) (3.2.20)
and for the modulated signal
U(f) = 0.010625¢=095/7 (/=250 gi00(0.05( £ — 250))(1 - ze*U"fﬂU'-ZSO’)
+0.010625¢ 008U+ B0in00.05¢ F + 250))(1 — 2e=0lumls “5”))

Plots of the spectra of the message and the modulated signal are shown in Figure 3.6.

Note that the scales on the two spectra plots are different. The presence of the two
delta functions in the spectrum of the modulated signal is apparent.
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Figure 3.5: The message and the modulated signals in lllustrative Problem 3.3.

4. The power in the message signal can be obtained as

] 0.05 0.1
P = — ,1;+4[ dr | = 1.667
0.15 j; 0.05

The power in the normalized message signal Pn, is given by

1 1.66
= =Py = —— = 0.4167
P, 3 Pun 7y
and the modulation efficiency is
a’ P, 0.85% x 0.4167

= 02314

TS TS aP,, 1+ 085 x 04167

The power in the modulated signal is given by (E denotes the expected value}

Al
a=jfn+mmm2

i

l 1 4+ 0.3010 ”xo.ozj
2 ’ ’ 0.15

= 0.5088

P
10logo [r,- (I—VULW)] =10
Pr
— =10
”(m)

5. In this case

ar

3.2 Amplitude Modulation (AM)
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Substituting n = 0.2314 and Pg = P, = §.5088 in the above equation yields
P.="% 00118

—EE=IED

In finding the power in the modulated signal, in this probiem we could not use the
relation

P, =

'S kﬁ?:‘a

s

hecause in this problemn m(:) is not a zero mean signal.
The MATLAB script for this probiem is given below.

. M-FILE o

% um.m
% Marlab demonstration script for DSB-AM modulation. The messoge signal
G is +1 for @ < 1 < M3 -2 for W0/3 < 1 < 2003 and zemn atherwise.

echo on

10=15; % signu! duration

15=0.001; % sampling interva!

fe=250; %o currier frequency

snr=10, % SNR in dB {logarithmic)
a=0.85; G modulation index

fs=1/15; %o sumpling frequency
t=[0us1t0], % rime vector

df=0.2; % required frequency resolution
sar.lin=10"(snr/10); % SNR

% message signal
m={ones(1,10/(3xts)),—2»ones( 1,t0/{3xts)),zeros(1,10/(3=ts)+ 1)),

c=cos(2npixfc «r); %o currier sigrul
m_n=m/max{abs({m)); To normalized message siynal
(M, m,df1]=ffiseq(m.ts.df); % Fouwrier transform
M=M/fs; % scaling

f=[0:dfl:dfL w(lengthim)—1})—fs/2; % frequency veclor
u=(1+anm_n).=c; % modulated sighal
[U.u.dfL)=fltseq{u.ts.df }: % Fourier transform
U=U/fs; T scaling

signal _power=power(u{ 1:length(1)} % power in modulated sigral

% power in rormalized message
prn=powertm( 1:leagth(t)))/(max(abs(m))) " 2;

eta=(a" 2«pmn)/{1+a~2+pmn); % modilarion efficiency
noise_power=eta#signal _power/snr_lin; % noise power
noise_.std=sqrt{noise_power): R naise stundard devialion
noise=noise_std*randn(1,length{u)}; % generute nioise
[=U+N0Ise; % Add neise to the modulated sigral
{R.c.df1]=fTtseq(c.s,df); T Fourier ransform
R=R/fs; % scaling

pause % Press a key to show the modulated signal power
signal_power

pause % Press u key to show the modulution efficiency

era

pause % Press any key i0 see o plet of the message
subplot{2.2,1)

3.2. Amplitude Modulation {AM) 95

plotit,m{1:lerath{}))

axis{[0 0.15 —2.1 2.1))

xlabel( " Tima*)

title{* The message signal-)

pause

pause % Presc any key to see a plor of the carrier

subplot{2,2.2}

plor{re( 1:lengthit})

axis({0 C.15 —2.1 2.1}

xlabel{" Time")

title(* The carrier’)

pause % Press any key to see w plot of the modulated signat

subplot{2,2.3)

plot(tu(1:length(t})

axis{[0 0.15 -21 2.1])

xlabel{* Time")

title( ' The modulated sigral’)

pause % Press oy kev (o see u plors of the magnitude of the messape and the
% moduluted signal in the [requency domain.

subplot(2,1.1)

plot(f.absi fitshift(M))}

xlabel{* Frequency )

Iile{  Spectrum of the message signal'}

subplot(2.1.2)

piot(fabs(ffisheft{U)n)

ttie(* Spectrum of the modulated signal”)

xlabel{ " Frequency’)

pause %o Press a key tn see a noise sumpie

subplot(2,1,1)

plot(t,noise( 1:length(r})

tile(" noise sampie”)

xlabel{* Time~)

pause R Press a kev to see the modulaed signal and noise

subplot(2.1,2)

plot(e,r(1:length(t)))

title( " Signal and noise’)

xlabel{ ' Time '}

pause T Press a key to see the modulated signal und noise in freq. domuain

subplot(2,1.1)

plot{f.abs(ftshift(UN)

tille(* Signal spectrum’)

xlabel( ' Frequency')

subplot{2.1.2)

plot(f.abs(ftshift{R))}

title(* Signal and neoise spectrum’}

xiabel{’ Frequency“}

The MATLAB m-file arn_mode.m gi\;en below is a general conventional AM modulator.

function u=arn_mod(a,m,ts,fc)

%o W = am.modfa.misfc)
FAM _MOD takes signal m sampled at 5 and carrier
% freq. fo as input und returns the AM modulated

k] sighal. “a” is the modulation index
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% and 15 << //2fc

1=[0length{m}—1]#ts;
c=cos{2#pixic xt),
m_n=m/max{abs{m}):
u=(1+a*m_n).*c;

3.2.3 SSB-AM

SSB-AM is derived from DSB-AM by eliminating one of the sidebands. Therefore, it
occupies half the bandwidth of DSB-AM. Depending on the sidebard that remains, either
the upper or the fower sideband, there exist two types of SSB-AM, USSB-AM and LSSB-
AM. The time representation for these signals is given by

. As ..
u(r) = —?m(r)cos(h'fl-r) F -:_)_—mu}sm(hrfc.') (3.2.21)

where the minus sign correspends to USSB-AM and the plus sign correspands to LSSB-AM.

The signal dencted by i (r) is the Hilbert wransform of m(r). defined by m{r) = m(r) » %

or, in the frequency domain, by .h?t(f) = —j sgn(/IM(S). In other words, the Hilbert
transform of a signal represents a /2 phase shift in all signal components. In the frequency
domain, we have

(M(f - f)+ MU+ fIl. e 2LS]
Uysss (f) = lo' therwise (32.22)
and
[M{f— fy+M(f+fI]. IfISf
Ursse(f) = [O. ‘ otherwise (3.2.23)

Typical plots of the spectra of a message signal and the corresponding USSB-AM modulated
signal are shown in Figure 3.7.

The bandwidth of the SSB signal is half the bandwidth of DSB and conventional AM
and so is equal to the bandwidth of the message signal, i.e.,

Br=W (3.2.24)
The power in the SSB signal is given by

2
P = % P, (3.2.25)

Note that the pawer is half of the power in the corresponding DSB-AM signal, because one
of the sidebands has been removed. On the other hand, since the modulated signal has half
the bandwidth of the cotresponding DSB-AM signal, the noise power at the front end of
the receiver is also half of a comparable DSB-AM signal, and therzfore the SNR in both
systems is the same; i.e.,

;i) _fr (3.2.26)
N/, NW
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Figure 3.7: Spectra of the message and the USSB-AM signal.

ILLUSTRATIVE PROBLE

Ilustrative Problem 3.4 (Single-sideband example] The message signal

I, 0=t<?®
mit) = 1 -2, L_'{s:<g£ﬂ
0, otherwise

modulates the carrier ¢{t) = cos(2:7f.1) using an LSSB-AM scheme. It is assumed that
tg = 0.15s and f,. = 250 Hz.

1. Plot the Hilbert transform of the message signal and the modulated signal «(¢).

2. Find the spectrum of the modulated signai.

3. Assuming the message signal is periodic with pericd 1, determine the power in the
modulated signal.

4. If a noise is added to the modulated signal such that the SNR after demodulation is
10 dB. determine the power in the noise.

—EELED

1. The Hilbert ransform of the message signal can be computed using the Hilbert
transform m-file of MATLAB. i.e., hilbert.m. It should be noted, however, that this
function returns a complex sequence whose real part is the original signal and whose
imaginary part is the desired Hilbert transform. Therefore, the Hilbert transform of
the sequence m is obtained by using the command imag(hilbert(m)).
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Now, using the relation
u(t) =mit)cos2m for) + mir) sin(2ma 1) (3.227)

we can find the modulated signal. Plots of /i (t) and the spectrum of the LSSB-AM
modulated signal (1) are shown in Figure 3.8,

oot

[ T ] X T e b we W me o e Mo Wi W me
Time Frmprencr

Figure 3.8: Hilbert transform and the spectrum of the LSSB-AM modulated signal for m{r).

2. The power in the message signal is
1 015 2
= — dr = 1.667
n =15 fg m©

and therefore
2

AL
P, = —£ P, = 0416
4
3. The post-demodulation SNR is given by

P
l()logm(?k) =10
nrso

Hence, P, = 0.1Pg = 0.1P, = (0.0416.

The MATL.AB script for this problem follows.

% Issh.m

% Matlab demonstration script for LSSB-AM moduiation. The message signal
Fois +1 for 0 < 1 « 0/3, -2 for /3 < 1 < 2:00/3 und zere otherwise.
echo cn

3.2, Amplitude Modulatfon (AM)

t=15; % signal duration
ts=0.001- % sumpling interval
fe=250; T carrier frequency
sor=10; % SNR in dB flogarithmic)
fs=1/1s: % sumpling frequency
df=0.25; % desired freq. resolution
t={0:es:00]; % time vector
snedin=10"(snr/10); % SNR

% the message vector
m:[one‘.i(‘l.lD;'(StlsJ).thon:s(‘l.lO,‘(Stls)).zems(‘l.10/(3trs)+1]}:

c=cos(2xpixfc =), % cdrrier vector

udsb=m.*c; % DSB modutated signal
[UDSB,udssb,df1]=ffiseq(udsb,ts,df); Ge Fourier fransform
UDSB=UDSB/fs; % scaling

f=[C:.df1:df 1x(length{udssh)— 1)) — fs /2. % frequency vector

n2=ceil{fc/dfly; % locauor of carrier in frey. vector

%o remove the upper sideband from DSB
UDSB(n2Alength{UDSB)—nz)=zeros(size(UDSB(n21length(UDSB)—nZ)));

ULSSB=UDSB, % generate LSSB-AM spectrum
[M.m.df| }=ffseq(m.s,df). % Fourier iransform

M=M/fs; % sculing

u=real(iffR(ULSSB))«fs: % Generate LSSB rignal from spectrum
signal._power=power(udsb( 1:length{1))),/2;

% % Compute signal power

noise. pawer=signal_power/snr_lin; % Cumpute noise power
naise_std=sqrt{noise__pawer}; % Cumpuie noise standard deviation
noise=noise__stdwrandn{ 1 lengthiy)): % Generate noite vector

r=u+hoise; % Add the signal o noite
[R,r.df|]=fftseq(r Is.df); % Fourier mransform

R=R/fs; % scating

pause % Press a key fo show the modulated signal power

signal.power

pause % Press any key to see a plor of the messuge signal
clf

subplot(2,1,1)

plot{t,m{1:length{1)))

axis{[0.0.15,-2.1,2.1])

alabel(* Time ')

title{* The message signal-}

pause % Press amy key io vee u plot of the carrier
subplot(2,1.2)

plot{t.c{1:length(t))}

xlabel{’ Time')

title(* The carrier’)

pause % Press any key to see a plot of the moduluted signal and its spectrum
clf

subplot(2,1,1)

plot([0:ts:1s«{length{u)— 1)/8],u(1:length(u) /8)}

xlabel(* Time ")

title( " The LSSB-AM modulated signal'}
subplot(2,1,2)

plot(f,abs(fishift(ULSSB)))

xlabel(* Frequency ')

tide(* Spectrum of the LSSB-AM modulated signal‘)

pause % Press uny key Jo see the specira of the message und the modulated signaly

clf

99
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subplot{2,1,1}

plotif,abs( ffeshifti M)))

xlabel{* Frequency ')

title(* Spectrum of the message signal-)
subplot{2,1.2}

ptoi{ f.abs(fishift(ULSSB Y

xlabel( - Frequency’)

title( * Speccrum of che LSSB-AM modulated signal’)
pause % Press anv kev 1o see u noise sample

subplot(2,1.1)

plot{t,noise(1:lengthit}))

utle(* noise sample ')

xlapel( ' Time "}

pause % Press a key to see the moduluted signal und noise
subplot(2.1.2)

plotit.r{1:length(t})))

titlel * Modulated signal and neise’)

xlabel{ " Time")

subplot(2.1.1)

pause % Press any kev (i see the spectrion of the modulated signal
plot(f.abs{ffishift(ULSSB}})

title{ ‘Modulated signal spectrum’)

xlabel( - Fregquency '}

subplot(2,1,2)

pause T Press o key to see the moduluted signal nolse ik freq. domuin
plot(Eabs{fftshift(R)})

tije(*Modulated signal noise spectrum'}

xlabel(“ Frequency ')

The m-files ussb_mod.m and lssb_mod.m given below modulate the message signal
given in vector m using USSB and LSSB modulation schemes.

—

function u=ussb_rmod(m,ts,fc)

% u = ussbomodim s fc}

% USSBMOD takes signal m sumpled at ts and carrier

% freq fo us inpur and returns the USSE modulated
% signal. v << [/2fc.

t=[0:length{m)—1]=ts;
u=m.xcos{2xpixt)—imag(hilbert(m)). ssin{2+pi*t);

function u=lssh_mod(m,ts,fc}

% u = [ssb_mod(m,is,fc)

%LSSBMOD takes signal m sumpled at 13 and carrier

G freq. fo as input und returns the LSSB modulated
% signal. 15 << 1/2fc

t=[0:length(m)— 1]#1s.
u=m.*cos(2apixt}-+imaghilbert(m)). =sin(2+pist);

3.3, Demodulation of AM Signals 1G1

3.3 Demodulation of AM Signals

Demodulation is the process of extracting the message signal from the modulated signal.
The demodulation process depends on the type of modulation employed. For DSB-AM and
SSB-AM the demoduiation method is coherent demodulation, which requires the existence
of asignal with the same frequency and phase of the carrier at the receiver. For conventional
AM, envelope detectors are used for demodulation. In this case precise knowledge of the
frequency and the phase of the carrier at the receiver is not crucial, se the demodulation
process is much casier. Coherent demedulation for DSB-AM and SSB-AM consists of
multiplying (mixing) the modulated signal by a sinusoidal with the same frequency and
phase of the carrier and then passing the product through a lowpass filter. The cscillator
that generates the required sinuseidal at the receiver is calied the local oscillator.

3.3.1 DSB-AM Demodulation

In the DSB case the modulated signal is given by A.m({t)cos{2x f.1}, which when multi-
plied by cos(2x ft} (or mixed with cos(2 f.1}) results in

A A,
vty = Amirycos(2m ft)cos(Imfa) = Tm(” + ——m{tycosidm f.1) (3.3.1}
Fa

where v(1) denotes the mixer output, and its Fourier transform is given by
Ac A, A,
Yifr= TM(f) + TM(f —2f)+ TM{f +1f) (3.3.2)

As it is seen, the mixer output has a lewpass componeat of '—'}'M(f) and high-frequency
components in Lthe neighborhood of 2 f,. By passing y{¢) through a lowpass filter with
bandwidth W, the high-frequency components will be filtered out and the lowpass com-
ponent, A< m(¢), which is proportional to the message signal, will be demodulated. This
process is shown in Figure 3.9.

cos(2m f.t)
u(t) é ¥(ry

Lowpass Filter Zem(r)

Figure 3.9: Demodulation of DSB-AM signals.

ILLUSTRATIVE PROBLE

Illustrative Problem 3.5 {DSB-AM demodulation} The message signal m(t) is defined
as

1, 0=r<?
mi)=1-2 Lsr<®

Q, otherwise
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This message DSB-AM modulates the carrier ¢(t) = cos 277 f.1, and the resulting modulated
signal is denoted by «(¢). It is assumed that 1o = 0.15 s and f. = 250 Hz.

1. Obtain the expression for u{z).
2. Derive the spectra of m(r} and u(r).

3. Demodulate the modulated signal «(r) and recover m(r). Plot the results in the time
and frequency domains.

— T —

1.2. The first two parts of this problem are the same as the first two parts of the [Hustrative
Problem 3.1, and we repeat only those results here; namely,

u(ty = [H (___r — 0'025) -2 (‘ - 0'075)] cos(500m )

0.05 0.05
and
[ i i 21 . I
Flm()] = ?oe_”"ﬂ‘""}sinc (an) _ ?ofﬁjnfmslﬂc (on)

= O mintiorign, (LN (1 _ g -i2mnsn

= 38 - sinc 3 (I Ze )

= 0.05e=0%5i7f 5inc(0.05 f) (1 - ze—O-UUnf)
Therefore,

U(f) = 0.025¢~005im(f =250 5000 05( £ - 250)) (1 —2¢~0Lin(f -25‘”)
+0.025¢ 0057 +230 ginc(0.05( £ + 250) (1 — 2¢0-imis “50’)

3. To demodulate, we multiply u(r) by cos(2r f.) 10 obtain the mixer output y{t)

y(1) = u{tycos(2m f 1)

t —0.025 t —0.075 2

1 t —0.025 t —0.075
= E[n( 0.05 )—m( 0.0 )]
1 ' —0.025 t - 0.075
+5[n( 005 ) —2]‘1( 0.05 )]cos(lOOOm)

whose Fourier transform is given by

Y(f) = 0.025¢ 0%/ inc(0.05 £ (1 — 2e00inf )
+0.0125¢ 0087/ =300 g0 (0 0S( £ — 500)) (1 — 20 lintS —5°°l)

+ 0.0125~005Im U +500 5100 0 0S( £ + S00)) (1 — 2g=CLinlf +5°°))

.
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where the first term corresponds to the message signal and the last two terms corre-
spond to the high-frequency terms at twice the carrier frequency. We see that filtering
the first term yields the original message signal (up te a proporticnality constant). A
plot of the magnitudes of I/{ £} and ¥ (f) is shown in Figure 3.10.

The demodulatw cuipur

502 nod ook L] L CE) (X0
Time

Figure 3.10: Spectra of the modulated signal and the mixer output in [llustrative Problem
3.5.

As shown above, the spectrum of the mixer output has a lowpass component that is
quite similar to the spectrum of the message signal, except for a factor of 1', and a bandpass
component located at +2 f; (in this case, 500 Hz). Using a lowpass filter we can simply
separate the lowpass component from the bandpass component. In order to recover the
message signal m(t), we pass y{r) through a lowpass filter with a bandwidth of 150 Hz.
The choice of the bandwidth of the filter is more or less arbitrary here because the message
signal is not strictly bandlimited. For a strictly bandlimited message signal, the appropriate
choice for the bandwidth of the lowpass filter would be W, the bandwidth of the message
signal. Therefore, the ideal lowpass filter employed here has a characteristic

1, |fi= 150
G, otherwise

H(fy=
A comparison of the spectra of m{¢) and the demodulator output is shown in Figure 3.11,
and a comparison in the time domain is shown in Figure 3.12.
The MATLAB script for this problem follows.

% deb_dem.m

% Mattab demonstration script for DSB-AM demodulation. The message signal
R +1 for 0 < 1 < /3, -2 for 0/3 < t < 200/2 and zern otherwise.
<cho on

10=.15; % sigral duration
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E
ts=1/1500; % sampling interval
fo=250; % carrier frequency
fs=1/1s; % sampling frequency
! r=[0:ts:10]: % time vector
s ' df=0.3: % desired frequency resolution
: % message signal
0 m=[cnes(1.(0/(3=ts}), —2=ones 1,10/ (3%is)) . zeros(1,10/(3#15)+ 1}];
e=Cos{2#pi=fc =), % carrier signal
. ver U=TRL AC; % modulated signal
y=u.=c; % mixing
. [M.m.df1]=Ffftseq(m.s.df); Fo Fourier trarsform
s il i M=M/fs; Yo scaling
| [U.u,df1]=fiseq(u,ts dl); % Fourier transform
- U=U/fs: % scaling
[Y.y.df | |=ffiseq(y.t5.df), Fe Fourier 1runsform
Y=Y /fs; % scaling
f_cuteff=150: % cuteff freq. of the fileer
— = + —-— = n_cutoff=floor{ 150/df1); % Design the filter
Haanb £=[0:df 1:df] {length{y)—1)] - fs/2;
H=zeros(size(f)):
Figure 3.11: Spectra of the message and the demodulated signals in Tllustrative Problem H(1:n_cutoff)=2+ones(1.n_cuof);
335, Hilength(f)—n_cutoff + 1:length(f =2 xo0nes(1.n_cutoft);
DEM=H +Y; % spectrum af the filter ouspur
dem=real{iffti DEM))=ls; % filter ouipur
pause %o Press a key o se¢ the effect of muxing
clf

subplot{3,1,1}
plos(f.fftshift{abs{ M)
title( - Spectrum of the the Message Signal’)
xlabel{* Frequency )
subploi(3,1,2)
plotf.fiishift(abs(L)
title{ * Spectrum of the Modulated Signal’)

. The demudulatr output xlabel{ * Frequency)
subplot(3,1.3}
s k plot(f.fTshift{abs(Y)))
title(’ Spectrum of the Mixer Output')
xlabel{ " Frequency*)
o o pause % Press o key (o see the effecr of filtering on the mixer output
clf
. Las subplot(3.1.1)
plot{f fitshift(abs(Y)})
title(’ Spectrum of the Mixer Qutput’)
18 xlabel( ' Frequency )
subplot(3,1.2)
plot{ [ ffshift(abs(H))
M . title{‘ Lowpass Filter Characteristics’)

T Tem xlabel{’ Frequency')
subplot(3.1.3)
plot(f. fishift(abs{ DEM)))}
title(* Spectrum of the Demodulator output')
xlabel(* Frequency )
pause % Press a key to compare the spectra of the messuge an the received signal
clf
subplot(2.1,1)
plotif.fshift(abs(M)))

Figure 3.12: Message and demodulator output in Ilustrative Problem 3.5.




1C6 CHAFTER 3. ANALOG MODULATION

title(* Spectrum of the Message Signal*)
xlabel( - Frequency )

subplot(2,1,2}

plot(f ffeshif{abs(DEM}¥

title(* Spectrum of the Demodulator Output’)
xlabel(* Frequency )

pause % Press a key (o see the messuye und the demodulator oupur sigrals
subplot(2.1,1)

plot(t.m{ 1 :length{t)))

litle{’ The Message Signal‘}

xlabel{* Time*)

subpiot{2.1,2)

plot{t,dem{ ¥:lengthir)))

utle( ' The Demodulatar Gurput )

xlabel( - Time"’)

ILLUSTRATIVE PROBLEM

iflustrative Problem 3.6 [Effect of phase error on DSB-AM demodulation] In the de-
modulation of DSB-AM signals we assumed that the phase of the local oscillator is equal to
the phase of the carrier. If that is not the case,—i.e., if there exists a phase shift ¢ between
the local oscillator and the carrier—how would the demodulation process change?

g SOLUTION o

In this case we have u(s) = A,m(r)cos(27 f.1), and the local oscillator generates a sinu-
soidal signal given by cos(2n f,¢ + ¢). Mixing these two signals gives

y(1) = Acm{tcos2r for) x cos(Zm for + ¢} (333
%m(r)cos(qb) + %m(r)cos(éin'fc: + @) (3.3.4)

As before, there are 1wo terms present in the mixer cutput. The bandpass term can be
filtered out by a lowpass filter. The lowpass term, i"fm(r) cos{¢). depends on ¢, however.
The power in the lowpass term is given by

Al
Piem = 5 Pmcos’e (335)

where P, denotes the power in the message signal. We can see, therefore, that in this case
we can recover the message signal with essentially no distortion, but we will suffer a power
loss of cos 2¢. For ¢ = /4 this power loss is 3 dB, and for ¢ = /2 nothing is recovered
in the demodulation process.

3.3.2 SSB-AM Demedulation

The demodulation process of SSB-AM signals is basically the same as the demodulation
process for DSB-AM signals, i.e., mixing followed by lowpass filtering, In this case

u(t) = %m(!)cos(erfcr) F %rﬁ(r)sin(ancr) 3.3.6)
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where the minus sign corresponds e the USSE and the plus sign corresponds to the LSSB.
Mixing u(r) with the local oscillator output. we obtain

Ac . .
= ?m(r}cnslmzﬂ.r) F %m(!) sin(2m fo1) cos(2m for)

A, Ao Ap :
= Tm(!) + Tm({) cos{dr f.t) F Tm(!) sin(4m f.1) 337

which contains bardpass components at 27, and a lowpass component proportional to
the message signal. The lowpass component can be filtered out using a lowpass filter to
recover the message signal. This process for the USSB-AM case is depicted in Figure 3.13.

v

[ A ;

fo St W

Y{f)

Vi YN AN 5

-w W 2f. 2f+ W

Figure 3.13: Demodulation of USSB-AM signals.

ILLUSTRATIVE PROEBLE

Ilustrative Problem 3.7 [LSSB-AM example] In a US5B-AM modulation system, if the
message signal is

L, 0=t < %1
mit) = 4 -2, 5}5r<%ﬂ
0, otherwise

with 75 = 0.15 5, and the carrier has a frequency of 250 Hz, find U(f) and Y(f) and
compare the demodulated signal with the message signal,

m SCLUTION g

The modulated signal and its spectrum are given in Illustrative Problem 3.4. The expression
for U(f)is given by

0.025¢~205/m U/~ B0 ginc(0.05( f — 250)) (1 — 2e~0Lim(r-250)
; . < fe
U(f) = § +0.025¢ =087+ 0sinc (0.05( f +250)) (1 — 2¢~0.Um(r+250) 7= fe

0, otherwise
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and

i 1
Y(f)IEU(f“ﬂ-)+§U(f+fc)

0012560057/ 5ine(0.05 ) {1 — 2 0047F) \fl =< f.
0.0125¢=005/m (=50 gine (0.05(f — 500)) (1 — 2¢~00LAU=500) - foe Fa2f,
0.0125e 0057/ +30)ginc (0,05 £ + 500)) (1 — 2¢700UmUH300Y 0 _9f < f = —f,
¢, otherwise

A plot of ¥ (f) is shown in Figure 3.14. The signal y{r) is filtered by a lowpass filter with

0.03 Y T T T T T T

002

0015 |

001 |

0.005 |-

o 500 400 200 F) 200 00 500 500
Frequency

Figure 3.14: Magnitude spectrum of the mixer output in [llustrative Problem 3.7

a cutoff frequency of 150 Hz; the spectrum of the output is shown in Figure 3.15. In the
Figure 3.16 the original message signal is compared with the demodulated signal.
The MATLAB script for this problem follows.

— D —

% lssb_demm

% Matlab demonstration script for LSSB-AM demedulation. The message signal
% is +1 for 0 < ¢ < (043, -2 for 03 < t < 20/3 and zerm otherwise.
eche on
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Frequency

Figure 3.15: The demodulator output in Illustrative Problem 3.7.

Figure 3.16: The message signal and the demodulator output in Illustrative Problem 3.7.
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10=.15: % sigral duration

1s=1/1500, % sumpling interval

fc=250; % currier frequency

fs=1/1s; % sumpling frequency

df=0 25, % desired freq.resolution

t=[0st0}; % lime vectr

% the message vector
m={ones! 1.10/(3ts)),—2+ones(1.10,/(I+ts}).zeros{ 1 H0/(3xts)+ 1))

C=Cosi 20 piefe () % carrier vector

udsh=m.=c; % DSB modulated signal
[UDSB.udsb,df1 ]=fltseqtudsh.is.df); % Fourier tranxform
UDSB=UDSB/fs: % scaling

n2=ceil(fc/df1); % Incativn of carrier in freq. vector

% remove the upper sideband from DSB

UDSB{nZ2:lenpth{ UDSBI~n2)=zeros(size(UDSB(n?: length UDSBI—n2))):

LULSSB=UDSB, %o Generare LSSB-AM spectrum
[M.m,dfl |=ffiseqim,ts,df y; % specirum of the message signal
M=M/fs; T scaling

r=[0.dl1:dfI(lengthiM)— 1)}~ s/ 2; % frequency vector

u=real(tfft(ULSSA ) =fs; % yenerate LSSB signal from specirum
T mixing

y=u.acos{ 2episfcx[Q:1s (sx(lengthiu)— 1)]);

[Y.y.df | ]=ffiseq(y ts.df ); % spectrum of the output of the mixer
Y=Y/fs; % sculing

f_cutoff =150; % Choose the cutoff freq. of the filter
n_cutoff=fioor(150/df); % design the filter

H=zeros{size(f));

Hi1:n_cutoff)=d4«anes(1.n_cutofl);

% spectrum of the filter ouipuar

Htlength{f) —n_cutoff+1:length(F))=4+onesi 1.n_cutoff);

DEM=H +Y; % spectrum of the filter outpur
dem=real (iffit{ DEM))«fs; % filter output

pause % Press a key tw see the effect of mixing

clf

subplot(3.1,1)

plotf.flrshifi{abs(M)))

title{ Spectrum of the the Message Signal')
xtabel( - Frequency')

subplot(3,1.2)

piottf.ffeshift(abs(ULSSB))

title{ Spectrum of the Modulated Signal’)
xlabel( ' Frequency ')

subplot(3.1.3)

plottEffeshifi(abs(Y )

title{ * Spectrum of the Mixer Dutput-)
xlabel( * Frequency ')

pause %o Press a key to see the effect of fillering an the mixer ouiput
clf

subplot(3.1,1)

plotf.fitshift(abs(Y))

title{* Spectrum of the Mixer Qutput‘)
xlabel{ ' Frequency ')

subpiot(3,1.2)

plot{ £, ffishift(abs(H)))

title{* Lowpass Filter Characteristics’)
xlabel{ ' Freguency')
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subplot(3.1,3)

plot(f flishift(abs(DEM)))

Litte(* Spectrum of ~he Demodularor output )
xlabel(* Frequency '}

pause % Press a key i see the message and the demodulator output signals
subplot(2,1,1)

plot{t.m{1:lengthit)))

title{* The Message Signal‘)

xlabel( Time )

subplot(2,1,2)

plot(r.dem(:fength(t))

title( The Demodulator Outpur*)
xlabel{*Time )

ILLUSTRATIVE PROBLE

lllustrative Problem 3.8 [Effect of phase error on SSB-AM| What is the effect of phase
error in the SSB-AM?

. GOLUTION 4

Assuming that the local oscillator generates a sinusoidal with a phase offset of ¢ with respect
to the carrier, we have

y() = ultycos(Znfut + ¢}

= [éz-‘lm(r) cos(2m f.1) F %rﬁ(t} sin(27rf¢-t)j| cos(2m fot 4 )
= %ﬁm (tYcosgp + %r?t(r) sin ¢ + high-frequency terms (3.3.8)

As seen, unlike the DSB-AM case, the effect of the phase offset here is not simply
attenuating the demodulated signal, Here the demodulated signal is attenuated by a factor
of cos¢ as well as distorted by addition of the :I:%ﬂn":(r) sing term. In the special case

of ¢ = n /2, the Hilbert transform of the signai will be demodulated instead of the signal
itself.

3.3.3 Conventional AM Demodulation

We have already seen that conventional AM is inferior to DSB-AM and SSB-AM when
power and SNR are considered, The reason is that a usually large part of the modulated
signal power is in the carrier component that does not carry information. The role of the
carrier component is (o make the demodulation of the conventional AM easier via enve-
lope detection, as opposed to coherent dernodulation required for DSB-AM and §SB-AM.
Therefore, demodulation of AM signals is significantly less complex than the demodulation
of DSB-AM and SSB-AM signals.Hence, this modulation scheme is widely used in broad-
casting, where there exists a single transmitter and numerous receivers whose cost should
be kept low. In envelope detection the envelope of the modulated signal is detected via a
simple circuit consisting of a diode, a resistor, and a capacitor, as shown in Figure 3.17.



112 CHAPTER 3. ANALOG MODULATION

i

Figure 3.17: A simple envelope detector.

Mathematically, the envelope detector generates the envelope of the conventional AM
signal, which is

Viey = |14+ am, () (3.3.9)
Because | + m, (1) = 0, we conclude that
Vi) =1+ am,(t) (3.3.10)

where my (1) is proportional to the message signal m(r} and 1 comesponds to the carrier
component that can be scpardted by a de-block circuit. As seen, in the above procedure i
there is no need for knowledge of ¢, the phase of the carmier signal. That is why such a
demodulation scheme is calied noncoherent, or asynchronous. demodulation. Recall from
Chapter | that the envelope of a bandpass signal can be expressed as the magnitude of its
lowpass equivalent signal. Thus if u(¢) is the bandpass signal with central frequency fo
and the lowpass equivalent to x(¢) is denoted by w;(r), thea the envelope of u(t), dencled

by V(z), can be expressed as
Vi = ,;‘uﬁ,(r) + uf‘j(r)
= Jul(e) + ul(r} (3.3.11}

where u.(1) and u,(t) represent the in-phase and the quadrature components of the bandpass
signal u(7), Therefore, in order to obtain the envelope, 1t is enough to obtain the lowpass
equivalent of the bandpass signal. The envelope is simply the magnitude of the lowpass
equivalent of the bandpass signal.
ILLUSTRATIVE PROBLE

THustrative Problem 3.9 [Envelope detection] The message signal
1, 0=t < %‘
iy

mity=43-2, $=r<

=

0, otherwise

modulates the cartier c(t) = cos{Zx f-¢) using a conventional AM modulation scheme. It
is assumed that f. = 250 Hz and f = 0.15 s, and the modulation index isa = 0.85.
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1. Using envelope detection, demodulate the message signal.

2. If the message signal 15 periodic with a period equal to ¢ and if an AWGN pro-

cess 1s added Lo the modulated signal such that the power in the noise process is
one-hundredih the power in the modulated signal, use an envelope demodulator to

demodulate the received signal. Compare this case with the case where there is no
noise present.

. SOLUTION g

1. Asn [lustrative Problem 3.3, we have
t
u(t)y = [l + 0.8532—)} cos(2Tf)

{0,025 r - 0075
= o522y Cassm A2 | cos
[ oo 505 )] cos(300mn)

if an envelope detector is used to demedulate the signal and the carrier component
is removed by a de-block, then the original message m(r) is recovered. Note that a
crucial point in the recovery of m(r) is that tor all values of ¢, the expression 1 +am,{t)
is positive; therefore, the envelope of the signal [1 + am,(r)] cos(2x f.1}, which is
V() = |1 + amu(1)], is equal to 1 + amp(t), from which m(r) can be recovered
easily. A plot of the conventional AM modulated signal and its envelope as detected
by the envelope detector are shown in Figure 3.18.

H4

-

————

Figure 3.18: Conventional AM modulated signal and its envelope.

After the envelope detector separates the envelope of the modulated signal, the dc
component of the signal is removed and the signal is scaled to generate the demod-

ulator output. Plots of the original message signal and the demodulator output are
shown in Figure 3.19.
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Figure 3.19: The message signal and the demodulated signal when no noise is present.

2. When noise is present, some distortion due to the presence of noise will also be
present. In Figure 3.20 the received signal and its envelope are shown. In Figure
3.21 the message signal and the demodulated signal are compared for this case.

8

Figure 3.20: The received signal and its envelope in the presence of noise.

The MATLAB script for this problem follows.

% am_dem.m
% Matiab demonstration script for envelupe detection. The message signal
% is +1 for 0 < t < 1043, -2 for 10f3 < ¢ < 200{3 und zero otherwise.

echo on

0=15; % signal duration
t5=0.001; % sempling interval
fo=250; % carrier frequency
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] 002 [ CE] ooh at CEE] o

Figure 3.21: The message and the demodulated signal in the presence of noise.

a=0.85; % madulution index

fs=1/1s; % sumpling frequency
t=[0:15:0]; T time vector

df=0.25, % required frequency resnlution

Fo message cignal

m=[ones(1.:0/(3w1s}), - 2ranes(1,10/{3x15)). zeros(1 M0/ (3wts)+1)];
c=cos(2*pixfe «t), % carrier signal
m.n=m/max(abs(m)); % rormalized messuge signal
[M.m.df1]=ffiseq{m.ts.df); % Fourier transform
f=(0:8fL:df L +{length{m)—1)1—[5/2; % frequency vector
u=(1+asm_n).«c; % moduluted signei
[U.u.dfl]=ffiseq(u,is,df), % Fourier transform
env=env._phas(u): % Find the envelup:'
deml=2s(env—1)/a: % Remove dc and rescale
sigral_power=power(u(1.length(t})); % power in moduluted signal
noise._power=signal _power/100; % npise power
noise_std=sqri{noise..power); % noise stundard deviation
noise=noise..std+randn{ 1 length{u)); % generate noise

T=U+n0ise; % Add nvise o the modulated signal
[R.r.df1]=ftseq(r,is,dM); % Fourier transform
envy.r=env_phas(r): %o envelope, when noise is present
demZ=2+(env_r—-1)/a; % Demodulate in the presence of noise
pause % Press any key to see @ piot of the messuge

subplot(2.1,1)

plot(t.m{1:length(t}))

axis({0 0.15 -2.1 2.1}

xlabel( " Time~’)

title( * The message signal’)

pause % Press uny key 1o see a plot of the moduluted signai
subplot{2.1,2)

plot(t.u{1:length(t)))

axis([0 0.15 -2.1 2.1]

xlabel{’ Time ")

tile(' The modulated signal’)

pause % Press @ key to see the envelope of the modulared signal

clf
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subplor{2,1,1}

plot{t.ul 1:lengehin})}

axis([0 ©.15 -2.1 2.1])

xlabel(* Time")

title{ * The modulacted signal’)

subplot{2.1.2)

plot(renvi T:lengthit}))

xlabei( " Time ")

title(* Envelope of the modulated signal’)
pause % Press a key (o compare the message and the demodulared sivnal
clf

subplot(2,1,1)

plot{t.mi 1:length(t)y)

axis([0 0.156 —2.1 2.1]}

xlabel{ * Time ")

title(’ The message signal’)

subplot(2,1,2)

platt,demn1(1:length{t))

<label{ " Time "}

et " The demodulated signal )

pause % Press o key to compare m the presence of noise
clf

subplat(2.1.1)

plot{t,m{ 1:length{n))

anis{[0 Q.15 —-2.1 2.1])

xlabel(* Time ')

titlef ' The message signal’)

subplot(2.1.2)

plot(r,dem2(1:lengthit}}}

xlabel( ' Time*)

titlet* The demodulated signal in the presence of neise’)

B COMMENT

In the demodulation process above, we have neglected the effect of the noise-limiting filter,
which is a bandpass filter in the first stage of any receiver. In practice the received signal
r(t) is passed through the noise-limiting filter and then supplied to the envelope detector.
In the above example, since the message bandwidth is not finite, passing r () through any
bandpass filter will cause distortion on the demodulated message, but it will also decrease the
amount of noise in the demodulator output. In Figure 3.22 we have plotted the demodulator
outputs when noise-limiting filters of different bandwidths are used The case of infinite
bandwidth is equivalent to the result shown in Figure 3.21.

3.4 Angle Modulation

Angle-modulation schemes, which include frequency modulation (FM) and phase modula-
tion (PM), belong to the class of nonlinear modulation schemes. This family of modulation
schemes is characterized by their high-bandwidth requirements and good performance in
the presence of noise. These schemes can be visualized as moduiation techniques that
trade-off bandwidth for power and, therefore, are used in situations where bandwidth is not
the majer concern and a high SNR is required. Frequency modulation is widely used in
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Figure 3.22: Effect of the bandwidth of the noise-limiting filter on the output of the envelope
detector.
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high-fidelity FM broadcasting, TV audio broadcasting, microwave carrier modulation, and
poinl-to-point CoMMuRICAlion systems.

In our reatment of angle-modulation schemes, we again concentrate on their five basic
properties, namely, time-domain representation, frequency-domain representation, band-
width, power content, and, finally, SNR. Since there is a close relationship between PM and
FM, we will treat them in paraltel, with emphasis on FM.

The time-domain representation of angle-modulated signals, when the carrier is ¢(f) =
Accos(2w fit) and the message signal is m{r), is given by

A, Inft+k . PM
u(r}=‘ ) (34.1)

A, cos (erﬂr + 2mky fiacm(r)dr) . FM

where ky and k, represent the deviation constants of FM and PM, respectively. The
frequency-domain represeantation of angle-modulated signals is, in general, very complex
due to the nenlinearity of these modulation schemes. We treat only the case where the
message signal m(¢) is a sinusoidal signal. We assume m(f) = a cos{2r f,»1) for PM and

m{r) = —~asin(2x fnt) for FM. Then, the modulated signal is of the form
() = Accos(2rfit + Bpcos(Zmw fint)), PM (3.4.2)
Accos(2nfe + Bycos(2a fnt)), FM
where
,6.,, =kpa
kra (3.4.3)
By ==
S

and B, and Af are the modulation indices of PM and FM, respectively. In general, for a
nonsinuscidal m{¢), the modulation indices are defined as

'Br' = kp max |m(s)]|
kg max |m(0)! (3.4.4)
By = —

where W is the bandwidth of the message signal m(¢). In case of a sinusoidal message
signal the modulated signal can be represented by

ult) = Y ASa(B) cOS2M{f. + nf )t (3.4.5)

A=

where J, (8) is the Bessel function of the first kind and of order n and J is either Bpor By,
depending on whether we are dealing with PM or FM. In the frequency domain we have

o

cin ACJ"
uifr= 3 [if—z@a(f—(fc+nfm))+T(ma(f+(fc+nfmn] (3.46)

H=—00
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Obvigusly. the bandwidth of the modulated signal is not finile. However, we can define the
eﬁecttve bandwidth of the signal as the bandwidth containing 98% to 99% of the modulated
signal power. This bandwidth is given by Carson's rule as

Br =20+ )W (34.7)

where 8 is the modulation index, W is the bandwidth of the message, and Br is the
bandwidth of the modulated signal.

The expression for the power content of the angle-modulated signals is very simple.
Since the medulated signal is sinusoidal, with varylng instantanecus frequency and constant
ampiitude. its power is constant and does not depend on the message signal. The power
content for both FM and PM is given by

e

P, =

mlib

(3.4.8)

The SNR for angle modulated signals, when no pre-cmphasis and de-emphasis filtering
ts employed. is given by

Publ  p
TR
(i) — [} (max Jmu)zl)- My W PM (3.4.9)
N Puby P o
° 3(:'n:\x lm(e)))? NoW: EM

Since max |m(¢)| denotes the maximum magnitude of the message signal, we can interpret
Py /(max [m(0)])? as the power in the normalized message signal and denote it by Py, .
When pre-emphasis and de-emphasis filters with a 3-dB cutoff frequency equal to fp are
employed, the SNR for FM is given by

(5) - Sl (£) @410
N awp - 3OWI o = arctan(Wifon \N /., 410)

where (5/N ) is the SNR without pre-emphasis and de-emphasis filtering given by Equation
3456,

ILLUSTRATIVE PROBLEM

Nlustrative Problem 3.10 [Frequency modulation] The message signal

1, 0=t < %1
mt)={ -2, %lsr<3{ll
0. otherwise

modulates the carrier c(t) = cos(2xf,1) using a frequency-modulation scheme, It is
assumned that f. = 200 Hz and #g = 0.15 s5; the deviation constant is kg =30,

1. Plot the modulated signal.

2, Determine the spectra of the message and the modulated signals.
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. SOLUTION g

1. We have

i
uit) = A, cos (ZIrfC( +2Trkff m(f)df)
-0

We have to find fioo m(t)dr. This can be done numerically or analytically, and the
results are shown in Figure 3.23.

0.08

Figure 3.23: The integral of the message signal.

Using the relation for #(r) and the value of the integral of m(r}. as shown above, we
obtain the expression for u(r). A plot of m(t) and u(r) is shown in Figure 3.24.

2. Using MATLAB's Fourier transform routines, we gbtain the expression for the spec-
trum of u(r) shown in Figure 3.25. It is readily seen that unlike AM, in the FM
case there does not exist a clear similarity between the spectrum of the message and
the spectrum of the modulated signal. In this particular example the bandwidth of
the message signal is not finite, and therefore to define the index of modulation, an
approximate bandwidth for the message should be used in the expression

_kymax lm()]
- W
We can, for example, define the bandwidth as the width of the main lobe of the
spectrum of m(t), which results in

(34.11)

W =20Hz

L4 Angle vioguiation

—m———

Figure 3.24: The message signal and the modulated signal.

Figure 3.25: The magnitude-spectra of the message and the modulated signal.

amt
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and so : ILLUSTRATIVE PRORBLE

5= 0x2 10 ' IHustrative Problem 3.11 [Frequency modulation] Let the message signal be
== =

123

(1) = sinc(100r), 7] < ¢
The MATLAR script for this problem follows. mr) =

| : otherwise

where 1y = 0.1. This message modulates the carrier c(r) = cos{2mf.t}, where £, = 250
< il Hz. The deviation constant is ky =100

o Murlub demonsiration serips for frequency modulanion. The messuge stgnul
Tl e et 22 fer i3 < 0w 2043, und zerw othenvise, . |
zzho on

- Plot the modulated signal in the time and frequency domain.

stgnul duration
sampling Interval

%

o

% carrier frequency

% modulanon index ‘—m!ii:u'

2. Compare the demodulator oulput and the original message signal.

50 % sumpling frequency } ) )
=00 %o ttme vecior I. We first integrate the message signal and then use the relation
dfl:O,QS‘ Fe required fregquency resolution
!
T omessune signal
m=iones 110,/ (3«ts)).— Zwones( 1.0/ (3xts)d,zeros( 1,10/(I+1s)+ 1], u(r) = A, cos (2,-rf, 1+ 2wky f m(z) dr)
e 1i=0; -2
for i= - % integral of m . . . . . . -
fur vL'ilenﬂhi;ll l;m A tneegral of to find w(t). A plot of u(1) together with the message signal is shown in Figure 3.26.
IRTami =1 )=t + i . . R . .
and The integral of the message signal is shown in Figure 3.27.
N mdfl{=fftseqimus.dfy; % Fowrier trunsform .
MaM s, %o scaling ‘I ,1| T
f={0:dfldf I e(lengthim)—1}] - s/ 2; % freguency vector ,.i_ [ !
u=cos( 2epixfcwt+2xpi*kfsint_m); %o modulated signul i } ﬂ .
(U udfl]=ffiseqlu.ts.dfy; % Fourier transform } ‘ l
U=Li/fs, % scaling I [ . i .
pause % Press uny kev to see a plor of the message and the moduluted signal i ] \ . ‘1 I | | J
subplot2,1.1) [ fo \ il I

plotit.m( 1 length(t))} H |

axis{0 015 —-2.1 2.1)) ; k

| i’

! AN ;

‘l:lbe'i(F:LTlmE‘) ) ‘ : '?\/\/\/\\j ‘\ ‘f l‘ [\//\N\-’ a
nte - The message signai’)

i { "
subplot(2.1.2) ..} y \} "'-
plotit.uf 1:length(t))) i F
asst[0 015 =2.1 2.41] ol " S, 1 . 1
xlapel{ " Time "} T Time

title{ ' The modulated signal’}

pause %k Press any key (o see a plis of the mugnitude of the message and the
% modulated signal in the frequency domain,

subplor(2.1.1)

ploti F.abst ftshift(M)))

Figure 3.26: The message and the modulated signals.

Vabelf noy’) A plot of the modulated signal in the frequency domain is shown in Figure 3.28.
A ‘ Fragque:

' : - - T i 1) . . ,
[Itfl;ob:(azg:lé)tude spectrum of the message signa . 2. To demodulate the FM signal, we first find the phase of the mogulated signal u(¢).
- 1, : . . . . . .
p!ollzt'.abs(ﬁlshlft(U})) This phase is mky fim m(t}dt, which can be differentiated and divided by Imky
tiflel ‘Magnitude-spectrum of the modulated signal”)

to obtain m(r). Note that in order to restore the phase and undo the effect of 277 phase
foldings, we employ the unwrap.m function of MATLAR, Plots of the message signal
and the demodutated signal are shown in Figure 3.29. Asyoucan see, the demodulated
signal is quite similar to the message signal.

xlabel{ ' Fregquency ')
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Figure 3.27: Integral of the message signal.

) o

=
Frrprmy Hel

Figure 3.28: Magnitude-spectra of the message and the modulated signal-
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Figure 3.29: The message signal and the demodulated sigral.

The MATLAB script for this problem follows.
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—

% fmz.m

% Matleh demonsirution seript for frequency modulation. The message signed

% ix mftj=snet 1001

echo on

10=2;

15=0.001;

fe=250;

snr=20);

fs=1/1s;

df=0.3;

t=(—t0/2:1s:10/2).

kf=100;

df=0.25;

m=sine( 100=t}),

int_m(1)=0;

for i=1:length(t)—1
int_mli+ )=t méi}+mijets;

end

[M.m.df | )=ffiseq(m.ts.dF);

M=M/fs:

£=[0:df1:df] «(length(rn) — 1)} f5,2:

u=cos(2+pixfcxt+2apiskfsin.m);

[U.n.df1 ]=ffiseq(u.ts,df }:

U=U/fs;

[v.phase]=env_phas{u.15,250),

phi=unwrap{phase):

dem={1/(2#pixk{))={diff{phi)/ts);

subplot(2,1,1)
plot(t,m(1:length(t}}}

xlabel(’ Time ")

tide(' The message signal‘)

signal duration

sampling ingerval

carrier frequency

SNR wn dB flogarithmic)
sampling frequency

required freg. resolution
e vector

deviation conslunt

reguired frequency resolulion
the message signal

RAPPRFgoLIR

+

fntegral of m

Fourter transform

scaling

freguency veciar

modulated signal

Fourier transform

scaling

demodulation. find phase of u
restore original phase

RIFRLFHHAR

% demodulutor output. differentiate and scule phose
pause % Press any key to ser a plot of the message and the modulated signat
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subplot(2,1,2)

piot(t,u{ 1:lengthit}})

xlabel{ " Time ")

litfe(* The modulated signal ‘)

pause % Press any key fo yee o plis of the magniwde of the message and the ‘
% modulated signal in the freqrency dormain,

subplot(2,1,1)

plot( f.abs{ ffishift( M)

xlabel{’ Frequency ')

utlei ‘Magnitude-specrrum of ~“he message signal’)

subplot{Z2.1.2)

plotif.abs{fishift (U}

tutle{ ' Magnirude-spectcrum of the modulazed signal’)

xlahel{ * Frecquency ')

pause %o Pres anyv kev to see plots of the message and the demodulator ountpar with no
% notse

subplot(2,1,1)

plottem{ 1 length{t})}

xlobeli* Time '}

titlef ' The message signal '}

subplot{2,1.2)

plot{t.dem{1:length{t}})

xlabel( ' Time )

titie{ " The demodulated signal ")

aa CUESTION g

A frequency-modulated signal has constant amplitude. However, in Figure 3.26 the
amplitude of the signal «{) is apparently not constant. Can you explain why this happens?

3.4. Angle Moduiation
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Problems

3.1 Signal m{z) is given by

r 01 <t <1
m) =23 —r42 l1<;<]138
4.1, otherwise

in the interval [0, 2]. This signal is used to DSB modulate a carrier of frequency 25 Hz and

amplitude | to generate the modulated signal u(r). Write a MATLAB m-file and use it to
do the following.

a. Plot the modulated signal.

b. Determine the power content of the modulared stgnal.

¢. Determine the spectrum of the modulated signal.

Determine the power spectral density of the modulated signal and compare it with
the power spectral density of the message signal.

3.2 Repeat Problem 3.1 with

t, O0<t <]
—t4+2, 1 <t=<2

mft} =

]in Ih; i]r;terval [0.2]. What do you think is the difference between this problem and Prob-
em 3.]7

3.3 Repeat Problem 3.1 with

sinc?(100),  |¢] <2

, otherwise

mit) =

and a carrier with {requency of 100 Hz.

3.4 In Problem 3.1 suppose instead of DSB, a conventional AM scheme is used with a
modulation index of a = 0.2.

a. Determine and plot the spectrum of the modulated signal.

b. Change the modulation index from 0.1 t0 0.9 and explain how it affects the spectrum
dertved in part a.

¢. Plot the ratio of the power content of the sidebands to the power content of the carrier
as a function of the modulation index.
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1.5 In Problem 3.1 let the modulation scheme be USSB instead of DSB. First use a DSB
scheme and then remove the lower sideband.

a. Determine and plot the modulated signal.
b. Determine and plot the spectrum of the modulated signal.

¢. Compare the spectrum of the modulated signal to the spectrum of the unmodulated
signal.

3.6 Repeat Problem 3.5, but instead of using a filtered DSB to generate the USSB signal,
use the relation

A, Ay
wir) = ?Lm(r)cos(erfcr) - —z-m(:) sin(2m fot)
Do you observe any differences with the results obtained in Problem 3.6,
3.7 Repeat Problems 3.5 and 3.6 but substitute the message signat with

sinc2(108), g <2

mit) = 0, otherwise

and use a carrier frequency of 100 Hz to generate an LSSB signal.

3.8 Signal
t, 01=<t<l
miy={—t+2, l=<t<l9
0.1, otherwise

is used to modulate a carrier with frequency of 25 Hz using a DSB scheme.

a. Determine and plot the modulated signal.

b. Assume that the local oscillator at the demodulator has a phas; lag of 8 with the
carrier, where 0 < # < /2. Using MATLAB, plot the power in the demodulated
signal versus # (assume noiseless transmission).

3.9 In Problem 3.8 assume that the modulation scheme is USSB. Plot the demodulated
signal for 8 = 0°, 30°, 45°, 60°, 90°.

3.10 Repeat Problem 3.8, assuming the modulation is conventional AM witha modr..xlat'son
index of 0.2. Use an envelope detector to demodulate the signal in the absence of noise and
plot the demodulated signal. and its spectrunt.
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3.11 A message signal is perindic with a peried of 2 s and in the time interval [0,2]1s
defined as

t, 0.1 <r =<
mif)=3—r+2 I<r<|9
0. otherwise

This message signal DSB modulates a carrier of 50 Hz. Plot the output of the DSB de-
modulator and compare it with the message for the cases where a white Gaussian noise is
added 1o the modulated signal with a power equal to 0.001, 0.01, .05, 0.1, and 0.3 of the
modulazed signal.

312 Repeat Problem 3.11 with a LSSB modulation scheme. Compare your results with
the results obtained in Problem 3.11.

3.13 Repeat Problem 3.11 with a conventional AM modulation and envelope demodulation.

3.14 The signal

t, 0<r1 <1
mty=y—r+2 l<r=22
0.1, otherwise

frequency-modulates a carier with frequency 1000 Hz. The deviation constant is kp =123
a. Determine the range of the instantaneous frequency of the modulated signal.
b. Determine the bandwidth of the modulated signal
c. Plot spectra of the message and the modulated signal.
d. Determine the modulation index.

3.15 Demaodulate the modulated signal of Problem 3.14 using a frequency demodulation
MATLAB file and compare the demodulated signal with the message signal.

3.16 Letthe message signal be a periodic signal with period 2 described in the [0, 2] interval
by

!, O0<t <1
miiy=4—t4+2 1=t<l9
0.1 otherwise

and let the modulation scheme be the one described in Problem 3.14. Before demodulation
additive white Gaussian noise is added to the modutated signal. Demedulate and plot the
demodulated signal when the ratio of noise power to the modulated signal power is 0.001,
0.01,0.05,0.1, and 0.3.

3.17 In Problem 3.16 assume m(z) = 0. Add the noise processes to the modulated signal
as described and demodulate the resulting signal. Plot the power spectral density of the
demodulator vutput in each case.



Chapter 4

Analog-to-Digital Conversion

4.1 Preview

The majority of information sources are analog by nature. Analog sources include speech,
image, and many telemetry sources. In this chapter we consider various methods and
techiniques used for converting analog sources to digital sequences in an efficient way. This
is desirabie because, as we will see in subsequent chapters, digital information is easier to
process, to communicate, and to store. The general theme of data compression, of which
analog-to-digital conversion is a special case, can be divided into two main branches:

t. Quantization (or lossy data compression), in which the analog source is quantized
into a finite number of levels. In this process some distortion will inevitably oc-
cur, 30 seme information will be lost. This lost information cannot be recovered,
General A/D techniques such as pulse code modulation (PCM), differential pulse
code modulation (DPCM), delta modulation (AM), uniform quantization, nonuni-
form quantization, and vector quantization belong to this class. The fundamental
limit on the performance of this class of data-compression schemes is given by the
rate-distortion bound.

