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Dedicated to Wolfgang L. Wendland




Preface

This volume on recent mathematical aspects and the state of the art applica-
tions of boundary element methods is dedicated to Wolfgang L. Wendland on
the occasion of his 70th birthday in September 2006. Lectures related to the
topics included in this book were given within a minisymposium held during
the last Symposium of the International Association of Boundary Element
Methods (IABEM) held in Graz, July 10-12, 2006.

Since the mid eighties there has been a remarkable development in both
the mathematical analysis and engineering applications of boundary element
methods. It turned out that most innovations grew up within strong cooper-
ations between mathematicians and engineers. Both of us participated in the
Priority Research Program of the German Research Foundation (DFG) on
Boundary Element Methods (1989-1995), which was directed by W. L. Wend-
land. Within this program, a lot of new mathematical results were ob-
tained and a lot of simulations of engineering applications has been real-
ized. All results were finally published in the volume Boundary element topics
(W. L. Wendland ed.), Springer, Berlin, 1997.

Whereas in these times the development of the method itself and the math-
ematical basis has been promoted, in the last decade there was another strong
improvement in the analysis of boundary integral equation methods and in
the numerical analysis and implementation of boundary element methods due
to the overwhelming success of fast boundary element methods. Although the
fast multipole method was already used for some time, their marriage with
a profound numerical analysis of Galerkin boundary element methods was
not considered before. Moreover, algebraic approximation methods such as
the Adaptive Cross Approximation algorithm or the concept of Hierarchical
Matrices contribute to the ongoing success of modern fast boundary element
methods. It is worth to mention that almost all of those achievements are still
obtained within strong cooperations between mathematicians and engineers,
and with direct applications in industry.

Hence the spirit of the former DFG research program is still active and will
hopefully initiate further collaborations leading to more impressive results. In
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particular, the aim is to solve more challenging real world applications. This
strong cooperation between applied mathematics and engineering sciences was
always one of the driving forces in the scientific work of Wolfgang Wendland.
This spirit can also be observed in all presentations in this volume. We are
happy to dedicate this book to him and to thank him for his long and ongoing
support and encouragement of the boundary element community.

This volume contains eleven contributions showing the wide range of
boundary integral equation and boundary element methods. Beside more an-
alytical aspects in the formulation and analysis of boundary integral equa-
tions also the state of art of boundary element algorithms are described and
analyzed from a mathematical point of view. In addition, engineering and
industrial applications of those methods are presented showing the ability of
modern boundary element methods to solve challenging problems.

We would like to thank all authors for their contributions to this volume.
Moreover, we also thank all anonymous referees for their work, their criticism,
and their proposals. These hints were very helpful to improve the contribu-
tions. Finally, we would like to thank Dr. T. Ditzinger of Springer Heidelberg
for the continuing support and patience while preparing this volume.

Graz, Martin Schanz
August 2006 Olaf Steinbach
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Some Historical Remarks on the Positivity
of Boundary Integral Operators

Martin Costabel

IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
costabel@univ-rennesl.fr

Summary. Variational arguments go back a long time in the history of boundary
integral equations. Energy methods have shown up very early, then virtually dis-
appeared from the common knowledge and eventually resurfaced in the context of
boundary element methods. We focus on some not so well known parts of classical
works by well known classical authors and describe the relation of their ideas to
modern variational principles in boundary element methods.

1 Introduction

The method of boundary integral equations has always had two important
applications in the theory of boundary value problems for partial differential
equations: As a theoretical tool for proving the existence of solutions and as
a practical tool for the construction of solutions. This is one of the aspects
that has remained constant since the times of Green and Gauss in the early
19th century until our times. Other ideas, in particular techniques of the
analysis of integral equations, have of course greatly changed and evolved in
the meantime, but it is curious to see how some of the very early questions
and techniques are related to recent simple basic results about the structure
of boundary integral equations.

This article has evolved from some observations made in the talk [6] about
the scientific work of Wolfgang Wendland, connecting works by Carl Friedrich
Gauss [11] and Carl Neumann [27] to the work by Wendland and his group on
variational methods for boundary integral equations. In particular the curious
case of “Gauss’ missing theorem” on the positivity of the single layer potential
operator — a proof of which could have been given by Gauss himself, but was
in fact only given 135 years later by Nedelec and Planchard [26] — seemed to
be sufficiently intriguing to merit a more detailed presentation. A secondary
path concerning second kind boundary integral equations, leading from Neu-
mann’s observation of the contraction property of the double layer potential
to the recent paper [31] by Steinbach and Wendland where energy methods
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were used to prove the contraction property in very general cases, seemed to
be less straightforward on the level of analytical tools and mathematical ideas.
Following the early twists of this path, however, one comes across the monu-
mental paper [29] by Henri Poincaré which uses, indeed, energy methods for
proving the contraction property of Neumann’s operator. The historical trail
of Poincaré’s paper which, after having been instantly famous initially, seems
to have disappeared from the common knowledge of the boundary element
community, is a second curiosity on which we will try to shed some light here.
By taking this look, we will even find some “new” mathematical results.

This paper does not present a serious research into the history of math-
ematics, which would require much more space, time and knowledge than
available to the author. It rather stays within the narrow viewing angle of the
history of the analytical foundations of boundary element methods, but it tries
to illustrate how a fresh look, however biased, can reveal new details of old
monuments. We will consider a domain spanned by the four papers by Gauss
[11], Poincaré [29], Nedelec and Planchard [26], and Steinbach and Wendland
[31]. If one prefers a hexagonal constellation, one can add Neumann’s book
[27] and the paper [7] in which the generality of energy methods was empha-
sized. For a justification of this combination of papers, suffice it to say that in
the sky, for giving the perception of a well-balanced constellation, the more
distant objects have to be much bigger stars than the objects closer to the
observer. .. Within this constellation, there exists a myriad of other points of
light, only some of which will make a short appearance in the following. Other
very bright stars in the vicinity of our constellation, from Lebesgue and Fred-
holm over Hilbert to Calderén—Zygmund and Mazya, will not be considered
here.

The papers we are trying to connect belong, in fact, to three quite different
galaxies: There is ours, extending over roughly the last 40 years, characterized
by the availability of many simple but very powerful tools like the basic theory
of Hilbert and Banach spaces, distributions, Fourier transforms and Sobolev
spaces. At the distant end there is the early 19th century with Gauss, where
the first general tools in potential theory and partial differential equations
were being forged. In between there is the end of the 19th century, roughly
from 1870 to 1910 with a condensation around 1895-1900, in the center of
which we see Poincaré, where in close relation with the emergence of modern
physics the first steps were done in directions that led to the subsequent
explosion of functional analysis beginning quite soon afterwards.

What is common to all three periods is the strong primary motivation of
the mathematical research by applications, which then led to the discovery of
beautiful structures that were investigated for their own sake, the result being
the creation not only of fine new mathematics, but also of more powerful tools
for the applications. Let us quote from Gauss’ introduction to [10] where he
talks about some of the ambivalence in the relation between mathematics and
its applications:
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Der rastlose Eifer, womit man in neuerer Zeit in allen Theilen der
Erdoberfliche die Richtung und Stirke der magnetischen Kraft der
Erde zu erforschen strebt, ist eine um so erfreulichere Erscheinung,
je sichtbarer dabei das rein wissenschaftliche Interesse hervortritt.
Denn in der That, wie wichtig auch fiir die Schifffahrt die méglichst
vollstdndige Kenntniss der Abweichungslinie ist, so erstreckt sich doch
ihr Bediirfniss eben nicht weiter, und was dariiber hinausliegt, bleibt
fiir jene beinahe gleichgiiltig. Aber die Wissenschaft, wenn gleich
auch dem materiellen Interesse forderlich, lasst sich nicht auf dieses
beschrianken, sondern fordert fiir Alle Elemente ihrer Forschung glei-
che Anstrengung.'

An earlier quote is the following quite modern-sounding grumble from 1825
[13]:

Ihr giitiger Brief hat mir um so mehr Vergniigen gemacht, je sel-
tener jetzt in Deutschland warmes Interesse an Mathematik ist. So
erfreulich die gegenwirtige hohe Bliithe der Astronomischen Wis-
senschaften ist, so scheint doch die praktische Tendenz fast zu aus-
schliesslich vorherrschend, und die meisten sehen die abstracte Ma-
thematik hochstens als Magd der Astronomie an, die nur deswegen zu
toleriren ist.?

On a more technical level, all three periods have in common that variational
methods play an important role. In Gauss’ time, variational principles were
commonly used for existence proofs, such as in Gauss’ existence proof for
the Dirichlet problem. In Poincaré’s time, on the practical side their field
of applications had been enlarged to cover the construction of eigenfunction
systems via min-max principles, and on the theoretical side the problems
caused by the perceived inadequacies of too naive applications of variational
principles (cf. Weierstrass’ well-known criticism of Dirichlet’s principle) were
beginning to find solutions. Hilbert [14] is often credited with having given
the first rigorous formulation and application of Dirichlet’s principle. Here

!The restless eagerness with which in recent times one strives to investigate in
all parts of the surface of the earth the direction and strength of the magnetic force
of the earth, is a development which is all the more pleasing the clearer the purely
scientific interest is standing out. For, in fact, how important the most complete
knowledge of the deviation line may be for navigation, the need of the latter just does
not extend further, and it remains almost indifferent to anything that lies beyond.
But Science, albeit also beneficial to the material interest, cannot be restricted to
this, but requires for All elements of its research the same effort.

2Your kind letter has given me all the more pleasure the rarer there is now
warm interest in mathematics in Germany. As pleasant as the current high bloom
of the astronomical sciences may be, the practical tendency seems to be almost too
exclusively predominant, and most people consider abstract mathematics at most
as a servant of astronomy which is only therefore to be tolerated.
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is, however, a quote from a recent paper [1] by one of the specialists in the
calculus of variations:

In 1900, D. Hilbert, in a celebrated address, followed by a (slightly)
more detailed paper in 1904 [14, 15, 16], announced that he had solved
the Dirichlet problem [...] via the Dirichlet principle which had been
discovered by G. Green in 1833, with later contributions by C. F.
Gauss (1837), W. Thomson (=Lord Kelvin) (1847) and G. Riemann
(1853). [.. -]

The announcement of Hilbert turned out to be a little premature.
Instead, it became a program which stimulated many people during
the period 1900-1940: B. Levi, H. Lebesgue, L. Tonelli, R. Courant,
S. L. Sobolev and many others. In 1940, H. Weyl [40] completed
Hilbert’s program. By 1940 the Calculus of Variations had been placed
on firm grounds |[...]

Thus a closer look at history tends to blur the boundaries of what constitutes
a formal and complete proof. In any case, nowadays we have clearcut basic
tools like Hilbert spaces, the Riesz representation theorem, the Lax-Milgram
lemma, and Sobolev spaces, which allow us to teach Dirichlet’s principle in a
first course on finite element methods.

A final bridge between the present and the past should be mentioned that
allows us to approach those distant galaxies far more easily than had been
possible for a long time: The Internet. Almost all references in this article are
readily and freely available online, thanks to enterprises like actamathematica,
Gallica, GDZ, JSTOR, NUMDAM, SpringerLink.

In the following we will first make some remarks about Gauss and the first
kind integral equation of the single layer potential. Then we describe some of
Poincaré’s ideas about the double layer potential. In the final part we list a
few known and unknown results related to these old ideas.

2 Gauss and the Single Layer Potential

In 1838-40, Carl Friedrich Gauss published three famous works which stand at
the beginning of our curious history of boundary integral equation methods:
In two of them, [10] and [12], he introduced boundary integral equations (of
the first kind!) as a tool in numerical computations and published extensive
tables and graphs of numerical results obtained in part by employing this
tool. It is truly amazing to see how much could be achieved with numerical
calculations by hand when powerful analytical tools were used. In [10, §32]
Gauss gives a simple description of the principle of boundary reduction, an
idea from which another track leads to later successful methods for proving
existence for the Dirichlet problem, namely Schwarz’ alternating method and
Poincaré’s sweeping or “balayage” method.
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[32.] Die Art der wirklichen Vertheilung der magnetischen Fliissigkei-
ten in der Erde bleibt nothwendigerweise unbestimmt. In der That
kann nach einem allgemeinen Theorem, welches bereits in der Inten-
sitas Art. 2 erwahnt ist, und bei einer andern Gelegenheit ausfiihrlich
behandelt werden soll, anstatt jeder beliebigen Vertheilung der mag-
netischen Fliissigkeiten innerhalb eines korperlichen Raumes allemal
substituirt werden eine Vertheilung auf der Oberflache dieses Raumes,
so dass die Wirkung in jedem Punkte des dusseren Raumes genau
dieselbe bleibt, woraus man leicht schliesst, dass einerles Wirkung im
ganzen dussern Raume aus unendlich vielen verschiedenen Vertheilun-
gen der magnetischen Fliissigkeiten im Innern abzuleiten ist.?

After this, he gives, for the case of a ball, an expansion in spherical harmon-
ics of the unknown density on the surface. The “other occasion” where the
mentioned Theorem was going to “be treated extensively”, is the third paper
[11, §36].

In this paper, Gauss not only lays down the foundations of potential theory,
including the mean value property of harmonic functions (§20), the maximum
principle and the principle of unique continuation (§21), but he also studies in
detail the properties of single layer potentials. He presents the jump relations
(§15) and the basic integration by parts formula (§21; now known as Green’s
first formula, because Green formulated this some years before Gauss, his
works not yet being widely known at the time of Gauss’ paper). We will quote
these two results below in Gauss’ own notation, as our pieces of evidence in
the curious case of “Gauss’ missing theorem.” Let us first see, however, how
Gauss considers the positivity of the single layer potential integral operator.
In his own words:

[30.] Es ist von selbst klar, dass, wie auch immer eine Masse M iiber
eine Flache gleichartig vertheilt sein moge, das daraus entspringende
iiberall positive Potential V' in jedem Punkte der Flache grosser sein
wird, als I‘f , wenn 1 die grosste Entfernung zweier Punkte der Flache
voneinander bedeutet: diesen Werth selbst kénnte das Potential nur
in einem Endpunkt der Linie r haben, wenn die ganze Masse in dem
andern Endpunkte concentrirt wére, ein Fall, der hier gar nicht in
Frage kommt, indem nur von stetiger Vertheilung die Rede sein soll,
wo jedem Element der Flache ds nur eine unendlich kleine Masse m ds

3The specifics of the real distribution of the magnetic fluids in the earth remain
necessarily undetermined. Indeed, according to a general theorem which has already
been mentioned in the Intensitas Art. 2 and shall be treated extensively at another
occasion, one can always substitute instead of any arbitrary distribution of the
magnetic fluids inside a bodily space, a distribution on the surface of this space, so
that the effect in every point of the exterior space remains exactly the same, from
which one easily concludes that an identical effect in the entire exterior space is to
be derived from infinitely many different distributions of the magnetic fluids in the
interior.
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entspricht. Das Integral [ Vmds iiber die ganze Fliche ausgedehnt,
ist also jedenfalls grosser als [ ]‘f mds oder MTM , und so muss es noth-
wendig eine gleichartige Vertheilungsart geben, fiir welche jenes Inte-
gral einen Minimumwerth hat.*

The notion “gleichartig” (homogeneous) means not changing sign, in the case
of a positive total mass M therefore non-negative.

In the paragraphs that follow, he considers a more general problem: Given
a continuous function U on the surface, minimise the integral

Q:/(V—QU)mds.

This is then seen to be equivalent to the integral equation problem: Find a
non-negative mass density m of total mass M and a constant C such that the
single layer potential V satisfies V 4+ C' = U on the surface. He also considers
the case where C is given and M is not fixed, thus the basic first kind integral
equation with the 1/r kernel.

For this problem he gives a detailed proof of existence and uniqueness.
From this result he then deduces an existence proof for the Dirichlet problem
in potential theory.

What jumps out at us when we read this argument is, of course, that Gauss
commits the freshman error of confusing infimum and minimum and that as a
consequence he has, in reality, no existence proof. This whole piece of analysis
was, indeed, far ahead of its time, and we all know that the crucial question
of completeness was only seriously studied after Weierstrass had criticized
this naive use of variational arguments. Weierstrass’ main victim was the
Dirichlet principle, that is, the variational method involving minimization
of the Dirichlet integral over the domain. It is worth while noting, however,
that although Dirichlet’s principle was apparently formulated by Green before
Gauss’ work, the first serious mathematical existence proof for the Dirichlet
problem was the one discussed here, which used a boundary integral equation
of the first kind.

The second weak point of the above argument is one noticed by Gauss
himself: His positivity argument is of a simple geometric nature: Since r is
bounded by the diameter of the surface, the positive kernel 1/r is bounded

41t is self-evident that, however a mass M may be distributed homogeneously over
a surface, the resulting everywhere positive potential V' will be, in every point of the
surface, greater than I\T/I if r designates the greatest distance between two points of
the surface: this value itself could be attained by the potential only in an endpoint
of the line r if the entire mass was concentrated in the other endpoint, a case which
cannot appear here, because we will only consider a continuous distribution, where
every surface element ds corresponds only to an infinitely small mass m ds. The
integral [ Vmds, extended over the whole surface, is therefore in any case greater
than [ AT/[ mds or MTM , and thus there must necessarily be a homogeneous kind of
distribution for which that integral has a minimum value.
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from below by a constant depending only on the domain. The quadratic form
defined by the integral operator is therefore seen to be positive, but only for
non-negative densities m. Having to respect this constraint makes the proof
rather complicated: Only variations inside the positive cone are allowed, which
means that in general, the solution of the minimisation problem solves only
an integral inequality, turning into an equation only in those points where the
solution is strictly positive. Gauss writes (Gauss’ original emphasis as always):

[33.] Der eigentliche Hauptnerv der im 32. Artikel entwickelten Be-
weisfithrung beruht auf der Evidenz, mit welcher die Existenz eines
Minimumwerthes fiir {2 unmittelbar erkannt wird, solange man sich
auf die gleichartigen Vertheilungen einer gegebenen Masse beschréinkt.
Féande die gleiche Evidenz auch ohne diese Beschrankung Statt, so
wiirden die dortigen Schliisse ohne weiteres zu dem Resultate fithren,
dass es allemal, wenn nicht eine gleichartige, doch eine ungleichartige
Vertheilung der gegebenen Masse gibt, fir welche W =V —U in allen
Punkten der Fliche einen constanten Werth erhdlt, indem dann die
zweite Bedingung (Art. 31. II) wegféllt. Allein da jene Evidenz ver-
loren geht, sobald wir die Beschrénkung auf gleichartige Vertheilungen
fallen lassen, so sind wir gentthigt, den strengen Beweis jenes wichtig-
sten Satzes unserer ganzen Untersuchung auf einem etwas kiinstlichern
Wege zu suchen.®

Thus Gauss finds it desirable to prove the positivity of the quadratic form for
not necessarily non-negative mass distributions. This would have given not
only a much simpler proof, but even a much nicer theorem.

The truly odd observation is now that Gauss could easily have proved this
general positivity himself by simply combining the jump relations and the
integration by parts formula cited above. For completeness of this claim, here
are Gauss’ original formulations of these lemmas:

[end of 15.] Man kann diesen wichtigen Satz auch so ausdriicken:
der Grenzwerth von X, bei unendlich abnehmendem positiven x
ist X9 — 27kY, bei unendlich abnehmendem negativen x hingegen
X9+ 27k, oder X #ndert sich zweimal sprungsweise um —27k°, in-
dem z aus einem negativen Werthe in einen positiven tibergeht, das

®[33.] The actual main nerve of the line of proof developed in §32 rests on the
self-evidence with which the existence of a minimum value for (2 is perceived imme-
diately, as long as one restricts oneself to the homogeneous distributions of a given
mass. If the same self-evidence held without this restriction, the above arguments
would lead immediately to the result that there is always, if not a homogeneous,
then at least an inhomogeneous distribution of the given mass for which W =V —U
obtains in all points of the surface a constant value, in that the second condition
(§31. II) can then be omitted. However, since this self-evidence is lost as soon as we
drop the restriction to homogeneous distributions, we are forced to search for the
strict proof of this most important theorem of our whole investigation in a somewhat
artificial way.
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erstemal, indem = den Werth 0 erreicht, und das zweitemal, indem es
ihn iiberschreitet.%

Here Gauss uses coordinates where the normal at a point on the surface co-
incides with the z axis and X = ‘?1‘; where V' stands for the single layer
potential with density k: V = [ kfs with the surface element ds and the

distance r between observation point and point of integration.

/Vdvds: —/qda
dp

wenn das erste Integral iiber die ganze Flache, das zweite durch den
ganzen Raum T ausgedehnt wird.”

[24.] LEHRSATZ. Es ist

Here Gauss denotes by ¢ the gradient of the potential V', by T the interior
domain, and ‘fiv is the interior normal derivative.

We see that he could have added the formulas from Lehrsatz 24 for the
interior domain and the corresponding one for the exterior domain in order
to get with Theorem 15 (in what would have been his formulation; he didn’t

write this, of course)
1
/des: /qda>0
a7

where the second integral is extended over the whole space. This gives posi-
tivity for any m, positive or negative. It is also physically intuitive (in electro-
or magnetostatic terms that were familiar to Gauss), stating equality between
the potential energy stored in the surface and the total energy of the field.
We can only speculate why Gauss didn’t write this. It is also strange
that this result about the positivity of the quadratic form defined by the 1/r
kernel, which was, as we have seen, formulated as a useful and non-trivial open
problem in one of the most famous and widely studied papers of its time, did
apparently not become the object of serious study for a long time. The reason
cannot be that the simple argument of adding the interior and exterior Green
formulas did not occur to anyone. As an example, here is a quote from a paper
[32, p.216] by W. Steklov, written 1900 in the wake of Poincaré’s paper [29].

1 w
V—47T/rds,

6[end of 15.] One can express this important theorem also as follows: The limit of
X for infinitely decreasing positive z is X° — 27k, whereas for infinitely decreasing
negative z it is X° + 27k°, or X jumps twice by —27k® when = passes from a
negative value to a positive one, the first time when x reaches the value 0, and the
second time when it goes beyond it.

"[24.] THEOREM. There holds [formula omitted] where the first integral is ex-
tended over the whole surface, the second one over the whole space T'.

Posons
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I'intégrale étant étendue & la surface (S) tout entiere. Dans les sup-
positions faites par rapport & (.5) nous pouvons employer le théoreme
connu de Green qui nous donne®

/Z(ZZ)QdTJr/Z(?; /v Vi 8Z s:/Vst>0.

Steklov then uses this to prove that for a harmonic function the L? norm
on the boundary is bounded by the diameter of the boundary times the H'
seminorm on the domain. But he doesn’t state this positivity as an interesting
result in itself.

In 1935, Otto Frostman [8] finally formulated the positivity of this quad-
ratic form as a theorem in order to complete Gauss’ proof. But he considers
the argument using Green’s formula as easy to see, but too restrictive (p.
24: “Si le potentiel (newtonien) a des dérivées continues, cela résulte déja des
formules de Green et de Gauss; en effet on démontre facilement. ..”?). He then
gives another proof using the composition property of Riesz potentials on the
whole space which shows that the convolution with 1/ on R? is a constant
times the square of the convolution with 1/r2. This argument (which can
easily be verified by taking Fourier transforms) is generalized by Frostman to
other kernels of the form 1/r* with a > 0. For these kernels, he then presents
Gauss’ complicated proof in the framework of positive measures using the
maximum principle as a principal tool.

The, in our view, simpler and more general (because it applies to other
equations of mathematical physics besides the Laplace equation) proof using
the energy identity was not given before another 38 years, in 1973 by Nedelec
and Planchard [26].

The difference between the two completions that have to be performed
in order to complete Gauss’ minimization argument is that on one hand,
as Frostman showed, positive measures are complete in the energy norm.
Thus in the well-understood framework of positive (Radon) measures, the
infimum is indeed a minimum. One doesn’t even have to know exactly what the
finiteness of energy means for those measures (more about this point below);
one can very well minimize a coercive lower semi-continuous functional that is
not everywhere finite. On the other hand, as Nedelec and Planchard noticed,
the space obtained by completion of a whole vector space (and not only the
positive cone) in the energy norm is the Sobolev space H —1/2 which is a space
not of functions or measures, but of distributions.

Thus, whereas the efforts of Hilbert and others to complete the proof of
Dirichlet’s principle led to the introduction of the function spaces of Beppo

8Let [formula omitted], the integral being extended over the entire surface (S).
With our assumptions on (S) we can apply the known theorem of Green which gives
us [formula omitted].

If the (Newtonian) potential has continuous derivatives, this follows already
from the formulas of Green and Gauss; indeed one shows easily. . .
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Levi and Sobolev already in the beginning of the 20th century (crudely stated:
H' is a subspace of L2, therefore a space of functions, once Lebesgue’s notion
of function is adopted), the energy space needed for Gauss’ boundary integral
form of the Dirichlet principle could only be constructed after the introduction
of Schwartz’ distributions and Sobolev spaces of fractional and negative index.
There is a glimpse of this difficulty in Henri Cartan’s works in 1941 and
1945: In [2] he presents a proof of Frostman’s theorem on the completeness
of positive measures of finite energy (in fact a greatly generalized version
thereof), but of the question of completeness of all signed measures of finite
energy, he says (p.90) “C’est peu probable.”'?. In the paper [3] he gives a
counterexample (p.87) showing that it is, indeed, not complete.

On voit qu’en “complétant” ’espace £ pour cette norme, on ob-
tiendrait un espace de Hilbert. On vérifie sans peine que £ lui-méme
n’est pas complet ().**

But he does not want to quit the framework of measures (which he also calls
“distributions”) to investigate the nature of this Hilbert space.

Could it be that Gauss already had some intuition about the different
nature of the minimizing objects that would appear when the condition of
non-negativity was dropped? We can only speculate.

To finish this paragraph, here is another historic curiosity related to mea-
sures and their energy: As is well-known in the theory of the logarithmic single
layer potential integral equation in two dimensions, the positivity is true there
only under an additional condition on the boundary: Its capacity has to be
less than one. It is also a classical result that the logarithmic capacity of a
compact set in R? is identical to its transfinite diameter and also to its exterior
conformal radius (other names are Chebyshev constant or Robin constant).
This was well known to Frostman in 1935, and the identity of transfinite di-
ameter and exterior mapping radius for regular sets was already proved by
Szego in 1924 [39]. Now the standard reference (and the only available refer-
ence in book form, as far as I can tell) for a complete proof of this equivalence
result is the book [17] by Einar Hille. Hille gives a detailed proof of all the
equivalences, in particular (Theorem 16.4.4 p.284) a proof of the equality of
transfinite diameter and logarithmic capacity by constructing a minimizing
measure. He gets this measure as a limit of point measures supported by the
Fekete points. This is also Corollary 1 (p. 285):

Corollary 1. The equilibrium distribution v(s) of E is the weak limit
of the sequence of point distributions pu,,(S) associated with the zeros
of the Fekete polynomials F,(z; F).

Unfortunately, in the proof it is used that the energy of pu,, is finite (and can
even be given by a simple formula), which is not the case (Point measures are

0This is not very likely.
" One sees that by “completing” the space £ in this norm, one would obtain a
Hilbert space. One verifies with ease that £ itself is not complete.
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not in H~'/2). Thus the standard reference for this basic (and well-known
true) result has a hole that might still be open after more than 40 years!

3 Poincaré and the Double Layer Potential

After Gauss’ work on the first kind integral equation of the single layer poten-
tial, the next major progress came with Carl Neumann’s work on the double
layer potential. Of his numerous publications on the subject of his “Methode
des arithmetischen Mittels”, we cite the book [27] from 1877 which is available
online from the Gallica project of the BNF.

For convex domains, Neumann proves the convergence of the method of
iterations which leads to the solution of the second kind integral equation
by the Neumann series. The tool here is not positivity, but the contraction
property of the integral operator in the maximum norm. Positivity comes in
through the convexity of the domain which means that the measure defined
by the double layer kernel

a0,y = - "W 1)

is a positive measure of total mass 1. The idea that integration against such a
measure should somehow level functions out and make iterations converge to a
constant function seems to have been intuitive to physicists before Neumann.
In a paper from 1856, quoted in its entirety by Neumann in his book (Chapter
6), the physicist Beer used an iterative method for the second kind integral
equation of the normal derivative of the single layer potential (the adjoint
equation to Neumann’s). He formulates

Dabei leuchtet ein, dass I’ — welches innerhalb o zwischen dem
grofiten und kleinsten Werthe liegt, den die Funktion F' auf der Fliche
o selbst annimmt — im Allgemeinen gleichformiger als F verlauft.'?

In a footnote, Neumann remarks that Beer does not offer any proof, and
that the claim is not true, in general, unless the measure mentioned above is
positive, that is, unless the domain is convex.

Neumann’s proof of his result (and as a corollary also of Beer’s result) uses
highly non-trivial geometric and measure-theoretic arguments that constitute
one of the early examples of “hard” analysis in potential theory. As a con-
sequence, subsequent generalizations of his techniques were confined to hard
harmonic analysis, too, see [24] and [25] for overviews.

Neumann’s method of the arithmetic mean became famous, because it
was at the time, besides Schwarz’ alternating method and Poincaré’s bal-
ayage method, the only rigorous way of proving existence for the Dirichlet

2Here it is clear that F’ — which, inside o, lies between the largest and smallest
value that the function F' takes on the surface o itself — behaves in general more
uniformly than F.
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problem and for all the important theorems based on it like the Riemann
mapping theorem. In addition, it looked like it was simpler to apply and more
constructive than the other two methods. But the restrictive assumption of
convexity of the domain was a mathematical challenge, and in 1895 Henri
Poincaré published a paper [29] about Neumann’s method which introduced
a quite different argument for proving the contractivity that did not need
convexity of the domain. The new method was based on positivity and energy
identities.

In this paper, Poincaré presents an astonishing collection of techniques
that were new at the time and that made the paper famous, at least for
some years. Poincaré used this method only in one further work [30], a small
paper on generalizations to elasticity theory which he himself characterizes as
incomplete. But others continued and developed his ideas in various different
directions, in particular Arthur Korn [19, 21, 22, 23], Vladimir Steklov [32,
33, 36, 37, 38] and Stanislaw Zaremba [41, 42, 43]. Korn and Steklov for some
time engaged in a kind of race [34, 20, 35]. Here is a quote from [20] (our
reference numbers):

Dans une note [34] sur la méthode de Neumann et le probléme de
Dirichlet, M. W. Stekloff est arrivé & une démonstration de la méthode
de la moyenne arithmétique de M. Neumann, qui est a peu pres la
méme que celle que j’ai publiée il y a un an dans mon Cours sur
la théorie du potentiel [19]. Ma démonstration, comme celle de M.
Stekloff, a pour base le Mémoire ingénieux [29] de M. Poincaré, et nous
avons éliminé tous les deux de la méme maniere la restriction de M.
Poincaré, que l'existence d’une solution soit préalablement établie.'3

The “fonctions fondamentales” mentioned in the titles of some of these pa-
pers, also called “universelle Funktionen” by Korn, are potentials generated
by eigenfunctions of Neumann’s integral operator or also by its adjoint, some-
times also the eigenfunctions of what is known as Steklov eigenvalue problem,
or eigenfunctions of the Poincaré—Steklov operator.

These papers concentrated on eigenfunction expansions and eigenvalue es-
timates obtained by min-max principles as studied by Poincaré for the case
of the eigenvalue problem for the Laplace operator with Dirichlet boundary
conditions in his earlier important paper [28]. To prove existence of the eigen-
functions, regularity of the boundary had to be assumed, and after works
by Holder and Lyapunov, Holder continuous functions on Lyapunov surfaces
became the standard framework. During the same time, the new powerful
Fredholm method for treating integral equations became widely accepted,

3In a note [34] on Neumann’s method and the Dirichlet problem, Mr W. Stekloff
arrived at a proof of Mr Neumann’s method of the arithmetic mean which is more or
less the same as the one that I have published a year ago in my Course on Potential
Theory [19]. My proof, as the one of Mr Stekloff, is based on the ingenious paper [29]
by Mr Poincaré, and we have both eliminated in the same manner the restriction of
Mr Poincaré that the existence of a solution should be established beforehand.
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and Hilbert published his book on integral equations which had the ambi-
tion to subsume all known results about integral equations. Hilbert and his
group made big jumps forward by introducing the idea of function spaces
and norms and developing the basics of modern functional analysis with the
spectral theory of bounded and in particular compact selfadjoint operators in
Hilbert spaces.

I mention all this well-known history as an explanation for the curious fact
that the basic idea of Poincaré’s paper on Neumann’s method, namely to con-
sider the convergence of the Neumann series in the energy norm, disappeared
pretty much completely from the discussion. His estimates were only used for
estimating the eigenvalues of the boundary integral operators considered as
compact operators acting in spaces of continuous or Holder continuous func-
tions, and this remained the standard for a long time, see for example [25,
Thm 12, p. 144]. One of the main advantages of Poincaré’s method, namely
its easy applicability to other elliptic problems having a positive energy, such
as linear elasticity, remained present, but the other advantage, namely that it
basically only uses Green’s formula and is therefore valid for general Lipschitz
domains, seems to have been forgotten.

Only very recently a similar point of view has been adopted in the paper
by Steinbach and Wendland [31] where the contraction property of Neumann’s
operator in a norm related to the energy norm was proved for the first time
for rather general positive second order elliptic systems on Lipschitz domains.

Poincaré’s own estimates are being revisited and adapted to a modern
standard in the very recent paper [18] which treats the same framework as
Poincaré did, namely two- and three-dimensional potential theory on smooth
domains. The full potential of Poincaré’s main idea which easily generalizes to
other positive elliptic operators and to domains with only Lipschitz continuous
boundary, does not seem to have been exploited in a modern context yet. We
will describe some of this in the next section.

Here is the basic estimate from [29, Chapter 2] in a notation similar to
Poincaré’s own notation: For a bounded domain {2 in R? let W be a function
harmonic in the domain and in the exterior domain 2/ = R?\ §2, vanishing at
infinity. Quantities related to the exterior domain are indicated by a prime.
Let J and J’ denote the interior and exterior Dirichlet integrals of W:

J:/ VWV |2dx ; J’:/ VIV |2dz .
2 Q2

Lemma 1. There is a constant p depending only on the domain such that
(i) If W is a double layer potential, then
J < uJ and J < ud. (2)

(i) If W is a single layer potential, then

J < upJ  andif Wds =0, then J < pd. (3)
on
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Here double and single layer potentials are defined by their jump properties:
Single layer potentials are continuous across the surface 92 and have a jump in
their normal derivatives, whereas double layer potentials have a jump across
the surface, but their normal derivatives from the interior and the exterior
coincide. The difference between single and double layer potentials in the
statement is caused by different behavior of potentials with vanishing Dirichlet
integrals (constants): For double layer potentials, if W is constant in the
interior domain, it is also constant (zero) in the exterior and vice versa, so
that J and J’ both vanish if one of them vanishes. For single layer potentials,
W vanishing in the exterior implies W vanishing in the interior, so that J' = 0
implies J = 0, too, but there exists the non-trivial equilibrium density (Robin
density) which has potential 1 in the interior and non-constant potential in the
exterior, so that J’ can be bounded by .J only on a subspace of codimension
one.

In 1900, Steklov [32, p.224], after stating the above estimate for single
layer potentials, gets quite enthusiastic and writes (his emphasis):

Nous appellerons ce théoreme théoréme fondamental.

Nous verrons dans ce qui va suivre, que la solution de tous les
problémes fondamentaux de la Physique mathématique se ramene a
la démonstration compléte du théoréme fondamental.'*

Writing this in a year when Planck introduced his quantum constant and
Poincaré was already working on the theory of relativity seems, in hind-
sight, slightly exaggerated, but it underlines the importance of these estimates
for potential theory and for related models of classical mathematical physics
like elasticity, heat conduction, acoustics, electrostatics and electrodynamics,
fluid dynamics and so on. Such applications were studied by Steklov, Korn,
Zaremba and others, who also worked on removing some of the hypotheses
Poincaré had to make in order to prove Lemma 1. They proved the lemma
essentially for arbitrary connected Lyapunov (i.e. C1:?) surfaces.

Poincaré proved the lemma under the condition that the domain is dif-
feomorphic to a ball (actually for a simply connected smooth boundary; the
question of the existence of a diffeomorphism to the ball is a first simple case
of the famous Poincaré conjecture), and he used the diffeomorphism to re-
duce the estimates to the case of a ball where he could show them explicitly
by expansion in spherical harmonics.

Nowadays, the lemma is easy to prove even for Lipschitz surfaces by notic-
ing that the H! seminorm of a harmonic function on the interior or exterior
domain is equivalent to both the H'/2 seminorm of its trace and the H /2
norm of its normal derivative on the boundary. This equivalence is seen im-
mediately in one direction from the standard trace theorem (sometimes called

1YWe shall call this theorem the fundamental theorem.. .. We shall see in the fol-
lowing that the solution of all the fundamental problems of Mathematical Physics
can be reduced to a complete proof of the fundamental theorem.
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Gagliardo’s trace theorem in the case of a merely Lipschitz continuous bound-
ary) plus Poincaré’s inequality (the one estimating the L? norm modulo con-
stants by the H! seminorm) and the weak definition of the normal derivative,
and in the other direction from the variational solution of the Dirichlet and
the Neumann problems. But one should keep in mind that without the in-
troduction of the fractional Sobolev space H'/? on the surface, which at first
seems like overkill for proving a statement mentioning only Dirichlet integrals,
one has no way of stating or proving that the trace spaces from the exterior
and from the interior are the same, which is one of the crucial points in this
argument. In fact, one can consider Poincaré’s procedure of using a diffeo-
morphism to the sphere and estimating the coefficients of the expansion in
spherical harmonics as an early definition of the space H'/2, although the idea
of function spaces and norms was not expressed in that paper.

Poincaré uses the estimates in Lemma 1 to prove the contraction property
of Neumann’s operator in the energy norm, and with this the convergence
of Neumann’s series solution for the Dirichlet problem in the same norm. He
then shows trace estimates, first for the boundary L? norm modulo constants
(Chapter 4), and then (Chapter 5) for the L> norm of the double layer oper-
ator applied to the trace on the boundary. The latter estimate uses difficult
geometric constructions, is not yet optimal, and is subsequently generalized by
the above-mentioned authors and others like Lebesgue, Plemelj and Radon,
one famous later observation being that whereas Neumann’s operator is not a
contraction in the L norm when the domain is not convex, the square of the
operator is a contraction, at least when the domain is smooth. In any case,
Poincaré completes the proof of the uniform convergence in the whole space
of Neumann’s series for general smooth domains.

Neumann’s operator, as defined by Neumann himself and in the same way
by Poincaré, is the mapping from the difference of the boundary traces of a
double layer potential to the sum of the traces. If we denote the interior and
exterior traces of the double layer potential W by V and V', respectively,
then Neumann’s operator N maps V — V' to V + V', which corresponds in
our notation of the next section below to

N = 2K .

The problem studied by Poincaré (his equation (1)) is written not as an inte-
gral equation, but as a transmission problem with a parameter A:

V-V =XV+V')+20. (4)
The choice of A = 1 corresponds to the exterior Dirichlet problem, and
A = —1 to the interior Dirichlet problem. Poincaré proves convergence (mod-
ulo constant functions) of the Neumann series solution of (4) for |A| < ﬁi,

where p is the constant from Lemma 1.
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4 Positive Boundary Integral Operators and the
Convergence of Neumann’s Series

In this section we will give a modern expression of Poincaré’s idea that the
estimate (2) of Lemma 1 implies that Neumann’s operator is a contraction.
We start by an abstract observation whose simple proof we leave to the reader.
No tools more advanced than the Cauchy-Schwarz inequality are required for
the proof.

Lemma 2. Let A and B be bounded selfadjoint operators on a Hilbert space
X satisfying A + B = I , where I is the identity operator.

(i) If B — A is a contraction, then A and B are contractions with norms
bounded by (1 + ||B — Al|)/2. The inverse A~' can be represented in two
different ways by convergent Neumann series

A7l = iBf = 2502(3—,4)@. (5)
(=0 (=0

(ii) If A is positive definite and B positive semidefinite:
Ja>0,36>0: Vue X : (Au,u) > allul|®; (Bu,u) > 6llul?,

then B is a contraction with norm ||B|| < 1 — «. If in addition 3 > 0, then
B — A is a contraction with norm ||B — A|| < max{l — 2,1 — 2(3}.

A situation where this lemma can easily be applied is the following:

Lemma 3. Let a and b be symmetric bilinear forms on a vector space Xy. We
assume that a and b are positive semidefinite and that a is non-degenerate:

Vue X+ alu,u)>04fut0; blu,u) >0.
Let X be the Hilbert space completion of Xy with respect to the inner product
(u,v) = a(u,v) + b(u,v)

and let A and B be the operators on X defined by the bilinear forms a and b.
If there exists pu > 0 such that

Yu e Xo + blu,u) < palu,u),

then A and B satisfy the hypothesis of Lemma 2 (ii) with o = H‘lFl'

In particular, B is a contraction with norm ||B| < *.. If, in addition,
ptl

Yu e Xo + alu,u) < pblu,u),

p—1

then B — A is a contraction with norm ||B — A|| < 1
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Note that the Riesz representation theorem implies that the existence of an
estimate b < pa is equivalent to the positive definiteness of a on the Hilbert
space X.

Another remark which is easy to verify is that the non-degeneracy of a
alone is sufficient to show that all eigenvalues of B— A and of B are of absolute
value strictly less than 1. One does not need the estimate b < pa for this, but
one also does not get the contractivity from it. If, however, B — A has a pure
point spectrum, for example if it is compact, then the contractivity follows.
This may provide a partial explanation why Poincaré’s mutual estimates of
the interior and exterior energies were later forgotten: If the Fredholm-Riesz
theory can be applied as is the case for Neumann’s operator on a smooth
surface, then they are not needed. They are then, in fact, a consequence of
the Fredholm alternative: If a is positive semidefinite and non-degenerate and
the corresponding operator A is Fredholm, then a is positive definite.

In the following, we present some applications of these simple estimates. In
all cases, the quadratic forms a and b will correspond to the energy integrals
in the exterior and interior domains, respectively, so that the Hilbert space X
will be endowed with the norm of the total energy. Which concrete boundary
integral operators correspond to the abstract operators A and B can vary,
however, according to how the abstract vector space X is represented by a
concrete function space.

We choose the same general situation as considered in the paper [31] by
Steinbach and Wendland. This covers some of the most important applications
such as potential theory and elasticity theory (basically “every fundamental
problem of mathematical physics” in the sense of Steklov quoted above).

The same ideas for proving the contraction property of second kind bound-
ary integral operators could be applied to higher order strongly elliptic partial
differential operators that have a positive energy form in the framework stud-
ied in [7], or to other situations where positivity of first kind integral operators
has been shown by using Green’s formulas like for parabolic problems in [5]. In
this paper we will stay within the framework of positive second order systems
as in [31]. This will allow an easy comparison in order to see similarities and
differences with the arguments of [31]. Note, however, that while we consider
the same objects as in [31], we will not always use the same letters to denote
them.

Let then L be a second order selfadjoint elliptic partial differential operator
on R™ with smooth, not necessarily constant coefficients about which we will
make a certain number of further hypotheses. First we assume that L has a
real-valued fundamental solution U*(x, y). Given a density ¢ on the boundary
I of the bounded Lipschitz domain {2, the single layer potential S is defined
in the interior domain {2 and in the exterior domain 2¢ = R" \ 2 by

Su(x) = /F U (2, y)b(y) dy . (6)
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Before defining the double layer potential, we need to assume that there exists
a first Green formula

/ (Lu(z))To(z) dz = B(u, v) — / (Tu(z)) To(z) ds(z). M)
Q r

Here T is the conormal derivative, defined by this formula. The energy bilinear
form @ is a first order symmetric integro-differential form which we assume to
be positive in the sense that it is non-negative and elliptic: There are constants
a,c, k with a > 0 such that [®(u,v)| < c||ul| g1 (o) ||v]| a1 (o) and

D(u,u) 20 and  D(u,u) > aof|ullfn o) — kl|ull7zg) - (8)

As a consequence of the Garding inequality (8) and the compact embedding
of the Sobolev space H'(2) into L?({2), the space of functions of vanishing
energy

R =A{u|®(u,u) =0} (9)

is finite-dimensional. For u € R one has also @(u,v) = 0 for all v, which ac-
cording to (7) is the weak formulation of the homogeneous Neumann problem
Lu=0in 2, Tu =0 on I, so that R can also be defined as solution space of
the homogeneous Neumann problem.

For the exterior domain, we also assume the first Green formula

/ (Lu(z)) Tv(z) dz = &°(u, v) + / (Tu(z)) Tv(z)ds(z). (10)
c r

Whereas the previous equations (6)—(9) were assumed to be valid for all
smooth functions — with the idea of extending the domain of validity by con-
tinuity to some larger Hilbert spaces of functions afterwards — in the Green
formula (10) for the exterior domain we have to assume that u and v are, in
addition, of compact support. For such functions, we assume then positivity
of the exterior energy form:

Yu e CP(R™) + P%(u,u) >0 unlessu=0. (11)

The final assumption we have to make is that potentials have finite energy.
This is an assumption on the behavior of the fundamental solution at infinity
which can be phrased as follows: If v and § are multi-indices and x € C*°(R")
is a cut-off function which is zero on a large enough ball and equal to one on
a neighborhood of infinity, then the function u defined by

u(z) = x(2)0] 05U (x,y)

satisfies @°(u, u) < oo.

The assumptions made so far cover some important standard examples:
- The Laplace equation in dimension n > 3 with its standard fundamental so-
lution. Here the conormal derivative T is the exterior normal derivative. The
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space R consists of the constant functions on §2. The condition that potentials
have finite energy excludes the logarithmic potentials in the plane.
- The equations of linear elasticity in dimension n > 3. The conormal deriva-
tive T' corresponds to the normal traction on the boundary, and the space R
consists of the rigid motions.
- The mathematically simplest case is a strictly positive operator such as
— A+ Al with A > 0 in any dimension, or similarly any strongly elliptic con-
stant coefficient operator plus AI with a sufficiently large A. In this case, the
energy form in the interior is positive definite, too, the space R is reduced to
{0}, and the energy forms in both the interior and the exterior domain are
equivalent to the square of the H' norm.

The double layer potential D with density ¢ is given for x € I" by

Do) = /F (T, U (2, 9) T o(y) ds(y) - (12)

It is well known [4] that the definitions (6) and (12) of the single and double
layer potentials can be extended by continuity to densities ¢ € H~1/ 2(I') and
@ € H'Y2(I'), respectively, and that the potentials v = St/ and w = D¢ then
satisfy

Lv=0, Lw=0in QUQN°; ve HL.(R"); we H(N) and w € H.(£2°) .

If we denote the interior and exterior traces by v and v¢ and the interior and
exterior conormal derivatives (both taken with respect to the exterior normal)
by 71 and 7{, then these can also be extended by continuity to the potentials
with this weak regularity, and there hold the jump relations

(Y =7)SY =0 ; (vF —m)SY = —¢; (13)
(Y=7)Dp=¢; (i —1)Dp=0.

The four classical boundary integral operators are then defined as the opera-

tors of

- the single layer potential: V =~S§ = ¢S

- the normal derivative of the single layer potential: K’ = é('Yl +95)S

- the double layer potential: K = %('y +~9)D

- the normal derivative of the double layer potential: W = —v,D = —~{D.
With these definitions, the traces of the single layer and double layer po-

tentials take the form

S =~ S=V ;mS= %I—FK’;'ny:—%I—f—K’; (14)
'le:'ny:—W;’y'D:—éf—i-K;'yCD: éI—i—K.