2. Noiseless coding (or lossless data compression), in which the digital data {usually
the result of quantization, as discussed above} are compressed with the goal of rep-
resenting them with as few bits as possible, such that the original data sequence can
be completely recovered from the compressed sequence. Source-coding techniques
such as Huffman coding, Lempel-Ziv coding, and arithmetic coding belong to this
ctass of data-compression schemes. In this class of coding schemes no loss of infor-
mation occurs. The fundamental limit on the compression achieved by this class is
given by the entropy of the source.

131
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4.2 Measure of Information

The output of an information source (data. speech, video, €.} can be modeled as a random
process. For a discrete-memoryless and stationary random process, which can be thought
of as independent drawings of one random variable X, the information content, or EnEOPY.
is defined as

HiX) = — 2 plx)log p(x) (4.2.13
veX

where X denotes the source alphabetand p(x) is the probability of the letter x. The base of
the logarithm is usually chosen to be 2, which results in the entropy being expressed in bits.
For the hinary alphabet with probabilities p and | — p, the entropy is denoted by Hyp{(p)
and is given by

Hp(p) = —plogp — (1 — p)log(l — ) (+.2.2)

A plot of the binary entropy function is given in Figure 4.1,

Figure 4.1: Plot of the binary entropy function.

The entropy cf a source provides an essential bound con the number ofAbi.ts required 10
represent a source for fuil recovery. In other words. the average number of bits per source
output required to encode a scurce for error-free recovery can be made as close to H(X)as
we desire, but cannot be less than H(X).

4.2.1 Noiseless Coding

Noiseless coding is the general term for all schemes that reduce the number of pits required
for the representation of a source cutput for perfect recovery. The neiseiess coding theorem,

oo aFILAIMITL UV Q0D (A DT L2

due to Shannon, states that for perfect reconstruction of a source it is possible to use a code
with a rate as close to the entropy of the source as we desire. but it is not possible to use a
code with a rate less than the source entropy. In other words, tor any € > 0, we can have
a code with rate less than H (X)) + ¢, but we cannot have a code with rate less than H (X)),
regardless of the complexity of the encoder and the decoder. There exist various algorithms
for noiscless source coding; Huffman coding and Lempel-Ziv coding are two examples.
Here we discuss the Huffman coding algorithm.

Huffman Coding

In Huffman coding we assign longer codewords to the less probable source outputs and
shorter codewords to the more probable ones. To do this we start by merging the two least
probable source outputs to generate a new merged oulput whose probability is the sum of
the corresponding probabilities. This process 1y repeated until only one merged output is
left. In this way we generate a rree. Starting from the root of the tree and assigning O's
and 1's to any two branches emerging from the same node, we generate the code. [t can be
shown that in this way we generate a code with minimum average length among the class
of prefix-free codes.! The following example shows how to design a Huffman code.

ILLUSTRATIVE PROBLE

INustrative Problem 4.1 [Heffman coding] Design a Huffman code for a source with
alphabet X = {x), x3,... .. vy}, and corresponding probability vector

p={(02,015.0.13.0.12.0.1. 0.09,0.08, 0.07, 0.06)

Find the average codeword length of the resulting code and compare it with the entropy of
the source.

s SOLUTION g

We follow the algorithm outtined above to get the tree shown in Figure 4.2.
The average codeword length for this code is

E=2x02+3x (015401340124 0.1) +4 x (0.09 + 0.08 + 0.07 + 0.06)
= 3.1 bits per source output

The entrepy of the source is given as

9
H{X)=- Z pilog pj = 3.0371 bits per source output

We observe that L > H(X), as cxpected.

The MATLAB function entropy.m given below calculates the entropy of a probability
vector p.

LPrefix-free codes are codes in which no codeword is a prefix of another codeword.
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—

funcrion h=entropy(p)
T H = ENTROPYIP) returns the entropy function of
To the probubllity vecior p
if length{find(p<() =0,
crror("Not & proh. vector, nagative compeonent ts) )

end
if abs{sumipi— 11> 108—10,
emor("Net &2 prab. wector, covponencs do not add up o 1)
end
Cod d h=sum{ —p xlog2(p):
odewords
The quantity
02
o X 00
: H{X)
ne=—"-= (4.2.3)
100 x 215 100 L
042 : is catled the efficiency of the Huffman code. Obviously, we always have n < 1. In gen-
110 X3 0.13 110 0 | eral, it can be shown that the average codeword length for any Huffman code satisfies the
inequalittes
0.12 0.32 —— Prob. =1 i
L — L 10 HXy <L < HX) +1 4.2.4)
022 o 1 os8
oL1 PRutS R orl . ! ; If we design a Huffman code for blocks of length X instead of for single letters, we will
0.26 have
w0 xe 292 gy " - [
0.17 10 HOO S L< HOXO+ = (4.2.5)
0.08 . . .
1011 x7 1011 and, therefore, by increasing K we can get as close 10 H{X) as we desire. Needless to
say, increasing K increases the complexity considerably. It should also be noted that the
1110 xg 907 1110 Huffman coding algorithm does not result in a umgque code due to the arbitrary way of
0.13 11t assigning 0's and 1's to different tree branches. That is why we talk about @ Huffman code
0.06 rather than the Huffman code.

il B il The MATLAB function huffman.m, which designs a Huffman code for a discrete-

memoryless source with probability vector £ andreturns both the codewords and the average
codeward length, is given below.,
Figure 4.2: Huffman code tree.

function [h,)}=huffman{p};
BHUFFMAN Huffmun code gererator

% (R} = huffmanip), Huffman code generator
% returns h the Huffman code matrix, and | the
% average codewnrd length for o source with
% probability vector p.

if length(find(p<0))~=0,

ermor(‘ Not a prob. vector, negative component{s) ')
end
if abs(sum(p)—1)=10e—10,




136 CHAPTER 4. ANALOG-TO-DIGITAL CONVERSION

error{ ‘ot a2 prob. vector, components do not add up to 1)
end
n=length{p}:
q=p
m=zeros{n—1.n)
for i=1:n—1
[q.l]=sort(a);
mti.)=[1(1:n—i+1)zeros( 1.i—= D
q:{q(1)+q(2).q(3:n).1!:
2nd
for 1=1n—1
¢{i. y=blanks{n=*n);
end
c{n=10)="0",
cin—1.2%m)="1",
for i=2:n—1
sin-i,1:n—Ti=¢(n—i+ s find(min—i+1.==11). ..
—(n—2ynx(find{min—i+1.)==1}}%
cn—im)="0":
cln—in+1:2en—1}=c{n—i,1:n—1);
c{n--i,2eny='1";
for j=1:i-1
cla—i{j+ 1)an+1:(+2)en}=cin=i+1,. ..
astfind{m(n—i+1, J==j+1)= 11+l axfind(nin—i+1.0==j+1));
end
end
for i=1:n
R(i, 1:my=ct 3 .pxAind(m{1,)==1)— 1)+ 1 fird{m{ 1, D==1)=n};
11{i)=lengthi ind(abs{ h(i,:))=32)},
end
l=sum(p.#11);

ILLUSTRATIVE PROBLEM

Diustrative Problem 4.2 [Huffman coding] A discrete-memoryless information soutce
with alphabet

X ={xy.,x3...., %5}
and the corresponding probabilities
p =1{0.1,0.3,0.05,0.09,0.21,0.25}
is to be encoded using Huffman coding.

1. Determine the entropy of the source.

. Find a Huffman cede for the source and determine the efficiency of the Huffman
code,

3. Now design a Huffman code for source sequences of length 2 and compare the
efficiency of this code with the efficiency of the code derived in part 2.
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B SOLUTION

1. The entropy of the source is derived via the entrepy.m functicn and is found to be
2.3549 bits per source symbol.

2. Using the huffman.m function we can design a Huffman code for this source. The
codewords are found 1o be 010, 11, 0110, 0111, 00, and 10. The average codeword
lengzh for this code is found to be 2.38 binary symbols per source output. Therefore,
the efficiency of this code is

3. A new source whose outputs are letter pairs of the original source has 36 output
letters of the form [(x;, .r,-}]lﬁl i=)- Since the source I1s memoryless, the probability of
cach pair is the product of the individual letier probabilities. Thus, in order to obtain
the probability vector tor the extended source, we must generate a vector with 36
components, cach component being the product of two probabilities in the original
probability vector p. This can he done by employing the MATLAB function kron.m
in the form of kron(p, p). The Huffman cedewords are given by

1110000, 01110, 10110111, LO11081, {110C1, 00101, 01111, 000, 011010, 00111,
1001, 1100, 11101110,011011, 111011118, 111011111, 1110001, 601000, 1011010,
01100, 10110110, 1011000, 101110, 111110, 111010, 1010, 1110110, 101111,
11110, 0100, 00110, 1101, 001001, 111111, 0101, and 1000 and the average code-
word length for the extended source is 4.7420. The entropy of the extended source
is found to be 4,7097. so the efficiency of this Huffman code is

which shows an improvement compared to the efficiency of the Huffman code de-
signed in part 2.

ILLUSTRATIVE PROBLEM

Mustrative Problem 4.3 [A Huffman code with maximum efficiency] Design a Huff-
man code for a source with probability vector

| T N A | 1 1
P L —

. SOLUTION 4

We use the huffman.m function to determine a Huffmnan code and the corresponding
average codeword length. The resulting codewords are 1, 01, 001, 0001, 00001, 000001,
0000001, 00000000, and 00000001, The average codeword length is 1.9922 binary symbols
per source output. If we find the entropy of the source using the entropy.m function, we see
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that the entropy of the source is also 1.9922 bits per source output; hence the efficiency of where fyix) denctes the probability density function of the source random variable, The

this code is 1.

Can you say under what conditions the efficiency of a Huffman cods is equal 10 17

4.3 Quantization

In the previous section we studied two methods for noiseless coding, i.e., compression of
the source output sequence such that fult recovery is possible from the compressed data.
In these methods the compressed data 1s a determunistic function of the source output, and
the source outpul is also a deterministic function of the compressed data. This one-to-
one correspondence between the compressed data and the source output means that their
entropies are equal and no information is lost in the encoding-decoding process.

In many appiications, such as digital processing of the analog signals, where the source
alphabet is not discrete, the number of bits required for representation of each source owtput
is not finite. 1n order to process the source output digitally. the source has tc be guantized to
a finite number of levels. This process reduces the number of bits 1o a finite number but at
the same time introduces some distortion. The information lost in the quantization process
can never be recovered.

In general, quantization schemes can be classified as scatar quantization and vector
quantization schemes. In scalar quantization each source output is quantized individually,
whereas in vector quantization blocks of source output are quant:zed.

Scalar quantizers can be further classified as uniform quantizers and nonuniform quan-
tizers. In uniform quantization, the quantization regions are chosen to have equal length: in
nonuniform quantization regions of various lengths are allowed. It is clear that, in general,
nonuniform quantizers outperform uniform quantizers.

4.3.1 Scalar Quantization

In scalar quantization the range of the random variable X is divided into ¥ nonoverlapping
regions R;, for 1 <1 < N, called quantization intervals, and within each region a single
point called a quantization level is chosen. Then all values of the random variabie that fall
within region (R; are quantized to the /th quantization level, which is denoted by x;. This
means that

X € R &= Qx) =i (4.3.1}
where
LEeR (4.3.2}

Obviousty, a quantization of this type introduces a mean-square error of (x — £;)2. The
mean-square guantization error is therefore given by

N
D=3 fﬂ_(x — & Fx () dx (4.3.3

i=l

signal-te-quantization-noise ratie, (SQNR) is defined as

7]

N

SQNRy,, = 10logy,

Uniform Quantization

In uniform quantization ail quantizafion regions except the first and the last cne, i.e.. R
and Ry . are of equal length, which is denoted by A; therefore,

R = (~—2o¢,a)
Ra = (e, 4+ A
Ri={a+ A a+24A)

Ry =(a + (N ~2)A. o)

The optimal quantization level in each quantization interval can be shown to be the centrofd
of that interval, i.e..

4 =E[X|X € R,] (434
~ fm xfy(x)dx

Ta frode SPEN
Therefore, the design of the uniform quantizer is equivalent to determining @ and A. Having
determined a and A, the values of &; s and the resulting distortion can be determined easily
using Equations (4.3.3) and (4.3.4), In some cases it is convenient to choose the quantization
levels to be simply the midpoints of the quantization regions, i.e., at a distance A /2 from
the boundaries of the quantization regions.

Plots of the quantization function Q(x) fora symmetric probability density function of
X, and even and odd values of N are shown in Figures 4.3 and 4.4, respectively.

For the symmetric probability density functions, the problem becomes even simpler. In
such a case,

R (a.'-.|,a.-], ]S[SN-‘l ,
““laaawy, i=N 43.5)
where
ag = —c0
a={i—N/DA l<i<N-] @3.6)
dy = 00
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Figure 4.4: The quantization function for ¥ = 7. (Note that here x4 = 0.)
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We see that in this case we have only one parameter A, which we have to choose to
achieve minimum distortion. Three m-files, centroid.m, mse_dist.m, and ug.dist.m, find
the centroid of a region: the mean-square quantization error for a given distribution and
given quantization region boundaries; and, finally, the distortion when a uniform guantizer
is used 10 quantize a given source (it is assumed that the guantization levels are set to the
centroids of the quantization regions). In order to use each of these m-files, the distribution
of the source, which can depend on up to three parameters, has 1o be given in an m-file.
These m-files are given helow.

—

function y=centroid{funfcn,ab tol,pl,p2.p3)
e CENTROID  Finds the centroid of u function pver g region,

% ¥ = CENTROID{'F AB.TOLP!I.P2P3} finds the centraid of the
% function F defined in an m-file on the [A, B region. The

% furtcion con conluin up te theee parometers, P{ P2 P}

% red = the relutive errar

args=(1;

for n=1:nargin—4

args=fargs. *, p-.int2str(m):
end
args=[args," | " |
funfcnl={"x. ** funfcn];
yl=eval{[' quad {funfenl,a, b, tol, [ 17 .args)s
yl=evol{['quadifunicn,a,d.tel, | ] args]h
y=yl/y2:

. M-FILE

function [y.dist]=mse.dist(funfcn,a.tol,pl,p2,p3)

TMSE_DIST Rerurns the mean-squared quantizarion errar
% [Y.DIST] = MSE_DISTIFUNFCN.ATOLPIP2PI)
3 funfcn = ithe distribution function given

% in un m-file. It can depent sn up 1o three

% purameters, pl. p2. pi.

% a = the vector defining the bounduries of the
%

%

%

%

quantization régions, (note: [all). aflength(al}
is the support of funfcr).

pl.p2. p3 = parumeters of funfcn

ol = the relutive ermr

args={],

fer n=1:nargain—3
args=[args.” . p’ 4n2sir(n)y;

end

args=[args.” ) ' ]:

for i=1:lengtha)—1
y{i)=eval([*centroid{funfen,a(i},afi+1}, toi ' args))

end
dist=0;
for i=1:length{a)-1
oewfun=[" {x- (*.num2str(y(i)).” 1) .~ 2. > fanfcn];
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tist=dist+eval{[* quad (nawfun,a{it,ali+1},rol, i 1 args);
end

. V-FILE g

function [y,dist]:uq-dis[(funfcn,b.C.n,del[a.s.lol.plr,p2<p3) )
GUQ_DIST Returng the distarnon of ¢ uniform quaniizer
with quartization peints set to the certroids.
[Y.DISTI=UQ_DISTIFUNFCN.8, C.N‘DELTA,S.T‘OL.FI.PZ. F3)
funfen=source density function given in un m-file
with ut mosi three paremerers, pl,p2,p3.
[b.c]=The support of the source density functiom,
n=number of fevels.

deltu={level gsize.

s=the lefimost quantization region boundery.
pl.p2.pd=parumeters of the inpui function.
y=yguuntization fevels.

disr=distortion.

tol=the relative error

ARFRRIAFRLARESP

if (e—h<deltar{n—-23} )
grror{’ Too many levels for this range. ), retum
end
if (s<b) »
ermor( ' The leftmost boundary too small.’); retum
end
if (s+(n—2)=delta>c) .
error{ ' The leftmost boundary too large.'); reum
end
args=[ };
for j=1:pargin-7
args=[args,” . p*.int2str{j)],
end
args=[args," } ' 1;
a(1)=b;
for i=2:n
a(iy=s+{i—2)xdelta;
end
aln+1)=c; . )
ly.dist]=eval([ ‘mse_dist (funfen,a, tol " ags])

ILLUSTRATIVE PROBLEM

NMustrative Problem 4.4 [Determining the centroids] Detenﬂine. the centroids of the
quantization regions for a zero-mean, unit variance Gaussian distribution, where the bound-

aries of the quantization regions are given by (-5, —4, -2,0, 1.3, 5).

. SOLUTION

The Gaussian distribution is given in the m-file normal.m. This distribution is .afunct’ll‘{l)]n
of two parameters, the mean and the variance, denoted by m and..s (or o), rcspe.ct;\]rely.ﬂn;
support of the Gaussian distribution is (wo_o. oo}, but for employl_ng_the nFEen; ul-':;?,ﬁon
it is enough to use a range that is many times the standard deviation of the dis .

=]
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For example. (m — 105, m + 10./5}, can be used. The following m-file determines the
centroids (optimal quantization levals).

% MATLAB script fur Mlustrasive Problem 4. Chupter 4.

2=[-10.-5,-4,—-2.0.1,3,5,10};

for i=1:length(a)—1

ylid=centroid{ - normal * alitaii+1).0.001 0.1,
end

This results in the following quantization levels: (—5.1865, ~4.2168, —2.3706, 0.7228,
—0.4599, 1.5101, 3.2827, 5.1865).

ILLUSTRATIVE PROBLEM

Hlustrative Problem 4.5 In Illustrative problem 4.4 determine the mean-square error.

s SCLUTION

Lettinga = (18, -5, —4,
square error of .177.

ILEUSTRATIVE PROBLE

INustrative Problem 4.6 [Uniform quantizer distortion] Determine the mean-square er-
ror for a uniform quantizer with 12 quantization levels, each of length 1, designed for a
zero-mean Gaussian source with variance of 4. It is assumed that the quantization regions
are symmetric with respect to the mean of the distribution.

s, SCLUTION oo

By the symmetry assumption the boundaries of the quantization regions are 0, +1, +2,
+3, +4, &5, and the quantization regions are (—oo, —5], {=5, —4], (-4, -3), (-3, -2),
(=2, =1}, (=1,0], ¢0. 11, (1,2], {2.3]. (3, 4], (4,5). and (5, +00). This means that in
the ug.dist.m function we can substitute b = —20, ¢ = 20, A = LLn=12,s5s = -5,
tob = 0.001, p; = 0, and py = 2. Substituting these values into uq_dist.m we obtain a
squared error distortion of 0.0851 and quantization values of 40,4897, & 1.4691, £2.4487,
+3.4286, £4. 4089, and +5.6455,

The m-file ug-mdpnt.m determines the squared error distortion for a symunetric deasity
function when the quantization levels are chosen to be the midpaints of the quantization
intervals. [n this case the quantization levels corresponding to the first and the last quan-
tizalion regions are chosen to be at distance A /2 from the two outermost quantization
boundaries. This means that if the number of quantization levels is even, then the quantiza-
tion boundaries are 0, £A, +2A, ..., =(¥/2 — DA and the quantization levels are given
by £A/2, £3A/2, ..., {N — 1A /2. If the rumber of quantization levels is odd, then the
boundaries are given by £A /2, £3A/2, ..., £(N/2—1)A and the quantization levels are
givenby 0, £A, £2A, ..., (N —1)A /2. The m-file ug-mdpnt.m is given below,

—2,0.1,3,5, 10 and using mse__dist.m, we obtain a mean
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—

function dist:uq_mdpm(funfcn,b,n,dclm.lol.pl‘pZ,pJ)
BUQMDPNT  Returns the distorton of ¢ unfform quunnzer

G with quentization poils set o the midpoint.

G DIST=U/Q_MBPNTIFUNFCN BN.DELTA,TOLPLP2 P}
2 funfen=source density function given in un mfile

e with ar mose three parameters, plip2p3. The densuy
e fanciion s assumed (o be an even funcrion

T (-t B }=The support of the source density funetion.
% n=number of levefs.

e deltie=tlevel size.

% plp2.p3=parameiers of the inpur function.

b2 dist=distorion,

% tof=the relutive error

if (2xb<deltaxin—12

error(’ Too many levels for this range. ') retum
end
args=(}:

for j=1:nargin—5
args=(args,’ . p'.int2str(j)};
end
args=[args, )} ' T;
al1)=—h.
afn+1)=h;
a{@)=—(n/2—1}sdelta;
y(1)=a(2)~delta/2;
for i=3:n
a(iy=a{i—1)+delta;
yli—1)=ali)—delta/2;
end
y(n)=a(n)+deita:
dist=0.
for 1=1:n
newfun=[" (x-{*,num2str(y{i)),* 1) .7 2. = .funfenl;
dist=dist+eval{[’ quad {newfun,ali}.a{i+1},zol, [ 1" .ags]),
end

ILLUSTRATIVE PROBLEM

Diustrative Problem 4.7 [Uniform quantizer with levels set to the midpoints] Find the
distortions when a uniform quantizer is used to quantize a zero-mean, unit variance Gaus-
sian randem variable. The number of quantization levels is 11, and the length of each
quantization region is 1.

B SOLUTION

In ug-mdpnt.m we substitute ‘normal’? for the density function name, p; = ¢ and
p2 = | for the density function parameters, n = 11 for the number ofquanuz;?.tlon levels,
and A = 1 for the length of the quantization levels, For the parameter &, which chooses

2The name of the finction should be substituted with ‘normal’ including the single quoies.
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the support set of the density function, we use the vaiue » = {0p; = 10. and we choose
the tolerance o be 0.001. The resulting distorticn is 0.0833.

Nonuniform Quantization

In nonuniform quantization the requirement that the quantization regions, except the first
and the last, have equal lengths is relaxed. and each quantization region can have any length.
Since in this case optimization is done under more relaxed conditrons, the result is obvicusly

superior to that of uniform quantization. The optimality conditions for this case. known as
the Liovd-Max conditions. can be expressed as

F xfyix)dx

- R

SR Feods

it 4.37
(ia'- |+ 'EI )

a; = 5

From these equations we conclude that the optimal quantization levels are the centroids
of the quantization regions and the optimal boundaries between the quantization regions
are the midposnts between the quantization levels. In order 10 obtain the solution to the
Lloyd-Max equations, we start with a set of quantization levels &,. From this set we can
simply find the set of quantization region beundaries ,. From this set of 4;'s a new set
of quantization levels can be ohtained. This process is continued unti] the imprevement in
distortion from one iteration 1o another is nat noticeable, This algorithm is guaranteed to
converge to a local minimum, but in general there is no guarantee that the global minimum
can be achieved.

The procedure of designing an optimal quantizer is shown in the m-file iloydmax.m,
given below.

functien [a,y dist}=lloydmax{funfcr.b,r,tol,pl,p2,p3)
GlLOYDMAX Returns the the Lioyd-Mux guantizer and the meun-squared

% guantization errar for u symmeiric distribution.

o [A Y. DIST]=LLOYDMAX(FUNFCN.B.N.TOL.PLP2.P3)
o fanfcn=The density function given

T in un m-file. It can depent pn oup to three

% parameters, pi.p2.p3.

To u=The vector giving the bounduries of the

% quanuzaiion regions.

G I-B.b] approzunates suppart of the density funciton,
o n=The number of guuntization regions.

% v=The quurtization levels.

% pi.p2p3=Parameters of funfcn

o iol=the relative error

args={]:
for j=1:nargin—-4
args=[args, " . p ' .in2str(j)};
end
args=[args." | ' [;
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v=eval([' variance(funfcn. -b,b, ol " args));
a(1)==b,
d=2=b/n;
for i=2:n

ali)=afi—1}+d;
end
ain+1)=b;
disi=v;
{y.newdist}=eval{['mse_dist (funfcn.a, tol’ args)):
while(newdist«<0.99=xdisr},

for i=2:n

ai}=(y(i—1)+y(i))/2;

end

dist=newdist;

ly.newdist]=eval{[ mse_dist (funfen,a, tol  argsl)
end

ILLUSTRATIVE PROBLE

Ilustrative Prablem 4.8 [Lloyd-Max quantizer design] Design a 10-level Lloyd-Max
quantizer for a zero-mean, unit variance Gaussian scurce.

. SOLUTION

Using & == 10, n = 10, tol = 0.01, p; = 0, and pz = ! in lloydmax.m, we obtain the
quantization boundaries and quantization levels vectors & and y as

a==10, £2.16, £1.51, +:0.98, £0.48,0
y==%2.52 £01.78, £1.22, £0.72, +0.24

and the resuiting distortion is 0.02. These values are good approximations 1o the optimal
vaiues given in the table by Max {2].

4.3.2 Pulse-Code Modulation

In pulse-cede modulation an analog signal is first sampled at a rate higher than the Nyquist
rate, and then the samples are quantized. It is assumed that the analog signal is distributed
on an interval denoted by [—%max. max], and the number of guantization levels is large.
The quantization levels can be equal or unequal, In the first case we are dealing with a
uniform PCM and in the second case, with a nonuniform PCM,

Uniform PCM

In uniform PCM the interval [—Xmax, ¥max] of length 2xmey ts divided into & equal subinter-
vals, each of length A = 2amag/N. If N is large enough, the density function of the input
in each subinterval can be assumed to be uniform, resulting in a distortion of & = a1z,
If N is a power of 2, or N' = 2", then v bits are required for representation of each level.
This means that if the bandwidth of the analog signal is W and if sampling is done at the
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Nyquist rate, the required bandwidth for transmission of the FCM signal is at least v W (in
practice, | 5vW is closer to reality). The distortion is given by

Al

D= —
i2

(4.3.8)
2
X2
3N
2
'rmﬂ.‘

Ix4v

If the power of the analeg signal is denoted by X2, the signal-to-quantization-noise ratio
(SQNR) is given hy

SQNR = 3v° 5 (4.3.9)
L inax
7
=3 x4"
X[%l:lx
=3 x 4“1?2
where X denotes the normalized input defined by
2 X
=L
Xmax
The SQNR in decibels is given by
SQNRy, = 4.8 + 6v + X, (4.3.10)

After quantization, the quantized levels are encoded using v bits for each quantized
level. The encoding scheme that is usually employed is natural binary coding (NBC),
meaning that the lowest level is mapped into a sequence of all 0s and the highest level is
mapped into a sequence of all 1°s. Al the ather levels are mapped in increasing order of
the quantized value.

The m-file u_pcm.m given below takes as its iaput a sequence of sampled values and
the number of desired quantization levels and finds the quantized sequence, the encoded
sequence, and the resufting SQNR (in dcibels).

function [sqor,a.quan,code}=u_pcm(a,n)

R PCM Uniform PCM encoding of a sequence.

% [SQNRA QUAN.CODE] = [J_PCM{AN}
% a = inpul sequence

% n = rumber of quantization levels (even)
% sgar = output SONR (in 48)

% equan = guantized ouiput before encoding
% code = the encoded autput
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amax=max(abs{a});
a_quan=a/amax;
boquan=a_guan;
d=2/n;
gq=d #[¢in—1};
g=q—({n—1}/2)d;
for i=1in

a.guan(find{(gli)—d/2 <= a_quan) & (a_quan <= qii)+d/2)))=.

g1y +onest 1 dengthi And{iq(—d/2 <= aquan} & {a quan == g{ip+d/2)00

b_quan(findf a_quan==q(i) )=ti—1) rones{1.length(findi a.quan==qi) 1
end
a_quan=a_gquali*amax;
nu=ceil{log2{n)
code=zeros{length(al.nu);
for i=1:lengthin)

for j=ou—1:0

if ( fistb-quan(i);/ (27 == 1}
codeti{nu—))) = 1;
b_quani(i) = h_quan{i) — 2°);
end

end
end
sgnr=20=log 1 0(norm¢a)/nurmia—a_yuan)y;

ILLUSTRATIVE PROBLEM

Nlustrative Problem 4.9 [Uniform PCM] Generate a sinusoidal signa! with amplitude 1,
and @ = 1. Using a uniform PCM scheme, quantize it cnce 1o 8 levels and once to 16
levels, Plot the original signal and the quantized signals on the same axis. Compare the
resuiting SQNRs in the two cases.

. SCLUTION o

We arbitrarily choose the duration of the signal to be 10 5. Then using the u_pcm.m
m-file, we generate the quantized signats for the two cases of 8 and 16 quantization levels.
The resulting SQNRs are [8.90 dB for the 8-level PCM and 25.13 dB fer 16-level uniform
PCM. The plots are shown in Figure 4.5.

A MATLAB script for this problem is shown below

. M-FILE

% MATIAB script for Hiustrutive Protlem 9. Chapter 4

echo on

1=(0:0.01:10);

A=sinfL};

{sqor8,aquand,coded]=u_pcm{a.B);

[sqnr!i6.aquanlé.codel6]=u_pcmia,16);

pause % Press a key to vee the SONR for N = &

sqne§

pause % Press a key to see the SQNR for N = 1§

sqnrle

pause % Press u key o see the plot of the signal and its quantized versions
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Figure 4.5: Uniform PCM for a sinuscidal signal using 8 and 16 levels.
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plot(t.a,fl-fl.taquan8.fl- . {1t aquar16,£ - A.t,zeros(1 Jength(t)))

ILLUSTRATIVE PROBLE

TMustrative Problem 4.10 [Uniform PCM] Generate a sequence of length 500 of zero-
mean, unit variance Gaussian random variables. Using u_per.m, find the resulting SQNR
when the number of quantization levels is 64. Find the first five values of the sequence, the
corresponding quantized values, and the corresponding codewords.

. SOLUTION g

The following m-file gives the solution.

% MATLARB script for Hiustrative Problem 10. Chapter 4

echo on

a=randn(1,500Y,

n=64;

(sqnz.a_quan,code}=u_pemia 84},

pause % Press o key to ree the SONR.

sqnr

pawse % Press a key to see the first five inpur values.
a(1:5)

pause % Presk o key lo see the first five quantized values.
a_quan(1:5)

pause % Press a key io see the first five codewards.
code(1:5,)

In a typical running of this file, the following values were observed.

SONR =31.66 4B
Input = [0.1775, —0.4540, 1.0683, —2.2541, 0.5376]
Quantized values = [0.1569, —0.4708, 1.0985, —2.2494. 0.5754]

1 00 0 0 1
01 1011
Codewords = 101 010
0¢ 1010
190 01 01

Note that different runnings of the program result in different values for the input, the
quantized values, and the codewords. However the resulting SQNRs are very clase.

ILLUSTRATIVE PROBLEM

Mustrative Problem 4.11 In Hlustrative Problem 4.10, plot the quantization error, defined
as the difference between the input value and the quantized vatue. Also, plot the quantized
value as a function of the input value.

wnd
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Figure 4.6: Quantization error in uniform PCM for 64 quantization levels.
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. SCLUTION g

The two desired plots are shown in Figure 4.6,

ILLUSTRATIVE PROBLEM

Tlustrative Problem 4.12 Repeat Tlustrative Problem 4.11 with number of quantization
levels set once 10 16 and set once to 128, Compare the results.

B SCLUTION

The result for 16 quantization levels is shown in Figure 4.7. and the result for 128
quantization levels is shiown in Figure 4.8.

Comparing Figures 4.6, 4.7, and 4.8, it is obvious that the larger the number of quantiza-
tion levels, the smaller the quantization error, as expected. Alsc note that for a large number
aof quantization levels, the relation between the input and the quantized values tends 0 a
line with slope | passing through the origin; i.e., the input and the quantized values become
almost equal. For a small number of quantization levels {16 for instance), this relation is
far from equality, as shown in Figure 4.7.

Nonuniform PCM

[n nonuniform PCM the input signal is first passed through a nonlinear element to reduce its
dynamic range. and the output is applied to a uniform PCM sysiem, At the receiving end,
the output is passed through the inverse of the nonlinear element used in the transmitter.
The overall effect is equivalent to a PCM system with nonuniform spacing between levels.
In general, for transmission of speech signals, the nonlinearities that are employed are either
w-law or A-law nonlinearities.

A p-law nonlinearity is defined by the relation

log{l + wix|)

43.11
log(1 + 10} sgn(x) { }

y=glo=
where x is the normatized input (Jx| < 1) and g is a parameter that in standard p-law
nonlinearity is equal to 255. A plot of this nonlinearity for different values of 4 is shown
in Figure 4.9.
The inverse of w-law nonlinearity 1s given by

¥l _q
x = (l—-i_-—u)——sgn(y) (4.3.12)
u

The two m-fiies mulaw.m and invmulaw.m giver below implement u-law nenlinearity and
its inverse.

fanction [y,a]=mulaw{x,mu)

T ULAW mu-law nonlingarity for nonuniform PCM.
% Y = MULAWIX. ML)
% X = inpat vector
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Figure 4.8: Quantization error for 128 quantization levels.
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Figure 4.9: The u-law compander.

a=max{abs{x}}
y=(log(1+musabsix/a))./ log{ 1 +mu)) «signumixy;

— -

function x=invmulaw(y,mu)
FINYMULAW The inverse of mu-law nonlinearity
FoX=INVMULAW(Y.MU)} Y = Normalized outpus of the mu-luw nonlinearity

x=(({1+mu}.” (abs(y))—1)./mu).#signum(y};

The m-file mula_pcm.m is the equivalent of the mu-file u_pcm.m when using a j-law
PCM scheme. This file is given below.

function [sqnr,a.quan,codel=mula_pcm{a,n.mu)

BMULAPCM  mu-luw PCM encoding of a sequence.
[SONRA_QUAN.CODE} = MULA_PCM{A.N MU}
@ = inpul requence

n = number of quantization levels feven)

sgnr = output SQNR fin dB)

FRAR
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% a_guan = quantized cutput befure encoding
% code = the encoded oufput

[y, maximum]=mulaw(za,mu);
{sqor,y-g.code]=u_pcm(y.n)
a_quan=invimulaw(y_q.mu);
2-JUAN=TNAX ML M+ Guan;

sqnr=2C+log lO{norm{a}/norm{a—a_quan)}:

ILLUSTRATIVE PROBLEM

Nlustrative Problem 4.13 [Nonuniferm PCM] Generate a sequence of randem variables
of length 500 according to an & (0, 1) distribution. Using 16, 64, and 128 quantization
levels and a u-law nonfinearity with i = 255, plot the error and the input-output relation
for the quantizer in each case. Alse determine the SQNR in each case.

e SOLUTION

Let the vector a be the vector of length 500 generated according to & (0, 1}, ie., let

a == randn(500)
Then by using
[dist,a.quan,code] = mula_pem(a, 16, 235)

we can obtain the guantized sequence and the SQNR for a 16-level quantization. The SQNR
will be 13.76 dB. For the case of 64 levels we obtain SQNR = 25.89 dB, and for 128 levels
we have SQNR = 31.76 dB. Comparing these results with the uniform PCM, we observe
that in all cases the performance is inferior to the uniform PCM. Plots of the input-output
relation for the quantizer and the guantization error are given in Figures 4.10, 4.11, and
4.32.

Comparing the input-output relation for the uniform and the nonuniform PCM shown
in Figures 4.7 and 4.10 clearty shows why the former is called uniform PCM and the latter
is called nonuniform PCM.

From the above example we see that the performance of the nonuniferm PCM, in this
case, is not as good as uniform PCM. The reason is that in the above example the dynamic
range of the input signal is not very large. The next example examines the case where the
performance of the nonuniform PCM is superior to the performance of the uniform PCM.

ILLUSTRATIVE PROBLEM

Tllustrative Problem 4,14 The nonstationary sequence a of leagth 500 consists of two
parts. The first 20 samples are generated according 1o a Gaussian random variable with
mean 0 and variance 400 (¢ = 20), and the next 480 samples are drawn according 10 a
Gaussian random variable with mean 0 and variance |. This sequence is once quantized
using a uniform PCM scheme and once using a nonuniform PCM scheme. Compare the
resulting SQNR in the two cases.
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. SOLUTION 4

The sequence is generated by the MATLAB command

a = {20+ randn(1. 20)randn{1. 480)]

Now we can apply the u_pcm.m and the mula_pem.m files to determine the resulting SQNR.
The resulting SQNRs are 20.49 ¢B and 24.95 dB. respectively. In Lhis case the performance
of the nonuniform PCM is definitely superior to the performance of the uniform PCM.

4.3 Quanuzation 161

Problems

4.1 Design a Huffman code for an information source with probabilities
p=1{0.1,0.05021,007 0.02,0.2,0.2,0.15}

Determine the efficiency of the code by computing the average codeword length and the
entropy of the source.

4.2 A discrete-memoryless information source is described by the probability vector p =
(0.2,0.3,0.1, 0.4}

2. Write a MATLARB file 1o compute the probabilities of the K'th extension of this source
for a given K.

b. Design Huffman codes for this scurce and its Kth extensions for K = 1,2, 3,4, 5.
¢. Plot the average codeword length (per source output) as a function of K.

4.3 The probabilities of the letters of the alphabet occurring in printed English are given in
Table 4.1.

a. Determine the entropy of printed English.
b. Destgn a Huffman code for printed English.
c. Determine the average codeword length and the efficiency of the Huffman code.

4.4 Repeat Probiem 4.2 for a discrete-memoryless source with a probability vector p =
{0.5.0.25.0.125, 0.125} . Explain why the result in this case is different from the result
obtained in Problem 4.2.

4.5 A conunuous information source has a zero-mean, unit variance Gaussian distribution,
This source is quantized using a uniform symmetric quantizer, where the length of the quan-
tization regions is umty. The number of quantization levelsis N. For ¥ = 2,3, 4,5, 6,7, 8,
determine the entropy of the quantized source output and pict it as a function of N. On the
same graph plot log; N versus & and explain why the two curves differ.

4.6 A zero-mean, unit vanance Gaussian source is quantized using a uniform quantizer.
The quantizer uniformiy quantizes the interval [— i0. 10]. Assuming the quantization levels
are located at midpoints of the quantization regions, determine and plot the mean square
distortion for N = 3,4,5,6.7,8,9, 10 as a function of N, the number of quantization
levels.

4.7 On the same figure that you plotted in Problem 4.6, plot the mean square distortion
when the quantization levels are taken to be the centroids of the quantization regions. For
what values of N are the two plots closer and why?
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Letter

Prabability

0.0642

0.0127

0.0218

0.0317

3.1031

0.0208

0.0152

0.0467

0.0575

0.0008

0.0049

0.0321

0.0198

0.0574

0.0632

0.0152

0.0008

0.0484

0.0514

0.0796

0.0228

0.0083

0.0175

0.0013

0.0164

| = | <t cf Hf | | ol O Z| 2| sl =~ o ol m| o

0.0005

Word space

0.1859

Table 4.1: Probabilities of letters in printed English.
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4.8 For a zero-mean, unit variance Gaussian source, design optimal acnuniform quantizers
with a number of levels N = 2, 3.4,5,6,7, 8. For each case determine H(}z'), the entropy
of the quantized source, and R, the average codeword length of a Huffman code designed
for that source. Plot H(f(), R, and log, ¥ as a function of N on the same figure.

4.9 A Laplacian random variable is defined by the probability density function
iAo
flay = Se7H
where A > 0 is a given constant.

a. Verify that the variance of a Laplacian random variable is equal 10 2/4%,

b. Assuming i = 1, design uniform quantizers with N = 2,3, 4,5 6,7, § levels for
this source. As usual, take the interval of interest to he [—100, 100 ] where o is the
standard deviation of the source.

c. Plot the entropy of the quantized source and loga N as functions of N on the same
figure.

4.10 Repeat Problem 4.9, substituting the uniform quantizer with the optimal nonuniform
quaatizer.

4.11 Design an optimal 8-leve! quantizer for a Laplacian source and piot the resulting
mean-square distortion as a function of » as A changes in the interval [0.1, 5].

4.12 Design optimal nonuniform quantizers with ¥ = 2,3,4,5,6,7, 8 for the Laplacian
source given in Problem 4.9 with a A = /2 (note that this choice of A results in a zero-
mean, unit variance Laplacian source). Plot the mean-square error as a function of N for

this source. Compare these results with those obtained from quantizing a zero-mean, unit
variance Gaussian source.

4.13 The periodic signal x(r) has a period of 2 and in the interval [0, 2] is defined as

I, <t <]
x(t) =
—t+2, 1=<r<?

a. Design an 8-level uniform PCM quantizer for this signal and plot the quantized output
of this system.

b. Plot the quantization error for this system.

¢. By calculating the power in the error signal, determine the SQNR for this system in
decibels.

d. Repeat parts a, b, and ¢ using a 16-level uniform PCM system.
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4.14 Generate a Gaussian sequence with mean equai to 0 and variance equai to 1 with 1000
elements. Design d-level, 8-level, [6-level, 32-level, and 64-level uniform PCM schemes
for this sequence and plot the resulting SQNR {in decibels) as a function of the number of
bits allocated to each source output.

4.15 Generate & zero-mean, unit variance Gaussian sequence with a length of 1000 and
quantize it using a 6-bit-per-symbol unitorm PCM scheme. The resulting 6000 bits are
rransmitted to the receiver via a noisy channel. The error probahility of the channel is
dennted by p. Plot the overall SQNR in decibels as a function of p for values of p =
1073,5 x 1071, 1072,5 x 1072,0.1, 0.2. For simulation of the effect of noise, you can
generate binary random sequences with these probabilities and add them (modulo 2) to the
encoded sequence.

4.16 Repeat Problem 4.13 using a nonuniform g-law PCM with g = 235,
4.17 Repeat Problem 4.14 using a nonuniform g-law PCM with 4 = 255,

4.18 Repeat Problem 4.15 using a nonuniform p-law PCM with o = 255,

Chapter 5

Baseband Digital Transmission

5.1 Preview

In this chapter we consider several baseband digital modulation and demodulation tech-
nigues for transmitting digital information through an additive white Gaussian notse chan-
nel. We begin with binary pulse modulation and then we introduce several nonbinary
modulation methods. We describe the optimum receivers for these different signals and
consider the evaluation of their performance in terms of the average probability of error.

5.2 Binary Signal Transmission

In a binary communication system, binary data consisting of a sequence of 0’s and 1’5 are
transmitted by means of two signal waveforms, say. so{t) and 5, (r}. Suppose that the data
rate is specified as R bits per second. Then, each bit is mapped into a corresponding signal
waveform according to the rule

0 — so(1), 0=<t<Tp
1 — s5:(0), 0=t=Tp

where T, = 1/R is defined as the bit time interval. We assume that the data bits 0 and
1 are equally probable. i.e., each occurs with probabiiity % and are mufually statistically
independent.

The channel threugh which the signal is transmitted is assumed to corrupt the signal
by the addition of noise, denoted as n(t), which is a sample function of a white Gaussian
process with power spectrum No/2 watts/hertz. Such a channel is called an additive white
Gaussian noise (AWGN) channet. Consequently, the received signal waveform is expressed
as

r(t) = 5; (1) -+ nlt), =01, 0<r=T, (5.2.1)

165
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The task of the receiver is to determine whether a O ora | was transmitted after observing
the received signal r{r) in the interval 8 < r < T}, The receiver is designed to minimize
the probability of error. Such a receiver is called the eprimum receiver

5.2.1 Optimuom Receiver for the AWGN Channel

In nearly ali basic digital communication texts, it is shown that the optimum receiver for
the AWGN channel consjsts of two building blocks. One is ¢ither a signal correlator or a
matched filter. The other is a detecror

5.2.2 Signal Correlator

The signal correlator cross-correlates the received signal r(r) with the two possible trans-
mitted signals sp(r) and 51(s), as illustrated in Figure 5.1, That is, the signal correlator
computes the two outputs

!
m({)z[ ritsp(rydr
0
13
ri(s) =f rit)s(r)dr (5.2.2)
V]

in the interval 0 < ¢ < T, samples the two outputs att = T and feeds the sampled outputs
1o the detector.

! T,
P o A
i
30 :‘
r{r) ' Detector — Output data
5,0 |
L,
() Jodr ——
Sample

atr =T,

Figure 5.1: Cross correlation of the received signal r(t) with the two transmitted signals,

ILLUSTRATIVE PROBLE

Dlustrative Problem 5.1 Suppose the signal waveforms so(£) and 5 (1) are the ones shown
in Figure 5.2, and let s3{¢)} be the transmitted sigral. Then, the received signal is
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Sl 5(1)

Figure 5.2: Signal waveforms so(1) and 1(t} for a binzary communication system.

rt) = so(0) +niry, 0<i1<T (5.2.3)

Determine the correlator outputs at the sampling instants.

R SOLUTION

When the signal 7 (1) is processed by the two signal correlators shown in Figure 5.1, the
outputs rg and r at the sampling instant 1 = 7}, are

Ts
ro=[ rr)soleyde
0

Ty T
=f s§(r)d:+f n{t)solt) dt
0 0
=& +ny (5.2.4)

and

Ty
r =f r{8)s,(n) dr
i}

T, Th
f sp(t)sy(2) dt +] n(t)s|(rhdt
0 0
=n {5.2.5)

where ng and | are the noise components at the output of the signal correlators, i.e.,
T
ng = f n{t)salt) dt
0

T
ny = [B n(t)si(r) dt (5.2.6)
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and £ = 42T}, is the energy of the signals so(r) and 51{r). We also note that the two signal
waveforms are orthegonal, i.e.,

T
f , sg(t)s (ydr =90 (5.2.7)
0

On the other hand, when s, {r) is the ransmitted signal, the received signal is
rir) = s106) + nit), 0<t<T,
It is easy to show that, in this case, the signal corretator outputs are

o = Ro
rn =& +nr (3.2.8)

Figure 5.3 illustrates the iwo noise-free correlator cutputs in the interval 0 < 1 < Tp for
each of the two cases—i.e., when sp(¢) is transmitted and when s)(¢) is transmitted.

Output of Qurput of Qutput of OQurpu: of
Carrelator Correlator | Correlator 0 Correlator |
b3
I
‘. £ £
\ 7 7
1
—i - r ; r '
0 T, a T, 0 hooT,
1 2
(a) (b

Figure 5.3: Noise-free correlator outputs. (a) so(f) was transmitted. (b) 5 (f) was transmit-
ted.

Since n{t) is a sample function of a white Gaussian process with power spectrum No/2.
the noise components np and a1 are Gaussian with zero means, i.e.,

Ty
Elno) = [ " S0 E [n(0)] dt = 0
(4]

T
B = [ OB O] de =0 (5.29)
0

and variances aiz, fori =1, 2, where
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o:-: = E(n?)
T ¢Th
=f [ siins{nYEn{NHn(t)]drdr
0 0

Ny T
= 7[ 505 ()8t —T)drdr
0

NO 7 By

= ——f siindr (5.2.10)
2 Jo
E Ng .

=— i =01 {5.2.11)

Therefore, when s3{r) is transmitted, the probability density functions of rq and r) are

| 2
plrg | spit) was transmitted) = eml=E) 20
2o
1
piry | so{t) was transmitled) = wi—e"tz’fz”z (5.2.12)
Ta

These two probability density functions, denoted as p(rg | 0) and p(r| | 0, are illustrated
in Figure 5.4. Similarly, when s|(r) is transmitted, rg is zero-mean Gaussian with variance
o? and r| is Gaussian with mean value & and variance o >.

Figure 5.4: Probability density function p(rg | 0) and p(r; | 0) when s9(¢) is transmitted.

5.2.3 Matched Filter

The matched filter provides an alternative to the signal correlator for demodulating the
received signal r(r). A filter that is matched 1o the signal waveform s(t), 0 =<¢ < T},
has an impulse response

h() = s(Ty — 1), 0=<:1=2T, {5.2.13)
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Consequently, the signat waveform—say, y(f)—at the output of the matched filter when
the mput waveform is ss) is given by the convolution integrat
13
¥y = [ s(TYR(t — T)dt (5.2.14)
0

If we substitute in (5.2.14} for A{r — 7) from (5.2.13), we obtain

I3
;-(r):f S(Os(Ty —t+ 1) de (5.2.15)
1]

and if we sample v() atr = T},, we cbtatn

T
¥(Ty) =f sindt =% (5.2.16)
1)

where I is the energy of the signal 5(r). Therefore, the matched filter output at the sampling
instant + = T} is identical to the output of the signal correlator.

ILLUSTRATIVE PROBLEM

Nlustrative Problem 5.2 Consider the use of matched filters for the demoduiation of the
two signal waveforms shown in Figure 5.2 and determine the outputs.

g SOLUTION

The impulse responses of the iwo matched filters are

ho(r) = 5p(Th — 1)
hl(I)=.§‘i(Tb-'-f) (5217)

as illustrated in Figure 5.5. Nate that each impulse response is obtained by folding the signal
$(#) 10 obtain 5(—r) and then delaying the folded signal 5(~) by T, to obtain 5(T} — ).

Now suppose the signal waveforms sg(f) is transmitted. Then. the received signal
rt) = so{r) + n{r) is passed through the two matched filters. The response of the filter
with impuise response Ag(¢) to the signal component s9(¢) is illustrated in Figure 5.6(a).
Also, the respense of the filter with impulse response k() to the signal component sg(r)
18 illustrated in Figure 5.6(b). Hence, at the sampling instant r = T}, the outputs of the two
matched filters with impulse responses 2o(t) and k(1) are

ro =& +ng
rL=ng (5.2.18)

respectively. Note that these outputs are identical to the outputs obtained from sampling
the signal correlator outputs at £ = 7;,.
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hole) = sy (T, — 0y i) =s5(T, —n
A a4l —I
t t
[} T 0 T
—-A

Figure 5.5; Impulse responses of matched filters for signals spft) and 5, (1),

¥t ¥,(7)
AT,

I
0 T, 1, oWn 2T,

(a) (b}

Figure 5.6: Signal outputs of matched filters when so(t) is transmitted.
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5.2.4 The Detector

The detector chserves the correlator or matched filter outputs ro and »| and decides on
whether the transmitted signal waveform is either sp(f) or 5, (1), which correspond to the
transmission of either aD or a 1, respectively, The aprimum derecior is defined as the detector
that minimizes the probability of error.

ILLUSTRATIVE PROBLE

Mlustrative Problem 5.3 Let us consider the detector for the signals shown in Figure 5.2,
which are equally probable and have equal energies. The optimum detector for these signals
compares rg and r; and decides that a 0 was transmitied when ry > r and that a | was
transmitted when ry > rg. Determine the probability of error.

mam SOLUTION

When sp(r) is the transmitted signal waveform, the probability of error is

Po=P(r) >rp) = Plny > E +ngy = P{ry —ng > E) (5.2.19)
Since n| and np are zero-mean Gaussian random variables, their difference x = n; —ng is

also zero-mean Gaussian. The variance of the random variable x is

E(x?) = El(n, — ng)*] = E(n}) + E(nd) — 2E(r) ng) {5.2.20)

But £(nngy) = 0, because the signal waveforms are orthogonal. That 1s,

T rTh
E(n npy = E[ j soltys(o)n(n(z)drdr
a Jo

T oTh
= @f [ so(Ds1 ()8 — t)drdr
2 Jo Jo

N, Tn
—Oj softys  (rydt
2 Jo

=0 (5.2.21)

Therefere,
N 9
E(x?) =2(%) =EN; =0 (5.2.22)
Hence, the probability of error is
i > gl
P = f e ¥ gy
T VI o JE

\/’E) (5.2.2%)
Np
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The ratio E /Ny 1s calied the signal-to-noise ratio (SNR}.

10logg E /Ny

Figure 5.7: Probability of error for orthogonal signals.

The derivation of the detector performance given above was based on the transmission
of the signal waveform s9(r). The reader may verify that the probability of error that is
obtained when 51(r) is transmitted is identical to that obtained when sq(1) is transmitted.
Because the 0's and 1's in the data sequence are equally probable, the average probability
of error is that given by (5.2.23). This expression for the probability of error is evaluated
by using the MATLAB script given below and is plotted in Figure 5.7 as a function of the
SNR, where the SNR is displayed on a logarithmic scale (10log o £/No}. As expected,
the probability of error decreases exponentially as the SNR increases.

- V-FILE

Yo MATLAB script that generutes the probability of error versus the sigral-ta-noise ratic
initial _snr=0;

final _sur=15,

snr_step=0.25;

snr_in_dB=initial_snr:snr_step final_snr;

for i=1:length(snr_in_dB).
sar=10"(sar_in_dB{i)/10);
Pe(i)=Qfunct{sqri(snr}};

end;

semilogy{snr_.in_¢B Pe),
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5.2.5 Monte Carlo Simulation of a Binary Communication System

Mante Carlo computer simulations are usually performed in practice to estimate the proba-
bility of error of a digital communication system, especially in cases where the analysis of
the detector performance is difficult to perform. We demonstrate the method for estimating
the probability of error for the binary communication system described above.

IILUSTRATIVE PROBLEM

Mustrative Problem 5.4 Use Monte Cario simulation to estimate and plot P, versus SNR
for a binary communication system that employs correlators or matched tilters. The model
of the system is illustrated in Figure 5.8.

Gaussian random
number generator

Uniform random
fumber generator

0/E Ty Output
i data
Binary Detector
daia source

Gaussian random
number generator

Compare

Error counter

Figure 5.8: Simulation model for [Nustrative Problem 5 4.

. SOLUTION oy

We simulate the generation of the random variables r and ri. which constitute the
input to the detector. We begin by generating a binary sequence of 0's and 1's that eccur
with equal probability and are mutually statistically independent. To accomplish this task,
we use a random number generator that generates a uniform random number with a range
(0, 1). If the number generated is in the range (0, 0.5), the binary source output is a 0.
Otherwise, itis a 1. If a 0 is generated, then rg = & + ng and r1=ny. Ifalis generated,
thenrg =ngand ry = & +n,.

The additive noise components np and n are generated by means of two Gaussian noise
generators. Their means are zero and their variances are g2 = & Np/2. For convenience,
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we may normalize the signal energy I to unity (£ = 1) and vary o>. Note that the SNR,
which is defined as £ /Ny, is then equal 10 1/20>. The detector output is compared with
the binary ransmitted sequence, and an error counter is used to count the number of bit
Errors.

Figure 5.9 illustrates the results of this simulation for the transmissicn of ¥=10,000
bits at several different values of SNR. Note the agreement between the simulation results
and the theoretical value of P, given by (5.2.23). We should also note that a simulation
of ¥=10,000 data bits allows us to estimate the error probability reliably dewn to about
P, = 107} In ather words, with N=10,000 data bits, we should have at least 10 errors for
a reliable estimate of P,. MATLAB scripts for this problem are given below.

% MATLAB script for Hiusirative Problem o, Chaprer 5.
echo on
SNRindB1=0:1:12;
SNRindB2=0:0.1.12;
for i=1:length(SNRindB 1),
o simuluted errov rate
smid_err_prb(i)=smidPeS 4 SNRindB 1(1));
end;
for i=1:length(SNRindB2),
SNR:exp(SNRmdB'.’(:)ticg(10)/10).
P theareticul ermy rute
theo_err_prb(iy=Qfunct{sqri{ SNR )}
end;
% ploting commuands follow
semilogy(SNRindB I smld_emr_prb,* = * );
hold
semilogy(SNRindB2 theo_err_prb);

— I —

function [pl=smidPe5a{snr_in_dB}
%o [p] = smidPeSdienr_in_iB)
% SMIDPESY  finds the probability of error fur the given

% snrindB. signai-to-noise ratia in d8.
E=1:
SNR=exptsnr.in_dBalog(10);10), e signal-t-noize ratio
sgma=E/sqrt{2+SNR); % sigma. standard deviation of noise
N=10000;
% generation of the binurv data source
for i=1T:N.
temp=rand, % u uniform random variable over {0.1)
if (temp<0.5),
dsource{i}=0; %o with probability 12, source output is @
else
dsource(i)=1; o with probubility 1/2, source output is |
end
end;

% detection. and probability of error calculation
numoferr=0;
for i=1.N,
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Fe marched filter outpurs
if tdsource(iy==0).
ri=E+gngauss(sgma);
ri=gngauss(sgma). % if the source outpur is Q"
else
r=gngauss(sgma);
rl1=E+gngauss(sgma}; % if the source output is "
end;
%o detector follows
if (r0>ri),
decis=0; %
else
decis=1,; %
end;
if (decis"=dsource(:)). T
numoferr=numoferr+1;
end:;
end:
p=numcferr/N; %

decision is "Q”

&

decision is “1"

&

if it is an erron increase the error counter

B

S

probability of error estimate

4 1 12

s
10log g E /Ny

Figure 5.9: Error probability from Monte Carlo simulation compared with theoretical error
prebability for orthogonal signaling.

g CUESTION

In Figure 5.9, simulation and theoretical results completely agree at low signal-to-noise
ratios, whereas at higher SNRs they agree less. Can you explain why? How should we
change the simulation process to result in better agreement at higher signal-to-noise ratios?
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5.2.6 Other Binary Signal Transmission Methods

The binary signal transmission method described above was based on the use of orthogonal
signais. Below, we describe two other methods for ransmitting binary information through
a communication channel. One method employs antipodal signais. The other method
employs an on-off-type signal.

5.2.7 Antipodal Signals for Binary Signal Transmission

Two signal waveforms are said to be anripodal if one signal waveform is the negative of the
other. For example, one pair of antipodal signals is illustrated in Figure 5.10(a). A second
pair is illustrated in Figure 5.10(b).

ol 5,01) skt NG

A —‘ A A
7
t L4 r T:b r t
0 7, 0 0 L 0 T,
—A —A -A

(a) A pair of antipodal signals

() Another pair of antipodal signals

Figure 5.10: Examples of antipedal signals. (a) A pair of antipodal signals. (b) Another
pair of antipodal signals.

Suppase we use antipodal signal waveforms s9(¢t) = s(r) and 5, (r) = —s{f) 10 ransmit
binary information, where 5(r) is some arbitrary waveform having energy Z. The received
signal waveform from an AWGN channel may be expressed as

rity=s(t) +nlr), C<1<T, (3.224)

The optimum receiver for recovering the binary information employs a single comelator or

a single matched filter matched to 5(1), followed by a detector, as illustrated in Figure 5.11.
Let us suppose that 5(¢) was transmitted, so that the received signal is

r{t) =s(t) + nlr) (5.2.25)

The output of the correlator or matched filter at the sampling instant ¢ = T} is

r=F%+n (5.2.26)
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where E s the signal energy and n is the additive noise component, which is expressed as

Th
n= f n(1)s{t) di (5227
0
Received Matched filter Cuiput
signal #{r) L, -0 Detector decision
Sample
atr =T,

&

(a) Matched filier demodulator

-
|
Received | . - Output
e d 1Dctcctor :
signal H{n) IU() T | T decision
|
|  Sample

Correlator | atr=T7

)]

Figure 5.11: Optimum receiver for antipedal signals. (a) Matched filter demodulator. (b)
Corelator demodulator.

Since the additive noise process r(t} is zero mean, it follows that £(n) = 0. The
variance of the noise component n is

ol = E(nz)

Toplh
f f En(tin(t)]s(t)s{z)dt dr
1] 0

T rTh
5‘1[ : jra(f—r)s(r)s(r)drdr
20 Jo

I NoZ
- ﬂ[ s = o (5.2.28)

It

Consequently, the probability density function of r when s(1) is transmitted is

H 2
p(r | s(t) was transmitted) = p(r | 0) = g r—E1e (5.2.29

Vine
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Similarly, when the signal waveform —s(t} is transmitted, the input 1o the detector is
r=-%+n (5.2.30)
and the probability density function of r is
pir | —s(r) was transmitted) = p(r | 1) = e~ ir+EN 20 (5.2.31)

nc

These two probability density functions are illustrated in Figure 5.12.

pr| 1)

Figure 5.12: Probability density function for the input to the detector.

For equally probable signal waveforms, the optimum detector compares » with the
threshold zero. If r > 0, the deciston is made that s{1) was transmitted, If r < 0, the
decision is made that —s(¢} was transmitted.

‘The noise that corrupts the signal causes errors at the detector. The probability of a

detector ermor is easily computed. Suppose that s(1) was transmitted. Then the probability
of error is equal to the probability that r < 0; ie.,

Po=Pr <0

0 2
_ 1 [ emtr—ERat 4

T J-o0

N

=l
e

[+4

2 5.2.32
o (5.2.32)

z
e~ 2 gy

S

[}
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A similar result is obtained when —s(r) is raasmitted. Consequently, when the two
signal waveforms are equally probable, the average probability of error is given by (5.2.32).

When we compare the probability of error for antipodal signals with that for erthogonal
signals given by (5.2.23), we observe that, for the same transmiited signal energy I,
antipodal signals result in better performance. Alternatively, we may say that antipodal
signals yield the same performance {same error probabilily) as orthogonal signals by using
gne-half of the transmitted energy of orthogonal signals. Hence, antipoda signals are 3 dB
more efficient than orthogonal signals.

ILLUSTRATIVE PROBLEM

Tlustrative Problem 5.5 Use Monte Carlo simulation to estimate and plot the error prob-
ability performance of a binary antipodal communication system. The model of the system
is illustrated 1n Figure 5.13.

Uniform random Gaussian random
number generator number generalor
l "
Binary =T r Qutput
+ Detector
data source g data

Error counter

Figure 5.13: Model of the binary communication system employing antipodal signals.

m SOLUTION

As shown, we simulate the generation of the random variable r, which is the input to the
detector. A uniform random number generator is used to generate the binary information
sequence from the binary data source. The sequence of 0's and 1's is mapped into a sequence
of &, where  represents the signal energy. £ may be normalized to unity. A Gaussian
noise generaior is used to generate the sequence of zero-mean Gaussian random numbers
with variance o 2. The detector compares the random variable r with the threshold of 0. If
r > 0, the decision is made that the transmitted bitis a 0. If r < 0, the decisicn is made
that the transmitted bit is a 1. The output of the detecter is compared with the transmitted
sequence of information bits, and the bit errors are counted. Figure 5.14 illustrates the
results of this simulation for the transmission of 10,000 bits at several different values
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of SNR. The theoretical value for P, given by {5.2.32) is also plotted in Figure 5.14 for
comparison. The MATLAB scripts for this problem are given below.

% MATLAR script jor Hiustruted Problem 3, Chuprer 3.

echo on
SNRindB1=0:1:10;
SNRindB82=0:0.1:10:

for i=tlength{SNRindB |3,
% stmuluted errr rute
smld_err_prb{ij=smidPe33/SNRindB I{i)}:
end;
for 1=%:length{SNRindR2),
SNR=exp(SNRindB2tijxlogi 10)/10%
% theoreticul error rute
thea_err_prbdij=Qfunctisqru 2« SNR ).
end,
%o ploting commands follow
semilogy(SNRindB! smld_err_prb." * J;
hald
semilogy{ SNRindB2.theo_err_prb);

— D

function {p)=smidPe35{snroin_dB)
Jo {p] = cmidPe3Sisnr.in_dB}
% SMLDPESS simulatex the probability of error for the particuler

P value of saron_dB, sigrial-ro-noise rario in dB.
E=1;
SNR=exp(sar_in.dB+log( 103710} % signal-to-noise raimy
sgma=E/squ{2=5NR)x % sigma, standard deviation of noise
N=10000;
o generation of the binary dat source folliws
for i=1:N,
emp=rand; % u uniform rundom variable over (0.1)
if (temp<0.5),
dsource(i}=0; F wirth probabiliry 1/2, source output is O
else
dsource(iy=1; % with probability 1/2. source ouiput is !
end
end;
% the detection. and probability of error calcilaton follows
numeferr=0;
for 1=1:N,

% The musched filter nutputs
if {dseurce{i)==0),

r=—E+gngauss(sgmak % if the source output is "0"
else

r=E+gngauss{sgma}; %o if the source vutput g “J"
end;
% detector follows
if {r<0),

decis=0; % decision is 0"
else
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decis=1; % decision s "I
end;
if (decis"=dsource(i}}, % if it ix an error increase the ermor counter
numoferr=numoferr+1;
end;
end;
p=numoferr/N; % probability of errar estimure

19 . | : L L i

4 H L}
101ogyy £ /Ng

7 a ® 10

Figure 5.14: Error probability from Monte Carlo simulation compared with theoretical
error probability for antipodal signals.

5.2.8 On-Off Signals for Binary Signal Transmission

A binary information sequence may also be transmitted by use of on-off signals. To trans-
mit a 0, no signal is transmitted in the time interval of duration Tp. Totransmita 1, a

signal waveform s{r) is transmitted, Consequently, the received signal waveform may be
represented as

() = alt), }fa 0 .lS transmfned (5.2.33)
s(t) +n(z), ifalistransmitted
witere n(t) represents the additive white Gaussian noise.
As in the case of antipodal signals, the optimum receiver consists of a correlator or
a matched filter matched to s(t}, whose output is sampled at ¢ = T, and followed by a
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detector that compares the sampled output o the threshoid, denoted as &. If r > @, a | is
declared 1o have been transmiited: otherwise, 2 0 is declared 1o have been transmitted,
The input to the detector may be expressed as

n, if 0 is ransmitted

r= pEs ) (5.2.34)
& +n, ifalis transmitted

where 7 is a zero-mean, Gaussian random varizble with variance o2 = & No/2. Therefore,
the conditional probability density functions of the randem variable r are

1

e—rE/'Zn: ,
Itg

plri0y =

if a 0 1s transmitted

pir |1y = gl BV

if a I is transmitted
Ta

These probability density functions are iftustrated in Figure 5.15.

Figure 5.15: The probability density function for the received signal at the output of the
carrelator for on-off signals.

When a 0 is transmitted, the probability of error is

1 oo 2
Pepla) = P(r > o) = \/2_7; [ e—’2f2" dr (5.2.35)
G Ja

where a is the threshold. On the other hand, when a 1 is transmitted, the probability of
ETTOr is

1 ® 121252
= f e = EX20% 4y (5.2.36)
VLT 0 J-o0

Assuming that the binary information bits are equally probable, the average probability of
EITOr is

Pola)=Plr <o) =
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1
P.lo) = %Peo(a) + iPu(a) (5.2.37)

The value of the threshold & that minimizes the average probabitity of error is found by
differentiating P,() and solving for the optimum threshold. It is easily shown that the
optimum threshold is

{5.2.38)

Uopt =

| g

Substitution of this optimurn value into (5.2.35), (5.2.36), and (5.2.37) yields the probability

of error
3
Po(oop) = Q ( m) (5.2.39)

We observe that error-rate performance with on-off signals is not as good as antipodal
signals It appears to be 6 dB worse than antipodal signals and 3 dB worse than orthogenal
signals. However, the average transmitted energy for the on-off signals is 3 dB less than
that for antipodal and orthogonal signals, Consequently, this difference should be factored
in when making comparisons of the performance with other signal types.

ILLUSTRATIVE PROBLE

Tllustrative Problem 5.6 Use Monte Carlo simulation 10 estimate and plot the performance
of a binary communication system employing on-off signaling.

—EEID-

The model for the system to be simulated is similar to that shown in Figure 5.13, except
that one of the signals is 0. Thus, we generate a sequence of random variables {r;} as given
by (5.2.34). The detector compares the random variables {r; } to the optimum threshold £ /2
and makes the appropriate decisions. Figure 5.16 illustrates the estimated error probability
based on 10,000 binary digits, The theoretical error rate given by (5.2.39) is also illustrated
in this figure. The MATLAB scripts for this problem are given below.

—

% MATLAB jseript for (Hustrative Problem 6. Chaprer 5.
echo on
SMNRindB1=0:1:13;
SNRindB2=0:0.1:15;
for i=1:length(SNRindB1).
smild_err_prb(i)=smldPe36(SNRindB i)y, % simulated error rate

end;

for i=1:length(SNRindB2),
SNR=exp(SNRindB2{i)xlog(10)/10), %o signal-to-neise ratio
theo_err_prb(i)=Qfunci(sgr(SNR/2)); % theoretical error rate
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end;

Fe plotiing commands folinw
semilogy(SNRindB 1 smld_arr_peb,* * "),
hold

semilegy(SNRindB2 theo_err_prb);

—

function {pl=smldPe36{snr_in_dB}
% {p} = smidPe56{snran_dB)
%o SMLDPLESS  simulutes the probabtlity of errer for a given

o sar_in_dB. signaf-to-acise ratin in dB.
E=1,
alpha_opt=1/2:
SNR=exp(snr_in_dBslog{ 10h/1C). % signal-to-notse -rafio
sgma=E/sqr{2«SNR % sigma, stundard deviatior of neise
N=10000;
% generation of the binary duatu source follows
for i=1:N,
temp=tand; % u uniform random variable over (0.1}
if (temp<0.5),
dsource{i}=0, Fe with probabificy 172, source output is 0
else
dsource{i)=1; %o witk probubility 172, source outpur is |
end
end:
% detection, und prebubilicy of error colculution
numoferr=0;
for i=1:N,

% The matched filter oulpuis
if (dsource(i)==0),

r=gngauss(sgma); Fo if the source ouipu! is 0"
else

r=E+gngauss(sgma); Fo if the source output is *1"
end,

% detector follows
if (r<alphz_opt),

decis=0; %o decision is "
else
decis=1: % decision i5 "1"
end.
if {decis =dsource{i)}, % if it is an erron increase the error counter
numoferr=numoferr+1;
end:
end:
p=numoferr/N; % probability of error estimare

5.2.9 Signal Constellation Diagrams for Binary Signals

The three types of binary signals, namely, antipodal, on-off, and orthogonal, may be char-
acterized geometrically as points in “signal space.” In the case of antipodal signals, where
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0log g E/Ng ° "

Figure 3.16: Error probability from Monte Carle simulation compared with theoretical
error probability for on-off signals.

the signals are 5(t) and —s(r), each having energy £, the two signal points fall on the real
line at £/Z, as shown in Figure 5.17(a). The one-dimensional geometric representation
of antipodal signals follows from the fact that only one signal waveform or basis function,
namely, 5(1), suffices 10 represent the antipodal signals in the signal space.

On-off signals are also one-dimensional. Hence, the two signal points also fall on the
real line at 0 and V', as shown in Figure 5.17(b).

On the other hand, binary orthogonal signals require a two-dimensional geometric rep-
resentation. since there are twa linearly independent functions sp(¢) and 51 (1) that constitute
the two signat waveforms. Consequently, the signal points corresponding to these points
are (VE, 0) and (0, v/ &), as shown in Figure 5.17(c).

The geometric representations of the binary signals shown in Figure 5.17 are called
signal constellations.

ILLUSTRATIVE PROBLEM

Itustrative Problem 5.7 The effect of noise on the performance of a binary communica-
tion sysiem can be observed from the received signal plus noise at the input 10 the detector.
For example, let us consider binary orthogonal signals, for which the input to the detector
consists of the pair of random variables (rg. ), where either

(ro, ri) = (VE + ng.n))

or

(ro. ) = (ng, VE +ny)

3.3 Multiamplitude Signal Transmission i87

The noise random variables ng and ny are zero-mean, independent Gaussian random vari-
ables with variance @2, As in Olustrative Problem 3.4, use Monte Carlo simulation to
generate 100 samples of (rg, ) for each value of ¢ = 0.l =03, and e = 0.5, and
plot these 100 samples for each o on different two-dimensional plots. The energy & of the
signal may be normalized to unity.

s SOLUTION 2

The results of the Monte Carlo simulation are shown in Figure 5.18. Note that at a
low noise power level (o smail) the effect of the noise on perfermance (error rate} of the
communication system is small. As the noise power fevel increases, the noise components
increase in size and cause more errors,

JE

_VE 0 JE 0 VE Lo JE
(a) {b) (c)

Figure 5.17: Signal point constellation for binary signals. (a) Antipodal signals. (b) On-off
signals. {¢) Orthogonal signals.

The MATLAB script for this problem for o = 0.5 is given below.

% MATLAB script fur [tlustrated Problem 7, Chapter §.
echo on

nO=randem( 'norm* 0.0.5.100,1);
nl=random( norm*.0.0.5.100,1);
n2=random(“norm’.0,0.5,100.1);
n3=random{‘ norm*,0,0.5.100.1};
x1=1.+n0,

yi=nl.

x2=nl:

y2=1.+n3;

plot(xLyl, o' x2.y2." **)

arisf * square’)

5.3 Multiamplitude Signal Transmission

In the preceding section, we treated the transmission of digital information by use of binary
signal waveforms. Thus, each signal waveform conveyed | bit of information, [n this
section, we use signal waveforms that take on multiple amplitude levels. Thus, we can
transmit multiple bits per signal waveform.
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Figure 5.18: Received signal points at input to the setector for urthogonal signals (Monte
Carlo simulation).
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5.3.1 Signal Waveforms with Four Amplitude Levels

Let us consider a set of signal waveforms of the form

sm{t) = Amgle), 0=<r=T (3.3.1)

where A, is the amplitude of the mth waveform and g(¢) is a rectangular pulse defined as

JI7T, 0=<:t=<T

)= 532
&) 0, otherwise ¢ )

where the energy in the pulse g(t) is normalized to unity. In particular, we consider the case
in which the signal amplitude takes on one of four possible equally spaced values—namely,
{Am} =1{—3d, —d, d. 3d} or, equivalently,

Am = (2m -- 3)d, m=101273 (5.3.3)

where 24 is the Euclidean distance between two adjacent amplitude levels. The four signal
waveforms are illustrated in Figure 5.19. We call this set of waveforms pulse amplitude
modulated (PAM) signals.

The four PAM signal waveferms shown in Figure 5.19 can be used to transmit 2 bits of
information per waveform. Thus, we assign the following pairs of information bits to the
four signal waveforms:

00 — so()
01 — s3(8)
11— s4(8)
10 — s4(r)

Each pair of information bits (00, 01, 10, 11} is called a symbol, and the time duration T
is called the symbol interval. Note that if the bit rate is R = 1/T}, the symbol interval is
T = 2T,. Since all the signal waveforms are scaled versions of the signal basis function
g(t), theses signal waveforms may be represented geometrically as points on the real line.
Therefore, the geometric representation of the four PAM signals is the signal constellation
diagram shown in Figure 5.20.

As in the case of binary signals, we assume that the PAM signai waveforms are trans-
mitted through an AWGN channel. Consequently, the received signal is represented as

r(t) = 5 (1) +n(t), i=0,1,23, 0<t=<T (5.3.4)

where n(t) is asample function of a white Gaussian noise process with power spectrum No /2
watts/hertz. The task of the receiver is to determine which of the four signal waveforms
was transmitted after observing the received signal r(f) in the interval 0 < ¢+ < T. The
optimum receiver is designed to minimize the probability of a symbol error.
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5.3.2  Optimum Receiver for the AWGN Channel

The receiver that minimizes the probability of eror is implemented by passing the signal
through a signal correlator ar matched filter followed by an amplitude detector. Since the
signal correlator and the matched filter yield the same output at the sampling instant, we
consider only the signal correlator in our treatment.

Sple) 5(¢) 54(1) 558}

> 5.3.3 Signal Correlator

The signal correlator cross-correlates the received signal r () with the signal pulse g(r) and
its output is sampled at r = T. Thus, the signal correlator output is

H
.
Sl

H r ]
0 0 | 0 T 0 T
—d
-4 T
VT r=[ r(ng(ydr
-_Jﬁg 0
vr

T T
=[ Aigitydi +] 2(On(r)yde
o 0

=A;+n (5.3.5)

Figure 5.19: Multiamplitude signal waveforms. where n represents the noise component, defined as

7
n =[ g(Nn(t) dt (5.3.6)
Q

We note that n is a Gaussian random variable with mean

T
E{n) = / g EMRO]dr =0 (5371
o

and vaniance

—3d 4 ) 4 d o? = E(nd)
T T
=f0 f gg(tIE [r{n(1)] drdv
1]
T T
= f@j’ [ g(tyg(t}é(t — Ddedr
2 0 o

N, T
=—0f ginydr

2 J

No

=3 (5.3.8)

Figure 5.20: Signal constellation for the four-PAM signal waveforms.

Therefore, the probability density function for the output r of the signal correlator is
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1
Vima

p(r | si{r)was transmitted) = e (r=ata’ (5.3.9)

where A; is one of the four possible amplitude values.

5.3.4 The Detector

The detecter cbserves the correlator output r and decides which of the four PAM signals was
transmitted in the signal interval. [n the following development of the performance of the
optimum detector, we assume that the four pessible amplitude levels are equally probable.

Stnce the received signal amplitude A; can take the values & o, = 34, as illustrated in the
signal constellation in Figure 5.20, the optimum amplitude detector compares the cotrelator
output 7 with the four possible transmitted umplitude ievels and selects the amplitude level
that is closest in Euclidean distance 1o r. Thus, the optimum amplitude detector computes
the distances

D =1r —~ Al i=0,1273 (5.3.10}

and selects the amplitude corresponding to the smallest distance.

We note that a decision error occurs when the aoise variable n exceeds in magnitude
one-half of the distance between amplitude levels, i.e.. when ju| > d. However, when
the amplitude levels +-3d or —34 are transmitted, an error can occur in ane direction only.
Since the four amplitude levels are equally probable, the average probability of a symbol
error is

"o

(Ir — Aml| > d)

2

[ VST ) PRy P
t -
_ﬁ
A
Q

22
eTE A gy

e dx

Y N i (5.3.4D0

We observe that the squared distance between successive amplitude levels is (2d)? = 8%,
Therefore, the average probability of error may be expressed as
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e

y 4N,

Py = %Q (5.3.12)

Alternatively, the avcrage probability of error may be expressed in terms of the signal energy.
Since all four amplitude levels are equally probable, the average transmitted signal energy
per symbel is
I 7
2 )
Fo= ngo stitydr = 5d {(5.3.13)

Consequently, d* = £,./5 and, hence,

3 |15,
P, = 2Q( T ) (5.3.14)

Since each transmitted symbol consists of two information bits, the transmitted average
energy per bit is Ey /2 = .

The average probability of error Py is plotied in Figure 5.21 as a function of the SNR
defined as 101log o (Eavs/Mo).

ILLUSTRATIVE PROBLE

Illustrative Problem 5.8 Perform a Monte Carlo simutation of the four-level (quaternary)
PAM communication system that employs a signal correlator, as described above, followed
by an amplitude detector. The model for the system to be simulated is shown in Figure 5.22.

—QEEEND—

As shown, we simulate the generation of the random variable r, which is the output of
the signal correlator and the input to the detector. We begin by generating a sequence of
guaternary symbols that are mapped into corresponding amplitude levels {An}. Toaccom-
plish this task, we use a random number generator that generates a uniform random number
in the range {0, 1). This range is subdivided into four equal intervals, (0, 0.25), (0.25, 0.5,
(0.5, 0.7%), (0.75, 1.0}, where the subintervals cormrespond to the symbols {pairs of infor-
mation bits) 00, 01, 11, 10, respectively. Thus, the output of the uniform random number
generator is mapped into the corresponding signal amplitude leveis (—3d. —d, d, 3d), re-
spectively.

The additive noise component having mean 0 and variance @? is generated by means
of a Gaussian random number generator. For convenience, we may normalize the distance
parameter d = I and vary er?. The detector observes r = An, +n and computes the distance
between ¢ and the four possible transmitted signal amplitudes. [ts output A is the signal
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o f ) 13
10log g £/Np

Figure 5.21: Probability of symbol error for four-level PAM.

ampiitude level corresponding to the smallest distance. A, is compared with the actual
transmitted signal amplitude, and an error counter is used to count the errors made by the
detector.

Figure 5.23 illustrates the results of the simulation for the transmissions of N=10,000
symbols at different values of the average bit SNR, which is defined as

£ 5 (d?
{3;” =3 (;) (5.3.15)

Note the agreement between the simulation results and the theoretical values of Py computed
froen (5.3.14). The MATLAB scripts for this problem are given befow.

% MATLAB script for lilustrated Problem B, Chapter 5.

eche cn
SNRindBE=0:1:12;
SNRindB2=0:0.1:12;
for i=1:length(SNRindB1),
% simulated error rate
smld_esr. prifiy=smldPeS7{SNRindB I{D)};
end;
for i=1:length{SNRindB2),
% signai-to-noise ratio
SNR_per_bit=exp(SNRindB2(i)+log(10)/10);

ket
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Figure 5.22; Block diagram of four-level PAM for Monte Carlo simulation.

D theoretical error rute
thee_err_prb{i)=(3/2)«Qfunct(sqri({4/5)%SNR_.per_bir));
end;
% ploting commands follow
semilogy(SNRindB 1 smid_err_prb,’ * *);
hold
semtlogy(SNRindB2,theo_err_prb);

—

function [p}=smldPe57(snr_in.dB)
% [pl = smidPe57(snr_in_dB}

% SMLDPEST simulates the probubility of errar for the given
% sardn_dB. signal-to-noise ratio in dB.
d=1;

SNR=exp{snr_in_dB«log(10)/1G;
sgma=sqet((Sxd " 2)/(4=SNR));

%o signal-fo-ngise ratio per bit
% sigma, standard deviation of noise

N=10000; % number of symbols being simuiated
% generution of the quarternary data souwrce follows
for i=1:N,
temp=rand; % « uniform random variable over (0.1}
if (temp<0.25),
dsource(i)=0, % with probability /4. seurce vutput is “00"
elseif {temp<0.5),
dsource(i)=1; % with probability 1/4, source putput is “"
elseif (ternp<0.75),
dsource(i)=2; To with probability [/4. source vutput is “10”
else
dsource{i)=3; Jo with probability 1/4, source outpur is “11"
end
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end,
% detection, and prebability of error calculation
numoferr=0,
for 1=1:N,
% The muiched filter ouiputs
if (dsource(i}==0),

r=—J=d+gngauss{sgmay; e if the source output is 007
elseif {dsource{i)==1),
r=—g+gngauss{sgma); T if the tource vutput is "01"
elseif {dsource(il==2)
r=d+gngauss{sgina), % if the spurce vutpur is 107
else
r=3=d+gngauss{sgmal, % if the sowrce oulput is “i1"
end:;
% derector follows
if {re--2+«d},
decis=0; % decision is OO0
glsetfl (r<0),
decis=1; % decision 15 01"
elseif {r<2=d),
decis=2, & decivion 1 10"
else
decis=3; % decision 5 {17
end,
if (decis =dsource(i}), T If it is an error increase the errar counter
numeferr=numoferr+1;
end;
end;
p=numoferr/N; % probubility of error estimule

5.3.5 Signal Waveforms with Multiple Amplitude Levels

[t is relatively straightforward to construct multiamplitude signals with more than four
levels. In general, a set of M = 2% multiamplitude signal waveforms is represented as

smit) = Apmg(), 0<t<T, m=0172 ..., M-I

where the M amplitude values are equaily spaced and given as

Ap=CQm-M+Dd, m=01,..., M—1 (5.3.16)

and g(¢) is a rectangular pulse, which has been defined in {5.3.2). Each signal waveform
conveys k = log, M bits of information. When the bit rate is R = 1/ T}, the corresponding
symbol rate is 1/T = 1/kT,. As in the case of four-level PAM, the optimum receiver
consists of a signal correlator (or matched fiiter) followed by an amplitude detector that
computes the Euclidean distances given by (5.3.10) form =0, 1, ... , M — 1. For equally
probable amplitude levels, the decision is made in favor of the amplitude level that corre-
sponds to the smallest distance.
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Figure 5.23: Error probability for Monte Carlo simuiation compared with theoretical error
probability for M = 4 PAM.

The probability of error for the optimum detector in an M-level PAM system is easily
shown to be

2(M - 1) 6(log, M) Eavp
M (\/ (M? — DNy ) © )

where &4 is the average energy for an information bit. Figure 5.24 illustrates the proba-
bility of a symbol error for M = 2, 4, 8, 16.

ILLUSTRATIVE PROBLEM

NMiustrative Problem 5.9 Perform a Monte Carlo simulation of a [6-level PAM digital
communication system and measure its error-rate performance.

s, SOLUTION 4

The basic block diagram shown in Figure 5.22 applies in general. A uniform random
number generator is used to generate the sequence of information symbols, which are
viewed as blocks of four information bits. The 16-ary symbols may be generated directly
by subdividing the interval (0, 1) into 16 equal-width subintervals and mapping the 16-ary
symbols into the 16-ary signal amplitudes. A white Gaussian noise sequence is added
to the 16-ary information symbol sequence, and the resulting signal plus noise is fed to
the detector. The detector computes the distance metrics given by (5.3.10) and selects the
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]

Figure 5.24: Symbol errer probability for M-level PAM for M = 2, 4, B, 16.

amplitude correspending to the smallest metric. The output of the detector is compared with
the transmitted information symbol sequence and errors and counted. Figure 5.25 iilustrates
the measured symbol error rate for 10,000 transmitted symbols and the theoretical symbol
error rate given by {5.3.17) with M = 16. The MATLAB scripts for this problem are given

below.

PL]
1Glog g (Eave/ M)

—

% MATLAB script for Mlastrative Probiem 9, Chaprer 5.

echo on

SNRindB1=5:1:25;

SNRindB2=5:0.1:25;

M=18;

for i=1:length(SNRindB1),
% simulated error ruwe
smid.err_prb{i)=smldPeS8(SNRindB1(i));

end;

for i=1:length(SNRindB2),
SNR_per_bit=exp{SNRindB2(i)*log(10)/10);
% thearetical error rate
thea_err_prb(il=(2#(M- 1)/ M Qfunct{sqr((6+log 2(M) /(M "~ 2—1)1xSNR_per_bit)};

end;

% plotting commands follow

semslogy(SNRindB{ smld_err_peb,* * < );

hold

semnilogy(SNRindB2,thec_err_prb);
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function [pl=smldPe58(snr_in_dB}
% [pl = smidPe58(snr_in_dB)
% SMLDPES8  simulates the error probubility for the given

% surandB. signal-to-naise ratio in dB.

M=18; % 16-ary PAM

d=1;

SNR=¢xp(snr_in_dBxlog(10); 10}, % signal-to-noise ratio per bir

sgma=sq1{{85«d " 2)/(B*SNR)); % sigma, stundard deviation of noise

N=10000, % number of symbols being simulated

% generation nf the quarternary data source

for i=1:N,
temp=rand; % @ wniform rondom varichle over (0. 1)
index=Roor(M=temp), % ihe index is un integer from O tw M-I, where

%o all the possible values are equally likely
dsource(i}=index;
end;
% detection, and probability of ervor calculation
numoferr=0;
for i=1:N,
%o maiched filter outpury
%o {Zedsource(i)-M+1)nd is the mupping to the 16-ary consteliation
r=(2#dsource(i}—M-+1)wd +gngauss(sgma),
%o the detector
il (r>(M~2)*d),
decis=15;
elseif (r>(M—4)ad),
decis=14;
elseif (r>{M—6)ad),
decis=13;
elseif (r>(M—-8)*d),
decis=12;
elsetf (r>(M—10)=d),
decis=11;
elseif (r>(M—12)xd),
decis=10;
elseif {(r>(M--14)xd),
decis=9;
elseif (r={M-—16)xd),
decis=8;
eiseif (r>{(M-18)»d)
decis=7;
elseif (r=(M—20)d),
decis=6,;
elseif (r>(M—22)xd),
decis=5;
elseif (r>(M—24)xd),
dects=4;
elseif {r=(M-26}=d),
decis=3;
eiseifl (r>(M-28)=d),
decis=2;
elseif (r>(M—30)+d},
decis=1;
else
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decis=0;
end;
if (decis"=dsource(i}), % if ff is an ermy increase the error counter
numoferr=pumofer+1;
end;
end;
p=numoferr/N; % probubifity of error estimute

15 2‘0 25
10log (Eavp/No)

Figure 5.25: Error rate from Monte Carlo simulation compared with the theoretical error
probability for M = 16 PAM.

5.4 Multidimensional Signals

In the preceding section we constructed muitiamplitude signal waveforms, which allowed
us (o transmit muitiple bits per signal waveform. Thus, with signal waveforms having
M = 2* amplitude levels, we are able to transmit k = log; M bits of information per
signal waveform. We also observed that the multiamplitude signals can be represented
geommetrically as signal points on the real tine (see Figure 5.20). Such signal waveforms
are cailed one-dimensional signals.

In this section we consider the construction of a class of M = 2% signal waveforms
that have a multidimensional representation. That is, the set of signal waveforms can be
represented geometrically as points in N-dimensional space. We have already observed
that binary orthogonal signals are represented geometrically as points in two-dimensional
space.
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5.4.1 Multidimensional Orthogonal Signals

There are many ways Lo construct multidimensicnal signal waveforms with various proper-
ties. In this section, we consider the construction of a set of M = 2% waveforms s; (1), for
i=0,1,..., M — 1, which have the properties of (a) mutual orthogonality and (b) equal
energy. These two properties may be succinctly expressed as

T
[ si{nse(ydt = E by, Lk=0,1,... , M1 (5.4.1)
[

where Z is the energy of cach signal waveform and 5, is called the Kronecker delta, which
is defined as

1, i=k
Bix = {o, i {5.4.2)

As in our previous discussion, we assurne that an information source is providing a
sequence of information bits, which are to be transmitted through a communication channel.
The information bits occur at a uniform rate of R bits per second. The reciprocal of R is
the bit interval, T5. The modulator takes k bits at a time and maps them into one of M = 2%
signal waveforms. Each block of & bits is called a symbol. The time interval available to
transmit each symbol is T = k7. Hence, T is the symbol interval.

Solt) 48

Bl
—y
==
i
—

(1) 58

Figure 5.26: An example of four orthogonal, equal-energy signal waveforms.

The simplest way to construct a set of M = 2% equal-energy orthogonal waveforms in
the interval (¢, T) is to subdivide the interval into M equal subintervals of duration T/M and
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1o assign a signal waveform for each subinterval. Figure 5.26 iflustrates such a construction
for M = 4 signals, All signal waveforms constructed in this manner have ideatical £Nergy,
given as

T
E:f sHOdt, i=0,1,2,... .M —1
4]

= AT/M {5.4.3)

Such asetof orthogonal waveforms can be represented as a set of M -dimensional orthogonal
veclors, Le.,

so=(VE, 0.0,....0
=0 VE O ... 0

spo=(0.0,...,0,VE) (5.4.4)

Figure 5.27 illustrates the signal points {signal constellations) corresponding to M = 2 and
M =3 orthogonal signals.

Figure 527: Signal constellation for M = 2 and M =3 orthogonal signals,

Let us assume that these orthogonal signal waveforms are used to transmit information
through an AWGN channel, Consequently, if the transmitted waveform is 5; (1), the received
waveform is

r{t) = si{t) +n{t), 0=<t=sT, i=01,... . M-1 (5.4.5)

where nit) is a sample function of a white Gaussian noise process with power spectrum
No/2 watts/hertz. The receiver observes the signal r (2} and decides which of the M signal
waveforms was transmitted,
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Optimum Receiver for the AWGN Channel
The receiver that minimizes the probability of error first passes the signal r{r) through
a parallel bank of M matched filters or M correlators, Since the signal correlators and

matched filters yield the same output at the sampling instant, let us consider the case in
which signal correlators are vsed, as shown in Figure 5.28.

k0

>

5

; i
X fOdr —]
Received

signal r(r) m— Detector

Qutput
decision

Figure 5.28: Oplimum receiver for multidimensional orthogonal signals,

Signal Correlators

The received signal r(t) is cross-correleted with each of the M signal waveforms and the
cortelator outputs are sampled at ¢t = 7. Thus, the M correlator oulputs are

T
r,-=f rs(dr, i=0,1,... M<1 (5.4.6)
0

which may be represented in vector form as r = [ro, oo, rM_l}'. Suppose that signal
waveform so(r) is transmitted. Then,

T T
ro = f S5 di +f n(t)sa(t) dt
0 i
=E +ng (547
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and
T T
5 =j Su(i‘)A‘f(def-i-f n{£)s; () dr
0 1]
T
=[ n(t)s;{t)dt = n;, i=1,2,3... M-1 (5.4.8)
0
where
T
ni = j n{)s ) dr {5.4.9)
0

Therefore, the output rg consists of a signal compenent £ and a noise compenent ny. The
other M — | outputs consist of noise only. Each of the noise components is Gaussian, with
mean zero and variance

ot = E(nh

T T
f / 5i(Dsi (D E [n()n(T)] dtdt
1] 4]

T T
ﬂf j s5i(0s:{0)¥8(r — 1) dt dt
2 Jo Jo

Ng T
T,/D sHn dt

- .N_f (5.4.10)

The reader is encouraged to show that E{m;n;) = 0, # j. Consequently, the proba-
bility density functiens for the correlator outputs are

. e Y 2
plrg | splt) was transmitted) = g~ (- £/ 20

2o
. 1 gl )
p(ri | so{t) was transmitted) = ——e nifo” i=1,2,...., M~1
Vina
The Detector
The optimum detector observes the M correlator outputs ry,i = 0,1,..., M — t and

selects the signal corresponding to the largest correlator output. In the case where so(r) was
transmitted, the probability of a correct decision is simply the probability that rp > r; for
i=0L2,....M—1 ie,

Po=P(rg>ry.ro>ra,... . 00> ry_1) (5.4.11)
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and the probability of a symbol error is simply

Pu=1-F
L= Plrg>ri,rg>ry,.... 0> fy-1) (5.4.12)

it can be shown that Py can be expressed in integral form as

l o0} 3

For the special case M = 2, the expression in {3.4.13) reduces to

P2=Q(\/M)

which is the result we obtained in Section 5.2 for binary orthogonal signals.

The same expression for the probabitity of error is obtained when any one of the other
M — | signals is transmitted. Since all the M signals are equally likely, the expression
for Py given by (5.4.13) is the average probability of a symbol error. This integral can be
evaluated numerically.

Somelimes, it is desirable to convert the probability of a symbol error into an equivalent
probability of a binary digit error. For equiprobable orthogonal signals, all symbol errors
are equiprebable and oceur with probability

Py Py
— = 54.14
M-1 2¢-1 ( )
Furthermore, there are (ﬁ) ways in which r bits out of k may be in error. Hence, the average
number of bit errors per k-bit symbol is

k
K\ Pu 24!
- =k-——FP 5.4.15
g"(n)zhl M G413
and the average bit error probability is just the result in (5.4.15) divided by k, the number
of bits per symbol, Thus

2k-—l
= ——F 54,16
Py T { )
The graphs of the probability of a binary digit error as a function of the SNR per bit,
Ep/Np, are shown in Figure 5.29 for M = 2,4, 8, 16,32, 64, where £, = E/k is the
energy per bit. This figure illustrates that by increasing the number M of waveforms, one
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Figure 5.29: Bit-error probability for orthogonal signals.

can reduce the SNR per bit required 10 achieve a given probability of a bit error. The
MATLAB script for the computation of the eror probability in (5.4.13) is given below.

T MATLAB script that generates the probebility of error versus the signai-to-noise ratio
initial _snr=0;

final_snr=15;

snr_step=1;

tolerance=18-7,; % tolerance used for the integration
minus_inf=—20; % this ix practically -infinity
plus_inf=20; % this is practicully infinity

snr-in_dB=initial _snr:sar_step:final_snr;

for i=1:ength(snr_in_dB),
snr=10"{snr_in_dB(i)/10);
Pe_2(i)=Qfunct(sgrt{snr}},
Pe_4(i)=(2/3)xquad8(‘ bdt_int ', minus_inf,plus_inf.tolerance,[ ],sar,4);
Pe_8(i)=(4/7)*quad8(- bdt_ink‘ minus_inf,plus . inftolerance,[ ],snr.8).
Pe_16{(1)=(8/15}+quadB{ " bdt._int - .minus_inf,plus_inf tolerance,[ ]sar, 16);
Pe_32(1)=(16 /31 )=quad8( - bdt_int ‘. mirus_inf,plus_inftolerance,[ 3,50, 323
Pe_64(1)=(32/63}*quadB(* bdt _int *.minus_inf,plus_isf tolerance, [ },snr,64);

end;

% plotting commands follow
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lLLUSTRATIVE PROBLE| E}

Mlustrative Problem 5.10 Perform a Monte Carlo simulation of a digital communication

system that employs M = 4 orthogonal signals. The model of the system to be simulated
is illustrated in Figure 5.30.

Gaussian RNG
Mo

VE

n
Gaussian RNG
m

N

r
oy |
iz

Output
decision

:l

Detector

Uniform Mapping 10 0
RNG signal points Y

3

2

3

(.,

Campare
5; with 5;

Error counter

Figure 5.30: Block diagram of system with M == 4 orthogonal signals for Monte Carlo
simulation.

B SOLUTION

As shown, we simulate the generation of the random variables ro, r1, 72, r3, which
constitute the input to the detector. We may first generate a binary sequence of 0s and 1's
that occur with equal probability and are mutually statistically independent, as in [liustrative
Problem 5.4. The binary sequence is grouped inte pairs of bits, which are mapped into the
corresponding signal components. An alternative to generating the individual bits is to
generate the.pairs of bits, as in Ulustrative Problem 5.8. In any case, we have the mapping
of the four symbols into the signal points:
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00 > 59 = (VE.,0,0,0)
01— 5, = {0,V £,0,0)
10%52=(0.0‘«/f,0)
11— 53 =(0,0.0,E)

{5.4.17)

The additive ncise componenls ng, 2y, 22, 23 are generaled by means of four Gaussian
noise generators, each having a mean zero and variance a* = NpF /2. For convenience,
we may normalize the symbol energy 1o £ = 1 and vary a?. Since E = 2F, it follows
that £, = % The detector cutput is compared with the transmitted sequence of bits, and

an error counter is used to count the number of bit ertors.

Figure 5.21 iltustrates the results of this simulation for the transmission of 20,000 bits
at several different values of the SNR E4/Np. Note the agreement beiween the simulation
results and the theoretical vaiue of P, given by (5.4.16). The MATLAB scripts for this

problem are given below.

% MATLAB seript for lifustrative Problem 16, Chapter 5.
echo on
SNRindB=0:2:10;
for i=1:length(SNRindB),
% stmulated error rate
srald_err_prb{iy=smldPe 59(SNRind B{1});
end:
% ploming commands follow
semilogy{ SNRindB,smid_err_peb, * ' ;

. V-FILE

function (pj=smldPe59{snr_in_dB})
Fo {p] = smldPe39snr_indB)

% SMLDPESS  simulates the probability of error for ihe given
% snrin.dB. signal-to-noise ratio in dB.
M=d, % guuriernary orthogonal signailing
E=1,
SNR=exp{snr_in.dBxlog{10)/10); Gb signal-te-noise ratic per bit
sgma=sqrt(E"2/{4xSNR}). % sigma. stundard deviation of noise
N=10000: % number of symbols being simudcred
Yo generation of the guurternury dafa source
for i=1:M,

temp=rand; S a wniform rendom vertable over o1

if (lemp<0.25},
dsourcel{i)=0;
dsource2(i)=0;

elseif (temp<0.5),
dsource j(iy=0,
dsource2{i)=1;

eiseif {temp<0.75),

5.4, Multudimensional Signais

dsourcei(i=1;
dsource2(i)=0,
else
dsourgei{iy="1;
dsource2(i)=1,
end
end:

T detection, und probubifity of error calculation

numeferr=0;
for i=1:N,
% matched filter outpuls
if ({dsourcel{i)==0) & (dsource2(i}==01)),
0=sqrt{E)+gngauss(sgma).
rl=gngauss(sgma).
r2=gngauss(sgma);
r3=gngauss(sgma}.

elseifl ((dsourcel{i)==0" & {dsource2(i)==1)}.

r)=gngauss(sgmaj};
tl=sqri{E)+gngauss{sgma);
r2=gngauss(sgmay;
rI=gngauss(sgma},

elseif ({dsourcel(i)==1) & (dsource2(i}==0)),

rO=gngauss{sgma);
ri=gngauss{sgma);
ri=sqrt(E)+gngauss(sgina),
ri=gngaunss(sgma):
else
rO=gngauss(sgma),
rl=gngauss(sgma);
r2=gngauss{sgmaj.
rI=sqri{E)+gngauss{sgma),
end;
% the detectar
max_r=max([r0 rl r2 r3]}
if {r0==max_r),
decis|=0,
decis2=01
elseif (rl==max_r},
decis|=0;
decis2=1;
eiseif {r2==max.r),
decisl=1;
decis2=0;
else
decisl=1;
decis2=1;
end;

G count the number of bit errors made in this decirion

if (decisl =dsourcel{i)},
numoferr=numefer+1;
end;
if (decis2 =dsource2(i)}.
nemoferr=numoferr+1;
end;
end;
p=numofers/(2+N);

% if it is an error increase the errmr counter

G if it is an errov increase the errar counter

% Bit error probability estimate
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Figure 5.31: Bit error probability for M = 4 orthogonat signals from a Monte Cario
simulation compared with theoretical error probability.

5.4.2 Biorthogonal Signals

As we observed in the preceding section, a set of M = 2% equal-energy orthogonal wave-
forms can be constructed by subdividing the symbol interval T into M equal subintervals
of duration T/M and assigning a rectangular signal pulse to each subinterval. A similar
method can be used to construct another set of M = 2% multidimensional signals that
have the property of being biorthogonal. In such a signal set, one-half the waveforms are
orthogonal and the cther half are the negative of these orthogonal waveforms. That is,
5o(r) s4(1), ..., spr2-1{t) are orthogonal signal waveforms. The other M /2 waveforms
are simply s;pp2(6) = —5;(t), fori = 0,1,..., M/2 — |. Thus we obtain M signals,
each having M /2 dimensions.

The M/2 orthogonal waveforms can be easily constructed by subdividing the symbol
interval T = kT into M/2 nonoverlapping subintervals, each of duration 2T/M, and
assigning a rectangular pulse to each subinterval. Figure 5.32 iilustrates a set of M = 4
biorthogonal waveforins constructed in this manner. The geometric representation of a set
of M signals constructed in this manner is given by the following (M /2)-dimensional signal
points:
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so={~VE.0.0,....0
§=(0.vE,0,. . .0

sayz—1 = (0,0.0,...,VE)
sz ={—vZ,0,0,....0)

Si-1=(0,0,..., —vVE) (5.4.18)

ERG)] 54 5501) 53(1)
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Figure 5.32: A setof M = 4 biorthogonal signal waveforms.

As inthe case of orthogonal signals, l=t us assume that the biorthogonal signat waveforms
are used to transmit information through an AWGN channel. Then, the received signal
waveform may be expressed as

rit) = 5t) +n(t), O0=<t=<T (5.4.19

where 5; (¢} is the transmitted waveform and a{t} is a sample function of a white Gaussian
noise precess with power spectrum Np/2 watts/hertz.

Optimum Receiver

The optimum receiver may be implemented by cross-correlating the received signal (1)
with each of the M/2 orthogonal signal waveforms, sampling the correlator outputs at
t =T, and passing the M/2 correlator outputs to the detector. Thus, we have

-1 (5.4.20)

T
M
r‘-=f r(r)s;(t)d.’, f=0, ].,...,'—
o 2
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Suppose that the transmitted signal waveform is sp{t). Then,

r , M
rng siydr, =010, — =1
o 2
F . i=0
=[ o P (5.420)
n;, i#=0
where
r ) M
mn; =f nie)si(de, =01, .., 5 - | (54.22)
0 Z

and F is the symbol cnergy for each signal waveform. The noisc components are zere-mean
Gaussian and have a variance of a2 = & Na/2.

The Detector

The detector observes the M /2 correlator outputs (r;, 0 < i < M/2 — |} and selects the
carrelator output whose magnitude |r;| is Jargest. Suppose

bry) = max {|r;[} (5.4.23)

Then, the detector selects the signal s;(r) i r; > 0ard —5;{1) ifry <0

To determine the probability of error, suppose that so(r) was ransmitted. Then, the
probability of a correct decision is equal to the probability that rg = £ +1p > 0 and
irgl = Il fori = 1,2, % — | Thus,

j-cx: 1 f’n."ﬁm 22 M-t 5
P. = —_— e~ Ty plroldry {(5.4.24)
] VAT S arof SERGT

where

plro) = _21 = tro=E) /2 (5.4.25)
Vel T

Finaily, the probability of a symbol error is simply
Py=1-P~P (5.4.26}

P. and Py may be evaluated numerically for different values of M from (5.4.24) and
(5.4.25). The graph shown in Figure 5.33 illustrates Py asa function of the signal-to-noise
ratio Ep/No, where & = kEp, for M = 2,4, 8, 16, and 32. We observe that this graph
is similar to that for orthogonal signals. However, for biorthogonal signals we note that
Py > P5. This is due to the fact that we have plotted the symbol-error probability Py in
Figure 5.33. If we plot the equivalent bit-error probability, we would find that the graphs
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Figure 5.33: Symbol-error probability for biorthogonal signals.

for M = 2 and M = 4 coincide. The MATLAB script for the computation of the ervor
probability in {5.4.24) and (5.4.26) is given betow.

% MATLAB script that generates the probubility of error versus the signal-to-noise ratio.
initial_snr=0;

final _snr=12;

snr_step=0.75;

tolerance=eps; % tolerance used for the integration
plus._inf=20; % this is practically infinity

sar_in_dB=initial_snr:snr_step:final_snr;

for i=1:length(snr_in_dB),
sar=10"(snr_in_dB(i)/ 10
Pe_2(i)=1—quads{’ bdr _int2' 0plus_inficierance.[ ]sor2};
Pe_4(i)=1—quad8(’ bdt_int2 - .0.plus_inftolerance.[ ].snr.4);,
Pe_8(i}=1—quad8( * bdr _int 2’ ,0,plus_inf tolerance | 1.5nr.B);
Pe__16(i)=1—quad8( * bdt _int2-.0.plus_infiolerance,[ ] snr.16);
Pe_32(i)=1—quad8(* bdt_int 2’ 0,plus.inf tolerance,{ ].sor,32);

end;

% plotting commands follow
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ILLUSTRATIVE PROBLE

Mustrative Problem 5.11 Perform a Mente Carlo simulation for a digital communication

system that employs M = 4 biorthogonal signals. The mode! of the system to be simulated
is iflustrated in Figure 5.34.

Qurput
decision
Detector <
‘Yl
Uniform Mapping 10
RNG signal points
Compare
5; with §,
Symbol

ITOr counler

Figure 5.34: Block diagram of the system with M = 4 biorthogonal signals for Monte
Carlo stmulation.

As shown, we simulate the generation of the random variables ro and #|, which constitute
the input to the detector. We begin by generating a binary sequence of O's and 1's tha
cceur with equal probability and are mutually statistically independent, as in Tllustrative
Problem 5.4. The binary sequence is grouped into pairs of bits, which are mapped into the
corresponding signal components as follows:

00— 59 = (VE, 0
0l — 5 = (0. VE)
10 = 52 = (0, —VE)
1= 51 =(—vE,0)

Alternatively, we may use the method in Illustrative Problem 5.8 to generate the 2-bit
symbols directly.

Since s = -5 and 53 = —s9, the demodulation requires only two correlators or
matched filters, whose outputs are rp and r;. The additive noise components ng and
are generated by means of twe Gaussian noise generators, each having a mean zero and
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variance g2 = NoE /2. For convenience, we may normalize the symbol energy to £ = |
and vary o”. Since £ = 2E,, it fellows that £, == 1. The detector output is compared
with the transmitted sequence of bits, and an error counter is used to count the number of
symbol errors and the number of bit errors.

Figure 5.35 illustrates the results of this simulation for the transmission of 20,000 bits
at several different values of the SNR £,/ N;. Note the agreement between the simulation

results and the theoretical value of Py given by (5.4.26) and (5.4.24). The MATLAB scripts
for this problem are given below.

% MATLAB script for iflustrative Problem 1], Chapter 3.
echo on
SNRindB=0:2:10;
for i=1:lengihtSNRindB),
% simuluted error race
smld _err_pro(i)=smidP5 | O{SNRindB(i));
end;
% plotting commands folinw

— -

Sancrion [pf=smldP3 10t snr in_dB)
% [p] = smidP510(snr_in_d8)
% SMLDPS10  simulates the probubitity of error for the given

%o surindB, signal-to-noise ratio in dB, for the system
Ta described in illustrated problem 10, Chapter 5.
M=4;

% gquariernary orthogonal signalling
E=%;
SNR=exp(snr_in_dBalog(10)/10); % signal 1o noise ratio per bit
sgma=sqri(E" 2/(4xSNR)); % sigma, standard deviation of noise
N=10000; % Aumber of symbols being simuiated
Po generation of the quarternury duta source
for 1=1:N,
temp=rand; % uniform random variable over (0.1 }
if (tlemp<0.25),
dsource{i}=0;
elseif (temp<0.5),
dsource(i)=1;
elseif {temp<0.75},
dscarce(j}=2:
¢lse
dsource(i)=3;
end
end;
% detectiun, and error probability computation
numoferr=0;
for i=1:N,
% The matched filier outputs
if (dsource(1)==0)
rO=sqri{E)}+gngauss{sgma};
rl=gngauss(sgma),
elseif (dsource(i)==1)
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ri=gngauss(sgma},
ri=sqrti(E)+gngauvss{sgma};

eiseif (dsourcei)==2)
0= —sqrt(E)+gngauss(sgma),
rl=gngauss{sgma};

else
D=gngauss(sgma);
r1=—sqr(E)+gngauss(sgma);

end;

% detector follows

if (rO=abs{rl}),
degis=0;

elseif (rl>abs(10)},
decis=1,

elseil {rd<—abs(r)),
decis=2;

else
decis=3;

end;

if (decis"=dsource(i}),
numeferr=numoferr+1,

and;

end;
p=numoferr/N; % but error probubility estimate

% if it is an error, increase fo the error Counier

4 .
10 L i 1 L L L L
a 1 2 3 4 5 ] T B 9 10

10logyg (Ep/No)

Figure 5.35: Symbol-error probability for M = 4 biorthogonal signals from Monte Carlo
simulation compared with theoretical error probability.

_

5.4. Multdimensional Signals 217

Problems

5.1 Suppose the two orthogonal signals shown in Figure 5.2 are used to transmit binary
information through an AWGN channel. The received signal in each bit interval of duration
Ty is given by (52.1). Suppose that the received signal waveform is sampled at a rate of
10/ Ty, te., at 10 samples per bit interval. Hence, in discrete time, the signal waveform
sp(r) with amplitude A is represented by the 10 samples (A, A, ..., A) and the signal
waveform s (¢) isrepresented by the 10samples {A, A, A, A, A, —A, -4, —A, —A, —A).
Consequently, the sampled version of the received sequence when so{t) is wansmitted is

rie=A+ng, k=1,2,..., 10

and when 51 () is transmitied is

A+ onyg, I
—A+4+n, 6

=
=

5
Fy =
¥ (o

k=
k=
where the sequence {n) is i.i.d., zero-mean, Gaussian with each random variable having
the variance ¢ 2, Write a MATLAR routine that generates the sequence {7y} for each of the
two possible received signals and perform a discrete-time correlation of the sequence {ry }
with each of the two possible signals 5p(¢) and s; () represented by their sampled versions
for different values of the additive Gaussian noise variance 02 = 0, ¢ = 0.1, a2 = 1.0
and o? = 2.0. The signal amplitude may be normalized to A = 1. Plot the correlator
outputs at time instants k = 1,2,3, ..., 10.

5.2 Repeat Problem 5.1 for the two signal waveforms so(¢) and s1{¢) illustrated in Figure
P5.2. Describe the similarities and differences between this set of two signals and those
illustrated in Figure 5.2. Is one set better than the other from the viewpoint of transmitting
a sequence of binary informaticn signals?

so(t)

L..
:

-A —A

Figure P5.2
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3.3 In this problem, the objective is o substitute two matched filters in place of the two
correlators in Problem 5.1. The condition for generating signals is identical to Problem 5.1.

Write a MATLAB routine that generates the sequence {r¢} for each of the two possible
received signals and perform the discrete-time matched filtering of the sequence {ry} with
each of the two possible signals sp(r) and 5, {#), represented by their sampled versions, for
different values of the additive Gaussian noise variance 62 =0, 62 = 0.1, o2 = 1.0, and
0% =2.0. The signal amplitude may be normalized to A = 1. Plot the correlator outputs
al lime instants corresponding to k = 1,2,..., 10.

5.4 Repeat Probiem 5.3 for the signal waveforms shown in Figure P53.2.

5.5 Run the MATLAB program that performs a Monte Carlo simulation of the binary
communication system shown in Figure 5.8, based on orthogonal signals. Perform the
simulation for £0,000 bits and measure the eeror probability fore ? =2 0, a2 = 0.1, 6% = 1.0,
and @ = 2.0. Plot the theoretical error rate and the error rate measured from the Monte
Carle simulation and compare the two resulis, Also plot 1000 received signal-plus-noise
samples at the input (o the detector for each value of 2.