As mentioned above, this way of defining the boundary integral operator
K of the double layer potential corresponds to Neumann’s and Poincaré’s def-
initions for the case of potential theory. If one defines Ky as the double layer
potential of density ¢ evaluated on the surface I' in the sense of a Cauchy
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principal value integral (which in potential theory is the same as integrat-
ing with respect to the solid angle measure (1)), then it is well known that
Kp(z) = Kop(z) for smooth boundary points x, but for corner points the
two definitions differ. The operator whose contraction property is studied by
Neumann is N = —2K. If N has a norm less than one in some function space,
then the four operators é[ + K and %I 4+ K’ will also have norms less than
one.

We can now begin to apply Lemma 3 to various incarnations of vector
space X and bilinear forms a and b. We will always represent a by the energy
integral ¢ and b by @. According to the Green formulas (7) and (10), we have
for a function u satisfying Lu = 0 in {2 and in 2¢ and any v:

@(U,, U) = <’}/1’u,,’}/1}> ; Qc(ua U) = _<7fu7'ycv> : (15)

Here we write (-, -) for the L? inner product (integral) on I', extended to the
duality product between H~'/2(I") and H'/?(I).

4.1 Single Layer Potentials

The first possibility is to take for the space X, some space of integrable
functions on I', for example the continuous functions, or L?(I"). For ¢, € X,
we define the bilinear forms a and b as energy forms of the corresponding single
layer potentials:

a(p, ) = D°(Sp, S1) 5 b, ) = B(Sep,SY) . (16)

With the boundary reduction by Green’s formula (15) and the expressions
(14) for the traces of the single layer potential, we find the boundary integral
forms

ale ) = (LT~ K)o Vo) ) = (T +K)e V). (17)

For the total energy a + b we find the bilinear form defined by the single
layer potential integral operator which is therefore positive definite (Gauss’
missing theorem); and the Hilbert space X is the completion of our space X
in this energy norm which we know from Nedelec and Planchard [26] to be
the Sobolev space H~'/2(I):

ap,¥) + blp,v) = (p, V) ; X = H~V2(I') with norm ||o[f$, = (. Vi) .
(18)
The operators A and B are defined by (Ap,¥)yv = a(p,v) and (Bp, )y =
b(p, 1), hence

1 1
A= I-K'; B= I+K. (19)

We conclude from our construction that the hypotheses of Lemma 2 are sat-
isfied. In particular, jI & K’ are bounded operators in H~'/2(I'), selfadjoint
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and positive semidefinite with respect to the inner product (¢, )y = (p, Vi)).
As we explained after Lemma 1, the positive definiteness of A or, equivalently,
the Poincaré estimate b < pa is a simple consequence of the identity between
X and H=Y2(I): b(y, ) is the energy integral ®(Sp,Sy), and u = Sy is
the solution of the Dirichlet problem Lu = 0 in {2, uw = V¢ on I', hence

D(Sp,Sp) is bounded by ||V<pHH1/2 (r)- Now V' is continuous from H-Y2(I")

to H'Y/2(I"), so we get an estimate by ||<p||?{_1/2( That this in turn can be

-
estimated by a(y, ¢) is an a-priori estimate for t)he solution of the exterior
Neumann problem which follows from its variational formulation.

In this way we obtain that B is a contraction. If we want to show that A
is a contraction, too, or even stronger that B — A is a contraction, we need
the positive definiteness of B, and this is not satisfied, in general, if the space
R of functions of vanishing energy in {2 is non-trivial. The nullspace of the
form b consists of densities whose single layer potential has vanishing energy
on (2

b(h, ) =0<= SY e R<= Vi €vR.

To make B positive definite, we have to factor this kernel out, which is done
by the definition [31]

Hy V(1) = (o € H™V2(I) | ¥ € kerB : (,4)v =0}
={pe HYXI) |YueR: (p,yu) = 0} (20)

Equivalently, we could have passed to the quotient space H~'/2(I")/yR. In
any case, we then find that B is positive definite, which by Lemma 2 implies
that both B — A and A are contractions. We also note that since A and B
commute, kerB and its orthogonal complement are invariant subspaces of A.
We summarize these results:

Theorem 1. The operators A = éI — K' and B = éI + K' are posi-
tive semidefinite bounded selfadjoint operators on the Hilbert space H ~'/? (I
equipped with the inner product (-,-)y. The operator ;I — K’ is positive defi-
nite, and the operator éI + K’ is a contraction. The Neumann series

(o)
( 0 Z N K')
=0
converges in H—'/2(I") in the operator norm associated with the norm | -|v.

On the subspace H 1/2 (I), the operator éI + K’ is positive definite, and the
operators 1I K’ and B— A = 2K’ are contractions. On this subspace, there
are the convergent Neumann series:
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=0
(L IT+K) = i(;f — K"
£=0
(IT+K) = 2%(—21{’)@
£=0

4.2 Double Layer Potentials

As a second possibility, we now look at double layer potentials. In order to
have finite energy, we have to take a space of more regular functions for our
classical departure space Xy, Holder continuous functions for example. For
v, ¥ € Xp, we now define the bilinear forms a and b as energy forms of the
corresponding double layer potentials:

a(p,p) = (D, DY) 5 b(w,9) = P(Dy, DY) . (21)

With the boundary reduction by Green’s formula (15) and the expressions
(14) for the traces of the double layer potential, we find the boundary integral
forms

alp ) = (We, QT +KW): bled) = (W, ([T KW) . (22)

The total energy a+b is now given by the bilinear form defined by the operator
W of the conormal derivative of the double layer potential. It is easy to see
that the nullspace of W is given by the traces of the zero-energy fields R.
Densities in 7R generate double layer potentials that are identically zero in
the exterior domain (2¢ and belong to R in (2. In order to be able to apply our
program, to get a positive definite bilinear form a and hence Hilbert space X,
we have to factor these densities out from the beginning. Our Hilbert space
is therefore a quotient space

X = HY2(I') /4R with norm [|llZ, = (We, ) (23)

This is the natural dual space of HJI/Q (I') with respect to L2(I") duality. We
know from the variational solution of the Dirichlet problem Lu = 0 in {2 or
02° vu = ¢ or v“u = ¢, that on this space the square of the (quotient) norm
is equivalent to each one of the energy forms @(u,w) and #°(u,w). Thus both
quadratic forms a and b can be mutually estimated, and we get the full result
of Lemmas 3 and 2.

It remains to identify the operators A and B. We have for all ¢, ¢ € X:

(W, (1 + K)6) = (o, Av)w = (Wp, A9)
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and similarly for B. This shows that if 7 : H'/?(I") — X is the canonical
projection on the quotient space, we have

1 1
A:WR(QI—FK); BZWR(QI—K).

In the case of the operator A, we can omit the extra factor mr, because
ker(%] + K) = 4R, and therefore %I + K is well-defined on the quotient space
and commutes with the projector. This remark does not apply in the same
way to the operator B, but since éI — K commutes with éI + K, the kernel
YR of the latter is an invariant subspace of the former, so that é[ — K is also
defined in a natural way on the quotient space. The operator 5[ — K actually
acts as the identity on the subspace ¥R, so that its inverse on the whole space
H'/? (I") can be obtained from the inverse on the quotient space. Altogether,
we can simply write without ambiguity

1 1
A= I+K: B=I-K. (24)

We can now summarize the conclusion of Lemma 2 in this case:

Theorem 2. The operators A = %I—l—K and B = %I—K are positive definite
bounded selfadjoint operators on the quotient space H'/ 2(IN)/yR equipped with
the inner product (-, -)yw . Both operators, as well as the operator B— A = —2K
(Neumann’s operator) are contractions in the corresponding operator norm.
The Neumann series

( i I+ K)
=0

(;I—K)*1 = zi(ﬂ()l
£=0

(;I—i— K)y ' = Z(;I — K)*
=0

(—2K)*

WE

1
(2I+K)—1 =2
L

Il
o

all converge in the operator norm in the quotient space, which corresponds to
convergence in H1/2(I’) modulo the traces vR of the zero-energy fields in (2.
The first Neumann series for the operator (;I — K)~! converges in the whole
Sobolev space H/?(I).

4.3 Single Layer Potentials via Dirichlet Data

The bijectivity of the single layer integral operator V' offers another possible
interpretation of the results of Section 4.1: Instead of representing a single
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layer potential v = S by its density v, one can represent it by its Dirichlet
trace yv = V. Since V : H-Y2(I") — H'/?(I') is bijective, it can be used
to transport the Hilbert space structure on H~'/2(I") which we considered
before to H'/?(I"). From the relation

(@, 0)v = (p, Vi) = (V" Vi, Vi)
we see that if we define the inner product on H'/2(I") by
(u,v)y -1 = (V1 u,0),

then V : H='/2(I') — H'?(I') becomes an isometry. Instead of writing our
whole program once again with a new space X, we can simply transport
all the results of Section 4.1 via this Hilbert space isomorphism. Positivity,
operator norms and convergence of Neumann series are conserved, the only
question that has to be settled is the form of the operators A and B in this
new representation.

The answer to this question is provided by the well-known relation

KV = VK’

which is one of the relations that give the projection property of the Calderén
projector, obtained from the representation of a single layer potential as a
sum of a single layer potential and a double layer potential of its own Cauchy
data.

The operator A = 1T — K’ on H='/2(I') is therefore transported to the
operator VAV ! = V(;I—K’)V’1 = éI—K, and B = éI—i—K’ is transported
to the operator ;I + K. In this way, we can transport all of Theorem 1. In
particular, ;I—l—K is a contraction on H'/2(I") equipped with the norm |||y 1.

For the other results we have to transport the subspace H; 1 2(F ). We find
VHy A (T) = {p € HYA(T) |Yu € R: (¢, qu)y—1 = 0}

On this space, the operator %I — K and Neumann’s operator —2K are con-
tractions.

Thus we get similar results as in Section 4.2, with a different norm on
H?'/2(I"). The results in this form (except for the operator —2K) were first
proved by Steinbach and Wendland in [31].

4.4 Final Remarks

Although our results obtained here from Poincaré’s estimates are largely simi-
lar to the results of Steinbach and Wendland in [31], their method for proving
the contraction property of é[ + K and %I + K’ is different:

The simple idea here was that if two positive numbers add up to 1, then
both of them must be smaller than 1; with Lemma 2 as a transposition of this
idea to the class of selfadjoint operators on a Hilbert space.
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The corresponding simple idea in [31] is that if a number is bigger than

its square, then it must lie between 0 and 1. For operators, this idea can be
stated as follows:

Let A and B be bounded selfadjoint operators on a Hilbert space. If

B = B? + A and A is positive definite, A > al,

then B is a contraction with norm ||B|| < + \/411 - a.
This lemma can be applied to the well-known relations

(;I+K)(;I—K):VW; (;I—kK')(;I—K'):WV

which are a consequence of the symmetry of the energy form @(u, v) between a
double layer potential v and a single layer potential v, or also of the projection

pr
th
('7

CO

operty of the Calderén projector. Since WV is positive semi-definite in
e inner product (-,-)y and VW is positive definite in the inner product
)w and positive semi-definite in the inner product (-, )y -1, the respective
ntraction properties for é[ + K and %I + K’ follow.
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Summary. Averaging techniques for a posteriori error control are established for
differential and integral equations within a unifying setting. The reliability and effi-
ciency of the introduced estimator results from two grids 75 and 7y with different
polynomial degrees for a smooth exact solution. The proofs are based on first order
approximation operators and inverse estimates. For a finer and finer fine mesh 73,
the estimator becomes asymptotically exact. The abstract framework is applicable
to a finite element method for the Laplace equation, boundary element methods for
Symm’s and the hypersingular integral equation or transmission problems.

1 Introduction

The striking simplicity of averaging techniques in a posteriori error control as
well as their amazing accuracy in many numerical examples have made them
an extremely popular tool in scientific computing over the last decade. Given
a discrete stress or flux p;, and a post-processed (smoothened) approximation
App, the a posteriori error estimator reads

na = |lpn — Apn|.

There is not even a need for an equation to compute the estimator 4 and
hence averaging techniques are easily employed everywhere. The most promi-
nent example is occasionally named after Zienkiewicz and Zhu [36], and also
called gradient recovery but preferably called averaging technique in the lit-
erature. The most frequently quoted paper is [36] for the P1 finite element
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method for some Laplace equation on some domain w and some local averag-
ing operator Apj, on the piecewise constant gradients p;, = Duy, followed by
linear interpolation. The estimator n4 = ||pn — App|| is then computed with
respect to the norm || - || on L2(£2).

In the work of Zienkiewicz and Zhu [36], there was no rigorous justification
to interpret n4 as some computable approximation of the (rigorous) exact
error ||p — pp|| with p = Du, but there arose quite some numerical evidence
for that.

The first mathematical justification of the error estimator n4 as a com-
putable approximation of the (unknown) error ||p — py|| involved the con-
cept of superconvergence points. For highly structured meshes and a very
smooth exact solution p, the error ||p — App|| of the post-processed approx-
imation Apj, may be (much) smaller than ||p — py|| of the given pj;. Under
the assumption that ||[p — Apy|| is sufficiently small in relative terms, written
llp — Apn|| = h.o.t = higher-order terms, the triangle inequality immediately
verifies reliability, i.e.,

lp = pull < Cretna + ho.t.,

and efficiency, i.e.,
Na < Cesr Hp —th + h.o.t.,

of the averaging error estimator n4 (even with Cye) = Cegr = 1). However, the
required assumptions on the symmetry of the mesh and the smoothness of
the solution essentially contradict the use of adaptive grid refinement when p
is singular. Moreover, the proper treatment of boundary conditions remains
unclear.

The first mathematical verification by Rodriguez on reliability of n4 on
unstructured grids has been indicated in the literature [6, 25, 26, 27] but was
not mentioned in the (otherwise comprehensive) works [1, 2, 20, 33]. The first
author was unaware of Rodriguez’s result [27] when he started to work on the
mathematical justification [17] that ended in the surprizing and new conclu-
sion that, in fact, all averaging techniques are reliable [4, 5, 7, 8, 9, 10, 11].

A corresponding technique for the boundary element method was initi-
ated with extraction and recovery techniques in [29, 30, 31, 32, 34] and was
proposed thereafter in a small series of works of the two authors [12, 13] and
n [21]. In the latter works, an approximation Apj, is computed as some best
approximation of p, based on a higher-order spline space on some coarser
mesh. For some smooth exact solution, the resulting approximation error is
of higher order. The corresponding error estimator is therefore efficient. Re-
liability follows provided the quotient of the mesh-sizes is sufficiently small.
These two arguments, called approximation assumption (AA) and discrete
property (DP), allow a unified analysis of reliability and efficiency of 74.

This paper links the two discretization methods, namely the finite element
method and the boundary element method, in that there is one abstract set-
ting provided in which an averaging scheme is seen to be reliable and efficient
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without any reference to some saturation assumption or superconvergence.
The paper is roughly organized in two mayor parts: In Section 2-4, we pro-
vide and analyze the analytical setting for our averaging method, while the
remaining Sections 5-8 of the paper discuss concrete applications. Namely, in
Section 2 we state and prove our abstract main result in Theorem 1, which is
commented in Section 3. The essential condition for Theorem 1 is a discrete
property (DP). We stress the difference of (DP) and a saturation assump-
tion and remark on further generalizations of Theorem 1. In Section 4, the
essential condition is studied in detail and characterized as some strengthened
Cauchy inequality of related spaces. Section 5 considers the introduced aver-
aging technique for the finite element method for a model example. Section 6
is an overview of a recent work [12] on averaging for Symm’s integral equation.
In Section 7, we treat the hypersingular integral equation following [13, 21].
Finally, the last application of our abstract analysis concerns the boundary
integral formulation of a transmission problem in Section 8.

2 Abstract Setting

We consider the abstract framework of the Lax-Milgram lemma with a finite
dimensional subspace Sy, of a real Hilbert space H with corresponding norm
I |l Let {-,-) be an elliptic and bounded (but possibly non-symmetric)
bilinear form on H, i.e., there are constants 0 < C; < Cl,q such that

Cen|lull3; < {u,u) and (u,v) < Cpallullxlv]s for all u,v € H. (1)

The (linear) Galerkin projection Gy, : H — S}, is characterized by the Galerkin
orthogonality

(v—Gpv,vp) =0 forallv, €S, and v € H. (2)

An immediate consequence is the quasi-optimal convergence, also known as
Céa’s lemma:

||1} — GhUHH < (de/ceu) UInelg ||U — ’UhHH for all v € H. (3)
hESh

Given an unknown solution v € H for a prescribed right-hand side f = (u,-) €
‘H*, the discrete solution uy, := Gpu is computed. In order to approximate the
energy norm of the (unknown) error

€=U — Up, (4)

we are given a second finite-dimensional subspace Sy of H. Then, the a pos-
teriori error estimator for ||u — wup |3 reads

= min fup = v (5)
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The justification below is based on one approximation assumption (AA) and
some discrete property (DP) of Sp, and Sy where, in applications below, Sy,
corresponds to a lower polynomial degree ansatz but a finer mesh when com-
pared to Sy, and u is smooth. Moreover, as the triangulation 73, corresponding
to Sp, will be a uniform refinement of the triangulation 7z corresponding to
Sy, we assume that S, and Sy are linked through the mesh-sizes h and H:

Opg = min ||ju—wv min ||u —v =o(1), AA

na = min | |2/ min | nll# = o(1) (AA)

q .= max min ”UH - Uh”H < Cell/de~ (DP)
oneSu\{0}vhe€Sh  ||vm|ln

Theorem 1. With the notation from (AA) and under assumption (DP) there
holds
m /(14 6nm) < lellr < Cra(ny + min u—vgllx) (6)
VHESH

with
Crel '= Cpa/(Cen — qCha). (7)

Proof. The lower estimate (efficiency of n,/) is an immediate consequence of
the triangle inequality: For any vy € Sp, there holds

v < lleflw + llu = vallx.
A passage of vy to the minimum in (AA) yields

nu < el + o min flu —vnlln < lefl#(1 + 0nn).
vp €Sh

This establishes efficiency of ny;. To prove the reliability of n, let ey € Sy
be the best approximation of e, i.e.

e—e = min |e—vg|. 8
le = enlle = min fle = vl ®)
By the definition of ¢ in the discrete property (DP), there holds

min |leg —vnllx < qllen|r.

v, €Sp

The Galerkin orthogonality of Gj and the boundedness of the bilinear form
(-,-) followed by the aforementioned estimate lead to

(e,en) = min (e,ep —vn) < qChallellnllen|lr.
v €Sh
Combining this with the ellipticity and boundedness of {-,-), we obtain

Canllel3 < {e,e) = {e,e —en) + (e, en) < Cuallelln(lle — enll + qllen|l+)-
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Now, the stability estimate ||eg||7 < |le|l# proves

C_1C%d
el < !

e—e =C, min |le—wv .
471_‘qC;fC%d|| H”H mlUHESH” H”H

If ug and up g denote the best approximations of u resp. uy, in Sgr, the special
choice of vy = ug — upy and a triangle inequality yield

lelln < Cra(llu —umlls + [[ung — unlln) = Cra( min |[u —vyllx +nm)-
vHESH

This concludes the proof of the reliability. O

3 Comments

Some remarks are in order before a list of applications enlightens the abstract
results of the preceeding chapter.

3.1 Efficiency and Reliability

The discrete property (DP) is not necessary for efficiency of ny,. The relia-
bility depends essentially on the discrete property (DP) in that, up to some
approximation error

h.o.t. ;== min |lu — vg||x,
VHESH

there holds reliability in the sense of
lell# < Crer(nar + heo.t.).

However, this is reasonable only if h.o.t. ~ dpx||e]|% is indeed of higher order.
In fact, there holds

lell# < Crei(nar + Snmrllellr)-

Then, for 5, < C,.}, there holds

el

llelln < Crel/(1 — 0neCrel) M-

3.2 Constants in the Symmetric Case

In the important case that the bilinear form (-,-) is symmetric, it is a scalar

product. The induced norm v := (v, v)'/? is an equivalent Hilbert norm on

H. Moreover, Gy, is the orthogonal projection onto Sy with respect to (-, -).

Then, (3) holds with (Cq/Cen)*/? replacing Chq/Cey, and Gy, is characterized

by the best approximation property |[v —Gpv| = UIIIEHSl lv—ovp]| for all v € H.
h h
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In the symmetric case, one usually states (6) with respect to the energy
norm ||-|7 = ||-||, i-e. Cba = 1 = Cen. Asymptotic exactness of nys then follows
for ¢ — 0 in the sense of Cie; — 1. Moreover, the reliability constant Cye) =
1/(1 — q) from (7) can be improved to Cye = 1/(1 — ¢?)*/? by the following
refined stability estimate: Using the symmetry of orthogonal projections and
the same arguments as in the proof of Theorem 1, we obtain

lexll” = {err e} = (e, en) = min {e,ex —va) < qllefllex].
vp €ESh
This implies the refined stability estimate |eg| < g|e||. Together with the
Pythagoras theorem, there holds

lell® = lle = eall® + leall® < le — eall® + ¢*llel®.

This yields |le|| < [lex|l/(1 — ¢*)'/?, and we obtain the reliability of 75, with
the improved constant Cyep = 1/(1 — ¢%)/2.

3.3 Remarks on the Saturation Assumption

Assumption (DP) is just a definition of §;,y with the possible interpretation
discussed in Section 3.1. A much stronger statement is the saturation assump-
tion of the form

onir = Jlu = Grull/lle]l < Car <1 (SA)

in the symmetric case || - || = || - || etc. of the preceding subsection. Recall
that G g denote the Galerkin projection onto Sg. With ug := Ggu, a triangle
inequality for e = u—upg +uy —uyp, plus (SA) leads to the reliable a posteriori
error estimate

lell < lun —umll/(1 = Csat)

for the different hierarchical estimator |u;, — ug]|. It has been the starting
point of our analysis to avoid a strong assumption on the actual size of d, g
like (SA) because it is hard to check in practise.

3.4 Verification of Assumption (DP)

This subsection outlines the arguments sufficient for (DP) in an abstract (and
non-local) framework. Examples follow in the remaining applications of this
paper. For an appropriate seminorm | - | and the mesh-size parameter H > 0
associated with Sy, an inverse estimate is of the form

|lvr| < cinH  *||vm|y  for all vy € Sp.

The exponent « > 0 depends only on the energy (Sobolev) space, e.g., H = H®
or H = H~“. Moreover, | -| may allow an approximation estimate of the form
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min |vg — vp|ln < capxh®|vg| for all vy € Sy.
VR ESh

The combination of the two estimates yields

- lvr = vnllx
max i
o eSu\{0} vn€Sn  ||vm||H

S Capxcinv(h/H)a-
Hence, for any mesh-size h sufficiently small relative to H, (DP) follows.

3.5 Other Averaging Techniques

Under assumptions (AA)—(DP), we obtain reliable error estimators 74 when-
ever we replace the minimum of the best approximation by an arbitrary op-
erator Ay : H — Sy,

na = llun — Agunlln > min |luy — vglls = nar. )
vHESH

Thus, each averaging technique yields a reliable error estimator [4]. Clearly, the
efficiency of 114 is some further property of the chosen operator Ay . According
to Céa’s lemma (3), the Galerkin projection Ay = Gy always leads to an
efficient and reliable error estimator since

(Cen/Cha) [[v = Gpolln < min [jv—valln < |lv—Gaolln.
vHESH

3.6 Generalizations

Theorem 1 can be generalized in several ways. In the following, we give some
simple examples, for which the analysis from Section 2 also works: (i) For the
Hilbert space H, there holds ey = uyg — upgy for the best approximations
in the proof of Theorem 1. However, the linearity of the best approximation
is not needed, and the argument remains valid in the case that H only is a
reflexive Banach space: There still holds the Lax-Milgram lemma, and the best
approximation problem (8) still allows for a (in general non-unique) solution
epy. Finally, a triangle inequality proves stability ||eg|l% < 2|le|l#. We must
therefore assume 2qu_Hl Cha < 1in (DP) and are led to reliability with Cye =
2Cha/(Cen — 2¢Cha).

(ii) Theorem 1 also holds when we consider weakly non-linear problems.
More precisely, let A : 'H — H* be a uniformly monotone and Lipschitz
continuous operator on the Hilbert space H, i.e. there holds, for all u,v € H,

Cenllu — v||$1 < (Au— Av,u — V)p=xrn and ||Au — Av|x+ < Challu — v||x,

where (-, )= 1 denote the duality brackets. Also in this context, there holds
the Lax-Milgram lemma. The (nonlinear) Galerkin projection G, : H — Sp,
is characterized by the Galerkin orthogonality
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(Av — A(Gpv) ,vp)H=xn =0 for all vy, € Sp, and v € H.

There still holds Céa’s lemma (3), and we prove Theorem 1 with the same
techniques.

(iii) A generalization of our averaging method in the context of the FEM-
BEM coupling and saddle point problems which allow an LBB condition is
slightly more involved and shall therefore appear elsewhere [14].

4 Characterizations of Discrete Property (DP)
in Hilbert Spaces

In this section, let V and W be closed subspaces of the real Hilbert space H
and let V1 denote the orthogonal complement of V,

Vi={reH YWweV (z,v)y =0}
The main focus is on the uniform estimate

min |[|v — w|ly < ¢|lw|jn  for all w € W. (10)
veV

Obviously, there holds ¢ < 1, and we discuss the case of ¢ < 1 in the following.
This plus the optimal constant is characterized in Theorem 2 in terms of

- <vl 7w>H
VvLJ/V = sup sup N
vteVL\{0} weWw\{0} o+ #[lwll2

and
_ o = wlln
qvw = sup min
’ wew\{0} v€V  [Jw|lx

Notice that g¢s, s, is called ¢ in the discrete property (DP) of Section 2.
The estimate vy 1 y < 11is known as strengthened Cauchy inequality between
V4 and W. (In fact 0 < cos(<(VE,W)) := yy1 g < 1 defines the angle
<(V+, W) between the spaces V4 and W.)

The following result, which is essentially taken from [3], states that the
optimal constant in (10) equals ¢ = gy, = Yy and the estimates (ii)-(iv)
are in fact equivalent characterizations of ¢ < 1.

Theorem 2. There holds qv,w = vy w < 1, and for any constant ¢ > 0
with ¢ < 1 the assertions (i), (ii), (iii), (iv) are pairwise equivalent.

(1) ywew =avw <c,

(ii) there holds v/1 — c2 ||Jvt ||y < mingew |[vt — wl|% for all vt € V-,

(iii) there holds /(1 — c2)/2 (|l |ln + |w#) < [[v* 4wl for all (v, w) €
VEix W,

(iv) there holds min,ecy ||v — wl|y < cljw||x for all w € W.
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Proof. The equivalence of yy1 y < ¢ < 1 with (ii) and (iii), respectively, can
be found in [3, Lemma 3.1], where V is substituted by V. The equivalence of
qv,w < c and (iv) is obvious since gy, is, by definition, the optimal constant
in (iv). Thus it only remains to prove the equality vy 1y = qv,w:

Given vt € VJ- v eV, and w € W, there holds

(v w)a = (ot w =) < ot lllw — vl
Since v € V is arbitrary, we obtain

(v whe < oo min o = wl < avlo wls for all w e W,

whence Wwiw < qv,w- To prove the converse inequality, we construct se-
quences vj-- € V\{0} and w; € W such that ||wj|ls = 1 and

Jhm (v wi)a/ |05 1 = qviw-

Without loss of generality we assume gy, 7 0 since gy, = 0 implies V = W
and thus vy 1w = 0 as well. For qy,w > 0, let w; € W be a sequence with

lwjllx =1, lim min |lv —wj|lx =gqv,w >0, and minlv—w;|x > 0.
j—oo veV veV

Let II : 'H — V denote the orthogonal projection onto V and choose
v; := ITw;. Then, there holds

v — wjll# = min v —w;lln,

and fujl = wj — v; satisfies vjl € VH\{0} and

(05 wi)w = (v ,w; —vi)n = lwy —v5l|F, = llw; —vjlllvj |2

Finally, we obtain

<Ul , W >7‘l .
wew > lim T = lim Jwy — vl = quw
imoo oyl oo
This concludes the proof. O

5 Finite Element Method for the Laplace Problem
We consider the following model example on a bounded Lipschitz domain
NCcRY d=2,3,
—Au=f in {2,
u=0 onIpCIN, (11)
Ou/dv=g onl'ny=0NIp.
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We assume that I'p is closed and that the right-hand side f and the given
normal flux g allow for a weak solution

ueH=H,H2) :={uec H (2) : ulr, =0, (12)

of (11). Provided I'p has positive surface measure, the Friedrichs’ inequality
shows that

(u,v)z/ﬂVu~Vvdm (13)

defines the energy scalar product with equivalent norm [|-[|3; := ||| ~ ||| 51 ()
on H. The weak form of (11) allows for a unique solution u € H in the usual
sense

(u,v) :/ fvdx—|—/ gvds, forallveH. (14)
2 I'n

The lowest order conforming FE discretization of (14) uses 7j-piecewise affine
and globally continuous functions: Let 7, be a regular triangulation (in the
sense of Ciarlet) which consists of triangles, for d = 2, and tetrahedra, for
d = 3, respectively. For p € N, let P?(7},) denote the vector space of functions
wyp, € PP(7;,) which are polynomials of total degree < p on each element T' €
Th. Let h € L*°(£2) denote the local mesh-size of 7}, defined by h|r = diam(7T)
for T € Ty,

To apply the averaging technique, let 7y be a regular triangulation of (2
and let 7, be obtained from ¢ € N red-refinements of 7y, i.e., we recursively
refine each element T' € Ty (-times into 4 (resp. 8 in case of d = 3) congruent
elements. In particular, H/h = 2¢. With

S (Th) = {un € PP(T1) NC(2) : up|rp, =0} CH,
set
Sn=8H(Tx) and Sy = S%(Tw). (15)

Finally, we denote by H*(7) the space of all 7-piecewise H*® functions for
s> 0.

Theorem 3. Provided w € H N H*(Ty) for some ¢ > 0 and { large
enough, Assumptions (AA)—~(DP) hold and therefore Theorem 1 applies with
v = llun — Gruall.

Proof. Recall the local inverse estimate
||HwH||L2(Q) < Cinv||vaHL2(Q) for all wy € PI(TH),

where ¢,y > 0 depends only on the shape of the elements in 7y and the
gradient V is evaluated elementwise. In particular, this holds with wg = Voug
for all vy € P?(Ty). Moreover, the Bramble-Hilbert lemma implies
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190 — V(Bav) | z2(2) < capxllh Dol 20

for all continuous v € H'(2) N H?(7,) and P, the nodal interpolation oper-
ator. Together with H/h = 2¢, the combination of both estimates proves

 for vl Z
=  max min <ol 19
T sy mes,  Joul = inv/

Therefore, (DP) is satisfied for ¢ sufficiently large. Note the best approxima-
tion result [u — Gpul| = O(h) and |Ju — Gyu| = O(H'*). Given a fixed
parameter ¢, (AA) follows. O

Remark 1. Since the energy norm is based on the local L?-norm, we can write
1 as a sum of local contributions

12
v = ( Z 77%/[,;‘) with  nar; == ||Vup, — V(GHuh)HLz(Tj). (16)
TJETH

The refinement indicators 7,7,; can be used for an adaptive mesh-refining
strategy.

Remark 2. With ITg the L? projection onto P (7z)?, we define

= min|[Vup =g r2) = [Vun = Ta(V .oqar
e qu%f(nTH)d” un = qullez2) = [Vun = Ta (Vun)l 2. (17)

Since V(Ggup) € PH(Tx)?, there holds u;r < nas. Therefore, juyr is efficient
up to terms of higher order under the assumptions of Theorem 3. The math-
ematical analysis of the reliability of pj; — although supported by numerical
evidence — remains open.

6 Symm’s Integral Equation

In this section, we consider Symm’s integral equation
Vu=f onrl (18)

with a relatively open subset I' C 92 of the boundary 92 of a bounded
Lipschitz domain 2 in R?, d = 2, 3. The operator V is the single-layer potential

Vu(r) = /F (a y)uly) dsy, (19)

where ds denotes the integration on the manifold I', and x(z, y) denotes (up to
a multiplicative constant) the fundamental solution of the Laplace operator,
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1
—ﬂ_log|x—y| for d = 2,
rlzy) =9 B (20)
—1—2 |z — vy for d = 3.
T

The variational formulation of (19) needs Sobolev spaces on the boundary.
First, the space
HY2(00) = {u|oo : uwe H (R}

of traces of H' functions associated with the trace norm
lull gr1/2002) = E{[[@] g ey = @ € H'(R?) with @l = u},
Moreover, we consider the subspace
HY2(I) = {u|p : ue HY?(80)},

where the norm of u € H/?(I") is defined as the minimal norm of any exten-
sion, i.e.

lull gz ry = nf{[|@ll gr/200) = @€ H1/2(8!2) with @|p = u}.
Furthermore, there are Sobolev spaces
H'Y(I') = {u e H'?(8R) : supp(u) C I'}

associated with the usual H'/2(I") norm. Finally, the corresponding spaces of
negative order are defined by duality with respect to the extended L? scalar
product,

H-Y2(I') = HY*(I')* and H~Y*(I') = HY>(I")*.

Remark 3. There are other equivalent definitions of the involved Sobolev
spaces, e.g., by real oder complex interpolation, a Fourier norm, or Sobolev-
Slobodeckij norms [35, 24].

For a particular right-hand side f in (18) and I" = 9f2, Symm’s inte-
gral equation is an equivalent formulation of the Laplace problem (11) with
I'p = 092, cf. [24]. For d = 3 and provided additionally diam({2) < 1 for
d = 2, the operator

V:H (I — HY*(I) (21)

is an isomorphism between the two Hilbert spaces H~/2(I") and H'Y2(I")
which build a dual pairing with respect to the extended L? scalar product
(+,+). The energy scalar product

(u,v) := (Vu,v) foru,v e H- V(I (22)

induces an equivalent norm || - || := || - || on H = ﬁ_l/Q(F),
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Let Ty, = {I1,...,I,} be a regular triangulation of I" with local mesh-size
h € L*(I"), h|r; = diam(I;). Each element I'; of 7} is supposed to be a
connected (affine) boundary piece for d = 2 and a (flat) triangle for d = 3,
respectively.

For an integer p > 0, PP(7,) denotes the space of all piecewise poly-
nomials of degree < p (defined on reference elements 2P = [0,1] and
Fef3 = conv{(0,0),(0,1),(1,0)} and I ef4 = conv{(0,0), (0,1),(1,0),(1,1)}
for d = 2,3, respectively).

For the averaging error estimation, we consider again the lowest order case:
Let 7y be a regular triangulation of I" and obtain 7}, by ¢ € N red-refinements
of Ty. Adopt the aforegoing notations for 7y and 75 accordingly and define
the discrete spaces

Sn=P%7,) and Sy =P (Tw). (23)
Theorem 4. Provided u € H N H(Ty) for some ¢ > 0 and ¢ large
enough, Assumptions (AA)—~(DP) hold and therefore Theorem 1 applies with
v = [lun — Grunl.

Proof. Local inverse estimates for fractional order Sobolev spaces [19, 22] read

[H  vp || p2ry < P H g || - a(ry forallvg € PP(Ty) and k € R,
(24)

The constant cmV > 0 depends only on the shape of the elements in 7y, the
polynomial degree p € Ny, and the parameter o > 0. Since H (I) is a closed
subspace of H%(I'), the corresponding dual spaces H=*(I') = H*(I')* and
H~(I') = Ho(I)* satisty H-°(T) € H(I)* with vl (ry < [oll 7o .
Therefore, we may apply (24) for the energy norm || - || ~ || - ||HQ(F) This leads
to

1Y 2onllzcry < e lomll - for all vy € PP(Th). (25)
ote that, for a closed boundary = , there holds = H
N hat, f losed bound r 082, th holds H*(I" H*(I

with equal norms.) Moreover, with the L2-projection I} onto PP(T3,), there
holds [12]

v —II}v|| 5. ) < car’)’}’( |h®v|p2(py  for all v e L*(I). (26)
Here, Caf)]f( > (0 depends only on the shape of the elements in 7}, the polynomial
degree p € Ny, and a > 0. Together with H/h = 2, the combination of (25)

and (26), for a =1/2and |- || ~ || - || 7-1/2(f), Proves

- Nlve = vnll h,0 H1jo—t/2
— < 2
v Er{lSH}i{O} Uflnelgh, "lUH "l wpx inv /

This proves (DP) for ¢ sufficiently large. Assumption (AA) follows from best
approximation results [|u—Gpul| = O(h%/?), |u—G gul] = O(H?/?*¢), cf. [28].
U
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In contrast to the FE method from the previous section with H™ norms,
the energy norm || - || ~ || - HFI*”?(F) is non-local, i.e., it cannot be written as
a sum over non-interacting local contributions. The following theorem asserts
the equivalence of the energy norm based error estimator 75, and the weighted
L? norm based error estimator

pnr = || HY? (up, — Grun)|| L2 (r)- (27)
This leads to the equivalent error estimators
N = lun — Myup| and  pgr := ||H1/2(uh - H}_I’U,h)”L2([’), (28)

where IT}, denotes the L? projection onto P1(7p). Under the assumptions of
Theorem 4, s, g7, and 1y are reliable and efficient in the following sense.

Theorem 5. There are constants C1,Co > 0 which only depend on the shape
of the elements in Tg and the quotient H/h = 2° such that

v <np <Crpg and  pp < py < Canpg. (29)

Proof. The estimate np; < ny follows from the best approximation property
of Gy and was already mentioned in the introduction. Since we consider
globally discontinuous polynomials, IT3 is also 7y-elementwise orthogonal.
Hence,

lun — O iunll 2y < llun — Grunllrery)-

This proves g < ppr. According to the mesh generation of 7j, from 7, there
holds uy, — Grup € PL(T3). An inverse estimate (25) yields

W2 (un = Grun)llz2(ry < cuglun — Grunl|

and, therefore, with H/h = 2°, that
piar = 292 |WM2 (up — Grun)| 2oy < 292 o

To prove ng < cgj’iun, define v = uy, — H}{uh € L3(I'). With 11 the identity
on L*(I'), the operator (1l — IT#) is a projection, whence v = (1l — IT};)v. An
application of (26) proves
H, 1/2 _
i = llol = (1 = i)l < clpelHY 0l 2y = prr. O
Remark 4. For an adaptive mesh-refining algorithm, one may localize the error
estimators pps and py7, respectively, to obtain refinement indicators, e.g.

2 1/2 . 1/2 1
o= (2 why) with g = 1Y, Tun) o). (30)
I;eTy
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The computation of the error estimators 7y, s, and 777 needs the computa-
tion of dense matrices which stem from the Galerkin projection G g (explicitly
or implicitly for the computation of the energy norm). Matrix compression
techniques, e.g., hierarchical matrices or panel clustering provide an effective
implementation. The error estimator pj; avoids the computation of Gy and
can be computed in linear complexity with respect to the number N of ele-
ments.

7 Hypersingular Integral Equation
With the notation from Section 6, we consider the hypersingular integral
equation

Wu=f onl (31)

and the hypersingular integral operator

Wae) = =0 [ o sayut)ds,, (32)

where v, and v, denote the outer normal vectors on I" at x and y, respec-
tively. For particular right-hand sides and I' = 02, the hypersingular integral
equation (31) is equivalent to the Laplace problem (11) with pure Neumann
boundary condition I'y = 042.

For an open boundary piece I’ ; 042, the operator

W HY*(I') — H™Y2(I)

is an isomorphism. For a closed boundary I" = 942, one has to consider the
factor spaces Hy'(I') = H*/R(I") = {u € H*(I') : [puds = 0} to neglect
constant functions. Then,

W Hy* (1) — Hy V2(I)
is isomorphic. In both cases, W maps the energy space H = H/2(I) resp.
H= Hé/z(F) onto its dual, and
(u,v) .= (Wu,v) foru,ve™ (33)

defines a scalar product with equivalent norm || - ||% := || - || on H. The
discretization is based on subspaces of SP(7p,) := PP(7;,) NC(I") for a regular
triangulation 7, of I" and
Sp(T): {UhESp(’];L) : vh|8F:0} 1fFC8(Z,
0% ~h {vn € SP(T3) : [pvnds =0} if I = 90.
With respect to the abstract setting in Section 2, let 7y be a shape-regular
triangulation of I" and 7}, obtained from 7x by ¢ € N red-refinements and set

Sn=385(7;) and Sy =S3(TxH). (34)
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Theorem 6. Provided w € H N H*(Ty) for some ¢ > 0 and { large
enough, Assumptions (AA)—~(DP) hold and therefore Theorem 1 applies with
v = llun — Grual.

Proof. Note that there holds the local inverse estimate [13]
HHl_aVUHHL2(p) < Cﬁ;pHUHHHa(p) for all vy € Sp(TH), (35)

where V denotes the arc-length derivative V for d = 2 and the surface gradient
for d = 3, respectively. The constant cﬁ;p > 0 depends only on the shape of
the elements in 7, the polynomial degree p € N, and the parameter a > 0.
In [21] it is proven that the Galerkin projection G} onto Sf(7}) satisfies, for
allv e HNHY(I),

Jo = GEol < g min {|AY2V 0] oy, |RY2V (0 = G oy} (36)

apx

The constant ¢/~? > 0 depends only on the shape of the elements in 7. As

apx

before, Assumption (DP) is satisfied, provided ¢ is large enough,

. |||’UH - ’Uh||| hi H2 002
< bl e 2[R e
vH Ergi\{()} v, Elg,L |||UH ||| = CapxCiny /

Assumption (AA) follows from best approximation results |[u — Gpul =
O(h*?) and |Ju — Gyul] = O(H?/>t) [28]. O

As for Symm’s integral equation, the energy norm || - || for the hyper-
singular equation is non-local and has to be localized. This can be done by
H'/2_weighted H'-seminorms. The following theorem states the efficiency and
reliability of the error estimator

Hn = ||H1/2V(uh - GHuh)HL?(F) (37)
under the assumptions of Theorem 6.

Theorem 7. There are constants C's, Cy > 0 which only depend on the shape
of the elements in Tg and the quotient H/h = 2° such that

O3 par < mar < Cy g (38)
Proof. The follows from an inverse estimate with constant C3 = cihn’f ¢Y/2 and
the approximation result (36) with Cy = ¢L2. O

The computation of pps involves the dense stiffness matrix corresponding
to the Galerkin projection G . To avoid this numerical effort, one can consider
the estimator

it = [ HY2(Vun — Th(Fun) 2y (39)

with the L? projection I}, onto P1(Ty), which is efficient under the assump-
tions of Theorem 6.
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Corollary 1. There holds g < pas-

Remark 5. The reliability of ur, which is observed numerically [13, 21], re-
mains open — as for the finite element method in Section 5.

Another computationally challenging variant might be to consider the H}
projection Py : HN HY(I') — Sp, i.e. the gradient L? projection defined by
/ V(u—Pgu)-Vog =0 forall vy € Sp. (40)

r

The numerical realization only involves the sparse stiffness matrix from the
P! finite element method.

e o= llun — Pgupll and  pp = |[HY?V (up — Prunlrzry  (41)

Clearly, nas < np, and therefore np is reliable under the assumptions of The-
orem 6. The analysis for fractional order Sobolev spaces H*(I") and « > 0 is
more involved than for o < 0, i.e. for Symm’s integral equation: For quasi-
uniform meshes, there holds up < C uas since

IV (un — Prun)ll2ry < IV (un — Grun)llz2(r)-

An estimate of the type pup < C pps remains open for adaptively generated
meshes. For d = 2, it is proven that np and pp are equivalent [13].

Theorem 8. For d = 2, there are constants Cs,Cg > 0 such that
Ot < mp < Cg pp. (42)

Proof. The lower estimate follows as in Theorem 7. We recall from [13] that
the H} projection P} onto S¥(75) satisfies, for all v € H N H(I),

o — P2of| < P min { A2V 0| p2(ry, |BY/2V (0 — PR0) |22y} (43)

apx

The constant ¢4 only depends on p and the local mesh-ratio

o(7y,) := max{h;/hy : I}, I € Tp, s.t. I; is a neighbour of I'y}. (44)

From (43), we obtain the upper estimate with Cs = ¢L2. O

Remark 6. If Ag denotes the L? projection onto S3(7z), define
na = lun — Agup|| and  pa = ||HV?V (up — Agun)llz2r)-

Then, 74 is reliable, and one can prove that n4 and pa are equivalent. Un-
fortunately, the L? projection Ay onto S3(7y) is, in general, not H' stable.
Thus, one does neither analytically obtain nor numerically observe efficiency
of na and pa, cf. [13].
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8 Integral Equation for a Transmission Problem

This section is devoted to a transmission problem which involves the integral
operators of Section 6 and 7, from where notation is adopted. Given (f,g) €
H'Y2(I') x H-Y2(I") along the boundary I" = 9f2 of a bounded Lipschitz
domain 2 ¢ R? the strong form of the transmission problem reads: Find
u™ € H'(2) and u™ € H}, (£2) with

Loc
Au” =0in 2, Aut =0in R\ (45)
with some radiation condition on u™ at infinity and

ou~  Out
- _— 1 _
uT =u" + f, o = oy +g onlI. (46)

This is equivalently formulated by the boundary integral equation [18]

uy (1 n . 1/2 ~1/2
A<¢)—(2+A)<g) in H © HY2(I') x H-Y2(I) (47)
with the Calderén projector (in symbolic form)
KV
A= ( w K’)' 48)

The operator V is defined in (19), and W is defined in (32) with kernel x(x, y)
from (20). Moreover, K denotes the double layer potential operator and K’
its adjoint defined by

KBV = YA, Kot) = [ o) 82 (w9 dsy, (19)
K': HV2(T) — B-Y2(D), 0= [ o)y wleds,. (50)

Duality is understood with respect to the extended L? scalar product,
() ()= tw0r 4 0.0) (51)

for (u, ), (v,v) € H := Hy/*(I') x Hy */*(I).

The transmission problem (45)—(46) and the boundary integral formula-
tion (47) are equivalent in the following sense [18, 16]: If (u~,u™) € H(£2) x
H} (RY\$2) solves the transmission problem, then (u,¢) € H solves (47),
where u == u”|p — [u"ds € Hé/Q(F) and ¢ := du™ /Ov|r € HJI/Q(F).
Conversely, if (u,¢) € H solves (47), then the Cauchy data of u~ are given
by (u™,0u™/Ov)|r = (u + ug, ¢) with

I (5 ( f—3Vg+Ve—Ku)ds

R.
J-1ds €

U =
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The solution (u~,u™) is then obtained from the representation formulae in 2
and R\ 2.

The mapping properties of the involved boundary operators [24] shows
that A : H — 'H is continuous and H-elliptic with respect to the canonical
norm || (v, ¥)[13, := [|v]|3, /ey T 113, - 12y I fact, elementary calculations

show that the (non-symmetric) bilinear form

(.9, (0 0)) = (A( ) () (52)

induces an equivalent norm || - || which satisfies

I, I = 1617 + ulliy = Cenll(u, )17, for all (u, ¢) € H (53)

with the energy norms || - ||y and || - ||w from Section 6 and 7, respectively.
Note that || - || is indeed a Hilbert norm, but (-,-) is not the corresponding
scalar product! Let 7y be a shape-regular triangulation of I" and let 7, be
obtained from 7y by ¢ € N red-refinements. Set

PE(T) :={vy € PP(T) : / vp ds = 0},
r
set
Sn=83(T) x PY(T) and Sy = S3(Tw) x Po(Th).