5.6 Repeat Problem 5.5 for the binary cemmunication system shown in Figure 5.13 based
on antipodal signals.

5.7 Repeat Problem 5.5 for the binary communication system based on on-off signals.

5.8 Run the MATLAB program that performs a Monte Carlo simuiation of a quaternary
FAM communication system. Perform the simulation for 10,000 symbols (20,000 bits) and
measure the symbol-ercor probability for el =00 =01, 0= 1.0, and &2 = 2.0,
Plot the theoretical error rate and the error measured from the Monte Carlo simulation and
compare these results. Also plot E000 received signal-plus-noise samples at the input to the
detector for each value of o2

5.9 Modify the MATLAB program in Problem 5.8 1o simulate M = 8 PAM signals and
perform the Monte Carlo simulations as specified in Problem 5.8,

5.10 Run the MATLAB program that performs the Monte Carlo simulation of a digital
communication system that employs M = 4 orthogonal signals, as described in Illustrative
Problem 5.10. Perform the simulation for 10,000 symbols (20,000 bits) and measure the
bit-error probability for 62 = 0.1, 62 = 1.0, and 02 = 2.¢. Plot the theoretical error
probability and the error rate measured from the Monte Carlo simulation and compare
these results.

5.11 Consider the four signal waveforms shown in Figure P5.11. Show that these four
signal waveforms are mutually orthogonal. Will the results of the Monte Carlo simulation
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of Problem 10 apply to these signals? Why?

sylt) 50t}

B HI) 85(1)
A A A
:I—‘r r., |_| T, T
! -Ar J —-A L U U -4 !

Figure P5.11

o}

5.12 Run the MATLAB program that performs the Monte Carlo simulation of a digital
communication system that employs M = 4 biorthogonai signals, as described in [iustrative
Problem 5.11. Perform the simulations for 10,000 symbols (20,000 bits) and measure the
symbol error probability for a2 = 0.1, ¢2 = 1.0, and 62 = 2.0. Plot the theoretical
symbol-error probability and the error rate measured from the Monte Carlo simulation, and

compaic the results. Also plot 1000 received signal-plus-noise samples at the input to the
detector for each valye of o2,

3.13 Consider the four signal waveforms shown in Figure P5.13. Show that they are
bicrthogonal. Will the results of the Monte Carle simulation in Problem 5.12 apply to this
set of four signal waveforms? Why?

syle) $4(0) 51{r)
A A
T
; T, i T,
0 T 0 0

Figure P5.13




Chapter 6

Digital Transmission Through
Bandlimited Channels

6.1 Preview

In this chapter we treat several aspects of digital transmission through bandwidth-limited
channels. We begin by describing the spectral characteristics of PAM signals. Secondly,
we consider the characterization of bandiimited channels and the problem of designing
signal waveforms for such channels. Then, we treat the problem of designing channel
equalizers that compensate for distortion caused by bandlimited channels. We show that
channel distortion results in intersymbol interference (ISI), which causes errors in signal
demodulation. A channel equalizer is a device that reduces the intersymbol interference
and thus reduces the error rate in the demodulated data sequence.

6.2 The Power Spectrum of a Digital PAM Signal

In the preceding chapter we considered the transmission of digital information by pulse
amplitude modulation (PAM). In this section, we study the spectral characteristics of such
signals.

A digital PAM signal at the input to a communication channel is generally represented
as

>

o) = Y anglt —nT) 6.2.1)

n=-0a

where {g,} is the sequence of amplitudes corresponding to the information symbols from
the source, g(t) is a pulse waveform, and 7 is the reciprocal of the symbol rate, T is also
called the symbol interval. Each element of the sequence {a, } is selected from one of the
possible amplitude values, which are

221
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Ap=2m-M+1)d, - m=0,1,..., M—1 (6.2.2)

where d is a scale factor that determines the Euclidean distance between any pair of signal

amplitudes (24 is the Euclidean distance between any adjacent signal amplitude levels).
Since the information sequence is a random sequence, the sequence {a, } of amplitudes

corresponding to the information symbols from the source is also random. Consequently,

the PAM signal v(r) is a sample function of a random process V(r). To determine the

spectral characteristics of the random process V(t}, we must evaluate the power spectrum.
First, we note that the mean value of V (¢} is

[=¢]

E[V(D] = Z Eta,)g(t —nT) (6.2.3)

n=—oQ

By selecting the signal amplitudes to be symmetric about zero, as given in (6.2.2), and
equally probable, E(a,) = {}, and hence E [V(£)] = 0.
The autccorrelation function of V(1) is

R(+miny=E[VIOV(+T) (6.2.4)

It is shown in many standard texts on digital comemunications that the autocorrelation func-
tion is a periodic function in the variable r with period 7. Random processes that have a
periodic mean value and a periodic autocorrelation function are called periodically sration-
ary, or cyclostationary . The time variable 1 can be eliminated by averaging R,(r + 1, 1)
over a single petiod, i.e.,

) 1 g7
Ro{t) = — f R,(t 4+ ;1) d! (6.2.5)
Tl rn

This average autocorreiation function for the PAM signal can be expressed as

Rylr) = % 3" Ra{m}Re(t —mT) (6.2.6)

m=-—o0

where Ry (m) = E(dndyi.m) 15 the autocorrelation of the sequence {a, and Rp{r)isdefined
as

mu>=[ 2020+ 1) dr 62.7)

-0

The power spectrum of ¥ (¢) is simply the Fourier transform of the average autocorre-
lation function R, (1), Le.,
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Mﬁ=[ By (xye=i27% 4y

oG

1 ,
= Fé’a(f)FG(f)\' (6.2.8)

where 8, (7} is the power spectrum of amplitude sequence {a,) and G{f) is the Fourier
transform of the pulse g(z). 8, ) is defined as

o0

Sulf)= D Rulmye d2msm¥ (6.2.9)

m=—0G

From (6.2.8) we observe that the pewer spectrum of the PAM signal is a function of the
power spectrum of the information symbols {a,} and the spectrum of the pulse g(s). In the
special case where the sequence {a,} is uncorrelated, i.e.,

¢l m=0
R, =4 2.
(m) o0 mzo (6.2.10)
where 62 = E(al), it follows that §,(f) = o2 for ait £ and
0’2 2
Sy = 16N (62,113

In this case, the power spectrum of V(z) is dependent entirely on the spectral characteristics
of the pulse g(t).

ILELUSTRATIVE PROBLEM

Mlustrative Problem 6.1 Determine the power spectrum of V(1) when {a,} is an uncorre-
lated sequence and g(t) is the rectangular pulse shown in Figure 6.1.

&t)

51

=
~

Figure 6.1: Transmitter pulse.
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S SOLUTION

The Fourier transform of g(¢) is

G(f) = foq gy de

=T %rg e~ IT {6.2.12)
and
: 2
Sulf) =} (:"l‘%?‘i) (6.2.1%)

This power specirum is illustrated in Figure 6.2
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Figure 6.2: Power spectrum of the transmitted signal in Ilustrative Problem 6.1 (fore? = 1).

The MATLAB script for this computation is given below.

nFILE

% MATIAB script for lustrative Problem 1, Chapter 6.
echo on

T=1;

delta_f=1/(100+T),

=—5/T:delta_f:5/T;

sgma_a=1;
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Svesgma-a” 2#sine(f* T " 2;
Fo ptotting command follows
plot(f.5v);

ILLUSTRATIVE PROBLE

Ilustrative Problem 6.2 Suppose the autccorrelation function of the sequence {a,} is

I, m=0
Rym)=3%, m=1-1 (6.2.14)
0, otherwise

and g{¢) is the rectangular pulse shown in Figure 6.1. Evaluate §,( f) in this case.

. SOLUTION

The power spectrum of the PAM signal V(1) is given by (6.2.8). The power spectrum
of the sequence {ay} is, from (6.2.9) and (6.2.14),

Sa(fy=1V+cos2nfT

= 2co8wfT (6.2.15)
Consequently,
sinmfT ?
$u(f) = 2cos? mf T (—) (6.2.16)
afT

The graph of this power spectrum is shown in Figure 6.3.

The MATLAB script for performing this computation is given below. In this case, the
overall power spectrum of the transmitted signal V(1) is significantly narrower than the
spectrum in Figure 6.2.

% MATLAB script for Hiustrative Problem 2, Chupter 6.
echo on

T=1,

delta_f=1/(100=T);

f==5/T:delta_f:5/T,

Sv=2x(cos(pi*l +T).xsinc{f+T)) “2;

% plotting command follnws

plot(f,Sv);
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Figure 6.3: The power spectrum of the transmitted signal in Ilustrative Problem 6.2 (for
2
o, =1).

6.3 Characterization of Bandlimited Channels
and Channel Distortion

Many communication channels, including telephone channeis and some radio channels,
may be generally characterized as bandlimited linear filters, Consequently, such channels
are described by their frequency response C{f), which may be expressed as

Cif) = A(HHefD (6.3.1)

where A(f) is called the amplitude response and 6 ( f) is called the phase response. Another
characteristic that is sometimes used in place of the phase response is the envelope delay,
or group delay, which is defined as

1 d8(s)

=y

(6.3.2)

A channel is said to be nondistorting, or ideal if, within the bandwidth W oceupied by
the transmitted signal, A(f) = constant and #( f) is a linear function of frequency (or the
envelope delay ©(f) = constant). On the other hand, if A{f} and T(f) are not constant
within the bandwidth occupied by the transmitted signal, the channel distorts the signal.
If A(f) is not constant, the distortion is called amplitude distortion, and if T{f) is not
constant, the distortion on the transmitted signal is called delay distortion.
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As a resuit of the amplitude and delay distortion caused by the nonideal channel fre-
quency response characteristic C{ £, a succession of pulses transmitled through the channel
at rates comparable fo the bandwidth W are smeared to the point that they are no longer
distinguishable as well-defined pulses at the receiving terminal. Instead, they overlap, so
we have intersymbol interference. As an example of the effect of delay distortion on a
transmitted puise, Figure 6.4(a) illustrates a bandlimited pulse having zeros periodically
spaced in time at points labeled =7, £27, etc. When the information is conveyed by the
pulse amplitude, as in PAM, then one can transmit a sequence of pulses, each of which has
a peak at the periodic zeros of the other pulses. However, transmission of the puise through
a channel modeted as having a linear envelope delay characteristic () {quadratic phase
&(f)] results in the received pulse shown in Figure 6.4(b) having zero crossings that are
no lorger periodicaily spaced. Consequently, a sequence of successive pulses would be
smeared into one another, and the peaks of the puises would no longer be distinguishable.
Thus the channel detay distortion results in inlersymbol interference. As will be discussed
in this chaper, itis possible to compensate for the nonideal frequency response characteris-
tic of the channel by use of a filter or equalizer at the demodulator. Figure 6.4(c) illustrates
the output of 2 linear equalizer that compensates for the linear distortion in the channel.

As an example, let us consider the intersymbol interference on a teiephone channel.
Figure 6.5 illustrates the measured average amplitude and deiay as a function of frequency
for a telephone channel of the switched telecommunications network. We observe that the
usable band of the channel extends from about 300 Hz to about 3200 Hz. The corresponding
impulse response of the average channel is shown in Figure 6.6. Its duration is about 10
ms. In comparison, the transmitted symbol rates on such a channel may be of the order of
2500 pulses or symbols per second. Hence, intersymbol interference might extend over 20
to 30 symbols.

Besides telephone channels, there are ather physical channels that exhibit some form
of lime dispersion and thus introduce intersymbol interference. Radic channels, such as
shortwave ionospheric propagation (HF), tropospheric scatter, and mobile cellular radio are
three examples of lime-dispersive wireless channels. In these channels, time dispersion—
and, herce, intersymbol interference—is the result of multiple propagation paths with dif-
ferent path delays. The number of paths and the relative time delays among the paths vary
with time; for this reason, these radio channels are usually called ime-varian: multipath
channels. The time-variant multipsth conditions give rise to a wide variety of frequency
response characteristics. Consequently the frequency response characterization that is used
for telephone channels is inappropriate for time-variant multipath channels. Instead, these
radio channeis are characterized statistically in terms of the scattering function, which, in
brief, is a two-dimensional representation of the average received signal power as a function
of relative time delay and Doppler frequency spread.

For illustrative purposes. a scattering function measured on a medium-range (150-mi)
tropospheric scatler channel is shown in Figure 6.7. The total tme duration {multipath
spread) of the channel response is approximately 0.7us on the average, and the spread
between half-power points in Doppler frequency is a litile less than | Hz on the strongest
path and somewhat larger on the cther paths. Typically, if wansmission occurs at a rate
of 107 symbols/second over such a channel, the muitipath spread of 0.7us will result in
intersymbol interference that spans about seven symbols.
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Figure 6.4: Effect of channel distortion: (a) channel input, {b) channel output, {c} equalizer
output.
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Figure 6.5; Average amplitude and delay characteristics of a medium-range telephone
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Figure 6.5.
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Figure 6.7: Scattering function of 2 medium-range tropospheric scatter channel.
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ILLUSTRATIVE PROBLE

Tliustrative Problem 6.3 As indicated above, a bandlimited communication channel can
be modeled as a linear filter whose frequency response characteristics match the frequency
response characteristics of the channel. MATLAB may be used 10 design digital FIR or IIR
filters that approximate the frequency response characteristics of analog communication
channels. Suppose that we wish to model an ideal channel having an amplitude response
A(f) =1 for | f| < 2000 Hz and A{f) =0for|f > 2000 Hz and constant defay (linear
phase) forall f. The sampling rate for the digital filter is selected as F;=10,000 Hz. Since
the desired phase respanse is linear, only an FIR filter could satisfy this condition. However,
it is not possible to achieve a zera response in the stopband. Instead, we select the stopband
response to be —40 dB and the stopband frequency to be 2500 Hz. [n addition, we allow
for a small amount, 0.5 dB. of ripple in the passband

—EINED—

The impulse response and the frequency Tesponse of a length N = 41 FIR filter that
meets these specifications is illustrated in Figure 6.8. Since ¥ is odd, the delay through
the filter is (N + 1)/2 1aps, which corresponds to a time delay of (N + 13/20 ms at the
sampling rate of £, = |0 KHz. In this example, the FIR filter was designed in MATLAB
using the Chebyshev approximation method (Remez algorithm).

% MATLAB script for lustrative Problem 3, Chupter 6

#cho on

f_cutoff=2000: %o the desired cutoff frequency
f_stopband=2500; % the actuul stopband frequency
f5=10000; % the sampling frequency
fl=2#f_cutoff/fs; %o the normulized pussband Jrequency
f2=2+{_stopband/fs; % the rormalized stopbund frequency
N=41, %o this number is found by experiment
=[0 {1 f2 1);

M=[11 0 0); % describes the lowpass filter
B=remez(N-1,F.M). %o returns the FIR wp coefficients

% plotting command foliows

figure(1};

{H, W]=freqz(B);
H_in_dB=20+log | Glubs(H});
plot{W/(2%pi},H_in_dB),

figure(2);
plol(W,‘(Z-pi).(180,~'p|]xunwmp(angle(H])):
%o plot of the impulse response follows
figure(3);

stem{[0:N—1],B);

ILLUSTRATIVE PROBLE

Mustrative Problem 6.4 An alternative method for designing an FIR filter that approxi-
mates the desired channel characteristics is based on the window method. To be specific, if
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Figure 6.8: (a) Impulse response. (b), (¢} Frequency response of linear phase FIR filter in
Iliustrative Problem 6.3.
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the desired channel response is C( f) for i f| < Wand C(f) = O for | f| > W, the impulse
response of the channel is

W
hit) =f Cifre’ ™ dr (6.3.3)
—5

For example, if the channel is ideal, then C(f) = |, | f| < W, and hence

sin 2 Wr
iy = 270 (6.3.4)
T
An equivalent digital filter may be implemented by samphing A(1) at t = n7,, where T,
is the sampling interval and n = 0, £1, £2, . ... Let us now design an FIR filter with
W =2000Hzand F;, = 1/7, = 10 KHz.

. SOLUTION

The sampied version of h(t). 1.2, h, = h(nT,), 1 illustrated in Figure 6.9. Since {k,}
has infinite length, we may truncate it at some length &. This truncation is equivalent o
multiplying {#,} by a recrangular window sequence w, = 1 for |r| < (¥ — 1)/2 and
w, = 0for |n| = (N + 1)/2. The impulse response {i:,', = w,,h,,} and the corresponding
frequency response of the FIR (truncated} filter are iilustrated in Figure 6.10 for ¥ = 51.
Note that the truncated filter has large sidelobes in the stopband, Hence, this FIR fijter is
a poor approximation to the desired channel characteristics. The size of the sidelobes can
be stgnificantly reduced by employing a smoother window function, such as a Hanning
or a Hamming window, to truncate the ideal channe! response. Figure 6.11 iltustrates the
impulse response and frequency response of {h) = wyh, | when the window function is
a Hanning window of length ¥ = 51. MATLAB provides routines to implement several
different types of window functions.

%o MATLAB script for illustrative Problem 4, Chuprer 4.

echo on

Length=101;

Fs=10000;

W=2000:

Ts=1/Fs,

n=—(Length—1)/2:(Length—1)/2;

t=Ts#n;

h=2«W xsinc(2=Wa1);

% The rectangualar windowed version follows

N=61;

rec.windowed_h=h{{Length--N}/2+1:(Length+N}/2);

% Frequency response of rec_windowed b fillows

[rec_windowed _H,W | |=freqz({rec_windowed_h,1);

% to normalize the mugnitude
rec.windowed_H_in_dB=20xlog | 0(abs(rec_windowed _H)/abs(rec. windowed _H(1))):
% The Hunning windowed version follows. ..

hanning_window=hanning{N};

hanning-windowed _h=h{{Lzngth—N)/2+1:(Length+N)/2). xhanning_window. * ;
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[hanning_windowed_H,W2|=freqz(hanning_windowed_h.1);
h:mning.windowed_H_in-dB=20=rIcglO(ahs(hannmg_windowcd_H)fnhs{hanning-wLnduwed_H(1)))‘,
% the plotting commands follow

4000 - T T T T T
3500 + _
3000 T 3
2500 i
2000 4
1500 - i
100G i

500

b%@e@@w@v@@y@‘t@??}ﬂ) l 1[4??%,‘% @_@‘ﬁ) 2B oty

i=4

-500 |

Figure 6.9: Samples of k() in Illustrative Problem &.4.

ILLUSTRATIVE PROBLEM

Diustrative Problem 6.5 A two-path (multipath) radio channet can be modeled in the time
domain, as illustrated in Figure 6.12. Its impulse response may be expressed as

et Ty =0 {N8T) + ba()6(t — 1) (6.3.3)

where &,(r) and b2(¢) are random processes that represent the time-varying propagation
behavior of the channel and 1y is the delay between the two multipath components. The
prablem is 1o simulate such a channel on the computer.

g SOLUTION

We model 5 {¢) and b2(r) as Gaussian random processes generated by passing white
Gaussian noise processes through lowpass filters. In discrete lime, we may use relatively
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BEEEN

§

Figure 6.10: Frequency response of the filter runcated with a rectangular window in Illus-
trative Problem 6.4

stmple digital IR filters excited by white Gaussian noise (WGN) sequences. For example,
asimple lowpass digital filter having twe ideatical poles is described by the z-transform

{1 —p)? (1- p)?
Hiz) = = 3.
(z) =207 = T 2pe=i g pia=2 (6.3.6)

or the corresponding difference equation

ba = 2pba_i = pPba_a + (1 ~ p)lu, (63.7)

where {w,} is the input WGN sequence, {b,) is the output sequence, and 0 < p < 1is
the pole position. The position of the pole controls the bandwidth of the filter and, hence,
the rate of variation of {b,}. When p is close to unity {close to the unit circle), the filter
bandwidth is narrow, whereas when p is close to zero, the bandwidth js wide. Hence, when
p is close to the unit circle in the 2-plane, the filter output sequence changes more slowly
compared to the case when the pole is close to the origin.

Figure 6.13 illustrates the output sequences {b),] and {b2.} generated by passing sta-
tistically independent WGN sequences through a filier having p = 0.99. The discrete-time
channe! impulse response

Cn =B1n+bra_y (6.3.8)

is also shown, with d = 5 samples of delay. Figure 6.14 illustrates the sequences {b],,,},
{2.4), and [c,} when p = 0.9,
6.4 Characterization of Intersymbol Interference

In adigitai communication system, channel distortion causes intersymbol interference (ISI).
In this section, we shall present a model that characterizes ISI. Feor simplicity, we assume
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Figure 6.11: Frequency response of filter truncated with Hanning window in Illustrative
Problem 6.4.

— . Detay = |

Input signal 1 Delay 7, I

WGN WGN

Quiput signal

Figure 6.12: Two-path radio channel model.

that the transmitted signal is a baseband PAM signal. However, this treatment is easily
extended to carrier (linearly) modulated signals discussed in the next chapter.
The transmitted PAM signal is expressed as

[e.a]

s(6) =Y anglt = nT) (6.4.1)

n=0

where g(r) is the basic pulse shape that is selected to control the spectral characteristics
of the transmitted signal, (.} is the sequence of transmitted information symbols selected
from a signal constellation consisting of M points, and T is the signal interval {1/T is the
symbol rate).

The signal s{¢) is transmitted over a baseband channel, which may be characterized by
a frequency response C{f). Consequently, the received signal can be represented as
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Figure 6.13: Quiputs b1, and &2, of a lowpass filter and the resulting ¢, for p = 0.99.

rit) = Za,,h(r —nTY + wit) (6.4.2)
n=0

where A(t} == g(t)*c(1), c{r)1sthe impulse response of the channel, * denotes convolution,
and w{¢) represents the additive noise in the channel, To characterize IS1, suppose that
the received signal is passed through a receiving filter and then sampled at the rate 1/T
samples/seconds. In general, the optimum filter at the receiver is matched to the received
signal pulse k(). Hence, the frequency response of this filter is H*(f). We denote its
output as

>
YO =Y anx(t —nT) +v(0) (6.43)
=0

where x(1) is the signal pulse response of the receiving filter, i.e., X{(f) = H(fYH"(f)
= |H(f)|, and v(r) is the response of the receiving filter to the noise w(z). Now, if y(r}
is sampled attimes ¢ = k7T, k=0,1,2,..., we have
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Figure 6.14: Qutputs by, b1,, and ¢, with pole at p = 0.9 (from top to bottom atn = 1000,
bia, cn. and by, ).

[+.7]
YKT) =3 anx(kT — nT) + v(kT)
r=0
=]
Vo= @nkpon + u, k=01,... (6.4.4)
=0

The sample values {y;} can be expressed as

1 o0
= —_ nXk—n | + Vg, k=0,1,... (6.4.5)
Y = Xop ak-!-mza Xe—n 'k

=0

nEk

The term xq is an arbitrary scale factor, which we set equal to unity for convenience. Then

B pe—
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-
e = a4 Z QnXf—g + Vg (6.4.6)
n=0
nsk

The term a; represents the desired informarion symbol at the kth sampling instant, the term

n

Y e, 6.6.7)
a=0
nzk

represents the ISI, and vy is the additive noise at the kth sampling instant.

The amount of IS] and noise in a digital communications system can be viewed on an
oscilloscope. For PAM signals, we can display the received signal y(1) on the vertical input
with the horizontal sweep rate sctat 1/ 7. The resulting oscilloscope display is called an eye
pattern because of its resemblance 1o the human eve. For example, Figure 6.15 illustrates
the eye patterns for binary and four-level PAM modulation. The effect of IS is 0 cause
the eye 1o close, thereby reducing the margin for additive noise 1o cause ertors. Figure 6.16
graphically illustrates the effect of IS in reducing the opening of a binary eye. Mote that
intersymbol interference distorts the position of the zero-crossings and causes a reduction

in the eye opening. Thus, it causes the system te be more sensitive to a synchronization
error.

ILLUSTRATIVE PRQBLE

Hlustrative Problem 6.6 In this problem we consider the effect of intersymbol interference

(ISD) on the received signal sequence { v} for two channels that result in the sequences {x;}
as follows:

Channel 1
1, n=0
o = —0.25, n ==l
" 0.1, n=+2
0, otherwise
Channel 2
1, n=0_
= 0.5, n ==l
" —-0.2, n==2
0, otherwise

Note that in these channels, the [ST is limited to two symbols on either side of the
desired transmitted signal. Hence, the cascade of the transmitter and recejver filters and
the channel at the sampling instants are represented by the equivalent discrete-time FIR
channel filter shown in Figure 6.17. Now suppose that the transmitted signal sequence
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BINARY QUATERNARY

Figure 6.15: Examples of eyc patterns for binary and quaternary amplitude shift keying (or
PAM).
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Figure 6.16: Effect of intersymbol interference on eye opening.
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is binary, i.e., {a, = =1}. Then, for Channel I, the received signal sequence {y,} in the
absence of noise is shown in Figure 6.18({a). and with additive white Gaussian noise having
a variance of 0% = 0.1. the received signal sequence is shown in Figure 6.18(b). We note
that in the absence of noise, the ISI alone does not cause errors at the detector that compares
the received signal sequence {y,} with the threshold set to zero. Hence, the eye diagram is
open in the absence of noise. However, when the additive noise is sufficiently large, errors
will oceur.

1.0
0.1 ol
. -! -l . n
-1 -2 1 0 i 2 3
-0.25 -0.25
{a) Channel |
1.0
0.5 05
o] [ .
h
-3 { -1 o 1 ! 3
=02 -02

(b} Channel 2

Figure 6.17: FIR channe! models with IS1. (a) channel 1. (b) channel 2.

In the case of Channel 2. the noise-free and roisy (a2 = 0.1) sequence |y, ] is illustrated
in Figure 6.19. Now, we observe that the IST can cause errors at the detector that compares
the received sequence | y,} with the threshold set at zero, even in the absence of noise. Thus,
for this channel characteristic, the eye is completely closed.

6.5 Communication System Design for Bandlimited
Channels

In this section we consider the design of the transmitter and receiver filters that are suitable
for a baseband bandlimited channel. Two cases are considered. In the first case, the design
is based on transmmitter and receiver filters that result in zero 1ST. In the second case, the
design is based on ransmitter and receiver filters that have a specified (predetermined)
amount of ISI. Thus, the second design approach leads to a controlled amount of ISL
The comresponding transmitted signals are called partial respanse signals. In both cases
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we assume that the channel is ideal; i.e., A(f) and t{f} are constant within the channel
bandwidth W. For simplicity, we assume that A(f) = 1 and 1(f) = 0.

6.5.1 Signal Design for Zero ISI

The design of bandlimited signals with zero IS1 was a problem considered by Nyquist about
70 years ago. He demonstrated that a necessary and sufficient condition for a signal x (¢}
to have zero 1S], ie,

1, =)
T = " (6.5.1)
0, mAD

is that its Fourier transform X ( f) satisfy

o0

3 x(f+$):r (6.5.2)

me—0

where 1/7T is the symbol rate.

In general, there are many signals that can be designed to have this property. One
of the most commenly used signals in practice has a raised-cosine frequency rtesponse
characteristic, which is defined as

T, 0<ifl = 5P
Xelfy= 1 F i+ o2 (171 = Y] 2 < 1f1 < (6.5.3)

=

Ifl > 42

where « is called the roll-off factor, which lakes values in the range 0 < o = |, and
1/T is the symbal rate. The frequency response X { f) is illustrated in Figure 6.20(a) for
=0 0= %, and @ = |. Note that when o = 0, X.(f) reduces to an ideal “brick
wall” physically nonrealizable frequency response with bandwidth occupancy 1/2T. The
frequency 1 /27 is called the Nvquist frequency. For o > 0, the bandwidth occupied by the
desired signal X o{f} beyond the Nyquist frequency 1/27 is called the excess bandwrdrh
usually expressed as a percentage of the Nyquist frequency. For example, when o = v , the
excess bandwidth is 50, and when o = L, the excess bandwidth is 100. The signal pulae
xc(f) having the raised-cosine spectrum is

singt/T cos(mai/T)

6.5.4
mtjT 1 —4at?/T? ¢ )

Xee{t) =

Figure 6.20(b) illustrates xrc(t) for & = 0, —é 1. Since X (f) satisfies (6.5.2), we note
that xrc(f) = latt = 0 and x(t) = Oatt = kT, k = £1.+2,.... Consequently, at
the sampling instants t = kT &k # 0, there is no IS[ from adjacent symbels when there

R
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1s ne channel distortion. However, in the presence of channel distortion, the ISI given by
(6.4.7} is no lenger zero, and a channel equalizer is needed to minimize its effect on system
performance. Channel equalizers are considered in Section 6.6.

X 0
L a=0
- =035
/ <
_L _1 V] 1 1 /
T 7 T T
(2) Raised-cosine frequency response
x At}
0,05
L - azl A2
S ~ v -7 3Tvﬂ"

a=05
(b} Pulse shapes for raised-cosine frequency response

Figure 6.20: Raised-cosine frequency response and corresponding pulse shape. (a) Raised-
cosine frequency response, (b) Pulse shapes for raised-cosine frequency response.

In an ideal channel. the transmitter and receiver filters are jointly designed for zero ISI
at the desired sampling instants ¢ = aT. Thus, if Gr(f) is the frequency response of the
transmitter filter and G z( f) is the frequency response of the receiver filter, then the product
(cascade of the two filters} Gr(f)Gr(f) is designed to yield zero ISI. For example, if the
product Gr( f)Ggr{[f) is selected as

Gr(fIGr(f) = Xw(f) (6.5.5)

where Xg(f) is the raised-cosine frequency response characteristic, then the ISI at the
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sampling times t = nT is zero.
ILLUSTRATIVE PROEBLE

Niustrative Problem 6.7 We wish to design a digital implementation of the transmitter

and receiver fillers Gy {f) and Gg{f) such that their product satisfies (6.5.5) and Gg(f)
is the matched filter to G7(f).

g SOLUTION

The simplest way to design and implement the transmitter and receiver flters in digttal
form is to employ FIR filters with linear phase (symmetric impulse response}. The desired
magnitude response is

IGr(fY =1Gr{N = v Xl F) (6.5.6)

where X f) is given by (6.5.3). The frequency response is related to the impulse response
of the digital filter by the equation

IN-1}/2

Gr(fy= Y.  grime VT (6.5.7)
nm—(N )2

where 7, is the sampling interval and N is the length of the filter. Note that  is odd. Since
Gr(f} is bandlimited, we may select the sampling frequency F, to be at least 2/T. Our
choice is

1 4
Fx = T‘ = 'i."
or, equivalently, T; = T/4. Hence the folding frequency is Fi /2 = 2/T. Since Gr(f) =
VX (F), we may sample Xc(f) at equally spaced points in frequency, with frequency
separation Af = F;/N. Thus we have

{N=-1}/2
VXemaf) = VXelmF /Ny = 3 gr(n)e-i2ema¥ (6.5.8)
n=—(N—1}/2
The inverse transform relation is
N-1)/2
: N -1
grim= > X (:r—';) g/ mmniN n=0El ... d—— (659
m=—(N—1)/2

Since gr(n) is symmetric, the impulse response of the desired linear phase transmitter
filter is obtained by delaying gr(n) by (¥ — 1)/2 samples. The MATLAB scripts for this
computation are given below.

SV —
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— R —

T MATLAB script for Niusrative Problem 7, Chaprer 6.
echo on
N=31;
T=1,
alpha=1/4;
a=—(N=1}/2:(N-1}/2; % the indices for ¢ T
% the expression for ¢ T is obained nex
for i=1:lengrhin).
g-Tix=0:
for m=—(N-1)/2:(N-1)/2,
g‘T(i)=g_T(i)+sanxrct4un/(NaTJ.a]phu,T)}*e.\pUm2*pi*Illtnl'1);"N).
end;
end.
% derive ¢ T(n-tN-1}j2)
nd=0:N—1;
To get the frequency response charecioristics
[G_T.Wl=freqzig_T. 11
o mormalized magnitude response
magG_T.in_dB=20«log| Mabs(G_TY/maxiabs(G_T)})
S impulse sesponse of the cascade of the transmutter and the reveiver filiers.
g-R=g T,
imp._resp_of_cascade=convig R,g_T)
P plotting commands follow

—EEE

Sunction {v} = xrcffialpha, T):
P {ylsarc(fuipha.T)

% Evaluates the expression Xrc(f). The parameters aipha and T
ki must ulse be given as inputs fo the function.
il {abs(f) = ((1+alpha) (2T,

y=0.

elseif (abs(f) > {{T—alpha)/(2+TW),

y={T/2)x(1+cos({pixT /alpha)s(abs()~(1—alpha}/ (26 TN},
else

y=T,
end;

Figure 6.21(a) illustrates gr(n - 21y, n = 0,1,... . N = 1 fora = Land v =31,
The corresponding frequency response characteristics are shown in Figure 6.21(b), Note
that the frequency response is no longer zero for | f] > (! +a)/ T, because the digital filter
has finite duration. However, the sidelabes in the spectrum are relatively small. Further
reduction in the sidelobes may be achieved by increasing &,

Finally, in Figure 6.22, we show the impulse response of the cascade of the transmitter
and receiver FIR filters. This may be compared with the ideal impuise response obtained
by sampling xc(f) atarate F, = 4/T.
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Figure 6.21: Impulse response and frequency response of truncated discrete-time FIR filter
at transmitter.

6.5.2 Signal Design for Controlled ISI

As we have ohserved from our discussion of signal design for zero ISI, aransmit filter with
excess bandwidth may be employed 1o realize practical transmitting and receiving filters
for bandlimited channels. On the other hand, suppose we choose to relax the condition of
zero ISI and thus achicve a symbol transmission in a bandwidth W = 1/2T i.e., with no
excess bandwidth. By allowing for a centrolled amount of 181, we can achieve the rate of
2W symbois/second.

We have already seen that the condition of zero ISLis x(nT) = 0 for n # 0. However,
suppose that we design the bandlimited signal 1o have controlled IST at one time instant.
This means that we allow one additional nonzero value in the samples {x(nT)}. The IS1
that we introduce is deterministic, or "“controlled”; hence. it can be taken into account at
the receiver, as discussed beiow.

In general, a signal x{r} that is bandlimited to W hertz, i.e.,

X(fy=0 LAl =W (6.5.10}
can be represented as
22 n oy sin2r W —n/2W)
0= Y+ (5) Sewe -y 6510

n=-—ca

This representation follows from the sampiing theorem for bandlimited signals. The spec-
trum of the bandlimited signal is

e e i b 1 et
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Figure 6.22: Impulse response of the cascade of the transmitter filter with the matched filter
at the receiver.

o .
X(f)=] x(tye~F3 S gt
-0
1 > n
— " Y minnfiW W
=l R;; (2w) ¢ A (6.5.12)
0, fl>w

One special case that leads to physically realizable transmitting and receiving filters is
specified by the samples

n I, n=0,1
— 1= = 6.5.13
* (ZW) x(nT) l(), otherwise { )

The corresponding signal spectrum is
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| y
— [1 +e*”ffw]‘ Fl<W

X(fr=qy2wW

0, otherwise
| T xf
L o—impw (TS W

={w’ €08 (zw)‘ /1< (6.5.14)
¢, otherwise

Therefore, x(r) is given by
x(t} = sme 2Wr) +sinc 2Wr = D {6.5.15)

where sine{¢} = sint/mr. This pulse is called a duobinary signal pulse. 1t is illustrated
along with its magnitude spectrum in Figure 6.23. We note that the spectrum decays Lo zero
smoathly, which means that physically realizable filters can be designed that approximate
this spectrum very closely. Thus, a symbol rate of 2W is achieved.

ST -aN_/-T o

Figure 6.23: Ducbinary signal pulse and its spectrum.
Another special case that leads to physically realizable transmitting and receiving filters

is specified by the samples

I, n=1
n
x (ﬁ) = A7) = { -1, n= -l (6.5.16)
0, otherwise

The corresponding pulse x(t) is given as

x{1) =sinc(2Wt + 1) —sinc 2Wr — 1) {6.5.17}
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and its spectrum is

| ; , i . oaf
AW W, d T
x5y =13w" ¢ Ve sy MW (6.5.18)
0, Fle W

This pulse and its magnitude spectrum are illustrated in Figure 6.24. Tt is called a modified
duobinary signai pulse. It 15 interesting 1o note that the spectrum of this signal has a zero
at f = 0, making it suitable for transmission over a channel that does not pass dc.

Figure 6.24: Modified ducbinary signal pulse and its spectrum.

One can obtain other interesting and physically realizable filter characteristics by se-
lecting different values for the samples {x(n/2W)} and moere than two nonzero samples.
However, as we select more noazero samples, the probiem of unraveling the controlled ISI
becomes more cumbersome and impractical.

The signals cbtained when controlled ISI is purposely introduced by selecting two or
more nonzero samples from the set {x(n/2W)) are called partial response signals. The
resulting signal pulses allow us 1o fransmit information symbols at the Nyquist rate of 2W

symbols per second. Thus greater bandwidth efficiency is obtained compared to raised
cosine signat pulses.
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H.LUSTRATIVE PROBLE

DNiustrative Problem 6.8 We wish to design a digital implementation of the transmitter
and receiver filters G7( f) and G g( ) such that their product is equal to the specirum of a
duobinary pulse and G p(f) is the matched filter to Gr(f).

. SCLUTION

To satisfy the frequency domain specification, we have

—l-cos(if;), |fl=sW
1Gr(NHGe(HI= W w (6.5.19)
0, fl> W
and, hence,
Lcos H—) Ifi<W
iGrifil= w 2w )’ - (6.5.20)
0, ifl>=W

Now, we follow the same approach as in Illustrative Problem 6.7 0 obtain the impulse
responses for an FIR implementation of the transmitter and receiver filters. Hence, with
W = 1/2T and F; = %, we have

(N-1372

grimy = 3

m=-(N=1}/2

N-1
gimmniN N N

(65.21)

and gr(n) = gr(n). The MATLAB script for this computation is given below,

% MATLAB scripe for IMustrative Problem 8, Chaprer 6.
echo on
N=31;
T=1;
W=1/(2xT),
n=—(N—1)/2:(N-1)/2;
% The expression for g.T is obtained next
for i=1:length(n},
g-T(H=0;
for m=—(N—1)/2:(N-1)/2,
if ( abs((4+m}/(N+T)) <= W ).
g-T{i=g-T{D+sqri{{1 /W)tcos{(Z*piaem),f(N*T*W)))texp(j*E:pitmm(i}/N);
end;
end;
end;

% the indices for g T
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% obrtn g Tin-{N-1i/2)

n2=0:N-1;

G obtain the frequency response chuaracterisnes

[G.T.Wl=freqz(g. T. 1),

%o normalized maymtide respanse

magG_T-in_dB=20xlog 10(abs(G_T)/maxtabs(G_Ti};

% Impulse response of the cascade of the trunsmitter and the receiver filters..
g-R=g. T,

imp_resp_of_cascade=conv(g_R.p T}

%o ploning commands follow

Figure 6.25(a) illustrates gr (n - "Vz") n=201,....N—1for N =3l The
corresponding frequency response characteristic is shown in Figure 6.25(). Note that the
frequency response characteristic is no longer zero for | fi > W because the digital filter
has finite duration, However, the sidelobes in the spectrum are relatively small. Finally, in
Figure 6.26, we show the impulse responsc of the cascade of the transmitter and receiver FIR
filters. This impulse response may be compared with the ideal impuise response cbtained
by sampling x(1) given by (6.5.17) atarate F, = 4/T = 8W.

n [ J—
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Figure 6.25; Impulse respense and frequency response of truncated discrete-time duobinary
FIR filter at the transmitier,

6.5.3 Precoding for Detection of Partial Response Signals

For the duobinary signal pulse, x(nT) = | for n = 0,1 and 0 otherwise. Hence, the
samples of the cutput of the receiver filter G z(f) are expressed as

Ye = Qg+ ag—1 + v (6.5.22)
=bi+ v

where {a ) is the transmitted sequence of amplitudes, {v,} is a sequence of additive Gaussian
noise samples, and by = ag + ag—;. Let us ignore the noise for the moment and consider
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Figure 6.26: Impulse response of the cascade of the transmitter fiiter with the matched filter
at the receiver.

the binary case where ay = +1 with equal probability. Then, by takes one of three possible
values, namely, b, = —2, 0. 2 with corresponding probabilities IL % and % If ag_; is the
detecled signal from the (k — [)st signaling interval, its effect on &y, the received signal in
the kth signaling intervat, can be eliminated by subtraction, thus allowing a4 to be detected.

The process can be repeated sequentially for every received symbol.

The major problem with this procedure is that errors arising from the additive noise tend
to propagate. For example. if ag_ is detected in error, its effect on a; is act eliminated;
in effect, it is reinforced by the incorrect subtraction. Consequenily, the delection of a; is
also likely to be in error.

Error propagation can be prevented by precoding the data at the transmitter instead of
eliminating the controlled IST by subtraction at the receiver, The precoding is performed on
the binary data sequence prior to modulation. From the data sequence | D) of 1’s and Qs
that is 10 be transmitted, a new sequence {py ], called the precoded sequence, is generated.
For the duobinary signat, the preceded sequence is defined as

Py =Dy © pi1, k=1,2,... {6,5.23)
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Dala sequence D 1 1{1]0 1 0 Djl1jojofo 1
Precoded sequence py 0|1 011 0 0 OfFLpL|1q1 ¢
Transmitted sequence g | —1 | 1 | =1 ] 1] 11 =1 IR EREER R
Received sequence by, -0 00}z Gl -=2j-=2{0|z2]2]2 0
Decoded sequence Dy -1 L1 o 1 0OJ1j0]afo0 1
Table 6.1: Binary signaling with ducbinary pulses.
whsre & denotes module-2 subtraction.! Then the transmitted signal amplitude is g = —1
ifpr =0anda; = 1if p, = 1. That is,
ap =2p — 1 {6.5.24)
The noise-free samples at the cutput of the teceiving filter are given by
by =k +apy
=CQp-D+Q2pa~1
=Upe+ pey ~ 1 (6.5.25)
Consequently,
!
Pe+t pr_t = Ebg +1 (6.5.26)

Since Dy = py @ py.. it follows that the data sequence { Dy} is obtained from {by} using
the relation

1
Dy = ibt +1 (mod?2) (6.5.27)

Therefore, if by = %2, then D, = 0, and if by = 0, then Dy = 1. Ap example that
illustrates the precoding and decoding operations is given in Table 6.1.

In the presence of additive noise, the sampled outputs from the receiving filter are given
by (6.5.22). In this case yp = by + v is compared with the two thresholds set at 4§ and
—1. The data sequence { Dy} is obtained according to the detection rule

L Iwl <1

Dy =
0, Inlz1

(6.5.28)

Thus precoding the data allows us to perform symbol-by-symbol detection at the receiver
without the need for subtraction of previously detected symbols,

! Although this operaticn is identical to modulo-2 addition, it is convenient to view the precoding operation for
duobinary in terms of modulo-2 subtraction.
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The extension from binary PAM to multilevel PAM usirg duobinary puises is straight-
forward. The M-level transmitted sequence {ay | resulis in a {noise-free) received sequence
by = ap + a4, k=1273 . (6.5.29)

which has 2M — | possible equally spaced amplitude levels. The amplitude levels for the
sequence {a;} are determined from the relation

ay = 2pp — (M — 1) (6.5.30)

where { py} is the precoded sequence that is oblained from an M-level data sequence { Dy}
according to the relation

py=Dp @ peoy (mod M) (6531

where the possible valucs of the data sequence {Dgare 01,2, M.
In the absence of noise, the samples at the output of the receiving filter may be expressed

as
by = ag + @
= [2pi = (M = D]+ [2p — (M = 1]
=2[pe + Pt — (M = 1] (6.5.32)
Hence,
Pet Pl = %bk + (M -1 (6.5.33)

Since Dy = pr + pe—1 (mod M), it follows that the transmitted data { Dy} are recovered
from the received scquence {5 ) by means of the relation

Dy = %b;‘ +{M =1 {(mod M} (6.5.34)

In the case of modified duobinary pulse, the received signal samples at the output of the
receiving filter Gg(f) are expressed as

Ye =@ — @G-z + V%
= by + v (6.5.35)

The precoder for the modified duobinary pulse produces the sequence {pi} from the data
sequence { Dy ] according to the relation

pe =Dy @ pr2 (mod My (6.5.36)

Erom these relations, it is easy to show that the detection rule for the recovering of the data
sequence { Dy} from {5} in the absence of noise is

Dy = %bk (mod M) (6.5.37)
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ILLUSTRATIVE PROBLE|

[ustrative Problem 6.9 Let us write a MATLAB program that takes a data sequence
{ Dy}, precodes it for a duobinary pulse transmission system to produce { g}, and maps the
precoded sequence into the wansmitted amplitude levels {#;]). Then from the transmitted
sequence {a; }, form the received noise-free sequence {b;} and, using the relation in (6.5.34),
recover the data sequence { Dy} .

B SOLUTION

The MATLAB script is given below. By using this program, we can verify the results
in Table 6.1 for the case where M = 2.

T MATLAR seript for Hlustrative Proplem O Chapter 6.
echo on
d={111010010001};
p(1)=0;
for i=1:lengthid)
pli+ =rem{p(ip+d(i),2);
end
a=2.#p-—-1,
bi1)=0;
dd(1)=0;
for i=1:length(d)
i+ 1 =a0i+ 1 3+ali),
d_out{i+1y=remib(i+1}/2+1,2);
end
d_out=d_out(2:length{d)+1)

6.6 Linear Equalizers

The most common type of channel equalizer used in practice to reduce 13 is a linear FIR
filter with adjustabie coefficients {c;}, as shown in Figure 6.27.

(On channels whose frequency response characteristics are unknown but time-invariant,
we may measure the channel characteristics and adjust the parameters of the equalizer; once
adjusted, the parameters remain fixed during the transmission of data. Such equalizers are
called preset equalizers. On the other hand, adaptive equalizers update their parameters on
a pericdic basis during the transmission of data, so they are capable of tracking a slowly
time-varying channel response.

First, let us consider the design characteristics for a linear equalizer from a frequency
domain viewpoint. Figure 6.28 shows a block diagram of a system that employs a linear
filter as a channel equalizer.

The demodulator consists of a receiver filter with frequency response Ggr( f} in cascade
with 2 channel equalizing filter that has a frequency response G g(f). As indicated in the
previous section, the receiver filtet response G g(f) is maiched to the transmitter response,
ie, Gr(f) == G3(f). and the product Gg(f)Gr(f) is usually designed so that either
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Unequalized

input
€,
Equalized
output
Algorithm for tap
£ain adjustment
Figure 6.27: Linear transversal filter.
Transmitter Receiver .
Input __| filter i Cl::tmncl filter =y Euna(h;Jcr [ Tp detector
data GA) §)] Ge(P) €
Noise
alr)

Figure 6.28: Block diagram of a system with an equalizer.
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there is zero ISl at the sampling instants as, for example, when Gr)Gr(f) =X () or
controlled [SI for partial response signals.

For the system shown in Figure 6.28, in which the channel frequency response is not
ideal, the desired condition for zero IS] i

GrNCIAIGRIAGEF) = Xl ) 6.6.1)

where X (f) is the desired raised-cosine spectral characteristic. Since Gr(f) Gg(f) =

Xee{ ) by design, the frequency response of the equalizer that compensates for the channel
distortion is

1 |

Grifl = —— = /%0 {6.6.2)
f iy 1CLny

Thus, the amplitude response of the equalizer is IGe(F) = 1/1C(ON and its phase
response is B (f) = —Ac{ ). In this case, the equalizer is said to be the inverse channel

Jfilter to the channel respense.
We note that the inverse channel filter completely eliminates [ST caused by the channel.
Since it forces the 151 to be zero at the sampiing instants t = kT for k = 0, 1, .. .. the

2k = i+ Ny, k=01,... (6.6.3)

where n; represents the additive noise and ay, is the desired symbaol.

In practice, the [SI caused by channel distortion is usually limited to a finite number of
symbols on either side of the desired symbol. Hence, the number of terms that constitute
the [SIin the summation given by (6.4.7) is finite. Asa consequence, in practice the channel
equalizer is implemented as a finite-duration impulse response (FIR) filter, or transversal
filter, with adjustable tap coefficients {c,}, as illustrated in Figure 6.27. The time delay
T between adjacent taps may be selected as large as T, the symbol interval, in which
case the FIR equalizer is called a symbol-spaced equalizer. In this case the input to the
equalizer is the sampled sequence given by (6.4.6). However, we note that when the symbol
rate |/T < 2W, frequencies in the received signal above the folding frequency 1/T are
atiased into frequencies below | /7. In this case, the equalizer compensates for the alinsed
channel-distorted signal.

On the other hand, when the time delay ¢ between adjacent iaps is selected such that
1/t = 2W > 1/T, noaliasing occurs; hence the inverse channel equalizer compensates for
the true channel distortion. Since v < T, the channel equalizer is said to have fractionally
spaced taps, and itis called a fractionally spaced equalizer. In practice, t is often selected
at 7 = T /2. Notice that, in this case, the sampling rate at the input to the filter G(f) is %

The impulse response of the FIR equalizer is

£
gE(D) = D bt —n1) (6.6.4)

n=—K
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and the corresponding frequency response 18

K
Gelf) = 3 e /™I (6.6.5)

n=—~x

where {c,} are the 2K + | equalizer coefficients and X is chosen sufficiently lasge so that
the cqualizer spans the length of the ISL te,, 2K 4+ 1 = L, where L is the number of signal
samples spanned by the IS0 Since X (/) = G (IC(HIGr(f) and {7} is the signal pulse
corresponding to X (f), the equalized output signal pulse is

K
gty = Z CpX(f —nt} (6.6.6)

n=-K

The zero-forcing condition can now be applied to the samples of g () taken at timest = mT.
These samples are

Iy
gimTYy = Z gpximT — nt), m=0,%l....,£K {6.6.7)
n=—K

Since there are 2K + | equalizer coefticients. we can control only 2K + [ sampled values
of g(r). Specifically, we may force the conditions

K
qim = Z cpx(mT —ntd
=K
. m=0

=1" {6.6.8)
0, m==x1,%2,... %K

which may be expressed in matrix torm as X¢ = ¢, where X isa 2K + 1) x (2K + 1}
matrix with elements x(mT —nt), ¢ is the (2K + 1} coefficient vector, and ¢ isthe 2K + 1)
column vector with one nonzero element. Thus, we obtain a set of 2K + 1 linear equations
for the coefficients of the zero-forcing equalizer.

We should emphasize that the FIR zero-forcing equalizer does not completely eliminate
ISIbecause it has a finite length. However, as K is increased, the residual 1S1can be reduced
and in the limit of K — o0, the IS is completely eliminated.

ILLUSTRATIVE PROBLEM

Tilustrative Probiem 6.10 Consider a channel distorted pulse x(r), at the input to the equal-
izer, given by the expression

MO =TT
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where 1/ 7 is the symbo! rate. The pulse is sampled at the rate 2/T and is equalized by a
zero-forcing equalizer. Let us determine the coefficients of a five-tap zero-forcing equalizer.

B SOLUTION

According to (6.6.8), the zero-forcing equalizer must satisfy the equations

I, m=0

2
- nT
T) = x(mT -2y =
g(mT) = 3 caxlmT = =) 8, m=xl £2

n=-2

The matrix X with elements x(mT — nT/2} s given as

F O L
3 W T 2w W
P S S S
I [ ¥
I 1 [
Y=|5 1 1 1 5 (6.6.9)
| L
7 16 5 2
S IS R
7 % 77 W 3
The coefficient vector ¢ and the vector g are given as
[ G
c_y o
c=1 ¢ g=11 (6.6.10}
cr 0
€2 0

Then, the linear equations X ¢ = g can be solved by inverting the matrix X. Thus we obtain

-2.2
4.9
Cop=X"lg=| -3 (6.6.11)
4.9
22

Figure 6.29 illustrates the original pulse x{¢) and the equalized pulse. Note the small amount
of residual ISI in the equalized pulse. The MATLAB script for this computation is given
below.

%o MATLAB script for Hiustrative Problem 10, Chapter 6.
echo on

T=1;

Fs=2/T;
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Ts=1/Fs;

coopt=(-2.2 49 -3 49 -2.2]

t=—3+T.T/2:5+T;

=1 /+(2/Tiwt). * 21 % sampled puise

equalized_x=Fflter{z_opt.1.[x Q O});

Fo to take care of the deluy

equalized _x=equalized _x(3:lengthiequalized_x));

T Nuw, let us downsample the equalizer oulput

for i=1.2:lengthiequalized_x),
downsampled_squalizer_output((i+13/2)=equaiized _x(1):

end;

% plotting commands folivw

% since there will be u delay uf two semples at the output

'
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!
I
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35 °
! 04
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qu- 3 vz
“ ? ? 1 L]
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a 5 T L ‘E 1944 a
a8t : 1 = W 5 1) o2 ] g 0 0 W (3

(a) Original pulse 1b) Equalized pulse

Figure 6.29: Graph of original puise and equalized pulse in lllustrative Problem 6.10.

One drawback to the zero-forcing equalizer is that it ignores the presence of additive
noise. As a consequence, its use may result in significant noise enhancement. This is
eastly seen by noting that in a frequency range where C{ f) is small, the channel equalizer
Ge(f) = 1/C{f) compensates by placing a large gain in that frequency range. Conse-
quently, the noise in that frequency range is greatly enhanced. An alternative is to relax the
zero 18] condition and select the channel equalizer characteristic such that the combined
power in the residual ISI and the additive noise at the output of the equalizer is minimized.
A channel equalizer that is optimized based on the minimum mean-square error (MMSE)
criterion accomplishes the desired goal.

To elaborate, let us consider the noise corrupted output of the FIR equalizer, which is

K

2= cayit—n7) (6.6.12)
n=—K

where y(¢) is the input to the equalizer, given by (6.4.3). The equalizer output is sampled
at times ¢ = mT. Thus, we obtain

i i n. i s e
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«
dmTy= 3" cuy(mT —nr) (6.6.13}

n=-—K

The desired response at the output of the equalizer at t = T is the transmitted symbol
am. The error is defined as the difference between dy and 2(mT). Then, the mean-square
error (MSE) between the actual output sample :(m7T) and the desired vaiues a,, is*

MSE = E{zimT) — g,

-

I 2

£ Z ca¥(mT —nt) —an

==K

K K

K
=3 nck Ry = k) =2 3 eRuy(6) + Ellaml)  (66.14)
n=-K k=—K k=K

where the correlations are defined ag

Ry(n —k) = E[y*(mT - nt)y(mT — k1))
Ry (k) = E[y(mT —kt)a],] {6.6.15)

and the expectation is taken with respect to the random informaticn sequence {an,} and the
additive noise.
The minimum MSE solution is obtained by differentiating (6.6.14) with respect to the

equalizer coefficients {¢,}. Thus we obtain the necessary conditions for the minimum MSE
as

K
Y Ryn— k) = Ry(k). k=0, £ 22, . tK (6.6.16)

n=-K

These are the 2K +- 1 linear equations for the equalizer coefficients. In contrast to the zero-
torcing soluticn described previously, these equations depend on the statistical properties
(the autocorrelation) of the noise as well as the [SI through the autocorrelation Ry(m).

In practice, the autocorrelation matrix Ry (n} and the cross-correlation vector Rayy(n) are
unknown a priori. However, these correlation sequences can be estimated by transmitting
a test signal over the channel and using the lime-average estimates

[ this development we allow the signals z{¢) and y(¢) to be compiex-valued and the dara, sequence also to be
complex-valued.
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X
Ryin) = %k);y*m — RT)YKT)
1 K
Raylm) = — Y ykT —nvda; (6.6.17)

-
i

in place of the ensemble averages to solve for the equaiizer coefficients given by (6.6.16).

ILLUSTRATIVE PROBLE

Nlustrative Problem 6.11 Let us consider the same channel-distorted pulse x(r) as in
Ilustrative Problem 6.10, but new we shall design the five-tap equalizer based on the
minimum MSE criterion. The information symbols have zero mean and unit variance and
are uncorrelated, i.e.,

E(ﬂ:!) =10
E(aqnamy =0, n#Em
Ela, [y = 1

The additive noise v(t} has zero mean and autocorrelation

@u(T) = %5(1’)

—=IEND-

The equalizer tap coefficients are obtained by solving (6.6.16) with K = 2and r =T /2.
The matrix with elements Ry{(r — k) is simpiy
Ni
Ry=X'X+ 31

where X is given by (6.6.9) and 1 is the identity matrix. The vector with elements Rqy (k)
is given as

w—

Ruy =

— e — b—

The equalizer coefficients obtained by solving (6.6.16) are as follows:

[ —
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0.0056

—0.7347

Copr = | 1.6761
-0.7347

0.0956

A plot of the equalized pulse is shown in Figure 6.30. The MATLAB script for this
computation is given helow.

% MATLAB scripr for Hiuswative Probiem 11, Chuapier 6
echo an
T=1;
for n=—2:2,
for k=—2:2,
emp=0;
for i=—2:2,
termp=temp+(1 /0 1+n—07" 203 /(1+(k—i) " 2;
end;
X(k+3n+3)=temp;
end;

end;
NO=0.01; % assuming that NO=0.0/
Ry=X+({N0/2)seve(5);
Riy=[1/5 1/2 1 1/2 1/5).":
c_opt=inv(Ry)=Riy;
% find the equalized puise..
t=—3:1/2:3;
x=1, /(1 +(2x1/T)."2);
equalized.pulse=conv{x,c_opt);
% decimate the pulse o get the sampies ar the symbol rare
decimated_equalized_pulse=equalized.pulse(1:2: length(equalized_pulse)).
% ploting command follmws

% optimal tap coefficiencs

G sumpled pulse

6.6.1 Adaptive Linear Equalizers

We have shown that the 1ap coefficients of a linear equalizer can be determined by solving
a set of linear equaticns. [n the zero-forcing optimization criterien, the linear equations are
given by (6.6.8). On the other hand, if the optimization criterion is based on minimizing
the MSE, the optimum equalizer coefficients are determined by solving the set of linear
equations given by (6.6.16).

In both cases, we may express the set of linear equations in the general mairix form

Be=d {6.6.18)

where Bisa (2K + 1) x (2K + 1) matrix, ¢ is a column vector representing the 2K + |
equalizer coefficients, and 4 is a (2K + 1)-dimensional column vector. The soiution of
(6.6.18) yields
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Figure 6.30: Plot of the equalized pulse in Illustrative Problem 6.11.

copt=B'd (6.6.19)

In practical implementations of equalizers, the solution of (6.6.18) for the optimum
coefficient vector is usually obtained by an iterative procedure that avoids the explicit
computation of the inverse of the matrix B, The simplest iterative procedure is the method
of steepest descent. in which one begins by choosing arbitrarily the coefficient vector ¢,
say, cp. This initial choice of coefficient vector ¢g corresponds 10 a point on the criterian
function that is being optimized. For example, in the case of the MSE criterion, the initial
guess ¢y correspends 1o a point on the quadratic MSE surface in the (2K + 1)-dimensional
space of coefficients. The gradient vector, defined as gg, which is the derivative of the MSE
with respect to the 2K + | filter coefficients, is then computed at this point on the criterion
surface, and each tap coefficient is changed in the direction opposite to its corresponding
gradient component. The change in the jth tap coefficient is proportional to the size of the
Jth gradient component,

For example, the gradient vector, denoted as g, for the MSE criterion, found by taking
the derivatives of the MSE with respect to each of the 2X + 1 coefficients, is

gi=Bey —d, k=0,12,... (6.6.20)

Then the coefficient vector ¢, 1s updated according to the relation

Citl =Ck — Agr (6.6.21}
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where A is the step-size parameter for the iterative procedure. To ensure convergence
of the iterative procedure, A Is chosen to be a small positive number, In such a case, the
gradient vector g converges toward zero, Le.. gy — 0 ask — 00, and the coefficient
VECIOT £ — Copy, a8 illustrated in Figure 6.31 based on rwo-dimensional optimization. Tn
general, convergence of the equalizer tap ceefficients to c,p cannot be attained in a finite
number of iterations with the steepest-descent method. However, the optimum soluticn
Copt €an be approached as closely as desired in a few hundred iterations. In digital com-
munication systems that employ channel equalizers, each iteration corresponds (o a time
interval for sending one symbol; hence, a few hundred iterations to achieve convergence to
Capr cOrTespond to a fraction of a second.

Initial guess

p

Figure 6.31: Example of the convergence characteristics of a gradieat algorithm.

Adaptive channel equalization is required for channels whose characteristics change
with time. In such a case. the [SI varies with time. The channel equalizer must track such
time variations in the channel response and adapt its coefficients to reduce the ISL In the
context of the above discussion, the optimum coefficient vector Copt Varies with time due to
time variations in the matrix B and, for the case of the MSE criterion, time variations in the
vector d. Under these conditions, the iterative method described above can be modified to

use estimates of the gradieni components. Thus, the algorithm for adjusting the equalizer
lap coefficients may be expressed as

Chp1 =& — A (6.6.22)

where g, denotes an estimaie of the gradient vector g; and & denotes the estimate of the
tap coefficient veclor.

In the case of the MSE criterion, the gradient vector &r given by (6.6.20) may also be
expressed as

gt = —E{ery})
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An estimate gy of the gradient vector at the kth iteration is computed as

Be= —eur (6.6.23)

where ¢, denotes the difference between the desired output from the equalizer atthe kth ime
instant and the actual output z{kT) and y; denotes the column vector of 2K + 1 received
signal values contained in the equalizer at ime instant &. The error signal e is expressed
as

ey = Ay — Ik (6.6.24)

where 1 = z{kT) is the equulizer output given by ¢6.6.13) and ay, is the desired symbol.
Hence. by substituting (6.6.23) into (6.6.22), we obtain the adaptive algorithm for optimizing
the taps coefficients {based on the MSE criterion) as

fha = €k + Aey y,:.‘ (6623

Since an estimate of the gradient vector is used in (6.6.23), the algorithm is called a stochastic
gradient algorithm, 1L is also known as the LMS atgorithm.

A block diagram of an adaptive equalizer that adapts iis tap coefficients according (0
{6.6.25) is illustrated in Figure 6.32. Nale that the difference between the desired output
a; and the actual output i from the equalizer is used to form the error signal ;. This
error is scaled by the step-size parameter A, and the scaled error signal Aegg multiples the
received signal values {y(kT — nt)} at the 2K + | taps. The products Aeg y* (kT — nt) at
the 2K + 1 taps are then added 10 the previous values of the tap coefficients to obtain the
updated tap coefficients, according to (6.6.25). This computation is repeated as each new
signal sample is received. Thus, the equalizer coefficients are updated at the symbol rate.

Initially, the adaptive equalizer is trained by the transmission of a known pseudorandom
sequence {a,} over the channel. At the demodulator, the equalizer employs the known
sequence to adjust its coefficients. Upon initial adjustment, the adaptive equalizer switches
from a training mode to a decision-directed mode, in which case the decisions at the output
of the deteclor are sufficiently reliable so that the error signal is formed by computing the
difference between the detector cutput and the equalizer output, i.e.,

e = G — 2 (6.6.26)

where dy is the output of the detector. In general, decision errors at the output of the detector
oceur infrequently; consequently, such errors have litile effect on the performance of the
tracking algorithm given by (6.6.25).

A rule of thumb for selecting the step-size parameler in order (o ensure convergence
and good tracking capabilities in slowly varying channels is

1

_ _ (6.6.27T)
52K + V) Px

A
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A Curtput

Figure 6.32: Linear adaptive equalizer based on the MSE criterion.

whe;:e Pg denotes the received signal-plus-noise power, which can be estimated from the
received signal.

ILLUSTRATIVE PROBLE

Hlustrative Problem 6.12 Let us implement an adaptive equalizer based on the LMS
algorithm given in (6.6.25). The channel number of taps selected for the equalizer is
2K + 1 = 1. The received signal-plus-noise power Pg is normalized to unity. The
chaanel characteristic is given by the vector x as

x =[0.05 —-0.063 0.088 —0.126 - 0.25 0.9047 0.25 0 0.126 0.038 0.088]

. SOLUTION

. The convergence charactenstics of the stochastic gradient algorithm in (6.6.25} are
illustrated in Figure 6.33. These graphs were obtained from a computer simulation of the
1 l-[.ap adaptive equalizer. The graphs represent the mean-square error averaged over several
realizations. As shown, when A is decreased, the convergence is slowed somewhat, but a
lower MSE is achieved, indicating that the estimated coefficients are closer to cop.

The MATLADB script for this example is given below. ?

— D

% MATLAB script for Hlustrative Probiem 12, Ckapter 6.
echo on

N=500; % length of the information sequence
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Figure 6.33: Initial convergence characteristics of the LMS algorithm with different swep
sizes.

K=5;
actual_isi={0.05 ~0.063 0.088 -0.126 -0.25 0.9047 0.25 0 0.126 0.038 0.088):
sigma=0.01;
delta=0.115;
Num_of_realizations=1000;,
mse_av=zeros( 1, N—2xK);
for j=1:Mum_of_realizations, Y% compute the average over a number of realizations
% the information sequence
for i=1:N,
if (rand <0.5),
info{i)=—1;
else
info(i)=1;
end;
end;
% the channel output
y=filter{actual_isi,1 info);
for i=1-2:N,
{noise{i) noise(i+1)Y)=gngauss(sigma};
end.
y=y+noise;
% nrow the equalization parc follows
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estimaed_c=[0 0 0 0 01 00000, % imngd ertimue af 18T
for k=1:N-2«K,
y_k=y{kk+2+K);
z_k=estimated.csy_k.* ;
e_k=info{k}—z_k;
estimated_c=estimated_c+deltaxe. sy _k:
mse(k)=e_k"2;
end;
Mmse_av=mse._av+mse;
end;

mse_av=mse_av/Num_aof_realizations; T mean-sqrare error versas iteraftons
% plotting commands jollow

Although we have described in some detail the operation of an adaptive cqualizer that
is optimized on the basis of the MSE criterion, the operation of an adaptive equalizer
based on the zero-forcing method is very similar, The major difference lies in the method
for estimating the gradient vectors g, at each iteration. A block diagram of an adaptive
rero-forcing equalizer is shown in Figure 6.34.

f

Figure 6.34: An adaptive zero-forcing equalizer.

6.7 Nonlinear Equalizers

The linear filter equalizers described above are very effective on channels, such as wire line
telephone channels, where the ISI is not severe. The severity of the ISI is directly related
to the spectral characteristics of the channel and not necessarily to the time span of the 1SL,
For example, consider the 1SI resulting from two channels, illustrated in Figure 6.35. The
time span for the ISTin Channel A is five symbol intervals on each side of the desired signal
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component, which has a value of 0.72. On the other hand, the time span for the ISI in
Channel B is one symbol interval on each side of the desired signal compenent, which has
a value of 0.815. The energy of the total response is normalized 1o unity for both chanrels.

0815
072 0.407 0,407
0.36 0.1
07 0.07
0.04 0 [ I 0.03
' ! y
s 1| e 7 e 7
-{.05 T
-0.21
-0.5
(a) Channel A {b) Channel B

Figure 6.35: Two channels with ISL.

In spite of the shorter ISI span, channe! B results in more severe ISL This s evidenced
in the frequency response characterisiics of these channels, which are shown in Figure 6.36.
We observe that channel B has a spectral null (the frequency response C(f) = O for some
frequencies in the band | f| = WY at f = 1/2T, whereas this does not occur in the case
of channel A. Consequently, a finear equalizer will introduce a large gain in its frequency
response to compensate for the channel nutl. Thus, the noise in channel B will be enhanced
much more than in channel A. This implies that the performance of the linear equalizer for
channe] B will be sufficiently poorer than that for channel A. In general, the basic limitation
of a linear equalizer is that it performs poorly on channels having spectral nulls. Such
channels are often encountered in radic communications, such as ionospheric ransmission
at frequencies below 30 MHz and mebile radio chanoels, such as those used for cellular
radio communications.

A decision-feedback equalizer (DFE} is a nonlinear equalizer that employs previous
decisions to eliminate the ISI caused by previously detected symbols on the current symbol
to be detected. A simple block diagram for a DFE is shown in Figure 6.37. The DFE consists
of two Alters. The first filter is called a feedforward filter; it is generally a fractionalty
spaced FIR filter with adjustable tap ccefficients. This filter is identical in form to the linear
equalizer described above. Its input is the received filtered signal y (1) sampled at some rate
that is a multiple of the symbol rate, &.g., at rate 2/ T. The second filter is a feedback filter.
It is implemented as an FIR filter with symbol-spaced taps having adjustable coefficients.
Its input is the set of previously detected symbols. The output of the feedback filter is
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Figure 6.36: Amplitude spectra for {a) channel A shown in Figure 6.35(2) and (b) channel
B shown in Figure 6.35(b}.

subtracted from the output of the feedforward filter to form the input 1o the detector, Thus,
we have

Ny Ny
Im = Z epy(imT —nt) — an&m .

A=l n=|

where {c,} and {b,} are the adjustable coefficients of the feedforward and feedback filters,
respectively, @m—n, n = 1,2,.... N, are the previously detected symbols, ¥ is the length
of the feedforward filter, and N3 is the length of the feedback filter. Based on the input
Zm. the detector determines which of the possible transmitted symbols is closest in distance
to the input signal a,. Thus it makes its decision and outputs 4. What makes the DFE
nonlinear is the nenlinear characteristic of the detector that provides the input to the feedback
filter.

The tap coefficients of the feedforward and feedback filters are selected to optimize some
desired performance measure. For mathematical simplicity, the MSE criterion is usually
applied, and a stochastic gradient algorithm is commonly used to implement an adaptive
DFE. Figure 6.38 illustrates the block diagram of an adaptive DFE whose tap coefficients
are adjusted by means of the LMS stochastic gradient algorithm.

We should mention that decision errors from the detector that are ted to the feedback filter
have a small effect on the performance of the DFE. In general, a small loss in performance
of 1 to 2 dB is possible at error rates below 1072, but the decision errors in the feedback
filters are net catastrophic.

Although the DFE outperforms a linear equalizer, it is not the optimum equalizet from
the viewpoint of minimizing the probability of error in the detection of the information



274

CHAPTER 6. DIGITAL TRANSMISSION THROUGH BANDLIMITED CHANNELS

Sl."l::!atl Feedforward
18 filter

fvat -

Detector Output data

Feedback (1
filter

Figure 6.37: Block diagram of a DFE.
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Figure 6.38: Adaptive DFE.
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sequence {a;} from the received signal samples {y,} given in (6.4.6). In a digital com-
munication system that transmits information over a channel that cavses ISI, the optimum
detector is a maximume-likelihood symbol sequence detector that produces at its output the
most probable symbol sequence {d,) for the given received sampled sequence {y¢}. That
is, the detector finds the sequence {d;) that maximizes the likelthood function

Allag)) = In p({yed | {ae )y

where p({y} | {a)) is the joint probability of the received sequence {y;} conditioned on
{ax]. The sequence of symbols {d,} that maximizes this Joint conditional probability is
called the maximum-likelihood sequence detector.

An algorithm that implements maximum-likelihood sequence detection (MLSD) is the
Viterbi atgorithm, which was originally devised for decading convolutional codes as de-
scribed in Section 8.3.2. For 2 descriplion of this algorithm in the context of sequence
detection in the presence of IST, the reader is referred to [3,4).

The major drawback of MLSD for channels with IS is the exponential behavior in
computational complexity as a function of the span of the IS1, Consequently, MLSD is
practical only for channels where the 1SI spans only a few symbols and the ISI is severe,
in the sense that it causes a severe degradation in the performance of a linear equalizer or
a decision-feedback equalizer. For example, Figure 6.39 iilfustrates the error probability
performance of the Viterbi algorithm for a binary PAM signal transmitted through channel
B (see Figure 6.35). For purposes of comparison, we also illustrate the probability of
error for a DFE. Both results were obtained by computer simulation. We observe that the
performance of the ML sequence detector is about 4.5 dB better than that of the DFE at
an error probability of 1079, Hence, this is one example where the ML sequence detector
provides a significant performance gain on a channel with a relatively short ISI span.

In conclusion, channel equalizers are widely used in digital communication systems to
mitigate the effects of ISI cause by channel distortion. Linear equalizers are generaily used
for high-speed modems that transmit data over telephone channels. For wireless (radio)
transmission, such as mobile cellular communications and interoffice communications, the
muttipath propagation of the transmitted signal results in severe ISI. Such channels require
more powerful equalizers to combat the severe ISI. The decision-feedback ¢qualizer and

the MLSD are two nonlinear channel equalizers that are suitable for radio channels with
severe [SL
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Figure 6.39; Error probability of the Viterbi algorithm for a binary PAM signa! transmitted
through Channel B in Figure 6.35.
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Problems

6.1 The Fourier transform of the rectangular pulse in lllustrative Problem 6.1 and the power
spectrum 8,.( f) can be computed numerically with MATLAB by using the discrete Fourier
transform (DFT) or the FFT algorithm, Let us normalize 7 = L and o2 = 1. Then, sample
the rectangular pulse gir) att = &/10fork =0,1,2, ..., 127. This yields the sequence
{ge) of sample values of g(¢). Use MATLAB to compute the 128-point DFT of g4} and
plot the values |Gt form =0,1... ., 127 Also plot the exact spectrum | G( f) 12 given
in {6.2.13) and compare the \wo resuits.

6.2 Repeat the compuration in Problem 6.1 when the puise g(1} given as

] 27r
=]l —-cos—], O0=<t=<T
g{ty=142 T

=

otherwise
Let T = 1 for this computation.

6.3 Write & MATLAB program to compulte the pewer spectrum §,( f) of the signal ¥ (1)
when the pulse g{(t} s

1 2mt
=[l—cos—]. O0=xr&T
giry=4{12 T

0, otherwise
and the sequence {a, ) of signal amplitudes has the correlation function given by (6.2.14).

6.4 Use MATLAB to design an FIR linear-phase filter that models a lowpass bandlimited
channel that has a %-dB ripple in the passband | £ |< 3000 Hz and a stopband attenuation
of —40 dB for { £} > 3500. Plot the impulse response and the frequency response.

6.5 Write a MATLAB program to design an FIR linear phase filter that models a lowpass
bandiimited channel with desired amplitude response
_ N 1fl <3000
A= 0, f > 3000
via the window method, using a Hanning window.

6.6 Write a MATL.AB program that generates the impuise response for the two-path mul-
tipath channel in Ilustrative Problem 6.5 and plot the impulse response for p = 0.95 and
a delay of 5 samples.
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6.7 WriteaMATLAB simulation program that implements channel ! in Illustrative Problem
6.6, and measure the error rate when 10,000 binary data {£1] are transmitted through this
channel. The channel is corrupted by AWGN with variance 02 = 0, 02 = 0.1, ¢? =
02, ¢2=05ando? = 1.0

6.8 Repeat Problem 6.7 for the following channel:

l, n=0
xn= 1025 n==%1
0, otherwise

6.9 Write a MATLAB program that generates the sampled version of the iransmit filter
impuise response gr(t) given by (6.5.9) for an arbitrary value of the roll-off factor a.
Evaluate and plot gr{n) foroa = % and N = 31. Also, evaluate and plot the magnitude
of the Irequency response characteristic for this filier. (Use a 4N-point DFT of g7 (n) by
padding gr(n) with 3N zeros.)

6.10 Write a MATLAB program that compules the overall impulse response of the cascade
of any transmit filter g7 (n) with its matched filter at the receiver. This computation may be
performed by use of the DFT as follows. Pad gr{n) with N — 1 (or more) ('s and compute
the (2N — 1)-point {or more) DFT. This yields Gr(k) . Then form |Gy (k|2 and compute
the (2N — 1)-point inverse DFT of |G (k)|2. Evaluate this overall impuise response for
the filter in Problem 6.9 and compare this result with the ideal impulse response cbtained
by sampling x,.(t) atarate F, =4/7.

6.11 RepeatProblem6.9 for N = 21 and N = 41. Plotand compare the frequency response
of the discrete-time filters with those in Problem 6.9. Describe the major differences.

6.12 Write a MATLAB program that takes a data sequence { Dy}, precodes it for a modified
duobinary pulse transmission system to produce {pg}, and maps the precoded sequence
into the transmitted amplitude levels {a;}. Then from the transmitted sequence, form the
received noise-free sequence {b; = ax — ax—2} and, using the relation given by (6.5.36),
recover the dala signal {Dy). Run the program for any pseudorandom data sequence [ Dy}
for M =2 and M = 4 transmitted amplitude levels and check the results.

6.13 Write a MATLAB program that performs a Monte Carlo simulation of a binary PAM
communication system that employs ducbinary signal pulse, where the precoding and am-
plitude sequence {ax} are performed as in [llustrative Problem 6.9. Add Gaussian noise
to the received sequence {b;} as indicated in (6.5.22) to form the input to the detector and
use the detection rule in {6.5.28) to recover the data. Perform the simulation for 10,000
bits and measure the bit-error probability for 2 = 0.1, 02 = 0.5, and 0% = I. Plot
the theoretical error probability for binary PAM with no 1SI and compare the Monte Carlo
simulation results with this ideal performance. You should ebserve some small degradation
in the performance of the duobinary system.
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6.14 Repeat Problem 6.9 for a sampling rate F; = 8/T, o = %. and ¥ = 61. Does the

higher sampling rate result in a better frequency response characteristic, i.e., actoser match
0 Xl f)?

6.15 For the filter designed in Problem 6,14, compute and plot the output of the cascade of
this fiiter with its matched filter using the procedure described in Problem 6.10. Compare
this sampled impulse respense with the ideal impulse response obtatned by sampling x,.(t)
atarate F, = 8/T. Does this higher sampling rate result in a better approximation of the
discrete-time filter impulse response 1o the ideal &lier impulse response?

6.16 Write a MATLAB program that generates the sampled version of the transmit fiiter
impulse Tesponse gr (1) given by (6.5.21) for the modified duobinary pulse specified by
(6.5.18). Evaluate and plot gr(n) for N = 3L, Also, evaluate and plot the magnitude of
the frequency response of this filter.

6.17 Repeat Problem 6.10 for the filter designed in Problem 6.16.

6.18 Repeat Problem 6.16 for ¥ = 21 and N = 41. Compare the (requency responses of
these filters with the frequency response of the filter designed in Problem 6.16. What are
the major differences in these frequency response characteristics?

6.19 Consider the channel distorted pulse x () given in Dlustrative Problem 6.10. The pulse
is sampled at the rate 2/ T and equalized by a zero-forcing equalizer with 2K + 1 = 1§
taps. Write a MATLAB program to solve for the coefficients of the zero-forcing equalizer.
Evaluate and plot the output of this zero-forcing equalizer for 50 sampled values.

6,20 Repeat Problem 6.19 for a MSE equalizer with Ny = 0.01, Np = 0.1, and N = 1.0.

Compare these equalizer coefficients with those obtained in Preblem 6.19 and comment on
the results as Ny is varied.

6.21 Write a generai MATLAB program for computing the tap coefficients of an FIR
equalizer of arbitrary length 2K + | based on the MSE criterion, given as input the sampled
values of the pulse x(r) taken at the symbol rate and the spectral density of the additive
noise Ng. Use the program to evaluaie the coefficients of an L1-tap equalizer when the
sampled values of x(1) are

l, nm=0
HnT) = 05, n=#l1
03, n=43
0.1, n=++4

Ny = 0.01, and Ny = 0.1. Alsoe, evaluate the minimum MSE for the optimum equalizer
coefficients.
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6.22 For the channel characteristics given in Problem 6.21, evaluate the coefficients of the
MSE equatizer and the minimum MSE when the number of equalizer taps is 21. Compare
these equalizer coefficients with the values of the coefficients obtained in Problem 6.21
and comment on whether the reduction in the MSE obtained with the longer equalizer is
sufficiently large to jusufy its use.

6.23 The amount of residual IST at the oulput of an equalizer can be evaluated by convolving
the channel sampled response with the equalizer coefficients and observing the resulting
ocutput sequence. Write a MATLAB program that compules the output of the equalizer
of a specified length when the input is the sampled channel characteristic. For simpticity,
consider the case where the equalizer is a symbel-spaced equalizer and the channel sampled
response also congists of symbol-spaced samples. Use the program to evaluate the cutput
of a zero-forcing, symbol-spaced equalizer for the channel response given in Problem 6.21.

6.24 Write a MATLAB Monte Carlo simulation program that simulates the digiial commu-
nication system that is modeled in Figure P6.24. The channel is modeled as an FIR filter
with symbol-spaced values. The MSE equalizer is also an FIR filter with symbol-spaced
tap coefficients. Training symbols are transmitted initially to train the cqualizer. In the
data mode, the equalizer employs the cutput of the detector in forming the error signal.
Perform a Monte Carlo simulation of the system using 1000 training (binary) symbols and
10,000 binary data symbols for the channel model given in Problem 6.21. Use Ny =0.01,
Ny = 0.1, and Ny = \. Compare the measured error rate with that of an ideal channel with
no ISL.

Binary {a,] Channel Adaptive (4.}
daa "+ (FIR filter ~r) MSE |——
source model} T equalizer
AWGN
Figure P6.24

Chapter 7

Digital Transmission via Carrier
Modulation

7.1 Preview

In the twe previous chapters we considered the transmission of digital :nformation through
baseband channels. [n such a case, the information-bearing signal is transmitted directly
through the channel without the use of a sinusoidal carrier. However, most communication
channels are bandpass channels; hence, the only way to transmit signals through such
channels is by shifing the frequency of the informaton-bearing signal to the frequency
band of the channel.

In this chapter, we consider four types of carrier-modulated signals that are suitable for
bandpass channels: amplitude-modulated signals, quadrature-amplitude-modulated sig-
nals, phase-shift keying, and frequency-shift keying.

7.2 Carrier-Amplitude Modulation

In baseband digital PAM, the signal waveforms have the form

Sn(1) = Apgr (D) 7.2.1H

where A, is the amplitude of the mth waveforms and gr(t) is a pulse whose shape deter-
mines the spectral characteristics of the transmitted signal. The spectrum of the baseband
signals is assumed to be contained in the frequency band | f| < W, where W is the band-
width of |Gr(f)I%, as illustrated in Figure 7.1. Recall that the signal amplitude takes the
discrete values

A = (2m—1-M)d, m=12 ... M (7.2.2)

281
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1GAN*

Figure 7.1: Energy density spectrum of the wransmitted signal g7 (r).

where 2d is the Euclidean distance between two adjacent signal points.

To transmit the digital signal waveforms through a bandpass channel, the baseband
signal waveforms $,{f), m = 1,2,..., M are multiplied by a sinusoidal carrier of the
form cos 2z £, as shown in Figure 7.2, where £, is the carrier frequency (f. = W) and
corresponds to the center frequency in the passband of the channel, Hence, the transmitted
signal waveforms are expressed as

Um{t) = Amgr(t)cos2m for, m=12...M {7.2.3)

In the special case when the transmitted pulse shape gr (1) is rectangular, i.e.,

2

0, otherwise

the amplitude-modulated carrier signal is usually called amplitude skift keying (ASK). In
this case the PAM signal is not bandlimited.

Baseband
signal
Salf)

N Bandpass signal
X Splf) cos 2mf

Carvier
cos (2710
Figure 7.2: Amplitude modulation of a sinusoidal carrier by the baseband PAM signal.

Amplitude modulation of the carrier cos 27 fz1 by the baseband signal waveforms sp, (€3]
shifts the spectrum of the baseband signal by an amount f. and, thus, places the signal
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into the passband of the channel. Recall that the Fourier transform of the carrier is [B(f ~
Jed + 8(F + f.)1/2. Since multiplication of two signals in the time domain cormesponds

ta the convolution of their spectra in the frequency domain, the spectrum of the amplitude-
modulated signal is

A
Unlf) = SPGTif ~ f) +Gr(f + ] (7.2.4)
Thus, the spectrum of the baseband signal $p, (1) = A, g7 (1) is shifted in frequency by the

carrier frequency f.. The bandpass signal is a double-sideband suppressed-carrier (DSB-
SC) AM signal, as ifiustrated in Figure 7.3.

|Gyt

v nl

Py

—£-W -f ~f+ W 0 LW
b

e

L+ W

Figure 7.3: Specira of () baseband and (b) amplitude-modulated signal.
We note that impressing the baseband signal s (1) onto the amplitude of the carrier

signal cos 277 f.(¢) does not change the basic geometric cepresentation of the digital PAM
signal waveforms. The bandpass PAM signal waveforms may be represented in general as

(0} = 5m (2} (7.2.5)
where the signal waveform v (¢) is defined as

Y(t) = gri{rycos2mft (7.2.6)
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and

Sm= Am. m=1,2,... M {7271

denotes the signal points that take the M values on the real line, as shown in Figure 7.4

~5d —3d —d 0 o 3d 5d

Figure 7.4: Signal point constellation for PAM signal.

The signal waveform (1) is normalized to unit energy. That is,

f windi=1 (7.2.8)

Consequently,

1 ] 5 1 oo 5
3 f g dr+ = gr(tycosdn fordt
0Q

2)

i il
f g3 cos’ 2 for dr

-0 —

= (7.2.9)

But

o0
j gh()cosdnfordi =0 (7.2.10)

-0

because the bandwidth W of gr(¢) is much smaller than the carrier frequency, ie., fo 3> W.

In such a case, gr(r) is essentially constant within any one cycle of cos 47 f 1, hence, the .

integral in {7.2.10) is equal to zero for each cycle of the integrand. In view of (7.2.10), it
tollows that

L~ 4
- grit)dr=1 (7.2.11)
A

Therefore, gr(f} must be appropriately scaied 5o that (7.2.8) and (7.2.11} are satisfied.
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7.2.1 Demodulation of PAM Signals

The demodulation of a bandpass digital PAM signal may be accomplished in one of several
ways by means of correlation or matched filtering. For illustrative purposes we consider a
cerrelation-type demodulator.

The recerved signal may be expressed as

Fit) = Apgr(tycos 2w fit + nit) (7.2.12)

where n(t) is 2 bandpass noise process, which 1s represented as

i) = n.(cos 2o fr — ity ain 2o ot (7.2.13)

and where n,.(r) and n, (£} are the quadrature components of the noise. By cross correlating
the received signal #(1) with ¥ (¢) given by (7.2.6). as shown in Figure 7.5, we obtain the
output

f rigndt=A,+n=35y+n (7.2.14)
-0

where n represents the addilive noise component at the output of the correjator.

j:;:; \;?rj) Tde Sampler  t———sTo detector
win T
Signat
pulse Clock
cos 2 generator
Oscillator

Figure 7.5: Demodulation of bandpass digital PAM signal.

The noise component has a zero mean, Its variance can be expressed as

o= [ wnrsinar 7215)

—oa

where W( f) is the Fourier transform of ¥ (¢) and §,(f) is the power spectral density of the
additive noise. The Fourier transform of ¥ (¢) is
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I
wify= E[GT(f_ﬁ‘)+GT(f+fc')] {1.2.16)

and the power spectral density of the bandpass additive noise process is

Ny e fr<w
gn(f) = 2 ’ ! o (7217)
0, otherwise

By substituting {7.2.16) and (7 2,17 into (7.2.15) and evaluating the integral, we abtain
0"2 = .’Vg/?.

[t1s apparent from (7.2.14), which is the input Lo the amplitude detector. that the prob-
ability of error of the optimum detector for the carrier-modulated PAM signal is identical
to that of baseband PAM. That is,

M= (7.2.18})

2M -1 6(1032 MIE wh
I (MI— )Ny

where Eyyp is the average energy per bit.
ILLUSTRATIVE PROBLE

NMustrative Problem 7.1 In an amplitude-modulated digital PAM system, the transmitter
filter with impulse response g7 (1) has a square-root raised-cosine spectral characteristic as
described in [Hustrative Problem 6.7, with a roll-off factor o = 0.5. The carrier frequency
is fo = 40/T. Evaluate and graph the spectrum of the baseband signal and the spectrum
of the ampiitude-modulated signal.

g SOLUTION

Figure 7.6 illustrates these two spectral characteristics. The MATLAB script for this
computation is given below.

G MATLAB script for Mustrated Problem 1. Chaprer 7,

echo on

T=1;

delta_T=T/200; % sampling interval
alpha=0.5: % rll-off fuctor
fc=40/T; % currier freguency
A_m=1; %o amplitsde
t=—5«T+delta_T delta_T:5+T; % time axis
N=lengthit),

for i=1:N,

if {abs{t{i"=T/(2»aipha)),
g-T{i) = sine(ii}/Tx(cosipixalphaxt{i)/T)/(1—4=alpha "~ 2xt{i)" 2/ T 2));
else
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T = € % the value of g T is 0 ar+ = Tf2walpha}
end: T und, w1 = T/ 2+alphu)
end;
G_T=abs(ffi{g_T)), % spectrim of g.T
t_m=A_meg. T «CoS(2xpixfca); % the modulated signal
U_m=abs(fft{u_m}): % spectrum of the modulared signal

Fe actual frequency scafe

f=—0.5/delta_T:1 fldelia_Te(N—1)3:0.5/delta_T;
% plotting commands follow

figure{1);

plottf.fshift(G_ TV,

axis{[-1/T 1/T 0 max{G.Tx

figure(2);

plot(f.ffishift(U_m}}.

= v
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Figure 7.6: Spectra of baseband signal and amplitude-moduiated {bandpass) signal.

7.3 Carrier-Phase Modulation

In carrier-phase modulation the information that is transmitted over a commurication chan-
nel is impressed on the phase of the carrier. Since the range of the carier phase is
0 =8 < 2, the carrier phases used to transmit digital information via digital-phase
modulation are 6, = 2rm/M, form = 0, l...., M ~ 1. Thus, for binary phase mod-
ulation (M = 2), the two carrier phases are fy = O and #, = 7 rad. For M-ary phase
modulation, M == 2%, where k is the number of information bits per transmitted symbol,
The general representation of a set of M cairier-phase-modulated signal waveforms is

2
tm(t) = Agr(t) cos (211ﬂ-r+ —;fm) m=0,1,... M~ (7.3.0

where gr(t) is the transmitting filter pulse shape, which determines the spectral character-
istics of the transmitted signal and A is the signal amplitude. This type of digital phase
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modulation is called phase-shift keving (PSK). We note that PSK signals have equal energy,
ie.,

Em =f uh (1) de (7.3.2)
—o0
> 7 2 2]Tm
=f Atgp(ycos” [ 2xfur + —— ] dt
. M
lfm Celinde + o fw A’gz(r)cos(41j‘!+4nm) dr
= - A-ps — - Tt —_
2] 2 ) e M
A;’ 2%} R
= 7] grindt (7.3.3)
2 Jowa
=Z,, forall m (7.3.4)

where E, denotes the cnergy per transmitted symbol. The term involving the double-
frequency component in (7.3.4) averages out to zero when fo > W, where W is the
bandwidth of gr(r).

When gr(t) is a rectangular pulse, it is defined as

grir) = \/g 0=t =T (7.3.5}

In this case, the transmitted signal waveforms in the symbol interval 0 = ¢ = T may be
expressed as (with A = V&)

2%, 2
um(t)=,,’—f;cos(2rrfct+%), m=01,...M-1 (73.6)

Nole that the transmitted signals given by (7.3.6) have a constant envelope, and the carrier
phase changes abruptly at the beginning of each signal interval. Figure 7.7 illustrates a
four-phase (M = 4) PSK signal waveform,

By viewing the angle of the cosine function in (7.3.6) as the sum of two angles, we may
express the waveforms in (7.3.1) as

2 L f2mmY .
um{t) = VE; grit)cos (%) cos2m fotr — o/ &, grit) sin ( M ) sin 2w f.t
= Smeii (8) + Sma¥2(6) (737
where

2

Sme = £ COS T

M

2

Smy = +/ E5 sin 7,“‘ (7.3.8)
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Figure 7.7: Example of a four-phase PSK signal.

and ¥ (1) and 2 (£) are orthogenal basis functions defined as

Wi(t) = gritycos2mfit
Walt) = —gr(t)sin2a for (739

By appropriately normalizing the pulse shape gr (1), the energy of these two basis functions
is normalized to unity. Thus, a phase-modulated signal may be viewed as two quadrature
carriers with amplitudss that depend on the transmitted phase in each signal interval. Hence,
digitai phase-modulated signals are represented geometricaily as two-dimensional vectors
with components spm, and sy, i€,

sm=(VE cos T JE, sin ZF) (7.3.10)

Signal point constellations for M =2, 4, and 8 are illustrated in Figure 7.8. We observe that
binary phase modulation is identical to binary PAM (binary antipedal signals).

The mapping, or assignment, of & information bits into the M = 2* possible phases
may be done in a number of ways. The preferred assignment is to use Gray encoding, in
which adjacent phases differ by one binary digit. as illustrated in Figure 7.8. Consequently,
only a single bit error occurs in the k-bit sequence with Gray encoding when noise causes
the erroneous selection of an adjacent phase to the transmitted phase.

ILLUSTRATIVE FROBLE

Mlustrative Problem 7.2 Generate the constant-envelope PSK signal waveforms given by
(1.3.4) for M = 8. For convenience, the signal amplitude is normalized to unity.
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Figure 7.8: PSK signal constellations.

. SOLUTION

Figure 7.9 illustrates the eight waveforms for the case in which f. = 6/ T. The MAT-
LAB script for this compulation is given below.

% MATLAB scripr for IMustrative Problem 2, Chaprer 7.
echo on

T=1,;

M=8;

Es=T/2;

fe=6/T, % carrier frequency
N=100; % number of samples
delta T=T/{N-1);

t=0:delta_T:T;

uQ=sqrt(2#Es/T)=cos(2wpixfcst);
ul=squi(2+Bs/T)xcos(2epi=foat+2api/ MY,
ul=sqrt(2%Es/T)*cos(2epixfest+dupi /M),
ul=sqrt(2wEs/T)scos(2apisfont+Gmpi/ M),
ud=sqrt(2+Es/T)wcos{2upi«foxt+Bxpi/M);

ud=sqrt{ 2+ Es/T)xcos(Zxpixfoat+ I 0upi/M);
ub=sqrt(2+Es/T)xcos(Zxpixfort+t 2upi/M);
u7=sqru(Z«Es/ T)ncos(Z«pinfeat+ 1 dopi/M);

% plotting commands fotlow

subpiot(8,1,1):

plot{,u0);

subplot(8,1.2);

plot{tuly

subplot{8,1,3};

ploi(t.u2);

subplot(8,1,4);

plot(t,u3};

subploy(8,1,5);

plot(t,udy;

subplot(8,1,6);
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plot(t,u5);
subplot(8,1.7);
plot{z,ué),;
subplot{B.1.8);
plot{t,u?y;
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Figure 7.9: M = § constant-amplitude PSK waveforms.

7.3.1 Phase Demodulation and Detection

The received bandpass signal in a signaling interval from an AWGN channel may be ex-
pressed as

r{t) = um () + 1)
= up{t) + n.(£) COS 2R fol — ny () sin 27 for (7.3.11)

where n.(t) and n,(t) are the two quadrature components of the additive noise.
The received signal may be correlated with ;(¢) and ¥2(t) given by (7.3.9). The

outputs of the two correlators yield the noise-corrupted signal components, which may be
expressed as
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r=s,+n

= (VE cos M +n,  JE, sin E2 1y (13.12)

where n,. and &, are defined as

I o0
ne =5 f gritm )y de

o
Hy = -7-] grinm{t)de (71.3.1%
OO0

The guadrature noise components n.{f} and n,(r) are zero-mean Gausstan random
processes that are uncomrelated. As a consequence, E(n,) = E{nyy=0and E(n.ng) = 0.
The variance of #, and n, 15

R N
E(nd) = E(nd) = iiﬁ (7.3.14)

The optimum detector projects the received signal vector r onto cach of the M possible
transmitted signal vectors {5,,} and selects the vector corresponding Lo the largest projection,
Thus, we obtain the correlation metrics

Cir,sm)=r-Sm. m=0,1.... M-I (7.3.15)

Because all signals have equal energy, an cquivalent detector metric for digital phase mod-
ulation is to compute the phase of the received signal vector # = (v, r2) as

8 =tan~' 2 (7.3.16)
4l
and select the signal from the set {5, } whose phase is closest to 8-
The probability of error at the detector for phase medulation in an AWGN channel may
be found in any textbook that treats digital communications. Since binary phase modutation
is identical to binary PAM, the probability of error is

f1z,
p.l:Q(VTO) (7.3.17)

where £, is the energy per bit, Four-phase modulation may be viewed as two binary phase-
modulation systems on quadrature {orthogonal) carriers. Consequently, the probability of
a bit error is identical to that for binary phase modulation. For M > 4, there is no simple
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closed-form expression for the probability of a symbol error. A good approximation for
Py is

wagf [BEr g X 7.3.18
2 \/Nn hll’lM {7.3.18)

where k = log, M bis per symbol. Figure 7.10 illustrates the symbol error probability as
a function of the SNR E,/No.

[

=
M

b, probability of error
L

12 16 20 24
SNR/bit, dB

figure 7.10: Probability of a symbol error for M-ary PSK.

The equivalent bit-error probability for M-ary phase modulation is also difficult to
derive due to the dependence of the mapping of k-bit symbols into the cotresponding signal
phases. When a Gray code is used in the mapping, two k-bit symbols corresponding to
adjacent signal phases differ in only a single bit. Because the most probable errors due to
noise result in the errcneous selection of an adjacent phase 1o the true phase, most k-bit
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symbol errors contain only a single bit error. Hence, the equivalent bit-error probability for
M-ary phase modulation is well approximated as

P, ~ L Py (13.19)

k
ILLUSTRATIVE PROBLE|

TNlustrative Problem 7.3 We shall perform a Mante Carlo simulation of an M = 4 PSK
communication system that models the detector as the one that computes the correlation
melrics given in {7.3.15). The model for the system tc be simulated is shown in Figure
7.1L

Uniform random
number generator Gaussian RNG
1 n(‘
i3
4-PSK ~x)

mapper e

r Detector 2-bit symbol

Gaussian RNG

Compare
Bit-error Symbol-error
counter counter

Figure 7.11: Block diagram of an M = 4 PSK system for a Monte Carlo simfation.

R SOLUTION g

As shown, we simulate the generation of the random vectar # given by (7.3.12), which
is the output of the signal correlator and the input to the detector. We begin by generating a
sequence of quaternary {2-bit) symbols that are mapped into the corresponding four-phase
signal points, as shown in Figure 7.8 for M = 4. To accomplish this task, we use a random
number generator that generates a uniform random number in the range (0,1). This range is
subdivided into four equal intervals, (0,0.25), (0.25,0.5}, (0.5,0.75), and (0.75,1.0), where
the subintervals correspond to the pairs of information bits 00, 01, 11, 10, respectively.
These pairs of bits are used to select the signal phase vector $,,.

—
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The additive noise components n, and n, are statistically independent zero-mean Gaus-
sian random variables with variance o 2. For convenience, we may normalize the variance
teo? = | and contro] the SNR in the received signal by scaling the signal energy parameter
F,, or vice-versa.

The detector observes the received signal vector r = s, + n as given in (7.3.12) and
compuiles the projection (dot product) of » anto the four possible signal vectors §,,. Its
decision is based on selecting the signal point corresponding in the largest projection. The
output decisions from the detector are compared with the transmitted symbols, and symbol
errors and bit errors are counted.

Figure 7.12 illustrates the results of the Monte Carle simulation for the transmission of
N=10,000 symbols at different values of the SNR parameter £ /No, where Z, = E,/2
is the bit energy. Also shown in Figure 7.12 is the bir-error rate, which is defined as
Py = Py /2, and the comesponding theoretical error probability, given by (7.3.18).

The MATLAB scripts for this Monte Carle simulation are given below.

Fo MATLAB script for flustirative Problem 3, Chaprer 7.

echo on

SNRindB1=0:2:10;

SNRindB2=0.0.1:10C;

for i=1:length(SNRindB 1),
{pb.psl=em_sm32(SNRindB1{in;
smid_bit.err_prb(i)=pb.
smld_symbol_err_prb{i)=ps;

Po simuluted bit and symbol error rates

end,
for i=1:length(SNRindB2),
SNR=exp{SNRindB2(i}»log(10)/10); G signeud-tr-noise raio
thea_err_prb(i)=Qfunct(sqri{ 2+SNR)); % theoretical bit-error rate
end:

%o Plotting communds follow
semilegy(SNRindB { smid_bit_err_prb,* * - J;
hold

semilogy(SNRindB1 smid_syinbelem_prb. o),
semilogy(SNRindB2 theo_ert_prb);

— -

function {pb,ps]=cm_sm32{snr_in_dB)
% [pb.psi=cm_sm3lisnr_in_dB}

% CM.SM32  finds the probability of bit error and symbol error Jor the
% given value of snr_in dB. sigral-to-noise rutic in 4B

N=10000;

E=1; % energy per symbol

snr=10"(sne_in_dB/10);
sgma=sqqt(E/snr}/2,

% the signal mupping

s00=f1 0J;

s01=[0 1};

sil=[—1 0];

s[0=[0 —1);

% generation of the data source

Fe signal-to-roise rutio
% noise vuriance
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for i=1:N,

remp=rand: % a wniform rundem variable berween O und [

il (remp<0.25), % with probuability 14, seurce oupuat is "007
dsource 1(1)=0:
dsource2(1)=0;

elseif [temp=0.5), % with probability }j4, source wvaipur is 017
dsource1(1)=0;
dsource2{i)=1;

elseif (lemp<0.75) % with probubdity 114, source outpui is “i0"
dsoursel(i}=1,
dsouree2{i}=0,

else % with probability 114, seurce ouput is 1"

dsourcel(iy=1;
dsource2(i)=1;
end;
end;
% detection and the probabiine of error cafeulation
numofsymbolerror=0;
numofhiterror=0;
for i=1:N,
O the received signal wt the detecron for the ith symbal, is:
n{1)=gngaussisgma);
n{2)=gngauss{sgmna),
if {({dsource1{i)==0) & (dsource2{1)==0)),
r=s00+n;
elseif ((dsource((D==0) & (dsourcelii}==1))
r=s01+n.
elseif ((dsourcel(ii==1) & (dsource2(==0)).
r=s10+n,
else
r=sil+n,
end,
% The corvelation metrics are computed below
c00=dot(r.s00),
cOl=dot(r.s01);
c|O=dot{r,s10};
cli=dot(rsl);
% The decizior on the ith symbol is made next
c.max=max{[c00 ¢O1 clC clil}
if {cQU==c_max),
decisi=0, decis2=0;
elseif (cOl==c.max},
decis1=0; decisz=1;
elseif (cl0==c.max),
decisl=1; decisz=0;
else
decisl=1, decis2=1;
end;
@ increment the erver counter, if the decision Is not correct
symbolerror=0,
if (decis]™=dsourcel(i)).
nimotbiterrer=numofbiterror+1,
symbolerror=1;
end;
if (decis2 =dsource2(i)),
numofbiterror=numofbitersror+1;
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syinbulerror=1;
end:
if {symbolerror==1),
numofsymbelertor = numofsymbolerror+1;

end;
end;
ps=numofsymbolerror/N: S since there are torally N symbols
pb=numofbiterror /{2%N); D since 2N bits are transmitted

10 T T T T T - v ™ T
!: Simulasea bar-gme rate
o' L o Sl symbolemor cate i
Q —— Theorgtical big-gro rate
wiE
w0
1wk
10t}
w0* L L " N L L L X
¢ 1 2 ) 4 5 ) 7 8 ] 0
E4/NgindB

Figure 7.12: Performance of a four-phase PSK system from the Monte Carlo simulation.

7.3.2 Differential Phase Modulation and Demodulation

The demodulation of the phase-modulated carrier signal, as described above, requires that
the carrier phase components i (r} and yr;(r) be phase-locked to the received carrier-
modulated signal, In general, this means that the receiver musi estimate the carrier-phase
offset of the received signal caused by a transmission delay through the channel and com-
pensate for this carrier-phase cffset in the cross correlation of the received signal with the
two reference components ¥ (¢} and ¥2(¢). The estimation of the carrier-phase offset is
usually performed by use of a phase-jocked loop (PLL). Thus, we achieve coherent phase
demodulation.

Another type of carrier-phase modulation is differential phase modulation, in which the
transmitted data are differentially encoded prior to the modulator. In differential encoding,
the information is conveyed by phase shifts relative to the previous signal interval. For
example, in binary phase modulation the information bit 1 may be transmitted by shifting
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the phase of the carrter by 180° relative o the previous carrier phase, whereas the information
bit 0 is transmitted by a zero-phase shift relative 1o the phase n the preceding signaling
interval. In four-phase modulation, the relative phase shifts between successive intervals
are 07, 907, 180°, and 2707, corresponding to the information bits 00, OF, 11, and 10,
respectively. The generalization of differential encoding for M > 4 is straightforward.
The phase-medulated signals resulting from this encoding process are called differentially
encoded. The encoding is performed by a relatively simple logic circuit preceding the
modulator,

Demodulation and detection of the differentially encoded phase-modulated stgnal may
be performed as follows, The received signal phase 8, = tan™ ' r2/ry at the detector is
mapped into one of the M possible transmitted signal phases (8,) that is closest to 8,.
Following the detector is a relatively simple phase comparator that compares the phases of
the detected signal over two consecutive intervals to extract the transmiteed information.

We observe that the demodulation of a differentially encoded phase-modulated signal
does not require the estimation of the carrier phase. To slaborate, suppose that we demod-
ulate the differentially encoded signal by cross correlating r(t} with g7(r) cos 2w .+ and
—gr(1)sinm fot. At the kth signaling intervad, the two components of the demodulator
output may be represented in complex-valued form as

rp= o E eI (7.3.20)

where 6; is the phase angle of the transmitted signal at the &th signaling interval, ¢ is the
carrier phase, and i, = ng. + jngy is the noise. Similarly, the received signal vector at
the cutput of the demodulator in the preceding signaling interval is the complex-valued
quantity

reot = E el B g (7321

The decision variable for the phase detector is the phase difference between these two
complex numbers, Equivalently, we can project ri onto ry_; and use the phase of the
resulting complex number; that is,

g = EefUhd L Sr ety L S, e Gy, g (71.3.22)

which, in the absence of noise, vields the phase difference 8, — 8;_;. Thus, the mean value
of ryry_; is independent of the carrier phase. Differentially encoded PSK signaling that
is demodulated and detected as described above is called differential PSK (DPSK). The
demodelation and detection of DPSK is illustrated in Figure 7.13.

The probability of error for DPSK in an AWGN channel is relatively simple 10 derive
for binary (M = 2) phase modulation. The result is

1 _,
Py = Ee-fhf”" (7.3.23)
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fa o0 dr
cos 27f.t ar= kT
Regcivcd_ Oscillator Delay = Phase L. Ou(p_ul
signal by T { i comparater decision
sin 2wf .t
J:: —pr0dt

att= kT

Figure 7.13: Block diagram of DPSK demodulator.

The graph of (7.3.23) is shown n Figure 7.14. Also shown in this figure is the probability
of error for binary PSK. We observe that at error probabilities below 1074, the difference
in SNR between binary PSK and binary DPSK is less than | dB.

For M > 2, the emor probability performance of a DPSK demodulator and detector is
extremely difficult 1o evaluate exactly. The major difficulty is encountered in the determi-
nation of the probability density function for the phase of the random variable rere_)s given
by (7.3.22). However, an approximation to the performance of DPSK is casily obtained, as
we now demonstrate.

Without loss of generality, suppose the phase difference 8; —8_; = 0. Furthermeore, the
exponential factors e~/ ®-1~#) and ¢/ @9 in (7.3.22) can be absorbed into the Gaussian
noise compenents n;—; and ng without changing their statistical properties. Therefore,
ryrg_ ¢ in (7.3.22) can be expressed as

Tkl = Es o+ VE (g +nf_ ) (7.3.24)

The complication in determining the probability density function of the phase is the term
nyny . However, at SNRs of practical interest, the term neny_ is smatl refative to the

dominant noise term /£, {n,+n;_,). If we neglect the term n, e and we also normalize
ryri_1 by dividing through by ./E;, the new set of decision metrics becomes

x=+E; +Re(n, +n;_))
y=Im(, +n;_)) (7.3.25)

The variables x and y are uncorrelated Gaussian random variables with identical variances
onz = Np. The phase is
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Binary DPSK

_ L -F N
F;)——EE b“lu

Binary PSK

s a-e(VR)

£ probability of bit error

SNR/bit. dB

Figure 7.14: Probability of error for binary PSK and DPSK.
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#, = tan ™!

2 (7.3.26)
X

At this stage we have a problem that is identical to the one for phase-coherent demodulation.
The only difference is that the notse variance is now twice as large as in the case of PSK.
Thus we conclude that the performance of DPSK 1s 3 dB poorer than that for PSK. This
result is relatively good for M > 4, but it 1s pessimistic for M = 2 in the sense that the loss
in binary DPSK relative to binary PSK is less than 3 dB at large SNR.

ILLUSTRATIVE PROBLEM

Mustrative Problem 7.4 Implement a differential encoder for the case of M = § DPSK.

mam SCLUTION

The signal points are the same as those for PSK shown in Figure 7.8, However, for
DPSK these signal points represent the phase change relative to the phase of the previous
transmitted signal points. The MATLAB script for implementing the differential encoder
15 given below.

— D

% MATLAB script for Hlustrative Problem 4, Chaprer 7.

mapping={0 1 3 27 6 4 5], % For Gray mupping

M=8,

E=1;

sequence={0 1 ¢ 011 001 111 110 OGO
[e]=cm_dpske(E.M,mapping.sequence), % e is the differential encoder outpui

ILLUSTRATIVE PROBLEM

Ilustrative Problem 7.5 Perform a Monte Carlo simulation of an M = 4 DPSK commu-
nication system. The model for the system to be simulated is shown 1n Figure 7.15.

m SOLUTION

The uniform random number generator (RNG) is used to generate the pairs of bits
{00, 01, 11, 10}, as described in [llustrative Problem 7.3. Each 2-bit symbol is mapped into
one of the four signal points 5,, = [cosmtm/2 sinwm/2],m = 0, 1,2, 3, by the differ-
ential encoder. Two Gaussian RNG are used to generate the noise components [ n;l.
Then, the received signal plus noise vector is

r= [cos It 40 sinTH +ns]
= [f‘r_. r..,l-]

The differential detector basically computes the phase difference between ry and ry .
Mathematically, this computation can be performed as in (7.3.22), 1.e.,
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LUniform RNG—‘ I Gaussian RNG I
nt‘
T l

M = 4DPSK ) M=4 2-bit
mapper 4 Delay DPSK output
detector

f

Gaussian RNG

Compare l

ﬁ\ﬁ%

Symbel-ecror
counter

Figure 7.15: Block diagram of M = 4 DPSK system for the Monte Carlo simulation.

Ferpet = ek + jrad)(Fekmt = jrog—1)
= reklek—1 F Mokfak—1 + J{Peeck—1 — feklyk—1)
=X+ j

and 6 = tan"!{yy/xs) is the phase difference, The value of &; is compared with the
possible phase differences [0”. 90°, 180°, 2’1‘00], and a decision is made in favor of the
phase that is closest to 8. The detected phase is then mapped into the pair of information
bits. The error counter counts the symbol errors in the detected sequence.

Figure 7.16 illustrates the results of the Monte Carlo simulation for the transmission of
N=10,000 symbols at different values of the SNR parameter £,/ Ny, where Ey=X,/2is
the bit energy. Also shown in Figure 7.16 is the theoretical value of the symbol error rate
based on the approximaticn that the term mny_, isnegligible. We observe from Figure 7.16
that the approximation results in an upper bound to the error probability. The MATLAR
scripts for this Monte Carlo simulation are given below.

Fe MATLAB script for Hlustrative Problem 5, Chapter 7.
echo on

SNRindB1=0:2:12;

SNRindB2=0:0.1:12;

for i=1:length{SNRindB 1},

7.3, Carrier-Phase Moduiation

smid_grr_prh(i)=cm.sin34{SNRindB 1I9)H

end,;

for i=1:length(SNRindB2),
SNR=exp(SNRindB2(i)+log(10)/10);
thr:oierr_prb(i)=2thuncl(n;qu(SNR))‘,

end;

% Piotting commands foltow
semilogy(SNRindB1,smid_err.prb,” * * );

held

semilogy(SNRindB2 theo_er_prh):

simuluted error rate

signul-lo-noise ratio

% theoretical symbol-error vaze

— G

function [pl=cm_sm34{snr_in_dB)
% [p]=cm_sm3d{snrin_dB)
%

CM_SM34 finds the probability of error for the yiven
% value of snriin_dB, signal-to-noise ratio in dB.

N=10000;
E=1;

snr=10"tspr_in_dB;10);

sgma=sqri(E/(4#snchy;

% generation of the data sowrce pollows

for i=1:2«N,
temp=rand;
if (temp<0.5),
dsource(i)=0;
else
dsource(i}=1,
end;
end;

&

energy per symbel

signat-io-nuise ratio

nofse variunce

e uriform randem varichble between 0 and !

with probability 172, seurce vutput is "0"

with probobility {/2, source oumpur i 1"

%o Differential encoding of the duta source follows

mapping={0 1 3 2],
M=4;

{diff_enc_output] = cm_dpske(E M. mapping.dsource);

% received siynual iv then

for i=1:N,

(n{13 n(2))=gngauss(sgma);
(1. )=diff_enc.cutputii, J+n.

end;

% detection and rthe probubility of error calcuiution

numeferr=0;
prev_theta=0Q;
for i=1:N,

theta=ungle(r(i.1)+j*r(i,2));
delta_theta=tnod{theta~ prev__theta,2+pi):
if {{delta_theta<pi/4) | (delia_thetas> 7pi/4)).

decis=[0 0);

elseif (della_theta<3wpi/d4),

decis=[Q 1];

elseif (delta_theta<S+pi/d)

decis={1 1],
else

decis=[1 0];
end;
prev_theta=theta;
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T increase the error counter {f the decision 15 not coreect
if ((decis{1) =dsource(2+i—1)) | {decis{2) =dsource(2+1))),
numoferr=numolerr+1;
end:
end:
p=rumoferr/N;

. V-FILE g

function [enc_comp] = cm_dpske(E M, mapping, sequence);
% fenc_comp) = cmadpskel E.M mapping sequenice)

% CM.DPSKE differentiaily enciodes o requence.