Theorem 9. Provided (u,¢) € H N (H*™(Ty) x H'*(Ty)) for some e >0
and ¢ large enough, Assumptions (AA) and (DP) hold and therefore Theorem 1

applies with ny = min_ |[(un, én) — (ve, om)ll-
(veYH)ESH

Proof. Assumption (AA) follows from the regularity of (u,¢). The inverse
estimates (25) and (35) lead to

[HY2(NVom, )l e2cry < e N wm, vr)]l - for all (vg, ér) € Sp.
Since the L2-projection II{ : L?(I") — P°(T},) preserves the vanishing integral
mean (i.e., I}y € P§(T,) provided [, ¢g ds = 0), (26) and (36) yield

Ilvm, ) — (G} v, i)l < OB (Vow, )l L2 (ry.

where G}V : Hé/z(l“) — S3(71,) denotes the Galerkin projection with respect
to W from Section 7. The combination of the previous two inequalities results
in

I(ve, ¥r) = (vn, ¥n)ll < (M10H2, 1/24/2

= ma mi
(vr 1) €SE\{O} (vn,tn) ESH (e, el = Capx Cinv
This implies (DP) for sufficiently large £. |

Remark 7. For an adaptive mesh-refinement, the non-local energy norm is
localized via the localization arguments from the previous sections; further
details are straightforward and hence omitted.
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9 Numerical Experiments

This section provides some numerical experiments for the proposed error es-
timation. We only consider the symmetric case, where (-,-) defines a scalar
product and give the numerical results with respect to the energy norm, cf.
Section 3.1-3.2. Throughout, we compare uniform mesh-refinement with an
adaptive mesh-refinement, which is based on the local contributions of our
averaging error estimators as refinement indicators.

9.1 Adaptive Mesh-Refinement

The mesh-refinement strategy is formulated in the following adaptive algo-
rithm from [12], which is stated for the finite element method from Section 5.

Algorithm 1 Choose a regular initial coarse mesh TP(IO), k=0,¢¢€N and
0<H<1.

(i) Obtain Th(k) ={Ty,...,T,,} from ’]}(Ik) ={m,...,78} by € uniform refine-
ments.

(ii) Compute the approxzimation ugk) for the current mesh ’Th(k),

(iii)Compute the error estimator nyr and the corresponding refinement indi-
cators nar,; from (16).

(iv)Mark element 7; for red-refinement provided the corresponding refinement
indicator satisfies nar; > @ max{nar1,..., MmN}

(v) Use a red-green-blue mesh-refinement strateqy to obtain a regular coarse

mesh Tlgkﬂ), update k, and go to (i).

Note that we do the adaptive mesh-refinement on the coarse grid level to
obtain a sequence of meshes Tb({k). Surprisingly, our numerical experiments
give empirical evidence that one may choose ¢ = 1 in Algorithm 1. That is,

)

the corresponding fine mesh 7;L(k , on which we compute our discrete solution

up, is obtained by one uniform refinement of Tlgk). We remark that the choice
of # = 0 leads to uniform mesh-refinement. To obtain an adaptive mesh-
refinement, we choose # = 0.5 in the subsequent experiments.

In the formulation of Algorithm 1, we consider the local contributions
nm,; of nar as refinement indicators. Alternatively, one may choose the local
contributions of the (efficient) error estimator p7 from (17),

/Ln,j = qe%lli?rj) HVuh — (I||L2(7—j) = ||Vuh — HH(VUh)||L2(7—j)~ (54)

9.2 Visualization of Numerical Results

In all experiments we plot the Galerkin error |u—up,]|| and the error estimators
Ny and pyy against the number n = #7; of fine grid elements for uniform
(# = 0) and adaptive (6 = 0.5) mesh-refinement, respectively. Throughout,
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we choose the parameter / = 1 in Algorithm 1. The error is computed by use
of the Galerkin orthogonality

lu = unll® = flul® = llun]®. (55)

The squared energy norm of the discrete solution uj reads |Jusf|?> = x - Ax
with the stiffness matrix A and the coefficient vector x corresponding to up,.
The norm |Juf|? can, in principle, be computed exactly. However, we use the
value [|uf|?> which is obtained by Aitkin’s AZ-extrapolation as follows: For

a sequence ’Th(k) of uniformly refined meshes, we compute the sequence of

)|||2, where uglk) is the discrete solution corresponding to

energies Ej, = |||u§bk
the triangulation Th(k). Extrapolation of the sequence Ej then yields a good
approximation of [Ju|?.

From our analysis in Section 2 and Section 5, respectively, we know that

ny and pgy are efficient, i.e. there holds

pir <y < Cegllu — ual|

with efficiency constant Cog < 1 4 0,y and the approximation constant
e = |lu — Gru|/|lu — up| from Assumption (AA). Provided dpm stays
bounded, we therefore expect that the curves corresponding to 1y and
have at least the same slope as the curve corresponding to ||u — uy||. For
smooth u, 6,y tends to zero with h. Therefore, the experimental efficiency
constant Cog := nar/|lu — up|| < 1 — 0pp is expected to satisfy Cog < 1 at
least for the limit case for a finer and finer mesh-size h. Therefore, the absolute
values and hence the curves of the error estimators should be below the curve
of the error. Provided 7y, is also reliable, i.e. |Ju —up|| < Crenas, the quotient
Il — wnll/nas is bounded. In this case, the slopes of the curves corresponding
to |lu — up|| and nas are the same, i.e. the curves are parallel.

To study the efficiency and reliability of 7y even in the case that
the solution u is non-smooth, we plot the experimental reliability constant
Crel := |lu — un||/mar and the approximation constant dpr in dependence on
the number n = #7}, of fine grid elements. The Galerkin error ||u — G gul| for
the higher-order method is computed as in (55).

9.3 Finite Element Method with Smooth Solution

For our first numerical experiment, we adopt the notation from Section 5. We
consider the Dirichlet problem (11) on the unit square 2 = (0,1)? C R? with
I'p =982 and

f(z) = (K*7?/2) sin(z1kn/2) sin(zokm/2).
The exact solution is then given by

u(z) = sin(z1kr/2) sin(zakm/2),
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Fig. 1. Error |u — un| and error estimators s and w7 in Example 9.3 in depen-
dence on the number of fine grid elements n = #7;,. We observe optimal order of
convergence O(n~/?) for error and error estimators and independent of uniform
(indicated by wnif.) and adaptive mesh-refinement (indicated by ad.). The values of
the error estimators 7y and pr coincide up to rounding errors. The error estimation
is reliable and efficient.

and therefore u satisfies the smoothness assumptions of Theorem 3. Accor-
ding to the Bramble-Hilbert lemma, we expect that uniform mesh-refinement
leads to the optimal order of convergence O(h) for the error |ju — ||, which
is computed by (55). Aitkin’s A2-extrapolation yields ||ul|? = 44.4132.

In Fig. 1 we plot the error |[u — up|| as well as the estimators nas and pup7.
Note that the optimal order of convergence O(h) for Pl-elements corresponds
to O(n~'/?) in terms of elements n = #7;,. Both, uniform and adaptive mesh-
refinement, lead to the optimal order of convergence for the error. Moreover,
we observe that ny; and pj; coincide and that both are efficient and reli-
able. We stress the reliability of 1y, which is analytically only predicted for
sufficiently large ¢ € N, whereas we use the minimal possible choice ¢ = 1.
Moreover, note that we have only proven p < nps. In our experiment, there
holds even 7 = np up to rounding errors.

In Fig. 2 we plot the approximation quotient §pz. From standard ap-
proximation results and h ~ H for the local mesh-sizes, we know that the
nominator converges like O(h?), whereas the denominator is O(h), i.e. we ex-
pect 0,y = O(h). This is what is observed experimentally in Fig. 2. Moreover,
we plot the experimental reliability constant Cye := ||u—up||/nar. We observe
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Fig. 2. Quotient dpuy = |u — Grul/|u — us| in approximation assumption (AA)
and experimental reliability constant Crer := |Ju — un|/na for Example 9.3. For

both, uniform (indicated by unif.) and adaptive mesh-refinement (indicated by ad.),
Onp tends to zero with the theoretically expected order O(nil/Q) with n = #7,,.
The experimental reliability constant Cie is slowly decreasing with absolute values
~ 1.13 at the end of the computations (n = 32768 resp. n = 24016)

that it is slowly decreasing with absolute values about 1.13 at the end of our
computations.

9.4 Finite Element Method with Weakly Singular Solution

For our second example, we again adopt the notation from Section 5 and
consider the Dirichlet problem (11) on the L-shaped domain 2 = [—1,0]* U
[—1,0] x [0,1] U [0,1]? with I'p = 92, cf. Fig. 3 which also shows the initial
coarse mesh 7, b({o). The right-hand side is constant f(z) = 1. The solution
u(z) is known to be a bubble u € H'*?/37¢(0), for all ¢ > 0, with sin-
gularity at the reentrant corner (0,0). Therefore, uniform mesh-refinement is
expected to lead to a suboptimal (experimental) convergence rate for the error
llu — un|| = O(R?/3) which can usually be cured by adaptive mesh-refinement.

In Fig. 4 we plot the error |lu — up| and the error estimators 7y,
and 7, where the error is computed by (55) with the extrapolated value
llul> = 0.214076. As in Example 9.3, we observe that for both, uniform and
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Fig. 3. In Example 9.4, we consider the L-shaped domain 2 = [~1,0]* U [~1,0] x
[0,1] U [0, 1]2. The initial coarse mesh 7, f(lo) consists of N = 6 rectangular triangles.

adaptive mesh-refinement, the error estimators 7y, and pj coincide up to
rounding errors. Independent of the mesh-refining strategy, the error esti-
mators are reliable and efficient. For uniform mesh-refinement, we observe
a suboptimal order of convergence O(n~2/%) which corresponds to O(h*/?).
This is slightly better than the expected order of O(hz/ 3). For adaptive mesh-
refinement, we retain the optimal order of convergence O(n~'/?) after a pre-
asymptotic phase (up to about n = 900 elements), where we observe the same
order of convergence as for the uniform refinement.

In Fig. 5 we plot the approximation quotient dpy and the experimental
reliability constant Crel := ||u — up||/na. For uniform mesh-refinement, the
corner singularity of © dominates the convergence behavior so that we observe
ong = O(1). For adaptive mesh-refinement, however, we obtain the optimal
order 5 = O(n~'/2). The experimental reliability constant Cye is slowly
decreasing in case of adaptive mesh-refinement with absolute value about
1.15 at the end of our computation (n = 43040). In contrast, for uniform
mesh-refinement, Ci is slowly increasing and is about 1.39 at the end of our
computation (n = 24565).

9.5 Symm’s Integral Equation
Finally, we consider the integral formulation of the Poisson problem
AU =0in 2 and U =gon I =91, (56)
which is formulated as Symm’s integral equation [24]
Vu = (K +1)g, (57)

where V' is the single-layer and K is the double-layer potential from (19)
and (49), respectively. Then, the exact solution of (57) is just the normal
derivative u = U /dn of the solution U from (56) on the boundary I'.
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Fig. 4. Error |u — up| and error estimators nas and pr in Example 9.4 in depen-
dence on the number of fine grid elements n = #7},. For uniform mesh-refinement
[indicated by wnif.], we observe a suboptimal order of convergence O(niQ/ 5) for
error and error estimators. This is cured by our adaptive mesh-refining strategy [in-
dicated by ad.], which leads to optimal order of convergence O(n~'/?). The values
of the error estimators nas and pyr coincide up to rounding errors. Independent of
the mesh-refinement, the error estimation is reliable and efficient.

We adopt the notation from Section 6. The presented numerical results
are taken from [12]: We consider a rotated L-shaped domain shown in Fig. 6.
The Dirichlet data are chosen such that the exact solution U € H*(£2) of (56)
reads

U(z) = r2/3 cos(2¢/3)  in polar coordinates z = 7 (cos g, sin ¢).

Then, the exact solution u € H~'/2(I") of Symm’s integral equation (57) is
given by

2

u(@) = 4 (wlp) -n(z)) ot (58)
with
[ cos(ip) cos(2¢/3) + sin(p) sin(2¢/3)
wle) := (sin(gp) cos(2¢/3) — cos(y) sin(2gp/3)> ’ (59)

Fig. 6 shows the initial coarse mesh TIE,O) as well as the exact solution u
from (58) plotted against the arclength of I'. The singularity of u at (0,0)
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Fig. 5. Quotient dpu = |Ju — Gru|/|u — us| in approximation assumption (AA)
and experimental reliability constant Crei := [Ju —us | /nas for Example 9.4. For uni-

form mesh-refinement [indicated by unif.], the corner singularity of u dominates the
convergence behavior so that we observe d,g = O(1). For adaptive mesh-refinement
[indicated by ad.], we observe optimal convergence of dnr = O(n~/?). The ex-
perimental reliability constant Ce is slowly decreasing in case of adaptive mesh-
refinement with absolute value = 1.15 at the end of the computation (n = 43040).
However, for uniform mesh-refinement, C.. is slowly increasing with absolute value
~ 1.39 at the end of the computation (n = 24576).

is visible at arc-length parameter s = 0 and s = 2 by periodicity. Aitkin’s
AZ-method gives [Juf|? = 0.404116.

We consider uniform (f = 0) and adaptive mesh-refinement (¢ = 1/2),
where we use the local contributions of the error estimator pz from (30) as
refinement indicators in Algorithm 1. Again, we restrict to the minimal choice
{ =1 to obtain 7, from 7g.

Fig. 7 shows the numerical results on the convergence of the error ||u—up||
and of the error estimators nas = ||up, —Grup| and par, nir and ppr from (27)—
(28), respectively. We plot the error and the error estimators in dependence
on the number of fine grid elements n = #7,. Note that an experimental
convergence rate O(h") now corresponds to O(n~ ") in terms of fine grid
elements, since we are dealing with a 1D discretization.

Uniform mesh-refinement leads to a suboptimal order of convergence
O(h?/?) which is due to the singularity of the exact solution at the reentrant
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Fig. 6. In Example 9.5, we consider a rotated L-shaped domain (2 (left). Further-
more, the plot shows the initial coarse mesh 7, ,;O) with NV = 8 elements and uniform
mesh size H = 1/4. The exact solution u from (58) is plotted over the arc-length
s=0,...,2 (right), where s = 0 and s = 2 correspond to the reentrant corner (0, 0),
where wu is singular.

corner and which can be predicted theoretically. The fact that the slope of the
corresponding error estimators even is 2/3 gives empirical evidence that the
estimators are reliable and efficient although the solution lacks the regularity
assumed in Section 6. The proposed adaptive algorithm cures that shortcom-
ing in the sense that it leads to the optimal order of convergence O(n_3/2)
for the error, where we used the local contributions of pj7 as refinement in-
dicators. Due to numerical instabilities in the computation of the matrices
corresponding to Gy, we can only present the results for pys, nys and n up
to about n = 300 elements in the case of adaptive mesh-refinement. This cor-
responds to an error about 10~7/2 for the higher order method. The explicit
values of nys and ny; as well as the explicit values of s and pyr coincide
up to 2% so that there is no difference visible in the corresponding curves.
Moreover, all four estimators show numerical evidence for efficiency and relia-
bility. The computation of p 7 is stable as it only involves the computation of
some L?-mass matrices, and the condition numbers of which are O(1) under
some mild restrictions on the triangulation. The p 7 steered mesh-refinement
retains the optimal order of convergence O(n=3/2).

10 Conclusions

In this paper we provided an abstract analytical setting for the study of the
reliability and efficiency of a posteriori averaging error estimators. The ab-
stract setting applies to the Galerkin method for both, differential and inte-
gral equations, under weak assumptions on the finite elements or boundary
elements used. The strongest assumption is a (piecewise) high regularity of
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Fig. 7. Error |Ju — un| and error estimators nas, nm, pam, and pr for uniform

(indicated by unif.) and p-adaptive (indicated by ad.) mesh-refinement in Exam-
ple 9.5. Uniform mesh-refinement leads to a suboptimal order of convergence. This
is improved by the proposed adaptive strategy, which retains the optimal order of
convergence. In both cases, the error estimation is reliable and efficient. The error
estimators nys and nr as well as pa and ppr coincide up to 2%.

the exact solution u. We recalled an adaptive algorithm from [12] which steers
the mesh-refinement with respect to some localized error estimators. In the
numerical experiments we considered examples with different regularity. In
our experiments and in the experiments of [12, 13, 21] the adaptive strategy
retains the optimal order of convergence and is therefore superior to uniform
mesh-refinement.

However, there are still some gaps in the analysis: First, the introduced
error estimators are only proven to be reliable if the parameter £ € N in
Algorithm 1 is large enough. In the experiments we used the minimal choice
¢ =1 throughout. Nevertheless, we always observed the reliability. Second,
the analytical verification of the introduced error estimators needs a high
regularity assumption on u. However, this regularity assumption might be
nonsatisfied in practice. Since our numerical experiments indicate that this
assumption can be weakened, it would be desirable to have a refined analysis
that covers these cases as well, i.e. which either avoids a regularity assumption
on u or explains the good performance of the indicator-based adaptive strategy
analytically.
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Fig. 8. Quotient dpug = |lu — Grul/|u — un| in approximation assumption (AA)
and experimental reliability constant Crei := |Ju — up||/nar for uniform (indicated

by unif.) and pr-adaptive (indicated by ad.) mesh-refinement in Example 9.5. Note
that according to the scaling of the y-axis, Cyel is almost constant.
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Summary. The finite element method and the boundary element method often
have complementary properties in different situations. The domain decomposition
technique allows to use the discretization method which is most appropriate for the
subdomain under consideration. The coupling is based on the transmission condi-
tions. The Dirichlet to Neumann (D2N) and Neumann to Dirichlet (N2D) maps are
playing a crucial role in representing the transmission conditions. In this paper we
study the D2N and N2D maps and their finite and boundary element approxima-
tions. Different formulations of the transmission conditions lead to different domain
decomposition schemes with different properties. In any case we have to solve large
scale systems of coupled finite and boundary element equations. The efficiency of
iterative methods heavily depends on the availability of efficient preconditioners. We
consider various solution strategies and provide appropriate preconditioners result-
ing in asymptotically almost optimal solvers.

1 Introduction

Domain Decomposition (DD) Methods provide not only the basic technology
for parallelizing numerical algorithms for solving partial differential equations
(PDEs) but also for coupling different physical fields and different discretiza-
tion techniques. Beside the Finite Volume Method (FVM) and the Finite
Element Method (FEM), the Boundary Element Method (BEM) is certainly
one of the most popular discretization techniques for PDEs. If we compare
the FEM with the BEM, then we observe that both methods have advantages
and disadvantages in different situations. It is commonly known that the BEM
can easily treat unbounded regions whereas the FEM requires special modi-
fications for this case. On the other hand, the FEM is very flexible and can
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be applied to very general problems including PDEs with varying coefficients
and non-linear problems. However, beside unbounded computational regions,
there are a lot of other problems where we can benefit from using boundary el-
ement discretization. Large air subdomains or rotating subdomains which are
typical for electromagnetical problems, e.g., electrical machines, belong to this
class of problems. Also the approximation of singularities can be handled much
easier by a boundary mesh than by a volume mesh. Sometime only the com-
plete Cauchy date are needed on the boundary of the computational domain
or on the skeleton of a domain decomposition. In this situation, we would like
to avoid the meshing of the domain or of the subdomains. A similar situation
arises if we are only interested in the solution or in derivatives of the solution
in some points or in some small subdomains. Therefore, it is certainly very
attractive to develop coupling algorithms and software that can handle both
the finite element and the boundary element technologies. There are many
early contributions to the FEM-BEM coupling in the engineering literature,
see, e.g., [6, 58, 59]. Most of them are using the collocation technique on the
boundary element side that does not really fit to the finite element Galerkin
technique. Moreover, there was some other drawback of the classical boundary
element methods. They produce dense matrices. The breakthrough through
this complexity barrier was achieved by developing data—sparse approxima-
tion techniques like the fast multipole method [9, 42], panel clustering [21],
H-matrix approaches [20], Adaptive Cross Approximation (ACA) methods
[2, 3], and wavelet approximations [14, 43].

In the mathematical literature, there are also some early works on un-
symmetric Galerkin BEM-FEM couplings by F. Brezzi and C. Johnson [8],
C. Johnson and J. Nédélec [27] and others at the end of the 70ies and at the
beginning of the 80ies. These results are based on the use of the first bound-
ary integral equation using the single and double layer potentials only. In
fact, the analysis requires the compactness of the double layer potential and
therefore smooth boundaries have to be assumed. Since we are interested in
domain decomposition techniques with Lipschitz subdomains, we heavily rely
on the symmetric coupling that was first proposed by M. Costabel in [11]. This
approach makes also use of the second boundary integral equation with the hy-
persingular boundary integral operator. The symmetric formulation can also
be generalized to non-linear problems such as elastoplastic problems [13, 40].
G. C. Hsiao and W. L. Wendland first used the symmetric coupling tech-
nique for constructing symmetric boundary element domain decomposition
equations [26]. The first fast solvers for coupled finite and boundary element
domain decomposition equations were proposed and analyzed by U. Langer
[32]. The classical Finite Element Tearing and Interconnecting (FETT) meth-
ods, which were introduced by C. Farhat and F.-X. Roux [17] in 1991 as a
dual version of the classical iterative substructuring methods, and, in partic-
ular, the more recently developed dual-primal FETI (FETI-DP) and BDDC
(Balanced Domain Decomposition by Constraints) methods are now well-
established as efficient and robust parallel solvers for large—scale finite element



Coupled Finite and Boundary Element Domain Decomposition Methods 63

equations. We refer the reader to the recently published monograph [55] by
A. Toselli and O. Widlund for more informations about the relevant references
and for the analysis of FETI methods. U. Langer and O. Steinbach have re-
cently introduced the Boundary Element Tearing and Interconnecting (BETT)
methods [36] and the coupled BETI/FETI methods [37]. Inexact data—sparse
BETI methods were discussed in [33]. The hybrid coupling of finite element
methods and boundary element methods as a macro element was considered
by G. C. Hsiao, E. Schnack and W. L. Wendland in [24] for general second
order elliptic systems, and in [23] for applications in elasticity. Hybrid domain
decomposition methods based on the approximation of the local Dirichlet to
Neumann mappings by finite and boundary element methods and a related
stability and error analysis were given by O. Steinbach in [48].

This paper provides a unified approach to the construction, analysis and
solution of coupled finite and boundary domain decomposition equations.
The potential equation with piecewise constant coefficients serves as a simple
model problem. On an appropriate domain decomposition, such a special po-
tential problem and similar elliptic boundary value problems in general can be
reformulated as variational problems defined on the skeleton of the domain de-
composition. These skeleton variational formulations reflect the transmission
conditions which can be incorporated in different ways. The local Steklov—
Poincaré (D2N) and Poincaré-Steklov (N2D) operators play an important
role in these formulations. These operators can locally be approximated by
finite and boundary element methods. We discuss and analyse these approxi-
mations. Finally we have to solve large scale coupled finite and boundary do-
main decomposition equations which are in general symmetric, but indefinite.
Reductions to symmetric and positive definite Schur complement problems are
always possible, but not always recommendable for efficiency reasons. Primal,
primal-dual and dual iterative substructuring solvers require asymptotically
almost optimal and robust preconditioners. Such preconditioners can be con-
structed by the use of boundary element technologies for both the boundary
element and the finite element blocks.

The rest of the paper is organized as follows: In Section 2, we consider the
Dirichlet boundary value problem for the potential equation with piecewise
constant coefficients as a typical model problem and study the local Steklov—
Poincaré and Poincaré-Steklov operators as well as their finite and boundary
element approximations. Section 3 is devoted to different domain decomposi-
tion methods. We consider two types of symmetric coupling techniques. The
Dirichlet domain decomposition methods presented in Subsection 3.1 require
the strong continuity of the primal variable (the potentials) whereas the Neu-
mann domain decomposition methods studied in Subsection 3.2 require the
strong continuity of the dual variables (the fluxes). The tearing and intercon-
necting technology allows us to develop a unique approach to both domain
decomposition techniques. In contrast to the primal-dual tearing and inter-
connecting methods, we prefer the all-floating technique that was introduced
by G. Of [38]. In Section 4, we discuss the iterative solution of the linear
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systems arising in Section 3 and provide preconditioners leading to asymptot-
ically almost optimal and robust solvers. Finally, we draw some conclusions
in Section 5.

2 Boundary Value Problems

Let 2 C R? be a bounded domain with Lipschitz boundary I" = 942. As
a model problem, we consider the Dirichlet boundary value problem for the
potential equation,

—div|a(x)Vu(z)] = f(z) forxz e 2, ulx)=gx) forxel (1)

where g € HY?(I') N C(I") is a given continuous function. We assume that
a(+) is piecewise constant with a(z) =a; > 0 for z € 2; and fori =1,...,p,
where we have given a non—overlapping domain decomposition

p
.Q:U.Qi, Qiﬁﬂjzﬂ) fori;éj, I; = 092, Fij:Fiij
=1

of the computational domain {2 into p Lipschitz subdomains §2;. Moreover,

P
FSZUFZ':FUF[ and FI:UFij

i=1 i<j

denote the skeleton and the interface of the domain decomposition, respec-
tively. Instead of the global boundary value problem (1), we now consider the
local boundary value problems

—o;Aui(x) = fi(x) forz e 2, wi(zx) = g(x) forxel;NT  (2)

together with the transmission conditions

ui(z) = uj(z), o 0 u;i(z) + 0 uj(z) = 0 forx € I}, (3)
8 7 5‘nj
where f;(z) = f(x) for x € ;. In what follows, we will describe some vari-
ational formulations for domain decomposition methods which are based on
the local solution of either Dirichlet or Neumann boundary value problems.
The idea behind is that all solutions u; of the local boundary value problems
(2) are known as soon as the Cauchy data along the coupling boundaries I
satisfying the transmission conditions (3) are determined.

2.1 Dirichlet Boundary Value Problems

We start with the local Dirichlet boundary value problem for a given contin-
uous function g; € HY?(I};) N C(I7)
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—o;Aui(x) = fi(x) forx € 2, wi(z) = gi(x) forxel; (4)

where the weak solution u; € H'(£2;) is well defined. Moreover, the normal
derivative t; = n; - Vu; defines the associated Neumann datum. The solution
of the local Dirichlet boundary value problem (4) therefore defines the local
Dirichlet to Neumann map g; —— t;. Hence, we have to find the correct
Dirichlet datum g; such that the transmission boundary conditions (3), i.e.,

ui(z) =uj(z), aiti(z) + o tj(x) =0 forz € I3,

are satisfied along the coupling interfaces I;. To describe the local Dirichlet
to Neumann map we may consider either a domain variational formulation
or boundary integral equations to obtain explicit representations of the local
Steklov—Poincaré (Dirichlet to Neumann) operators involved.

Domain Variational Formulation
The associated variational formulation of the local Dirichlet boundary value
problem (4) is to find u; € HY(£2;), u;(x) = g;(x) for x € I}, such that

/aiVui(x) -V (z)de = /fz(x)vz(x)dx (5)

2; 2;
is satisfied for all test functions v; € H(§2;). As usual, H'(£2;) is the closure
of C*°(£2;) with respect to the norm

5 9 1/2
loillron = [loillda + 190l

However, in what follows we will use an equivalent norm in H!(2;) which is
given by
9 1/2

odmonn = || [otds: | + Vol
I

Moreover, H}(§2;) = {v; € HY(§2;),v;(x) = 0 for z € I';}. The bilinear form

ag; (vi,v;) = / [Vui(2)Pdz = | Vill}, 0, = l0ilFn oy for vi € Hy (1)
£2;

defines an equivalent norm in H} (£2;), i.e., (ag, (vi,v;))'/? is the energy norm

in H}(£2;). By taking the trace of H'({2;) we may define the trace space
H'/2(I;) which is equipped with the norm

ollmry = di 1V 01
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For g; € H'/2(I}), there exists a bounded extension u,, = Eg; € H(£2;)
satisfying

lug:ll 12, r = 1€igillmran,r < cellgill airer,)-

A particular choice would be to consider the harmonic extension u,, € H'(£2;)
as the unique solution of the variational problem

/Vugi (z) - Vui(z)de = 0 for all v; € H}(£2;).
2;

It remains to find u; o € H&((Zi) such that the homogenized variational prob-
lem

/aiVuiyo(x) -V, (x)dx = /fi(x)vi(x)dx — /aiVugi () - Vi (x)dx (6)
is satisfied for all v; € HE(§2;). For u;,v; € HE(£2;), the bilinear form
00, us0,03) = [ Vuso(o)  Voslz)ds = (A, otsa,i)
02;
induces, by the Riesz representation theorem, a bounded linear operator
Ag, o0 Hy($2:) — HH($%) = [Ho (2:)]'.
In addition, for uy, € H'(§2;) and v; € H}(§2;) we define the bounded operator

Ar, - HY($2;) — H71(82;) satisfying

(Arug,,vi)o, = /Vugi (x) - Vi (x)da.
2

Hence, we can write the variational problem (6) as an operator equation to
find u; o € H}(£2;) such that

a;Aq, otio = fi — G ArEigi € H'(1%). (7)
The operator Ag, o : Hi(£2;) — H~($2;) is H}($2;)—elliptic, i.e., for all
v; € H}(£2;), we have

(A, 0vi,vi) 0, =/|Vvi($)|2d3«“= ”VWHQLQ(_@) = ||UiH§11(m),n~
£2;

Hence, there exists the unique solution of the operator equation (7),

1 _
Uq,0 = aAAQilyofi - AQ}}oAFigigi € H&(Qi)a
T



Coupled Finite and Boundary Element Domain Decomposition Methods 67

and, therefore, u; = uo; + u, € H'(£2;) is the weak solution of the Dirichlet
boundary value problem (4). In particular, from

(fi,vi) e, S (firwi0) 0

I fill r-1(2) = sup >
oved (@) Vil r — lluioll e,
o
[ V(o) + g @] Vaso(o) do
lwiollm(2:),r
02;
(7] ) 9 _ , :|
> ol . V8 = 19030l Vit 12,
= Q4 [HVULOHLz(QL) - Hvuga Lz(Qi)} )
we find 1
IVuiolleaeny = Ifilla-1000) + Vgl za(2)-
In particular, for f; = 0, we therefore have
2
lwill 3o = /gi(ﬂ?)dsx + [IVuiollZ, 0
I
2
< /gi(x)dsx + Vg, %2(9,;)
I
= [lug, ?{1(@),11 < cg 9@'”?{1/2(5),
ie.,
lwilltr2.),r < cellgill ey (8)

It remains to find the associated Neumann datum t; = n; - Vu;, € H~/ (L),
where H=Y/2(I;) = [HY?(I3})]’ is the dual space which is equiped with the
norm

(T, wi)r,

I7ill pr-1/2 ;) = sup S
’ () 0£w; €H/2(Iy) ||wi||H1/2(r,-,)

Using Green’s first formula, t; € H~/2(I7}) solves the variational problem

/aiti(m)wi(x)dsx = /aiVui(x)-V&wi(x)dx—/fi(a:)&wi(x)dx (9)
£2;

I £2;

for all test functions w; € H'/2(I}). Using duality arguments, we then obtain
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ti, wi)r;
T
0#£w; €HY/2(I,
1 1
= sup (Vui, VE&wi) o, —  (fi, Eiwi) o,
0#£w; € H/2(I%) ”leHl/?(F) Q;

||5‘wi||H 1(£2;)

0£w; €H/2(Ty) ”leHl/?(F)

IN

{||U1|H1(n)+ ,|fi|ﬁ1m,,,>}

A

< ce. luslimcan + o 1illa-scay)

where H1(£2;) = [H'(£2,)]'. The local Neumann datum ¢; therefore depends
only on the given right hand side f; and on the prescribed Dirichlet datum
g;. Hence we have given a Dirichlet to Neumann map as

aiti(z) = a;(Sigi)(x) — (Nifi)(z) forx € I,

where we have used the local Steklov-Poincaré operator S; : HY/2(I}) —
H~Y2(I}), and the Newton potential N; : H=(£2;) — H~Y?(I}) as given
below. In particular, for f; = 0, we therefore have t; = S;g; satisfying

ill /2y - (10)

If we define the linear operator Ag, : H(£2;) — H~'(£2;) via the Riesz
representation theorem as

1S:gill 172y = Wtill g-172(r,

(Ag,ui,vi) 0, = /Vui(ac) - Vo;(z)dx  for u;,v; € Hl(Qi),
£2;

we can rewrite the variational formulation (9) as
ai(ti,wi)r, = ai/Vui(x) -VEw;(z)dx — /fz(x)&wz(x)dx
2,

i

= a;(Ao,ui, Ewi) o, — (fi, Ewi) o,
= a; (Ao, [uio + ug,], Ewi) o, — (fi, Ewi) o,
(

i (A w0, Ewi) o, + iAo, ug, , Eiwi) o, — (fi, Eiwi) o,
= (AL uio + aiAg,ug, — fi, Ewi)q,,
and, therefore, as the following operator equation,
aiti = & [ A, ug, + i A uio — fi]
=& |:OéiAQiUgi + o AL (;,Anf,ofi - Anf70Apiugi> - fz}

= ;€] [AQ — A A OAF} Eigi + & [A'FiA;L{O _ 1} il
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where A7, and & are the corresponding adjoint operators. Hence we can
represent the Steklov Poincaré operator as

Si= &l [Ao, — Ap AgloAn] &« HYP(I) — HOVA(T) (1)
and the Newton potential as
Ni= € |AnAgly— 1|+ H™ (2) — H™(L). (12)

Theorem 1. The Steklov-Poincaré operator S; : HY/?(I;) — H~'/2(I}) as
defined in (11) is bounded,

Sigi Nl sy for all g; € HY(Ty),

and HY/2(I3;)-semi-elliptic, i.e.,

(Sigi-gi)r, > | gill3nocry  for all g; € Hy'*(I),
where
Hé/Q(Fi) = w; € HY2(I}) - /wi(x)dsgC =0
I
In particular, for g; =1, we have S;g; = 0.
Proof. The boundedness of the Steklov—Poincaré operator S; is just the esti-
mate (10). Using (9) with f; =0, for g; € Hé/2(Fi), we get

(Sigirgi)r, = (b0, g3 = / Vui(z) - Vuy, (2)dz

£02;

- / Vua(2) - Vug, (x) +uio(@)dz = 2,
£2;
2

= /gi(x)dsz + |ul|H1(Q )y = HulHHl(Q ), T
r;

Now the H'/?(I})-semi-ellipticity follows from the trace theorem. O

Finite Element Approximation

To define an approximate Dirichlet to Neumann map we first introduce the
local finite element trial spaces

Sp($2;) = span{o; 1oty € H'(£2;)
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and _
S}L,O(Qi) = Sp(2) NH (1) = Span{(b%,k}ﬁﬁMﬂrl

of piecewise linear basis functions gzﬁz{k with respect to some regular finite
element mesh (2; j, characterized by the local mesh-size parameter h;. Note
that the basis functions (b}’k, k=M,+1,..., J\Ajz correspond to the interior
degrees of freedom, while the remaining basis functions gzbzl, ok =1,...,M;

are associated to degrees of freedom on the boundary.
Let

M;
1
Ug, h(x) = Zugi (xi,k)QSi,k(x)
k=1
be the piecewise linear interpolation of the continuous extension ug4,. The

finite element approximation of the local variational problem (6) is to find
Ui 0,n € S}L,O(Qi) such that

/aiVui7o7h -V, p(x)dr = /fi(x)vi,h(x)dx — /aiVugi,h(x) -V, p(x)dz
2;

(13)
is satisfied for all v; 5, € S }110((21) This is equivalent to the Galerkin equations
(wz0s+ g (w1)) [ @0Vl (0) - VL oo
k=M;+1 0;

M,
- / [i@)6t @)z — S gilin) / VL4 (z) - Vol ,(x)dz
2, k=1

2;
forall { =M;+1,..., .7\7z Introducing the nodal values

Up ik = Ui0k + Ug, (Tig) fork=DM;+1,..., M,
UC ik = gi(x@k) fork=1,...,M;

as new unknowns, this is equivalent to a linear system
aiKII,iu[J' = fI.i — aiKCI,iuC,iv
where the local stiffness matrix is given by
Kirlt k] = [ Voly(o) Vol (oo
2;

for k,0 = M;+1,..., ]\A/[/i, while the vector of the right hand side is determined
by
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frie = /fi(ﬂ?)@,z(ﬂv)d%
£2;

In addition,

Korilt, k) = / VoL, (2) - VoL (x)de
2;

fork=1,...,M;; ¢ =M;+1,... ,J\Z. The solution vector
L -1
Ur; = - KII,ifI,i - KII,iKCLiuC,i
K3

defines an approximate solution u; ;, = ;0,5 + Ug,,» for which the error esti-
mate

lwi = winllzro)y,r < chilulmz()
provided that the regularity assumption u; € H?(§2;) holds.

Now, instead of the variational problem (9), we have to consider a per-
turbed formulation to find #; € H~/?(I}) such that

/aiﬂ(x)wi(x)dsx = /aiVui,h(x) -VE&w;(z)dx — /fi(x)&wi(x)dx (14)
I; 2; 2;

is satisfied for all test functions w; € H'Y?(I%). This implies an approximated
Dirichlet to Neumann map

aiﬂ(m) = ai(gigi)(x) — (]\Zfz)(a:) for x € I3,
where §i is an approximate Steklov—Poincaré operator which is defined via

the solution of the Galerkin variational formulation (13).

Theorem 2. [48] The approzimate Steklov-Poincaré operator S; : HY/2(I}) —

H~Y2(I3) as defined above is bounded and Hé/Q(Fi)felliptic. Moreover, there
holds the a priori error estimate

10S: = S)gillg-1r2(ryy < chiluilpz(o,)
when assuming u; € H?(£2;).
When choosing in (14) (bzl,l’ £=1,..., M; as a test function, this gives

s [l s@ids, = i [ Vusn(o) Voluorts ~ [ fiaol (oo
£2;

£

= ’ aiulj,k/vd)z{k(x) : qu;g(x)dx

1 2

x>
Il

M;
=S o / VoLo(x) - Vol ,(a)dz — / fi(@)6L (@) da
4 /
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= Z a;i Kol klur g + Z a; Kool kluck — fo,ie
k=1 k=%+1

= ai (Keoiuc,; + Kroiur,), — foie

o ([KCC,i - KIC,iKl_Il,iKCI,i] UC,i)e + (KCI,iKI_I%ifLi)e — feiz

Hence we obtain the discrete Dirichlet to Neumann map
ait; = aiS{RMue + KeriKipaf = f e, (15)

with the finite element approximation of the Steklov—Poincaré operator

FEM

ST = Keei — KioiK ' Keri. (16)

Boundary Integral Equations

Instead of using finite element discretizations of domain variational formula-
tions for the numerical solution of the local Dirichlet boundary value problem
(4), we now consider boundary integral formulations and their boundary ele-
ment discretization. The starting point is the representation formula

wlz) = [ U@ )ty)ds, - / o Ueai)ds, + [ U @)

that holds for z € §2;, where

1 1

U =

is the fundamental solution of the Laplace operator. To find the yet unknown
Neumann datum t; € H~/2(I}), we first consider the boundary integral
equation which results from the representation formula for z — I7,

[0 @ntis, - / o U @n)g)ds,~ [ U @) (),

i
r; 02;

(V;tz)(il,') = (;I-i- Kl)gz(x) — oi (leofl)(x) forxz € Fi. (17)

Here, x € I is assumed to be on a smooth part of the boundary I7. Since
we are using a Galerkin approach, such an assumption is sufficient. Moreover,
Vi : H-Y2(I;) — HY?(I3) is the single layer potential, K; : HY?(I}) —
H'/2(I}) is the double layer potential, and NzO C HY(8) — HY2(I) is
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the Newton potential. Since the single layer potential operator is H~/2(I7})-
elliptic and therefore invertible, we find the Dirichlet to Neumann map

1 _
a;ti(z) = Oéinl(QI + K;)gi(x) — V; ' Noif (2)

= ai(Sigi)() — (Nif)(z), z€l;

with the boundary integral operator representation of the Steklov—Poincaré
operator

Si = Vi I+ Kn) - HYAE) — HOVA(T), (18)

and with the operator
Ni = V;_lj\vfo,i . f[—l(gi) — H_l/Q(Fi).

Although the Steklov-Poincaré operator (18) is self-adjoint in the continuous
case, an approximation of this composed operator results in a non—symmetric
stiffness matrix in general. Hence we are interested in alternative representa-
tions which result in symmetric boundary element approximations.

Since the solution of the local Dirichlet boundary value problem (4) is given
by the representation formula, the application of the normal derivative to the
representation formula gives a second, the so—called hypersingular boundary
integral equation,

1 o _, 0 o . ‘
bw) = @)+ [ o Uetis = o [ o) U,
I; I

10 [,
o on [ U@,
£2;

() = ) + (K1) + (Dig)(@) — © (Neafi)(@) forz € I (19)
Here, K! : H'/2(I;) — H~Y*(I3) is the adjoint double layer potential,
D; : HY?(I';) — H~/2(I}) is the hypersingular boundary integral operator,
and Ni,l . H7Y(£2;) — H~Y2(I}) is the normal derivative of the Newton
potential. Inserting the first boundary integral representation of the Dirichlet
to Neumann map into (19) gives the relations

iti(@) = ai(Digi) ) + (1 + KD(auti) @) — (N f) @)
= a;(Digi)(x) + (;I + K7) OéiVi_l(;I-F Ki)gi(z) — V, Ny o fi(x)

_(ﬁl,if)(x)
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1 N 1,1
=ai |Di+ (I + KV (1 + Ki)| gi(z)

(Wi o)) — (T + KOV, Noofila)
= «;(Sigi)(x) — (N; f)(x) foraz e T;

with the so—called symmetric boundary integral operator representation of
the Steklov-Poincaré operator,

1 1
S; = Di+(2I+K§)V;_1(2I+Ki) - HY2(I) — H=Y2(1y), (20)

and with an alternative representation of
~ 1 ~ ~
Ni = Ni1+ (21+K1{)Vi_1Ni,0 D HON(2) — H V().

While the Steklov-Poincaré operator S; : HY/?(I%;) — H~'/?(I}) is bounded,
it is not obvious which Sobolev norms in H'/?(I%) and H~/2(I}) have to be
used, respectively. When using appropriate norms, explicit estimates can be
derived as in Theorem 1, where we used a trace norm to characterize H'/%(T7).

In the case of boundary integral operators a natural choice is to use norms
which are induced by the single layer potential and its inverse. In particular,

- =/ (Viw;, w;)r, and ||vz||v_1 = \/ Yo, vid

define equivalent norms of the Sobolev spaces H~/2(I};) and H'/?(I3), re-
spectively. Using both boundary integral representations (18) and (20) of the
Steklov—Poincaré operator S;, we obtain the estimate [52]

1
H(2I+K¢)vi|\v_71 < e (D) |villy-2 for allv; € HY2(I;), (21)

where

1 1
cx () = 2+\/4CY0?7 <1

is the contraction constant of the double layer potential ;I + K; defined by
the ellipticity constants CY” and ch i of the single layer potential V; and of the
hypersingular boundary integral operator D;, respectively.

Using (21) we find the boundedness estimate [52]

HSigi

(13) lgilly -+ for all g; € H'/*(I3) (22)
as well as the ellipticity estimate

(Sigisgidr, = [1=ex(T)] lgill}, - for all i € Hy*(Ih). (23)
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Since all representations of the local Steklov—Poincaré operators S; coincide,
the boundedness estimate (22) and the ellipticity estimate (23) are also true
for the definition (11) based on a domain variational formulation. Note that
the contraction rate cx (I7;) only reflects the shape of the subdomain, but does
not reflect the size or the diameter of the subdomain f2;.

Boundary Element Methods

For g; € H'Y/?(I3), the application of the Steklov—Poincaré operator S; in its
symmetric representation (20) can be rewritten as

1 1 1
Sigi = Digi + (2I+K{)Vf1(21+K¢)gi = Dig; + (2I+ K)wi,

where w; = V; ' (1T + K;)g; € H~Y/2(I3) is the unique solution of the local

3
variational problem

1
(Viwi, i), = ((21+ K)gi,7i)r;, forallm € H_l/Q(Fi).
Let
Sp(Iy) = span{y?, )V, C HV2(I)

be the boundary element space of piecewise constant basis functions 1/%0,n~
Using the Galerkin solution w; p, € S,?(F ;) satisfying

1
(Viwi n, Tin)r, = ((2I+ Ki)gismin)r, forallmi, € S, (24)
we may define an approximate Steklov—Poincaré operator by the relation

1
Sigi = Dig; + (21 + K})wip. (25)

Theorem 3. [48] The approzimate Steklov—Poincaré operator S, : HY2(I) —
H~'2(I}) as defined in (25) is bounded and Hé/Q(Fi)felliptic, i.e.,

<§igiagi>n > (Digi, gi)r; > ClDngiH?{l/Z([’i) for all g; € Hé/2(Fi)-

Moreover, there holds the a priori error estimate

> 3/2
1Si = S)gill-1720r) < eh2?(1Sigill m, iy

pw

when assuming Sigi € Hby(I3), i.e., uy € H*?($2;). Note that Hpyy(I;) is
the Sobolev space which is defined piecewise.

In the same way as above we may also introduce some approximation of the
volume potential N; f = VrlNo,if. In particular, N, »,f € S)(I;) is defined as
the unique solution of the Galerkin variational problem
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(ViNinfomin)r = (Nosifsmin)r, for all 7y, € SY(I3).

Let
M;
gin =) _ucipiy € Sh(I;)
k=1
be some piecewise linear approximation of the given Dirichlet datum g;. For
the approximate Dirichlet to Neumann map we then find

/ aifi (@) (@) (@) ds,

r;

[ai(Digi’h)(x) + Oéi(;.[ + K{)w%h(x) — Ni,hf:| @%7€($)d8m

I
= T

i N;

' 1
=Y ucikei(Dig) 0t + Y winai{(, 1 + KDY, i)
1 n=1

=~
Il

N;
- Z Ni,h,n<¢2na 5011,€>Fi
n=1

for ¢ =1,..., M; where

: : )
Y " win Vit 0 )y = > U'Cﬂ',k<(21+Ki)‘?zl,kaw?,mﬁ"aﬁ
n=1 k=1

and
N;
Z Niah7"<‘/iw'?,n’ '?,m>F7 = <N07’if7 w?,mh—’a = fN,i,m
n=1
for m =1,..., N;. Hence we obtain the discrete Dirichlet to Neumann map

T _ . QBEM AT y-1
ity = oS e — M, Vi N (26)

with the boundary element approximation of the Steklov—Poincaré operator

SERM = D+ KLV Kin (27)
and
Vip[m,n] = (Vﬂﬂgn, 2m>n¢,
Dinll, k] = (Dij i, i )1
Ronlm. ) = {1+ K)okt
M; p[m, k] = (0} g, Vg m)

formn=1,... Ny, k,{=1,... M.
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Instead of using the symmetric representation (20) we may use also the
first representation (18) to define an approximate Steklov—Poincaré operator
as

Sigi = win (28)
where w; ;, € S{(I}) is the unique solution of the variational problem (24).
Although this approximated Steklov—Poincaré operator gz . HY X)) —
H1/2 (I;) is bounded and satisfies an approximation property as in Theo-
rem 3, it is in general not stable. Let S}(I}) € H'/2(I}) be some boundary
element space of piecewise linear basis functions. To ensure the S ,1L(F ;)—semi—
ellipticity of the approximate Steklov—Poincaré operator S; as defined in (28),
we need to assume the discrete stability condition

Gi,hs Ti,h ) T;
cs ||gi,h||H1/2(Fi) < sup < ) for all g; 1, € S}lL(Fi). (29)

02 nes0 ) 1Tinll =172

Note that the discrete stability condition (29) is satisfied, for example, when
using a sufficiently small mesh size to define the trial space 52 (I;) compared
to the mesh size or S} (1) [56], or when using piecewise linear basis functions
to define both trial spaces [47].

2.2 Neumann Boundary Value Problems

We now consider the local Neumann boundary value problem

—a; Aui(x) = fi(z) forz e (2;, « g

on, uwi(z) = N\i(z) forz eIy, (30)

where we have to assume the solvability condition
/fz(x)dx + //\i(at:)dsgc =0. (31)
£2; I;

Moreover, the solution of the local Neumann boundary value problem (30) is
only unique up to an additive constant, i.e., if u; is a solution of (30), then
u; + ; is also a solution of (30) for any constant ~; € R.

Domain Variational Formulation

The associated variational formulation of the Neumann boundary value prob-
lem (30) is to find u; € H}(£2;) such that

s [ Vus@)Vue)ds = [ f@ode + [ Mouleds  (32)
£2;

is satisfied for all v; € H}(£2;), where
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Hi(Ql) = V; € Hl(Ql) : /vz(x)dx =0

£2;

is a suitable choosen subspace of H'(£2;). Since

2
il = | [uts| + [ Voo

defines an equivalent norm in H(£2), the operator Ag, : H*(£2;) — H1(£2;)
defined via the Riesz representation theorem, i.e.,

(Ag,ui,vi)0, = /Vui(x)Vvi(x)dx for all u;,v; € H*(£2),

£02;

is H!($2;)-elliptic. Hence there exists a unique solution u; € H}!(£2;) of the
variational problem (32). Using the trace operator B; : H'(2;) — H'Y*(I})
and its adjoint, B} : H—Y/2(I}) — H~'(£2), we can write the general solution
of the Neumann boundary value problem (30) as

ui = A [fi+ BN+, v €R

where AB is the associated pseudoinverse. From this we obtain the Neumann
to Dirichlet map as

9i = BiAL [Bixi+ fil +7i, weR, (fi o, + N1, =0. (33

Instead of the variational formulation (32), where the side condition (v;, 1) =0
was included in the definition of the function space H!(§2), we now consider
an extended variational problem to find u; € H'(£2;) satisfying

ai/ui(:c)dx/vi(m)dx+ai/Vui(x)Vvi(x)dx (34)
£2; £2; £2;
= /fi(x)vi(x)dx—f—/)\i(m)vi(m)dsgﬂ
for all v; € H'(£2;). Since the operator Ag, : H'(£2;) — H~(£2) defined by
(Ag,uivi)o, = /ui(:ﬂ)dm/vi(x)dm—i—/Vui(m)Vvi(m)dx

for all u;,v; € HY($2;) is H'(§2;)elliptic, we find

1 -
ui =~ Ag[fi+ BiAi

(2
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as the unique solution of the variational problem (34) for any given data
fi € H1(£2;) and \; € H~/2(I). Moreover, when assuming the solvability
condition (31), we obtain u; € H!(§2), and therefore, the general Neumann
to Dirichlet map

1
gi:a‘BiAQil[BZ'.)\i—l-fi]—i—’yi, vi€R, (fi,Dg, + N\, ), =0. (35)

The involved Poincaré—Steklov operator
T; = B;Ay' B} « H'/*(I;) — HY*(I)

is bounded and H~'/2(I;)-elliptic.

Finite Element Approximation

Let ~

Sh($2:) = span{]}nl, C H' (1)
be the local finite element space of piecewise linear basis functions ¢> ', which
are again defined with respect to some regular finite element mesh Qz n with
the mesh—size parameter h;. In addition, let

)\i,h S Sg(Fz) = Span{¢2n}g;1

be some approximation of the given Neumann data by using piecewise con-
stant basis functions 1y ,,. The Galerkin formulation of the extended varia-

tional problem (34) is to find u;j € S}(£2;) such that

ai/ui,h(x)dx/vi,h(x)dx—i—ozi/Vu@h(x)Vvi,h(x)dx (36)
2;

£2; £2;
= /fi(x)vi,h(x)dx%—/)\i,h(x)vi,h(x)dsz
£2; I

is satisfied for all v;;, € S}(£2;). This is equivalent to a linear system of
algebraic equations,
OézAQ LU = f +B )\

with

Aaalt.H = /@k M/ag @do + [ Volyla)Vol (@),

02;

fM—/ﬂ 6! ) (w)da,

B nn, k] = /¢1k x)ds,
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for k, 0 = 1,...,]\7[;, n=1,...,N;. Hence we find
u; = AF)},h[fi + Bz‘T,h)\i]

yielding the approximate solution w;;, € S} (£2;). Taking the trace Ui h| Ty 5
this defines an approximation of the Neumann to Dirichlet map (35), i.e., an
approximate Poincaré-Steklov operator T;.

Theorem 4. The approximate Poincaré-Steklov operator ﬁ' :H- Y ) —
HY2(I) as introduced above is bounded and H~'/?(Iy)-elliptic. Moreover,
there holds the a priori error estimate

(T = To)Nill ey < chilluill 2o,

when assuming u; € H?((2;).

Boundary Integral Equations

Using the hypersingular boundary integral equation (19) the unknown Dirich-
let datum g; € H'/?(I3) is a solution of

ai(Digi)(x) = JAilw) — (KA (@) + (Wi fi@) forw € T

The local hypersingular boundary integral operator D; : H'/2(I;) — H~Y/?(T3)
is only H'/2(I})-semi-elliptic, i.e.

(Divi,vi)p, > ¢ HUiH?p/z(pi) for all v; € Hé/z(]}).

As for the extended variational formulation (34) we may consider an extended
variational problem [39] to find g; € H'/?(I}) such that

a; [(Dyus, viyr, + (wi, Ly (v, D] = <(;I—K£)>\i,vi>m+<ﬁz‘,1fi,vi)n (37)

is satisfied for all v; € H'/?(I}). Since the modified hypersingular boundary
integral operator D; : H'/2(I;) — H~Y/2(I%) which is defined via the bilinear
form B
(Diui,vi)r, = (Diui,vi)r, + (ui, Ly (vi, 1)1y,
is HY 2(I;)-elliptic, the extended variational problem (37) has a unique solu-
tion u; € HY?(I3) for any given data f; € ﬁ’l(Qi) and \; € H*I/Q(Fi). If
the solvability condition (31) is satisfied, then we have u; € Hé / *(I3) and the
general solution of the local Neumann boundary value problem is given by
1~ 1 . 1~ ~
U; = OéiDi (QI_Ki)/\i_‘_OéiDi N@lfi—i-%, v € R.
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Inserting this into the first boundary integral equation (17), we obtain
1 -
aju; = Vi + Oéi(zf — K;)u; + Niofi

1 1 ~ 1 1 ~ ~ ~
=Vihi+a;( I - K;) DY I —K)Ni+  D;'Niafi| + Niofi
2 (677} 2 (6%

1
1 ~ 1 1 ~ 4~ ~
= |Vi+ (QI_Ki)Di 1(21— K;)} i + (QI_Ki)Di "Ni1fi+ Niofi

and therefore the Neumann to Dirichlet map

w@) = - (TA)@ + - (Nif)(@) +y fore e Iy e R,

i Q;

where

1 ~ ;.1 _
T = Vit (= K)DH (1 = Ki) « HOVA(I) — HYA(T)

is again the Poincaré—Steklov operator.

Boundary Element Methods

For \;, € H~/? (I7), the application of the Poincaré-Steklov operator T; in
its symmetric representation reads as

1 ~ .1 1
TN = Vihi + (2I—K1)D¢ I(QI_KZ()/\i = ‘/z')\i"‘(QI_Ki)Zia

where 2; = Dy '(L1I — K!)\; € HY/?(I%) is the unique solution of the local
variational problem

- 1
(Dizi,vi)r, = ((21 — KD\, vi)p,  for allv; € HY2(I3).

Let
Sh(Ii) = span{e;  }0lty € HY*(I3)

be some boundary element space of piecewise linear basis functions gozl, - Using
the Galerkin solution z; 4, € S,ll(f’i) satisfying

~ 1
<D¢Zi’h,vi7h>pi = <(2I—K£)>\i,’l)i’h>pi for all Vi, h S S,IL(FZ),
we may define an approximate Poincaré—Steklov operator as
~ 1
Tixi = Vi + (21 — Ki)zi,h. (38)

Theorem 5. The approximate Poincaré-Steklov operator ’E : H_l/Q(Fi) —
H'Y2(T3) as defined in (38) is bounded and H~'/?(I;)-elliptic. Moreover, there
holds the a priori error estimate

T = To)ill ey < ehd [ Tkillie
when assuming Ti\; € H?(I}), i.e. u; € H/2(£2;).
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3 Domain Decomposition Methods

Using the local Dirichlet to Neuman map
aiti(z) = a;(Siui)(x) — (N; fi)(x) forxz € I;

with the Steklov—Poincaré operator S; as defined in (11), (18) or in (20), we
can reformulate the coupled domain decomposition formulation (2) and (3)
as

aiti(z) = a;(Siui)(x) — (N f)(x)  for z € I3,
u;(z) = g(x) foree NI,
ui(z) = u;(x) for z € I3, (39)
( )+Oéjt](l‘)20 fOI‘l‘EFij.

3.1 Dirichlet Domain Decomposition Methods

Eliminating the local Neumann data ¢; in (39) gives the transmission condi-
tions

ui(®) = u;(x),  i(Siwi)(x) + a;(Sjuz)(x) = (Nifi)(z) + (N f;)(2)

for z € I;;. Let H'2(I's) be the skeleton trace space of H'(£2). To ensure
the Dirichlet transmission condition u;(z) = u;(z) for « € I;; we may de-
fine u;(x) = u(x), @ € I}, as the restriction of a globally defined funtion
u € HY?(I's) with u(z) = g(z) for x € I'. Hence we have to find
u € HY?(I's), u(z) = g(x) for = € I, such that

ai(Siuir,)(x) + a;(Sjur, )(x) = (Nifi)(@) + (N; f;)(z) forx € Ii;.

The associated variational problem is to find v € H/?(I's) such that u = g
on I'" and

Z a;(Siur,)(x)vr, (v)ds, = Z (Nifi)(@)vr, (x)ds, (40)
>/ /

le

is satisfied for all v € H'/?(I's) vanishing on I".
Let
Si(Is) = span{wi}il, € H'/?(Is)

be some global finite element space of piecewise linear basis functions gz:,l€
which are defined with respect to some regular finite element mesh I's; of
the skeleton I's. By S} (I;) we denote the restriction of S} (I's) onto the local
subdomain boundary I;. In particular, for any v, € S} (F s) we find the local
restriction v;p € S hl(F ;) via a transformation of the associated coefficients,
v; = A;v, where A; : RM — RM: ig the connectivity matrix. Moreover, let
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S}(I') be the restriction of S}(I's) onto the Dirichlet boundary I" = 942,
where the associated connectivity matrix is Ag € RMoXM Tet g € RMo result
from some piecewise linear approximation g5, € Sj(I') of the given Dirichlet
datum g.

Using one of the previous introduced approximate Dirichlet to Neumann
maps, the Galerkin variational formulation of (40) is to find u, € S}(I's)
satisfying the Dirichlet boundary condition up(xr) = g(zx) for z € I' such
that

Z/Ozz Suh|[’ )’Uh‘p de = Z/ Nfz Uh|[’( )de (41)

le le

is satisfied for all v;, € S} (I's) with vy (z) = 0, € I'. This is equivalent to a
linear system of algebraic equations to find v € R such that

p p
> Al SinAu =Y Al f, A=y (42)

i=1 i=1

In (42), the approximate stiffness matrices S, . and the local vectors f of
the right hand side correspond to the dlscretlzatlon of the locally defined
approximate Steklov—Poincaré operators S In particular, when using the
finite element approximation (15) this gives

FEM

e —1 FEM -1
in = Kcei — KieiK Ko, [, = fo, — KoK, f,

When using the symmetric boundary element approximation (27) of the
Steklov—Poincaré operator this gives

OBEM __ T 171~ BEM __
ih _Diah_’_K’LthKih fz hzhf

When using a boundary element approximation in the first ¢ < p subdomains
£2;, and a finite element approximation in the remaining subdomains, the
linear system (42) can be written as

q P
Za ATSBEMA u Z OCZATSFEM ZA;rffEM + Z A;l—ff‘EM
i=q+1 =1 i=q+1
(43)
together with the side condition Agu = g.
The solution u € RM of the assembled linear system (43) is also charac-
terized as the unique solution of the constrained minimization problem

F(u) = min  F(v), (44)

vERM  Agv=g

where
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p
F(v )= D {5 B A, Agw) = (£ A}

i=1

By introducing the local vectors v; = A;v € R we have to minimize

P
Flog,.oovv,) = D { G S0, 0) = (17777 o) }

%
i=1

where we have to add the constraints Agv = g due to the Dirichlet boundary
condition and v; = A;v which ensures the global continuity v; ;, = v;;, along
I';;. Here, v; 5, is the local degree of freedom which belongs to a global node
xy € I's, i.e. A;lig, k] = 1. Now we can formulate all above constraints as

P
ZBivizAa—gzﬁeRM

i=1
where the nonzero elements of the matrices B; € RM*M: are defined as fol-
lows:

e 1z € I; NI is on the Dirichlet boundary:
Bilk,ix]) = 1;
o x, €Iy =1;N 1} is on the interface:
Billy,ie) =1,  Bjllk,jk] = -1, i <]

Note that the above constraints are defined in a redundant manner, i.e. £
corresponds to the multiplicity of constraints which are associated to the
node zj. Now, instead of the minimization problem (44), we have to solve a
modified constrained minimization problem, i.e.,

F(uy, ... u,) = inf  F(vg,...,0,). (45)
i Biv;=g

I
-

By introducing the Lagrange multiplier A € R we have to minimize the
extended functional

p
Fa(vy,...,v,) = F(vy,...,v,) = (\,>_ Biv, = g).
=1

The necessary conditions give the equations

Oéig]?EM/FEMu. _ f}?EM/FEM _ BJA =0 (46)

ih % 3

by taking the derivative with respect to v, for i =1,...,p, and,
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p
Z Bﬂ]i = g
i=1

by taking the derivative with respect to A\. Hence, we have to solve the linear
system

SBEM _Bl—erM Uppnm fBEM
Serm _Bl;rEM Uppm = ‘fFEl\I ’ (47)
BBEM BFEM A E

where

Spem = diag (az’ [D'L,h =+ I?z—,rh‘/zjhll?%h]) )

i=1,...,q

Seem = diag (ai [Kce,i — KIc,iKﬁliKCI,i]) , .
’ i=q+1,...,p

In what follows we proceed as for the solution of a local Neumann boundary
value problem. Due to
Sinli=5ip" =0,

we can write the local variables u; € RMi as
u; = w0+ 7l (u0,1;) =0 (48)
and therefore we have to solve
aiSEfLI\I/FEIMUi’O _ B:A — ff)EIVI/FEIVI for Z — 17 . ’p
as well as
P P

> Bitgg+) vBil; =G,

i=1 i=1
On the other hand, for i = 1,...,p, we find

(Bi—l,—h/\ + JC?EI\A/FEM7 1i) _ ai(sng/FEMui, 11‘) _ ai(uia SfiM/FEMli) -0
and, therefore, the additional constraints
(N, Binly) = —(f75F 1) fori=1,...,p.

Hence, we obtain u, ; € RMi as the unique solution of

BEM/FEM T T __ fBEM/FEM
ai[S;p, + 11 Ju 0 — B A = f; /

for i =1,...,p. Now, instead of (47), we may solve the extended system
SBEM _B];rEM Uggpm,o fBEM
SFEM _BJEM Urgm,o _ fFEM , (49)
BBEI\I BFEIVI G )\ g

GT ¥ e
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where

Seen = diag (Oci[Di,h + I?iThV;Thlki,h + 1@;]) ‘

1=1,...,q

Srem = diag (Oéi[KCC,i - KIC,in_IlyiKCI,i + ]-1]-;]) _—
i=q+1,...,p

and

G = (Bily,...,Byl,), e = —(f7™™M 1) fori=1,...,p.

3

The local boundary element equations in (49) can be written as
;[ Dip + 11‘1;]%0 + aif(z‘Thwi — B\ = f?EM,
a;Vipw; — a; K pu; o = 0,
while the finite element equations are equivalent to

ai[Kcoe + 11'1;]%0 +aiKciur; — B/ = fC,i’

a;Krriup; +aiKeru; o= f

I
Hence, we have to solve the linear system
Vi —Kp, w 0
Ki;r Dy, _B]—BFEM Ugpm,o fBEM
Kir Keg Uy B f; (50)
KCI IZ’CC _BJEM Uppn,o fC 7
BBEI\T BFEIVI G A g
GT vy e
where
Vj, = diag (a;Vin)l_, Dy, = diag (ai[ D + 1,17 ]) 7
Kir = diag (i K11,0)7_ 4 » Koo = diag (a;[Kcoi + 1141;])?:%r1 ,
alkl,h anrlI?CI,l
Kh = ) KCI -
agKqn apKerp

Next we use a subspace projection in order to separate the determination
of ~ from the determination of the rest of the unknowns in (50). Thus, we
introduce the orthogonal projection

P=1-QGG"RG)'aT (51)
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where @ is some suitable diagonal scaling matrix [7, 30]. Since PTG = 0, the
application of PT to the fifth equation of (50) gives PTG~y = 0 that excludes
~ from the first five equations of (50). Let us represent A in the form

A=Tohg + )., A =QG(GTQG) e (52)

Hence we have to find To), € ker G, i.e. GTTyA, = 0. In particular, the
columns of Ty span a basis of ker G = (range G)*. Hence we also conclude
ToAy = PTu)\y. Therefore we have to solve the reduced linear system

Vi —Kp, w
T n T
Kh Dh _BBEMPTO Uggn,o
Ky Ker Uj (53)
Ker  Kee =Bl PTy | | %eso
T(;FPTBBEM T(;FPTBFEM /\0

f g T Bosnide
= f[
fc + Bl:‘rEl\IAe
TS PTG
Once the vectors w, tgpy o5 Ugs Uppy,, a0d Ay are defined from (53), we get A
from (52), v from the fifth equation in (50), i.e.,

v = (GTQG)_lGTQ [g_ BBEMUBEM,O - BFEMUFEM,O} )

and, finally, u from (48).

3.2 Neumann Domain Decomposition Methods

Instead of eliminating the Neumann data in (39) we are now going to eliminate
the Dirichlet data. For this, we introduce global Neumann data as follows: For
any interface I}; = I; N I}, we introduce t;; € H~/?(I};) and set

1 1 L

ti(z) = ti(x),tij(x) = —  ti(x) fora e ly;,i<j,

(67 Q
and for the Dirichlet boundary we introduce t, € H~Y?(I') and set
t; = tor, /. Hence, we have satisfied the Neumann transmission condition in
(39) in a strong sense. Therefore, we have to impose the Dirichlet transmission
conditions and the Dirichlet boundary conditions in some weak sense, i.e.,

/[uz(a:) —uj(z)|rj(x)ds, =0 forall 7y € ﬁ_l/Q(Fij),

Fij
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and
[ui(z) — g(x)]To)r,dsz = 0 for all g € H*I/Q(F)7

,nr

where ﬁ_l/Q(Fij) = (ﬁl/Q(Fij))’. For the interfaces I5;, we find from the
weak formulations of the Dirichlet to Neumann map

(tij,viir, )1y = (Qiti,vir, )y, = (@aSius — Nof,vir,)r,. v € HY2(I;),

and
—(tij, vjir, ) ry = (Qity, vin, )y = (@ Siuy — Ny fyvin, )y, vy € HY2(I).
Hence,

<ai5iuiavi\l“ij>n:j + <aj5jujavjlfij>Fi_j - <tij’vi\nj - Uj|Fij>F7:_7‘

= (Nif, Uz‘\l“,;j>1“ij + (N, f, vjlfij>Fij'

Moreover, on the local Dirichlet boundaries I; N I", we have

(iSius, viirnr) rinr — (to, viinnr) rinr = (Nif, vijrnar) rinr-

The associated variational formulation is to find u; € H'/2(I3) fori =1,...,p,
tij € H-Y/2(I};) for all i < j and to € H~Y/?(I") such that

p p p
Z(%Sﬁuuvﬁn - Z<tijvvi|ﬂ-j — V|, ) Ty — Z<t07vi>ﬂ;ﬂf = Z<Nif7 vi)r,
i=1 i<j i=1 i=1

<Ui\r,;j - uj\Fij’Tij>Féj =0 (54)

<uia 7—0>Fiﬁf = <gv 7'0>I",;ﬁ[‘

is satisfied for all v; € HY/2(I3), 7;; € H-'/2(I};), and 7 € H-Y/2(I).

The saddle point formulation (54) describes a hybrid domain decompo-
sition method [1] which is also known as a mortar domain decomposition
method to couple locally different trial spaces [4].

For a Galerkin discretization of (54), we introduce local boundary element

spaces
Si(Li) = span{i} , 11ty € H'2(I)

of, e.g., piecewise linear basis functions @}k Moreover, for each coupling
boundary I5;, we consider a trial space to discretize the local Neumann datum
tijv

Su(I3;) = span{tyjn } oy © HY2(Iy)
where 1);; , are some basis functions to be defined in an appropriate way. In
the same manner we introduce
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Sp(IM) = span{@bom}gil - H_l/Q(F)

to discretize the unknown Neumann datum on I'. The choice of the basis
functions ¥y, and g, is very sensitive, since we have to ensure local inf-
sup conditions which are related to the saddle point formulation (54), i.e.,

cs ITijnll g-1/2(r,,)
(Tijs Vil — Vi ) I

< sup
(vi,h,,’Uj,h)ES}IL(Fi)XS}IL(Fj) \/”vi,h\f‘m

|§'Il/2(1—’1‘,j) + ”vj,h\ﬂzj |?{1/2(F7:J)

For appropriate choices of the trial spaces Sy, (I;) and Sy (I") see, for example,
[57] and the references given therein.

The Galerkin discretization of the variational problem (54) is equivalent
to a set of linear equations which can be written as

P P
QFEM/BEM T T T _
E :Si,h U; — E (M 5, — My )t — E My nto = £y
i=1 i<j i=1
Mmhui — Mji7huj = 0,
Mo; pu; =g

with the discrete Steklov—Poincaré operator as defined in (16) for a finite ele-
ment approximation, and as given in (27) for a boundary element discretiza-
tion. Moreover,

Mg n[m, k] = (@i s Yijm)
Mji’h[m, k] = <(p},ka Q/Jij,m>ﬂjv
MOi,h[ma k] = <9011,k7 wO,m>ﬂ:J'

By reordering all degrees of freedom we then obtain the coupled linear system

Iij»

Sirn _Ml;rEM Uggn fBEM
Sren _M;:M Uppn = fFEM (55)
Mzen Mrpu 3 g

which is of the same structure as the linear system (47). In fact, when consid-
ering conforming local trial spaces S} (I) and choosing Sj,(I3;) and Sy (I") to
be spanned by biorthogonal basis functions 1;;, and g ,, respectively, both
linear systems (47) and (55) will coincide. In general, we may apply all the
transformations which are used to reformulate the linear system (47) to solve
the linear system (55) in a similar way, we skip the details.

4 Preconditioned Iterative Solution Techniques

In this section we describe some preconditioned CG-like iterative methods for
solving the linear system (53),
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Vi —Ky, w
K;Lr Dh _B];FEMPTO uBEM,O
Kir Ker Uy
Ker I?CC _B;EMPTO Upmn,o
T(;FPTBBEM TJPTBFELI >\0
0
fBEM + B];FEMAC
fc + B;‘rEMAe
T, PTg
Since V, = diag(o;Vip) and Kjr = diag(a; Kr,;) are block diagonal and
therefore easily invertible we may first eliminate the vectors w and wu; to
obtain

Seem _B];FEMPTO Uggnr,o
Srem _BI;FEMPTO Uprm,o (56)
T()TPTBBEM T(;FPTBFEM )\0
fBEI\I + B];FEI\/IAC
= fC _KCIK]_Il.fI_‘_BI;rEM)‘e
TSPy

Eliminating g, , and gy, , we have to solve the Schur complement system
of (56),

F)\y = T, P'BSB'PTy\, = f. (57)

Since the system matrix in (57) is symmetric and positive definite one may
use a preconditioned conjugate gradient scheme to solve (57). For this, an
appropriate preconditioner C'r is needed, which is spectrally equivalent to the
Schur complement matrix F'. Another choice is the application of a Bramble—
Pasciak conjugate gradient scheme [5] to the one—fold saddle point problem
(56). For this, besides C'r also preconditioners Cs = diag(Cs,) for the local

discrete Steklov—Poincaré operators Si?l/FEM are needed. A third possibility
is to use a CG-like iterative method to solve the two—fold saddle point problem
(53), see [33, 60]. Then, also preconditioners Cy, and Ck, for the local matrices
Vi.n and Ky ; are needed, respectively.

Following [36] we can define the scaled hypersingular BETI preconditioner
Cnt = (BC,;'B")'BC'D)C'BT(BC'BT) ™! (58)

where C,, is some diagonal scaling. Note that there hold the spectral equiva-
lence inequalities [36, Theorem 3.2]
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of (Cpp,p) < (Fpu,p) < cf (1+log(H/h))*(Crp, 1)

for all u € ker GT where the positive constants ¢f” and ¢l are independent
of the local mesh size h, the subdomain diameter H, the number p of sub-
domains, and of the coefficient jumps. The preconditioner (58) is based on
local realizations of the discrete stabilized hypersingular boundary integral
operator with respect to all subdomains, independent of whether a finite or
boundary element discretization is used locally.

To construct preconditioning matrices Cg, for the local discrete Schur
complement matrices §f PR e will apply the concept of boundary integral
operators of the opposite order [51]. Based on the local trial space S} (I) of
piecewise linear basis functions 90; . as used for the Galerkin discretization of
the local hypersingular boundary integral operators D; we define the Galerkin
matrices

Vi,h[gv k] = <Vi9011,k79011,é>1“m Mi,h[ga k] = <§Dzl,kasozl,é>ﬂ

for k,/ =1,..., M; and the application of the resulting preconditioning matrix
is given by S
Cgl = M\ VipM;,! fori=1,...p. (59)

Moreover, there hold the spectral equivalence inequalities

) / )
7 (Cs,v,0,) < (87 wg,0;) < 65" (Csv,0;)

Q 2
for all v, € RM:.

For the definition of preconditioners Cvy; for the local discrete single layer
potentials V; 1, there exists a wide variety of different possible choices. Here,
we only mention multilevel methods [18, 53] which are based on a given mesh
hierarchy or algebraic multilevel techniques [35, 38, 50].

For finite element subdomains one may also use geometric or algebraic
multigrid methods to construct preconditioners C'k, for the local finite element
stiffness matrices Ky ;, see, for example, [15] and the references given therein.

5 Conclusions

In this paper we have provided a unique approach to both the Dirichlet and
the Neumann domain decomposition techniques. The all-floating tearing and
interconnecting technology is a very general and powerful technique. Elimi-
nating more or less variables results in symmetric and positive definite Schur
complement problems, one—fold or two—fold saddle point problems which can
be solved by preconditioned conjugate gradient methods. We have used bound-
ary element technologies for constructing the required block preconditioners
for both the boundary element and the finite element blocks. There are many
papers showing the efficiency of FETI methods including the efficiency in
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large—scale parallel computations, see, e.g., [16, 29, 44]. Numerical results for
BETI and coupled BETT-FETI methods can be found in [33, 34, 38].

The methods and techniques discussed in this paper are not restricted to

the potential problem. They can be extended to linear elasticity problems
as well [38]. The generalization to three-dimensional electromagnetic prob-
lems usually considered in H(curl) is certainly more challenging, see [22] for
the symmetric coupling and [54] for FETI-DP methods. Coupled finite and
boundary element tearing and interconnecting solvers for nonlinear potential
problems were discussed in [34].
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Summary. We analyze the h-p version of the BEM for Dirichlet and Neumann
problems of the Lamé equation on open surface pieces. With given regularity of the
solution in countably normed spaces we show that the boundary element Galerkin
solution of the h-p version converges exponentially fast on geometrically graded
meshes. We describe in detail how to use an analytic integration for the computation
of the entries of the Galerkin matrix. Numerical benchmarks correspond to our
theoretical results.

1 Introduction

It is well-known that an appropriate combination of mesh refinement and poly-
nomial degree distribution (the hp-version with geometrically refined graded
meshes) may lead to an exponential rate of convergence, even in the presence
of singularities (for the FEM see [6, 7], and for the BEM see [8, 10, 11, 17]).
The approximation strategy for such hp-methods is to use polynomial degrees
of lowest order where solutions behave singularly and to use high order poly-
nomials where solutions are smooth. This strategy has the advantage that it
completely avoids the approximation analysis of singular functions by high or-
der polynomials. This differs from the situation for a pure p-version, see [3, 2].

In this paper we consider the hp-version of the boundary element method
(BEM) for Dirichlet and Neumann problems of the Lamé equation in
Q2 :=R3\I', where I' is a smooth open surface piece with a piecewise smooth
boundary curve. That is:

For given uy,uy € (H'/?(I"))* with u; — uy € (H'/2(I'))? (Dirichlet) or
for given t,ty € (H~'/2(I"))® with t; —ty € (H~/2(I"))® (Neumann) find u
satisfying
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A*u = pAu+ (A + p) graddiva =0 in 2, (1)

u|r, = uy,ulp, = us (Dirichlet) (2)

T(u)|, = t1, T(u)|, = to (Neumann) (3)

u(z) = o(1), 0 u(z) =o(|z|™1),j =1,2,3, |z| — co. 4)

81‘]'

Here, I, i = 1,2, are the two sides of I" and > 0, A > —2/3u are the given
Lamé constants.

The corresponding Neumann data of the linear elasticity problem are the
tractions

0
T(u) = Mdivu)n + 2”82 + pn X curlu on Ij,i = 1,2, (5)

where n is the normal vector exterior to a bounded domain 2, such that

I" C 012
Let G(z,y) € R3*? denote the fundamental solution of the differential
operator A*, i.e.

A+ 3 1 At p (fﬂ—y)(:v—y)T}
Gz,y) = I . (6
(z,y) Arp(\ + 2p) {|a:—y| DI b3 o —yP )

The problem (1)—(4) can be formulated as an integral equation of the first
kind, see, e.g. [4, 5, 20, 21]:

Dirichlet:
u € (HL.(R3\I"))? is the solution of the Dirichlet problem (1), (2) and (4) if

and only if the jump of the traction t := T(u)|r, — T(uw)|r, € (H™ / (N))?
solves the weakly singular integral equation

/Gmy y)dsy =g(z), xzel (7)

where

g(2) = L (w +ua)(2) + /P T, Gz, y)(w — us)(y) ds,. (8)

2

The solution t of (7) yields the solution of the Dirichlet problem (1), (2) and
(4) via the representation or Betti’s formula

u(z) = /F (Gl y)b(y) — (T, Gz, y)) (i (4) — us(y))) dsy, z ¢ T

The Galerkin scheme for (7) is given by: Find ty € SPO(I7) c (H-Y*(I"))?
such that for all v € SPO(I'™M)

(Vt,0) = (g,v) 9)
where (-,-) denotes the duality pairing of (HY2(I"))® and (H~Y2(I"))3.
3

The symmetric bilinear form (V-,-) is positive definite on (I:I 1/2 (F)) X

(H=/2(I"))? giving the energy norm ||t||y = (Vit,t)1/2.
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Neumann:

€ (H} (R3\I"))? is the solution of the Neumann problem (1), (3) and (4)
if and only if the jump of the displacement ¢ := u|p, —ulp, € (HY?(I"))?
solves the hyper-singular integral equation

Wola) = ~T, [ (1,G(e.0) $)ds, =f@), ael  (10)
where )
(o) = (0 +2)(@0) - T, [ Gt —t)w)ds,. (1)

The solution ¢ of (10) yields the solution of the Neumann problem (1), (3)
and (4) via the representation or Betti’s formula

u(z) Z/F(G(%y)(tl(y)—tz(y))—(TyG(%y))tcb(y)) dsy, x &I

The Galerkin scheme for (10) is given by: Find ¢, € S (I'*) C (H'/?(I'))?
such that for all ¢ € SP1(I')

(Wo,v) = (f,¢) (12)
where (-,-) denotes the duality pairing of (H~Y/2(I"))* and (H'/2(I'))3. The
symmetric bilinear form (W, -) is positive definite on (H/2(I"))?x (HY/?(I"))?
giving the energy norm ||¢|w = (W, ¢)/2.

Both Galerkin schemes (9) and (12) converge quasi-optimally in the energy
norm with algebraic orders of convergence for the h- and p-versions, namely
of order O(h'/?p~1). This follows by extending corresponding results for the
Laplacian [1, 3, 19, 20, 22, 26]. These low convergence rates result from the
singular behavior of the solutions t of (7) and ¢ of (10) near the boundary
of I'; this describes the well-known behavior of the displacement and traction
near the edges of the crack [24, 26], cf. [25]. On the other hand, if we use an
hp-version with a geometrically refined mesh towards the edges of the surface
I' we obtain even exponentionally fast convergence (cf. Fig. 3 and Fig. 4).
Especially, as shown below, there hold the following error estimates for the
exact solutions t of (7) and ¢ of (10) and the Galerkin solutions t y € SP:0(I'?)
of (9) and ¢ € SPL(I?) of (12), i.e.

It —twllv < Ce™ g = gyllw < G (13)
with constants C,b > 0 independent of N (see Theorems 4 and 5 below, c.f.
10, 13, 18, 23)).

Another important issue is the implementation of the hp-version for the
Galerkin equations itself. In this paper we explicitly describe how analytic
integration can be used in the computation of the entries of the Galerkin ma-
trices. The trick is to reduce the integrals for Lamé-case to simpler ones which
already have been used for the computations of the integral operators belong-
ing to the Laplacian [16]. Numerical benchmarks underline our theoretical
results.
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2 The hp-Version with Geometric Mesh

In this section we introduce the boundary element spaces for the hp-version
together with countably normed spaces.

Now we define the geometric mesh on a triangle F'. This is no loss of
generality because every polygonal domain can be decomposed into triangles.
We divide this triangle into three parallelograms and three triangles where
each parallelogram lies in a corner of F' and each triangle lies at an edge of
F but does not touch the corners (see Fig. 1). By linear transformations ;
we can map the parallelograms onto the reference square Q = [0,1]? such
that the vertices of F' are mapped to (0,0). The triangles can be mapped by
linear transformations @; onto the reference triangle Q = {(x,y) € Q|y < =}
such that the corner point of the triangle in the interior of F' is mapped
to (1,1) of the reference triangle. By Definition 1 the geometric mesh and
appropriate spline spaces are defined on the reference element . Analogously
the geometric mesh can be defined on the reference triangle Q (see Fig. 1).

Fig. 1. Geometric mesh with ¢ = 0.5 on the triangle F

Via the transformations ¢, L P ! the geometric mesh I can also be de-
fined on the faces of a polyhedron. The approximation on the reference square
is the more interesting case because it handles the corner-edge singularities.
Therefore we deal in the following only with the approximation on the refer-
ence square.

Definition 1 (geometric mesh). Let I =[0,1]. For 0 < o < 1 we use the
partition IV of I into n subintervals [xx—1,zx], kK =1,...,n, where

x9 =0, rp=0""% k=1,...,n (14)

With I we associate a degree-vector p = (p1,...,pn) and define SP"(I") C
H"(I) as the vector space of all piecewise polynomials w on I having degree

pj on (xj_l,l‘j), Jj=1,...,n, e w|(flf]'—1,flfj) € ij((l‘j_l,ﬂ?j)).
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Let Q = [0,1] x [0,1]. For 0 < o < 1 we use the partition Q" of Q into n?
subsquares Ry

R = [zp—1, 28] X [w1—1, 2], (K, l=1,...,n), Q= U R (15)
k=1

With QI we associate a degree vector p = (p1,...,pn) and define SP"(Q2) C
H"(Q) as the vector space of all piecewise polynomials v(xz,y) on Q having
degree py, in x and p; iny on Ry, k,l =1,....n, i.e. v|r,, € Py, p,(Ri1)-
The index v € {0,1} in SP"(I7?) and SP"(QL) determines the regularity of
the piecewise polynomials, i.e. discontinuity in case of r = 0 and continuity in
case of r = 1. For the differences hy, = x) — xp_1 we have with A\ = (1—0)/o

1 1
hy = Tp—Tp_1 = xk,l(g—l) < x(a—l) =x\, Vz€|rp_1,zk] (2<k<n)
(16)
Then we have by construction:
SP(Iy) x SPT(1g) € SPT(Q7) (17)

Fig. 2 shows the geometric meshes for o = 1/2 and n = 4.

4

4 0.5
/10.5
0.5
4
0.25 los
P1 P2 P3 22
0
0 0.25 0.5 1 0 0.25 0.5 1

Fig. 2. Geometric mesh on the square plate (o = 0.5, n = 4).

Now we define countably normed spaces on the reference element () using
Cartesian coordinates.

Definition 2 (countably normed spaces Bj(Q)). Let 3 be a real number

with 0 < 8 < 1. The weight function g1 = Pg.a.1(z,y) is for a = (o1, a2)
and an integer [ > 1 defined by

min(a;—1,a1+az—1) min(az—1,a1+az—1)
aytoaz—I— aytaz—I— :
Dp0l = P § My 1tz "o yﬁ E potaz V2902
y1=max (a1 —1,0) ~yo=max(az—I,0)

(18)
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Let

DO‘ _ 8|O{‘ — 8o¢180¢2
dxrgyee T Y

The weighted Sobolev spaces for integers m,l with m > 1> 1 are defined by
Q) = {u cue HYQ) for 1 > 0, (19)
95,0, D% 12(q) < 00 forl < |af < m},

with the norm
el gy = ullEi-s gy + > Z / |Du(z, ) P30 (. y) dy dx - (20)
k=l |o|=k

and the semi norm

i =2 5 [ D P e dyan )

k=l |o|=k

The countably normed spaces for | > 1 are defined by
BY(Q) = {uiue H'Q), |95.01Du] 2 < Cd*'(k ~ 1)
forla|=k=011+1,...,; C>1,d>1 independent ofk}. (22)

If we would like to emphasize the dependence on the constants C,d we will
write BlB(Q) = Blﬁad(Q), etc.

Theorem 1. [12] Let Q be the reference element and let ¢ be the linear
transformation from a parallelogram, lying in a corner of the triangle F,
to the reference element Q). Then, for | = 1,2, u € BﬁCd(go(Q)) implies
uop~le Bﬁ,C,d(Q) where C,d (resp. C,d) are the constants in the definition

of BE(Q) (resp. B/lg(cp(Q))) For the case | =1 the reverse implication holds
as well.

The exponentially good approximation properties of splines on our geometric
meshes for general functions u € BE(Q) (I = 1,2) are given by the following
theorem (see also [12, 15, 17, 18]).

Theorem 2.

(i) Let u € Bé(Q) with 0 < B < 1. Let Q2 be a geometric mesh and assume

p=(p1,--,pn), pr = [u(k = 1)] for some p > 0. Set N = dim SP0(Q7).
Then there exist constants Cq,by > 0 independent of N, but depending on

o, 1, 3, such that the L?-projection un € SPO(Q") of u satisfies

4
lu — un| L2y < Cre VN, (23)
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(i) Let v € Bg(Q) with 0 < B < 1. Let Q¥ be a geometric mesh and assume

p=(p1,---0n), P1 = 1, pk = max(2, [u(k —1)]+ 1) (k > 1) for some
pw > 0. Set N = dll’IlSp’ (Q1). Then there is a spline function vy €
SPH(Q™) and constants Cz,by > 0 independent of N, but dependent on
o, 1, 3, such that

lo = vn ) < Cae YN, (24)

(i) Letv € B}_,(Q)QCO( ), vlag = 0 with 0 < < 1/2. Let Q7 be a geometric
mesh and assume p = (p1,...,Pn), p1 = 1, pr = max(2, [u(k — 1)] + 1)
(k > 1) for some u > 0. Set N = dim SP1(Q™). Then there is o spline
function vy € SPH(QT) and constants C3,bs > 0 independent of N, but
dependent on o, i, 3, such that

4
||’U—'UN||1:11/2(Q) S C?, 67b3 \/N (25)

Now, we want to recall the typical structure of the solutions of our prob-
lems for sufficiently smooth right-hand side functions g and f.

Theorem 3. [24, Theorem 2.3, 2.4 and 2.5] Let V and E denote the sets of
vertices and edges of I', respectively. For v € V, let E(v) denote the set of
edges with v as an end point. Then, the solution t of (7) has the form

Streg+ YT Y U DYt (26)

e€EE veV veV e€ E(v)

with a reqular part t.eq, edge singularities t°, vertex singularities t¥ and edge-
vertexr singularities t<U. These terms result from applying boundary traction
to the corresponding decomposition of the solution.

Accordingly, the solution ¢ of (10) has the form

P=gt D S+ DY DY o~ (27)

eel veV veEV e€ E(v)

Checking the specific terms (26) and (27) , which are given in [24], one re-
alizes that these terms t¢,t%, t¢” and ¢°, ¢*, ¢°* belong to countably normed
spaces. Therefore we can argue as done in [10] and obtain the following con-
vergence results.

Theorem 4. Let the right hand side g in equation (7) be piecewise analytic,
let t be the solution of (7) and let ty € SPO(I'™) be its Galerkin approzimation
defined by (9). Then, with N = dim SPO(I'"), there holds for any a > 0

4
1t =t llg1/2(rys < Ce VN +ON) (28)

for constants C,b > 0, depending on o, p and «, but independent of N.
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Theorem 5. Let the right hand side f in equation (10) be piecewise analytic
and let ¢ be the solution of (10) and let ¢ € SPH(I7) be its Galerkin ap-
prozimation defined by (12). Then there holds for all o > 0

= dnll o (ryys < Ce VN + O(N™) (29)

for constants C;b > 0 depending on o, pu and «, but not depending on
N = dim S»Y(I™).

Remark 1. Due to the splittings (26) and (27) into finitely many singularity
terms the regular remainder terms te; and ¢,., have only restricted reg-
ularity, even for given smooth right hand sides. On the other hand, even
taking infinitely many singularity terms, would not automatically guarantee
that the solutions t and ¢ themselves belong to countably normed spaces.

To our knowledge this is an open problem. Therefore we get the additional
O(N~%)-terms in the estimates (28) and (29).

3 Implementation of Galerkin Scheme

Assume that the surface piece I' € R? can be decomposed into triangles
and parallelograms, i.e. [' = Uf\il I;, with I pairwise disjoint and I is the
affine image of the reference square [ = [—1,1]? or the reference triangle
A={(t1,t2) : 0<t; <1—1ty <1}. That means

I; = {aitl + bito + x; - (tl,tg) S Q}, Q S {A,D} (30)

depending on whether I is a triangle or a parallelogram, with a;, b;, z; € R?,
i = 1,...,N. Here we investigate only basis functions whose restriction to
I; are polynomials. Effectively, we compute the integrals only for monomi-
als as test- and trial-functions, from which all other basis functions can be
constructed.

For Q € {A, O} let

L R=1
e {t:(t17t2)—>$:ait1+bit2+xi (31)

be the affine transformation from the reference element A or O to I; with
o | = lai x b;|. We will write @ for A or [J, respectively, if the expressions
hold for both cases. Then the basis functions on I7; are defined by

Phu(2) = Pu(F; (2) = G o F ' (z) (32)
with @r;(t1,t2) = thth for x € I; and ¢}, () = 0 otherwise. The vector valued
test and trial functions ¢ restricted to an element I'; can be represented as
linear combination of this monomial basis functions ¢i,(z), i.e. we have

3
s = Z e,¢r () Z C;cl @cl
r=1

with e; = (1,0,0),es = (0,1,0),e5 = (0,0,1).

I
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Single layer potential

Using (6) the single layer potential is then given by

3
) :/FG(%ZJ) )dsy = Zzerzzckz/ Grs(2,9) i (y y) ds,

i=1r=1 s=1 ki

and the corresponding bilinear form reads %
Vo) = [ [ 000Gl 9)0u(a) ds, s (34)

In the following we are interested in the computation of the term
V@)= [ Grle e s, (3)

We will use the following form of the fundamental solution (6)
1 - —Ys
ORI CCS TRL

1 1 A 0 Ys — Tg (36)

Tample =y Smp(A+2u) Ay, |y — x|
By extending the affine transformation F; to
Fi(t1,t2,t3) = a;t1 + bita + nits + x;,

where n; is the normal direction on the patch I, we obtain the following
integral

irs 1 1 :
szlm (J?) = Arp /I", |x_y|5rs<plltcl(y) dSy

B A+ p 0 ys — T
8mu(A+2u) Jr, Oyr |y — 2
1 OF;

1 -

A+ p Fi(t) — )5 _
&m A2 |/ Z 8yr at,, |F )—x| Pra(t) dt
1 A+ H aFl PR
47w| ot |5m (@) - 8mu(\ + 2/1)' ot B (@)

Sﬁzl (y) dsy

Defining the following elementary integrals, analyzed in [16]

127 (a, b, c) ::/t’ftl2|at1+bt2+c|2pdt2dt1, Qe{a0r (37
Q
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we can identify

Gra(t) / thth
dt = dto dt
(@) = /Q|F()—x| o laits + bt +a; —a|

= 1972 (a3, by, 21 — ). (38)

It remains to reduce the integral B,i’lrs (x) to alinear combination of elementary
integrals. We can compute

-1 bi X Ny
8tp = 8?/7« = (ai bi n; )_1 = 1 n; X a; . (39)
Yy ot, ai(b; x n;) a X b

Therefore we obtain
1
Z 8% (% sl x ) ((bi X 1) 0r, + (15 X @3)7Op, + (a5 X bs)rOy,) (40)

and consequently

i,rs F; ) - JJ)S -
Bkl /Zayr atp |F ) | @kl(f’)dt

_ / ((bz X ’I’Li),«atl (’I’Lz X ai)r(‘)m + (ai X bi)Tat;}) (Fz(t) - x)stktl dto dt
0 a;(bi x n;) \Fy(t) —a 2720
(ai X b; )

a;(b; X n;)

(ni X ai),,
a;(bi x n;)

(bi X ni)r 1,8

) Cid’ (@) + Dii (@) + Eif’ @)

For the last integral we obtain

Ei,S(x):/a (aity + bitz + nits + z; — x)s

kit |aity + bita + nits + x; — x|
(ni)s Kl

= 1 to dto dt

/|ait1+bit2+$i—$|12 2T

_/ (aitl + bita +x; — x)s(ni(xi — CL'))
Q |aits + bita + x; — x|3

Rl dty dty

thtl dto dty

Q,—3 Q,
= (ni)slkz * (@i, by, g — x) — (a;)s(ni(xi — ))Ik.:,-ll (@i, bi, z; — x)
Q-3
_(bi)s(ni(xz ))Ik I+1 (ai;bi;xi —CL')
(@i — ) (i — )T (as, biy s — ).
The integrals C’,i’ls (z), Di’ls (z) can be treated by partial integration, but we

have to distinguish between triangles and parallelograms. On parallelograms
we simply obtain
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azt1+bt2+xz_ )

e (x / thtl dto dt
ki Ylaity + bita + z; — 7 20720
t bit — 1=1
/ az 1+ 2+ x; ) tktz dtg
1 |a1t1+bt2+1’1 | t1=—1

(at1+bt2+xl— )

Sth e dty dt
|a1,t1 + bitg + x; — | 2T

o

and on triangles there holds

1,8 (azt1+bt2+xz_ )
Cy = O,
(@) / Y aity + bita + @ —

/1tk(1_t)(at1+b(1—t1)+xz— )s
o ! Yolaity + bi(1—ty) 4@ — x|

(btg—l—l‘z— )
|bite + x; — x|

Rt dty dty

—(51“0/ tl

Double layer potential

(aztl + bito + x; —

dty — k
2 A |G,151-|—b152-|—$z |

Using the traction operator

) B )
(Tod(y))r = An, - Ge(y) + pny - br(y) + pme oy be(y),

T

we can define the double layer potential operator by

107

z)s SR dty dty .