T E v the average enerey, M is the number vf consteflunon poinrs
% and mapping is the vertor defining how the constellunon points are
% allocated. Finally, “seguence™ is the uncoded binarv dutu seyuwence
k=log2{M),

N=length(sequence);
% if N is nor divisible by k. append zerus. so that it s,
remainder=remiN,k);
if (remainder =0),
for i=N+1:N+k—remainder.
sequence(i)=0;
end;
N=N+K —remainder,
end;
theta=0; G initially, ussume that theta=0
far =Tk N,
index=0;
for j=iti+k--1,
index=2xndex +sequencetjh
end.
index=index+1.
theta=mod{ 2»pi=mapping{index ;M +theta,2«pi);
gnc..comp({i+k —1}/K, 1)=sqri{E)xcos(theta);
enc_compl(i+k —1}/k,2)=sqrt(E)xsin{theta);
end,

7.4 Quadrature Amplitude Modulation

A quadrature-amplitude-modulated (QAM) sigral employs two quadrature carriers,
cos 277 f,t and sin 27 f.t, each of which is modulated by an independent sequence of infor-
mation bits. The transmitted signal waveforms have the form

Up (1) = Apegriticos2mfot + Amegrit)sin2mfoz, m=12 ..., M (741
where {Az.} and {Ap] are the sets of amplitude levels that are obtained by mapping k-bit

sequences into signal amplitudes. For example, Figure 7.17 illustrates a 16-QAM signal
constellation that is obtained by amplitude modulating each quadrature carrier by M = 4
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/Ny indB

Figure 7.16: Performance of four-phase DPSK system from Monte Carlo simulation (the
solid curve is an upper bound based on approximation that neglects the noise term nynz ).

Figure 7.17: M = 16-QAM signal constellation.
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PAM. In general, rectangular signal constellations result when two quadrature carriers are
each modulated by PAM.

More generally, QAM may be viewed as a form of combined digital amplitude and
digital-phase moduiation. Thus the transmitted QAM signal waveforms may be expressed
as

Umn{t) = AmgT(tYcos(2m fut + B}, m=12...,M, n=12,...,M
(74.2)
If M| = 2% and My = 2%2, the combined amplitude and phase-modulation methed results
in the simultaneous transmission of k; + k= log, M M> binary digits occurring at a

symbal rate Ry/(k) + k2). Figure 7.18 illustrates the functional block diagram of a QAM
modulator.

Transmitting
— filter I—w B;:innlg?g
modu T
gl
cos 2mf ¢
Oscillator }—
; Serial-to- ;
Binasy ) Transmitted
data cg:?c"r:clr 90° phase G QAM signal
shift
lsin 2af,
Transmitting
L] filter | .| Balanced
2.1} modulator
o

Figure 7.18: Functional block diagram of modulater for QAM.

It is clear that the geometric sighal representation of the signals given by (7.4.1) and
(7.4.2) is in terms of two-dimensional signal vectors of the form

in = (VE Ane VE; Ame),  m=12....M (74.3)
Examples of signal space constellations for GQAM are shown in Figure 7.19. Note that
M =4 QAM is identical to M = 4 PSK,
7.4.1 Demodulation and Detection of QAM

Let us assume that a carrier-phase offset is introduced in the transmission of the signal
through the channel, In addition, the received signal is corrupied by additive Gaussian
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R s et T, f\\ i
L L I "M=a L .
| | ! i T T
e e k//
! i ! | ! |
O N TSI R S Y
+ . S . ‘h
J‘ | M=8 M=16
e A e i

(a) (b (c)

Figure 7.1%: (a) Rectangular and (b), (¢} circular QAM signal constellations.

noise. Hence, r(r) may be expressed as

FO) = Amegr(t) cosQrfit + @) + Apegr(tysin2rfit + ¢) + n(1) (7.4.4)

where ¢ is the carrier phase offset and

n{ty = n{tycos 2w for — ny(1) sin2m fot

The received signal is correlated with the two phase-shifted basis functions

Y1 (1) = gritycos2a for + ¢)

Yalt) = gr(1) sin(2 £t + ¢) (1.4.5)
as illustrated in Figure 7.20, and the outputs of the correlators are sampled and passed
to the detector. The phase-locked loop (PLL) shown in Figure 7.20 estimates the carrier
phase offset ¢ of the received signal and cempensates for this phase offset by phase shifting
¥i(r) and (¢} as indicated in (7.4.5). The cleck shown in Figure 7.20 is assumed to be

synchronized to the received signal so that the correlator cutputs are sampled at the proper
instant in time. Under these conditions, the cutputs from the two correlators are

ry =Apge +ncc05¢ —n,sing
ry = Apms; +n.sing +n.cosg (7.4.6)
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where

T
/ n{r)gr(r)dt
o

ne =

Hy =

b} = ta] —

r
f ny(Oer () dr (7.4.7)
0

The noise components are zero-mean, uncorrelated Gaussian random vanables with vari-
ance No/2.

INSL: l—-l Sampler }—

¢l
X
j—‘ Clock
Received
signal PLL Compute 0
g1} distance  |—= uput
90° phase metrics D(sm) decision
shift
i)
J'(;(}a': H Samplcx;l—-
Figure 7.20: Demodulation and detection of QAM signals.
The optimum detector computes the distance metrics
Dirsp)y=r—spll., m=12,...M (7.4.8)

where rf = (r|, r;) and s, is given by (7.4.3).

7.4.2 Prabability of Error for QAM in an AWGN Channel

In this section, we consider the performance of QAM systems that employ rectangular
signal constellations. Rectangular QAM signal constellations have the distinct advantage
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of being easily generated as two PAM signals impressed on phase quadrature carriers. In
addition, they are easily demodulated.

For rectangular signal constellations in which M = 2%, where k is even, the QAM signal
constellation is equivalent to two PAM signals or quadrature carriers, each having VM=
2%/2 signal points. Because the signals in the phase quadrature components are perfectly
separated hy coherent detection, the probability of error for QAM is easily determined from
the probability of error for PAM. Specifically, the probability of a correct decision for the
M-ary QAM system is

2
o= (1-P/m) (7.4.9)
where P /7 is the probability of error of a ~/M-ary PAM with one-half the average power

in each quadrature sighal of the equivalent QAM system. By appropriately modifying the
probability of error for M-ary PAM, we obtain

JE—
p\/_zz([___l_)Q _3 Ew (7.4.10)
w T M—1 N

where Eay/ Mo is the average SNR per symbol. Therefore, the probability of a symbol errar
for the M-ary QAM Is

2

PM:[_(]_pm) (7.4.11)

We note that this result is exact for M = 2% when k is even. On the other hand, when & is
odd, there is no equivalent  M-ary PAM system. This is nc problem, however, because
it is rather easy to determine the error rate for a rectangular signal set. If we employ
the optimum detector that bases its decisions on the optimuem distance metrics given by
(7.4.8 ), it is relativeiy straightforward to show that the symbol-error probability is tightly

upper-bounded as
2
3T
Pu s =l -20 0 5T,

Ik E b
<40 ( /—_(M - 1)Nu) (7.4.12)

for any k > 1, where En/Np is the average SNR per bit. The probability of a symbol
error is plotted in Figure 7.21 as a function of the average SNR per bit.
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Figure 7.21: Probability of a symbol error for QAM.
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ILLUSTRATIVE PROBLE

Illustrative Problem 7.6 Perform a Monte Carlo simulaticn of an M = 16-QAM com-

munication system using a rectangular signal constellation. The model of the sysiem to be
simulated is shown in Figure 7.22.

I Uniform RNG ] {Eaussian RNG i

_—'] 4-bit symbol n,
A r

M = 16-QAM X/

signal selector A o~ r Detector 4-bit symbol

Gaussian RNG

Synbol-error
counter

Figure 7.22: Block diagram of an M = 16-QAM system for the Monte Carlo simulation.

s SOLUTION 4

The uniform random number generator (RNG) is used to generate the sequence of in-
formation symbols corresponding to the 16 possible 4-bit combinations of by, by, b3, by.
The information symbols are mapped into the comresponding signal points, as illustrated in
Figure 7.23, which have the coordinates {Ap,, Ams]. Two Gaussian RNG are used to gen-
erate the noise components [n., n,]. The channel-phase shift ¢ is set to O for convenience.
Consequently, the received sigral-plus-noise vector is

r= [Amc +re Apet n.v]

The detector computes the distance metrics given by (7.4.8) and decides in favor of the signai
point that is closest to the received vector r. The error counter counts the symbol errors in
the detected sequence. Figure 7.24 illustrates the results of the Monte Carlo simulation for
the transmission of N=10,000 symbols at different values of the SNR parameter Ep /Ny,
where &) = £, /4 is the bit energy. Also shown in Figure 7.24 is the theoretical vaiue of

the symbol-error probabitity given by (7.4.10) and (7.4.11). The MATLAB scripts for this
problem are given below.
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— =

% MATLAR script for llustrative Problem 6. Chuprer 7.

eche on
SNRindB1=0:2:15;
SNRindB2=0:0.1:15;
M=18,

k=log2(M};

for i=1:length(SNRindB1),

smld_er_prb(i)=cm_smd [ {(SNRindB L{1)};

end;

for i=1:length(SNRindB2),
SNR=exp(SNRindB2(1)*log(10)/10);
e thearetical symbuol error rute

%o simulared error rate

%o sigrul-tn-noise ratio

theo_err_prb(i)=4*Qfunct{sqri{Ixk«SNR /(M- 10)};

end;

% Plonting communds follow
semilogy{SNRindB | ,smid_err_prb," > ' };
hold

semilogy(SNRindB2.theo_err_prb);

— M-FILE

function [pJ=cm_sm4 L{snr_in_dB)
% [pi=cm_smdi{snr_in_4B)

% CM_SM4!  finds the probabilitv of error for the piven

% value of snr_in_dB, SNR in 4B.

N=10000;

d=1,; % min. distance between symbols

Eav=10%d"2;
snr=10"(snr_in_dB/10);
sgma=sqri{Eav/{Bssnr));
M=16;
% generation of the data source follows
for i=1:N,
temp=rand;
dsource(i)=1+Aoor(Mstemp};
end.

%o energy per symbol
% SNR per bit (given)
% noise variance

% o uniform RV berween O and [
% a number between | and 16, uniform

P Mapping i the signul constellution follow

7.5, Carrier-Frequency Modulation

for 1 .
qam_sig(i,. F=mapping(dsource(i). ).
end,
P received signal
for i=1:N,

[n{1) n{2))=gngauss(sgma);
(i, J=qam.sig(i, H4n;
end,
G detection und error probabifity calcutution
numoferr=0Q,
for 1=1:N,
G merric computation follow
for j=1.M,
metrics(3y=(r(i. 1)~ mapping(j, 1))~ 2+(r(i.2)—mapping(j.21) " 2;
end.
[min_metne decis] = mn(metrics),
if {decis"=dsource(i)),
numofert=numaferc+1:
end.
end:
p=numoferr/(N):
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Figure 7.23: M = 16-QAM signal constellation for the Monte Carlo simulation.

7.5 Carrier-Frequency Modulation

Above, we described methods for transmitting digital information by modulating either the
amplitude of the carmier, the phase of the carrier, or the combined amplitude and phase.

Digital information can also be transmitted by medulating the frequency of the carrier.

As we will observe from our treatment befow, digital transmission by frequency mod-
ulation is a modulation method that is appropriate for channels that lack the phase stability
that is necessary to perform carrier-phase estimation. In contrast, the linear modulation
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Ep/NyindB

Figure 7.24: Performance of M = 16-QAM system from the Monte Carlo simulation.

methods that we have introduced—namely, PAM, coherent PSK, and QAM—require the
cstimation of the carrier phase to perform phase-coherent detection.

7.5.1 Frequency-Shift Keying

The simplest form of frequency modulation is binary frequency-shift keying (FSK). In
binary FSK we empley two different frequencies, say, fi and fz = fi + Af, to transmit
a binary information sequence. The choice of frequency separation Af = f> — f| is
considered below. Thus the two signal waveforms may be expressed as

2y
ity = EJ cos 2n fit, 0<r<T
V T
ualty = 24? cos 2 fat, 0<t<T, 75.1)
V T

where E is the signal energy per bit and Ty, is the duration of the bit interval.

More generally, M-ary FSK may be used to transmit a block of & = log, M bits per
signal waveform. In this case, the M signal waveforms may be expressed as
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2E,
Um (1) = ?—cos(2rrﬂ.:+2rrmﬂfr)‘ m=0,1,..., M1, O=<r=T
(7.5.2)

where £, = kZ, is the energy per symbol, T = &Ty is the symbal interval, and Af is
the frequency separation between successive frequencies, ie., Af = f — fin_y for all
m=12,..., M — 1, where £, = f, +mAf.

Note that the A FSK waveforms have equal energy, £,. The frequency separation
A f determines the degree to which we can discriminate among the M possible transmitted

signals. As a measure of the similarity (or dissimilarity) between a pair of signal waveforms
we use the correlation coefficient i,

1 r
Vmn = -I‘:T,./:; Um {Pua (1) dt (7.5.3)

By substituting for u,, (¢ and Un(t)in {7.53). we ohtain

1

r

2z,

Ymn = = / T cos(2 fot + 2xmAF1) cos{2nm fr + 2mnAfe)de
s o

147 17
?f cosm(m —n)Aftdr + F/ cos[d4mfr + 2w (m + n)Aft] dr
0 0

_ sin2m(m —mAfT
T 2n(m —m)AfT 754

where the second integral vanishes when fe» /T, A plot of v, as a function of the
frequency separation Af is given in Figure 7.25. We observe that the signal waveforms
are orthogonal when A f is a multiple of 1727 . Hence, the minimum frequency separation
between successive frequencies for orthogonality is 1/2T. We alsc note that the mini-
mum value of the correlation coefficient is ym, = ~0.217, which occurs at the frequency
separation Af =0.715/7T .

M-ary orthogonal FSK waveforms have a geometric representation as M M-
dimensional orthogonal vectors, given as

$0 = {(/E;,0,....0) (7.5.5)
s1=1(0, VE,0,...,0) (7.5.6)

: (75.7)
su-1=(0,0,...,0,VE,) (7.5.8)

wilere the basis functions are ¥, (z) = V2{ T cos2a(f, -+ mAF)i. The distance between
pairs of signal vectorsisd = /2, for all m, n, which is also the minimum distance among
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Y

Figure 7.25: Cross correlation coefficient as a function of frequency separation for FSK
signals.

the M signals. Note that these signals are equivalent to the M-ary baseband orthogonal
signals described in Section 5.4.
The demodulation and detection of the M-ary FSK signals is considered next.

7.5.2 Demodulation and Detection of FSK Signals

Let us assurne that the FSK signals are transmitted through an additive white Gaussian noise
channel, Furthermore, we assume that each signal is delayed in the transmission through
the channel. Consequently, the filtered received signal at the input to the demodulator may
be expressed as

O] J 2?’ cos(2mfet +2mmAft + ¢m) + nit) (7.5.9

where ¢, denotes the phase shift of the mth signal (due to the transmission delay) and r(r)
represents the additive bandpass noise, which may be expressed as

n{t) = n (1) cos2m frt — ne(£) sin 2w fot {7.5.10)

The demodulation and detection of the M FSK signals may be accomplished by one
of two metheds. One approach is to estimate the M carrier-phase shifts {¢m} and perform
phase-coherent demodulation and detection. As an alternative method, the carrier phases
may be ignored in the demodulation and detection.

In phase-coherent demodulation, the received signal r (1) 1 correlated with each of the M

possible received signals cos (erfcr +2rmAft + ¢m) form=0,1,..., M — 1, where

{¢h) are the carrier-phase estimates. A block diagram illustrating this type of demodulation
is shown in Figure 7.26, Itisinteresting to note that when ¢, # ¢m form =0,1,... , M—1
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(imperfect phase estimates), the frequency separation required for signai orthogonality at
the dcmodu}utor is Af = 1/T, which is twice the minimum separation for orthogonality
when ¢ = ¢.

() fi0ar I_/ -
Sampleatr =T
cos 2mfor + &)
(<) ()dt I—/ —
I"“ Sampleatr =T
Received -PLL: oS (2 fut + 2mAF + )

signal | Detector —

QOurput
decision

) ‘d }——/ ——]
Sy Sampleat: =T
cos 2af,t + 2m{M — DASL + ¢y

Figure 7.26: Phase-ccherent demodulation of A -ary FSK signals.

The requirement of estimating M carrier phases makes ccherent demodulation of FSK
signals extrernely complex and impractical, especially when the number of signals is targe.
Therefore, we shall not consider coherent detection of FSK signals.

Instead we consider a method for demodulation and detection that does not require
knowledge of the carrier phases. The demodulation may be accomplished as shown in Figure
7.27. In this case there are two correlators per signal waveform, or atotal of 2M correlators,
in general. The received signal is correlated with the basis functicns (quadrature carriers)

\/; cos(2m fot +2emAfr) and \/;sin(erfct +2rmaftyform=0,1,...,M—1 The
2M outputs of the correlators are sampled at the end of the signal interval and are passed

to the detector. Thus, if the mth signal 1s transmitted, the 2M samples at the detector may
be expressed as

_ sin2m(k — m)éf T cos2nlk —m¥AfT — b |

e =VE [ Rk —mAfT T T ark—mAfT s'w’"} + ke
_ cos 2wk — m)AfT — 1 sin2m(k —m)AfT |

ris = Vs [ T mafT Ot S T AT 5’“¢’"] + s

(7.5.11)
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where ny, and ny; denote the Gaussian noise compenents in the sampled outputs.

cos 2mft
/}\ ‘0d Ne
X L_ji’()_!f Sampleatr =T
—{ sin 2w ft
i 4 rl;
X vL;fgi)_r_f Sampleatr =T
cos 2m(f. + Af N
f{\ i £
o L&dr_f Sampleatr=T
— sin2mw(f, + Afyp
i fi\ Odr ! £ Cutput
R:fgcrln\;lcd_'” b ﬂ_J Sampleat =T | Detector _’dccispion
cos 2m{f, + (M - DAfIt
T d rml‘
Y ﬁ‘&l Sampleatr=T
L sin27[f + (M - DAFI
Toar | o
& m Sampleatr= T
Figure 7.27: Demodulation of M-ary signals for noncoherent detection.
We observe that when k = m, the sampled values 1o the detector are
Fme =/ Ey COSPm + Rime
Fms = g 5y + Ny (75.12)

Furthermore, we observe that when k # m, the signal components in the samples ry. and
rs will vanish, independent of the values of the phase shift ¢, provided that the frequency
separation between successive frequenciesis Af = 1/7. Insuch acase, the other 2{M — 1}
cormrelator outputs consist of noise only, i.e.,

ke = Rig, Ty = Mg, k&£ m (75.13)

In the following development we assume that Af = 1/ T, so that the signals are orthogonal.
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It can be shown that the 2M noise samples {ny.Jand {ng} are zera-mean, mutuaily
uncerrelated Gaussian random variables with equal variance a2 = No/2. Consequently,
the joint probability density function for *me and rp conditioned on ¢, is

fr,ﬂ (rmz" Fong | ) =

! . e [rme =/ ET cos on ) +trme— VEy sin i)} 2r

7.5.14
2 ( )

and for m £ k, we have

S (e rigy =

e it (7.5.15)
To-

Given the 2M observed random variables {(Fiees Ficg },‘:”:Bl, the optimum detector selects
the signal that corresponds to the maximum of the posterior probabilities. i.e.,

P[5, was transmitied | r] = Pisy | r). m=01 .., M-=1 (7.5.16)

where r is the 2M-dimensional vector with elements {rg,, ry, }f;)l. When the signals are
egually probable, the opiimum detector specified by (7.5.16) computes the signal envelopes,

defined as
=R R m=01,... M- (7.5.17)

and selects the signal correspending to the largest envelope of the set {r,,}. In this case the
optimum detector is called an envelope detecior.

An equivalent detector is one that computes the squared envelopes

=R rEL o m=01 . M (7.5.18)

and selects the signal corresponding to the largest, [”31 ] In this case, the optimum detector
is called a square-law detector.

ILLUSTRATIVE PROBLEM

Hlustrative Problem 7.7 Consider a binary communication system that employs the two
FSK signal waveforms given as

ui(iy = cos 2w fir, 0=r=sTy
u3(t) = cos 27 far, 0<t=xTy

where f| = 1000/ T}, and f7 = f| + 1/ T},. The channe! imparts a phase shift of ¢ = 45°
on ach of the transmitted signals, so that the received signal in the absence of noise is
T
r(r]:cos(Znﬂt+I). i=1L2  0st<T

Numerically implement the correlation-type demodulator for the FSK signals.
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S SOLUTION 4

We sample the recetved signal r(¢) at a rate £; = 5000/ T}, tn the bit interval Ty, Thus
the received signal r{t) is represented by the 5000 samples {#{n/F,)}. The correlation
demodulator multiplies | (#/F,)} by the sampled version of ui{f) = cos2x fir, vi{1) =
$in 2 fit, ua(t) = cos 2z far, and 1n(z) = sin 2z fot, as illustrated in Figure 7.27. Thus
the correlator outputs are

. k=12 ...,5000

k=1,2,...,3000

(22
OO ae—
(1))
<

n
), k=1,2,..., 5000
The detector is a square-law detector that computes the two decision variables

1 = rL(5000) + i, (5000)
ry = r3.(5000% + r£,(5000)

and selects the information bit corresponding to the larger decision variable.

A MATLAB program that implements the correlations numerically is given below. The
graphs of the correlator outputs are shown in Figure 7.28, based on the signal i {f) being
transmitted.

% MATLAB script for Hlustrative Probiem 7. Chupter 7.
echo on
Th=1,
f1=1000/Tb;
£2=14+1/Th:
phi=pi/4;
N=5000. % number of sumples
1=0:Tb/(N~1):Tb:
ul=cos(2xpixflxt);
uZ=cos{2+pixf2xt);
Fo assuming that ul is transmitted, the received signai r iz
sgma=1; % Moise variunce
for i=1:N,
r{1}=cos(2+pif ! *1(i}+phi)+gngauss(sgma},
end;
G the correlator putpurs are computed next
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v1=sin(2#pi*fl«t):
v2=sin{2#pix 21}
rle(y=r{1ul(1);
rls(1)=r{1)*v1(1);
r2e{ V= Du2{1),;
r2s{1)=r{1)*v2(1),
for k=2:N,
rlegk)=rletk —1)+rik)=ulik);
rls{k)=rls(k— 13k evi(k);
reo(kI=r2e(k — 1)+rik) i (k);
r2s(kI=r2s(k — 1 1+rk evZ(k};
end,
P decision variubles
rl=rle{5000)" Z2+r1s{5000)"2;
r2=r2c{5000)" 2+r2s{5000)" 2;
% plotting commeands follow

2000 T T T ™ v T T T

1500

1000

-500

-1000

~1500

2000 L A . L . " . A )
I 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
m

Figure 7.28: Quiput of correlators for binary FSK demodulation,

7.5.3 Probability of Error for Noncoherent Detection of FSK

The derivation of the performance of the optimum envelope detector for the M-ary FSK
signals can be found in most texts on digital communication. The probability of a symbol
error may be expressed as

M

- Moty 1
Py = -1 PESE i _ kIR Noln+1)
M -0 N (7.5.19)

n=1
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When M = 2, this expression reduces to the probability of error for binary FSK, which is

p= L mam
T2

(7.5.20)

For M = 2, the bit-error probability may be obtained from the symboi error probability
by means of the relation

zk—l

P, = ﬁPM (7.5.21)
The bit-error prebability is plotted in Figure 7.29 as a function of the SNR per bit
for M = 2,4, 8, 16, 32. We observe that for any given bit-error probability, the SNR per
bit decreases as M increases. In the limit as M — oo, the eror probability can be made
arbitrarily small provided that the SNR per bit exceeds — 1.6 dB, This is the channel capacity
limit, or Shannon fimit, for any digital communication sysiem (ransmitting information

through an AWGN channel.
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Figure 7.29: Probability of a bit error for nonccherent detection of orthogonal FSK signals,

The cost of increasing M is the bandwidth required to transmit the signals. Since the
frequency separation between adjacent frequencies is Af = 1/ T for signal orthogonality,
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the bandwidth required for the M signals is W = M/T. The bit rate is R = &/ T, where
k = log, M. Therefore, the bit-rate-to-bandwidth ratic is

R logaM
WM
We observe that R/ W — Qas M — oo,

ILLUSTRATIVE PROBLE

(7.5.22)

I.Ilustrntive Problem 7.8 Perform a Monte Carlo simulation of a binary FSK communica-
tion system in which the signal waveforms are givenby (7.5.1), where /2 = f) + 1/ 7y and

the detector is a square-law detector. The block diagram of the binary FS$K system to be
simulated is shown in Figure 7.30.

Uniform Gaussian Gaussian
RNG RNG RNG
—d e a2
i
+
FSK Nl +: Ny 2
signal Detector Output bi
selector e __G\ e o 2 N put bit
s r i 2
O
Gaussian Gaussian
RNG RNG
o Compare |-
Bit-error
counter

Figure 7.30: Block diagram of a binary F5K system for the Monte Carlc simulation.

gEm SOLUTION 4

Since the signals are orthogonal, when x| (r) is transmitted, the first demodulator output

is

e = &p cos +my¢
s =&y sing +n,
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and the second demodulator output is

where 1y, nyy, 0o, and no, are mutually statistically independent zero-mean Gaussian
random variables with variance o and ¢ represents the channel-phase shift.

In the above expression, the channel-phase shift ¢ may be set 1o zero for convenience.
The square-law detector computes

2 2
TR

r: = r_&_?L + ri.
and selects the information bit corresponding to the larger of these two decision variables.
An error counter measures the error rate by comparing the transmitted sequence to the
output of the detector.

The MATLAB programs that implement the Monte Carlo simulation are given below.
Figure 7.31 illustrates the measured error rate and compares it with the theoretical error
probability given by (7.5.20).

% MATLAB script for Husorative Problem 8. Chapter 7.

eche on
SNRindB1=0:2:15,
SNRindB2=0:0.1:15;

for 1=1:length(SNRindB1).
smid_err_prb{i)=cm_sm52(SNRindB{i}}; % simulated error rate

end:
for i=1:length(SNRindB2),

SNR=exp(SNRindB2{i)xlog(10)/10); % signal-ta-noise ratio

theo _err_prb(id=(1/2)»exp{~SNR/2); % thenretical symbol error rate
end;

% Plotting commands follow
semilogy(SNRindB | smid.err_prb,“ ** };
hold

semilogy(SNRindB2.theo_err_prb);

— =

function {pl=crm_sm32({snr_in_dB}
% fpf=cm_sm32{snr_in_dB}

% CM_SM32 Returns the probability of error for the given
% value of snr_in_dB, signai-to-noise ratio in dB.
N=10000,

Eb=1;

d=1,

snr=10"(snr_in_dB/10); % signal-to-noise ratio per bit
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sgma=sqri{Eb/{2+snr)): Y nguse variance
phi=0;
G generation af the duatu source follows
for i=1:N,
temp=rand: G u uniforrm random variable berween O und ol

if (temp<0.5),
dsourcefi)=0:
clse
dsource(i)=1,
cnd:
end:
% detecrion und the probubtiiny of error calculation
numoferr=0;
for i=1:N,
% demadulutor outpul
if (dsource{i)==0),
re=sqrt(Eb)seesiphu)+gngauss(sgmal;
0s=sqri{Eb)ssin(phi)+gngauss(sgma);
rle=gngauss(sgmal;
rls=gngauss(sgma):
else
rlc=gngauss{sgma).
rlis=gngouss{sgma);
rle=sqri(Eb)xcos{phi)l+gngauss(sgma);
r2c=sqrt(Eb)ssin(phil+gngaussisgma),
end;
% square luw detector oulputs
=r0c"2+r0s" 2,
rl=rle” 2411572,
To decision (5 made next
if (rO=rl),
decis=0;
else
decis=1,
end:
% increment the error counter if the decision is net correct
if (decis"=dsource(i)),
numoferr=numeferr+1.
end;
end:
p=numoferr/(N);

7.6 Synchronization in Communication Systems

In Section 3.3 we described the demodulation process for AM signals. In particular we
showed that we can classify the demodulation schemes into coherent and noncoherent
schemes. In coherent demodutation, the AM signal is multiplied by a sinusoid with the same
frequency and phase of the carrier and then demodulated. In noncoherent demodulation,
which can be appiied only to the conventional AM scheme. envelope demodulation is
employed and there is no need for precise tracking of the phase and the frequency of the
carrier at the receiver. We furthermore showed in Iilustrative Problem 3.6 that correct
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Figure 7.31: Performance of a binary FSK system from the Monte Carlo simulation.

phase synchronization in coherent demodulation is essential, and phase errors can result in
considerable performance degradation.

In this chapter we discussed the demodulation schemes for digital carrier-moduiated
systems. In the demodulation of PAM, PSK, and QAM, we assumed that we have complete
knowledge of the carrier frequency and phase.

In this section we discuss methods to generate sinusoids with the same frequency and
phase of the carrier at the demodulator. These methods are studied under the title of
carrier synchronization and apply to both analog and digital carrier modulation systems
discussed in this chapter and Chapter 3. Another type of synchronization, called fiming
synchronization, clock synchronization, or timing recavery, is encountered only in digital
commurication systems, We briefly discuss this type of synchronization problem in this
section as well,

7.6.1 Carrier Synchronization

A carrier-synchronization system consists of a local oscillator whose phase is controlled
to be in synch with the carrier signal. This is achieved by employing a phase-locked loop
(PLL). A phase-locked loop is a nonlinear feedback-control system for contralling the phase
of the local oscillator. In the following discussion, for simplicity we consider cnly binary
PSK modulaticn systems.

The PLL is driven by a sinusoidal signal at carrier frequency (or a multiple of it). In
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order to obtain the sinusoidal signal ta drive the PLL, the DSB-modulated signal

#(E) = A.mit)cos(2m fut — B(1)) (76.1)

where m{1) = 1 is squared to obtain

w1y = Alm () cos? 2 for — p(0))

Al A7 ,
= -z—m'(r) + 5mir) cos(An for — 29()
AL Al
= o5+ G cos@rfe - 29(0) (76.2)

Cbviously, this signal has a component at 2 .. The reason that we do not deal directly with
u(r) is that usually the process m(r) is zero-mean, so the power content of u(1) at £ is zero.
Now, if the signal #%(r) is passed through a bandpass filter tuned to 2 £,, the output will be
a sinusoidal signal with the central frequency 2 f,., a phase of —2¢(r), and an amplitude of
AEH(ZfL)/Z. Without loss of generality we can assume that the amplitude is unity; i.e.,
the input to the PLL is

r{t) =cos{dmfr —26(1)) (7.6.3)

The PLL consists of a multiplier, a loop fiiter, and a voltage-controlled oscillator (VCOY),
as shown in Figure 7.32. If we assume that the output of the VCO is sin(4r f.1 — 24()),

input signal
r(t)

e(t)

Loop Filter

Sin(47 fot + 2¢)

VCOo vie)

Figure 7.32: The phase-locked loop.

then at the input of the lvop filter we have
e(r} = cos(dmfut — 20()) sin{dn fot — 2(2))
I . 1 n
= 3 Sin(2¢ (1) — 200 + 3 sin(8afot — 29 (1) — 20 (tN (7.6.4)

Note that e(r) has a high- and a low-frequency component. The role of the loop filter is
to remove the high-frequency component and to make sure that #(1) follows closely the
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variations in ¢ (r). A simple loop filter is a first-order lowpass filter with a transfer function
of

G(s) = (7.6.5)

where 13 3 ;. If we denote the input of the YCO as u(r), then the output of the VCO will
be a sinusoid whose instantancous frequency deviation from 2 £, is proportional to v(t).
But the instantaneous trequency of the VCO output is

5 I d . 0
2f + ;dr(ﬁ(
therefore
d - K
Icp(f) = Ev(f) (7.6.6}
or, equivalently,
i
20063 = Kf virydr (767
-0

where K is some proporticnality constant. After removal of the second and fourth harmon-
ics, the PLL reduces to the one shown in Figure 7.33.

Lsint2g(r) — 2600 > Gls) =

vCO v{t)
2801 = K [ viT)de

Figure 7.33: The phase-locked loop after removal of high-frequency components.

Assuming that &(r) closety follows changes in ¢(¢), the difference 2¢(t) — 28(8) is
very small, and we can use the approximation

1 .
— si - Y — 768
5 sin (2601 - 260) = 6) ~$(0) (7.6.8)

With this approximation the only nonlinear component in Figure 7.33 is replaced by a
linear component, resulting in the finearized PLL model shown in Figure 7.34. Note that
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o) —*—@— Gis)

315

u(r)

e

Figure 7.34: The linearized model for a phase-locked loop.

this model is represented in the transform domain, and the integrator is replaced by its
transform domain equivalent, 1/s.

The model shown in Figure 7.34 is a linear control system with a forward gain of G(s)
and a feedback gain of X /s; therefore, the transfer function of the system is given by

d(s)  KGisy/s

H = 7.6.
= %m T TTKGOs (69
and with the first-order model for G(s) assumed before,
1+ 25
= 7.6.1
Gl 1 + 728 (7.6.10)
H(s) is given as
H(s) = L+ s (1.6.11)

T+ {n + /K5 + ras¥/K
With H{s) as the transfer function, if the input to the PLL is ®{s), the error will be
A®E) = P(3) — bis)
= {5} — B{(5)H{(5)
= [l - H(H)] D(s)
_ (1 4 t25)
T K+ (1+K1)s + 1258

() (7.6.12)

Now let us assume that up to a certain time ¢ (1) =~ (1), 50 Ag{r) = 0. At this time
some abrupt change causes a jump in ¢ (¢) that can be modeled as a step; i.e., (s} = K| /5.
With this change we have

K
AR(s) = (L+ w29 X
K+ (1+Kr)s+1n35 5

Ky (1 + 128)

= 7.6.13
K4+ (1 + K75 + 1382 ( )
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Now, by using the final value theorem of the Laplace transform, which states thag
lim £ty = lim sF(s) (7.6.14)
t—co =0
as lang as all poles of 5 £ (s) have negative real parts, we conclude that
lim Aty = lim s®(5)
=00 =0

I Kis(1 4 t38)

= lim

=0 K+ (1 4+ K1)ds + 1282

=0 (7.6.15)

In other words, a simple first-order loop filter results in a PLL that can track jumps in the
input phase.
The transfer function (7.6.11) can be written in the standard form

_ (20w — wﬁ/K)s +a),2,
- 2+ 2 was + w

His) (7.6.16)

Here,

wp = K/13
walt) + 1/K)
Cﬁ"*z—

where wh, is the natural frequency and ¢ is the damping factor.
ILLUSTRATIVE PROBILEM

[Hustrative Problem 7.9 [First-order PLL] Assuming that

.01
G5y = 1001
L+s

and K = 1, determine and plot the response of the PLL to an abrupt change of height 1 to
the input phase,

R, SOLUTION 2

Here r; = 0.01 and t; = [; therefore,

w, =1
¢ =0.505
which results in
00ls + 1
His)= ————
= o T
Thus the response to ¢ () = u(t)—i.e., ${s) = | /5—is given by
R .01 1
b(s) = 0.015 +

S 4+102 4541
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In order to determine and plot the time response $(r) to the input u(r), we nole that we
have to determine the output of a system with transfer function H{s)to the input u{z}. This
can be done most easily by using state-space techniques. We will employ the MATLAB
function tf2ss.m, which returns the state-space model of a system described by its transfer

function. After determining the state-space representation of the system, the step response
is obtained numerically.

The function tf2ss.m takes the numerator and the denominator of the transfer function
His)and returns A, B, C. and D, its state-space representation, in the form

1
;—rx(ﬂ = Ax{{) + Bu(r)
‘
¥ty =Cx(ty + Du(ty
This representation can be approximated by

x(t+ A =x() + Ax(t)Ar + Bu(t) ot
¥ty = Cx(r) + Du(r)

or, equivalently,

x{i+ 1) = x(i)+ Ax{(I}Ar + Bu(idAr
y(iy = Cx(i) + Du(i)

For this problem it is sufficient to choose #(f) to be a step function and the numerator
and the denominator vectors of H{s)tobe (0.01 1]and[I 1.0t 1], respectively. With
this choice of numerator and denvminator vectors, the state-space parameters of the system

will be
—1.01 -1
=[]

)
(001 1]
0

o0 W

f

The plot of the output of the PLL is given in Figure 7.3,
As we can see from Figure 7.35, the output of the PLL eventually follows the input;

however the speed by which it fellows the input depends on the loop filter parameters and
K, the VCO proportionality constant.

The MATLAB script for this problem is given below.

%o MATLAB script for Ilusirative Problem §, Chapeer 7
echo on

num=[0.01 1};

den={1 1.01 1);

[a,b,cd]=12ss(num,den);
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Figure 7.35: The response of the PLL to an abrupt change in the input phase in Illustrative
Problem 7.9

di=0.01;

u=pnes(1,2000),

x=7eros(2,2001),

for i=1:2000
{0+ 1=k 0 +dnxax (i) +dt wbwualin);
yii)=cwxl; i)

and

1={0.d1:20];

plot{t(1:20C0),y)

7.6.2 Clock Synchronization

fn Chapter § and in this chapter we have seen that a popular implementation of the optimal
receiver makes use of matched filters and samplers at the matched filter output. In all
these cases we assumed that the receiver has complete knowledge of the sampling instant
and can sample perfectly at this time. Systems that achieve this type of synchronization
between the transmitter and the receiver are called timing recovery, clock-synchronization,
ot symbol-synchronization systems.

A simple implementation of clock synchronization employs an early-late gate. The
operation of an early-late gate is based on the fact that in a PAM communication system the
output of the matched filter is the autocorrelation function of the basic pulse signal used in
the PAM system (possibly with some shift). The autocorrelation function is maximized at
the optimum sampling time and is symmetric. This means that, in the absence of noise, at
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samplingtimes T* = T + 4 and T~ = T — 4, the output of the sampler will be equat; i.e.,
2Ty = y(T) (7.6.17)

In this case, the optimum sampling time is obviously the midpoint between the early and
late sampling times:

_Tr4TT
- 2

r (7.6.18)

Now let us assume that we are not sampling at the optimal sampling time T, but instead
we are sampling at Ty. If we lake lwo extrasamples at T+ = Ty +dand T~ = T} — 6, these
samples are not symmetric with respect to the optimum sampling time T and, therefore,

will not be equal. A typical autocorrelation function for positive and negative incoming
pulses and the three samples is shown in Figure 7,36,

matched filter output
optimum sample

1 1
carly samplc fate sampie

i
|
|
|
I
|
|
1
|
|
L

=T T+

Figure 7.36: The matched filter output and early and late samples.

Here
T-=T-3§
TV =T+é&
where
8y <& (7.6.19)

and, as the figure shows, this results in

(T = |#TH (7.6.20)
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Alsp, in this case

- +
T <7 = £—+z; {1.6.21)
2
Therefore, when ]y(T‘)i > ]y(T*)I, the correct sampling time is before the assumed
sampling time, and the sampling should be done earlier. Conversely, when Iy(T’)J <
|¥(T*)]. the sampling time should be delayed. Qbviously, when |y(T)] = [(T*)], the
sampling time is correct and nio cormection is necessary.
The early-late gate synchronization system therefore takes three samplesat 77, 7™ =
Ty —3,and T* = T} + 4 and then compares | y(7 )| and | »{T*)| and, depending on their
relative values, generates a signal to correct the sampling time.

ILLUSTRATIVE PROBLEM

INustrative Problem 7.10 [Clock synchronization] A binary PAM communication 5ys-
tems uses a raised-cosine waveform with a rolloff factor of 0.4. The system transmission
rate is 4800 bits/s. Write a MATLARB file that simulates the operation of an early-late gate
for this system.

. SOLUTION

Since the rate is 4800 bits/s, we have

1
T ooz 762
4800 (7.622)

and with o = (.4, the expression for a raised-cosine waveform becomes

c05(4800 x 0.471)
1 —4 x 0,16 x 480022

_ cos 1920m¢
= sinc{4800¢) 1-1.4746 x 10742

x{1) = sinc(4800¢)

(7.6.23)

This signal obviously extends from —co to +c0. The plot of this signal is given in Fig-
ure 7.37,

From Figure 7.37 it is clear that, for all practical purposes, it is sufficient to consider only
the interval {t{ < 0.6 x 1073, which is roughly [-3T, 3T]. Truncating the raised cosine
pulse to this interval and computing the autocorrelation function resuits in the waveform
shown in Figure 7.38.

In the MATLAB script given below, the raised-cosine signal and the autocorzelation
functicn are first computed and plotted. In this particular example the length of the auto-
correlaticn function is 1201 and the maximum (i.e., the optimum sampling time) occurs at
the 600th component. Two cases are examined, one when the incorrect sampling time is
700 and one when it is 500. In both cases the early-late gate corrects the sampling time to
the optimum 600.

7.6. Synchronization in Communication Systems

Figure 7.37: The raised-cosine signal in ilustrative Problem 7.10.

Figure 7.38: The autocorrelation function of the raised-cosine signal.

335
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. M-FILE g

% MATLAB scrips for Hlustrative Problem 10, Chaper 7.
echo on

alpha=0.4;

T=1/4800,

t=[—3+T:1.001+T/100:3«T);

x=sinctt./ T).#{cos(pixalphast./ T} /{1—d#alpha™ 241" 2/T" 2));
pause % Press any key to see & plor of ¥i).

plotit,x}

Y¥=XCOMm(x):

ty=[t— 3T t{2:length{t})+3«T];

pause T Press any key to see u plor of the autocorrelation of x(t)

plat{ty.y);

d=60; % Early and lute advance und deluy
ea=0.01; % Preciston

e=1; % Step size

n=700; % The incorrect sampling time

while abs{abs(y(n+d))—abs{y{n—d}})>=ee
if abs(y{n+d))—abs(y(n—d)y=0
n=n+e;
elseifl abs(y(n+d))—abs{y(n—d)) <0
n=n-—g;
end
end
pause % Press any key to see the corrected sumpling time

n
n=500; % Another incorrect sampling time
while abs(abs(y(n+d))—abs(y(n—d)})>=ee
il abs(y(n+d))—abs(y(n—d)>0
n=n+e;
elseif abs(y(n+d))—abs(¥(n—d})<0
n=n—e;
end
end
pause So Press uny key to see the corrected sampling time
n
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Problems

7.1 n a carrier-amplitude-modulated PAM system, the transmitter filter has a square-root
raised-cosine spectral characteristic with roll-off factor @ = 1. The carnier frequency is
fo = 40/T. Evaluate and graph the spectrum of the baseband signal and the amplitude-
modulated PAM signal.

7.2 Repeat Problem 7.1 when the carrier frequency is f, = 80/ 7.

7.3 Repeat Problem 7.1 when the iransmitter has a square-root duobinary spectral charac-
teristic.

7.4 The purpose of this problem is to demonstrate that (7.2.9and {7.2. 10} hold by evaluating
(7.2.9) numerically using MATLAB. The pulse gy (r) may be assumed to be rectangular,
L&,

I, 0D<re?

1y =
ar( 0, otherwise

Let the carrier frequency f, = 2000 Hz. Use a sampling rate of F; = 20,000 samples/s on
the signal waveform  {¢) given by (7.2.6) and compute the energy of 1 (¢) by approximating
the integral in (7.2.8) by the summation

1 N-1 1 Nl "
2
N L VT =g sz(ﬁ)

n=0 n=0

where N=40,000 samples. Write a MATLAB program tc generate the samples ¥ (n/F;)
and perform the computaticn of the signal energy as described above.

7.5 The cross correlation of the received signal (¢} with ¥ (i) as given by (7.2.14) may
be performed numerically using MATLAB. Write a MATLAB program that computes the
correlator output

y(MzZr(;—)w(;). R=0,1... NI

k=0

where F; is the sampling frequency. Evaluate and graph y(n) when r () = ¥ {¢), where
¥ (¢) is the waveform described in Problem 7.4 and F;=20,000 Ha.
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7.6 Evaluate and graph the correlation {y{n)} in Problem 7.5 when the signal gr () is

) {%(l—cosm), b<r=2
grin =17

0, otherwise
for the same parameters given in Problem 7.4.

7.7 InIllustrative Problem 7.2, the eight PSK waveforms had a constant amplitude. Instead
of the rectangular putse grit). suppose that the signal pulse shape is

(1) = %(17c052m/1"), O<t<T
grit) = 0

, otherwise

Write 2 MATLAB program to compute and graph the M = 8-PSK signal waveforms for
the case in which f. = 6/T.

7.8 Write a MATLAB program that nimencally computes the cross correlation of the
received signai r{r) for a PSK signal with the two basis functions given by (7.3.9). Thatis,
comopute

n

k k
)"c(n)=‘§}r(ﬁ)‘lfl(ﬁ), n=0,1,... N—-1

k k
3’5(”)22’(};)‘”2(}:)' n=0,1,...,N—1

k=0

where ¥ is the number of samples of r(r), ¥(), and ¥2(r). Evaiuate and plot these
correlation sequences when

r{t) = Spc W1 (1) + sy Y2 (1)
2, O0=t=x2
gt} = l{], otherwise
fe = 1000 Hz, F,=10,000 samples/s, and the transmitted signal point is as given.
a Sm = {Smp, Smg) = (1,0)
b. sm =(—1,0)
c. Sz =(0,1)

7.9 Write a MATLAB program that performs a Monte Carlo simulation of an M = 4-PSK
communication sysiem, as described in [llustrative Problem 7.3, but modify the detector
5o that is computes the received signal phase 6, as given by (7.3.16) and selects the signal
point whose phase is closes 10 5,.
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7.1¢ Write a MATLAB program that implements a differential encoder and a differential
decoder for a M = 4 DPSK system. Check the operation of the encoder and decoder by
passing a sequence of 2-bit symbols through the cascade of the encoder and decoder and
verify that the cutput sequence is identical to the input sequence.

7.11 Write a MATLAB program that performs a Monte Carlo simulation of a binary DPSK
communicaiion system. [ this case, the transmitted signal phases are @ = Qand & = 18G°.
A 8 = 0 phase change corresponds to the wansmission of a zero. A8 = 180" phase
change corresponds (6 the transmission of a one. Perform the simulation for ¥=10,000
bits at different values of the SNR parameter Zj/Ng. It is convenien? to normalize Iito
unity. Then, with o2 = Ng/2, the SNR is E,/Ny = /202, where o2 is the variance of
the additive noise componeat. Hence, the SNR can be controlled by scaling the variance
of the additive noise component. Plot and compare the measured error rate of the binary
DPSK with the theoretical error probability given by (7.3.23).

7.12 Write a MATLAB program that generates and graphs the M = 8-QAM signal wave-
forms given by {7.4.2) for the signat constellation shown in Figure P7.12.

-1 L1
—angd CRU (1.1 an
]

{-3-1

3, -1
1) ( )

Figure P7.12

Assume that the pulse waveform g7 (1) is rectangular, ie.,

I, 0<t=T
0, otherwise

gr(ny = l

and the carrier frequency is f, = 8/T.

7.13 Repeat Problem 7.12 when the pulse waveform g7 (r) is given as

%(l—cosZn‘:/T}, 0=r<T
grity = )
, otherwise
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7.14 Write a MATLAB program that performs a Monte Carlo simulation of an 4 = 8-
QAM communication systern [or the signal constellation shown in Figure P7.12. Perform
the simulation for & =10,000 {3-bit) symbols at different values of the SNR parameter
Erav/ Np. It is convenient to normatize &pay to unity. Then, with ¢ = Np/2, the SNR is
Fraw/Ng = 1/20’24 where o2 is the variance of each of the two additive noise components.
Plot and compare the measured symbol-error rate of the QAM systern with the upper bound
on the thecretical error probability given by ( 7.4.12).

7.15 Repeat the simulation in Problem 7.14 for the M = 8-signal censtellation shown in
Figure P7.15. Compare the error probabilities for the two M = 8 QAM signal constellation
and indicate which constellztion gives the better performance.

@ar
N\

Figure P7.15

(1 +V3 0

7.16 Consider the binary FSK signals of the form

uz(t) = cos 27 faf, O0=<t<Ty

()Y = @cosbrfir, 0<r<Ty
V Te
2E,
Ty
. 1

+M
YT,

Let f, = 1000/ T;. By sampling the two waveforms at the rate F; = 5000/ T}, we obtain
5000 samples in the bitinterval O < ¢ < T;,. Write a MATLAB program that generates the
5000 samples for each of & (1) and «2(¢) and compute the cress correlation

Su(g)e(E)

n=()

fa=f

and, thus, verify numerically the orthogonality condition for ) (t) and w2 (:).
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7.17 Use the MATLAB program given in Ilustrative Problem 7.7 to compute and graph
the correlator outputs when the received signal is

T
r(r):cos(?,.-rfu+;). D<r=T

7.18 Use the MATLARB program given in Hlustrative Problem 7.7 to compute and graph

the comrelator cutputs when the transmitted signal is w2{¢) and the received signal is

r{t) = cos ?_.'r1f+z‘ D<r=<T
(2 + 5 srs

7.19 Write a MATLAB program that performs a Monte Carlo simulation of a quaternary
(M = 4) FSK communication system and employs the frequencies

A k
fk=j|+?. k=0,1,23

The detector is a square-law detector. Perform the simulation for N=10,000 (2-bit) symbols
atdifferent values of the SNR parameter £/ Np. and record the number of symbol errors and
bit errors. Plot and compare the measured symbol- and bit-error rates with the theoretical
symbol- and bit-error probability given by (7.5.19) and (7.5.21).

7.20 InHlustrative Problem 7.9 it was assumed that the input phase has an abrupt jump, and
the simulation showed that a firsi-order loop filter can track such a change. Now assume
that the input changes according 1 4 ramp, l.e., starts to increase linearly. Simulate the
performance of a first-order PLL in this case and determine whether the loop is capable of
tracking such a change.

7.21 Repeat illustrative Problem 7.10 with a rectangular pulse shape in the presence of
AWGN for SNR values of 20, 10, 5, and 0 dB.



Chapter 8

Channel Capacity and Coding

8.1 Preview

The objective of any communication syslem is to transmit information generated by an
information source from one location to another. The medium over which information is
transmitted is called the communication channel. We have already seen in Chapter 4 that
the information content of a scurce is measured by the entropy of the source, and the most
common unit for this quantity is bits, We have alsc seen that an appropriate mathematical
model for an information source is a random process.

In this chapter, we consider appropriate mathematical models for communication chan-
nets. We also discuss a quantity called the channel capaciry that is defined for any com-
munication channel and gives a fundamental limit on the amount of information that can
be transmitted through the channel. In particular, we consider two types of channels, the
binary symmetric channel (BSC) and the additive white Gaussian noise channel (AWGN),

The second part of this chapter is devated to ceding techniques for reliabie commu-
nication over communication channels. We discuss the two most commonly used coding
methods, namely, block and convolutionai coding. Enceding and decoding techniques for
these codes and their performance are discussed in detail in the later sections of this chapter.

8.2 Channel Model and Channel Capacity

A communication channel transmits the information-bearing signal to the destination. In
this transmission, the information-carrying signal is subject to a variety of changes. Some of
these changes are deterministic in nature, &.g., attenuaticn. linear and nonlinear distortion;
and some are probabilistic, e.g., addition of noise, multipath fading, etc. Since deterministic
changes can be considered as special cases of random changes, in the most general sense
the mathematical model for a communication channel is a stochastic dependence between
the input and the output signals. In the simplest case this can be modeled as a conditicnal
probability relating each output of the channel to its comresponding input. Such a model is
called a discrete memoryless channel (DMC) and is completely described by the channel

343
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input alphabet X, the channel output alphabet ¥, and the channel transition probabiliry
matrix p(y | x). given forall x € X, ¥y € Y. One special case of the discrete memoryless
channel is the binary svmmetric channel (BSC) that can be considered as a mathematical
mode! for binary transmission over a Gaussian channe! with hard decisions at the output.
A binary symmetric channe! corresponds to the case X = ¥ ={0, ljand p{y =0 | x =
)= p(y =1|x =0 =e¢ Aschematic model for this channel is shown in Figure 8.1.
The parameter ¢ is called the erossover prokability of the channel.

1

a

e

= \

1

Figure 8.1: A binary symmetric channel {BSC).

8.2.1 Channe! Capacity

By definition, channel capacity is the maximum rate at which refiable transmission of
information over the channel is possible. Reliable transmission is possible when there
exists a sequence of codes with increasing block length, for which the error probability
tends to 0 as the oleck length increases. The channel capacity is denoted by C; by the above
definition, at rates R < C reliable transmission over the channel is possible, and at rates
R > C reliable transmission is not possible.

Shannon’s fundamental result of information theory states that for discrete memoryless
channels, the capacity is given by the following expression

C=maxI{X: ¥} (8.2.1)
plo)

where I (X: Y) denoles the mutual information between X (channel input) and T (channel
output) and the maximization is carried out over all input probability distributions of the
channel.

The mutual information between two random variables X and Y is defined as

1) = 3 pGxdptyln) log ol

(8.2.2)
= px)p(y)

where the mutual information is in bits and the logarithm is in base 2.
For the case of the binary symmetric channel, the capacity is given by the simple relation

C =1-—Hye) (8.2.3)
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where ¢ is the crossover probability of the channel and H,{'} denotes the binary entropy
function:

Hyp(x) = —xlog{x) = {1 —x)log(l — x) (8.2.4)

Another important channel model is the bandlimited additive white Gaussian noise
channel with an input power constrart. This channel is modeled as shown in Figure 8.2.

z{r)

(1) .
2 lwp=n (ﬁ) @ y(1)

L

Figure 8.2: Bandlimited additive white Gaussian noise channel.

The ¢channel 15 bandlimited 1o [—W, W], the noise is Gaussian and white with a ([{wo-
sided) power spectral density of Np/2, and the channel input is a process that satisfies an
input power constraint of £. Shannon showed that the capacity of this channel in bits per
second is given by

P
C=Wlog (l + W_) bits/second (8.2.5)

For a discrete-time additive white Gaussian noise channel with input power constraint
P and noise variance o2, the capacity in bits per transmission is given by

1 P
C = ﬁlog (1 -+ ﬁ) (8.2.6)

ILLUSTRATIVE PROBLE

Iustrative Problem 8.1 [Binary symmetric channel capacity] Binary data are transmit-
ted over an additive white Gaussian noise channel using BPSK signaling and hard-decision
decoding at the output using optimal matched filter detection.

1. Plot the error probability of the channel as a function of

E

= ¥ (827

¥

where Z 1s the energy in each BPSK signal and Np/2 is the noise power spectral
density. Assume that ¥ changes from —20dB to 20 dB.

2. Plot the capacity of the resulting channel as a function of y.
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R SOLUTION o

1. The error probability of the BPSK with optimal detection is given by

p=0(V2r) (8.2.8)

The corresponding plot 15 shown in Figure 8.3,

Figure 8.3: BPSK error probability versus y = &.

2. Here we use the relation
C=1~ Hy(p)
-y (e (Var }) (8.2.9)

to obtain a plot of € versus y. This plot is shown in Figure 8.4.

The MATLAB script for this problem is given below.

% MATLAB script for Hlustrative Problem |, Chaprer 8,
echa on

gamma.db=[-20:0.1:20};

gamina=10." (gamma_db./10);
p-error=q(sqri(2.=gamma)),
capacity=1.—entropy2(p_error),

pause % Press a key to see u plat of error probability vs. SNR/bBit
cif

semilogx{gamma,p_grror)

xlabel(’ SNR/bit")

tlile(Exror probability versus SHNR/bit")
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Figure 8.4; Channel capacity versus ¥ = N%

ylabel{ ' Error Prob. )

pause % Press a key to see a plot of chaneel capacity vs. SNR/bit
clf

semilogx(gamma,capacity)

xlabel( ' SNR/Bit )

tile(*Channel capacity versus SNR/bir 3
yiabel( Channel capacity’)

ILLUSTRATIVE PROBLEM

Nustrative Problem 8.2 [Gaussian channel capacity]

[. Plot the capacity of an additive white Gaussian noise channel with a bandwidth of
W = 3000 Hz as a function of P /Ny for values of P/Np between —20 and 30dB.