N 3
Ko(o)i= [ (,600) ¢, =YY e > S ey "@) (1)
r i=1r=1 s=1 kl
with
. 3 . . .
Ky(x) =) (Ani,SF,;f“ () + pni  Fy) ™ () — Mni,tF,;ftS(x)) (42)
t=1
and
B = [ g Gre(wn)ola(s) dsy (43
We can decompose F};"*(z) as follows
; A+ 3u 0 1 ,
F (@) = 5 / (y)d
kl (l‘) 47TM0\ + 2# rs Ay |{E N y| Sakl(y) Sy
A+ K / xr - ( ys) ]
? d
471_“ A + 2/-// 8yt |l‘ _ y|3 Pri (y) Sy
A+ 30 / -
= t)dt
Arp(\ + 2u Z ayt 8t |F,(t |‘p’”( )
A p t) — x)r (Fi(t) —x)s _
t)dt
Amp(\ o+ 2p0) '/ Z ayt at E@y—ap O
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A+3u | OF .
=: OrsH
drp(X + 2M)| ot | b (@) +

A+ 12 aF’L 7,78t
| W (@)
drp(N+2p) Ot
As before, we can represent the integrals H,i’lt(a:) and J,i’lmt(a:) in terms of the
elementary integrals Ig’p(ai, bi,x; — x). We have

,t _ ~

(bi X ’I’Li)t .
=: L
az(bz % ni) kl(x) +

(’I’Li X ai)t
ai(bi X ni)

(ai X b?,)t
ai(bi X nz)

M (z) + Ny ().

The last integral becomes

. 1
Ni(z)= [ O th el dto di
() /Q t3|ait1+bit2+nit3+xi_x| S

ni(z; — ) . Q.-
= — t to dta dty = —ni(x; I ; a;,bi, x; —x).
/ laity + bty +x; —x3 ! 2o (@i — @) ( )

The integrals Li,(z), Mj,(x) can be treated like C};*(x), D} (z) by partial

integration and J;l”t

(z) is analyzed analogously.
Hypersingular integral operator

We implement the Galerkin matrix of the hypersingular integral operator via
integration by parts which yields [9, 16]

(Wao,¢) = // or |x—y| Z (curlr ¢ (2))s(curly ¥y (y))s dsy dsg

+, / / Z ersi(curly ¢y (x))s iz _" |€nkm(curlrwm)k dsy ds,

r,s,k,l,m,n=1

_4/14 / / Z 67"5l CllI‘lF ¢l( ))5 rn(xvy)snkm(curll—' wm)k dsy dsm

r,8,k,l,m,n=1

// A |x—y| Z (curlr ¢p(2))r (curlp ¥s(y))s dsy dsa (44)

where curlpu(z) = n(m) x gradp u(z), and e;5; is the total antisymmetric
tensor (€123 = 1). Using (44) the entries of the Galerkin matrix are computed
analytically with the software package maiprogs [14].

4 Numerical Results

In this section we present numerical results of the above described Galerkin
scheme for various examples. We perform h-, p- and hp-versions. Young’s
modulus (E-modulus) is E = 2000 and the Poisson number is v = 0.3.
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For the computation of the error we use [|¢ — dyll3 = |@lE — llon %
and [t —tn|[§, = [t} — [t~ 7

Ezample 1. For the Dirichlet problem of the Lamé equation with boundary
data g(z1, 72, 23) = (—22,71,0) in (7) on the square I' = [—1,1]? we know
the energy norm of the exact solution by extrapolation

l[t]|v = 115.0355908.

In Fig. 3 we present the numerical results for the Dirichlet problem. The
convergence rates which are given in Table 1, clearly confirm the exponentially
fast convergence of the hp-version with geometric mesh, which is expected due
to Theorem 4.

Fig. 3 shows clearly the exponentially fast convergence of the hp-version
on the geometric mesh with mesh grading parameter ¢ = 0.17. The pa-
rameter 4 = 0.5 describes the increase of the polynomial degree, namely
(¢;p),(q,p), (¢,p+1),(q,p+1),(¢,p+2),(¢,p+2),... in the zo direction and
correspondingly in the x; direction, for a geometric mesh consisting of rect-
angles only and refined towards the edges. Very good results are also obtained
for the h-version on an algebraically graded mesh towards the edges with mesh
grading parameter 5 = 4.0; this is in agreement with the theoretical results in
[26]. Also Fig. 3 and Table 1 show that the uniform p-version converges twice
as fast as the uniform h-version [3].

100
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T conf-grad-h-4-beta=4.0 ------
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‘ : % h T
» < . B ~+
X%
10| « Xl . el ~+ |
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> *.
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Fig. 3. Weakly singular integral equation (Lamé), Example 1.
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Table 1. Convergence rates for the weakly singular integral equation on the Square.

N [t—tnllyv o p N [t—tnly o N [t—txv ol
h-Version, p=1 p-Version, 4 elements hp-Version, o = 0.17, 4 = 0.5
12 65.977067 0 12 65.977067 12 65.977067

48 45.338115 0.271 1 48 36.205111 0.433 48 31.511011 0.533
192 31.978059 0.252 2 108 26.548835 0.382 192 12.121016 0.689
768 22.804025 0.244 3 192 20.914871 0.415 432 5.8540817 0.897
3072 16.289194 0.243 4 300 17.265718 0.430 972 2.6642368 0.971
12228 11.618080 0.245 5 432 14.701526 0.441 1728 1.3123139 1.231
6 588 12.801060 0.449 3072 0.3934324 2.094
7 768 11.335587 0.455
8 972 10.170859 0.460
9 1200 9.2227497 0.464
theoretically: 0.250 theoretically: 0.500

Example 2. For the Neumann problem of the Lamé equation we consider the
square I" = [—1,1]? and choose f = (—z2,21,0) in (10). Via extrapolation we
get ||||lw = 0.04005011548.

In Fig. 4 we present the numerical results for the Neumann problem. The
convergence rates which are given in Table 2, clearly confirm the exponentially
fast convergence of the hp-version with geometric mesh, which is expected due
to Theorem 5.

Table 2. Convergence rates for the hypersingular integral equation on the square.

N J¢-dnlw o p N lp—dylw o N lo—¢ylw a
h-Version, p=1 p-Version, 4 elements hp-Version, o = 0.17, 4 = 0.5
27 0.0258942 1 27 0.0258942 3 0.0400501
147 0.0170821 0.245 2 147 0.0139794 0.364 27 0.0153835 0.435
675 0.0114749 0.261 3 363 0.0094512 0.433 147 0.0061827 0.538
2883 0.0078521 0.261 4 675 0.0071976 0.439 363 0.0035278 0.621
51083 0.0058224 0.448 867 0.0012488 1.193
6 1587 0.0048894 0.457 1587 0.0004945 1.532
7 2187 0.0042117 0.465
8 2883 0.0037193 0.450
theoretically: 0.250 theoretically: 0.500

Fig. 4 shows clearly the exponentially fast convergence of the hp-version
on the geometric mesh with ¢ = 0.17 and g = 0.5. Again we obtain very
good results for the h-version on an algebraically graded mesh towards the
edges with mesh grading parameter § = 4.0; which agrees with [26]. Also
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Fig. 4. Hypersingular integral equation (Lamé), Example 2.

Fig. 4 shows that the uniform p-version converges twice as fast as the uniform
h-version [3].
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Summary. We consider the wave equation in a time domain boundary integral for-
mulation. To obtain a stable time discretization, we employ the convolution quadra-
ture method in time, developed by Lubich. In space, a Galerkin boundary element
method is considered. The resulting Galerkin matrices are fully populated and the
computational complexity is proportional to N log? NM?, where M is the number
of spatial unknowns and N is the number of time steps.

We present two ways of reducing these costs. The first is an a priori cutoff strat-
egy, which allows to replace a substantial part of the matrices by 0. The second is
a panel clustering approximation, which further reduces the storage and computa-
tional cost by approximating subblocks by low rank matrices.

1 Introduction

This paper is concerned with the numerical solution of the wave equation
in an unbounded domain. Problems governed by the wave equation arise in
many physical applications such as electromagnetic wave propagation or the
computation of transient acoustic waves. When such problems are formulated
in unbounded domains, the approach of retarded potentials allows a transfor-
mation of partial differential equations into space-time integral equations on
the bounded surface of the scatterer.

Although this approach goes back to the early 1960s (cf. [11]) the de-
velopment of fast numerical methods for integral equations in the field of
hyperbolic problems is still in its infancies compared to the vast of fast meth-
ods for elliptic boundary integral equations (cf. [24] and references therein).
Existing numerical discretisation methods include collocation methods with
some stabilisation techniques (cf. [2, 3, 6, 7, 8, 22, 23]) and Laplace-Fourier
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methods coupled with Galerkin boundary elements in space (cf. [1, 5, 9, 12]).
Numerical experiments can be found, e.g., in [13]. In [10], a fast version of the
marching-on-in-time (MOT) method is presented which is based on a suitable
plane wave expansion of the arising potential which reduces the storage and
computational costs.

In this paper, we consider the convolution quadrature method for the time
discretisation (cf. [18, 19, 20, 21]), and develop a panel-clustering method
to obtain a data-sparse approximation of the underlying boundary integral
equations. In [14], we have developed and analysed a simple cut-off strategy
which reduces the number of entries in the system matrix which have to be
computed while the rest is set to zero. The use of panel-clustering will further
reduce the storage and computational complexity.

In [25, 26, 27] Lubich’s convolution quadrature method is applied to prob-
lems such as viscoelastic and poroelastic continua.

2 Formulation of the Problem

We consider a scattering problem in an exterior domain. For this, let 2 C R3
be an unbounded Lipschitz domain with boundary I'. Let @ be the solution
to the wave equation

OPu=Au+f,in 2x(0,7T),
a(-,0) =wup in £2,
oyu(-,0) = uy in 2,
u=0onTI x(0,7),
for some time interval (0,7") and given data f, ug and us.
To formulate the differential equation as a boundary integral equation, we

introduce an incident solution v and a diffracted solution u in the whole R3,
with @|o = (u + v)|e, where v solves the open space problem

Ofv=Av+ f, nR®x (0,7),
v(-,0) = ugy in R?,
D (-,0) = ugp in R?,
where f,, u;, are prolongations of f and u; to the whole R?, respectively.

Given the solution to the above problem, v, u solves the homogeneous wave
equation

O2u = Au in 02 x (0,T), (1a)
u(+,0) = dyu(-,0) =0 in 2, (1b)
u=gonlI x(0,T), (1c)

where g = —v[py(0,7)-
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When considering a discretisation of the above partial differential equation
on the unbounded domain 2, one has to introduce an artificial boundary with
additional boundary conditions. This is avoided by transforming the partial
differential equation into a boundary integral equation. For this, we employ
an ansatz as a single layer potential

u@¢y:A{Akmx—w¢—7m@JmQ@m (2.0) € 2% (0,T), (2)

where k(d,t) is the fundamental solution of the wave equation,

5(t — d)

k(d7 t) = drnd (3)

d(t) being the Dirac delta distribution. Inserting (2) into (la), we see that
the differential equation is satisfied. Also, the initial conditions are satisfied.
An equation for the unknown density ¢ is obtained by taking the limit to the
boundary. Since the single layer potential is continuous across the boundary,
we obtain the following boundary integral equation for ¢,

K;Akwx—WJ—TM@JMEﬂT=m%ﬂ W) €T x (0,T). (4)

Note that only the two-dimensional surface I is involved in this equation
and not the three-dimensional domain (2. This is one major advantage for
the numerical solution process compared to finite element or finite volume
methods.

3 Convolution Quadrature Method

Discretising (4) directly in space and time, e.g., with a Galerkin method in
space and a collocation method in time, involves the treatment of the Dirac
delta distribution. The resulting integration domains for a boundary element
method are given by the intersection of the light cone (of finite width) with
the triangles or quadrilaterals of the surface mesh which can be of quite gen-
eral shape and, hence, numerical quadrature becomes rather complicated. In
addition, care needs to be taken to obtain an unconditionally stable scheme.

The convolution quadrature approach for the time discretisation leads to
an unconditionally stable scheme (see [20]). The resulting integration domains
are just the boundary elements themselves. Furthermore, the approach allows
a data-sparse approximation of the system matrix by panel-clustering.

To explain the convolution quadrature method, we consider a convolution
of the form

cwmwzéfaﬂwmm,tzo (5)
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Choosing a stepsize At, (5) can be approximated by a discrete convolution
(f *at g)(t,) which will be based on the inverse Laplace transform

1 ¢ st
*td

for some o > 0. The inverse Laplace transform is defined if f is analytic
and for Res > o, |f(s)| < ¢|s|™* for some ¢ < oo and p > 0. Inserting this
representation of f(¢) into (5), we obtain

ft) =

1
211

(e =, [ T tds with y (s,1) 1= | et gmar.

Observe that the function y,(s, -) satisfies the differential equation

Ory(s,-) = sy(s,-) + g,

which can be approximated by a p-th order linear multistep method,

k k
D tnesk(s) = AtY By (synrs—r(s) +9((n+5 —K)AL) . (6)
=0 7=0
with starting values y_x(s) = ... = y_1(s) = 0. We assume that sufficiently

many time derivatives of g vanish at ¢ = 0. Formally, a p -th order approxi-
mation of (5) is then given by

(o)) = o [ Fehnleyis. ™)

211

To see that (7) can be written as a discrete convolution, we multiply (6) by
¢" for |¢| < 1 and RM(O > o and sum over n to obtain

Zyncn - ("% - s)_lig(nmx

. Z;‘ o ozjckf .
with y(¢) := Sk gk . Doing the same for (7), we obtain
j=0

o A
e 1 (s)

§ (f *at g)(t = 27”,/ A ’Y(C) ds E g(nAt)¢

n=0 o+iR

At

-5 (19 stnanc

where we have employed Cauchy’s integral formula in the last step. If we
define w2 by
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) = e, )
n=0
we have
> (frarg)(tn)C" = Zw%” Z (mADC™ =" | D wnt gAY | ¢
n=0 n=0 \ j=0
Thus
(f *at 9)( an 19 AL,

which has the form of a discrete convolutlon.

4 Time Discretisation: Convolution Quadrature Method

In our case, the convolution coefficients are spatial boundary integral op-
erators. The continuous convolution in (4) is approximated by the discrete
convolution,

Z/ =y d ()dly = glatn),  n=1,...N, zel, (9)

where the convolution coefficients w2 (d) are functions of d = ||z — y|| deter-
mined by the power series (cf. (8)) of the Laplace transform

. e—sd
k(d’ 8) - drd”’
2 (d, 72?) = St (10)

As a multistep method, we use the second order accurate, A-stable BDF2
method with

Q) = (@ —1¢+3).

The coefficients of the power series (10) can be obtained by the Taylor expan-
sion of k(d, Wgt)) about ¢ =0,

n e n — 76
g TR 11 e
" n! ocn n! drd  OC™ o

It can be shown that

n/2
11 d 3d 2d
At _ — oAt
wn(d) = nl4nd <2At> ¢ 2t in <\/At> ’ (11)

where H,, are the Hermite polynomials.
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5 Space Discretisation. Galerkin Boundary Element
Methods

For the space discretisation, we employ a standard Galerkin boundary element
method with piecewise constant or piecewise linear basis functions. Let G be
a regular (in the sense of Ciarlet [4]) boundary element mesh on I consisting
of shape regular, possibly curved triangles 7;. Let Py and IP; denote the space
of constant and linear functions, respectively. We denote by

S,LO::{ueLC’O(F) : VneG:u €]P0}

the space of piecewise constant, discontinuous functions, and by
Sop={ueC’(I) : Vreg: (woxi)l, €Pi}

the space of continuous, piecewise linear functions, where y; denotes a regular
mapping of the curved triangle 7; to a planar reference triangle.
As a basis for S_ ¢ we choose

bz(x) = (5”‘, ifze Tj

and the basis for Sy ; consists of the standard hat functions on the planar
reference triangle, lifted to the surface I' by the mapping x;. We generally
refer to the boundary element space by S and its basis by (bi)?il. The mesh
width h is given by the maximum triangle diameter in G.

For the Galerkin boundary element method, we replace ¢’ in (9) by some
@Ay, € S and impose the integral equation in a weak form. The fully discrete
problem consists of finding ¢%, , € S, n=1,2,..., N, of the form

M
¢Zt,h(y) = Z ¢n,ibi(y) ’
i=1

such that
T [ [t = vhmn@an,ar. = [ g tb@ar,
=0 =1 r
(12)
forall1 <k <M and n=1,...,N. This can be written as a linear system
ZAnfj(ﬁj:gnv n=1,...,N, (13)

Jj=0

with the vectors ¢; = (¢;,;)M, and the matrices

= [ [ @R = sobstoeteraryar

and

(gn)k = ,/[‘g(xvtn)bk(x)drz .
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5.1 Efficient Algorithmic Realisation

Before we present a way to reduce the storage requirements, we take a look
at the solution procedure. The problem to be solved is

¢, = <gn ZAn 1¢> n=0,1,...,N. (14)

A straightforward way to solve (14) is to compute (gn > AL i(ﬁi) and

then to solve the system for each n. The required work is however proportional
to N2. When using the following algorithm (cf. [16]) the computational costs
are proportional to N log2 N. The procedure depends on a (small) control
parameter 7.

Algorithm 2 (Recursive solver for block triangular system)

Comment: Main program

begin

solve triangular(0, N);

end;

Comment: The recursive subroutine solve triangular is defined as fol-
lows.

procedure solve triangular (a,b : integer) ;
begin
if b—a <r—1then
for n:=a to b do

n—1
¢n = Aal <gn - Z An—i¢i> (15)

end
else begin
. [b+aT].
m =[50
solve triangular(a,m —1);
for n:=m to b do

m—1
end;
solve triangular(m,b);
end;

end;
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When using fast iterative methods, the computational costs for (15) are pro-
portional to 72 matrix vector multiplications. The special form of (16) allows
the use of the discrete fast Fourier transform (see, e.g., [17]) and the updates
of g can be done in O (M? (b—a)log(b— a)) operations. The procedure
solve triangular calls itself twice with half the dimension. The total com-
putational cost sums up to O (M2N10g2 N) (cf. [17]).

Remark 1. In the following, we will apply sparse approximation techniques to
the matrices A,,. Further research will be concerned with a modification of the
above algorithm making use of the sparse representation of the operator A,,.
Note that already the use of (14) in combination with the fast evaluation of
matrix vector products due to the sparse representation leads to a reduction of
the overall complexity. The total computational cost sums up to O (M sy )
with s < 1.

6 Sparse Approximation of the Matrices A,, by Cutoff

6.1 Cutoff Strategy and Perturbation Analysis

The matrices A,, are full matrices. Thus, storage requirements and compu-
tational complexity for the solution of the fully discrete problem using fast
iterative methods are proportional to M?2. However, a substantial part of the
matrix consists of small entries and can be replaced by 0. To see this, we recall
the definition of the convolution coefficients

n/2
11 d 3d 2d
At = T 24t
w(d) = n!4rd <2At> o7 x4 Hy <\/At> ' (17)

For n = 0, we have

efg Ad
A t
Wo t(d) = drd )
with a singularity at d = 0 and, for n = 1,
1 e72 Adt
wlAt(d) T At or

In Fig. 1, we plot w2(d) for At = 1 and different n. For general At, we have
the relation J
wAt(d) = At 1w} (At) .

The convolution functions have their maximum near d = t,,. Away from
this maximum, the coefficients decay fast. Using bounds for the Hermite poly-
nomials, it can be shown (cf. [14]) that outside the interval
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Fig. 1. The convolution weights wﬁt(d) for At =1 and different values of n.

InA; = [tn — 3V ALt |loge|, ty + 3V At/L,| logeﬂ (18)
we have .
W@l < S v IR, (19)

Given an error tolerance e, we only consider those entries of A, , for which
the possible values of ||z — y|| lie inside I5*. The remaining entries are set to
zero. Let P. C {1,...,M} x {1,..., M} be defined by

P, = {(i,j) : 3(x,y) € suppb; Nsuppb;, s.t. ||z —y| € InAé . (20)
This induces a sparse approximation A, by

Ay (An)igif (i,7) € Pe,
(An)i = {O otherwise. (21)

- - \M
Instead of solving (13), we solve for an approximate solution ¢; = (¢j7i>

. )
i=1
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n
> A, j¢i=g., n=1,...,N, (22)
=0

and we have the approximate solution

M
Phen(y) == Zﬂzmbz(y) (23)
i=1

In [14], the following theorem is proven.

Theorem 1. Let the exact solution ¢ (-,t) of (4) be in H™T(I") for any
t € [0,T]. There exists a constant C > 0 such that, for all cutoff parameters
e in (21) with 0 < € < ChAE, the solution ¢ s in (23) exists and satisfies
the error estimate

880 = @ o t0)

where Cy depends on the boundary data g.

< “tAr? 2 pm+3/2
’H_1/2(F) = CQ(T) (€h At + AP+ h ) 7

Corollary 1. Let the assumptions in Theorem 1 be satisfied. Let
At2 ~ hm+3/2 ’ (24)

and choose
e ~ Tm/2+25/4

Then the solution é%t,h exists and converges with optimal rate

6.2 Storage Requirements

< C(T)R™3/2 ~ C,(T)AL2.
H_l/Q(F)ng( ) Cy(T)

Qth,h - ¢ ('a tn)

The approximation of the matrices A, by sparse approximations A, results
in reduced storage requirements. To determine the storage requirements for
the sparse matrices, assume that the dimension M of the boundary element
space satisfies

cth™? <M< Cih™2 (25)

We further assume that there is a moderate constant C' such that for any
1 <i < M, the subset
Pi={je{l,...,.M}:(i,j) € P},

with P, as in (20), satisfies

(26)

VAL log M
1 52 .

ﬂPiSCmax{ , "
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Table 1. Storage requirements for A.,,.

m =0 m=1
tn = O(Atlog M) CM*ilog? M CM
tn = O(1) CtY2 MY 18 log M CtY/* M 16 log M

This assumption can be derived from the assumption that
ch? < supp b; < Ch?
and that the area of
Rip:={yel : 3zecsuppb;:|lz—y| el

satisfies |R;.,| < CV At ti/2| log(e)| (R;n is part of a ring with radius ¢,, and
the same width as the interval Ifg) Due to Corollary 1, |loge| ~ log M.

With these assumptions, the number of nonzero matrix entries in A can
be estimated by

M
S kP < CMmax{l, \/Attf/Qh’QlogM}.

i=1
Relation (24) allows to substitute /At and the combination with (25) yields

Theorem 2. The number of nonzero entries in the sparse approzimation A,
is bounded from above by

CMmax{l,tiﬂMig*émlogM}.

We distinguish between four cases: The case of piecewise constant and piece-
wise linear boundary elements (m = 0, and m = 1, respectively) and small and
large n (t, = O(Atlog M) and ¢, = O(1), respectively). The storage require-
ments for the different cases are summarised in Table 1. For small n, the stor-
age requirements are significantly decreased. In Section 7, we present a method
for further reducing the storage requirements even when t,, > O(Atlog M).

7 Panel-Clustering

The panel-clustering method was developed in [15] for the data-sparse approx-
imation of boundary integral operators which are related to elliptic boundary
value problems. Since then, the field of sparse approximations of non-local
operators has grown rapidly and nowadays advanced versions of the panel-
clustering method are available and a large variety of alternative methods
such as wavelet discretisations, multipole expansions, H-matrices etc. exist.
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However, these fast methods (with the exception of H-matrices) are developed
mostly for problems of elliptic type while the data-sparse approximation of
retarded potentials is to our knowledge still in its infancies. In this section,
we develop the panel-clustering method for retarded potentials.

7.1 The Algorithm

The panel-clustering can be applied as soon as t, > O(At |loge|). (Note that
for the first time steps the simple cutoff strategy reduces the computational
complexity much more significantly than for the later time steps, see Table
1.)

For t, > O(At|logel), the matrices A,, in (13) are partitioned into sub-
blocks Ay, |sx¢ for some index set s x t C {1,..., M} x {1,...,M}. The sub-
blocks are either replaced by zero, if the block entries are sufficiently small,
or they are replaced by low rank matrices. To explain this approach in detail
we first introduce the basic notation.

Let 7 := {1,2,..., M} denote the degrees of freedom for the space dis-
cretisation.

Definition 1 (Cluster). A cluster ¢ is a subset of Z. If t is a cluster,
the corresponding subdomain of I" is Iy := (U;c, supp (b;). The cluster box
Q: C R3 is the minimal axisparallel cuboid which contains I'y and the cluster
size Ly is the mazimal side length of Q.

The clusters are collected in a hierarchical cluster tree T7.

Definition 2 (Cluster Tree). A tree Tz is a cluster tree if the following
conditions are satisfied.

1. The nodes in T7 are clusters.

2. The root of T1 is I.

3. The leaves of T7 are the degrees of freedom, i.e., L(Tr) = T and the
tree hierarchy is given by a father/son relation: For each interior node
t € Tr \ L(T7), the set sons(t) is the minimal subset in T\ {t} such that

t:Us

s€sons(t)
holds. Vice versa, the father of any s € sons(t) is t.

The standard construction of the cluster tree Tz is based on a recursive bisec-
tion of an axisparallel cuboid B which contains I". The bisection of B yields an
auxiliary binary tree T3. Then, the clusters in 77 are given by collecting, for
any box B € T}, the indices i € 7 which satisfy §; € B, where &; denotes the
nodal point for the i-th degree of freedom. Clusters in T7 which coincide with
their father are removed from 77 and empty clusters are removed as well.

The kernel function k(||z — y||,t) is approximated on I} x s, where (¢, s)
is a pair of clusters which satisfy the following condition. Recall the definition
of the interval I2' as in (18).
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Definition 3. Let ¢ > 0 and n > C'|loge|. Let 0 < n < 1 be some control
parameter. A pair of clusters (t,s) € Tr x Tz is admissible at time step t,, if

V(z,y) € Qe x Qs llz—yll & I3t (27a)

or
(27a) is violated and max {L;, L} < nAtn®. (27b)

The power b in (27b) is a fixzed number which is related to the accuracy of
resulting discretisation.

A theoretical bound on b is b > 1/4 under the condition n > C'|loge|. Numer-
ical experiments indicate that the choice b ~ 0.3 also preserves the optimal
convergence rates. This is shown in a forthcoming paper.

The following algorithm subdivides Z x 7 into a matrix part PSP*™¢ cor-
responding to pairs of indices where the matrix has to be assembled in the
conventional way, a zero part P° where the corresponding matrix entries are
set to zero and a panel-clustering part PP¢, where the system matrix is approx-
imated by panel-clustering. Note that the father/son relation of the cluster
tree induces a father/son structure for pairs of clusters b = (¢, s) by

sons (¢) x sons (s) if sons (¢) # () and sons (s) # ()
¢ X sons (s) if sons(c) =0 and sons(s) # 0,
sons (¢) X s if sons(c) # ) and sons (s) =0
0 () #0 )# 0

if sons (¢ and sons (s

sons (b) :=

Algorithm 3 Let n > C'|loge|. The minimal admissible block partition-
ing of T x T at time step t, is obtained as the result of the procedure
divide((I,I) ,PSparse,PpC,PO) defined by (cf. [15])
procedure divide (b, psparse ppe. PO);
begin
if (b is non-admissible and sons (b) = () then Psparse .= psparsej{]}
else if (b satisfies (27a) then P?:= P’ U {b}
else if (b satisfies (27b) then PP°:= PP°U {b}
else for all b € sons (b) do divide (B, psparse ppe, PO) :
end;

Remark 2. The set P®P?™¢ is empty in most cases since the cluster sizes of the
leaves satisfy
Ly = O(h)

while relation (24) implies for the bound in (27b)
nAtn® = O (nhm/2+3/4nb) :

where m = 0 for constant and m = 1 for linear elements. Hence after a few
time steps, nAtn® > Ch and any pair b with sons(b) = 0, i.e., i,j € T,
satisfies (27a) or (27b).
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Next, we explain the data sparse approximation on the blocks b = (¢, s) €
PP Since w2 (||x — y||) is defined in Q. x Qs we may define its approximation
by Cebysev interpolation:

Dz =yl 2ol -yl = Y LP@LY (w2 =y ),
Ve (Ngq)3
(28)
where £ (resp. /ng)) are the tensorised versions of the ¢g—th order Lagrange
polynomials (properly scaled and translated to Q. resp. Qs ) corresponding
to the tensorised Cebysev nodes z* for Q. resp. y” for. Qs.
The matrix A, is the representation of the bilinear form a,, : S x S — R,

an (6,10) = /F /F W[l — y)@(y)(x)dl, dr,

with respect to the nodal basis (b;)M,. We introduce the convention that,
for any function ¢ € S, the coefficient vector in the basis representation is

denoted by ¢ = (p;);;, i.e., o = Y10, @ibi
The sparse approximation of a, by our combined cutoff and panel-
clustering strategy is given by

an ()~ > iy (AP,

(l,])e Psparse

Yoy (7)1 @) I @),

=(0:8)€PPe ), ye(Ng,)? 7
with the sparse matrix part of A,

(Asparse)‘ = f[‘{i} fF{j} wﬁt(Hx - y”)bj (y) bi (x) drydrﬂﬂ if (7',.7) € Psparse»
" I 0 otherwise,
(29)

the interaction matriz Sén)
(867) = w(la — ") 0<pm<a1<i<s
pv
and the influence coefficients

T (¢ Zw/ LY (2)b; (x)dTy, 0 < pgvp <q,1<i<3.

i€o

The algorithmic realisation of the sparse matrix multiplication based on this
approximation of the bilinear form and the recursive computation of the in-
fluence coefficients J " (1) are structured as follows.
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Phase 1: Computation and storage of the Galerkin operator

(a) Generate and store the cluster tree and the partitioning of Z x Z into
psparse - ppeand PO,
Introduce recursive tree levels 0 < £ < {yax by T7 (0) = {Z} and

Tr(0+1):={o€Tr:3s €Tz (¢) with “o is son of s”}.

Let £yin denote the minimal index such that (i) there exists o € Tr ({iin)
with L, < nAtn® and (i) for all 0 < ¢ < lyi, and o € Tz (£) there holds
L, > nAtn®.

(b) Compute and store the nonzero entries of the matrix ASParse,

(¢) Compute and store the basis influence coefficients

9 (by) = / (b)cg;; (@)b; (x)dTy, 1<i<M, pe(Neg)®. (30)
supp(0;

(d) Compute and store the interaction matrices S{)") for all b € PP©.
Phase 2: Evaluation of a matrix-vector multiplication ¢ = A,

a) For all o € T7 ({1nax), for all p € (N« 3 compute
(a) H <q
T () = %‘Jf?}) (b:) -

For £ = liax — 1, bmax — 2, - -+, fmin, for all o € T7 (£) and all p € (Ngq)3
compute

JW @)= > > s dP () with . = L8 (7).

s€sons(o) e (Ng, )

(b) Let
T2 :={ceTr|Is€Tr: (c,s) € P’}

and, for ¢ € T2°, let

Pl (€)== {s € Tz | (c,s) € P*°}.

For all ¢ € T2 and all ;€ (N<,)® compute
RO W= > 3 () ).
s€PLE) (o) VE(NSQ)E‘ ks

(c) For ¢ = loin, bnin + 1, ., lmax — 1, 0 € Tz (¢), s € sons (o), and all
3
v € (N<g)” compute

RM () :=RY )+ > YuwsR¥ (¥) .

”E(Niq)g
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For all {i} € T7 ({max) do
pii= Y RE@W) I ()
VE(NSQ)3
(d) Evaluate (by taking into account the sparsity of A,,)
P =@+ AP,

7.2 Error Analysis

We proceed with the error analysis of the resulting perturbed Galerkin dis-

cretisation which leads to an a-priori choice of the interpolation order ¢ such

that the convergence rate of the unperturbed discretisation is preserved.
Standard estimates for tensorised Cebysev-interpolation yield

sup  |wp " ([12]) — @ (21| < (31)

2€Q:—Qs

L9 (1 4 log®
(+1os ) e wup JorHiu(20)]
92¢+1 (q+1)! 16{123} 2€Q:.—Qs

where C > 0 is some constant independent of all parameters, L denotes the
maximal side length of the boxes Q. and Qs and Q. — Q) is the difference

domain {z —y: (z,y) € Q. X Qs}.
Theorem 3. For b = (¢,s) € PP°, let (x,y) € I. X I's and n > C'|loge|.
Assume that the partial derivatives of w2t (||x — yl|) satisfy

1 q
w2 (D] < et (1) ¥o@o-Qu 20

1<i<3
with b as in Definition 3. Then

At G L\
- <
o) -2 =l < o o (Coprn ) G2D)
with L as in (31).

Note that in a forthcoming paper, the validity of assumption (32a) will be
derived.

Theorem 4. Let ¢ > 0 and n > C|log”¢e| for some C. Let the assump-
tions of Theorem 8 be satisfied and the interpolation order chosen according to
q > |loge| /log?2.

(a) Let b =(c,s) € PP° be admissible for some 0 < n < ng and sufficiently
small ng = O (1). Then

Wil =l =@ Ule =il < 7 V(y) €L XL (33)

for some C independent of n and At.
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(b) Let b =(c,s) € P°. Then

&
ot (le —wllf < = V(@) € Lx I (33b)

Proof. Assume that (c¢,s) € PP°. Then, due to Condition (27b), we obtain
from Theorem 3 the estimate

e =yl =2 (e =)l < o o) @™

The distance can be estimated by means of Condition (27b). For all (z,y) €
Q. X Qs, there holds

o = yl| < dist (Qc, Qs) + V3 (Le + L) < dist (Qc, Qs) + 2V3nAtn®.  (34)

Because (c,s) € PP, Condition (27a) is violated and there exists (z,y) €
Q. X Qs such that ||z —y| € Iﬁé. Thus, by taking into account n® < n, we
obtain

dist (Qc, Qs) > || — yll — V3 (Le + L) > t, — 3V At\/t,|loge| — 2v/3nAtn®

|loge| tn
=t (1— -2 >
( 3 Jn Vin | > 10

for n > 15|1log?¢| and 0 < 7 < 1o with 79 = (40\/3)71. Hence,

dist (Qe, Qs) > P (2\/377Atnb) (35)

for all 0 < n < nq.
The combination of (34) and (35) yields

1 - 3
dist (chQs) - 2||x—y||
and
1 +1
T — —w T — < Con)?
joa (Il — ) e =yl < 2||x_y”( 27)

Finally, the condition ny < (2C2) implies that the interpolation order

o, lloge]
~ log2

leads to an approximation which satisfies

016
T —y —w z—y|)| < .
(] 1) “(ll DI= Iz — ol

For (c,s) € PP, the assertion follows from (19). O
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In [14] an analysis of the perturbation error has been derived. Since it
is only based on abstract approximations which satisfy an error estimate of
type (33a) and (33b), we directly obtain a similar convergence theorem also
for the panel clustering method. In the following, we denote by &Zt,k es
the solution at time ¢, of the Galerkin discretization with cutoff strategy and
panel-clustering.

Theorem 5. Let the assumption of Theorem 4 be satisfied. We assume that
the exact solution ¢ (-,t) is in H™TY(I") for any t € [0,T]. Then there exists
C > 0, such that for all cutoff parameters € in (18) such that 0 < ¢ < ChA#3
and interpolation orders q > |loge| /log2, the solution &At’h with cutoff and
panel-clustering satisfies the error estimate

< —1 Ap—5 2, pm+3/2)
]Hfl/z(r)_cg(:r)(gh AL 4 AR 4 p2)

HQBZt,h - ¢('7tn)

Corollary 2. Let the assumptions of Theorem 5 be satisfied. Let At ~ pmt3/2
and choose & ~ hTm/2+25/4 Then, the solution ¢} exists and converges with
optimal rate

7.3 Complexity Estimates

< Cy (T) ™ +32 ~ €y (T) A2
oy < Co (D) Cy (1)

Fhen —d (o tn)

In this subsection, we investigate the complexity of our data-sparse approxi-
mation of the wave discretisation. Since we will introduce numerical quadra-
ture methods for approximating the integrals (29) and (30) (for possibly
curved panels) in a forthcoming paper, we here restrict ourselves to the storage
complexity of our data-sparse approximation scheme and discuss the compu-
tational complexity in a forthcoming paper. In this section, we always employ
the theoretical value 1/4 for the exponent b in (27b).

Sparse approximation of the system matrix A,.

To simplify the complexity analysis we assume that only the simple cutoff
strategy and not the panel-clustering method is applied for the first time
steps:

1SnSC’max{logM,]Wmfé}7 (36)

where the constant C' depends only on the control parameter 1. Note that
the second argument in max {-, -} ensures that P*P?">® = () and the matrix
AsPars¢ vanishes (cf. Remark 2). By using Theorem 2 and (24), the number
of nonzero entries of A,, in this case is of order

M i log®? M m =0,

_1 11 5/2 _
Mmax{Mm 2 log M, M+~ 2" log M}_{M“‘élogM m=1,
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where the leading constant in the O (-)-estimate depends only on 7. Note
that At = O (N~'). Hence, relation (24) implies N ~ M'5i+E and allows
to estimate the number of n’s in (36) by

max{logM,Mmfé} < N max {M*ZL*g logM,Mimfg}.

Hence, the total cost for storing these matrices A, is given by

7/2if m =0,

7+m/ Km : —
(NMS 2 log M) with k., .—{ 1 ifm=1

Basis influence coefficients.
The number of basis influence coefficients (cf. (30)) is bounded by
O (Mlog® M).

Since this step has to be computed and stored only once for all time steps
the cost for this step (and the generation of the cluster tree) is negligible
compared to the minimal cost O (NM) of the whole algorithm.

Influence matrices.

First, we compute the cardinality of PP¢. Note that the maximal diameter
of a cluster ¢ € T7 satisfying condition (27b) is bounded by

L < nAtn®.

An assumption on the cluster tree and the geometric shape of the surface
is that

{@y) e M x| |z =yl € [2}| = 0 (VAtE?|loge])

where |w| denotes the area measure of some w C I' x I'. Hence, for suffi-
ciently small At the number of pairs of clusters satisfying (27b) is bounded

by
o VAL [log e| (37)
(nAtnb)* .

The storage requirements per matrix Sén) are given by ¢% ~ |10g6 e| and
this leads to a storage complexity of

n3/2=4 |log e|”
0 ( e . (38)

Using the relations as in Corollary 2

A2 ~ hrn-l—3/27 £ ~ h77n/2+25/4, M=0 (h—2)
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Table 2. Storage requirements for the panel clustering approximation and sparse
approximation.

full matrix cutoff panel clustering+cutoft
m=0 0 (NM?) O(NM"*islogM) O(NM""1slog” M
m=10(NM?) O(NM"*ilogM) O(NM"*1slog” M

we see that (38) is equivalent to (we here use 4b = 1)
@ (nl/QMm/2+3/4 log” M) .

To compute the total storage cost we sum over all n € {0,1,...,N} to
obtain

N
S neME+ilog" M < ON2M % +ilog" M < ONM %' +id log” M
n=0

_c NMislog" M m =0,
T UNMY S log" M m = 1.

Note that the storage cost for the temporary quantities in Phase 2 of the
panel-clustering algorithm is proportionally to M log® M and, hence, negligi-
ble compared to the other components of the algorithm.

The total storage requirements are summarised in Table 2. The table shows
that the panel-clustering method combined with the cutoff strategy reduces
the storage amount very significantly. For piecewise constant boundary ele-

ments we even get a storage complexity which behaves better than linearly,
ie, O(NM).

8 Conclusions

In this paper, we have followed the convolution quadrature approach by Lu-
bich and combined it with Galerkin BEM for solving the retarded potential
boundary integral formulation of the wave equation. The main goal was to
develop fast and sparse algorithms for this purpose, i.e., a simple a-priori cut-
off strategy where the number of matrix elements which have to be computed
is substantially reduced and a significant portion of the matrix is replaced by
zero. The panel-clustering method is applied to the remaining blocks which
further reduces the computational costs.

In a forthcoming paper, we will introduce an efficient quadrature method
and analyse the effect of these additional perturbations.
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Fast Multipole Methods and Applications
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Summary. The symmetric formulation of boundary integral equations and the
Galerkin boundary element method are considered to solve mixed boundary value
problems of three-dimensional linear elastostatics. Fast boundary element tech-
niques, like the fast multipole method, have to be used to overcome the quadratic
complexity of standard boundary element methods. The fast methods provide a data
sparse approximation of the fully populated matrices and reduce the computational
costs and memory requirements from quadratic order to almost linear ones. Three
different approaches to realize the boundary integral operators of linear elastostatics
by the fast multipole method are described and numerical examples are given for
one of these approaches.

1 Introduction

The Galerkin boundary element method for the symmetric formulation of
boundary integral equations is an efficient and reliable tool to solve mixed
boundary value problems in linear elastostatics by numerical simulations. This
approach is based on a rigorous mathematical analysis. The related stability
and error analysis can be found, for example, in [15, 16]. Mathematical books
on boundary element methods are, for example, [17, 21, 35, 42].

As the involved boundary integral operators are non—local, standard
boundary element techniques result in fully populated stiffness matrices.
Therefore, standard boundary element methods are restricted to rather small
problem sizes. Hence, fast boundary element methods have to be used for prob-
lems of engineering and industrial interest. There exist several fast boundary
element methods reducing the memory requirements and the computational
costs for a matrix times vector multiplication to almost linear complexity.
Most of these methods rely on a clustering of the boundary elements. This
leads to a block clustering of the considered matrix, too. Then low rank ap-
proximations are used for an appropriate approximation of the corresponding
block matrices. The methods mainly differ in the construction and the realiza-
tion of the low rank approximations. Among them there are the fast multipole
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method [7, 8, 34] and the panel clustering method [12] which both perform
the low rank approximation by an approximation of the kernel by appropriate
series expansions providing a separation of the variables. The panel clustering
method uses the Taylor series expansion whereas the fast multipole method
uses spherical harmonics. The adaptive cross approximation (ACA) method
[1, 33] is an algebraic approach to construct low rank approximations. The
‘H-matrices [10] provide a complete arithmetic for the class of matrices with
low rank approximations. The H2-matrices [11] use hierarchical basis func-
tions for the low rank approximations. The wavelet approximation methods
[4] construct special nested trial spaces which enable a sparse approximation
of the matrix due to the rapid decay of the kernel.

An extensive overview is given in [25] for the large number of contribu-
tions to the fast multipole method. There exist several versions of the real-
ization of the boundary integral operators by the fast multipole method in
three—dimensional linear elastostatics. A fast multipole version based on the
reformulation of the kernel with respect to the fast multipole method for the
Laplacian is given in [6]. There, the kernels of the boundary integral operators
of linear elastostatics are decomposed in terms depending on |z —y|~! and its
derivatives. Then the fast multipole method for electrostatics problems is used
as a black box. This approach leads to a rather large number of applications
of the potential theoretic fast multipole method.

Starting from the kernel expansion of the fundamental solution of the
Laplacian, a new multipole expansion together with the corresponding transla-
tions and conversions are derived in [46] for the fundamental solution of linear
elastostatics. That leads to less applications of the fast multipole method, but
the expansions and the operations get more costly. The authors do not make
a clear statement in [46] whether their approach is faster than the approach
presented in [6]. The same expansion in spherical harmonics is presented for
the panel clustering method in linear elastostatics in [14].

In [32], a different approach based on Taylor series expansions, which is
easier to adopt to other kernels, is used. This version of the fast multipole
method lacks the translations of local expansions from the clusters to their
sons and converts the multipole expansions to the clusters of the finest level.
Therefore, the number of conversions is rather high.

We have presented a fast multipole method for linear elastostatics in [29].
The realization of the single layer potential is similar to the approach presented
in [6] but guarantees the symmetry of the approximation of the Galerkin
matrix of the single layer potential. Integration by parts is used to reduce the
hypersingular operator, the double layer potential and its adjoint to double
layer potentials of the Laplacian and to single layer potentials.

Here, we try to give an review of some approaches to realize a fast bound-
ary element methods for three-dimensional linear elastostatics based on the
fast multipole method. First, we describe the symmetric formulation and the
considered Galerkin discretization in Sect. 2. In Sect. 3, the fast multipole
method is introduced independent of the specific kernel expansions which are
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used in the approaches. These approaches are described and in parts compared
in Sect. 4. Finally, several numerical examples are given in Sect. 5.

2 Symmetric Boundary Integral Formulation and
Boundary Element Method

Let £2 C R? be a bounded, simply connected domain with a piecewise con-
tinuous Lipschitz boundary I" = 942, where the outer normal vector n(z) is
given for almost all x € I'. We consider a mixed boundary value problem of
linear elastostatics, to determine the displacement field u(z) for x € £2,

—divo(u,z) =0 for x € £2,
You(x) = gp(x) for z € I'p, (1)
mu(x) = gn(x) for z € I'y.

The boundary I' = I'p UIy is decomposed in disjoint parts I'p and I'n. This
decomposition may be given componentwise. To guarantee the unique solv-
ability of the boundary value problem, we assume that the part with Dirichlet
boundary conditions must not vanish in each component, i.e., meas (I'p ;) > 0.
The stress tensor o(u) is related to the strain tensor e(u) by Hooke’s law

Ev FE

W=t gy

e(u)

with the Young modulus F > 0 and the Poisson ratio v € (—1,1/2). For the
case v — 1/2, special techniques [40] have to be applied for the boundary
element method. These techniques will not be addressed here. The strain
tensor is defined by

e(u) = ;(VUT + Vu).

The trace operators are given by

you(z):= lim u(T) for almost all z € I,
23z—xel’
yu(zx) := Qaéger[a(u,x)n(m)] for almost all z € I

The solution of the mixed boundary value problem (1) is given by the
representation formula

u(z) = /F Yo U™ @, y)nuy)dsy — /P (U (@) "ouly)ds,  (2)

for z € (2. The fundamental solution of linear elastostatics is given by the
Kelvin tensor
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1 114v[(3—4v) (i —yi) (x5 — v5)
U = O 3
i(®:9) 87rE1—V{|x—y| i+ |z —y|3 3)
fori,7 =1,...,3. The application of the trace operators to the representation

formula gives the boundary integral equation
* 1 *
woule) = [ U@ pmuln)ds, + prou) - [T hedds,,
r I\{z}

for almost all z € I' with T*(z,y) = (71,,U*(2,9))", and the hypersingular
boundary integral equation

1 . .
Mu(r) = 271U(a?)+/r\{7}1,xU (ar,y)MU(y)dSy—%,x/FT (z,y)vou(y)ds,

for almost all = € I', respectively. Both boundary integral equations together
form a system of boundary integral equations

You\ éI—K %4 You (4)
yu) D %I—l—K’ v )

In this representation, we use the standard notations for the boundary integral
operators, in particular the single layer potential

(Vt)(z) = / U*(z,y)t(y)dsy forz € I
r
the double layer potential
(Ku)(z) = / T*(z,y)u(y)ds, forx €T,
\{=z}
its adjoint operator
(K@) = [ U mads,  foroc
\{z}
and the hypersingular operator

(Du)(z) = —Y1.0 /T*(J:,y)u(y)dsy forz eI
T

Here and in what follows, ¢ denotes the traction.

As the solution of the boundary value problem (1) is given by the represen-
tation formula (2), the complete Cauchy data you and vy, u are sufficient for the
evaluation of the solution u(z) for x € £2. It remains to determine you on I'y
and v,u on I'p. First, suitable expansions gp € H'Y/?(I') and gy € H~Y/?(I)
of the given boundary data gp € H'/?(I'p) and gy € H~'/?(I'y) to the whole
boundary I" are chosen such that
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gp(x) =gp(x) forxelp and gn(x)=gn(x) forxzely

hold. With the splitting of the Cauchy data into the known and the unknown
parts, R
vou(z) =u(z) +gp(z) and ~yu(x) =t(x)+ gn(z),

only the functions & € H'/2(I'y) and # € H~'/2(I'p) have to be determined.
The Sobolev space HY/2(I'y) is the subset of functions in H/2(I") with sup-
port on I'y. H~Y/2(I'p) is defined by duality of H'/2(I'p). The complete
system (4) of the two boundary integral equations is used to determine the
unknown functions 4 and t. The use of the first boundary integral equation
for x € I'p and of the hypersingular boundary integral equation for x € I'y
ends up in the symmetric formulation [3, 39]:

(VD)) — (Ka)(@) = (] + K)n() — (Ven)(x)  foree I,
(KT)(w) + (DA)() = ()1~ K)g(@) ~ (Dgo)(a)  forw e Iy,

The equivalent variational formulation is given by:
Find (4,t) € H'/?(I'y) x H='/?(I'p), such that

a(@, t;v,7) = f(v,7) for all (v,7) € HY*(I'y) x H-Y*(I'p)  (5)
holds. The bilinear form is given by

a(@,t;v,7) = (Vt,7)r, — (KT, 7)1y + (K’ﬁv}FN + (Du,v) py,

and the linear form is defined by

F0.7) = (LT + K)io.7) e, — (Vw7
H(y T~ K (), o)y — (Diin, )y

The boundedness and the ellipticity of the bilinear form a(-;-) on HY/2(I'y) x
H-1/? (I'p) can be proofed by the boundedness of the operators and the el-
lipticity of the single layer potential V' and of the hypersingular operator D
on H='/2(I'p) and HY?(I'y). The unique solvability of the variational for-
mulation (5) then follows by the Lemma of Lax—Milgram for the continuous
linear form f(-).

Let the boundary I' = 02 be described by a union Ué\]:l T¢ of plane
triangles 7, with a local meshsize

1/2
he = (/ dsx) .
Te
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The global meshsize is defined by

h:= max hy.
¢=1,..,.N
Here, we consider a shape regular and quasi uniform boundary discretization
for simplicity. We further assume that each boundary element 7, belongs ei-
ther to I'p; or I'y,; for each component ¢ = 1,...,3. For each component
k=1,...,3, we use the finite—dimensional trial spaces

SHI'nk) = span{pip} iy € HY*(Iv )
Sh(I'px) = span {%,k}j‘v:ka C H Y*(I'py)

for the Galerkin discretization of the variational formulation (5) of the sym-
metric formulation. S} (I'v) is the space of the piecewise linear and continuous
functions with support in I'y and is used for the approximation of the dis-
placements u. The basis functions ¢; are the linear functions that are one in
the node x; of the boundary element mesh and zero in all other nodes. S,?(F D)
denotes the space of piecewise constant functions with support in I'p and is
used for the approximation of the tractions ¢. The basis functions v; are one
on the boundary element 7; and zero on all others. IV is the number of bound-
ary elements and M is the number of nodes. An index restricts these numbers
to the corresponding part of the boundary in the denoted component. For the
componentwise trial functions

MN,Ic ND,Ic
Uni(@) = D Gigpir() and  thr(z) = D Gadx(@),
i=1 j=1

we have to find the solution (up,?,) € Si(I'v) x SY(I'p) of the discrete
Galerkin variational formulation

a(ﬂh,fh;vh,rh) = f(vn,7h) for all (vp, ) € S}L(FN) X SQ(FD). (6)

It can be shown by means of Cea’s lemma and the approximation properties
of the trial spaces that the discrete variational formulation is uniquely solv-
able and that the following error estimate holds for the approximations
and 1, of the solutions & € H**!(I'y) and t € Hy (I'p) of the variational
formulation (5):

|z — ah”?{lﬂ(]“) + HtA— tAhHipl/z(p) < ch? ! |:||a||§{8+1(1“) + H?Hirgw(r)] (7)

for —1/2 < s < 1, in the case of suitable extensions gp € H**!(I') and
gn € Hpy(I') of the boundary data. Here, Hj, (1) denotes an appropriately
defined piecewise Sobolev space, see [42]. In the case of a sufficiently smooth
solution, i.e., s = 1, an optimal convergence rate of 3/2 is obtained in the
energy norm.
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The equivalent system of linear equations of the discrete variational for-

mulation (6) is given by
B ~ 1
(% 52) (5) = () ®

t € R¥? and u € RM~ with Np = NDl + ND2 + NDS and My =
My + MN 2 + My 3 are the vectors of the coefficients tg and u; of the trial
functlons th and 4. The block matrices are given from the discretization of
the corresponding boundary integral operators on the corresponding parts of
the boundary for i, =1,...,3 by

VI K] = (Vb Yei) o for{=1,...,Npi,k=1,...,Np,
K”[ﬁ,k] (K®k,j, %) o for{=1,...,Npi,k=1,...,Mn ;.
K’”[ﬁ,k] (K'Y, pei)ry for{=1,...,My; k=1,...,Npj,
D”[ﬁ, k] = (Dgk.j, ¢ei) rn for t=1,..., My, k=1,...,My,,.

The vectors of the right hand side are given by
1 1 ~ ~
fé,i: <(21+K)9D_V9N7'¢€,'L>FD fOI‘ﬁZl,...,ZVDJ'7
1 —~ ~
fl?,i = ((21 — K'Ygn — Dgp, ¢j.i)ry fork=1,..., Mn,.
The matrix of the system of linear equations (8) is block skew symmetric and
positive definite. Furthermore, all blocks are fully populated, i.e., the memory
requirements and the effort for one matrix times vector multiplication is of
order O(N? + M3).

3 Fast Multipole Boundary Element Methods

In this section, we describe the realization of the matrix times vector multi-
plication w = Apt or componentwise,

N N
wr =S Al = / (Ag) (@) (@)tpds, forall £=1,.... M, (9)
k=1 k=171
of some boundary integral operator

(At)(z) = /F Q. Qyk(z, y)t(y)ds,

by the fast multipole method. Q, and Q, are some operators like linear com-
binations of partial derivatives operating on a kernel k(z,y) with respect to =
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and y, respectively. But these operators can also be just identities. {wk}ff:l
is the set of trial functions and {¢,}}2, is the set of test functions. These two
sets might coincide. The basis functions ¢y and 1, do not have to coincide
with the definitions of Sect. 2. The main ingredients of the fast multipole
method are the approximation of the kernel function by an appropriate series
expansion and the use of a hierarchical structure to compute these expansions
efficiently. We require that the kernel k(z,y) is separable, i.e., an expansion

n=0

exists with a separation of the variables x and y. Such an expansion can be
given by a Taylor series expansion, for example. An approximation of the
kernel is defined by truncating the infinite sum at a suitable chosen expansion
degree p,

D
kp(z,y) = Zgn(y)fn(x) (10)
n=0
If such a splitting of the kernel and the approximation (10) were valid for all x

and y, the approximation of the matrix times vector multiplication (9) could
be rewritten as

N
m:;tk /F /F Qu Qyks(@, y) ok (y)dsyvi(z)ds,

P N
:nzz:o/Fmen(x)d)g(x)dsm;tk/Fngn(y)gpk(y)dsy

and the total effort would be reduced to O(5(N + M)), as the coefficients

N
L, = Ztk/ Qy9n(Y) ok (y)dsy forn=0,...,p.
k=1 7T

would be computed in (’)(]5]\7 ) operations and the evaluation would take
O(Aﬁj\/fj) operations.

But in general, the kernel approximation (10) is only valid for |y| > d|x|
with d > 1 and often an error estimate of the kind

1 pte
19:0k(z.9) = @@y ky(o. ) < (id ) () (1)

holds with some integer p € Z. The constant ¢(p, d, |z|) might be independent
of p or a polynomial in p of low order. It also depends on d and |x|, but the error
estimate is dominated by the exponential term d~?~¢. Due to the restrictions
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on the validation of the expansion, the matrix times vector multiplication is
separated into two parts, the nearfield part and the farfield part. The farfield
FF(¢) is the set of indices k, for which the supports of the test function v, and
the trial functions ¢y are well separated and therefore it is suitable to apply
the kernel approximation (10) due to the error estimate (11). The nearfield
part NF(¢) of the matrix times vector multiplication is realized as in standard
boundary element methods [38]. An exact definition of nearfield and farfield
will be given later. Now, the matrix times vector multiplication reads as

Te= Y ApltKt+ > My(0,40) L, (0,FF(0)). (12)
kEENF(£) n=0

The coefficients
M (0.0) = [ Qutulohinla)iss.

Lo(0, 00) = /F Qygn (1)1 (v)ds,,

with reference to a local center O, can either be computed exactly, for example,
in the case of spherical harmonics [23, 24], or can be approximated by the use
of some numerical quadrature rule. If the coefficients

Lo(O,FF(0)) = > tLn(O.k) forn=0,....p (13)
kEFF(£)

are known an efficient realization of the matrix times vector multiplication
will be given by (12). These coefficients depend on the vector ¢. Therefore,
they have to be recalculated in each matrix times vector multiplication. As
the coefficients L,,(O, FF(¢)) depend on the farfield of the support of the basis
function 1)y, they differ from each other in general and an efficient calculation
is necessary. B

The efficient computation of the coefficients L, (O,FF(¢)) in (13) will be
described only very briefly. More detailed descriptions can be found, e.g.,
in [7, 8]. In order to do this computation efficiently, as much information as
possible is shared when these coefficients are determined.

The second basic idea of the fast multipole method, the hierarchical struc-
ture is applied to compute these expansions. First, this hierarchical structure,
called cluster tree, has to be build based on geometrical information. This
structure can either be based on the boundary elements or on the supports of
the basis functions ¢y and 1. The realization of a boundary integral operator
might differ for these two approaches, since the nearfields and farfields differ
from each other. In the latter approach, two cluster trees have to be built if
the trial and test functions do not coincide.

Here, we describe the construction of the cluster tree based on the supports
of the basis functions ¢y and v,. In the case of using boundary elements 7;
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for the construction of the cluster structures, this construction is almost the
same. Then only one cluster tree has to be built, but the setup of the nearfield
part of the matrix and the evaluation of the farfield part of the matrix times
vector multiplication might need some more effort for the assembling. Here,
the cluster tree is built from the top down based on the supports of the ba-
sis functions ¢y, and . All trial functions {¢x}Y_, are included in a box
containing the original domain 2. The cluster w? of level 0 consists of all

trial functions {gok}ivzl or the corresponding set of indices. The hierarchical
structure is build recursively by the refinement of the box corresponding to a
cluster w of the level A into eight similar boxes. The trial functions {¢5 Y,
are assigned to the boxes due to the centers of their supports. All trial func-
tions, which are assigned to one of the refined boxes, form the cluster w;\"’l
of the finer level A 4+ 1 identified with the corresponding refined box. These
clusters w;H are called the sons of the father cluster w. Empty boxes and
the corresponding clusters containing no trial functions are neglected. This
refinement is done until a minimal number of trial functions in the clusters
is reached or until a maximal cluster level L is reached. Each of the trial
functions ¢y, is assigned to the cluster w’ on the finest level L which contains
the center of the support of . In this paper, we restrict our considerations
to the case of a regular distribution of the boundary elements {4}, of a
globally quasi uniform boundary element mesh. Nevertheless, the method can
be extended to the adaptive case, see for example [2, 23].

Next, the second cluster tree with clusters 0’3\ is build based on the supports
of the test functions 1, in the similar way. Depending on the choice of the
two sets of basis functions, the two cluster trees might coincide.

We have used a more abstract definition of nearfield and farfield so far.

Now, we can define these based on the cluster hierarchy. A cluster w is in
the nearfield of a cluster 0'3\ of the same level A, if the condition
dist {C(w;"), C(07)} < (d + max {r(w;), r(0})} (14)

holds for a parameter d > 1. C(w;') denotes the center of the box identified
with the cluster w?, and r(w?) is the corresponding radius of the cluster, i.e.,
r(w) = sup,epn |z — C(w))]. It is important for the multipole algorithm that
the nearfield of a father cluster U;\_l contains the nearfields of all its sons
0? C 0{\_1. This definition of the nearfield and the farfield is transferred to

the basis functions by their assignment to the leaves of the cluster tree:

NF(¢) := {k;, 1 <k < N and (14) holds for the cluster wk of vy

and UjL is the cluster of W.} ,
FF(¢) :=={1,..., N} \NF().

A symmetric definition of the nearfield helps to preserve the symmetry in the
approximation of symmetric matrices, see for example [26, 30].
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The efficient computation of the coefficients L, (O, FF(£)) in (13) now uses
this hierarchy. First, the coefficients

Mn(C(w]L),P(w]L)) = Z tkﬂn(c(wf)asok) (15)
kewk

are calculated for all clusters ij of the finest level L. P(w;‘) = {k, i € w])‘}

is the set of all basis functions ¢y, of the cluster wj\. The coefficients M,, are
given by

—~

M, (0, 1) == /F Qy () ok (), (16)

The coefficients Mn are now used to determine the multipole coefficients of
the clusters on the coarser levels by a translation of the type

—~ —_—
Mp(Cw)),P@}) = D> Y hy(C@))Ow)
w?+1€sons(w3\) s

My—s(Cw; ™), Pwi™h)  (17)

with some coefficients h), .. From these multipole coefficients of a cluster w;\,
the needed local coefficients of a second cluster af‘ in the farfield of w} can be

calculated by a conversion of the type

Lo(C(02),P(@})) = D by [(C@})C(0}) M(C(w}), P(w))) (18)

with some coefficients hfw. These conversions are executed on the coarsest
possible level, on which the admissibility condition (14) is fulfilled, i.e., for
two clusters, which are in their mutual farfield, but their fathers are in their
own mutual nearfields. These local coefficients are summed up for each cluster.
A)(\iditionally, these coefficients are translated from each cluster o2 to its sons
o; 1y

J

La(C(0)1),FF(0}) = Y _ iy ((C(0})C(03 1) Le(C(0}), FF(07))  (19)

L

with some coefficients h3 .. The sum of all coefficients En(C(O'j ), ) results

in the local coefficients Ln(C(O'JL), FF(¢)) needed for the matrix times vector
multiplication (12). Here, UjL is the cluster to which the test function ), is

assigned. Now, the coefficients L, (C (UjL), FF(¢)) are known for a fast evalu-
ation of the farfield part in the matrix times vector product (12). Note that
all the translations and conversions have to be executed in each matrix times
vector multiplication, as the coefficients in (15) change for each vector ¢. As
we have described the fast multipole method for an abstract kernel expansion,
we have to require that the corresponding translations and conversions exist.
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A fixed expansion degree p is not sufficient to guarantee the asymptotic
convergence rate of the fast boundary element method, in general. Instead,
the expansion degree p has to be chosen proportional to log2 N, as shown for
example in [30] in the case of spherical harmonics. Therefore the total effort of
one matrix times vector multiplication is of order O(N log? N ). The memory
requirements are also of order O(N log® N'). We have described the fast multi-
pole method in its original version as given by [7, 8]. Several approaches have
been made since then to increase the performance of the method. Especially,
the translations and the conversions of the multipole and local expansions
have been optimized. For example, the effort for these operations can be re-
duced by fast Fourier transforms [5] or an exponential representation [9]. But
this speedup really pays off for larger expansion degrees, which might usu-
ally not be necessary in the case of a fast boundary element method for the
Laplace equation and for linear elastostatics. As long as the expansion degree
$ has to be chosen proportional to log® N, the total effort of the fast multipole
method is not of order O(N) but higher, since always O(N) local expansions
of p+ 1 coefficients have be evaluated.

A first approach to overcome this dependency of the expansion degree p on
the number of boundary elements has been made by [44] where the variable
order approach of the panel clustering by [36] is transferred to the fast mul-
tipole method. In the case of boundary integral equations of the second kind
with piecewise constant basis functions, one ends up with an O(N) algorithm.
An approach that overcomes the dependency of the fast multipole method on
the particular kernel expansion, which has to be derived for each differential
operator separately, is given by [37].

4 Fast Boundary Element Methods for Linear Elastostatics

In this section, we try to show the differences of the approaches presented
in [6], [29], and [46]. First, we consider the single layer potential of linear
elastostatics

(Vt)(z) = /FU*(:c,y)t(y)dsy forz € I

4.1 Realization of the Single Layer Potential as Linear
Combination of the Kernel of the Laplacian and Its Derivatives

The fundamental solution (U}, )e,k=1..3 of linear elastostatics

. 1+v Oke (@k = yi)(xe — o)
Ukle —y) = 8TE(1—v) l(?’_@)lx—yl i o =y’

can be expressed by linear combinations of the kernel of the Laplacian and of
its derivatives. In [6], the representation
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1+v 1 Oke 0 1 0 Y

Uz —y) = 3-4 -
k(@ =) 2E(1—V)47T( V)|x—y| xe&‘xk|x—y|+8xk|x—y|

is chosen. A detailed analysis shows that the corresponding realization by
the fast multipole methods requires four calls of the algorithm to compute
the local expansions and seven evaluations of these local expansions in the
case of a Galerkin matrix. But unfortunately, this realization of the Galerkin
matrix V}, by the fast multipole method is not symmetric anymore, as a finite
expansion degree has to be used.

4.2 Symmetric Realization of the Single Layer Potential as Linear
Combination of the Kernel of the Laplacian and Its Derivatives

In the case of the Laplacian, the transposedness of the Galerkin matrices of
the double layer potential and its adjoint operator can be preserved [26]. This
gives the idea how to keep the symmetry of the Galerkin matrix of the single
layer potential in linear elastostatics. The gradient terms are rewritten as

. 1+v 1 5 o 1 o 1
Ut (a—y) = ﬂ ) M

— Ty —Ye .
2E(1 —v) 4nm |z —y| Oxy |z —y| Oyk |z —y|

This representation preserves the symmetry within one block of the matrix.
To guarantee the symmetry of the blocks, the expression of a block is added
for interchanged indices k and ¢ and the sum is divided by two:

. 1+v 1 )
Utz — ) [(—4@ vt

T 2E(1—v)4r 1z -y
0 1 1 0 1
— oYt
Oxy |z —yl 27 Oy |z — v
0 1 1 0 1
k(‘)xg |z — y] Zykﬁyg |z —y| ]

¢ (20)

1
_23;

1
— 7

The realization of the single layer potential by this representation requires
six calls of the fast multipole algorithm to compute local coefficients and
nine evaluations [27]. The number of evaluations can be reduced to six by a
more involved implementation of the fast multipole algorithm, which needs
to store more local coefficients. This representation leads to a more expensive
application of the single layer potential, but the preserved symmetry of the
Galerkin matrix is often advantageous for iterative solvers.

The Kernel Expansion for the Laplacian by Reformulated
Spherical Harmonics

The separation of the variables in the kernel of the Laplacian is done by a
expansion in spherical harmonics, in general. For a simpler implementation
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and a fast realization, reformulated spherical harmonics [31, 45, 46] are used
for the kernel expansion

NZ Z Sm(y (21)

n=0m=—n

Ix—yl

The reformulated spherical harmonics are given by

1 dm - S \m n
(n+m)! dumP"(u)|u=is(x1 +i22)" 2],

SEw) = (n—m)t

Ry () =

PO 1
P"(u)|u:§3 (41 £ a2)™ ly|n

in Cartesian coordinates for m > 0 and y; = y;/|y|. They can be computed
efficiently by recursive schemes. P, (u) denote the Legendre polynomials. In
the case of this expansion, the multipole coefficients (16) are computed by

0, ¢x) / QR (y)dsy
and form the multipole coefficients (15) of a cluster ij by

M (C(wh),P(wh) = > 6 M (C(wh), on)-
kewf

The translation (17) of multipole coefficients reads as

MIMCW)),Pw) = > ZZRt Cw}t))

w?+1€sons(w’\) s=0t=—s

M HOWI), P,

The conversion (18) of multipole coefficients to local coefficients takes the
form

(o Z Z D)"SEHC(W))C(0)MLU(C(w)), P(w))),

s=0t=—s

while the translation (19) of local coefficients is executed by

Ly (C(oth),F Z Z RZ3(C(0)C (0} ) LL(C(0}), FE(0})).

s=nt=—s

With these conversion and translation formulae, all ingredients of the fast
multipole method for the kernel of the Laplacian are now given. So the fast
multipole method can be applied to the kernel of the Laplacian and to linear
combinations of derivatives of this kernel. Also the single layer potential of
linear elastostatics can be realized by these means, as described before in the
approaches of [6] and [29)].
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4.3 Realization of the Boundary Integral Operators by an
Expansion of the Kernel of Linear Elastostatics

In the approach of [46], the expansion of
WzPRy () |yPSp(y) Ry ()
e =yl = ;;)mgn( 2n + 3 2n — 1 ’

for |z| < |y|, is used to derive an expansion of the fundamental solution in
linear elastostatics,

Uty(e —y) = Z S (FL @Sp) + G @S W) . (22)

n=0m=—n

The coefficients F{7} , (z) and G}, (z) are defined by

Fké,n( ) A+2 5k‘€R ( ) )\+2sz8ka” (x)?
mooy_ Atw 0
k,n(x) - /\+2M 8Z‘k n (:L’)

This expansion is used in [46] to realize the boundary integral operators of
linear elastostatics. For the single layer potential, the matrix times vector
product takes the form

3
’%‘:Z Z VI, K]ty + Z Z <ZFZ‘,L leFF(e))

J=1 keNF(¢) =0m=-n
+Gﬁl(x)fi’m(FF(€))> . (23)

Wy ; denotes the £-th entry of the vector w in the i-th coordinate. The com-

putation of the local coefficients E;YT(FF(E)) and E%m(FF(ﬁ)) is described
next. The multipole coefficients

1 m / Rn 901 k dsy (24)
M\S,’ZL(O,%) = / Ry (W) yrpik(y)dsy (25)
r
have to be computed for each basis functions and for kK = 1,...,3, similar to

(16). @ik denotes the k—th component of the trial function ¢,. These coefhi-
cients can be computed once in advance and be reused in each matrix times
vector multiplication. Due to the more involved expansion series, four sets of
coeflicients have to be computed in this approach. In each matrix times vector
multiplication the coefficients



M,ﬁ”?((](w Z ti, le T(C(Ww)), @)

zEw
Mp™(C(W),PWi)) = D Dt My (C(wf), ).
icwl =1

are calculated for all clusters ij of the finest level first as in (15). ¢; 5 denotes
the i—th entry of the vector ¢ for the k—th component. The translation (17) of
these multipole coefficients now looks like

P = Y Y Y RO )P ).
w’\ Esons(w ) 5= O0t=-s

TP = Y3 R (e ) )
,f‘JrIEsons(w*) s=0t=—s
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-
where z = C’(w;‘)C(w{\H). The conversion (18) of multipole coefficients to

local coefficients takes the form
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s=0t=—s
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s=0t=—s

3
—zzm;,acwm,mw;»),
/=1

-
where z = C(w})C(0}'), while the translation (19) of local coefficients is eval-
uated by
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E2m (o), FE) = 30 3" R (mc( N, FF(o)
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where z = C(a)C(a)).
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In the case of the double layer potential K, its adjoint operator K’ and
the hypersingular operator D, operators Q, and Q,, which are linear com-
binations of derivatives with respect to x and y, have to be applied to this
expansion. In detail, the operator Q, is applied in the computation of the
multipole coefficients in (24) and (25), and the operator Q, is applied in the
evaluation of the expansion (23). Therefore, all boundary integral operators
require the computation of four sets of coefficients L1 ™ and L2 ™ This cor-
responds to four calls of the fast multipole method, but the translatlons the
conversions and the evaluations get a little more involved.

4.4 Realization of the Double Layer Potential as Linear
Combination of Derivatives of the Kernel of the Laplacian

In the approach of [6], the kernel T*(z,y) = (v1,,U*(z,y))" of the double
layer potential K is rewritten, in a similar way as the kernel of the single
layer potential, as

’ o1 90 1
Thelmy) = jzz:l B {nj |z — y|] Z 87(1 — v) Oy, Oz; [nj(y)yz |a — y|]

Jj=1
with an operator

. 9 P ) 0 0
Rty = 8r(1—v) {(1 —) <5zj dry, Okt 8xj> 20 =)0 Oxy T Dk 8%} .

The realization of this representation by the fast multipole method ends up
with twelve calls of the fast multipole algorithm of the Laplacian. Therefore,
the effort of a application of the double layer potential K is more expensive
than the corresponding realization of the single layer potential.

4.5 Realization of Boundary Integral Operators using
Integration by Parts

In our approach [29], we use a representation of the double layer potential K
of linear elastostatics by weakly singular boundary integral operators which
can be derived by integration by parts [18]. The double layer potential K can
be rewritten by

K@= fuwy L= [T s,
25 (Vi (M) (2). (26)

with u = E/(2(1 + v)) and an operator M, consisting of components of the
surface curl,
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The representation (26) allows to realize the double layer potential of linear
elastostatics by six calls of the fast multipole method and nine evaluations
[27]. In a more involved implementation, this can be reduced to six evaluations
again. Therefore the effort for an application of the double layer potential is
comparable to the application of our realization of the single layer potential
and not increased as in the approach of [6].

The representation (26) of the double layer potential is also used in the
nearfield. Therefore, only weakly singular boundary integral operators have
be be evaluated. The effort for the computation of the Galerkin weights is
significantly reduced by the change from Cauchy singular to weakly singular
integrals.

In the case of piecewise linear trial functions and plane triangles as bound-
ary elements, M maps the linear basis functions to piecewise constant basis
functions. Therefore, the already computed nearfield matrices of the single
layer potentials can be reused.

The representation (26) of the double layer potential can be used to rewrite
the bilinear form of its adjoint operator K’ as

<K/t, U>p = <K£t, U>p — <VLt, ./\/(1}>[* + 2M<Vt, M’U>F. (27)

Here, Vi, and K} denote the corresponding operators of the Laplacian which
are applied componentwise. This is sufficient for the used Galerkin method.
In this way, the bilinear form of the adjoint double layer potential K’ can be
realized by six calls of the fast multipole algorithm of the Laplacian.

Using piecewise constant trial functions and piecewise linear, continuous
test functions, the already computed nearfield matrices can be reused for the
realization of the bilinear form of the adjoint double layer potential.

As in the case of the Laplace equation, the bilinear form of the hypersin-
gular operator can be transformed to bilinear forms of single layer potentials.
Based on the representation (26) of the double layer potential K, integration
by parts reduces the bilinear form of the hypersingular operator to [13]

3
(Du,v) / / sm |z =y <kzl (Mt k1+10) (@) - (Mppo 1) (y)) dsyds,

// (Mo) " (27r| ! |_4”2U*(f”vy)>(MU)(y)dsydsm
// Z (Migv:) ( ) dr |2 1y| (M iuj) (y)ds,ds,.

i,7,k=1
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In the first line the indices 4 and 5 of the operator M have to be identified
with 1 and 2, respectively.

Overall, it is sufficient to have a fast realization of the single layer potentials
and the double layer potential of the Laplacian in our approach. Therefore, the
effort for the computation of the Galerkin weights is reduced significantly. The
approach based on integration by parts is not restricted to the fast multipole
method but can also be used for other fast boundary element techniques.

By a detailed analysis [27], we have shown that the use of the fast multipole
method as a fast boundary element method does not effect the main prop-
erties and the asymptotic error estimate of the boundary element method,
summarized in the following theorem.

Theorem 1 ([27]). Let T € ﬁgw(FD) and @ € H"(I'y) for o € [0,1] and
n € [1,2] be the unique solution of the variational problem (5). Let the dis-
cretization of the boundary be shape—regular and quasi—uniform. Let the expan-
sion degree p of the multipole expansion (21) be proportional to log N. Then
the variational problem of the approzimations of the boundary integral oper-
ators by the fast multipole method is uniquely solvable. For the approzimate
solutions Uy, and ty, the following error estimate holds:

It — t~h||§{—1/2(r) + 1@ = nl ey <€ (hQJHHﬂ\%{gw(r) + h%_lﬂmﬁm(r)) :

Similar results should hold for the other approaches to realize the boundary
integral operators by a fast multipole method, as all approaches are based on
the expansion in spherical harmonics. It seems to be an open question, how the
expansion degrees have to be chosen optimally in each of the approaches. This
optimal choice of the expansion degree has a big influence on the performance
of the methods and has to be considered in comparisons between the methods.

As a fixed expansion degree is not sufficient to keep up with the asymptotic
error estimate of a boundary element method, the expansion degree has to
be adopted to the number of boundary elements like log N. With a fixed
expansion degree p over all levels in the cluster tree of the fast multipole
method, the effort of the fast multipole method is always of order O(N log? N ),
as for each boundary element an expansion with (’)(log2 N) coeflicients has to
be evaluated.

To overcome this logarithmic terms in the effort, an attempt has been
made by [44] where the variable order approach of the panel clustering [36]
is transferred to the fast multipole method. In the case of boundary integral
equations of the second kind with piecewise constant basis functions, one ends
up with an O(N) algorithm.

5 Numerical Examples

Finally, we show first some academic examples and then some examples of
industrial interest. First, we compare our version [29] of the fast multipole
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method for linear elastostatics with a standard boundary element approach.
The considered domain is the cuboid shown in Fig. 1.

Fig. 1. Cuboid with 2560 boundary elements.

The left front side is the part with Dirichlet boundary conditions. The
rest of the boundary has Neumann boundary conditions. The given boundary
data are the traces of a chosen solution of the boundary value problem (1),
which is given by a fundamental solution with the singularity outside of the
domain. The system of linear equations (8) is solved as Schur complement
system, with an iterative inversion of the matrix of the single layer potential
in each iteration step. The results of this computations are given in Table 1.

Table 1. Comparison of standard and fast BEM.

I N M dof t1 to it D-error N-error

O O T e oo
roweowooam D e
> oo s SR
s om0 amzooam YR et e

162 min) (>23 min)
7.6 min 13.5 min 32 2.47e-6 5.06e-3

(43.3h) (>6.6 h)
0.5 h 1.3 h 34 5.96e-7 2.50e-3

4 10240 5122 16803 (

5 40960 20482 67395
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The first line of each refinement level L shows the data for the standard
boundary element method, while the data in the second line refer to the fast
boundary element method. IV is the number of triangles and M denotes the
number of nodes. Further, the number dof of degrees of freedom is given. ¢,
and to are the times in seconds for setting up and for solving the system of
linear equations. It is the number of iteration steps needed in the Schur com-
plement conjugate gradient method with a relative accuracy of 10~8. Further,
the errors of the computed Dirichlet and Neumann data are compared using
the Lo(I") norm. These experiments have been carried out on personal com-
puter with an Intel Pentium 4 processor with 3.06 GHz and 1 GB of RAM. An
artificial multilevel boundary element preconditioner [41] and the technique
of operators of opposite order [28, 43] have been used as preconditioners for
the single layer potential and the hypersingular operator, respectively.

The numbers of iterations are the same for the standard and the fast
boundary element method. This is an evidence that the approximation of
the system matrix is rather good and that important properties such as the
symmetry are preserved. The standard method only works until the fourth
refinement level due to the memory restrictions. Therefore, some values have
been extrapolated and have been put in brackets. The numbers of iterations
grow logarithmically as expected from theory [22]. There is some overhead in
the fast boundary element method on the first refinement levels. But the fast
multipole method speeds up the calculations on the higher levels significantly.
The speedup is larger for setting up the system than for solving. This is
typically for the fast multipole method. But here it is also caused by the
special choice of the parameters of the fast multipole method for an optimal
total time and by some implementation details. The factors of the increasing
computational times for solving the Schur complement system are a little bit
higher than expected for an algorithm of O(N log®N). This is due to the
increasing number of iterations in the inner iteration for the inversion of the
single layer potential in the Schur complement conjugate gradient method.
The errors of the Dirichlet and Neumann data match each other very well for
the standard and the fast boundary element method. The convergence rates
expected from theory are obtained.

In Table 2, a diagonal scaling, the artificial multilevel boundary element
preconditioner [41] and an algebraic multigrid method [19, 20, 27] for the fast
multipole method are compared as preconditioners of the single layer potential
in a Dirichlet boundary value problem for the cuboid in Fig. 1. In the latter
case, the algebraic multigrid preconditioner of the single layer potential of
the Laplacian is applied componentwise, since its application is cheaper than
the application of the operator of linear elastostatics and gives good iteration
numbers.

Overall, six uniform refinement steps have been applied such that the finest
grid consists of 163840 triangles and 491520 degrees of freedom. The compu-
tations have been executed on a personal computer with an AMD Opteron
processor 146 with 2.0 GHz and 4 GB RAM. The iteration numbers of the
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Table 2. Comparison of the preconditioners.

scaling ABPX AMG
L N dOf t1 tQ It t1 t2 It t1 tQ It
0 40 120 0 0 26 0 026 0 013
1 160 480 1 2 36 2 133 2 115
2 640 1920 5 13 51 5 10 40 5 416
3 2560 7680 18 93 70 19 5844 21 2516
4 10240 30720 75 680 92 76 37050 88 160 17
5 40960 122880 365 6945 124 368 3080 55 457 1392 19
6 163840 491520 1749 55984 165 1750 20386 60 2325 9481 21

diagonal scaling grow quite fast. The iteration numbers of the artificial mul-
tilevel preconditioner increase logarithmically as predicted. As the costs for
this preconditioner are very low, the reduced number of iterations results in
a faster solving of the system. The algebraic multigrid method reduces the
number of iterations once more. The application of the algebraic multigrid
preconditioner is a lot more expensive than the artificial multilevel precondi-
tioner, but nevertheless the computational times are reduced again. Therefore,
the extra effort to set up the algebraic multilevel preconditioner is justifiable.

The first example of industrial interest is the stress analysis for a part
of a press equipment and has been provided by W. Volk, M. Wagner and
S. Wittig (BMW Research Center Munich). The two pictures in Fig. 2 show
the deformed body under imposed deformations and stresses.

Fig. 2. Part of a press equipment.

The numbers N of boundary elements, the numbers of degrees of freedoms,
the computational times for setting up and solving the system of linear equa-
tions and the numbers of iterations of the conjugate gradient method with a
relative accuracy of 10~% are given in Table 3. The press equipment is only
fixed at a few points. Therefore, the block of the single layer potential is set
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up completely and inverted by a direct method. Than the complete system is
solved as a Schur complement system on the Opteron computer.

Table 3. Computational times for the press equipment.

N DOF(N) DOF(D) Setup Solving it
13144 182 19586 896 3398 343
52572 728 78426 3940 23623 372

The numbers of iterations might seem to be rather high on the first sight.
But they are caused by the thin walls of the body. The slight increase of
the numbers of iterations shows that the preconditioning of the hypersingular
operator by the operator of opposite order [43] performs as expected.

The second example is a metal foam, see Fig. 3, provided by H. Andra
(Fraunhofer—Institut fiir Techno— und Wirtschaftsmathematik, Kaiserslautern).
The left picture shows the body in the reference configuration, while the right
picture shows the deformed body. The bottom side of the foam has been fixed
and the top side has been pressed down by a given deformation in z—direction.
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()
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.08
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=008
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Fig. 3. Undeformed and deformed foam of metal.

The number of boundary elements, the number of nodes, the number of
degrees of freedom, the number of iterations and the computational times are

given in Table 4.

Table 4. Computational times for the foam.

N M DOF(N) DOF (D) Setup Solving It
28952 14152 396 41511 1730 9832 264
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Several attempts of computations with commercial finite element software
had been failed for this complex structure. But these computations were pos-
sible with the fast boundary element method. The preconditioners work well
for this complex structure, too. The computations are rather costly for fast
boundary element methods, as the boundary element mesh fills out the whole
volume and the nearfields in the cluster tree are very large, consequently.

Overall, the realization of the boundary element method for linear elas-
tostatics by the fast multipole method works very well and is applicable to
complex structures of industrial interest.
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Summary. This paper discusses a time domain fast boundary integral equation
method for three dimensional elastodynamics and its parallelisation for a large
shared memory parallel computer. Some details of the PWTD (Plane Wave Time
Domain) approach and an extension of the theory to the anisotropic case are pre-
sented. We then examine the parallelisation strategies of the code using OpenMP
and MPI-OpenMP hybridisation. In the case of MPI-OpenMP hybrid parallelisa-
tion, a numerical example with more than one million spatial DOF is shown. It is
concluded that the method is promising, its parallelisation with OpenMP is effective
and that larger problem can be analysed with MPI-OpenMP hybrid parallelisation.

1 Introduction

When one solves wave problems in time domain with the conventional BIEM
(Boundary Integral Equation Method), one will have an algorithm of the
complexity of O(N2N?), where Ns and N; are the spatial and time degrees
of freedom (See Nishimura [4] for example). This complexity is considered
expensive and has urged investigators to develop fast methods. Ergin et al.
[1], for example, have proposed the so called Plane Wave Time Domain Algo-
rithm (PWTD) which utilises the plane wave expansion of the fundamental
solution and the hierarchical structure of the space-time in the scalar wave
equation in 3D. Also, Lu et al. [3] have developed a PWTD algorithm for the
2 dimensional scalar wave equation, and shown that the complexity of this
method is O(N,;Nlog N log Ny).

Our group have been investigating fast algorithms for elastodynamics. In
time domain, Takahashi et al. have extended the PWTD algorithm to elasto-
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dynamics in 2D and 3D and have solved problems of the spatial and temporal
degrees of freedom of the orders of 10* and 102, respectively [5, 6].

In this paper we shall continue these investigations and report further
progress made after the publication of these papers. Namely, we shall present
a simplified derivation of the plane wave expansion of the fundamental solution
for elastodynamics. With this derivation we shall obtain a PWTD formulation
for general anisotropic elastodynamics.

We shall also investigate parallelisation of the algorithm for shared memory
computers. In the area of high performance computing, the use of clusters of
SMPs is becoming popular. In such platforms, each of the nodes is a shared
memory parallel computer, in which all the CPUs share a large memory space.
For shared memory parallel computers, OpenMP [8], which is reputed for its
user friendliness, is considered to be the de facto standard for the thread-
parallelism. In this investigation, we shall present an easy way of parallelising
the fast time domain elastodynamics code with the help of OpenMP. We
shall further seek an MPI [9]-OpenMP hybrid parallelisation of the algorithm,
which enables an analysis of large scale problems with more than 1 million
spatial degrees of freedom.

2 Formulation

2.1 Time Domain Elastodynamics in 3D and Integral Equations

In the following sections we shall outline the three dimensional fast boundary
integral equation method for elastodynamics in time domain proposed by
Takahashi et al. [6], to which the reader is referred for the details.

Let D C R? be a domain which can be identified as the elastic body in
question. We are now interested in finding the displacement field u;(x,t) for
x = (z1,22,23) € D,t € (0,00) which satisfies

chui g (@, t) + (cf — c3)ujs(@, 1) + bi(z, t) = ti(w, 1) (1)
subject to initial conditions:
u(x,0) = uo(x), u(x,0)=vo(x) inD (2)
and boundary conditions:

u(zx,t) = u(x,t) on S, t(z,t) = t(x,t) on S, (3)
where a superposed (_) indicates a function given on the boundary of D denoted
by S, S1 and Sy are disjoint subsets of S such that S; + So = S holds, and
the spatial derivatives with respect to z; are denoted by () ;. Also, the initial
displacement and velocity are denoted by wg and wvg, respectively, t is the
surface traction defined by
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ti(x,t) = Cijrn;(x)up,(z, 1) (4)

and n is the unit normal vector to S pointing into the complement of D. The
symbol Cjjp; stands for the elasticity tensor which is written as

Cijrt = AN0ij0p1 + p(8irdji + 6:dji) (5)

where A and p are Lamé constants, with which the velocities of P and S waves,
denoted by ¢ and ¢y, are written as

A+2
c1 = * M, Cy — \/M. (6)
P P
where p is the density.

Assuming, for simplicity, that the initial displacement, velocity and body
force vanish, we obtain the following BIE (Boundary Integral Equation) on
S x (t>0):

1
QUi+ ][ Tij(x,y,t) * u;(y, t)dS, = / Lij(x —y,t) xt;(y,t)dS, €S
S S
(7)

where ][ stands for Cauchy’s principal value and * indicates the convolution

with respect to time. Also, I' and T are the fundamental solution and the
double layer kernel for elastodynamics written as

Pate = L [V, g, (e (el

dmp || || || 9
8

0
9y i (x — y,t) (9)

where § is Dirac’s delta, and fy = (|f] + f)/2.

T;; (x,y,t) = lemnnl(y)

2.2 Discretised BIE for Conventional Approach

We discretise (7) as follows: Discretise the boundary S with Ny planar tri-
angles S;(I = 1,2,---,Ny) and take a spatial collocation point x; at the
centroid of each S7. Divide the time into N; time intervals (tn_1,ts) hav-
ing the constant length At. Take a time collocation point at the end point
(to = aAt) of each interval. Denote the boundary densities at the collocation
point, namely, the displacement w(xs,t,) and the traction t(xzy,ts) by uf
and t7, respectively.

As the basis function, we use piecewise constant functions spatially and
piecewise linear functions in time. Written explicitly, the time basis function
takes the following form:
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0 t<ta-1,la41 <t

To(t) = 707 tam1 <t <ta (10)
T e <t <tap

With these, the functions u(x,t), t(x,t) are interpolated as:

=Y Va(tu(@,ta) (11)
a=1

=) W (t)t(w, ta) (12)
a=1

with respect to time. As we write

L 1 min(tg41,ta)
W(ij_ﬁ_ = _01j0apd + / T(xr,y,te — S)Wg(s)dsyds (13)
2 tg—1 S
181 min(tg41,ta)
pors-l _ / D(@1 —y,ta — 5)Ws(s)dS, ds (14)
tg—1 Sy

we see that (7) allows the following discretisation:

N,

1) g«
Z Ua ZB )bJ
J=1
a—1 Ng
_ZZO’V(Q G0 gle- 5+1)t5) (15)
=1J=1

where we have denoted unknown (known) quantities at the current time ¢,
on the element S; as a§ (b5) and the corresponding coefficients (either W}})
or U(l)) by A1 (B(l)) The system of equations in (15) has 3N unknowns.
Since A; J) is sparse, one obtains its inverse with O(Ny) operations. However,

U(ﬂ]) and W(ﬂ]) in the 2nd term of (15) become dense as 7 increases. Also,
the number of matrix-vector multiplication required to obtain the RHS of
this system of equations will be proportional to the number of time steps.
Therefore, the number of operations required to obtain the solutions aJIV‘
for N; time steps is O(N2N?) with the conventional BIEM, which is quite
expensive. It is thus seen that one needs a fast method of carrying out the
mat-vec operations in the RHS of (15) in order to obtain a fast solution
method for BIEMs in time domain. We are thus lead to the investigation of
fast method of evaluating the RHS of (15) with the help of the plane wave
expansion of the fundamental solution.

2.3 Plane Wave Expansion of the Fundamental Solution

We now consider an integral representation for the function given by
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Fij(a:, t) — F,:](w, t)

where Fi’j (z,t) is the anti-causal fundamental solution, or ‘ghost’, defined by
I/;(x,t) = Ijj(x,—t). As the limiting absorption principle tells, the causal
(namely, the one which vanishes for ¢ < 0) fundamental solution is obtained
as

(@, t) = F 0 lumwts iy = [Cinjiéi€s — pw?6ij) ™"

where w™' means that one takes the Fourier inverse transform assuming that
the quantity w has an infinitesimal positive imaginary part. Similarly, one
shows that the following holds true:

Fi,j(wvt) = fﬁlﬁiﬂw:w—

where w™ has an obvious meaning. These results yield
/ 1 -1 ro—iwt
Fij(a:,t)—Fij(a:,t) = 271_.7: e pFije dw

where p is a closed contour in the complex plane which includes in its interior
all the poles of the integrand as a function of w. See Fig. 1. After some ma-
nipulation, one has the following plane wave expansion for the fundamental
solution:

Fij(m,t) — lej(m,t)

8t kzkj kkeike ik
=— S(t—x -k PraTeEtat st — k- k dsSy.
82 /SJPC?( @ kfe)+ pcs (1= kjeo) | dSi
(16)

Fig. 1. Path.
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Since the ghost has no physical meaning, one has to make sure that this term
does not pollute the numerical solution. As a matter of fact, the technique of
sectioning the time interval, to be presented later, guarantees that the ghost
has no effect on the numerical solution.

Finally, we notice that Takahashi et al. [6] obtained the same result using
somewhat more involved calculation, while the present version requires just
residue calculus. This simplification makes it possible to use the same method
in obtaining similar results for the general anisotropic case, as we shall see
later.

2.4 Evaluation of Potentials with the Plane Wave Expansion

We now construct a fast method of evaluating the layer potentials in (7) with
the help of (16).

We consider 2 spherical regions Sy and S,, both with the radius of R,
and denote the origin of each of them by s and o, respectively. Also, we shall
denote the distance between the centres |0 — s| by R., which are assumed
to satisfy R. > 2R. A part of Ss, denoted by Sp, is then considered. We
now evaluate the layer potentials due to the densities t and w distributed on
So x (0,t] and observed at the collocation point (x,t) (x € S,,t € (0,00))
using (16). The densities u and ¢ are divided into sub-densities w* and t*
which have supports only in the time interval (17, 75] (175 < t). If

R.—2R > ¢1(T — T7) (17)

holds, the potential due to known densities t* and u* on Sy x (Tf,T5] is
expressed as [6]:

JQ (T35 (0, 9, £) 03 (g, 1) — Tig (@ — 1)  £2(, 1)) dS,
0

= —8?:2 /S,C [kz(s(t — (:l} — 5) . k/Cl) * OZ(S,t,k)
tepnkpd(t — (@ = 8) - k/co) * Oi(s,t, k)] dSr.  (18)

Namely, the effect of the ghost is absent if (17) holds. In this statement O
and Ojf (k =1,2,3) are the outgoing rays defined by

<y@¢k>:/‘(ﬂl i gt~ (s - y) - K/ea)
So pCy

—pkcjzf tyt—(s—y)- k/c1)> ds, (19)

Citnmmieqmikqkn -
(m@¢k>:/’(fl (CamiRaln sy ¢ (s — ) - b /c2)
So PCo
e ‘kk 2
=Tt = (5 - y) k) ) dS), (20)
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Equation (18) can also be computed as follows:

[3 (T3 (. . £) 03 (g, 1) — Tig (@ — 1)  £2(, 1)) dS,
0

- _87172 /Sk [kid(t — (z —0) - k/c1) * I*(o,t, k)
+epikkpd(t — (x — 0) - k/ca x I} (0,t, k))] dSy (21)

where I* and I7(k = 1,2, 3) are incoming rays defined by

Iy (ot k) = 016(t — (0 — 8) - k/ci(a)) * O (s, t, k). (22)

One can shift the origin of the outgoing and incoming rays via
Ofy(s,t, k) =d(t — (s — &) - k/ci(2)) = O (s, £, k), (23)
IGy(s,t, k) = 0(t — (s — 8') - k/cya) * I (s, t, k). (24)

3 Fast Algorithm

We now construct a fast method of evaluating the layer potentials in the RHS
of (15) with the help of the plane wave expansion introduced in Section 2.4. In
this algorithm, we evaluate the contributions to the potentials at a collocation
point from far elements via the plane wave expansion and those from nearby
elements via conventional approaches.

3.1 Cells and Time Intervals

We first divide the spatial domain under consideration into hierarchical cell
structure. For this purpose we take a cube which contains the whole boundary
S and call it the cell of the level 0. We then divide it into 8 equal cubes called
level 1 cells by bisecting the edges of the level 0 cell. We further subdivide
the level [ cell into 8 cubes, from which those containing boundary elements
are kept as the level [ + 1 cells. We continue this subdivision until the cell
contains less than a certain number of elements. The lowest level number is
denoted by l,qe. A childless cell is called a leaf.

We next introduce the concept of neighbourhood in the following manner:
Let the coordinates of the centre of level I cells C' and C’ be C; and CY,
respectively, and the edge length of a level [ cell be LX), The cells C' and C”
are said to be close if

|G —Cll < (B+1)LY i=1,2,3 (25)

holds, and called far otherwise, where 3 is a number. In the present investiga-
tion we put 8 = 1. Namely, two cells are said to be far if there are more than
1 cells between them.
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In the evaluation of the effects from far cells, we use the plane wave ex-
pansion, which is applicable only when (17) holds. Therefore, we introduce a
set of time intervals of a constant length M At, the zth one of which is given
by ((z—1)MAt, zM At](z = 1,2, - -+ ). The densities u and t are then divided
into u* and t* according to these intervals. Since the discretised densities are
interpolated with interpolation functions having supports of the lengths 2p;,
the support of the zth density, i.e. (TF,t5], is given by

TF = ((z — 1)M + 1 —p;) At (26)
T5 = (M + p;) At. (27)

In order to evaluate effects from far cells with the plane wave expantion, one
takes the M for each level as

I, (lmaz)

M (maz) — B -2 1 28
Clﬂt Pt + ( )
MO =2 1 =23 . e —1 (29)

considering (17). With this M () the time interval z()) for each level [ is defined
and thus Tf(l) and TQZ(” are determined by (26) and (27).