2. P: A the capacity of an additive white Gaussian noise channel with P/Ny = 25 dB

as a function of W. In particular, what is the channel capacity when W increases
indefinitely?

. SOLUTION 4

L. The desired plot is given in Figure 8.5,

2. The capacity as a function of bandwidth is plotted in Figure §.6.

As is seen in the plots, when either P/ Ny or W tend to zero, the capacity of the
chaanel also tends to zero. However, when P/Npor W tends to infirity, the capacity
behaves differently, When P /N tends to infinity, the capacity also tepds to infinity,
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1400

1200

200 |

10’
PNy

Figure 8.5: Capacity of an AWGN channel with W = 3000 Hz as a function of P/Np.

W(Hz}

Figure 8.6: Capacity as a function of bandwidth in an AWGN channel.
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as shown in Figure 8.5. However. when W tends to infinity, the capacity does go to
a certain hmit, which 1s determined by P/Nj. To determine this Hmiting value we

have
. P P
lim Wlogs [ 1+ —— | = ——— (8.2,10)
Won < MW Noln2
1.4427 P (8.2.11)
= {447 o 2.
The MATLAB script for this problem is given below.
G MATLAB script for flustrative Problem 2, Chupler 8.
echo on
pn0_db=[-20:0.1:30};
pn0=10."(pn{_db./10);
capacity=3000.«log2(1+pn0 /3000,
pause % Press g key to see u plot of channe! capacity vs. PINO
clf
semilogx(pn0.capacity)
title(* Capacity vs. P/NO in an AWGN channel’}
xlabel{ * P/NO ")
ylabel(*Capacity (bits/second) )
clear
w=[1:10,12:2:100,105:5:500,512:10:5000,5025:25:20000.20050.50: 1000001
pn0_db=25;

pn0=10"(pn0_db/10%;

capacity=w.*log2(1+pn0./w);

pause % Press « key to see a plor of chonnel capacity ve bundwidik
clf

semilogx{w.capacity}

title{ ' Capacity vs. bandwidth in an AWGN channel’)
xlabel( Bandwidch (Hz) '}

ylabel('Capacity (bits/second} )

ILLUSTRATIVE PROBLEM

Illustrative Problem 8.3 [Capacity of binary input AWGN channel] A binary input
additive white Gaussian noise channel is modeled by the two binary input levels A and
— A and additive zero-mean Gaussian noise with variance o2, In this case X = [— A, A},
YR ply | X =4) ~NA.cD, and p(y | X = —A) ~ N(—A,o?). Plot the
capacity of this channel as a function of A/o.

B SOLUTION

Due to the symmetry in the problem the capacity is achigeved for uniform input distri-
bution, 1.e, for p(X = A) = p(X = —4A) = :1; For this input distribution, the output
distribution is given by

!
)= s 2e-‘y""m‘”+——2 2wze“ﬁ"’”2”"2 (8.2.12)
oY o v
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and the mutual information betweer the input and the output is given by

1 = | X=A
HX V) = ;f PO 1Y = A)log, LOLEX =AY
2 J—00

- 2463,
| oo , =

+ 7f POy I X = —Aylog, POLX=—4) (82.13)
2/ - (¥

Simple integration and change of variables results in

1,74 | A
X =5 = )+5f(~~ (82.14)
2 fed 2 o
where
f(a):[m L mwirityge 2y, (8.2.15)
—00\/2-::(- = l+€_2‘”‘

Using these relations we can caleulate 7{X: ¥) for various values of f and plot the resuli.
A plot of the resulting curve is shown in Figure 8.7,

C

X 15

48

04k

oz

Figure 8.7: Capacity of a binary input AWGN channel as a function of SNR=A/o.

The MATLAB script for this problem follows.

% MATLAB script for Hlustrative Problem 3. Chapter 8.
echo on

a.db=[—20:0.2:20];

a=10."(a_db/10);

for i=1:201

i)
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fli)=quad(* i 13_8fun- alil—5.at+5,1e—3 [ Jalb));
B()=quad(* 113 8fun’.—a()=5—a(iM5,1e—3.[ |.—afi).
C(1}=0.5%f(i)+0.5+g(i):
end
pause % Press a key to see capacity vs. SNR plot.
semilogx(a.c)
tille{* Capacity versus SNR in binary input AWGN channel’)
xlabel(" SNR’)

ylabel(’ Capacicy (bi ts/transmission} ‘)

ILLUSTRATIVE PROBLE|

IMustrative Problem 8.4 [Comparison of hard- and soft-decision schemes] A binary
input channel uses the two input levels A and ~A. The output of the channel is the sum of
the input and an additive white Gaussian noise with mean 0 and variance 2. This channel
is used under two different conditions. In one case, the output is used directly without
quantization (soft decision), and in the other case, an optimal decision is made on each
input level (hard decision). Plot the capacity in each case as a fenction of Ala.

. SOLUTION 4

The soft-decision part is similar to Qlustrative Problem 8.3. For the hard-decision

case the crossover probability of the resulting binary symmetric channel is Q(Ajo), and
therefore the capacity is given by

comt-n(of)

Both Cy and Cs, are shown in Figure 8.8. Soft-decision decoding outperforms hard-
deciston decoding at al] values of A /o, as expected.
The MATLAB script for this problem is given below.

% MATLAB script for Hlustrative Problem 4, Chaprer 8

echo on

a_db=[--13;0.5:13];

a=10."(a_db/10y;

c-hard=T—entropy2(gia));

for i=%:53
fli)=quad(* 113_8fun’ a(i)—5.0()+5,18—3,[ L,ali)};
gliy=quad{* 113_8fun".—afi)—5,~a(i+5,1e—3,[].~a(i?,
csoft(1)=0.5xf(i)+0.5xg(i};

end

pause % Press « key to see the capacity curves

sernilogx{a,c_soft.a.c_hard)
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ant Soft decision/ /Hard decision

w’ 10° 10"

Al

Figure 8.8: Plots of Cy and Cy versus SNR = A/g.

ILLUSTRATIVE PROBLE

Illustrative Problem 8.5 [Capacity versus bandwidth and SNR] The capacity of a band-
limited AWGN channel with input power constraint P and bandwidth W is given by

P
C= e
Wlog, (1 + NOW)

Plot the capacity as a function of both W and P/Ny.

. SOLUTION

The desired plot is shown in Figure 8.9. Note that for ¢onstant P /Ny, the plot reduces
to the curve shown in Figure 8.6. For constant bandwidth, the capacity as a function of
P /Ny is similar to the curve shown in Figure 8.5,

The MATLAB script file for this problem is given beiow.

. M-FILE

Yo MATLAR script for IHustrative Problem 5. Chapier 8.
echo off
w=[1:5:20,25:20:100C,130:59-300,400:100.1000.1250:250:5000,5500:500: 10000,
pn0_db={—20:1:30};
pn0=10, " (pnd_db/1C);
for i=1:45

for j=1:51

o1 ))=wli)+log2t 1 +on0(j) /wiid):

end
end
echo on
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Figure 8.9: Capacity as a function of bandwidth and SNR in an AWGN channel.
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pause % Press a key to see C vi. W and PN,
k={0.8,0.8,0.5,0.6];

s={~70,351;

surfl{w,pnd_db.c’ , s, k)

title{ ' Capacity vs. bandwidth and SNR')

ILLUSTRATIVE PROBLE

Miustrative Problem 8.6 [Capacity of discrete-time AWGN channel] Plot the capacity
of the discrete-time additive white Gaussian noise channel as a functjon of the input power
and the noise variance,

R SOLUTION g

The desired plot is given in Figure 8.10.

Capacity (bits/transmission)

T~

10 Noise Power (dB)
-20 -20

Figure 8.10: Capacity of the discrete-time AWGN channel as a function of the signal power
(P} and the noise power (a2).

The MATLAB script file for this problem is given below.

% MATLAB seript for Hlustrative Probiem 6, Chaprer 8.
echo on

p-db=[—20:1:20];

np-db=p_db;

p=10."(p_db/10};
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np=p.
for i=1:41
for j=1:41
clif)=0 5xlog2(1+pi(i)/np(j));
end
end
pause %o Press a kev 1 see the plut
surfl{np_db,p_db.c)

8.3 Channel Coding

Communication through neisy channels is subject to errors. In order 1o decrease the effect
of errors and achieve reliable comumunication, it is necessary Lo Lransmit sequences that
are as different as possible so that the changel noise will not change one sequence into
ancther. This means some redundancy has to be introduced Lo increase the reliability of
communication. The introduction of redundancy results in transmission of extra bits and a
reduction of the transmission rate.

Chaanel coding schemes can be generally divided into two classes, block codes and
convelutional codes. [n block coding, birary source output sequences of length k are
mapped into binary channel input sequences of length n; therefore, the rate of the resulting
code is k/n bits per transmission. Such a code is called an {n, k) block code and consists of
2% codewords of length n, usually denoted by ¢, ca, . . . , ¢z Mapping of the information
source outputs into channel inputs are done independently, and the output of the encoder
depends only on the cutrent input sequence of length & and not on the previcus input
sequences. In convolutional encoding, source outputs of length &y are mapped into np
channe] inputs, but the ¢hannet inputs depend not only on the most recent kg source autputs
but also on the last (L — !)kp inputs of the encoder.

Cne of the simplest black codes is the simple repetition code, in which there are two
messages to be transmitted over a binary symmetric channel, but instead of transmitting a 0
and a | for the two messages, 1wo sequences, one consisting of all 0°s and one consisting of
all 1's are transmitted. The length of the two sequences is chosen to be some odd number
n. The encoding process is shown below:

n odd
0 —00...00 (8.3.1)
n odd
e,
I —=11... 11 (8.3.2)

The decoding is a simple majority vote decoding; that is, if the majority of the received
symbols are 1's, the decoder decides in favor of a 1, and if the majority are 0's, the decoder
decides in favor of a 0.

An error occurs if at least (r + 1)/2 of the transmitted symbols are received in error.
Since the channel is a binary symmetric channel with crossover probabifity ¢, the error
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probability can be expressed as

H

pe= Y (2)6"(176)"4‘ (8.3.3)

k=tr+l}2

For example, with n = 3 and € = 0.001 we have

5
Pre = 20.001"(0.999)5'* =999 x 107"~ 107° {8.3.4)
k=3

This means that by employing the channel five times, instead of just once, we can reduce
the error probability from 0.001 to 107°, OFf course, a price has been paid for this more
reliable performance; that price is a reduction in the rate of transmission and an increase
in the complexity of the system. The rate of transmission has been decreased from one
binary message per one use of the channel to one binary message per five usages of the
channel. The complexity of the system has been increased because now we have to use
an encoder {which has a very simple structure) and a decoder, which implements majority
vote decoding, More reliable transmission in this problem is achieved if we increase n. For
instance, for n = 9 we have

9
pe=_0.0014(0.999)°* = 9.97 x 107 "¢ = 107 (8.3.5)
k=5
From above it seems that if we want to reduce the error probability to zero, we have to
increase # indefinitely and, therefore, reduce the transmission rate to zero. This, however,
is not the case, and Shannon showed that one can achieve asymptotically reltable communi-

cation {i.e., p. -+ 0} by keeping the rate of transmission below the channel capacity, which
in the above case 1s

C=1—-Hy(0000)=1-00114 = 098386 bits/transmission (8.3.0)

This, however, is achieved by employing encoding and decoding schernes that are much
more complex than the simple repetition code.

ILLUSTRATIVE PROEBLE

Nlustrative Problem 8.7 [Error probability in simple repetition codes] Assuming that
¢ = 0.3 in a binary symmetric channel, plot p, as a function of the block-length n.

—EEIMIEYP

We derive p, for values of » from 1 to 61. The error probability is given by

n

n -
pe= 3. (k)oa" x 0.7

k=(n+1)/2

and the resulting plot is shown in Figure 8,11,
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The MATLAB script file for this problem is given below.

Fo MATLAB script for Hlustrative Problem 7, Chapter 8

echo on

ep=0.3;

for 1=1:2:6%
pli=d:
for j=(i+1)/2:1

pli)=pii)+prod(1:1}/(prod{1:jpxprod{1:(i—j}))*ep” jx(1—ep)* (i—j):

end

end

pause % Prexs a key to see the plot

stem((1:2:61).p(1:2:61)}

xlzbel(*n*)

ylabel{‘pe")

title{' Error probabilitcy as a function of n in simple repetition code’)

Pe
03 T T T T T T T
425 o
02 4
615y 1
iRl B
nns H @
8 N TT.TTTT?}????OAEDQDQH\AA

0 o] 0 i H 50 40 0 L]
n

Figure 8.1 1: Error probability of a simple repetition code for¢ =03 andn = 1,2, ..., 61.

8.3.1 Linear Block Codes

Linear block codes are the most important and widely used class of block codes. A block
code is linear if any linear combination of two cedewords is a codeword. In the binary case,
this means that the sum of any two codewords is a codeword. In linear block codes the
codewords form a k-dimensional subspace of an n-dimensional space. Linear block codes
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are described in terms of their generator matriv G, whichisak x n binary matrix such that
each codeword ¢ can be written in the form

¢=nG (8.3.7)

where u is the binary data sequence of length k (the encoder input). Obviously, the all-0
sequence of length n is always a codeword of an (n, k) linear block code.

An important parameter in a linear block code, which determines its error-correcting
capabilities, is the mintmum (Hamming) distance of the code, which is defined as the
minimum Hamming distance between any two distinct codewords, The minimum distance
of a code is denoted by din,, and we have

din = mindg (e, c;) 8.3.8)
i#j

For linear codes the minimum distance is egual to the minimum weight of the code, defined
by

Wmin = min wig;) 3.9
c; 20

i.e., the minimum number of 1's in any nonzero codeword,

ILLUSTRATIVE PROBLEM

Nllustrative Problem 8.8 [Linear block codes] The generator matrix for a (10, 4) linear
block code is given by

—_—— O

0
l
1
0

—_— O -
—_—— O
—_—— O —

01 1
111
¢ 1 0
1 090

—_ D =
—_ o QO —

Determine all the codewords and the minimum weight of the code.

. SOLUTION

In order to obtain all codewords, we have to use all information sequences of length 4
and find the corresponding encoded sequences. Since there is a total of 16 binary sequences
of length 4, there will be 16 codewords. Let I/ denote & 2¢ x & matrix whose rows are all
possible binary sequences of length k, starting from the all-0 sequence and ending with the
all-1 sequence. The rows are chosen in such a way that the decimal representation of each
row is smaller than the decimal representation of all rows below it. For the case of k = 4,
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the matrix U is given by

0000
000 1
00 1 0
00 11
01 00
01 0 1
01 10
01 1 1

V=1, 00 9
1001
I 01 0
101
1100
1o
110
SRR AN

We have

C=UG (8.3.10)

where C is the matrix of codewords, which in this case is a 16 x 10 matrix whose rows are
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the codewords. The matrix of codewords is given by

00 0 0]

0001

g 01 C

00 1 1

01 0 0

0! 01

0t 1L Ooffroo 1 1101 11
Jor ot fft o0 1110
C=lyo0o0o0llor t 01101 01
100 1]|1 t o1 L1 100 ¢
1 0 i ©

1 0 1t 1

I 1 0 0

11 0 1

1 1 19

[t 1 1 1]

0 0 00 0 000 0 0]
1101 11 1001
0110110101
101 1 0901t 00
1110009 1110

00 1 L 11061 11

1 06060 1 1 1 011
o1t e L 000010
“ltoo0 1 1101 11
01000011 10
1111000010
010111011

0t 11 Lt 1001
1010000000
0cCo1LOO01 100

1 100 1 101 0 1]

A close inspection of the codewords shows that the minimum distance of the code is dmin =
2.
The MATLAB script file for this problem is given below.

—EE»

% MATIAB script for fllustrative Problem 8, Chapter 8.
% generate U, denoting all information sequences
k=4;
for i=1:27k
for =k:—%:1
if rem(i—1,2"(—j+k+1)>=2"(—j+k)
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uliyy=1;

else
u(ij=0;
end
end
end
% define (7. the generator matric
g={(1001 1101114
1110001110
0110110101,
1101111001

% generute cudewords
c=rem{usg,2);

% find the minimum distnee.
womin=min(sum{(c{2:2 k.’ 11 ;

A linear block code is in the sysiematic form if its generator matrix is in the following
form

1 0 O py P2 Pla
G- 0 Q pz..l P?,z ‘Dz'f"k 33.11)
6 0 . ! pJ;J p;_: . Pk.;:—k
or
G =[P (8.3.12)

where I; denotes the & x k identity matrix and P is a k x (» — &} matrix. In a systematic
code, the first £ binary symbols in a codeword are the information bits, and the remaining
n — k binary symbols are the parity-check symbols.

The parity-check matrix of a code is any (n — &} x n binary mauwix H such that for all
codewords ¢ we have

cH =0 (8.3.13)
Obviously, we will have
GH =0 (8.3.14)
and if G is in systematic form, then
H=[P|L (8.3.15)

Hamming Codes

Hamming codes are (2™ — 1,2™ — m — 1) linear block codes with minimum distance 3
and a very simple parity-check matrix, The parity-check matrix, which is an m x (2™ - 1)
matrix, has all binary sequences of length m, except the all-0 sequence, as its columns. For
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instance, for m = 3, we have a (7, 4) code whose parity-check matrix in the systematic
form is

H=(1 1010 1 0 (8.3.16}

[l
—
[=]
o
-

From this we have

(8.3.17)

oo O -
co—-o
o—-—oo
—c oo
—_— D —
—_— 5 — -
—_— —

ILLUSTRATIVE PROBLEM

Illustrative Problem 8.9 [Hamming codes] Find all the codewords of the (15, [1) Ham-
ming vede and verify that its minimum distance is equal t¢ 3.

B SOLUTION 4

Here
1 e o1 L0310 11 110080
L1000ttt 1Y0 1 101 0 0
= 3.18
H=lo 111001 1101001 0 (8.3.18)
00101101 111000 1
and, therefore,
(100000000001100'
01 000O0O0O0O0CGOOTI1 1t O
001 00CDODO0O0O0DO0O0OGO0O 1 1
000 1L 0CDOODODOC T O I O
00001000000 L 0O I
G=(0 000010000001 01
¢ 000001 00001110
0 Q00000100001 1 1
00000 O0O0CO0TI1 00 1 O ¢ 1
000 0O0DO0DO0CO0OGCGTI1 01101
000 000000CGO0O I 1T 1 I 1]

There is a total of 2! = 2048 codewords, each of length 15. The rate of the code is
% = 0.733. In order to verify the minimum distance of the code, we use a MATLAB script
similar to the one used in the Ilustrative Problem 8.8. The MATLAB script is given below,

and it results in diin = 3. -
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— -

T MATLAB script for Hiustrative Problem 9, Chaprer 8.
eche on
k=11;
for i=1:2"k
for j=k:—1:1
if rem(i=1.2"(—j+k+1)}>=2"(—j+k)
ufi,jj=1;
else
u(ij=0:
end
end
end

COO0O0O0OQA0 O =
D000 QO0O w0
COoOCOoOOOoOO—=-~C0O
SO0 O~aoO
COoO0QO0OO0O—=-0Cc0o0C

B=

[= == RaiP s Nl oo Na =)
VOO 2000 OaOO0
OO0 = 00D 000C 0O
(=1 =le e NaloNoleNalls]
000000 C OO0
b hoacooo
Rl o S RN N o 3 o R
e R = I = I & ]
e e =

(== folaltleNoNeNel el

c=rem(usg.2).
w_min=min{sumg{c{2:2"k.:;))* ) ;

Performance of Linear Block Codes

Linear block codes can be decoded using either soft-decision decoding or hard-decision
decoding. In a hard-decision decoding scheme, first a bit-by-bit decisicn is made on the
components of the codeword, and then, using a minimum Hamming distance criterion, the
decoding is performed. The performance of this decoding schemte depends on the distance
steucture of the code, but a tight upper bound, particularly at high values of the SNR, can
be obtained in terms of the minimum distance of the code.

The (message) error probability of a linear block code with minimum distance diy;;, in
hard-decision decoding, is upper bounded by

Pe <M = 1)[4p(1 = p)y]min/? (8.3.19)

where p denotes the eror probability of the binary channel {error probability in demodu-
lation} and A is the number of codewords (M =125,

In soft-decision decoding, the received signal is mapped into the codewerd whose
corresponding signal is at minimum Euclidean distance from the received signal. The
message-crror probability in this case is upper-bounded by

dE
pe 2 {M - 1)Q (fZT’VE) (8.3.20)
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where M = 2% is the number of codewords. Ny is the one-sided noise power spectral
density, and d% is the minimum Euclidean distance of the code and is given by
E Vdmin®  for orthogonal signaling
d° = . . . (8.3.21)
V2dninE  for antipodal signaling

which resulls in

dnink
(M-1Q (\/%‘%) for orthogonal signaling
- (8.3.22)

Pe =

dminE
(M —-1DQ (J%) for antipodal signaling
[

In these inequalities dmin is the minimum Hamming distance of the code and & denotes the
energy per each component of the codewords. Since each codeword has n components, the
energy per codeword is o, and since each codeword carrtes  information bits, the energy
per bit, £ is given by

Ep = =— (8.3.23}

nE E
k R,

where R. = k/n denotes the rate of the code. Therefore, the above relations can be written

as
[ R
(M—-1Q ( u%‘z”) for orthogonal signaling
pe < 2 (8.3.24)
Ami < . . .
(M- 10 ( f —ﬂ%ﬁ) for antipodal signaling
o

The bounds obtained above are usually useful only for large values of yp = Ep/Ng. Far
smaller y; values, the bounds become very loose and can even exceed 1.

ILLUSTRATIVE PROBLEM

Mlustrative Problem 8.10 [Performance of hard-decision decoding] Assuming that the
(15,11) Hamming code is used with antipodal signating and hard-decision decoding, plot
the message-error probability as a function of yy = £p/No.

. SOLUTION 4

Since antipodal signaling is employed, the error probability of the binary chanzel is
given by

2E
=0 ( 7\’"5) (8.3.25)
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where E Is the energy per component of the code (cnergy per dimension) and is derived
from Ejp by

E =ZyR, (8.3.26)

Therefore,

2R,
p=20 ( G ) (8.3.27)
¥ M

where R, = k/n = % = (.73333. Since the minimum distance of Hamming codes is 3,
we have

pe = (2" = 1) [4p01 = pyyion?

— 1.5
= 2047 (49 ( f%%ﬂ) (1 ) (\/"f]ﬂ))) (8.3.28)
0

The resulting plot is shown in Figure 8.12.

pp 107

1
10 1 12 13 " 15 18

Vi

Figure 8.12: Error probability as a function of y;, fora(!5,11) Hamming with hard-decision
decoding and antipodal signaling.

The MATLAB function for computing the bound on message-error probability of a

linear block code when hard-decision decoding and antipodal signaling is employed is
given below.

furction [p-ecr,gamma_db]=p_e_h¢_a(gamma_db_l,gamma_db_h,k,n,d_min}
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% pehd.am  Matleb function for compasing error probabitity in

% hard-decision decading of o lnewr block code

% when antipndef signeling v used.

o {pgrrgumma db] = pe hd_atgamma_db 4 gomme db_ikon.d oninj
G gamma_db_{ = lowver EbIND

G gumma_db b = higher EB/ND

% k = number of information bits in the code

T n = code block length

% domin = minimum dixiance of the code

gamma._db=[gamma_db_l-(gamma_db_k—gamma_db_1)/20 gamma_db_h];
gamma_b=10." (gamma_db, 10},

R_c=k/n;

p_b=q(sqri(2.xR_c.+gamma_h));

p-err=(2 k—1).4(d4p_b.«l1—p_bi}. " (d.min/2);

In the MATLAB script given below, the above MATLAB function is employed 1o plot
error probability versus yy,.

Yo MATLAB soript for Mustrative Problem 18, Chapter 8.
[p.err.ha,gamma_bj=p_e.hd_a¢10,16,11,15,3),
semilogy(gamma_b,p_err_ha}

ILLUSTRATIVE PROBLEM

[Hustrative Problem 8.11 [Hard-decision decoding] If the (15, 11) Hamming code is
used with an orthogonal binary modulation scheme instead of the antipodal scheme, plot
the message-error probability as a function of ¥, = £/ Ng.

g SCLUTION

The problem is similar 10 Illustrative Problem 8.10, except that the crossover probability
of the equivalent binary symmetric channel (after hard-decision decoding) is given by

3
~0 (‘/;D) (8.3.29)

Using the relation

E = ELR, {8.3.30)
we obtain
R.Ep
= 8.3.31
P Q( Vo ) ( )
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and, finally,

pe = (2“ - 1) [4p(l — p)Jdein.2
L3

— N
=2047 (ag [ JOT3EN [ o [UTHE (8.3.32)
Mo v Ny

The p.-versus-E5 /Ny plot is shown in Figure 8.13.
The MATLAR file for this problem is given below.

% MATLAB script fur Husirative Problem 11, Chupter 8.
echo on

gamma_b_db={—4:1:14]:

gamma_b=10." (gamma_b_db/10);
4q=gisqri{0.733.xgamma_b});
p-emr=2047xqq. " 2.4(3— 2.%qy);

pause % Press a key 1o see p_err versus gamma_b curve
loglog(gamma_b,p_em)

Figure 8.13: Error probability versus 5 of a (15,1 1) eode with orthogonal signaling and
hard-decision deceding.

As we observe from Figure 8.13, for lower values of ¥e the derived bound is too loose.
In fact, for these values of 5 the bound on the error probability is larger than 1, It is also
instructive to plot the two error probability bounds for orthegonal and antipodal signaling
on the same figure. This is done in Figure 8.14. The superior performance of the antipodal

signaling compared to orthogonal signaling is readily seen from a comparison of these two
plots.
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Orthogonal sgnuting

Antipudul signahing

Figure 8.14: Comparison of antipoda] and orthogonal signaling.

The MATLAB function for computing the message-error probability in the case of
hard-decision decoding with orthogonal signaling is given below.

function (p_err,gamma_db]=p_z_hd_o{gamma_db_],gamma_db_hk,n,.d_min}
% poehd_o.m Muatlab function for cemputing error probabiliry in

% hurd-decision decoding of a linear block code

T when arthogonal signafing (s used.

%o {perigammu_db] = p_e_hd ofgamma db ) gamma.db b knd_min)
T gemma.dbd = lower E_b/ND

P gumma.db_h = higher EL/ND

% k = number of information biis in the code

G n = code block length

% dmin = minimum distance of the code

gamma_db=[gamma_db_l:(gamma_db_h—gamma_db_1)/20.gamma._db_h];
gamma_b=10." (gamma.db/10);

R_c=k/n;

p-b=g(sqr(R_¢c.+gamma ),

p-ermr=(2"k—1}Lx(dsp_b.a{1—p_b}}. " (d_min/2);

ILLUSTRATIVE PROBLEM

Hlustrative Problem 8.12 [Soft-decision decoding] Solve [llustrative Problem 8.11 when
soft-decision decoding is used instead of hard-decision decoding,

S
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—

In this case we have to use Equation (8.3.24) to find an upper bound for the error

369

probability. In the problem under study, dpyy == 3. R, = :—i— and M = 211 1 = 2047,
Therefore, we have
dinin R E)
(M- D (‘Y ﬂ;y—h) for orthogonal signaling
o~y
pe <
dm R -:-E; . . .
(M=o | fZmeleh for antipodal signaling
VoM
I
20470 [ =22} for orthogonal signaling
V10 %
=
1 E
2047Q —=t for antipodal signaling
5 Np

The corresponding plots are shown in Figure 8.15. The superior performance of antipodal
signaling is obvious from these plots.

Pe 10

Orthagunal y1gnalting

Anppoal Sighaling

10 " 12 13 14 15 15
el

Figure B.15: Message-error probability versus y for soft-decision decoding.

Two MATLAB functions, one for computing the error probability for antipodal signaling
and one for computing the error probability for orthegonal signaling when soft-decision
decoding is employed, are given below.
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— =D

function [p-err.gamma.dbl=p_e.sd-a{gamma.db_l,gamma_db_h.k,n,d_min)
G% pesd am Muailab function for computing error probability in

%a soft-decision decoding of a lnear block code

] when anfipodal signaling is tsed

% {p-eregummu_db] = p_e_sd. afgamma_db L gamma_db vk n.d _minj
G gummed _db 1 = lower E_bIN.D

Fo goummadb_h = higher E_bIN_O

o k = number of informarion bits in the code

T n = vade block length

o domin = minimust distance of the code

gamma.db=[gamma.db_I:{garmma_db_h—gamma_db_1}/20:gamma_db_h];
gamma_b=10 " {gamma_-db/ 10}

R_c=k/n;

p-er=(2° Kk~ 1).*q{sqre(d_min. «R_c.xgammna_bdy;

—E

function (p-eer gamma_dbl=p_e_sd_o{gamma_db_l,gamma_db _h,k.n.d_min}
o pesdom  Madub function for computing evror probability in
%o soft-decision decoding of a linear block code

whent orthogonal signeling is wsed.

{perigammadb} = p_e_sd_ofgumma . db 4 gamme db_h ko d_min)
gumma db | = lower Eb/NO

gamma db_h = higher E_B}NO

k = number of information bits in the code

n = code block length

SRR FaS

d_min = minimum distunce of the code

gamma-db=[gamma_db_I:(gamma_db_h--gamma..db_1),/20:gamma_db_h|:
gamma.b=10."(gamma_db/10);

R_c=k/n;

p-em=(2"k~1).xq{sqrr(d_min.*R_c.+gamma_b./2));

In Figure 8.16, four plots corresponding to antipodal and orthogonal signaling with soft-
and hard-decision decoding are shown.

The MATLAB script that generates this figure is given below.

—

% MATLAB script for Hiustrative Problem (2. Chapter &

[p-err.ha, gamma_b]=p_e_hd_a{10,16,11,15,3),
{p-err_ho,gamma_b)=p_c_hd_o(10,16,11,153);
{p-err_so,gamma_b]=p_¢_sd_0(10,16,11,15,3);
[p-err_sa,gamma_b)=p_e_sd_a(10,76,11,15,3);
semilogy{gamma_b.p.err_sa,gamma_b,p_err_so,gamma_b.p.err_ha,gamma_b,p_err_ho)
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Figure 8.16: Comparison of antipodal/orthogonal signaling and soft’hard-decision decod-
ing.

8.3.2 Convolutional Codes

In block codes each sequence of & information bits is mapped into a sequence of # channel
inputs in a fixed way regardless of the previous information bits. In convolutional codes
each sequence of kg information bits is mapped into a channel input sequence of length ng
but the channel input sequence depends not only on the most recent kp information bits but
also on the last (L - 1)kg inputs of the encoder. Therefore, the encoder has the structure of
a finite-state machine, where at each time instance the output sequence depends not only
on the input sequence, but also on the state of the encoder, which is determined by the last
{L ~ 1)kg inputs of the encoder. The parameter L is called the constrains length of the
convolutional code.! A binary convelutional code is, therefore, a finite-state machine with
2%(8=1) gtates. The schematic diagram for a convolutional code with kg = 2, ng = 3, and
L == 4 is shown in Figure 8.17.

[n this convolutional encoder the information bits are [oaded into the shift register 2 bits
at a time, and the last 2 information bits in the shift register move out. The 3 encoded bits
are then computed as shown in the figure and are transmitted over the channel. The rate of
this code is, therefore, R = % Note that the 3 encoder outputs transmitted over the channel
depend on the 2 information bits loaded into the shift register as wel as the contents of the
first three stages (6 bits) of the shift register. The contents of the last stage (2 bits) have no
etfect on the output since they leave the shift register as soon as the 2 information bits are
loaded into it.

!Some authors define m = Lkp as the constraint length, and some prefer (1 — 1)ky as the constraint length.
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FJI\H

=2 #{ NS

/

Figure 8.17: A convolutional code with kp =2, ng = 3,and L = 4.

A convelutional code is usually defined in terms of the generator sequences of the
convolutional code, dencted by g). g+, ... . gn. The ith component of g;, 1 < i < kgl
and 1 < j < n,is 1 if the ith element of the shift register is connected to the combiner
corresponding tothe jihbitin the output and O otherwise. For example, in the convolutional
code depicted in Figure 8.7, we have

=0 0 L 0 1 0 0 i
g2=[0 ©0 0 o0 0 0 0 1
3= 0 0 & 0 0 0 1]

Ass00n as g1, g2. - .. . g are specified, the convolutional code is uniquely determined.
We also define the generator matrix of the convelutional code as

£
g2
G=|,
En
which is, in general, an = x kol matrix. For the convolutional code shown in Figure 8.17
we have

001 ¢ L 001
G=10 0 0 0 0001
1 0000001

[t is hetpfu! to assume the shift register that generates the convolutional code is lcaded
with (s before the first information bit enters it (i.e.. the encoder is initially in zero state) and
that the information bit sequence is padded with (L — 1}k 0's to bring back the convoluticnal
encoder to the all-0 state. We also assume that the length of the information-bit sequence
(input o the convolutional encoder) is a multiple of &g. If the length of the input sequence
is not a multiple of kp, we pad it with O's such that the resulting length is a multiple of ky.
This is done before adding the (L — ko 0's indicated earlier in this paragraph. If, afier the
first zero-padding, the length of the input sequence is nkp, the length of the output sequence
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will be {n + L — 1)np, so the rate of the code will be

nko
(n+L— 1o
In practice n is much larger than L: hence, the above expression is well approximated by
by -
R, = n

Ho

The MATLAB function con_encd.m given below generates the output sequence of the
convolutional encoder when G, kg, and the input sequence are given. Note that zero-padding
of the input sequence is done by the MATLAB function. The input sequence (denoted by
the purameter “input”) starts with the first information bit that enters the encoder. The
parameters ng and L are derived from the matrix G.

function ouwtput=cnv_encd(g,k0,inpuc}

cav_encd(g. k@ input)

determines the outpur sequence of u binary convelurional encoder
L4 I8 the generutor mutiic uf the convolutional code

with nQ rows and [xk0 colwmns, {5 rows are gf.g2,. . g0

&0 is the number of bite entering the encoder at each clack cycle.
input = the binary input seq.

FRAR/{P

% cherk to see if extrd cero-pudding v nécessary
if rem{length({input).k0) > @

input=[input,zeros{size{ 1:k0—rem(lengthiinput}.k0)];
end
n=length(input)/k0;
% check the size of matrix g
if rem(size(g.2).k0) > ¢

error{"Error, g is net of the right size.’)
end
% determine | and nQ
I=size(g,2)/k0;
n)=size(g,1);
% wdd extra zeros
u=[zergs{size(1:{1-1)%k0))input,zeros{size(1:(1-11xk01)];
% generale nu, o mairic whose columns are the contents of
% conv. encoder ar various cleck cycles
ul=u(lxkd:=1:1)
for i=1m+1-2

wl=[ulu{{i+)=k0: —1:ixk0+1)];
end
uu=reshape(ul I=kQ.an+1-1);
%o detzrmine the output
output=reshape(remi{gsun.2),1.n0+(l1+n—1));
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ILLUSTRATIVE PROBLEM

[Hustrative Problem 8.13 [Convolutional encoder] Determine the output of the convo-
lutional encoder shown in Figure 8.17 when the information Sequence is

16011100110000111

. SOLUTION o

Here, the length of the information sequence is 17, which is not a muitiple of kg = 2;
therefore, extra zero-padding will be done. In this case it is sufficient 1o add one 0, which
gives a length of 18. Thus, we have the fellowing information sequence

1oo0tr11o0ct1100001110

Now, since we have

0 o010
G=|0 0 0 0
19 00

S o -
oo o
o oo

l

we cbtain np = 3 and L = 4 {this is also obvious from Figure 8.17), The length of the
output sequence 1s, therefore,

(52E+4-1)x3=36

The zero-padding required to make sure that the encoder starts from the all-O state and
returns to the all- state adds (L — {)kp O's to the beginning and end of the input sequence.
Therefore, the sequence under study becomes

0000001G0111001100001510000000
Using the function cnv_encd.m, the output sequence is found to be
0C000011I0L111101031100110100100Et1§11

The MATLAB script to solve this problem is given below.

k(=2;
g=[CC1 010010000000 1;10000001);
input=[1 CO 111001100001 11];

output=cnv_encd({g.k0,input);

Representation of Convolutional Codes

We have seen that a convolutional code can be represented either by the structure of the
encoder or G, the generator matrix, We have also seen that a convolutional encoder can be
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represented as a finite-state machine and, therefore, can be described by a state transition
diagram representing the finite-state machine. A more widely used method for represen-
tation of convolutional codes is in terms of their trellis diagram. A trellis diagram is a
state transition diagram plotted versus time, Therefore, a trellis diagram is a sequence of
2114 g1ates, shown as dots, for each ¢clock cycle and branches corresponding to transi-
tions between these states.

Consider the convelutional code with ky=1,np =2, and L = 3 shown in Figure 8.18.
Obviously, this code can be represented by a finite-state machine with four states core-
sponding to different possible contents of the first two elements of the shift register, namely,
00,01, 10, and 11. Let us represent these four states by the letters a, b, ¢, and d, respectively.
In order to draw the treliis diagram for this code, we have to draw four dots corresponding
to each staie for each clock cycle and then connect them according to various transiticns
that can take place between states, The treltis diagram for this code is shown in Figure §.19.

i

kg =1

P —

Figure 8.19: The trellis diagram for the convolutional code shown in Figure 8.18.

As we can see in Figure 8.19, on the time axis, which corresponds to clock cycles,
the four states are denoted by black dots, and the transitions between states are indicated



376 CHAPTER 8. CHANNEL CAPACITY AND CODING

by branches connecting these dots. On each branch connecting two states, two binary
symbols indicate the encoder output correspending to that transition. Also nete that we
always start from the all-O state (state a), move through the trellis following the branches
corresponding to the given input sequence, and return to the all-0 stare. Therefore codewords
of a convolutional code correspond to paths through the corresponding trellis, starting at
the all-(} state and returning to the all-0 state,

The number of states in the trellis increases exponentially with the constraint length of
the cenvelutional cede. For example, for the convolutional encoder shown in Figurs 8.17,
the number of states is 2% = 64; therefore, the structure of the trellis is much more complex.

The Transfer Function of a Convolutional Code

For each convolutional code the transfer function gives information about the various paths
through the trellis that start from the all-0 state and return to this state for the fiest time,
According 1o the coding convention described before, any codewerd of a convolutional
encoder corresponds 10 a path through the trellis that starts from the all-0 state and returns
to the all-0 state. As we will see Jater, the transfer function of a convolutional code plays
a majer role in bounding the error probability of the code. To obtain the transfer function
of a convolutional code, we split the all-O state into two states, one denoting the starting
state and cne denoting the first return to the all-0 state. All the other states are denoted as
in-between states. Corresponding to each branch cornecting two states, a function of the
form D®N® J is defined, where & denotes the namber of 1's in the output bit sequence and
B is the number of Us in the corresponding input sequence for that branch. The transfer
Junction of the convolutional code is then the transfer function of the flow graph between
the starting all-O state and the final all-0 state and is denoted by T(D, N, J). Each term
of T(D, N, J) corresponds to a path through the treilis starting from the all-0O state and
ending at the all-0 state. The exponent of J indicates the number of branches spanned by
that path, the expenent of [ shows the number of 1's in the codeword corresponding to that
path (or equivalently the Hamming distance of the codeword with the all-0 codeword), and
the exponent of N indicates the number of 1’s in the input informalion sequence. Since
T{D, N, J) indicates the properties of all paths through the trellis starting from the all-0
path and returning to it for the first time, then, in deriving it, any self-loop at the all-0 state
is ignored. To obtain the transfer function of the convolutional code, we can use ali rules
that can be used 10 obtain the transfer function of a flow graph. For more details on deriving
the transfer functicn of a convoluticnal code, see [1].

Following the rules for deriving the transfer function, it is easy to show that the transfer
function of the code shown in Figure 8.18 is given by

T{(D.N,J DN
BN D= NI DN T
which, when expanded, can be expressed as
TD, N, =DNIP L DN 4 DSNY P+ DTS 4+
From the above expressien for T'(D, N, J), we can see that there exists one codeword
with Hamming weight 5, two codewords with Hamming weight 6, etc. It also shows, for
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example, that the codeword with Hamming weight 5 corresponds to an input sequence of
Hamming weight 1 and length 3. The smallest power of D in the expansion of T{D, N, J)
is called the free distance of the convolutional code and is denoted by dfee. In this example
diree = 5.

Decoding of Convolutional Codes

There exist many algorithms for decoding of convolutional codes. The Viterbi algorithm is
probably the most widely used deceding method of convolutional codes. This algonithm is
particularly interesting because it is a maximum-likelihood decoding algorithm, which-—
upon receiving the channel oetpur—searches through the trellis to find the path that is
most likely 10 have generated the received sequence. If hard-decision decoding is used,
this algorithm finds the path that is at the minimum Hamming distance from the received
sequence, and if soft-decision decoding is employed, the Viterbi algorithm finds the path
that is at the rinimum Euclidean distance from the received sequence.

In hard-decision decoding of convelutional codes, we want to choose a path through the
trellis whose codeword, dencted by ¢, is at minimum Hamm:ng distance from the quantized
received sequence y. In hard-decision decoding the channe! is binary memoryless (the fact
that the channel is memeryless follows from the fact that the channel noise is assumed to be
white). Since the desired path starts from the all-0 state and returns back to the all-0 state,
we assume that this path spans a total of m branches, and since each branch corresponds
to ng bits of the encoder output, the total number of bits in ¢ and y is mng. We denote the
sequence of bits corresponding to the ith branch by ¢; and y; respectively, where | < i € m
and each ¢; and y; is of length ng. The Hamming distance between ¢ and y is, therefore,

dle, yy =) diei, i) (8.3.33)

i=l
In soft-decision decoding we have a similar situation, with three differences:

1. Instead of y we are dealing directly with the vector ¢, the vector output of the optimal
{matched filter type or correlator type) digital demodulator.

2. Instead of the binary 0, | sequence ¢, we are dealing with the corresponding sequence
¢ with
. W E, if c;=1
;=
Y —VE, if¢; =0

forl <i<mandl < j < n.

3. Instead of Hamming distance we are using Euclidean distance. This is a consequence
of the fact that the channel under study is an additive white Gaussian noise channel.

From the above we have

dic )= dic.r) (8.3.34)

i=1
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From Equations (8.3.33) and (8.3.34), we see that the generic form of the problem we
have to solve is: Given a vector a to find a path through the trellis starting at the all-0 state
and ending at the all-0 state such that some distance measure hetween a and a sequence b
corresponding to that path is minimized. The tmportant fact that makes this problem easy
to solve is that the distance between a and & in both cases of interest can be written as the
sum of distances corresponding te individual branches of the path. This is casily observe?
from (8.3.33) and (8.3.34).

Now let us assume that we are dealing with a convelutional code with ko = 1. This
means that there are only two branches entering each state in the trellis. If the optimal path
at acertain poiat passes through state 5, there are two paths that connect the previous states
$1 and 83 to this state (see Figure 8.20)

L] e s
5/
- L]
L ] - -
L ] - L ]

Figure 8.20: Justification of the Viterbi algorithm.

If we want 10 see which one of these two branches is a good candidate to minimize
the overal! distance, we have to add the overall (minimum) metrics at states S| and 35 to
the metrics of the branches connecting these two states to the state 5. Then obviously the
branch that has the minimum total metric accumulation up to state S is a candidate to be
considered for the state after the state S. This branch is called a surviver at state S, and the
other branch is simply not a suitable candidate and is deleted. Now, after the survivor at
state 5 is determined, we also save the minimum metsic up to this state, and we can move
1o the next state. This procedure is continued until we reach the all-0 state at the end of the
trellis. For cases where k¢ > 1, the only difference is that at each stage we have to choose
one survivor path from among 2% branches leading to state 3.

The above procedure can be summarized in the following algorithm, known as the
Viterbi algorithm.

1. Parse the received sequence into m subsequences each of length ng .

2. Draw a trellis of depth m for the code under study. For the last L — 1| stages of the
trellis, draw only paths corresponding to the all-0 input sequences. (This is done
because we know that the input sequence has been padded with kg(L — 1) 0%s).

3. Set! = 1 and set the metric of the initial all-D state equal to 0.

4. Find the distance of the /th subsequence of the received sequence to all branches
connecting /ih-stage states to the (/ + 1)st-stage states of the trellis.

8.3 Channel Coding 379

n

- Addthese distances to the metrics of the /th-stage states to obtain the metric candidates
torthe (/+1)st-stage states. Foreach state of the (I+1)st-stage, there are 2% candidate
metrics, each corresponding 1o one branch ending at that state.

6. For each state at the (! + 1)st-stage, choose the minimum of the candidale metrics
and label the branch corresponding 1o this minimum value as the surviver, and assign
the minimum of the metric candidates as the metrics of the {! + I)st-stage states.

7. Ifd = m, goto the next step; otherwise, increase by | and g0 to step 4.

8. Starting with the all-O state af the (m + 1)st stage, go back through the trellis along the
survivors to reach the initial all-0 state. This path is the optimal path, and the input-
bit sequence corresponding to that is the maximum-likelihood decoded information
sequence. To ohtain the best guess about the input-bit sequence, remove the last
ko(L ~ 1) 0's trom this sequence.

As we can see from the above algorithm, the decoding delay and the amount of memory
required for decoding along information sequence is unacceptable. The decoding cannot be
started until the whole sequence (which in the case of convolutionat codes can be very long)
is received, and the total surviving paths have to be stored. In practice a suboptimat solution
that does not cause these problems is desirable. On such an approach, which is referred o
as path memory truncation, is that the decoder at each stage searches only 4 stages back
in the trellis and not to the start of the trellis. With this approach at the (8 + 1)st stage,
the decoder makes a decision on the input bits corresponding to the first stage of the trellis
(the first &y bits), and future received bits do not change this decision. This means that the
decoding delay will be ko4 bits, and it is required to keep the surviving paths corresponding
te the last § stages. Computer simulations have shown that if § > 5L, the degradation in
performance due to path memery truncation is negligible.

ILLUSTRATIVE PROBLEM

Ilustrative Problem 8.14 [Viterbi decoding] Let us assume that in hard-decision decod-
ing, the quantized received sequence is

¥y =01101111016001

The convolutional code is the one given in Figure 8.18. Find the maximum-likelihood
information sequence and the number of errors.

g SOLUTION

The codeis a (2, 1) code with L = 3. The length of the received sequence y is L4. This
means that #t = 7, and we have to draw a trellis of depth 7. Alse note that since the input
information sequence is padded with ko{L — 1) = 2 zeros, for the final two stages of the
trellis we will draw only the branches corresponding to all-O inputs. This alsc means that
the actual length of the input sequence is 3, which, atter padding with two 0's, has increased
to 7. The trellis diagram for this case is shown in Figure 8.21.

The parsed received sequence y is also shown in this figure. Note that in drawing the
trellis in the last two stages, we have considered only the zero inputs to the encoder (natice
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Received
sequence

Figure 8.21; The wcilis diagram for Viterbi decoding of the sequence (01101111010001).

that in the final two stages, there exist no dashed lines corresponding 1o 1 inputs). Now the
metric of the initiai ali-0 state is set 0 0 and the metrics of the next stage are computed. In
this step there is only one branch entering each state; therefore, there is no comparison, and
the metrics (which are the Hamming distances between that part of the received sequence
and the branches of the trellis) are added to the metric of the previous state. [n the next stage
there exists no comparison either. In the fourth stage, for the first time we have two branches
entering each state, This means that a comparison has to be made here, and survivors are
1o be chosen. From the two branches that enter each state, one that commesponds 1o the least
total accumulated metric remains as a survivor, and the other branches are deleted {(marked
by a smalt circle on the trellis). I at any stage two paths result in the same metric, each one
of them can be a survivor. Such cases have been marked by a question mark in the treilis
diagram, The procedure is continued to the final all-0 state of the wellis; then, starting from
that state we move along the surviving paths to the initial all-0 state. This path, which is
dencted by a heavy path through the trellis, is the optimal path. The input-bit sequence
corresponding to this path is 1100000, where the last two O's are not information bits but
were added to return the encoder to the all-0 state. Therefore, the information sequence
is 11000. The corresponding codeword for the selected path is 11101011000000, which
is at Hamming distance 4 from the received sequence. All other paths through the tretiis
correspond to cadewords that are at greater Hamming distance from the received sequence.

For soft-decision decoding a similar procedure is followed, with squared Euclidean
distances substituted for Hamming distances.

The MATLAB function viterbi.m given below employs the Viterbi algorithm to de-
code a channel output, This algorithm can be used both for soft-decision and hard-
decision decoding of convolutional codes. The separate file metric.m defines the metric
used in the decoding process. For hard-decision decoding this metric is the Hamming
distance, and for soft-decision decoding it is the Euclidean distance. For cases where
the channel output is quantized, the metric is usually the negative of the log-likelihood,
— log p(channel output | channel input). A number of short m-files called by viterbi.m are
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also given below.

— G

function [decoder_output,surviver_stare, cumulated_metric}=viterbi (G k channel _output}
SVITERBI The Viterbi decoder for comvolutional codes

Go {decoder sutput.sirvivor_siute, cumualated_metric [=viterbi{ G, k,channel ouipur)
P Goix ¢ n x Lk matrix each row of which

T derermines the connections from the shifi register o rhe
€7,
o
Th
%
T

n-th output of the code. kin is the rate of the code.
wurviver_state fs o marrix showing the optimal path through

the twetlis. The metric ix given in u sepurate function metric(x.y)
and can be specified 1o accomodate hard and coft decision.

% This algorithm minimizes the metric rather than muximizing
P the liketihood.
n=size(G,1);

% check the sizes
if rem(size(G,2)k) =0
error('Size of G and k do not agree’}
end
if rem(size(channel_output,2},n) “=0
error( “channel output not of the right size')
end
L=sizel(G,2)/k;
number_of_states=2 " {{L. — 1)k},
G generate Srare NARSUON marrix, owtpel mairik, dnd mpul matrix
for j=0:number_of_states—1
for 1=0:2"k -1
[next_state, memory _contents]=nxt_stat(j.l,L.k);
input{j+1,next_state+1)=1;
branch_output=rem(memory_contents«G* , 2} ;
nextstate(j+1.1+1)=nexi_state:
output(j+1,1+1)=binZdeci(branch_output);
end
end
state_metric=zeros(number_of_states,2);
depth_of_irellis=length(channel_output)/n;
channel_putput_matrix =reshape(channs!_output.n,depth_of _treliis);
survivor_state=zeros{number_of_states,depth_of_trellis+1).
% sturt decoding of non-tail channel outpurs
for i=1:depth_of_trellis—L+1
flag=zeros({1,number.of _states);

if i <=L
step=2"{(L—i)+k);

else
step=1;

end

for j=0:step:number_of_states--1
for 1=0:2"k—1

branch_metrig=0;

binary-ocutput=deciZbin(output(j+1.1+1).n);

for =1
branch_metric=branch_metric+metric(channel_output_matrix(iL,i},binary . cutpur(li));

end

ifi(state_metric(nextstate{j+1,1+1}+1,2)} > state_metric{j+1,1). ..
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+branch_metric} | flaginextstatej+1.141)+1)==0}
state_mettcinextstate(j+1,1+1)+1,2) = state_metrie{j+1,1)+branch.metric;
survivor_state(nexestatej+ 1,141 14+1,i+1)=j,
flagnextstate(j+1.1+13+1)=1;
end
end
end
state_metne=state_metric(:,2:~1:1);
end
% start decoding of the il channel-ouiputs
for i=depth_of teeilis—L+2:depth_of _trellis
flag=zeros{ 1.number_of_states):
last_stop=number_of_states /{2 " ({t— depth _of_uetlis+L—2)«k));
for j=0:iast_stop—1
branch_metric=0;
binary _output=deci2bin(output{j+1.1),n);
for ll=1:n
branch_metric=branch_inetric +metrie(channe! _cutput _matrix(11,i},binary _ourpur(I1,
end
iF((state.metric(nextstatej+1,1)+1.2) = state_matric(j+1,1. ..
+branch.metric) | fag(nextstate(j+1,1)3+1)==0)
state_metric{nextstale(j+1,13+1.2) = stale_metric{j+1, 1)+branch_metric;
survivor_state{nextstate(j+1,1)+1,i+1)=);
flag(nextstate(j+1,13+1)=1;

end
end
state_metric=state_metric(:.2:—1:1);
end

Te  generate the decoder autput from the aptimal path

state _sequence=zercsi 1, depth_ci_trellis+1);

state_sequence(1.depth_of_.trellis)=survivor_state(1,depth_of _trellis+1};

for i=1:depth_of_trellis
stare_sequence(1.depth_of_treilis —i+1)=survivor_state({state_sequence{ 1 depth_of_trellis+2—i). ..
+1),depth_of_trellis—i+2};

end

decodeder_output_mairix=zeros(k,depth_of_trellis~L+1);

for i=1:depth_of_trellis—L+1
dec_oulpul_deci=inpui{state_sequence{1,i)+1.state_sequence(1.i+1+1):
dec_output_bin=deci2bin(dec_-cutput_deci.k};
deceder_output_maicix(:.i}=dec_output_bin(k:~1:1} ;

end

decoder_output=reshape(decoder_output. matrix, 1, k»(deprh_of _treilis—L+1));

cumulated_ metric=state_metric{1,1);

—

function distance=metric(x,y)
if x==y
distance=0;
else
distance=1;
end
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—EE=»

function [rlexl,slale‘memury-con[enls]=nx[_slal(currenl_sla(e,input.L,k)
binary stale=deciZbin(current_stace, kx(L—1));

binary .input=deci2bin{input,k);

next_state_binary={binary _input,binary _state{1:(L—2)sk)};
nexi_state=bin2deci{next_state_binary);

memory _cortents=[binary input,binary_siate];

— =

function y=bin2deci{x)
t=length(x);
y=(1—1:-1:0);
y=2."y;

y=swy';

—

function y=deciZbin{x,l)

y = zeros(1,1);

=1

while x>=0 & i<=1
yli)=rem{x, 2);

x={x—y(i}}/2;
i=iel;

end

yay{li—1:1)

ILLUSTRATIVE PROBLE

IMustrative Problem 8.15 Repeat illustrative Problem 8,14 using the MATLAB function
viterbi.m.

g SOLUTION g

Tt is enough to use the m-file viterbi.m with the following inputs

1 01
o= V1]
k=1
channeloutput=[0 1 1 0 ¢ 1 1 | O L O O 0O 1]

which results in decoderoutput=[I 1 0 0 (] and an accumulated metric of 4.

Error Probability Bounds for Convolutional Codes

Finding bounds on the error performance of convelutional codes is different from the method
used to find error bounds for bfock codes because here we are dealing with sequences of
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very large length; since the free distance of these codes is usually small, some errors
will eventually occur. The number of errors is a random variable that depends both on
the channel characteristics (signal-to-noise ratio in soft-decision decoeding and crossover
probability in hard-decision deceding) and the length of the input sequence, The longer
the input sequence, the higher the probability of making errors. Therefore, it makes sense
1o normalize the number of bit errors 1o the length of the input sequence. A measure that
is usuaily adopted for comparing the performance of convolutional codes is the expected
number of bits received in ervor per input bit. To find a bound on the average number of bits
in error for each input bit, we first derive a bound on the average number of bits in error for
each inpul sequence of length k. To determine this, let us assume that the all-0 sequence is
wansmitted? and, up to stage ! in the decoding, there has been no error. Now k information
bits enter the encoder and result in meving to the next stage in the trellis. We are interested
in finding a bound on the expected mumber of errors that can occur due to this input block
of length k. Since we are assuming that up to stage ! there has been no error, then, up to
this stage the a#-Q path through the trellis has the minimum metric. Now, moving to the
next stage {stage (I + 1)st) it 15 possible that another path through the trellis will have a
metric less than the all-0 path and therefore cause errors. If this happens, we must have
a path through the trellis that merges with the all-C path for the first time at the (! 4 [)st
stage and has a metric less than the all-0 path. Such an event 1s called the first error event
and the corresponding probability is called the firsr error event probability. This situation
is depicted in Figure 8.22.

Figure 8.22: The path corresponding to the first error event.