3.2 Outline of the Fast Algorithm

We now outline the fast method based on the plane wave expansion:

1. Evaluation of the layer potentials in a cell C' due to densities on S X

(0, tafl] :

Let the current time be t, = aAt. We then evaluate the layer potential

produced by known densities on S x (0,t,—1] by separating it into the

contributions from the near and far cells.

e Contribution from the near cells can be evaluated directly with the
conventional method.

e Contribution from far cells is evaluated as follows:
Let the current time t, be in the z((yl )th time interval in level [. Then
the outgoing and incoming rays O;(l) and I;(l) due to boundary den-

sities w*"” and ¢*" which have supports in the passed time intervals
20 =12 ... ,z,(ll) — 1 are known, and their effects have already been
evaluated via (21), as we shall see later in 3 b), and stored. Therefore
all it takes is to recall the stored values for the potential. Notice that
the contributions of the densities in the current time interval from far
cells will not reach C' at the current time and, hence, do not have to
be considered.

2. Determination of the unknown boundary densities at the current time:
The RHS of (15) has already been obtained with the help of the procedures
described above in 1. Hence one solves (15) with any iterative method to
determine the unknowns at the current time.
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3. Computation of the outgoing and incoming rays:
We compute the outgoing and incoming rays produced by the densities in

the current time interval z&l ).

a) upward pass
We compute the outgoing ray for the current time interval z((ll) at
the centre of each cell, starting from the lowest level [, and going
upward to the level 2. The highest level in this algorithm is 2 since
the cells in levels 1 and 0 are all neighbours which means that no
combination of cells in these levels allow the use of the plane wave
expansion. This upward pass is carried out only in the level | where
the current time step number « is a multiple of M®. In leaves we
use (19) and (20) to obtain the outgoing rays. For parent cells we add
outgoing rays of the children after shifting the origin using (23).

b) downward pass
We compute incoming rays for the current time interval z&l ) at the
centre of each cell starting from level 2 and going downward along
the tree structure of cells. But, one carries this out only for levels
where the current time step number « is a multiple of M), From the
outgoing rays of far cells one computes the incoming rays of a cell C
with (22). When C' is a parent, we use (24) to shift the incoming ray
of C to the centres of its children. When C' is childless, we use (21)
to compute the potentials due to far cells at the collocation points
(g, toe)(@ =a+1,---,N¢) in C.

As regrads the third argument k of the incoming and outgoing rays, which

represents a vector on the unit sphere, we use (2K 4+1)(K® +1) samples

in the level . The number K is taken in a way that it satisfies K =

2K(l+1) )

4. Update
Increment the time step number by 1.

4 Remarks on PWTD Algorithm

4.1 Detail of the Downward Pass

The PWTD algorithm is quite complicated. Particularly complicated is the
downward pass which is considered to be worth the efforts to elaborate.

We first note that the layer potentials in a cell C' produced by cells far
from C' can be computed in the zth time interval as follows:

1

82 /Sk [kid(t — (€ —0) - k/c1) x L7 (0,1, k)

+ epikkpd(t — (k. —0) - k/ca) x Lj (0,1, k)] dSk (30)
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where x is a point in C' and o is the centroid of C. In this expression, L is
defined by
(31)

z—1
: T V3L V3L

c
¢=1

and will be called the ‘accumulated incominig ray’.

Note that the accumulated incoming ray is defined in an interval for ¢
obtained by adding the maximum time shift in (30) (i.e. ‘/2‘3CL) before and
after the zth time interval. As a matter of fact, we need the accumulated
incominig ray for

(32)

3L 3L
te [tl— \/20 ,to + \/20

in order to compute potentials for ¢ € (¢1,t2) everywhere in a cell C' having
the side length of L, where c is either ¢; or cy. Also, note that rays of any
type defined at @ for ¢t € (¢1,t2) will shift into another at y for

te[tl— RSS2

We now design the algorithm in a way that the calculation of the accumu-
lated incominig ray Ef,il))ﬂ is completed at the end of the z(Vth time interval
in C. To this end we consider what information will have to be passed to
the child cell and what information will have to be stored before the next
((2) + 1)th) time interval. We notice that the end point of the z()th time
interval at the level [ is also an end point of the z(‘*Dth time interval for
a certain 2/("*1) at the level (I + 1). Also, the mid point of the () + 1)th
time interval at the level [ is the end point of the (2/("+1) 4+ 1)th time interval
at the level (I 4+ 1). Therefore, if a parent C' shifts its accumulated incominig
ray Ef:;“ to the children at the end of z(Vth time interval, this will feed the

. . . . . (1+1) 11+1)
children with the incoming rays required to compute [,fk)l P+ and ka;ﬂ +2

The part of the accumulated incominig ray of C' shifted to the children is then
cleared and the rest of the accumulated incominig ray which is required for
the next and later time intervals is stored. This is the outline of the downward
pass.

We next describe further details of the algorithm. Let the current time
be to = z2WM® At. We first compute the incoming rays from the interaction
list of C'. Namely, for a cell C’ not in the neighbourhood of C' but in the
neighbourhood of C’s parent, we use (22) to convert the outgoing rays of C”
to the incoming rays for C. This process produces the incoming rays in the
interval given by (see (32) and (33))
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<((z“> — MO — uO)yar - (28 +1)v3LW |
C

208+ 1)v/3LW

OMO 4+ MDAt + (
&

(34)

where

V3LW

M =
2c At

+ P

and c stands for one of ¢; 5. Since one needs the accumulated incominig ray
only for the time in the (2(!) + 1)th time interval and after, we need to store
the accumulated incominig ray only in the time interval given by (see (32))

V3LO

(a+ DAL= (a+ M)At + (35)
&

(28 + 1)¢3L<l>]

Hence, we compute and add only the part of the incoming ray in the time
interval of (35) to the accumulated incominig ray for C. The part of the stored
accumulated incominig ray in the interval given by

V3L \/3L(l)]

1)At — M)A
(a+1)At 5 (a4 VAt + 5 (36)

will be needed in the (z(*) +1)th time interval. Indeed, this part will be needed
in order to evaluate potentials in the next time interval if C' is a leaf cell (see
(32)) or will have to be passed to the children because of the requirement
of the algorithm. In the latter case, i.e. when the cell C' under consideration
has a child, we shift only the part of the accumulated incominig ray in (36)
with (24) and pass it to the child, and then clear the part of the accumulated
incominig ray for C' in (36). Once this is done, the first part of the length
MM At of the accumulated incoming ray of C stored for the interval in (35)
will not be referred to later and, hence, need not be stored any longer. The
rest of the accumulated incominig ray, however, is kept and the incominig ray
to be computed in the next time interval will be added to this.

When the cell C'is a leaf, we compute the potentials from the accumulated
incominig ray in the interval in (36) using (30). Since the first part of the
accumulated incoming ray of the length M) At in the interval in (35) will
never be referred to in later time intervals we will not store it. The rest of the
accumulated incominig ray is kept and to this we shall add the incominig ray
to be computed in the next time interval.

The above operation is carried out downward from level 2 to level 44,

but only at the relevant levels, where the current time step is a multiple of
MO,
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Notice that the process of shifting the accumulated incominig ray in (36)
in the level [ to the children in the level (I + 1) uses (24), which gives the
time shift of ‘/?:é”) at the maximum. Hence the length of the accumulated
incominig ray to be sampled at the level (I+ 1) by the children when a parent

shifts its accumulated incominig ray to its children is given by

3L+ 3v3LM
(a4 1)At — v o0 (o + MD)AL + ¢4C (37)

Since M*(Hl) ‘/?éﬁ(“rl) +pe, LY =200+ and M < BLAt , we see that the
interval in (37) is included in the interval in (35) (with [ =1+ 1). Hence the
amount of memory required for the accumulated incoming ray is determined
by (35).

We remark that the length of the interval given by (35) does not depend on
the number of the time steps N;. We also remark that the amount of memory
required for the accumulated incoming ray is always the same since the first
M® time steps of the accumulated incoming ray are removed and the same
number of steps are added every time one updates the accumulated incoming
ray, i.e. every M) time steps.

See Fig. 2 which summarises the detail of the downward pass.

generate incoming ray

level | | |

| | t
| outgoing ray |
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|
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leaf
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to be used for potential evaluation |  be sampled in the next time ir

current time

Fig. 2. Detail of the downward pass.
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4.2 Anisotropy

The PWTD approach is somewhat exceptional in the fast methods of the
FMM type in that all the details of the formulation can be derived from
the Fourier analysis. This suggests that it may be possible to derive PWTD
formulations for general anisotropic elastodynamics. In the rest of this section
we shall show that this is true.

We first derive the plane wave expansion formula for the fundamental
solution I', which, in the case of general anisotropy, can be written as

Ly, t) = F1(A™Y)y, (38)
where
Aij = Cirji&u&s — pwbij, (39)

0i; is Kronecker’s delta and & and w are the Fourier parameters for the spa-
tial variable x; and time ¢, with which the Fourier transform and its inverse
transform are written as:

Ff= //e_ig"'x’:““tf(x,t)dxdt
N R (T

The elasticity tensor Cjjr; now has 21 independent components.
We introduce the following sextic equation for w

det(Cipjiér& — pw?dij) = 0

for a fixed €. Obviously, the solution to this equation can be written as

+ep (K€, (p=1,2,3) (40)
where ¢2(k) (p = 1,2,3) are the eigenvalues of the matrix
Cips
R ek,
p

and k = £/|¢|. We shall assume that the eigenvalues are distinct and denote
the corresponding eigenvector by v?.
As in the isotropic case, we obtain

1 L
Lij(x,t) — I (z,t) = m]-‘gix /pijeﬂwtdw
P

where Fi’j is the ‘ghost’ and p is the contour in Fig. 1. By evaluating this

integral, one obtains the following:
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Fij(w,t) F/ (:1: t

(1% (k)
= /s [ sy 0@ R/ S @)

pe;

This formula gives the plane wave expansion of the fundamental solution.
The rest of the analysis goes parallel to the isotropic case. Indeed, one has
the local expansion formula

/ (T35 (2, 4, £) 2 (. 1) — Ty (@ — 1) * £2(, 1)) dS,

=2 Z/S (@ — 0) - k/cy(K)) * " (0, , k)dS}.

where the incoming ray I*?(o,t, k) is related to the outgoing ray O*?(s,t, k)
by

I*P(0,t,k) = 00(t — (0 — s) - k/cp(k)) x O%F (s, 1, k)

while the outgoing ray is defined by

[ ( Craarma)kat (k) (k)L (g, 1)
( )

p 4 ur(yat) - Cg(kf)

0P (s,t,k) =
C
p

«8(t— (s —y) - k/c,(K))dS,.

One can shift the origin of the outgoing and incoming rays via

O (s,t,k) =0t —(s—8") k/cy(k)) « OP(s',t, k),
I*P(o,t,k) =6(t — (0 — 0') - k/cy(k)) « I?P(s', t, k).

So far, no numerical attempts have been made with the PWTD approach
presented above.

5 Parallelisation

In this section we shall consider parallelisation of the fast BIEM discussed so
far on shared memory computers.

Use of parallel algorithms has become quite common thanks to the success
of the Beowulf PC clusters. MPI is the most popular API for parallelisation on
such platforms. In the area of high performance computing, further enhance-
ment of parallel performance is pursued with the use of clusters of SMPs. In
such platforms, each of the nodes is a shared memory parallel computer, in
which all the CPUs share a large memory space. For shared memory parallel
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computers, OpenMP is the de facto standard for the thread-parallelism. Par-
allelisation with OpenMP is remarkably simple and one can possibly achieve
equally high parallel performance as one would with MPI. Unfortunately,
shared memory parallel computers have been accessible only to limited users
so far. However, the situation is changing because of the recent development
of multi-core processors. In view of this, we shall discuss parallelisation of the
PWTD approach with OpenMP and MPI-OpenMP hybridisation.

5.1 Parallelisation with OpenMP

An advantage of OpenMP is that one can easily parallelise only the ‘hot spots’
of the code. In this paper, we shall parallelise only the following parts:

e direct computation of the coefficient matrix
e upward pass
e downward pass

For the solution of the linear equation we use non-parallelised GMRES,
although its parallelisation is easy. This is because the solution of the linear
equation requires only a marginal proportion of the total CPU time thanks
to the sparsity and good conditioning of the coefficient matrix.

Direct Computation of the Coefficient Matrix

The part of the code related to the direct evaluation of the components of the
coefficient matrix (influence coefficients) has been parallelised as shown below
in a Fortran like pseudocode:

do level=lowest level, 2, -1
1ISOMP PARALLEL DO
do cells of the relevant level
if (the relevant cell is a leaf) then
compute the influence coefficients from the cells
near the relevant one.
endif
enddo
1ISOMP END PARALLEL DO
enddo

Upward Pass

The upward pass has been parallelised as follows:

do level=lowest level, 2, -1
if(current time step number is a multiple of M)
!1SOMP PARALLEL DO
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do cells of the relevant level
if (the relevant cell is a leaf) then
generate outgoing rays from the boundary densities
within the leaf.
else
shift outgoing rays from the children
endif
enddo
!SOMP END PARALLEL DO
endif
enddo

Note that one may pass outgoing rays from children to the parent in a do
loop either for the child cells or that for the parents. In the present inplemen-
tation we use the latter since one may otherwise have conflicting write to a
memory corresponding to the outgoing ray of the same parent from different
children belonging to different threads.

Downward Pass

Still easier is the parallelisation of the downward path. Indeed, the only change
one has to make in the sequential code is to add OpenMP directives as indi-
cated in the following pseudocode:

do level=2, lowest level
if(if the current time step number is a multiple of M)
ISOMP PARALLEL DO
do cells of the relevant level

compute incoming rays from the outgoing rays of cells
in the interaction list

if(the relevant cell is a leaf) then
compute potentials at collocation points in the cell
from the accumulated incoming ray
else
shift accumulated incoming rays to the children
endif
enddo
!I$SOMP END PARALLEL DO
endif
enddo

5.2 MPI-OpenMP Hybridisation

In order to solve still larger problems, one may want to use more memory than
could be accessed from one shared memory machine. In such cases, MPI-



A Fast Boundary Integral Equation Method 177

OpenMP hybridisation will be useful. The basic idea is to use the domain
decomposition and assign each of subdomains to an MPI process, which is
further thread-parallelised with OpenMP. A relatively simple MPI code will
be sufficient to this end, as we shall see.

The detail of our hybrid implementation goes as follows.

In the process-parallelisation via MPI, we decompose the boundary .S into
subdomains and assign each of them to a MPI process. The domain decom-
position is done according to the cell division at level 2. Since one has 64 level
2 cells, one process will cover 64/m cells where m is the number of processes.
Each process will store only relevant incoming and outgoing rays, and influ-
ence coefficients for collocation points belonging to its own domain. As for the
iterative solver we use a sequential version of GMRES.

For the downward pass, it may happen that some of the cells in the inter-
action list of a cell belonging to a certain process may not belong to the same
process. In such cases one will have to use inter-process communication. In
order to reduce the amount of communication, we list up the cases where inter-
process communications are necessary, and do all the required data transfers
at the beginning of the procedures for each level in the downward pass. In
this manner one obtains the RHS of (15) distributed among processes. One
finally gathers them to complete the computation of the RHS of (15).

Since the influence coefficients are computed only for the collocation points
belonging to the process, the coefficient matrix on the RHS of (15) are divided
row-wise and stored separately to the memory accessible to a process. There-
fore, one will have to use inter-process communication to obtain a matrix-
vector product when GMRES requires one.

We note that the process-parallelisation with MPI discussed above can be
used on its own, but a more sophisticated coding will be preferable if one wants
to solve very large problems with MPI alone (See [7] for such an attempt).
However, one can use the hybrid of the present MPI implementation with the
thread-parallelisation via OpenMP in the solution of very large problmes, as
we shall see. We now sketch the MPI-OpenMP hybridisation referring to the
OpenMP pseudocode in section 5.1. As has been stated, each process com-
putes and stores influence coefficients for collocation points in its domain, and
outgoing and incoming rays related to cells in its domain. These computations
within a process are further thread-parallelised with OpenMP. Therefore, the
loops for cells in the pseudocode in section 5.1 have to be changed to those
for cells belonging to the process.

6 Numerical Calculation
We now examine the performance of the parallelisation via OpenMP. We also

present examples of large scale problems solved with MPI-OpenMP hybrid
parallelisation.
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6.1 Computer

We have used Fujitsu HPC2500 of the Academic Center for Computing and
Media Studies of Kyoto University for all the computations. This machine

consists of 11 computational nodes, connected by optical interconnects. One
node has 128 CPUs (SPARC64V(1.56GHz)), and a shared memory of 512GB.

6.2 Numerical Examples

We solve an interior problem for a parallelepiped and an exterior problem for a
system of spherical cavities in order to test the performance of the OpenMP-
parallelisation. In the former problem we also examine the accuracy of the
solution. In the latter we test the performance of the process-parallelisation
with MPI and that of the MPI-OpenMP hybrid parallelisation.

Interior Problem for a Parallelepiped

We consider an interior problem for a parallelepiped whose space diagonal
connects two points given by (0,0,0) and (1.40, 0.68, 0.80). We have discretised

Fig. 3. Boundary elements.
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the boundary with 26,160 triangular elements (78,480 DOF), as shown in Fig.
3. Also an appropreate non-dimentionalisation has been made, which gives
p=1,¢1 =1and cy = 1/v/2. As the boundary condition we give the traction
associated with the following displacement field, which satisfies the governing
equation of elastodynamics:

u(x,t):d[l—Cosi;T (t— d'w)} (42)

C1

where d stands for the direction of the wave propagation which is set equal

tod=(0,0,1) and A = 1.0 is a constant. The definition of the ‘Cos’ function
is as follows:

cosx 0<ax <27

Cos { 1 z<0,z>2n (43)

The time increment At is 0.01 and the number of time steps is Ny = 200.
Also, the maximum number of elements in a leaf is 150 and the number of
incoming and outgoing ray sampling points on the unit sphere in level 2 is
chosen to be K = 56.

In Fig. 4 we have shown the relation between the thread numbers (number
of CPUs) and the computational time in the OpenMP thread-parallelisation.
Fig. 5 plots the speed up defined by (computational time when one has just
1 thread)/(computational time with n threads) vs the number of threads.
Ideally, the speed up is equal to the number of threads, which is also plotted
in the same figure with a dotted line.

The error of the numerical solution relative to the exact one in (42) has
been obtained at each time step, whose maximum was 3.28%.

As is seen the computational time is minimum with 64 threads while the
computation with 128 threads took slightly longer than the 64 thread case.
One of the reasons for this saturation is the following: From the point of view
of the algorithm, level 2 is the most costly one because both the number of
sampling points for the incoming and outgoing rays and the lengths of these
rays are the maximum at this level. However, the maximim number of level 2
cells is 64, and the use of more than 64 threads for this level is not considered
effective. This explains the sudden deterioration of the efficiency beyond 64
threads. From the point of view of hardware, one may mention the conflict of
memory access as a possible reason of the saturation of the efficiency beyond
64 threads.

Spherical Cavities

We next consider the scattering of a plane incident wave by a three dimen-
sional array of spherical cavities in an infinite space.
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Fig. 4. Computational time for the OpenMP parallelised code (parallelepiped).
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Fig. 5. Speedup with OpenMP (parallelepiped).

In the first example we have a 4 x 4 X 4 array of spherical cavities in
x1, x2 and z3 directions. The distance between the neighbouring cavities are
2a = 0.15 and the radius of each sphere is 0.9a = 0.0675. Each of the spheres
are subdivided with 320 triangular boundary elements, and the total number
of elements is 20,480 (61,440 DOF). See Fig. 6.

The material constants are chosen to be the same as in the parallelepiped
case in the previous subsection. The time increment is chosen as At = 0.01,
and the number of the time steps is N; = 200. The maximum number of
elements in a leaf is 100 and the number of sampling points of rays on the
unit sphere for the level 2 is K (?) = 24.

The incident wave u! is given by

uf(x,t)d{1cos%7lr (td'mﬂ (44)

C1

with the incident direction of d = (0,0,1) and A =4a = 0.3.
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Fig. 6. Boundary elements for spheres.

Fig. 7 shows the relation between the number of threads and the com-
putational time with the OpenMP thread-parallelisation. We also plot the
computational time for the MPI process-parallelised code vs the number of
processes for the purpose of comparison. The increase of computational time
with 128 thread seen in this figure can be explained similarly as in the pre-
vious section 6.2. This figure also shows that the OpenMP version of parallel
code is slightly faster than the MPI version. Of course, the computational
time depends on the detail of the coding and it may not be very appropreate
to generalise this timing results. Fig. 8 plots the speedup vs the number of
threads in the OpenMP thread-parallelised code. Table 1 gives the compu-
tational time for the MPI-OpenMP hybrid parallelisation. This table shows
that the case with 1 x 64 MPI-OpenMP parallelisation is the fastest, followed
by the 8 x 8 case.

From these results we can say that OpenMP provides a much less painful
way to achieve almost the same level of the parallel efficiency as that with
MPI. We can thus conclude that the parallelisation of FMM with OpenMP is
practical.

Finally, we remark that we have solved the same problem with K () = 42
and compared the result with the K2 = 24 analysis. The results were close
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Table 1. Computational time with MPI-OpenMP hybrid parallelisation (spherical
cavities).

number of processes number of threads computational time (s)

1 64 2053
2 32 2379
4 16 2356
8 8 2301
16 4 2603
32 2 2956
64 1 2947
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to each other, the average difference of the these solutions (displacement on
the boundary) being less than 1%.

Large Scale Problem

We finally present an analysis with 12 x 12 x 8 cavities in 1 X x5 X 3 directions.
The number of boundary elements is 368,640 and the total DOF is 1,105,290.

The constants and parameters are chosen as follows: p = 1, ¢; = 1 and
c2 = 1/4/2. Also, the time increment is At = 0.01, the number of time steps
is N; = 200, the maximum number of elements in a leaf is 100 and K (2 = 80.
In this problem we have used a hybrid parallelisation with 8 processes and 32
threads, thus using 256 CPUs in total. An analysis of this size is possible only
with the hybrid parallelisation.

Fig. 9 shows the obtained boundary displacements for ¢ = 200A¢. The
accuracy of the analysis, however, is unknown. The reqired computational
time was 10 hours 47 minutes. The memory used was about 18.8GB per
process and about 150.4GB in total. Since HPC2500 has 512GB of memory
per node, it is possible to solve still larger problems, at least theoretically.
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Fig. 9. Deformation of 12x12x8 cavities. t = 200A¢.
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7 Concluding Remarks

e In this paper, we have seen that the PWTD algorithm can be applied
successfully to time domain elastodynamic problems in 3D.

e We have shown that it is easy to parallelise the fast BIEM using PWTD
algorithm for 3 dimensional elastodynamics in time domain with OpenMP
and shared memory parallel computers. We have also seen that the parallel
efficiency of the code is satisfactory.

e MPI-OpenMP hybrid implementation is seen to be effective in large scale
problems. With this implementation, we could solve three dimensional
time domain elastodynamic problems with more than 1 million spatial
degrees of freedom. It is possible to solve still larger problems considering
the computational resources available.

e With the techniques presented in this paper one can now solve really large
problem in time domain. However, we have to remember that the sta-
bility of the scheme is still an open issue. In this connection, we point
out that Ergin et al. [2] proposed the use of the combination of the or-
dinary and traction boundary integral equations (i.e. Burton-Miller type
integral equations) in order to avoid corrupse of the time domain BIEM
for exterior problems for the wave equation. Use of similar approaches in
elastodynamics may be an interesting research subject in the future.

e The formulation for the anisotropic case suggests that one may use only 3
types of rays rather than 4 as in the present implementation even in the
isotropic case. So far, no attempts of implementing the 3 ray formulation
in the isotropic case have been made. A possible benefit of the present 4
ray formulation may be found in the easier implementation for the inter-
polation and anterpolation [4] of various rays.
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Summary. This study is set in the framework of inverse scattering of scalar (e.g.
acoustic) waves. A qualitative probing technique based on the distribution of topo-
logical sensitivity of the cost functional associated with the inverse problem with
respect to the nucleation of an infinitesimally-small hard obstacle is formulated.
The sensitivity distribution is expressed as a bilinear formula involving the free field
and an adjoint field associated with the cost function. These fields are computed by
means of a boundary element formulation accelerated by the Fast Multipole method.
A computationally fast approach for performing a global preliminary search based
on the available overspecified boundary data is thus defined. Its usefulness is demon-
strated through results of numerical experiments on the qualitative identification of
a hard obstacle in a bounded acoustic domain, for configurations featuring O(10°)
nodal unknowns and O(10°%) sampling points.

1 Introduction

Defect identificaton problems are often solved by minimization of a cost func-
tion featuring the experimental data and (if available) prior information. Such
cost functions are non-convex and exhibit local minima. Despite that fact, tra-
ditional iterative minimization or equation-solving methods are usually pre-
ferred to global search techniques such as evolutionary algorithms due to the
prohibitive computational cost of solving large numbers of forward wave scat-
tering problems. To perform optimally, gradient-based iterative algorithms are
used in conjunction with shape sensitivity techniques see e.g. [15, 18, 20].
Still, the stand-alone use of gradient-type minimization for such purposes
is not satisfactory for its success is strongly dependent on a reliable prior
information about the geometry of the hidden object. This has prompted
the development of ‘sampling’ or ‘probe’ non-iterative methods, which may
be used in isolation or as a preliminary step for choosing adequate initial
guesses to be used in subsequent standard optimization schemes. Such meth-
ods are surveyed in a recent review article [21] and include the linear sampling
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method [3, 17], not pursued here, and the application of topological sensitiv-
ity, which is the subject of this article. The concept of topological sensitivity
consists in quantifying the sensitivity of a cost function with respect to the cre-
ation of a scatterer Be(zs) of small characteristic radius € and given location
xs, as a function of x,. It appeared first in [6, 22] in connection with topo-
logical optimization of mechanical structures, allowing to define algorithms
where “excess” material is iteratively removed until a satisfactory shape and
topology is reached [9]. More recently, other investigations have studied the
topological sensitivity as a sampling tool for inverse scattering problems, in
the context of identification of cavities in 3D semi-infinite and infinite elastic
media [13] and in elastic 3D bounded bodies [2], and of elastic inclusions [14]
(see also [8] for 2D elastostatics and [7] for 2D linear acoustics).

The distribution of topological sensitivity can be expressed in terms of a
bilinear formula involving the free field and an adjoint field associated with the
cost function. However, the computational cost of solving the forward and ad-
joint problems and evaluating the topological sensitivity distribution on a fine
sampling grid increases rapidly with the non-dimensional wavenumber. The
purpose of this article is to propose the topological sensitivity field computed
by means of the Fast Multipole BEM (FM-BEM) [11, 12, 19] as the basis of a
computationally fast tool for probing acoustic media for hidden hard obstacles
on the basis of overdetermined boundary data, within the model framework
of forward scattering problems governed by the scalar Helmholtz equation.
To that end, the FM-BEM is in particular applied to evaluate in a fast way
the integral representation formulae expressing the free and adjoint fields at
a large number of sampling points points inside the medium.

This article is organized as follows. After some preliminaries concerning
the forward and inverse problems of interest (Section 2), the concept of topo-
logical sensitivity is presented in Section 3. The FM-BEM approach for the
scalar Helmholtz equation is then summarized in Section 4. Finally, results of
numerical experiments on qualitative scatterer identification using computed
distributions of topological sensitivity are presented in Section 5, for configu-
rations featuring O(10°) nodal BE unknowns and O(10%) sampling points.

2 Forward and Inverse Problems

This article is concerned with the identification of rigid obstacles embedded in
acoustic media. The generic acoustic scattering problem of interest is defined
as follows. Let {2 denote a three-dimensional open domain, either bounded or
unbounded, with a sufficiently regular boundary S and filled with an acoustic
medium characterized by wave velocity ¢ and mass density p; this configura-
tion will be referred to as the reference (i.e. obstacle-free) medium. Let B*
denote a rigid scatterer (or a set thereof) bounded by the closed surface I'*, so
that 2* = 2\ B* is the acoustic region surrounding the scatterer. Steady-state
excitations on S with angular frequency w generate an acoustic pressure field
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u* in the acoustic domain 2*, governed by the following set of field equations
and boundary conditions (collectively denoted by P(B*) for later reference):

(A+ k) u* =0 (in £27),
P(B) : pluw]=p°  (onS), (1)
plu*] =0 (on I'™),

where k = w/c is the wavenumber, w — plw] = w, = Vw - n denotes the
normal derivative operator, m is the normal on S UI'™* outward to £2*, and pP
is the prescribed Neumann data over S (other types of boundary conditions
may be considered as well). It is assumed that w is not an eigenfrequency of
any of the boundary-value problems arising in the ensuing developments.

In the inverse scattering problem of interest, an unknown obstacle B¢, of
boundary I'*"™¢, is to be identified. The corresponding exact acoustic field 1™
is then governed by problem P(B'"¢). With reference to problem P(B%"u¢),
supplementary information is needed for the identification of B%u°. Here,
measured values u°P® of acoustic pressure are assumed to be available over
the measurement surface S°* € S. Ideally (i.e. assuming that the physics is
exactly described by the chosen linear acoustics setting and that no measure-
ment errors are present), u° is the trace of u*¢ on S°P*. The identification of
B'™u¢ may then be formulated in terms of the minimization of a cost function.
Generic cost function of format

7@) = [ elunle)i(©.€) ar )

are considered, where u* is the boundary trace of the solution to the forward
problem P(B*) for an assumed obstacle configuration B*, the subscripts 'R’
and '’ being used to indicate the real and imaginary parts of a complex
quantity (i.e. wr = Re(w) and wy = Im(w)). For instance, the output least-
squares cost function associated to measurement u°* on S°%, commonly used
for such purposes, corresponds to

1
2

2

plwr,wr.§) = , |w(§)—u(©)], 3)

The minimization of such cost functions can be performed using many
methods, all of which are iterative and need repeated evaluations of J(§2*).
Traditional gradient-based minimization may converge within a moderate
number of evaluations of J(§2*) if the trial surface I'* can be described in
terms of a few geometrical parameters, but reach a local minimum which de-
pends on the choice of initial guess. Global search techniques, e.g. evolutionary
algorithms [16] or sampling methods based on the Metropolis algorithm [25],
perform a global search (i.e. identify absolute and/or multiple minima), but
at the cost of very large numbers of cost functions evaluations. In this article,
the topological sensitivity is proposed as a tool for performing a qualitative
global search at a computational cost which is far below that entailed by a true
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global optimization technique. The results may then (for example) be used as
initial guesses in subsequent minimization-based inversion procedures.

3 Topological Sensitivity of the Cost Function

3.1 Notations

Let B.(xs) = xs + B, where B C R3 is a fixed bounded open set with
boundary & and volume |B| containing the origin, define the region of space
occupied by a hard obstacle of (small) size € > 0 containing a fixed sampling
point . It is convenient to introduce the scaled position vector € defined by

E=xz,+c& (£€B.,£€B) (4)

In particular, this mapping recasts integrals over B. and [I. into integrals
over B and S, respectively, and transforms the differential volume and area
elements according to

AV =’ dV; (E€B., £€B), dle=c*dl; ((c€l., £€€S) (5)
Without loss of generality, &5 can be chosen as the center of B, i.e. such that

/(5—ms)dv5:0, i.e. /Bédf/gzo. (6)

€

Let u* = u®(; @) denote the solution to the scattering problem P ( B () )
defined by (1), where 2* = Q. (xs) = 2\ B:.(xs) and B.(xy) is the closure of
B.(xs). Further, let J(e; xs) be defined by

Jewy) = T(0u(2)) = / o(uiy(€),ui (€).€) T, (7)

Sobs

For convenience, explicit references to @y will often be omitted in the sequel,
e.g. by writing J(g) or uf(&) instead of J(e;xg) or u®(&; xs).

The evaluation of J(¢) entails solving for u® the forward problem P(B.).
It is convenient, and customary, to decompose u® according to

u® =u+v°, (8)
where u, the free field defined as the response of the obstacle-free (reference)
medium {2 due to the given excitation pP, solves

(A+EHu=0 (in £2),
plu =p°  (on $),
while v¢, the scattered field, solves
(A+EHv =0 (in £2.),
plo] = 0 (on ). (10)
plv*] = —plu]  (on I%).

9)
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3.2 Expansion of J(g)

To establish the topological sensitivity of J(g), one starts with the expansion

J@):tHO)+uédmRﬁ[¢mv5}dF—%oﬂvﬂym), (11)

with
Pu = ( . —iagp)

&€ €
Oug  Ouj

uf=u
Let the adjoint field @ be defined by
(A+EHa = (in £2) ,
pla] =¢n  (on 5°%), (13)
plal (on S\ §°).
Then, the reciprocity identity (i.e. third Green’s formula) applied to the states

4 and v® over the domain (2. leads, by virtue of the boundary conditions
n (10) and (13), to the identity

/Sb_sﬁ’,uvE dF—i—/P plajv® dF—i—/F aplu] A =0 (14)

€

§>

As a result, the integral in the r.h.s. of (11) is converted into integrals over the
vanishing cavity surface. Besides, since both u and 4 are also defined inside
B., the last integral in (14) can be recast into a domain integral over B. by
means of the divergence formula. Expansion (11) then takes the form

J(e) = J(o)+Re{/B [Vu-Vii— kui] dV—/F veplil] dF}

€

—+ O(|v6|sobs); (15)

The first integral in (15) features a density whose definition does not depend
on €, and its expansion about € = 0 can therefore be obtained by simply using
the scaled coordinates (4), (5) and expanding | Vu -Va — kui | (zs + ££).
In contrast, the second integral of (15) features the scattered field v¢, which
depends on €. Its asymptotic behaviour must then be obtained from that of
v on I (taking into account the fact that I also depends on ¢). This step
is based on exploiting an integral equation reformulation of equations (10).

3.3 Governing Integral Equation Formulation for the Scattered Field

The governing problem (10) for the scattered field v¢ = v*(-; &) can be recast
as the boundary integral equation [1, 4]:

€x+AH@@M ) drs = /gwék (&) dle (m € 1L, (16)
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where the Green’s function G(x, &, k) is defined by
(A + E)G(x, &, k) + (€ —2) =0 (€ 1), H(x.&k) =0 (£€8), (17)

and H(x, & k) = VG(x, &, k) - n(€) is the normal derivative of G(x, &, k) (the
nabla symbol V, when used in front of such kernel, conventionally indicates
a gradient with respect to the second argument &€). Moreover, the free and
adjoint fields have the explicit expressions

u@) = [ G &R ©dr . i) = [ Ge&ReuE A (8)
s s
It is convenient for the present purposes to split (G, H) according to:
G(x. & k) = Gx, & k) + Golw, & k) (19)
H(x, & k) = H(x, & k) + Ho(w, &5 k),

where (G, H) is the well-known singular free-space fundamental solution for
the Helmholtz equation, given by

ikr —1 gikr
43 ’

G &h) = " & H(x,&k) = [r-n(&)

47r (20)

with » = € —x and r = |€ — x| = |r|, and the complementary part (G¢, Hc)
is not singular at & = @. On using decomposition (19), equation (16) becomes

@)+ [ A&k dr+ [ Hotw & kne(e) ar

. / G, & k)plu](€) AT, — / Golw, & k)plul(€) ATy (z € T2). (21)
I. I

3.4 Leading Asymptotic Contribution to the Scattered Field

To study the asymptotic behaviour of integral equation (21) as ¢ — 0, it is
useful to introduce further scaled geometric quantities:

T=¢cx, Tr=cF, r=cfF (x,£€l.;2,€€8) (22)

in addition to definition (4) of €. The leading contributions as e — 0 to the
fundamental kernels featured in equation (21) are

Gz, & k) = 1G(=,€) + O(1)

H(m,&,k) :5_2H(§37£) +O(1) (iD,£ S F€)7 (23)
for the singular kernels (G, H) defined by (20), where
c@d=-, . Hay--""Y

T 4773
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are the fundamental kernels for the Laplace equation, and

Ge(z, & k) = Go(xs, g3 k) + O(e)

Holz.€:k) = Ho(wazak) +0() 8T (25)

for the nonsingular kernels (G¢, Hc).
On performing the coordinate transformations (4), (22) and using esti-
mates (23), (25) together with (5b), one finds that

: He(a, & k)v*(€) dIe = O(e?|v7])

| Gol@ & R)plul(€) dle = O(e?).

(26)

The limiting form of integral equation (21) as ¢ — 0, retaining only the leading
contributions, is hence found to be

s [v° (2o + 2€)] (&) = —cVulas) - ints 471”771,(5) dF:+o(e)  (27)

where Ls, defined by
Lsf@) = i@+ [ A@OI@ T @es). @)
is in fact the governing integral operator associated with exterior Neumann

problems for the Laplace equation in the normalized domain R? \ B. Equa-
tion (27) indicates that the scattered field is of order O(e) on I:

v° (&) = v° (w4 &) = eVu(xs) - V(€) + o(e) (€T, £€S) (29)

where the vector function V() solves the exterior Laplace problem

[£5V](®) = — Vu(a,) - /S 471”771,(%') aF; (30)
e AV =0 (€ € R3\ B),
VVn=-n (€S, (31)

PV =001) (/€] = +o0)

It is important to note that V(&) does not depend on the sampling point s,
and hence needs to be computed only once.

3.5 Topological Derivative

On substituting (29) into (15) and taking (5) into account, one finally arrives
at the following expansion of J(g):
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J(g) = J(0) + 3T (zs) + o(e?) (32)

where 7 (xg), the topological derivative of J(g), is given in terms of the free
and adjoint fields by

T (xs) = Re{ Vi A(S) - Vu — |B| k*iu}(zs) (33)

and with the second-order tensor A(S) defined by
A(S) = |BIT - /S[ V(E) on()] dl (34)
— 1811~ [ [n©= V(@)
s

where the second equality (i.e. the fact that A(S) is symmetric) easily stems
from the third Green’s identity and the definition (31) of V.

For arbitrary surfaces & which are sufficiently regular for integral equa-
tion (30) to be mathematically meaningful (this includes surfaces with edges
and corners, e.g. box-shaped scatterers, but precludes infinitely-thin screens),
the vector density V may be found by e.g. solving numerically three sets of
BEM equations for exterior Laplace problems, a computationally modest task.

For the simplest case of a rigid spherical obstacle (where B is the unit
sphere, |B| = 47/3, and on which n(§) = —€) one easily finds by analytical
means that V(€) = £/2. Then, (34) is readily found to be given by

A(S) =2nl. (35)

3.6 Practical Computation of Topological Sensitivity

The developments thus far are based on the Green’s function G defined by (17),
and lead to almost explicit formulae for 7 (xs), their only non-explicit com-
ponent being the auxiliary density ), which must be computed numerically
except for simple shapes of the trial scatterer B.

In practice, this explicit character is retained only for geometries {2 such
that the corresponding Green’s function is known analytically. Such cases
correspond with geometrically simple configurations, e.g. the acoustic half-
space. For configurations where the Green’s function is not available, the free
and adjoint fields and the nonsingular kernels may be sought as solutions of
boundary integral equations [1, 4]. The free and adjoint fields, defined by (9)
and (13), satisfy the well-known integral identities

(mwm+LHmam@MQ=LGmamﬂaﬂz (36)

d@M@+AH@@MM8M%>- Gla. & bon(€) Al (37)

Sobs
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which provide integral equations for « € S (with ¢(x) = 1/2, except at points
a where S is only piecewise smooth, such as edges or corners, for which ¢(x) is
also known) and integral representation formulae for € §2 (with ¢(x) = 1).
Differentiation of the latter under the integral sign provide integral represen-
tations of Vu(x) and Vu(xzs) in £2.

Hence, evaluation of the topological sensitivity field as given by (33) entails
the solution of integral equations (36) and (37) for u and @ on S, followed by
an evaluation of u(xs), Vu(xs) and 4(xs), Vu(xs) by means of (36) and (37)
used as integral representations. The first step may involve large numbers of
unknowns if the diameter of 2 spans more than a few wavelengths. Moreover,
the present objective being to comprehensively explore a 3-D region of space
for hidden scatterers by examining the distribution of 7 (x5), formula (33) is
to be evaluated at a large number of sampling points xs. Both steps can then
be considerably accelerated using the FM-BEM.

4 The Fast Multipole Method for Helmholtz Equation

4.1 BEM Discretization

Equations (36) and (37) are in this article solved by means of the simplest
BEM discretization, which employs flat triangular boundary elements with
straight edges and piecewise-linear C° interpolation of v and @ (other choices,
e.g. CY quadratic interpolation, would of course have been possible). All nu-
merical results presented hereinafter have been obtained on that basis. The
primary unknowns are the values of v or 4 at the mesh nodes, i.e. at all the
element vertices. Equations (36) and (37) are collocated at all mesh nodes.
All singular element integrals associated with the kernel H(x,&; k) are zero
because of the piecewise-flat geometry representation, which of course simpli-
fies the implementation. Denoting by N the total number of nodes (and hence
of unknowns), this procedure gives rise to the linear systems of equations

[A{u} = {b} (38)
[Al{a} = {b} (39)

where the N-vectors {u} and {a} collect all nodal values of v and @. The
discussion to follow will focus on solving system (38), the adjoint system (39)
being of course solved in exactly the same way with {b} replaced by {Z;}

As the problem size N grows, direct solvers become impractical or infea-
sible with respect to both computing time and storage, mainly due to the
fully-populated nature of the BEM matrix [A], and iterative solvers are used
instead. Since [A] is a non-symmetric, invertible matrix (except when k is
a eigenvalue for (2 and homogeneous Neumann BCs), the iterative solution
technique most often used for systems such as (38) is the generalized minimal
residual (GMRES) algorithm (see e.g. [10]), which is applicable to general



196 M. Bonnet and N. Nemitz

invertible square matrices. Such algorithms are based on matrix-vector eval-
uations, and therefore do not require actual assembly and storage of [A]. The
GMRES algorithm requires repeated evaluations of the residual

{0} = [Al{u} (40)

where {u} is a given solution candidate, which is updated at each GMRES
iteration. Hence, one needs to compute (discretized versions of) the double-
layer and single-layer potentials featured in the left-hand and right-hand sides,
respectively, of (36) and (37) for known densities.

Traditional BE methods lead to a O(N?) computational cost for each
residual evaluation, because element integrals computed for a collocation point
cannot be reused for another collocation point. By adopting the Fast Multipole
boundary element method (FM-BEM), each residual can be computed within
a O(NLogN) time. The implementation used here, concisely described in the
remainder of this section, follows Darve [5] and Sylvand [23, 24].

4.2 Expansion of the Fundamental Solution

The starting point for the FM-BEM is the following representation of the
full-space fundamental solution (20):

Gla & k) = lim / eTHERT (3 pg)e k@D Ty (41)

p—oo 47 Jg

where S = {3, |8| = 1} is the unit sphere, the position vector r = £ — x has
been decomposed as

r=(&—x0)+(€—-&)—(x—mo) =m0 +E— % (42)

in terms of two poles @y and &;, and with the transfer function T,(8, 7o)
defined by

an P

Lm0 = ) S Cren s DAOro)Pua ) (43)
& n=0

In (43), the h£}) and P, are respectively the spherical Hankel functions of

first kind and the Legendre polynomials, and ro = |£, — xo|. Moreover, for

any vector z € R?, a hat symbol indicates the corresponding unit vector, i.e.

%z = z/|z|. Representation (41) holds under the condition

ol > € — 2| (44)

The poles o and & are actually meant to be chosen close to £ and @, respec-
tively, so as to satisfy the stronger condition

€ —@o| > | —wo|  and |z —&| > [§ - & (45)
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The representation of H(x, £; k) obtained by differentiating (41) is then

k2 a .-
H(x, & k) = lim / e HERIT (3,70)[5- n(€)] MO Al (46)
p—oo 4w Jg
In practice, representations (41) and (46) are approximated by (i) using the
transfer function T,(8, 7o) with a finite index p and (ii) replacing the integral
over the unit sphere with a quadrature rule with @) points 8, and weights wy.
So, one replaces (41) and (46) with the approximations

L0 Q
k o .
Gz, & k) ~ ZLT Z wqe—lk(Sq'w)Tp(gq, ,’,.O)elk‘(sq~€) (47)
=1
ik & —ik(3,-®) (2 5 ik(34-€)
H(w, & k)~ Y wge MCrdT(50,m0)[8, - n(§)] e (48)
q=1

The choice of points §, and weights w,, and their number ), depends on the
truncation order p used in the transfer function 7},. On parameterizing unit
vectors § € S using spherical angular coordinates (6, ¢), a commonly used
choice [23, 5] consists in using the Q(p) = (p + 1)(2p + 1) quadrature points
of the form 8, = (04, ¢s), where cosf, (1 < a < p+ 1) are the abscissae
for the (p + 1)-point Gauss-Legendre 1-D quadrature rule over [—1,1], ¢ =
27b/(2p+1) (1 < b < 2p+ 1) are uniformly-spaced abscissae on [0, 27]. The
associated weights are w, = 27w’ /(2p+ 1), where w? are the Gauss-Legendre
weights for the (p + 1)-point rule.

Now, let S; and S¢ denote two disjoint portions of S, and let the poles
xo and &, be chosen close to S, and S, respectively, in such a way that (45)
holds for any & € S, and § € S¢. Consider the computation of

I(x) = : Gz, & ko) Al (x € Sy)

for a given density v(€), which is a typical contribution to the evaluation of
the residual (40). On substituting (47), one obtains

. Qp)
ik —ik(834-) 7 (3 ik(3q-8
Ia)~ ) e )Tp(sq,ro)/s GG Oy(g) Al (me S,) (49)
q=1 3

So, the same integral over S¢ can be re-used for all collocation points x € 5.
Moreover, for a chosen portion Sg, this is true for any portion S, and associ-
ated pole @y such that condition (45) holds. Computations of the form (49)
can be decomposed into three stages: (i) compute for each quadrature point
of § the multipole moment R(3,;&,):

R(34;€,) = / a8y (g) Al (50)

Se



198 M. Bonnet and N. Nemitz

(i) multiply R(54;&,) by the transfer function T,(84,70), to obtain local
expansion coefficients £(84; @o) at xo:

L(84;50) = Tp(34,&0 — T0)R(84; &) (51)

(iii) for all @ € S5, transfer £(84; ) locally from x¢ to & and perform the
numerical quadrature over S, to obtain (an approximation of) I(z):

Q(p) o
Z wee KB L(5,x) (52)

q=1

ik
I(z) ~ 4
The one-level fast multipole method consists in partitioning the spatial
region containing S into cubic cells of identical sizes whose vertices lie on a
regular cubic grid. Each pair (S, S¢) is such that S, = SNC, and S = SNC,
where (Cy, C¢) is any pair of disjoint cubic cells. The poles &g and & are the
respective cell centroids. The one-level FM-BEM has a complexity of O(N3/2)
per iteration for equations of type (38), which is of course better than the
O(N?) complexity of traditional BEM, but not optimal. Further acceleration
is provided by using the multi-level fast multipole method, where the size of
clusters Sy, S¢ depends of their distance.