Qur first step is bounding the first error event probability. Let Pa(d) denote the prob-
ability that a path through the trellis that is at Hamming distance 4 from the all-0 path is
the survivor at the (/ 4+ 1)st stage. Since 4 is larger than daee, we can bound the first error

Recause of the linearity of convolutional codes, we can, without loss of generality, make this assumption.
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event probability by

~
P2 Y agPid)
of ==elfray

where ¢n the right-hand side we have included all paihs through the trellis that merge with
the all-0 path at the ({4 1)st stage. Pa(d) denotes the error probability for a path at Hamming
distance d from the all-0 path and @ denotes the number of paths at Hamming distance d
from the all-G path. The value of P3{d} depends on whether soft- or hard-decisien decoding
1s employed,

For soft-decision decoding, if antipedal signaling (binary PSK) is used, we have

dF
Pl = Q( 71\"0)
—
12Ed
-o({%)

and, therefore,

P < a0l 2Rt
:I=‘Z.’gm ! ( N”)

Using the well-known upper bound on the Q function

!2
Qi) < %e*‘?

) l
2R 4=k L —RAE, M
Q( R(dNO ) < 2e .

e“erIM’Nn - Dt.! [

we obtain

Now, noting that

D=e- R Epi Ny

we finally obtain

D= ReEpidy
where

Ti(D)=T(D. N, Nlyia
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This is a bound ¢u the first error event probability. To find a bound on the average number
of bits in error for k input bits, P,(k), we note that each path through the trellis causes a
certain number of input bits 10 be decoded erroneously. For a general DN/ (@) yetd) i
the expansion of T(D, ¥, /3.7 there is a total of f(d) nonzero input bits. This means that
the average number of input bits in error can be obtained by multiplying the probability
of choosing each path by the total number of input errors that would result if that path

were chosen. Hence, the average number of bits in error, in the soft-decision case, can be
bounded by

0

Polky = Y ay f(d) Pad)

d=dje
o £b
= 2 afde| [1RdT:
e 0
1 20
—R.AELIM
<3 3 aufide wiNo {8.3.35)
dtﬂ'rrcc
If we define
TAD, N)=T(D, N, INy=1
e}
= Y DN
d=ddfye,
we have
a oD
LECITA) Y aufid)p? (8.3.36)
N lyar

Therefore, using (8.3.35) and (8.3.36), we obtain

_ 1 0T3(D, N
By < - 201
2 N N=|. D=e=Relpity

To cbtain the average number of bits in error for each input bit, we have to divide this bound
by k. Thus, the final result is

- 1 3T7{D. N)
Py — -
2k aN

W=, D=e~RedniNo

For hard-decision decoding, the basic procedure follows the above derivation. The anly
difference is the bound on Py(d). It can be shown (see [1]) that P1(d) can be bounded by

Pyid) = [4p(t — p)*/?

IHere we are somewhat sloppy in notation. The power of ¥ is not strictly a function of <, but we are denoting
itby f(df). This however does not have any effect on the final result.
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Using this result, it is straightforward to show that in hard-decision decoding, the probability
of error is upper-bounded as

B, < 1 a7(D, ¥)
k aN N=1.D=/4p(1-p)

A comparison of hard-decision decoding and soft-decision decoding for convolutional codes

shows that here, as in the case for linear black codes, soft-decision decoding outperforms

hard-decision decoding by a margin of roughly 2 dB in additive white Gaussian noise
channeis,



388 CHAPTER 8 CHANNEL CAPACITY AND CODING

Problems

8.1 Write a MATLAB script Lo plot the capacity of a binary symmetric channel with
crossover probability p as a function of p for 0 = p < L. For what value of p is the
capacity minimized, and what is the minimum value?

8.2 A binary nonsymmeiric channe! is characterized by the conditional probabilities p{0 |
1y =0.2and p(l { 0) = 0.4, Plot the mutual information {(X: ¥) between the mnput and
the cutput of this channel as a function of p = P(X = 1}. For what value of p is the mutual
information maximized, and what is the value of this maximum?

8.3 A Z-channel is a binary input. binary output channel, with inpul and output alphabets
X =Y = |0, 1} and characterized by p(0 | 1} = e and p(1 ] 0) = 0. Plot [{X Y} as
a function of p = P(X = 1) fore =0,0.1,02,03,04,05.07,085, 1. Determine the
capacity of the channel in cach case.

8.4 A binary input, ternary outpul channel is characterized by the input and output alphabets
%X =10, 1}and % =10, 1, 2}, and transition probabilities p(01 0) =0.05, p(1 [0} = 0.2,
pO | =101, p(1 | 1)=01. Plot I{X:¥Y)as a function of p = P(X = 1), and
determine the channel capacity.

8.5 A ternary input, binary output channel is characterized by the input and output alphabets

={0,1.2}and % = [0, 1}, and transition probabilitics p(0 | 0) = 0.05, p(1] 1) = 0.2,
pO12)=01Lp0 | 1} =01 Plot I(X;Y)asa function of py = P(X = 1) and
pz = P{X =2), and determine the channel capacity.

8.6 Plot the capacity of a binary symmetric channel that employs binary orthogonal signal-
ing as a function of %

8.7 Repeat [llustrative Problem 8.3, but assume that the wo transmitted signals are equal-
energy and orthogonal. How do your results differ from those obtained in Illustrative
Problem 8.37

8.8 Compare the plots of the capacity for hard decision and soft decision when orthegonal
signals are employed. Compare these results with those obtained for antipodal signals.

8.9 Plot the Lapa:.ity of a binary symmetric channel that uses orthogonal signals, as a
function of Z&. Do this once with the assumption of coherent detection and once with the
assumption og noncoherent detection. Show the two plots on the same figure and compare
the results.

8.10 Write a MATLAB script that generates the generator matrix of a Hamming code in
the systematic form for any given m.
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8.11 Repeat THustrative Problem £.10 using orthogenal signaling with coherent and non-
ccherent detection. Plot the resulis on the same figure.

8.12 Use Monte Carlo simulation to plot the error probability versus pp in Hlustrative
Probiem 8.10.

8.13 Repeat Illustrative Problem 8.12, but instead of orthogonal and antipodal signaling
compare the performance of coherent and noneoherent demodulation of orthogonal signais
under soft-decision decoding.

8.14 Use Monte Carle simulation to plot the error probability versus y, in Hlustrative
Problem 8.12.

8.15 Use MATLAB to find the output of the convolutional encoder shown in Figure 8.18
when the input sequence is

110010101010010111 101011111010

8.16 A convolutional code is described by

10 1 i
0119
6= 11 0 !
| S T B

a. If k = 1, determine the output of the encoder when the input sequence is

11601010143100101111010114 11010

b. Repeat part a with k = 2.

8.17 In Problem 8.13, after obtaining the output of the encoder change the first 6 bits of
the received sequence and decode the result using Viterb: decoding. Compare the decoder
output with the transmitted sequence. How many errors have cccurred? Repeat the probiem
onhce by changing the last 6 bits in the received sequence and once by changing the first 3
bits and the last 3 bits and compare the results. In all cases the Hamming metric is used.

8.18 Generaie an equiprobable binary sequence of length 1000. Encode the sequence using
the convelutional code shown in Figure 8.18. Generate four random binary error sequences,
each of length 2000, with probability of | equal tw 0.01, 0.05, 0.1, and 0.2, respectively.
Add (modulo 2) each of these error sequences to the encoded sequence and use the Viterbi
algorithm {0 decode the result. In each case compare the decoded sequence with the encoder
input and determine the bit-error rate.

8.19 Use Meonte Carlo simulation to plot the bit-error rate versus 33, in a convolutional
encoder using the cede shown in Figure 8.18 . Assume that the modulation scheme is
binary antipodal, once with hard-decision and once with soft-decision decoding. Let 3
be in the interval from 3 to 9 dB, and choose the length of your information sequence
appropriately. Compare your results with the theoretical bounds.
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8.20 The encoder of Figure 8.18 is used Lo transmit information over a channel with two
inputs and three outputs. The outputs are denoted by 0, 1, and 2. This is the case where the
oulput of a Gaussian channel is quantized 1o three levels. The conditional probabitities of
the channel are given by p(0 | 0) = p{1 | 1) = 0.9, p(2 | 0) = p(2]1) =009 Use the
Viterbi algorithm to decode the received sequence

€20201102021120022201 101 01020220111112

Chapter 9

Spread Spectrum
Communication Systems

9.1 Preview

Spread spectrum signals for digital communications were originally developed and used for
military communications either (1) to provide resistance to hostile Jjamming, (2) to hide the
signal by transmitting it at low power and, thus, making it difficult for an unintended listener
1o detect its presence in neise, or (3) to make it possible for multiple users to communicate
through the same channel. Today, however, spread spectrum signals are being used to
provide reliable communications in a variety of commercial applications, including mobile
vehicular communications and interoffice wireless communications.

The basic elements of a spread spectrum digital communication system are illustrated
in Figure 9.1. We observe that the channe! encoder and decoder and the modulator and
demodulator are the basic elements of a conventional digital communication system. In
addition to these elements, a spread spectrum system employs two identical pseudorandom
sequence generators, one of which interfaces with the modulator at the transmitting end
and the second of which interfaces with the demodulator at the receiving end. These two
generators produce a pseudorandom or pseudonoise (PN) binary-valued sequence that is
used to spread the transmitted signal in frequency at the modulator and to despread the
received signal at the demodulator.

Time synchrenization of the PN sequence generated at the receiver with the PN sequence
contained in the received signal is required to properly despread the received spread spec-
trum signal. In a practical system, synchronization is established prior to the transmission
of information by ransmitting a fixed PN bit pattern that is designed so that the receiver will
detect it with high probability in the presence of interference. After time synchronization
of the PN sequence generators is established, the transmission of information commences.
In the data mode, the communication system usually tracks the timing of the incoming
received signal and keeps the PN sequence generator in synchronism.

In this chapter we consider two basic types of spread spectrum signals for digital com-

391
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Figure 9.1: Model of spread spectrum digital communication system.

munications, namely, dircet sequence (D8) spread spectrum and frequency-hopped (FH)
spread spectrum.

Two types of digital medulation are considered in conjunction with spread spectrum,
namely, PSK and FSK. PSK modulation is generally used with DS spread spectrum and is
appropriate for applications where phase ceherence between the transmitted signal and the
received signal can be maintained over a time interval that spans several symbol (or bit)
intervals. On the other hand, FSK moedulation is commonly used with FH spread specirum
and is appropriate in applications where phase coherence of the carrier cannot be maintained
due to time variaticns in the transmission characteristics of the communications channel.

9.2 Direct-Sequence Spread Spectrum Systems

Let us consider the transmission of a binary information sequence by means of binary PSK.

The information rate is R bits per second, and the bit intervat is Ty = 1/R seconds. The

available channel bandwidth is B, hertz, where B, 3» R. At the modulator the bandwidth

of the information signal is expanded to W = B, hertz by shifting the phase of the carrier

pseudorandomly at a rate of W times per second aceording to the pattern of the PN generator.

The resulting modulated signal is called a direct-sequence (DS) spread spectrum signal.
The information-bearing baseband signal is dencted as v(:} and is expressed as

e

o)=Y angrit —nTh) 9.2.1)

A==

where {a, = £1, —00 < n < co} and g7 (1) is a rectangular pulse of duration T;. This
signal is multiplied by the signai from the PN sequence generator, which may be expressed
as

o0

ct)= Y caplt —nlo) 9.2.2)

A==00
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where {¢,} represents the binary PN code sequence of £1's and p(t} is a rectangular pulse
of duration T;., as illustraled in Figure 9.2, This multiplicaticn operation serves to spread the
bandwidth of the information-bearing signal {whose bandwidth is approximately R hertz)
into the wider bandwidth occupied by PN generator signal c{t) (whose bandwidth is approx-
imately 1/T;). The spectrum spreading is illustrated in Figure 9.3, which shows, in simple
terms using rectanguiar spectra, the corvolution of the two spectra, the narrow spectrum
corresponding to the information-bearing signa! and the wide spectrum corresponding to
the signal from the PN generator.

cl2)

0 1l :
nn __QJF__I_IL L

T

3

(a) PN signal

¥{r)

‘-—Tb_.-

-1k

(b) Data signal
v(tde(t)
1
| :
-1 L__ L L

—7,—
{c) Product signal

Figure 9.2: Generation of a DS spread spectrum signal. (a) PN signal. (b) Data signal. {c)
Product signal.

The product signal v(r}e{s), also illustrated in Figure 9.2, is used to amplitude-modulate
the carrier A cos 2 £+ and, thus, 1o generate the DSB-5C signal

u(t) = Acu(t)c()cos2m fot 9.2.3)

Since v{t)c(¢) = X1 for any ¢, it follows thal the carmier-modulated transmitted signal may
also be expressed as

w(th = A, cos[2mfut + 0(1)] (9.2.4)
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Figure 9.3: Convolution of spectra of the (a) data signal with the (b} PN code signal.
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where fi{t} = 0 when u(t)(T) = | and 8(r) = x when v(t)e(r) = —1. Therefore, the
transmitied signal is a binary PSK signal whose phase varies at the rate 1/7,..

The rectangular pulse p(1) is usualiy catled a chip, and its time duration 7. is called the
chip interval. The reciprocal 1/ 7, is called the chip rate and corresponds {approximately)
to the bandwidth W of the transmitted signal. The ratio of the bit interval 7}, to the chip

interval T, is usually selected 10 be an integer in practical spread spectrum systems. We
denote this ratio as

L
T

(9.2.5)
Hence, L. is the number of chips of the PN code sequence per information hit. Another

interpretation is that L, represents the number of possible 180" phase transitions in the
transmitted signal during the bit interval T,.

9.2.1 Signal Demodulation

‘The demodulation of the signal is performed as iilustrated in Figure 9.4. The received signal
is first multiplied by a replica of the waveform (t) generated by the PN code sequence
generator at the receiver, which is synchronized to the PN code in the received signal. This
operation is called {spectrum) despreading, since the effect of multiplication by ¢(#) at the
receiver is 1o unda the spreading operation at the transmitter. Thus, we have

AN cos 2 fot = Ault) cos 2m ft 922.6)

since ¢2(1) = 1 forall 1. The resulting signal A v(t) cos 2 f.t occupies 2 bandwidth
(approximately) of R hertz, which is the bandwidth of the information-bearing signal.
Therefore, the demodulator for the despread signal is simply the conventional cross corre-
lator or matched filter that was described in Chapters 5 and 7. Since the demodulator has a
bandwidth that is identical to the bandwidth of the despread signal, the only additive noise
that corrupts the signal at the demodulator is the noise that falls within the information
bandwidth of the received signa.

Effects of Despreading on a Nartowband Interference

It is interesting to investigate the effect of an interfering signal on the demodulation of the
desired information-bearing signal, Suppose that the received signal is

r{ty = Acv(t)c(t)cos2mfot + i{) (9.2.7)

where i(¢) denctes the interference. The despreading operation at the receiver yields

r(f)c(ty = Acv(tycos 2mfet + i()elr) (9.2.8)
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Figure 9.4: Demcdulation of DS spread spectrum signal.

The effect of multiplying the interference i (¢} with ¢(¢) (s 10 spread the bandwidth of i (t)
to W hertz.
As an example, let us consider a sinusoidal interfering signal of the form

ity = Aycos2mfit 9.2.9)

where fy is a frequency within the bandwidth of the wansmitted signal. Its multiplication
with ¢{t) results in a wideband interference with power-spectral density Jy = P;/ W,
where Py = Af, /2 is the average power of the interference. Since the desired signal is
demodulated by a matched filter (or correlator) that has a bandwidth R, the total power in
the interference at the output of the demaodulator is

BR_ P B P (9.2.10)
W W/R Ty/T. L.

JoR =

Therefore, the power in the nterfering signal is reduced by an amount equal to the
bandwidth expansion factor W/R. The factor W/R = Ty/ T, = L. is called the processing
gain of the spread spectrum system. The reduction in interference power is the basic
reason for using spread spectrum signais to transmit digital information over channels with
interference.

In summary, the PN code sequence is used at the transmitter to spread the informatien-
bearing signal into a wide bandwidth for transmission over the channel. By multiplying
the received signal with a synchronized replica of the PN code signal, the desired signal is
despread back to a narrow bandwidth, whereas any interference signals are spread over a
wide bandwidth. The net effect is a reduction in the interference power by the factor W/R,
which is the processing gain of the spread spectrum system.

The PN code sequence {¢, ] is assumed to be known only to the intended receiver, Any
other receiver that does not have knowledge of the PN code sequence cannot demodulate
the signal. Consequently, the use of a PN code sequence provides a degree of privacy (or
secutity) that is not possible to achieve with conventional modulation. The primary cost for
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this security and performance gain against interference is an increase in channel bandwidth
utilization and in the complexity of the communication system.

9.2.2 Probability of Error

In an AWGN channel, the probability of error for 4 DS spread spectrum system employing
binary PSK is identical to the probability of error for conventional (unspread) binary PSK;

ie.,
2E,
Py=0 (J—NO ) (9.2.1H

On the other hand. if the interference is the sinusoidal signal given by (9.2.9) with power
Py, the probabulity of error 1s (approximately)

o125 \_ [ |a&
Pb—Q( PJ/W)—Q(VJ_Q) 92,12}

Thus, the interference power is reduced by the factor of the spread spectrum signal band-
width W. In this case, we have ignored the AWGN, which is assumed to be negligible;
ie, No « P;/W. If we account for the AWGN in the channel, the error probability is
expressed as

=Q( 2 ) ©9.2.13)

The Jamming Margin

. . . . . . £
When the interference signal is a jamming signal, we may express Tr':L as

I _ PsTy Ps/R _ W/R

Ty PW Py /W PsPs

Now, suppose we specify a required £/ Jy to achieve a desired performance. Then, using
a logarithmic scale, we may express (9.2.14) as

(9.2.14)

P W
10log }i = 10log — ~ 10log (4‘;'-3)
5 [

P w E
(- (-3
Ps/up R /4 Jo /g8
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The ratio (P;/ Ps)gp is called the jamming margin. This is the relative power advantage
thal a jammer may have without disruptiag the communication system.
ILLUSTRATIVE PROEBLE

IHustrative Problem 9.1 Suppose that we require an £,/Jy = 10 dB 1o achieve reliable
communication with binary PSK. Determine the processing gain that is necessary to provide
a jamming margin of 20 dB.

g SOLUTION

By using (9.2.15) we find that the processing gain (W/R)ga = 30 dB: ie., W/R =
L. = 1000. This means that with W/R = 1000, lhe average jamming power al the receiver
may be 100 times the power Ps of the desired signal, and we would still maintain reliable
communication.

Performance of Coded Spread Spectrum Signals

As shown in Chapter 8, when the transmitted information is coded by a binary linear (block
or convolutional) code, the SNR at the output of a soft-decision decoder is increased by the
coding gain, defined as

Coding gain = R.df (9.2.16)

min

where R, isthe code rate and d;:m is the minimum Hamming distance of the code. Therefore,
the effect of the ceding is to increase the jamming margin by the coding gain. Thus (9.2.15)

may be modified as
P w £
(_f) =(w) +(cc)dg_(—*’) 0217
Fs/an R /s Jo /s

9.2.3 Two Applications of DS Spread Spectrum Signals

In this subsection we briefly describe the use of DS spread spectrum signals in two appli-
cations. First, we consider an application in which the signal is transmitied at very low
power, so that a listener would encounter great difficulty in trying to detect the presence of
the signal. A second application is multiple-access radio communications.

Low-Detectability Signal Transmission

In this application the information-bearing signal is transmitted at a very low power level
relative to the background channe! noise and thermal roise that is generated in the front end
of a receiver. If the DS spread spectrum signal occupies a bandwidth W and the power-
spectral density of the additive noise is Ny watts/heriz, the average noise power in the
bandwidth W is Py = W Ny.

The average received signal power at the intended receiver is Pg. If we wish to hide
the presence of the signal from tecetvers that are in the vicinity of the intended receiver,
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the signal is transmiited at a power level such that Pr/ Py < 1. The intended receiver can
recaver the wezk informatior-bearing signal from the background noise with the aid of the
processing gain and the coding gain. However, any other receiver that has no knowladge
of the PN code sequence is unable (o take advantage cf the processing gain and the coding
gain. Censequently, the presence of the information-bearing signal is difficult 1o detect.
We say that the transmitted signal has a low probability of being intercepred (LPI), and it
is called an LP{ signai.

The probability of error given in Section 9.2.2 applies as well 1o the demodulation and
decoding of LPI signals at the intended receiver.

ILLUSTRATIVE PROBLE

Nlustrative Problem 9.2 A DS spread spectrum signal is to be designed such that the
power ratio at the intended receiver is Pg/ Py = 0.0 for an AWGN channel. The desired
value of ), / N is for acceptable performance. Let us determine the minimum value of the
processing gain required to achieve an £, /Ny of 10,

. SCOLUTION g

We may write £,/ Ny as

£y  PrIy  PrL.T, Pr Pa
== =|—] L. =] = . 2,18
My Moy No (WND L Py Le (92.18)

Since Ep/Ng = 10 and Pg/Py = 1072, it follows that the necessary processing gain is
L, = 1000,

Code Division Multiple Access

The enhancement in performance obtained from a DS spread spectrum signal through the
processing gain and the coding gain can be used to enable many DS spread spectrum signais
to occupy the same channel bandwidth, provided that each signal has its own pseudorandom
(signature) sequence. Thus it is possible to have several users transmit messages simulta-
neously over the same channel bandwidth. This type of digital communication, in which
each transtnitler/receivet user pair has its own distinct signature code for transmitting over
a common channel bandwidth, is called code division multipie access (CDMA) .

In digital cellular communications, a base station transmits signals o ¥, mobile re-
ceivers using &, orthogonal PN sequences, one for sach intended receiver, These N,
signals are perfectly synchronized at transmission, so that they arrive at each mobile re-
ceiver in synchronism. Conseguently, due to the orthogonality of the N, PN sequences,
each intended receiver can demodulate its own signal without interference from the other
transmitted signals that share the same bandwidth. However, this type of synchronism
cannot be maintained in the signals transmitted from the mobtle transmitters to the base
station (the uplink, or reverse link). In the demodulation of sach DS spread spectrum signal
at the base station, the signals from the ather simultaneous users of the channel appear as
additive interference. Let us determine the number of simutltaneous signals that can be ac-
commodated in a CDMA system. We assume that afl signals have identical average powers
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at the base stalion. [n many practical systems the received signal's power level from cach
user is monitored at the base station, and power control is exercised over all simultaneous
users by use of a control channe! that instructs the users on whether to increasc or decrease
their power levels. With such power control, if there are V,, simultaneous users, the desired
signal-to-noise interference power Tatio at a given receiver is

b (9.2.19)
Py (Ne — DDPy Ny =1

From this relation we can determine the number of users that can be accommodated simul-
tanecusly.

In determining the maximum number of simultaneous users of the channel, we tmplicitly
assumed that the pseudorandom code sequences used by the various users are orthogonal and
that the interference [tom other users adds on a power basis only. However, orthogonality of
the pseudorandom sequences among the N, users generally is difficult to achicve, especially
if M, is large. In fact, the design of a large set of pseudorandom sequences with good
correlation properties is an important problem that has received considerable attention in
the technical literature. We briefly treat this problem-n Section 9.3.

ILL.USTRATIVE PROBLEM

Illustrative Problem 9.3 Suppose that the desired level of performance for a user in a
CDMA system is achieved when £,/ /g = 10. Let us determine the maximum number of
simultaneous users that can be accommodated in the CDMA system if the bandwidth-to-
bit-rate ratio is 100 and the coding gain is 6 dB.

. SOLUTION

From the basic relationship given in {9.2.17), we have

7)., (%) (%)
o = — +(CG)yg — | =2
(PS 4B R/ (Gl Jo /4m

=20+6-10=16dB

Consequently,

and, hence,

N, =41 users
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ILLUSTRATIVE PROBLEM

Ilustrative Problem 9.4 The objective of this problem is tc demonstrate the effectiveness
of a DS spread spectrum signal in suppressing sinusoidal interference viz Monte Carlo
simulation. The block diagram of the system 1o be simulated is illustrated in Figure 9.5,

Unitorm WON Sinusoidal
RNG generater generator
HDma[:l] i
Repeat o L
L, times % 1 o \Xr =z
Unilorm
RNG Detzcror
(PN sequence)
Cutput
Compare decision

Error
counter

Figure 9.5: Model of DS spread spectrum system for Monte Carlo simulation.

an SOLUTION 4

A uniform random number generater {RNG) is used to generate a sequence of binary
information symbols (1), Eachinformation bit is repeated L. times, where L . coresponds
to the number of PN chips per information bit. The resulting sequence, which contains L,
repetitions per bit, is multiplied by a PN sequence c(n) generated by another uniform RNG,
To this product sequence we add white Gaussian noise with variance o° = Np/2 and
sinusoidal interference of the form

i{n) = Asinapn

where 0 < wg < 7 and the amplitude of the sinusoid is selected to satisfy A < L. The
demodulator performs the cross correlation with the PN sequence and sums (integrates) the
blocks of L. signal samples that constitute each information bit. The output of the summer
is fed to the detector. which compares this signal with the threshold of zero and decides
on whether the transmitted bit is +1 or —1. The error counter counts the number of etrors
made by the detector. The results of the Monte Carlo simulation are shown in Figure 9.6
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for three different values of the amplitude of the sinusoidal interference with L. = 20.
Also shown in Figure 9.6 is the measured error rate when the sinusocidal interference is
removed. The variance of the additive noise was kept fixed in these simutations and the
level of the desired signal was scaled to achieve the desired SNR for each simulation run.
The MATLAB scripts for the simulation program is given below.

% MATLAB script for Hlustrative Problem 4. Chapter 9.

echo on

Lc=20C; % number of chips per bit

Al=3; %o amplitude of the first sinusoidal interference
A2=T, o amplitude of the second sinuseidal interference
Al=12; % amplitude of the third sinusoidal interference
Ad=0, %o fourth case: no inlerference

wi=1; % frequency of the sinusoidal interference in radians

SNRindB=0:2:30;
for i=1:length¢SNRindB},
Ja measured error rates
smid_err.prb L(i)=ss_Pe94{ SNRindB(i),Lc, A |, wi};
smid_ e _prb2(i)=ss-Pe94(SNRindB(i) Le. A2 w0},
smid-err_prb3(i)=s5_Ped4(SNRindB(i)Le, A3, wh);
end:
SNRindB4=0:1:8;
for i=1:length{SNRindB4),
% mevsured error rate when there is no interference
smld.err_prb4(i}=ss_Pe94(SNRindB4(i),Lc.A4.w0};
end;
% plotting commands follow

— R

function {p]=ss_Pe94{snrin_dB, Le. A, w0)
% [pl=ss_PeSd{snrin.dB, Lc, A wO)
% SS_PES2 finds the measured error rate. The function

% that returns the measured probability of error for the given value of

% the sardn_dB, Le, A und wo.

snr=10"{snr_in_dB/10);

sgma=1; % noise standard deviation is fued

Eb=2»sgma " 2«snr; % signal level required fo achieve the given
% signal-tn-noise ratio

E_chip=Eb/Lc; % energy per chip

N=10000; % number of bits transmitted

% The generation of ihe data, noise. inferference, decoding process, and error
% counting is performed ull together in order 1o decrease the run time of the
% program. This is accomplished by uvoiding very large sized vectorr.
num_of_err=0;
for i=1:N,
% generate the nexr data bis
temp=rand;
if {temp<(.5),
data=—1;
else
data=1;
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end,
% repeai ir Le times, ie divide it intp chips
for j=1:Le,
repeated _data(j)=data;
end;
P PN sequence for the duration of the bit is generated next
for j=1.Lc,
temp=rand;
if {temp<0.5),
pn-seqif)=—1;
else
pri_seq(j)=1,
end;
end,
% the trunsmitted signat s
|rans..sig:sq:t(E_chlp)*mpealzd_dum,tpn_seq'.
% AWGN with variunce syma ™2
noise=sgmaxrandn{1 Lc);
%o interference
o=(i—1)sLc+1:ixle,
interference=Aasin{wlsn},
% received signal
rec_sig=trans_sig+noise+interference;
% determine the decivion variable from the received sigral
lemp=rec_sig. *pn_seq;
dccision_vnriable:sum(mmp);
% making decision
if (decision_variable <Q),
decision=—1;
else
decision=1;
end;
% if it i am error incremens the error counter
if (decision™=data),
num-of_err=num_of_err+1;
end;
end;
% then the measured error prubability is
p=num.of_err/N;

9.3 Generation of PN Sequences

A pseudorandom, or PN, sequence is a code sequence of ['s and 0's whose autocorrelation
has properties similar to those of white noise, In this section, we briefly describe the con-
struction of some PN sequences and their autecorrelation and cross correlation properties.

By far, the most widely known binary PN code sequences are the maximuem-length
shift-register sequences. A maximum-length shift-register sequence, or m-sequence for
short, has a length L = 2™ — 1 bits and is generated by an m-stage shift register with
lincar feedback, as illustrated in Figure 9.7. The sequence is periodic with period L. Each
period has a sequence of 2"~ ones and 2™~! — 1 zeros. Table 9.1 lists the shift Tegister
connections for generating maxintum-{ength sequences.
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30

SNR indB

Figure 8.6: Error-rate performance of the system from the Monte Carto simulation.

In DS spread spectrum applications, the binary sequence with elements {0, 1} is mapped
into a corresponding binary sequence with elements {—1, 1}. We shall call the equivalent
sequence {c,} with elements {—1, 1} a bipolar sequence.

An important characteristic of a periodic PN sequence is its autocorrelation function,
which is usually defined in terms of the bipolar sequences {c,} as

L
R.imy= chcrﬁm.

n=I

D=m=<L-1 9.3.1)

where L is the period of the sequence. Since the sequence {c,] is periodic with period L,
the autocorrelation sequence {R.(m)} is also periedic with period L.

Ideally, a PN sequence should have an autocorrelation function that has corzrelation
properties similar to white noise. That is, the ideal autocorrelation sequence for {c,} is
R:(0) = Land Re(m) = Oforl < m < L — 1. In the case of m-sequences, the
autocorrelation sequence is

9.3. Generation of PN Sequences
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m stages

Quiput +— | 2

\%/

Figure 9.7: General m-stage shift register with linear feedback.

Table 9.1: Shift-register connections for generating ML sequences.

Stages Connected Stages Connected Stages Connected
m ‘| w Modulo-2 Adder || m | to Modulo-2 Adder | m | to Modulo-2 Adder
2 1.2 131, 10,11, 13 24 | 1,18,23,24
3 1.3 14 | 1,5.9,14 25 | 123
4 l,4 153 1,15 26 | 1,21,25,26
5 |14 16| 1,5 14,16 27 [ 1,23,26,27
6 1,6 17 (115 28 (1,26
7 |17 18 ] 1,12 291 1,28
8 1,5,6,7 19| 1,15,18,19 30 | 1,8,29,30
9 11,6 201,18 3111,29
10 1,8 211,20 32| 1, 11,3132
111,16 221 1,22 331121
1211,7,9,12 231,19 34 1 1,8,33,34
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Table 9.2: Peak cross correlations of ar-sequences and Gold sequences.

m-sequences Gold sequences
m; L=2""" I Number [ Runx | R/ B(O) || Rpax | Remax/R(0)
3 7 2 5 .71 5 0.71
4 15 2 9 0.60 9 0.60
5 3 6 1 0.35 9 0.29
6 63 6 23 0.36 (7 0.27
7 127 8] 41 0.22 17 0.13
8 235 16 95 0.37 13 013
9 S11 48 | 13 0.22 3 0.06
15 1023 60 | 383 0.37 65 0.06
11 2047 176 287 014 65 0.03
12 4085 144 | 1407 034 f 129 0.03

Rogmy =11 m=0 9.3.2)

-} 1€mz<glLl-1

For long m-sequences, the size of the off-peak values of R.(m} relative 1o the peak value
Re(0)—i.e., the ratio R, (m}/R.(0) = —1/L—is small and, from a practical viewpaint,
inconsequential. Therefore, n-sequences are very close 1o ideal PN sequences when viewed
in terms of their autocorrelation function.

In some applications the cross correlation properties of PN sequences are as important
as the autocorrelation properties. For example, in CDMA each user is assigned a particular
PN sequence. Ideally, the PN sequences among users should be mutually orthogonal so that
the level of interference experienced by one user from transmissions of other users is zero.
However, the PN sequences used in practice by different users exhibit some correlation.

To be specific, let us consider the class of m-sequences. It is known that the periodic
cross correlation function between a pair of m-sequences of the same period can have
relatively large peaks. Table 9.2 lists the peak magnitude Rpnax for the pericdic cross
correlation between pairs of m-sequences for 3 < m < 12. Also listed in Table 9.2 is the
number of m-sequences of length L = 2" — | for 3 < m < 12. We observe that the
number of m-sequences of the length L increases rapidly with m. We also observe that,
for most sequences, the peak magnitude Ry, of the cross-correlation function is a large
percentage of the peak value of the autocorrelation function. Consequently, m-sequences
are not suitable for CDMA communication systems. Although it is possible to select a
small subset of m-sequences that have relatively smatler cross carrelation peak vajues than
Rumax, the number of sequences in the set is usually too small for CDMA applications,
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Methods for generating PN sequences with better periodic cross correlation properties
than m-sequences have been developed by Gold [5],[6] and by Kasami [7]. Gold sequences
are construcied by taking a pair of specially selected m-sequences, called preferred m-
sequences, and forming the modulo-2 sum of the two sequences for each of L cyclically
shifted versions of one sequence relative t the other sequence. Thus I, Gold sequences
are generated as ilustrated in Figure 9.8. For large L and m odd, the maximum value of

the cross correlation function beiween any pair of Gold sequences is Ry = v2L. Form
even, R, — VI

Gold sequence -—-<+>

Figure 9.8: Generation of Gold sequences of length 31.

Kasami [7] described a method for constructing PN sequences by decimating an sm-
sequence. In Kasami's method of construction, every (2”"’2 + 1)st bit of an m-sequence is
selected. This method of construction yields a smaller set of PN sequences compared with
Gold sequences, but their maximum cross correlation value is Ruax = /L.

It is interesting to compare the peak value of the cross comelation function for Gold
sequences and for Kasami sequences with a known lower bound for the maximum cross
correlation between any pair of binary sequences of length L. Given a set of N sequences
of period L, a lower bound on their maximum cross correlation js

N ~1

R >
R

(9.3.3)

which, for large values of L and ¥ is well approximated as Raax > VL. Hence, we observe
that Kasami sequences satisfy the lower bound and, hence, they are optimal. On the other
hand, Gold sequences with m odd have Ryax = v/2L. Hence, they are slightly suboptimal.

Besides the well-known Gold sequences and Kasami sequences, there are other binary
sequences that are appropriate for CDMA applications. The interested reader is referred to
the papers by Scholtz (8], and Sarwate and Pursley [9].
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ILLUSTRATIVE PROBLE

Illustrative Problem 9.5 Let us generate the L = 31 Gold sequences that result from
taking the modulo-2 sum of the two shift-register outputs shown ia Figure 9.8.

. SOLUTION

The MATLAB scripts for performing this computation is given below. The 31 sequences
generated are shown in Table 9.3. The maximum value of the cross correlation for these
sequences is Ryux = 9.

% MATIAR script for Hlusirative Problem 5, Chaprer 9.
echo on
B firsc devermine the maximul length shift register sequences
% we'll take the initial shift register content us 00001
conrections1={1 ¢ 1 0 0,
connrections2={1 1 1 Q0 1],
sequence | =ss_mlsrs(connections|),
sequence2=ss_mlsrs{connections};
T cyclically shift the second sequenve und add it o the first ane
L=2"length{connections[}—1;;
for shift_amount=0:L—1,
temp={sequence2(shift_amount+1:L) sequence(? :shift.amount)|;
gold_seq(shift_amount+1,)={sequencel+temp) — foori({sequencel+temp) /2) 42,
end;
% find the max value uf the cross corvelution for these sequences
max.cross._com=0;
far i=1.L—1,
for j=i+1.L.
%o equivalent sequences
cl=2xgold_seq(i,)-1;
c2=2agold_seq(.)—1.
for m=Q:L—1,
shifted_c2={c2(m+1:L) ¢2(1:m)};
corr=abs(sum(c|.=shifted_c2));
if {corr>max_cross_corr),
TRAX_Cros$_COT=Cort:
end;
end;
end;
end:
Yo note that mac.crosscorr tarns oul o be 9 in this example. ..

. FILE

Junction [seq=ss_misesiconnections);
% {seqf=ss_misrs{connections)
SS5_MLSRS generates the maximal length shift register sequence when the

T shift regizter connections are given ax input fo the funcrion. A "zero”

% means not connected, whereas o “one” represents a coanection.
m=length{connections):

L=2"m—-1; % length of the shift register sequence requested
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registers=[zeros(1,m—1} 1} %o inttial register contenis
seq{1)=registers(m); % firse element of the sequence
for i=2:1,

new_reg_cont{1)=cannections( 1}seqi—1);

for j=2:m,

new_reg_cont(j}=registers(j—1)+connections(j)sseqii—1x

end,;

registers=new _reg._cont; S current register confents

seq(i)=registers{m): S the nexr element of the sequence
end;

9.4 Frequency-Hopped Spread Spectrum

In frequency-hopped (FH) spread spectrum the available channel bandwidth W is subdi-
vided intc a large number of nonoverlapping frequency slots. In any signaling interval the
transmitted signal occupies one or more of the available frequency slots. The selection
of the frequency sloi(s) in each signal interval is made pseudorandomly according to the
output from a PN generator.

A block diagram of the transmitter and receiver for a FH spread spectrum system is
shown in Figure 9.9. The modulation is either binary or M-ary ESK (MFSK). For example,
if binary FSK is employed, the modulator selects one of two frequencie., say, fy or fi,
corresponding to the transmission ofad fora |. The resulting binary FSK signal is translated
i frequency by an amount that is determined by the output sequence from a PN generator,
which is used to select a frequency f. that is synthesized by the frequency synthesizer. This
frequency-translated signal is transmitted over the channel. For example, by taking m bits
from the PN generator, we may specify 2™ — 1 possible carrier frequencies, Figure 9.10
illustrates a FH signal patiern.

At the receiver, there is an identical PN sequence generator, synchronized with the
received signal, which is used to control the output of the frequency synthesizer. Thus,
the pseudorandom frequency translation introduced at the transmitter 1s remaved at the
demodulator by mixing the synthesizer output with the received signal. The resultant
signal is then demodulated by means of an FSK demodulator. A signal for maintaining
synchronism of the PN sequence generator with the FH received signal is usually extracted
from the received signal.

Although binary PSK modulation generally yields beuer performance than binary FSK,
it is difficult to maintain phase coherence in the synthesis of the frequencies used in the
hopping pattern and, also, in the propagation of the signal over the channel as the signal
is hopped from one frequency to another over a wide bandwidth. Consequently, FSK
modulation with noncoherent demodulation is usuaily employed in FH spread spectrum
systems.

The frequency-hopping rate, denoted as Ry, may be selected to be either equal to the
symbol rate, lower than the symbol rate, or higher than the symbol rate. If Rj, is equal to or
lower than the symbol rate, the FH system is called a slow-hopping system. H Rj, is higher
than the symbel rate, i.e., there are multiple hops per symbol, the FH system is called a
fast-hopping system. We shall consider only a hopping rate equat to the symbol rate.
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PN sequence Frequency
Table 9.3: Table of Gold sequences from Hlustrative Problem 9.5. generator synthesizer

!
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Figure 9.10: An example of an FH pattern.
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9.4.1 Probability of Error for FH Signals

Let us consider a FH system in which binary FSK is used to transmit the digital information.
The hop rate is | hop per bit. The demodulation and detection is noncoherent. in an AWGN
channel, the probability of error of such a system is

Py = L =z2m {0.4.1)
P
The same result applies if the interference is a broadband signal or jammer with flat spectrum
that covers the entire FH band of widih W. In such a case, Np is replaced by Np + Jo,
where Jy is the spectral density of the interference,

As in the case of a DS spread spectrum system, we observe that Zp, the energy per bit,
can be expressed as L, = PsT, = Ps/R, where Py is the average signal power and R
is the bit rate, Similarly, Jo = P;/W, where P; is the average power of the broadband
interference and W is the available channel bandwidth. Therefore, assuming that Jo 3> Ny,
the SNR can be expressed as

£, W/R
Jo Py

(9.4.2)

where W /R is the processing gain and P,/ Ps is the jamming margin for the FH spread
spectrum signal.

Slow FH spread spectrum systems are particularly vulnerable to a partial-band inter-
ference that may result either from intentional jamming or in FH CDMA systems. To be
specific, suppose that the partial-band interference is modeled as a zero-mean Gaussian
random process with a flat power-spectral density over a fraction of the total bandwidth
W and zero in the remainder of the frequency band. In the region or regions where the
power-spectral density is nonzero, its value is §7{f) = Jo/, where 0 < o < 1. In other
words, the interference average power P; is assumed to be constant, and o is the fraction
of the frequency band occupied by the interference.

Suppose that the partial-band interference comes from a jammer that selects o to opti-
mize the effect on the communications system. In an uncoded slow-hopping system with
binary FSK modulation and noncoherent detection, the transmitted frequencies are selected
with uniform probability in the frequency band W. Consequently, the received signal will
be jammed with probability «, and it will not be jammed with probability | — . When
it is jammed, the probability of error is 1/2 exp(—a ps/2), and when it is not jammed, the
detection of the signal is assumed to be error-free, where op = E;/Jy. Therefore, the
average probability of error is

Pila) = % exp {—apr/2)
o aW/R
== - 4.
z“p( ZPJ/PS) G4
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Figure 9.11 illustrates the error rate as a function of the SNR py, for several values of .
The jammer is assumed 10 oplimize its strategy by selecting e to maximize the prebability
of error. By differentiating P» (o) and solving tor the value of & that maximizes Py}, we
find that the jammer’s best choice of @ is

2 >
a‘:[ lpbe pp =2

N oy <2 (9.4.4)
The corresponding error probability for the worst-case partial-band jammer is
e o pr 2
Py = ' =
5 !ée"’h”, oy <2 (9.4.3)

which is alsolshown in Figure 9.11. Whereas the error probability decreases ¢xponentially
for full-band jamming, as given by (9.4.3), the error probability for worst-case partial-band
Jamming decreases only inversely with £p/ Jg.

Probability of bit error

SNR/bit, dB

Figure 9.11: Performance of binary FSK with partial-band interference.
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ILL USTRATIVE PROBLE

Tustrative Problem 9.6 Via Monie Carlo simulation, demonstrate the performance of an
FH digital commurication system that employs binary FSK and is corrupted by worst-case
partial-band interference. The block diagram of the system to be simulated is shown in
Figure 9.12.

Uniform Uniform
RNG RNG
[
Data =1 { ] i }
Gaussian Gaussian Gaussian Gaussian
RNG RNG RNG RNG
5
Binary ——G-/
FSK A Detector
maodutator Cr}
Output
Compare decision
Error
counter

Figure 9.12: Model of a binary FSK system with partial-band interference for the Monte
Carlo simulation.

. SOLUTION

A uniform random number generator (RNG) is used to generate a binary information
sequence, which is the input to the FSK modulator. The output of the FSK modulator is
corrupted by additive Gaussian noise with probability o, where 0 < & < 1. A second
uniform RNG is used to determine when the additive Gaussiar noise corrupts the signal
and when it does not, In the presence of noise, the input to the detector, assuming thata 0
is transmitted, is

8.4, Frequency-Hopped Spread Spectrum 415

rp= (\/E,cost:ﬁ +?il)2 + (\/ESin¢’+”.\')2

2 2
rr = ng +oni,

where ¢ represents the channel-phase shift and n ., 1, ny,, ny, represent the additive
notse components. In the absence of noise, we have

ry = £p. ra=0

and , hence, no errors occur al the detector. The variance of each of the noise components is
a? = aly/2, where & is given by (9.4.4). For simplicity, we may set ¢ = 0 and normalize
Jo by setting it equal (o unity. Then, g, = Ep/Jy = &y, Sincea? = Jof2eand @ =2/ py,
it fotlows that, in the presence of partial-band interference, 7% = £y/4 and @ = 2/E,,
where £ is constrainedto £ > 2. Figure 9.13 illustrates the error rate that results from the
Monte Carlo simulaiion. Also shown in the figure is the theoretical value of the probability
of error given by (3.4.5). The MATLAB scripts for the simulation program are given below.

%o MATLAB script for IMusirative Problem 6, Chupter 9

echo on
rha_bl=0:5:35; Yo rhe in JB for the simulired ervor rate
rho.b2=0:0.1:35; % rho in dB for theoretical error rate computation
for i=1:length({cho_b1),

smild_emr_prb(i)=ss_pe¥6(rho_b1(i}); % simafared error rate
end;

for i=1:length(rho_b2},
temp=10"(rho_b2(i)/10):
if {temp=>2)

thea_err_rate(iy=1/(exp(1 xtemp): T theoretical error rate if rhos2
clse
theo_err_rate(i)=(1/2)xexp(—temp/2);% thevretical error rare if rho<2
end;
end;

% plotting command folfow

— Iy

Sfunction [p] = sx_Pe96(rhu_in_d8}
% [{pl=15_PeP6(rho_in 118}
% SSPES6  finds the measured error rare. The vailue af

% Stgnal per interference rativ in dB iv given us an
% input to the function.
rho=10"(rho.-in.dB/10);
Eb=rho; % energy per bit
if {rho=2),
alpha=2/rho; % optimal alpha if rho > 2
else
apha=1; % optimal alpha if rho < 2
end;
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sgma=sqrt{1/(2«alpha}); % nvise standard deviation
N=10000; T number of bits wransmined
% generation of the daia sequence
for i=1:N,
temp=rand.
if {temp<0.5)
data(i)=1;
clse
data{i)=0,
end;
end;
% find the received signals
for i=T:N,
TFo the transmitted signal
if (data(iy==0),
rle(i)=sqr(Eb);
rls(i}=0;
12¢(
r2s(i)=0;
else
rle()=0;
rls(i)=0;
r2e{i)=sqrt{Eb);
r2s(i)=0:
end,
% the received signul is found by adding noise with probability alpha
if (rand<alpha),
rlc(i}=ric(i)+gngauss(sgma);
rls(i}=rls(i)+gngauss(sgma);
r2c(i)=r2e(i)+gngauss{sgma).
r25(i)=12s(i}+gngauss(sgma),
end;
end;
% make the decisions und count the number of errors made
num.of, err=0;
for i=1:N,
rl=rlc(i}" 2+rls{i)”2; %o first decision variable
r2=r2c{i)" 2+r25(1)° 2, % second decision varigble
% decision is mude next
Gf {rl=>c2),
decis=0;

else
decis=1;
end;
% increment the counter if this is an error
if (decis™=data{i)),
num_of_err=num_of_emr+1;
end;
end;
% measured bit error rale i then
p=num_of_em/N;
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Figure 9.13: Emor-rate performance of FH binary FSK system with partial-band interference
— Monte Carlo simulaticn.

9.4.2 Use of Signal Diversity to Overcome Partial-Band Interference

The performance of the FH system corrupted by partiai-band interference as described in
the previous section is very poor. For example, for the system to achieve an error probability
of 107¢, the SNR required at the detector is almost 60 dB in the presence of worst-case
interference. By comparison, in the absence of partial-band interference, the SNR required
in AWGN is about 10 dB. Consequently, the loss in SNR due to the presence of the partial-
band interference is approximately 50 dB, which is excessivety high.

The way to reduce the effect of partial-band interference on the FH spread spectrum
system is through signai diversity; i.¢., the same information bit is transmitted on multiple
frequency hops, and the signals from the multiple transmissions are weighed and combined
together at the input to the detector. To be specific, suppose that each information bit is
transmitied on two successive frequency hops. The resulting system is called a dual diversity
system. In this case, assuming that a 0 is transmitted, the two inputs 1o the combiner are
either both corrupted by interference, or one of the two transmitted signals is corrupted by
interference, or neither of the two transmitted signals is corrupted by interference.

The combiner is assumed to knew the level of the interference and, thus, forms the
combined decision varables,

wrn + warz
wira + weriz (9.4.6)

Il
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where r1y, r1; are the two outputs of the square-law device for the first transmitted signal
and ra, r22 are the outputs of the square-law device from the second transmitted signal.
The weights w; and w4 are set to 1/02‘ where o is the variance of the additive noise plus
interference. Hence, when o2 is large, as would be the case when interference is present,
the weight placed on the received signal is small. On the other hand, when o is small, as
would be the case when there is no interference, the weight placed on the receivad signal is
large. Thus, the combiner d¢-emphasizes the received signal components that are corrupted
by interference.

The two components x and y from the combiner are fed to the detector, which decides
in faver of the Jarger signal component.

The performance of the FH signal with dual diversity is now dominated by the case in
which both signal transmissions are corrupted by interference. However, the probability of
this event is proporticnal to o2, which is significantly smaller than . As a consequence,
the probability of error for the worst-case partial-bard interference has the form

K

P2)y==3,  p>2 (94.7)
b

i~

where K7 is a constant and pp = E,/Jy. In this case, the probability of error for dual
diversity decreases inversely as the square of the SNR. In other words, an increase in SNR
by a factor of |0 (10 dB) results in a decrease of the errot probability by a factor of 100.
Consequently, an error probability of 1075 can be achieved with an SNR of about 30 dB
with duat diversity, compared to 60 dB (1000 times larger) for no diversity,

More generally, if each information bit is transmitted on D frequency hops, where D is
the order of diversity, the probability of error has the form

K
Py(D) = ;_DLZ_ on > 2 (9.4.8)
b

where K p is a constant.

Since signal diversity as described above is a trivial form of coding (repetition coding),
itis net surprising to observe that instead of repeating the transmissicn of each information
bit [ times, we may use a code with a minimum Hamming distance equal to D and soft-
decision decoding of the outpuis from the square-law devices.

ILLUSTRATIVE PROBLE

Mustrative Problem 9.7 Repeat the Monte Carlo simulation for the FH system considered
in Illustrative Problem 9.6, but now employ dual diversity.

—EENEND—

In the absence of interference, the weight used in the combiner is set to w = 10,
which corresponds to 2 = 0.1, a value that may be typical of the level of the additive
Gaussian noise. On the other hand, when interference is present, the weight is set to
w = ljo? = 2/F, where & is constrained ¢ be £ > 4. The SNR per hop is &, and the
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total energy per bit in the two hops is &, = 2., Therefore, the error probability is plotted
as a function of £,/ Jy. The results of the Monte Carlo simulation are illustrated in Figure
9.14. The MATLAB scripts for the simulation program is given below.

% MATLAB scripit for Iflustrative Problem 7, Chapter 9.

echo on
rhe_b=0:2:24; % rho in dB
for i=1:lengthirhu_b),
smld_err_prbii}=ss5_Pe97{rho_b(i}); % simulated error rate
end;

% Plorting communds follow

—EEER -

Sunction Ipf=ss Ped7(rho _in_dB)

% [pf=ss_Pe97(rho_in_dB)

T S5_PE97  finds the measured error rate. The value of

% signal per mierference ratin in df is given uf an input
Fo o the funcrion.

rho=10"(rho_in_dB/10);

Eb=rho; % energy per information bit

E=Eb/2, % energy per symbol transmitted
% the oprimal value of alpha

if (rho>2),
alpha=2/rho;
else
alpha=1;
end;
% the variance of the uddifive noise
if (E=1),
sgma=sqri(E/2);
else
sgma=sqri(t/2);
end,
N=10000: Fo number of bits transmitted
% generation of the duta fequence
for i=1:N.
temp=rand;
if (temp <0.5)
data(i)=1:
else
data(i)=0;
end;
end;
% find the trunsmitted signals
for i=1:N,
if (data(i)

=0},

sqri(E);  1rl 2c(i)=sqrt(E}:

0; trl2s(i)=0:
u2leli)=0, e22¢(i)=0;
tr21s(i)=0; w22s(i)=0.

else
il c(i)=0; trl2eiiy=0:
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tr1s(i)=0; 11 25(13=0;

2 le(id=sqr(E), r22eii=sqrt(E};

u2ls{i)=0; tr32s(1)=0;
end:
end;

G find the received signals, moke the decistons, and count the number

num-of_eer=0;

for i=1:N,
@ determine if there 15 pamming
if (rand<alpha},

jammingl=1;
else

jammingl=0;
and;

il (rand <alpha),
jamming2=1;
else
jamming2=0:
end;
% the the received signals are
if gammingl==1)
rlic=trlle(i)+gngauss{sgma);
r2ie=tr2{c(i}+gngaussisgma);
else
rllc=trlleii), rlIs=telIs(i);
r2le=tr2lciiy, r21s=tr2Ls(i);
and,;
if amming2==1)
ri2e=triZe(i+gngaussisgma)l;
r22c=tr22c(i) +gngauss(sgma);,
else
rlZe=tr12cliy. £12s=te! 25y
r22e=tr22cli); 122s=1r22s(i);
end;

S jarming presens on the

G jamming AGr present on

Fo jawming present on the

T jumming nol present on

rlIs=trl Is(i)+gngauss{sgma);
r21s=tr2 Is(i}+gngauss{sgma);

r12s=tr | 2s{i)+gnganss(sgma);
r22s=tr22s{i)+gngauss{sgmal,

% compute the decision varicbles, first the weights

if (jammingl==1),
wl=1/sgma”2;
else
wl=10,
end;
if (amming2==1),
wl=1/sgma”2;
else
w2=10;
end;

% the intermediate decision variables ure computed as follows

rli=rllc"2+rlls™2;
rl2=rl2¢~2+4rl12s"2;
2i=r2tc”2+21s"2;
22=220" 2412257 2;

%o finally, the resuiting decision variables x und y ure compited

x=wlxrl{+w2xrl2;
y=w 2] +wlerd;
% make the decision
if (x>y),

of errors made

second transmission

the first transwission

second transmission

the second transmission
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decis=0:
else
decis=1,
end;
%o increment the counter if this is an error
if (decis™=dataii)),
num_of_err=npum_of_err+1:
end:
end;
&0 the measured bit-errar rate is then
p=num_ci_err/N;

Figare 9.14: Error-rate performance of FH dual diversity binary FSK with partial-band
interference — Monte Carlo simulation.
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Problems

9.1 Wrile a MATLAB program to perform a Monte Carlo simutation of a DS spread spec-
trum system that transmits the information via binary PSK through an AWGN channel.
Assume that the processing gain is 10. Plot a graph of the measured error rate versus the
SNR and, thus, demenstrate that there is no performance gain from the spread spectrum
signal.

9.2 Write a MATLAB program to perform a Monte Carlo simulation of a DS spread spec-
trum system that operates in an LPI mode. The processing gain is 20 {13 dB) and the desired
power signal-lo-noise ratio P/ Py at the receiver prior to despreading the signal is —5 dB
or smailer. Plot the measured error rate as a function of the SNR.

9.3 Repeat the Monte Carlo simulation described in [llustrative Problem 9.4 fora processing
gain of 10 and plot the measured error rate.

%.4 Write a MATLAB program that jmplements an m = 12-stage maximal-length shift
register and generate three pericds of the sequence. Compute and graph the periodic auto-
correlation function of the equivalent bipolar sequence given by (9.3.1).

9.5 Write a MATLAB program that implements an m = 3-stage and an m = 4-siage
maximal-length shift register and form the modulo-2 sum of their output sequences. [s the
resulting sequence periodic? If so, what is the period of the sequence? Compute and sketch
the autocomrelation sequence of the resulting (bipolar) sequence using (3.3.1).

9.6 Write a MATLAB program to compute the autocorrelation sequence of the £ = 31
Gold sequences that were generated in [ltustrative Problem 9.5.

9.7 AnFH binary orthogonat FSK system employs an m = 7-state shift register to generate
a periodic maximal-length sequence of length L = 127. Each stage of the shift register
selects one of N = 127 nonoverlapping frequency bands in the hopping pattern. Write a
MATLAB program that simulates the selection of the center frequency and the generation
of the two frequencies in each of the N = 127 frequency bands. Show the frequency
selection pattern for the first 10 bit intervals.

9.8 Write a Monte Carlo program to simulate a FH digital communication system that
employs binary FSK with noncoherent {square-law} detection. The system is corrupted by
partial-band interference with spectral density Jo/o, where @ = 0.1. The interference is
spectrally flat over the frequency band 0 < @ < 0.1. Plot the measured error rate for this
system versus the SNR E,/Jg.

9.9 Repeat the Monte Carlo simulation in Iflustrative Problem 9.7 when the weight used
at the combiner in the absence of interference is set to w = 100 and with interference
the weight is w = 1/o* = 2/F, where the signal energy is £ > 4. Plot the measured
error rate from the Monte Carlo simulation for this dual diversity system and compare this
performance with that obtained in IHustrative Problem 9.7.
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