4.3 Multilevel FM-BEM Algorithm

To exploit optimally the acceleration afforded by (49), a hierarchical oct-tree
structure of elements is introduced. For that purpose, a cube containing the
boundary S, called ‘level-0 cell’, is divided into eight cubes (level-1 cells), each
of which is divided in the same fashion, and so on. A level-{¢ cell is divided
into level-(£+1) cells unless it contains less than a preset (relatively small)
number E of boundary elements (such cells are termed leaves). A noteworthy
feature of the FM-BEM applied to Helmholtz-type equations is that to achieve
the same accuracy in approximations (47), (48) at all levels, the truncation
parameter p is level-dependent. A often-used formula [5] for the adjustment
of p is of the form

p(0) = V3kd(¢) + CLog,o(V/3kd(¢) + ) (53)

where d(¢) is the size of a cubic ¢-level cell (so, d(£+1) = 2d(¢) and p(¢+1) is
roughly 2p(¢)) and C' is a constant. As a result, the set of quadrature points
8, on S is also level-dependent: each level necessitates a distinct set ég of
quadrature points and associated weights. For the present implementation,
values of C such that 2 < C' < 8 were found to provide a acceptable compro-

mise between accuracy and cost, and C' = 4 was actually used.
The FM-BEM algorithm then consists of:

e An upward pass where multipole moments (50) are first computed for the
lowest-level cells and then recursively aggregated by moving upward in the
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tree until level 2 (for which there are 4 x4 x 4 cells) is reached. Letting C(&,)
denote the set of children of a given ¢-level cell C(&,), i.e. of (£ + 1)-level
cells C(&;) contained in C(€,), this operation relies on the identity

3 k(54T (¢ — .
R(Sf]+1; 50) = § e k( q (& 50))R(Sg+1; 56) (54)
C(y—0)eC(=zo)

for shifting the origin from the center & of a level-(¢+1) cell to the center
&, of a level-£ cell in the the contribution of a given cell.
Then, it is necessary to interpolate, i.e. compute R(éfl, &) at the quadra-
ture points éf; from the previously determined values R(.éf;“‘l;ﬁo). The
procedure used follows [23, 5] and is not detailed here.

e A downward pass where the coefficients of local expansions are first com-
puted at level £ = 2 and then evaluated at lower-level cells by tracing the
tree structure downwards. This operation relies on the identity

L(éf;;scg) _ e—ik(.§§+1.(wo—w6))£(_§$;wo) (55)

for shifting the origin from the center @y of a level-(¢) cell to the center
x|, of a level-(£+1) cell. This operation is not performed at the root level,
ie. when £ +1=2.

Then, the contributions of all level-(¢+1) cells belonging to the interaction
list I(xo) of the level-£ + 1 cell C(zg) (i.e. all such cells which are non-
adjacent to C'(xo) but whose father is adjacent to the father of C'(zg)) are
aggregated:

> Ty —0—a)R(85y - 0)
C(y—0)€(wo)

and the result is added to £(8%; () given by (55)
Then, the values ﬁ(ég; x()) are converted to values at the quadrature points
.§f1+1 by a ‘reverse interpolation’, or ‘anterpolation’, procedure.

e When the lowest level is reached, all quadratures of the form (52) are

finally performed, where x is the centers of a leaf cell, thus evaluating all
far-field contributions to the residual at all collocation points.
Moreover, for all leaf cells C(xg) and all collocation points = € C(x),
the near-field contributions are computed by evaluating using traditional
integration methods the element contributions for all elements located in
C(zo) and all cells of same level adjacent to C(xo).

The computation of integral representation formulae for u(xs), Vu(xs) and
t(xs), Vu(xs) at all chosen sampling points follows the same approach, with
collocation points € S replaced with sampling points s € (2. For sampling
points lying in leaf cells not adjacent to any same-level cell intersecting S, the
integral representations result from far-field interactions (i.e. fast-multipole
contributions) only. Besides, all multipole moments used in this step are those
corresponding to the solution of (38) or (39), i.e. those evaluated at the last
iteration of the GMRES solution algorithm
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Fig. 1. CPU time for one evaluation of residual (40) as a function of the num-
ber N of nodal unknowns, with matrix-vector products computed using classical
BEM techniques (lozenges, theoretical complexity O(N?) or the FM-BEM (circles,
theoretical complexity O(NLogN)).

4.4 Numerical Verification of Theoretical Complexity

To check that the theoretical complexity of the FM-BEM is achieved and il-
lustrate the computational advantage brought by the FM-BEM over the con-
ventional BEM, the simple situation of a spherical acoustic domain subjected
on its surface to a uniform normal velocity, is considered. BEM solutions for
this problem have been computed for a sequence of meshes with decreasing
element size. For each mesh, the prescribed frequency is selected so that the
number of nodes per wavelength is (approximately) the same for all meshes.
Figure 1 shows the CPU time used for one evaluation of residual (40), us-
ing either classical BEM integration techniques (with theoretical complexity
O(N?)) or the FM-BEM (with theoretical complexity NLogN), as a func-
tion of the number N of nodal unknowns. Functions of the form C;N? and
CyNLogN closest to the actual recorded values of CPU(N) are also plotted
on the same graph. The theoretical complexity for both the classical BEM and
the FM-BEM are very well verified by the actual CPU times. The FM-BEM,
as expected, performs much better for large problems.

5 Preliminary Identification via Topological Sensitivity:
Numerical Examples

To illustrate the approach described in Sections 3 and 4, the following config-
uration has been considered: the bounded acoustic domain is the cube defined
by 2(L) = {|&]| < L (i =1,2,3)}, with L = 8a or L = 16a in terms of a
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16a |-

Fig. 2. Pattern of excitation surfaces Sq on each face of external boundary S.

reference length a. A simulated testing configuration is based on 30 experi-
ments, each of which consists in applying a uniform excitation over a small
region S, (1 < ¢ < 30) of S and recording the acoustic pressure over the
whole boundary S (i.e. at all BE mesh nodes), so that S°* = S. The acoustic
excitation is such that the wavelength is A = 3a. Each of the six faces of the
cubical domain {2 supports five excitation surfaces S,, each a disk of radius
a, arranged as depicted on Fig. 2. The cost function for the inverse problem
is defined by

30
1
T =, Z/ [u* — ug|? dI (56)
g=1"5
where ugbs is the data obtained for the g-th applied excitation, with ugbs =

u* in the absence of data noise. The centroid ™€ of true scatterer Bfrue

to be identified is located at "¢ = (2a, 3a, 2a). R
To facilitate the graphical interpretation, a thresholded variant 7 (as) of
T (x5) is introduced according to
- T(ws) ) T < C“Tmin .
T (xs) = - th C' = 0.25. 57
() {o, T>CTam (57)

The BE meshes used for computing the free field u, the adjoint field @ and
the simulated data uflrue are made of three-noded flat triangular elements,
arranged in a regular mesh with approximately 15 nodes per wavelength.
For the purposes of computing the simulated error-free data u'*“¢ for each
synthetic experiment, BE meshes of I''"¢ have been set up as well. Table 1
indicates the numbers of nodes and elements supported by the BE meshes.

Table 1. Number of element and DOF's supported by the BE meshes.

Cube size Cube Obstacle Total
Elements nodes Elements nodes Elements nodes
2L = 16a 76800 38402 336 170 77136 38572

2L =32a 307200 153602 336 170 307536 153772
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First, the identification of one spherical scatterer is considered, for three
cases with increasing scatterer radii 0.2a, 0.4a and 0.8a. The field 7 has
been computed for each case on the basis of error-free synthetic data, over
a sampling grid S made of 100 x 100 x 100 sampling points located on the
vertices of a regular cubic grid, centered at the origin and with grid spacing
Axs = 16a/101, uniformly filling the whole acoustic domain bounded by S.
Figures 3, 4 and 5 show, for each scatterer configuration considered in turn,
the distribution of the thresholded topological sensitivity 7 defined by (57)
in the three coordinate planes containing the true scatterer centroid x'™°.
In all cases, 7 (and hence 7) is seen to attain its lowest values in zones
corresponding to, or close to, the actual true scatterer location. It should
however be mentioned that 7 has been observed to also achieve low values
in zones located near edges or corners of S, where there is no scatterer. To
emphasize and illustrate this remark, Fig. 6 shows the iso-surfaces of the field
T corresponding to 7 = 0.557,;n, computed on the entire search grid S
(Fig. 6a) and on truncated search grids such that { || < 6.5a (i = 1,2,3) }
(Fig. 6b) and { |&] < 5a (i = 1,2,3) } (Fig. 6¢), i.e. in which sampling points
situated at distances less than 1.5a and 3a, respectively, from S have been
taken out of S. Figure 6¢ shows that, at least in the central region {|¢;| <
5a (i = 1,2,3) } of the acoustic domain, low negative values of 7 occur only
in a small region which is consistent with the actual location of the scatterer.

Then, the effect of data errors is considered for the spherical scatterer
of radius 0.8a, by using synthetic data u°" in the form u°® = u'™e(1 + 1),
where 7 are random numbers with zero mean and uniform distribution over the
interval [—0.1, 0.1]. Figure 7 shows the distribution of T in the three coordinate
planes containing "¢, A comparison between Figs. 5 and 7 reveals that the
distribution of 7 is only marginally affected by the data noise.

The examples shown thus far illustrate the capability of 7, here defined
on the basis of an asymptotic analysis involving vanishing spherical obstacles,
to identify the location of spherical obstacles of finite extent. Now, the identi-
fication of a non-spherical, box-shaped obstacle whose sides are aligned along
the coordinale axes and of finite size 0.8a x 0.8a x 1.6a and whose centroid
is still " = (2a, 3a,2a), is considered. Figure 8 shows the distribution of
7 in the three coordinate planes containing x'™"¢. The true obstacle is again
satisfactorily located.

A last example illustrates the case of a larger acoustic domain 2(16a), in-
stead of £2(8a) considered up to this point, with the same wavelength A = 3a
as before. The ‘true’ scatterer (again a sphere of radius 0.8a) is still located
at ¢'™° = (2a,3a,2a), and hence is located at a larger distance (expressed
in wavelengths) from the measurement surfaces. The sampling grid S is now
made of 150 x 150 x 150 regularly-spaced sampling points, with a grid spacing
now of Az, = 32a/151. Figure 9 shows the distribution of 7 in the three coor-
dinate planes containing z'"°. Presumably as a result of greater remoteness
(and hence lower identifiability) of the scatterer, these distributions show, in
addition to the correct one, secondary spatial zones where the presence of a
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g,la

§2/a

s ©)

Fig. 3. Identification of spherical hard scatterer of radius 0.2a: distribution of
thresholded topological sensitivity 7 (zs) for sampling points x in coordinate planes
& = 2™ (a), x2 = 25"° (b) and z3 = 25 (c).
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§2/a

i (c)

Fig. 4. Identification of spherical hard scatterer of radius 0.4a: distribution of
thresholded topological sensitivity 7 (zs) for sampling points z in coordinate planes
& = 2™ (a), z2 = 25 (b) and x3 = 5™ (c).
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§3/a

(b)

§2/a

s ©)

Fig. 5. Identification of spherical hard scatterer of radius 0.8a: distribution of
thresholded topological sensitivity 7 (xs) for sampling points @ in coordinate planes
& = zi™ (a), z2 = 25° (b) and z3 = z§™"° (c).
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Fig. 6. Identification of spherical hard scatterer of radius 0.4a: iso-surfaces of 7T (z)
for 7 = 0.557min, computed on the entire search grid S (a) and on truncated search
grids such that {|&| < 6.5a (1 = 1,2,3)} (b) and {|&] < 5a (i = 1,2,3) } (c).
Values of T (xs) lower than the iso-value are inside the iso-surface.
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Fig. 7. Identification of spherical hard scatterer of radius 0.4a, synthetic data with
10% noise: distribution of thresholded topological sensitivity 7 (xs) for sampling

points x5 in coordinate planes & = z§™° (a)

; L2 = T

(b) and x5 = z§™°
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Fig. 8. Identification of box-shaped scatterer: distribution of thresholded topological
sensitivity 7 (zs) for sampling points x5 in coordinate planes &1 = zi™° (a), xa =
5" (b) and x5 = 25 (c).
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Fig. 9. Identification of spherical hard scatterer Qf radius 0.4a in large domain:
distribution of thresholded topological sensitivity 7 (s) for sampling points s in

coordinate planes &;

=™ (a), 2 = 25" (b) and 3

= 25" (c).
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small scatterer is also consistent with the data. Still, the lowest values of T
furnish a reasonable indication of the true obstacle location, as seen on the
3-D plots of iso-surfaces 7 = 0.557 i and 7 = 0.77,i, of Fig. 10 for the
truncated grid defined by {|&;| < 14a (i = 1,2,3) }. Again, one notes that
values of 7 close to its minimum 7y,;, occur only in the vicinity of the correct
obstacle location (excluding, as before, regions close to the external surface

S).

6.,
16 >

16

6.
16 > i
8 16
0 e 8

§yla 8 N .8 Y
-16 -1 g la (b)

Fig. 10. Identification of spherical hard scatterer of radius 0.8a embedded in large
domain £2(16a): iso-surfaces of (a) 7 (xs) for 7 = 0.557min and (b) 7 = 0.77min
computed on the truncated search grid such that {|&;| < 14a (i = 1,2, 3) }. Values
of 7 (xs) lower than the iso-value are inside the iso-surface.



FM-BEM and Topological Derivative 211

Typical CPU times and GMRES iteration counts are provided in Table 2.
It is interesting to observe that the overall CPU times for 2(16a), which
involves roughly 4 times as many nodal unknowns as (2(8a), are about 5
times higher than those for 2(8a) (while the expected ratio for traditional
BEM would be 4% = 64), and that the GMRES iteration counts are only
fractionally higher for £2(16a). All computations have been performed on a
Linux PC computer with one 3 GHz processor.

Table 2. CPU times and (in parentheses) GMRES iteration count for computing
the true, free and adjoint solutions on the boundary, and CPU times for computing
the topological sensitivity over the whole sampling grid S.

u'™e on S U I'true uon S awonS7TonS
2L = 16a 1444s (435) 969s (282) 1163s (342) 852s
2L = 32a 6461s (439) 5615s (388) 6818s (476) 1860s

6 Conclusion

In this article, a computationally fast qualitative technique for probing acous-
tic media for hidden hard obstacles on the basis of overdetermined boundary
data, based on the computation via the FM-BEM of the distribution of topo-
logical sensitivity of the cost functional associated with the inverse problem,
has been presented. Its usefulness has been demonstrated through results of
numerical experiments on the qualitative identification of a hard obstacle in
a bounded acoustic domain, for configurations featuring O(10°) nodal un-
knowns and O(10°) sampling points, resulting in overall computing times of
a few hours on a 3 GHz PC computer. There is ample scope for increasing
these computational sizes. Besides, the proposed approach can be developed
for many other physical models, e.g. elastodynamics or electromagnetic waves.
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Summary. This paper studies numerical methods for time-harmonic eddy current
problems in the case of homogeneous, isotropic, and linear materials. It provides
a survey of approaches that entirely rely on boundary integral equations and their
conforming Galerkin discretization. Starting point are both E- and H-based strong
formulation, for which issues of gauging and topological constraints on the existence
of potentials are discussed.

Direct boundary integral equations and the so-called symmetric coupling of the
integral equations corresponding to the conductor and the non-conducting regions
are employed. They give rise to coupled variational problems that are elliptic in
suitable trace spaces. This implies quasi-optimal convergence of conforming Galerkin
boundary element methods, which make use of divp-conforming trial spaces for
surface currents.

1 Introduction

A great deal of electromagnetic field problems faced in an industrial context
fall into the category of eddy current problems. This applies, for instance, for
problems of inductive heating, magnetomechanical valves, and the computa-
tion of inductances of bulky conductors in power electronics.

The typical setting of eddy current problems involves a bounded conduct-
ing region {2, and its complement 2, := R?\ {2, the non-conducting air region.
Usually, {2, is supposed to have the electromagnetic properties of empty space
(e = €0, = pp), whereas 2, might be filled with some “complex” conducting
material. In this paper we restrict our attention to the case of a simple, linear,
homogeneous, and isotropic conductor characterized by a constant conductiv-
ity o > 0 and permeability . > 0. This can be a reasonable approximation
for a non-ferromagnetic material like aluminum.

In eddy current simulations the shape of the conductor is usually provided
in some CAD format. Therefore, we can take for granted that the surface of
(2. is piecewise smooth and consists of a few curved faces. In mathematical
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terms, {2, is a curvilinear Lipschitz polyhedron in the sense of [30, Sect. 1].
All the developments of this paper refer to such a geometric setting.

We restrict ourselves to time harmomic current excitation with angular
frequency w > 0. Hence, thanks to the assumed linearity of all materials in-
volved, temporal Fourier transform allows reduction to pure spatial boundary
value problems for the unknown complex amplitudes (phasors) of the electro-
magnetic fields. Two common types of exciting alternating currents will be
taken into account:

1. The total current in a loop of the conductor is prescribed (non-local in-
ductive excitation, [42, Sect. 5]). Here, by “loop” we mean a connected
component of {2., whose first Betti number is equal to 1. Homeomorphic
images of a torus are typical examples, see Fig. 1 (left)

2. A driving force on charge carriers is modelled by a compactly sup-
ported generator current js, which has to be divergence free every-
where [42, Sect. 3]. The case suppjs N 2.cl = ( describes excitation
through a stranded inductor coil or antenna (inductive coupling), whereas
supp js N$2. # ) models wires feeding a current into 2. (galvanic coupling,
see Fig. 1, right).

e

Fig. 1. Current excitations: prescribed total current in a conducting loop (left),
generator current js (right). Note that js must be continued inside 2. in order to
ensure divjs = 0!

The goal of the numerical simulation may be the approximate computa-
tion of the total Ohmic losses in the conductors, and of the electromagnetic
forces acting on the conductor. This entails discretizing the field equations
and, in particular, coping with the unbounded part 2. of the generic com-
putational domain R3. The standard approach is the finite element method
[38], in which artificial homogeneous boundary conditions for the fields are
imposed “sufficiently” far away from the conductor. This is justified by the
decay properties of the fields, though it may be difficult to fix a viable cut-off
distance a priori (see [5] for an adaptive procedure). After meshing the re-
sulting bounded computational domain, the finite element discretization can
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proceed in the standard fashion. However, in case of a delicate shape of 2.,
suitable finite element meshes may comprise a prohibitively large number of
elements in (2.

Boundary element methods (BEM) applied to the field equations steer
clear of these difficulties, since they are based on integral equations posed
on the surface I' := 9f2. These are only available for homogeneous equations
with constant coefficients, but this is just the setting we take for granted
(both in 2. and f2.). Consequently, boundary element methods that rely on
a triangulation of I' alone become an option and will be the focus of this
presentation.

A central issue is how to couple the boundary integral equations associated
with 2. and 2.. The basic coupling is provided by the transmission conditions
for the electric and magnetic fields, more precisely, their tangential continuity.
This still leaves many options, most of which lead to variational problems
lacking useful structural properties.

The coupling challenge was first addressed in the context of linking do-
main based variational formulations with integral equations, a prerequisite
for coupling finite elements (FEM) with boundary elements. In this context
a breakthrough was achieved when M. Costabel in [27] introduced the so-
called symmetric coupling by using the integral equations in the form of the
Calderén projectors. This idea has been successfully extended to computa-
tional electromagnetism in [39, 40, 48].

Representations of Poincare-Steklov operators derived from Calderén pro-
jectors also guide the derivation of variational formulations involving only
boundary integral equations on an interface [31, 63, 20], see [60, 50] for an
application to domain decomposition. Here we aim to adapt these ideas to
eddy current models. It turns out that surprising new aspects come into play,
related to the issues of gauging and topological obstructions.

This paper deals with integral equations in variational form and their
Galerkin discretization by means of boundary elements. We do not discuss
“details” of implementation like computation of matrix entries [58, Ch. 5],
matrix compression [58, Ch. 7], and boundary approximation, however im-
portant these topics are for a viable code. Instead we refer to the theses [54]
and [10] for further information and numerical examples. We also gloss over
the issue of how to construct fast iterative solvers for the resulting linear
systems of equation. The reader may consult [39, Sect. 9] and [15, 23, 61].

2 Eddy Current Model

The behavior of an electromagnetic field is governed by Maxwell’s equations.
Instead of using these, in special situations simplified quasistatic models sup-
ply sufficiently accurate approximations to the true fields [33]. One of them
is the eddy current model, representing a magneto-quasistatic approximation
to Maxwell’s equations in the sense that the electric field energy is neglected.
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This model is reasonably accurate for slowly varying fields, for which the
change in magnetic field energy is dominant [3, 33]. “Slowly varying”, means
that

L\/Eouow <<1, (1)

where L is the characteristic size of the region of interest: {2, has to be small
compared to the wavelength of electromagnetic waves, which makes it possible
to ignore wave propagation. There is a second condition for the validity of
the eddy current approximation, requiring that the typical time-scale is long
compared to the relaxation time for space charges, that is, the conductivity
must be large enough so that

€
w'<l. (2)
ag

This implies that no space charges need to be taken into account. We point out
that (1) and (2) provide a “rule of thumb”, but ignore the impact of geometry:
in the presence of thin slots or gaps the eddy current approximation might
become invalid locally [8, Ch. §].

Formally, the eddy current model arises from Maxwell’s equations by drop-
ping the displacement current D. In the frequency domain the eddy current
model for complex field amplitudes (for the electric field E and the magnetic
field H) reads

cE in 2,
s in {2, .

curlE = —iwpyH inR®, curlH = { (3)

According to the aforementioned assumptions, the permeability p is constant
= p, in (2, and equal to pg in the air region {2.. The conductivity o is constant
in {2, and set to zero in {2.. The first equation is called Faraday’s law, the
second (reduced) Ampere’s law. These equations have to be supplemented by
the decay conditions

H(x) =O(|x|™"), E(x)=0(]x|™") uniformly for |x| — co . (4)

Switching from the full Maxwell’s equations to the eddy current equations
obviously involves a breach of the symmetry between electric and magnetic
quantities. As a first consequence, we cannot expect a solution for E to be
unique, because it can be altered by any gradient supported in {2, and will
still satisfy the equations (3). The solution for H will not be affected. This
reflects the fact that in a magnetoquasistatic model E is relegated to the role
of a “fictitious quantity”. Imposing the constraints

divE=0 in {2, and E-ndS=0, (5)

Iy
where Iy, k = 1,...,L, are the connected components of I', will restore
uniqueness of the solution for E. Thus, one can single out a physically mean-
ingful electric field in 2. [1]. However, this is rather a gauging procedure, i.e.
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the selection of a representative from an equivalence class of meaningful fields
[44], than part of the generic eddy current model. When devising a numerical
scheme, we should target H as principal variable.

How can there be a role of the electric field in a magneto-quasistatic con-
text? To understand this, recall that Faraday’s law in strong form involves
div(uH) = 0 everywhere. This makes it possible to introduce a magnetic vec-
tor potential A such that curl A = pH and to express E via a scalar potential
¥ as E = —grad ¥ —iA. We have ample freedom to perform gauging and use
it to set ¥ = 0. Thus, E turns out to be a scaled magnetic vector potential in
disguise. I endorse this view as the proper reading of E in (3).

A second consequence of the magneto-quasistatic model reduction is the
partial decoupling of electric and magnetic field in {2.. In fact, knowing H on
I'; we can solve a div-curl boundary value problem to obtain H and then,
in light of (5), another div-curl problem will yield E. Conversely, within the
conductor, (3) permits the elimination of either H and E, which leads to a
second-order boundary value problem. The bottom line is, that in {2, and (2,
we encounter elliptic systems of PDEs of different character. This will have
profound consequences for the statement of transmission problems, see Sect. 5.

We finish this introduction to the eddy current model by explaining how
to incorporate current excitation through offset fields E5 and Hy. We demand

curlcurl E; = —iwpgjs curlH; =js, .
) ) in 2. . (6)
divE; =0, divH, =0,
Such fields can be computed by evalutating the Newton potentials
] js(Y) 1
E =— d H = 1E, , 7
s(x) w, /]R3 x -yl v, s(x) o curl E, (7)

provided that j, has vanishing divergence everywhere in R?. In the case of thin
wires represented by line currents, (7) amounts to the well-known Biot-Savart
formula.

The requirements (6) impliy for the reaction fields E, := E — E,, H, :=
H — H, that

curlcurlE, =0 , curlH,=0 in (2 . (8)

In {2, we retain the original phasors E, H, often referrred to as total fields. By
using offset fields the spatially distributed excitation js can be converted into
an inhomogeneous jump condition across I" for the fields. Spatial source terms
are no longer present, which greatly facilitates the implementation of bound-
ary element methods. The treatment of an excitation through a total loop
current will be postponed until discretization is discussed in Sects. 7.2, 8.3.

3 Spaces and Traces

All developments in this paper will be consistently set in a variational frame-
work. The Hilbert spaces, on which the variational approach rests, have a very
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concrete physical meaning as spaces of fields with finite energy. Let 2 C R?
be a generic domain, not necessarily bounded. The natural Hilbert space for
magnetic fields with finite total energy on (2 is

H(curl; 2) :={V € L*(22), curl V € L*(2)},

equipped with the graph norm (cf. [36, Ch. 1]). In the context of the eddy
current model the energy associated with the electric field is measured only
by its curl. Of course, also the mean dissipated energy has to be finite, which
entails square integrability over §2., but in §2. the L?-norm of the field need
not be bounded. Therefore, weighted Beppo-Levi type spaces (cf. [35])

V(x)
VI I
are the proper choice for E. The property that their energy only depends
on certain derivatives is characteristic for potentials. For them weighted

spaces have to be used, for instance the standard Beppo Levi space (cf. [53,
Sect. 2.5.4])

W curl, 2) := { € L*(22), curl V € L*(2)}

d(x)
V1 [x[?

For each of the above spaces, the restrictions to {2 of smooth functions that
are compactly supported in R? form dense subsets.

Thanks to this density property we may wonder how to extend certain
restrictions of smooth functions onto boundaries to continuous and surjective
trace mappings. Now, assume that the boundary 9£2 is compact and endowed
with an exterior unit normal vectorfield n € L°°(942). The pointwise restric-
tion of functions in C'*°(2) spawns the standard trace v : W(£2) — H2(912).
However, the relevant traces for electromagnetic fields are tangential traces of
vectorfields. We can distinguish between the tangential components trace 7
for U € C*(02) defined by (v U)(x) = n(x) x (U(x) x n(x)) for almost all
x € 042, and the twisted tangential trace (74 U)(x) := U(x) x n(x).

In eddy current computations we usually face non-smooth surfaces. This
profoundly affects the smoothness of restrictions, in particular of tangential
traces. Just keep in mind that even for smooth vectorfields their tangential
traces will feature discontinuities at ridges and corners of 9f2. Therefore it
takes sophisticated techniques to devise meaningful tangential trace operators
on the function spaces. For domains with piecewise smooth boundary they
were developed in [16, 17, 12, 18]. These papers and, in particular [13], should
be consulted as main references.

Before we tackle W (curl, 2), we remind (see [16, Prop. 1.7]) that on

1
piecewise smooth boundaries spaces H (I') and H3 (I") can be introduced
so that the tangential traces become continuous and surjective operators

% s H'(9) = Hij (D), 7% s H'(®2) = H{(T'). Sloppily speaking, H i (I

W(2) :={ € L*(2), grad ® € L*()} .
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contains the tangential surface vectorfields that are in H 2 (002) for each
smooth component of 942 and feature a suitable “tangential continuity” across
the edges. A corresponding “normal continuity” is satisfied by surface vector-

fields in H%_(F) The associated dual spaces will be denoted by Hi; (I') and

1
H | *(I'), respectively.

Armed with these spaces and the density of smooth functions, the inte-
gration by parts formula

/cuer-U—V~curlde:/ Yx U - %V dS 9)
Q o9

is the key to establishing trace theorems for W (curl, §2). Recall that the sur-
face divergence operator divp is the L2(8Q)—adjoint of the surface gradient
grad . By rotating tangential surface vectorfields by 7, we get the same rela-
tionship between the scalar valued surface rotation curly and the tangent vec-
tor valued curlp. Using, first, V € H'(£2), and, secondly, V € grad H?(12),
we learn from (9) that

1
v :H(curl; 2) — H | *(curlp, I)
1
v« :H(curl; 2) — H:* (divp, ),
are continuous trace mappings. Here, we used the notations

H *(curlp,I) = {v € H *(I'), curlpv € H3(02)} |

(3D, dived € H 2 (02))

_1
H *(divp,I'):={Ae H
for spaces of tangential traces. Moreover, according to Thm. 2.7 and Thm. 2.8
in [16], they are surjective, too. Thus, we have found the right tangential trace

spaces for H (curl; £2). By (9) the spaces Hi; (divp, I') and Hié (curlp, I
can be seen to be dual to each other (see [17, Sect. 4]). The sesqui-linear
duality pairing will be denoted by (:,-)_. Moreover, the rotation mapping
Rv := v X n can be extended to an isometry between the two spaces.
Integration by parts permits us to introduce several important weakly
defined traces: The weak normal trace 7y, is defined for vectorfields U €

H(div; Q) := {V € L*(22), divV € L?(12)} by
(U, vP)1 /2.1 :/ divU® 4+ U-gradddx Vo c H'(NQ),
2

with (,); 5  as duality pairing between H~2(012) and H2(d12). The map-
ping vn : H(div;2) — H’é(aﬁ) is continuous and surjective, and an
extension of the normal components trace y,U(x) := U(x) - n(x). Thus,

the conormal trace Jn, := 7, o grad is continuous and surjective from
H(A, Q) :={® e W), A® € L*(22)} onto H2(912).
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Against the backdrop of boundary value problems for the Laplacian —A,
the trace operator v : H(2) — H2(I') can be called “Dirichlet trace”,
whereas 0p, provides the “Neumann trace”. For ¥ € H(A, 2) and ® € H(£2),
they are linked by another Green’s formula

(On¥, YD)y )5 r = / AV + grad ¥ - grad P dx . (10)
2

The eddy current equations prominently feature the operator curl curl and we
may wonder about suitable Dirichlet- and Neumann traces. Since the energy
space associated with curl curl is H (curl; 2), the previous discussion reveals
that ~¢ can be used as Dirichlet trace. In view of (10) a curl curl-counterpart
vn of Oy can be defined for

U € W(curl®, 2) := {V € W(curl, ), curlcurl V € L*(2)}

by demanding that for all V € H(curl; {2)

(WU, V) = / curlU - curlV — curlcurl U - Vdx . (11)
2

The trace vy furnishes a continuous and surjective mapping

N : W(curl?, ) — Hi; (divp,I")  (cf. [39, Lemma 3.3]),
which can be regarded as an extension of the restriction (yyU)(x) :=
curl U(x) x n(x), x € 942, for smooth U.

We mention two commuting relationships between traces that are elemen-
tary for smooth functions and, by extension, carry over to the trace operators
in Sobolev spaces:

grad,oy =, ograd on W!(0), (12)
n o curl = curlp oy = divp oy, on W(curl, 2) , (13)

where equality is in the sense of the trace spaces HIé (curlp, I') and H-: (),
respectively.

Integration by parts also shows that a vectorfield in C*(£2.¢l) N C>(£2.)
must feature tangential continuity in order to be contained in W (curl, R?).
Thus, both E and H can only belong to W (curl, R?), if the following trans-
mission conditions hold across I := 0f2.

[1%E], =0 and [wH],=0. (14)

Here, the “jump” [], designates the difference of the values of a trace from
2, (“exterior”) and from 2. (“interior”). We also stick to the convention that
exterior traces will be labeled by a superscript +, whereas traces from (2. bear
a superscript —.
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4 Topological Prerequisites

Topological considerations come into play, when one wants to represent irro-
tational vectorfields on manifolds through gradients of scalar potentials. This
is only possible, if the first cohomology group of the manifold is trivial [59,
Ch. 6]. Otherwise, cuts have to be used to take care of irrotational vectorfields
that are no gradients [8, Sect. 8.3.4], see Fig. 2.

— r =

R\ 2
Fig. 2. Cut X’ for the torus and cut X for its complement in R3.

Theorem 1. For every domain 2 C R3 with piecewise smooth boundary there
exist piecewise smooth orientable embedded surfaces X1, ..., XN C §2 (cuts),
where N agrees with the first Betti number of {2, such that

o the Xy, k=1,...,N, are mutually disjoint.

e the first cohomology group H*(£2',7Z) of §2' := 2\ (X1U...UX ) is trivial.

o (' is a generalized Lipschitz domain in the sense of [29], that is, when
“seen from one side” its boundary 082 is Lipschitz continuous.

Proof. The theorem is proved in [45]. O

In the sequel we are going to equip {2, with a set of cuts Xy,..., Yy,
according to Thm. 1. Each X has an orientation that translates into a crossing
direction and thus we can distinguish between an “upper” surface Z,j and a
“lower” surface X, . Both surfaces are equipped with unit normal vectorfields
n:, n, pointing “away from X" into the interior of £2' := 2.\ (X1U...UXN).
We fix nx, :=nj so that it agrees with the crossing direction.

The statement of Thm. 1 implies

Ve H(cur; ), curlV=0 = 3dcH'(): V=gradd.

It is even possible to characterize low dimensional spaces of vectorfields that
fill the gap between Ker(curl) N H (curl; £2,) and grad H'({2.). To that end,
consider functions n, € H'(£2. \ Xy), k = 1,..., N, with [ny]y, = 1. Here,
[]¢ denotes the jump of some function across the externally oriented surface
S, i.e. the difference of its value on the “+-side” and the “—-side”.
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Theorem 2. Using the notations introduced above, we have the representation

Ker(curl) N H(curl; 2.) = grad H'(£2,) + Span {grad m,...,grad 77N} ,

where g/r\e;(/ink € LQ(Qe) is the gradient of ni on 2.\ Xy.
Proof. Compare Sect. 3 in [4]. O
From Thm. 2 we learn that
Ker(curl) N H(curl; 2,) = grad H(12,) , (15)

with Hi(02) := {¢ € H'(£2'),[¢]g, = const., 1 <k < N}.

Thm. 1 may also be applied to {2, yielding N cutting surfaces 2’1, e E’N,
since the first Betti numbers of (2. and {2, agree. The boundaries o1,...,0n,
01,...,0n of Xy and Xy, k =1,..., N, respectively, represent a basis of the
homology group H;(I',Z), see Fig. 3. In analogy to Thm. 2 we find that

Ker(divy) N H(div; I") = curly H'(I") + Span {gl,...,gN,/g\l,...,AN} ,
(16)

where g* is the vectorial surface rotation curly ¢ of some ¢ € H'(I'\ 0, that
has a jump of constant height 1 across ;. The g are constructed analogously
with respect to 0.

Fig. 3. Fundamental cycles o1 and &1 for the surface of the torus, a domain with
first Betti number = 1.

We remark that if I is equipped with some non-degenerate triangulation
I, (rendering it a cellular complex) the boundaries of interior and exterior
cutting surfaces can be chosen such that they agree with edge cycles of I7,.
Further, it is possible to pick piecewise smooth Lipschitz surfaces as related
cuts. Such a choice of cuts will be a tacit assumption, whenever a triangulation
of I' has been fixed.

Remark 1. Please be aware that it is not the purpose of cuts to render 2’
simply connected, i.e., to ensure that it has a trivial first homotopy group.
This is easily seen in the case of knotted geometries.
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5 Variational Formulations and Transmission Problems

Two fundamentally different approaches to a variational formulation of (3)
are conceivable. They can be distinguished by which equation is preserved
in strong form and which is taken into account only in weak form [7]. This
distinction parallels the primal and dual variational principles known from
second order elliptic boundary value problems [11, Ch. 1]. A discusion for the
full Maxwell’s equations in frequency domain is given in [38, Sect. 2.3].

The first approach involves Faraday’s law in strong form. It is used to
replace H in Ampere’s law and the latter is multiplied by a test function
in H(curl; R?) and subjected to integration by parts according to (9). This
results in the following “E-based” variational problem (cf. [7, Sect. 3], [56],
and [57]): Seek E € W (curl, R?) such that for all V. € W (curl, R?)

(i curlE7cuer) Lo (k) +iw (0B, V)20 ) = —iw (s, V)p2(msy - (17)

Theorem 3. The wvariational problem (17) has a wunique solution for
H:= ' curlE € H(curl;R3). If it is posed on the constrained space

wp

W = {V € W(curl,R?), divV =0 in (2., / WmVdS=0k=1,...,L},
I

a unique solution & € W exists. Here I'y,, k = 1,..., L, stand for the connected
components of .

Proof. The reader is referred to [3, Sect. 3] and [39, Sect. 2]. O

A crucial observation is that (17) is equivalent to a transmission problem.
To state it, we first appeal to the transmission conditions (14). Secondly,
testing (17) with fields compactly supported in (2. or (2., and making use of
the offset fields from (6), we get

curlcurlE +iwu.cE =0 1in (2., (18)
divE, =0 , curlcurlE,=0 in (2.,

_ 1 1 1
WE —v% E=-—E, |, RE, — AyE=— " ALE,.
Ho He Ho

Here we have skimped on the full “gauge conditions” (5), that is E, € W, for
the reaction field E, in (2.

The second option for a variational formulation is to keep Ampere’s law
strongly, leading to “H-based” formulations. Then, we have to use the trial
space Hy + V with

V:={V € H(curl;R?), curl V = 0 in 2.}

for H. Remember that the offset field H; is to satisfy curl Hy; = js and
divH; = 0 in £2.. Now, testing the first equation of (3) with a compactly
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supported V € V., employing integration by parts on a ball with sufficiently
large radius, and using the second equation inside 2., we obtain: Seek H €
V + H, such that

(0 teurlH,curl V), o +iw (pH, V) p25e) =0 YV EV. (19)

(£2)
For a more detailed presentation of the considerations leading to (19) the
reader is referred to [9], [7, Sect. 2], and [8, Ch. 8]. Existence and uniqueness
of solutions of (19) immediately follow from the Lax-Milgram lemma.

Straight from (19) we infer div(y, H) = 0 in all of R3. This involves the
normal continuity of p,-H across I'. We are led to a transmission problem for
the total magnetic field inside (2. and the reaction field H, outside:

curlo ! curl H 4 iwp,H =0 in 2, ,
curlH=0 , divH=0 in {2, (20)
povn He — pevg H= —povi Hye , % H, =7y H=vH, onl.

However, if {2, has non-vanishing first Betti number, then there is no unique
solution of (5) [55, 34]. To see this please notice that thanks to Thm. 2 the path
integrals fi,(H) := ffik H - ds supply continuous functionals on V. They do not

vanish, because plugging in an extension to W (curl, R?) of g/r;a 7y results in
1. Next, consider the variational problem (19) posed over V, but with fj as
non-homogeneous right hand side. A unique non-zero solution Hy € V exists.
From f(grad ®) = 0 for all ® € W!(R) we conclude that still div(u, Hy) = 0.
Hence, Hy, satisfies all the transmission conditions of (5). Testing with smooth
vectorfields that are compactly supported in 2. establishes the first equation
of (5). Summing up, (5) may have non-zero solutions, even if Hy = 0.

These considerations refute the equivalence of (5) and (19). The bottom
line is that in general the H-based model does not allow a formulation as
transmission problem, unless some extra coupling conditions that, however,
fail to involve traces on I’ only, are taken into account. These additional
conditions are formulated and investigated in [1] (see also [47]). They turn
out to be an integral version of Faraday’s law with respect to cuts.

A third class of variational formulations, the hybrid methods, combines
primal and dual variational principles, one kind applied in 2. the other in
£2.. An extensive discussion with finite elements in mind is given in [2]. The
first option is to work “H-based” inside 2. and “E-based” in {2.: these for-
mulations can be nicely combined into a transmission problem

curlcurlH + iwpu.cH =0 in 2.,

curlcurlE, =0 , divE,=0 in {2, (21)
1 1
TE, — ~yvH=—1E, — TE -~ H=~H, I.
7>< 0_7N P)/x ) Z.LU/J/()IYN IYX P)/t on

Alternatively, Faraday’s law can be used in strong form in (2., and Ampere’s
law is tested with V € H(curl;R?), but integration by parts is performed



Boundary Element Methods for Eddy Current Computation 225

on 2. only. Therefore, boundary terms have to be retained in the variational
equation

1 1
( curl E, curl V) + iw (oE,V)LQ(QV) - < 'yR,E,'yt_V> =0
He L2(02,) © He r

for V€ H(curl; (2.). In 2. Ampere’s law is incorporated strongly by zero-
ing in on H € Hy + V. Faraday’s law is tested with compactly supported
irrotational fields only, and subsequently we integrate by parts. We end up
with

<'y;rV,’yt+E>T +iw (poH, V)2, =0 YV EV.

Both variational problems are linked through the transmission conditions,
which enable us to replace ulu yYvE by —iwy${ H in the boundary terms. This
results in the variational problem [48]: Seek E € H(curl; {2.), H € Hy, +V
such that for all W € H(curl; (2,), V€V

(ul curlE,cuer)LQ(Qc—g— iw (0B, W) oo+ iw(y<H,%xW) =0,

iw (Y« V,1nE), — wQ(uoH,V)L2(Qe) =0.
(22)

Theorem 4. The bilinear form associated with the variational problem (22)
is H(curl; £2,) x V-elliptic.

Proof. Setting W := E, V := H, and subtracting both equations makes the
“off-diagonal” terms cancel. 0O

Similarly as in the case of the H-based model, an equivalent transmission
problem is also elusive for the variational problem (22).

In the sequel we are going to focus on the pure E/H-based formulations
(18) and (19), respectively.

6 Boundary Integral Operators

The theory of boundary integral operators for strongly elliptic partial dif-
ferential operators of second order is well developed [52, 28, 58]. Here, we
summarize some of the results as a guidance for developing a similar theory
for boundary integral operators for second-order partial differential equations
involving the curl-operator. The relevance of this for the transmission prob-
lem (18) and the variational problem (19) is evident.

The starting point is a representation formula, the famous Green’s rep-
resentation formula for solutions of the homogeneous Helmholtz equation. It
relies on the scalar single layer potential
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W) = [ Gxy)e)dy x¢T. pel Hr). (@3
and the scalar double layer potential
0 1
0 — 2
)60 = [ Guy)uly)dy xg T veHbr). (20

both based on the Helmholtz kernel [52, Ch. 9]

exp(—k[x = yl)

GK(X)y) = 47T|X_y|

, XFY.
The potentials owe their significance to the following result [52, Thm. 6.10],
58, Thm. 3.1.6]:

Theorem 5. Assume Rk > 0. Any distribution U € HL (2. U £2.) with
—AU + K2U = 0 in 2. U 2. and |U(x)] = O(|z|~1) for |z| — oo can be
represented as

Ux) = 95 ([0uU]p) + Vg (WUIp) s x ¢ 1.

It is well known [52, Thm. 6.11] that the potentials ¥{} and ¥j; provide
continuous mappings

U cH 2 (1) e Hy (RP) 0 H(A, 2.U 02.) (25)

W H>(I) — H(A, 2. U £2.) . (26)

In fact, (—A + k2)¥f = (—A+ k)W = 0 away from I" [58, Thm. 3.1.1]. We
also recall the fundamental jump relations for the potentials

Do @)r=0,  BIPlr=—¢,  weHAID), (27)

DR =0, O @) =0 veHAT).  (28)

The mapping properties (25) and (26) of the potentials ensure that the bound-
ary integral operators

VE i CHA(I) - HAD),

K= Jo~ 4 < HA(T) s HE(D) 20
Kok . — é(a; +8;1‘)@"§ ;H_2(I’) |—>H_2(F),

D" == 9,0 HE (D) H (D).

are well defined and continous [58, Sect. 3.1.2]. Moreover, the single layer
boundary integral operator V* and hypersingular boundary integral operator
D* are elliptic in the following sense, see [52, Thms. 7.6,7.8]

2 _1

(o V%) o p | Zellelymy gy Vo€ H (D), (30)
1

[(DP0,0), | 2 el Vo€ HE(D) (31)

with constants ¢ > 0 depending on I only.
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Now we attempt to develop similar representation formulas and bound-
ary integral operators related to the differential operator curl curl +x2. It is
our first objective to derive a boundary integral representation formula for
distributions satisfying the homogeneous equation curlcurl U + x?U = 0 in
2. U £2.. In order to handle transmission conditions in the calculus of distri-
butions, we introduce currents, that is, distributions supported on I". For a
function ¢ € H~: (I'), a tangential vector-field & € Hll(F), and test func-
tions @ € D(R?), & € D(R3) := (D(R?))3, we define

(P0r)(@) = (2,7P)1jop 5 (E0r)(@) i= (&, ®P), = (§,7P)_y p -

Now, in the sense of distributions, integration by parts yields, cf. [14, Sect. 2.3],

for U € Ho(div; £2. U £2.) : divU =divU g un, + U] ér,

for U € Hyoe(curl; 2. U £2,) curlU = curl U o, — [vx Ul or,
_1

fOI“fEHHz(din,F) : diV(f(Sp)Z(dinf)(Sp.

For notational simplicity, we introduce the average {y} = ;(y" +~7) for
some trace operator 7. Remember that the superscripts — and + tag traces
onto I" from 2. and (2. respectively.

Now let U satisfy curl curl U+ x2U = 0 along with divU = 0 in £, Uf2,.
Then the following identity holds in the sense of distributions,

— 08U + k%U = curlcurl U — grad div U + x%U
= curl (curl U\ 0, — [7x Ul 0r) — grad (/U] 6r) + k2U
= curlcurl U o, — [YWU] or — curl([y<x Ul or)—
[ nU]F 51“) + :‘<62U
Ir 6r) —grad([m Ul dr) .
We know from [26, Theorem 6.7] that the Cartesian components of U will
satisfy decay conditions and the scalar Helmholtz equation in 2. U {2.. Using
the results from [52, Ch. 9], we can apply component-wise convolution with

the outgoing fundamental solution G, for the operator —A+ x2. We find that
almost everywhere in R? the components of U = (uy, ug, u3)? satisfy

u;j(x) = = (WUl 6r)(Gr(x = -)ej) — ([vx Ul dr)(curly (Gr(x - -)e;))+
+ (Ul or)(div(Gu(x —-)e;)) , j=1,2,3.
Using grad, G.(x —y) = —grad, G,(x —y), we arrive at the famous

Stratton—Chu representation formula for the electric field in 2. U 2, [62], cf.
[26, Sect. 6.2], [53, Sect. 5.5], [21, Ch. 3, Sect. 1.3.2], and [19, Sect. 4]

Theorem 6. If, for k € C, Rk > 0, a distribution U € H),(curl; 2. U (2.)
satisfies curl curl U+£2U = 0 and div U = 0 in 2.US2,, along with the decay
condition |U(x)| = O(|x|™1) for |x| — oo, then it possess the representation

U = -5 (IwUlp) — ¥ (Ul ) — grad 7 ([ U] ) -

— grad(
= —[wUlp ér — curl([y, U
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Here, we used the notations ¥’ for the the vectorial single layer potential
PN = [ GulxyA)dS(y) x ¢ 1.
r

and ¥, for the “Maxwell double layer potential”
U (v) = curl @’ (Rv) .

From the representation formula it is clear that the potentials have the fol-
lowing mapping properties, see [39, Sect. 5]:

Theorem 7. The potential mappings

S
a3

:Hﬂé (divr, ) — W (RS) A W (curl?, 2, U 2,)
Yy 3H1é (curlp, I') — W (curl®, 2. U £2.) ,
are continuous.

We remark that any distribution complying with the assumptions of
the theorem actually behaves like |[U(x)| = O(|x|72) for |x| — oo, see [3,
Prop. 3.1].

In light of Thm. 7, the representation formula of Thm. 6 allows to deduce
Jump relations. For formal derivations please consult [39, Sect. 5], or [55], [53,
Thm. 5.5.1], and [26, Thm. 6.11] for smooth boundaries.

Theorem 8. The potentials satisfy the jump relations

[n¥hlp =0 . WLl =—1d,
Wyl =—-1d , [WwW¥ylp=0,
['Yn!pil]r =0 ) ['Yn!plI{\/I]F =0.

If k # 0, then, by virtue of (13),
U= FeurleurlU= - | divp (72U
U=~ o curleurlU=— , ivr(vyU) .

This permits us to rewrite the representation formula of Thm. 6 for the case

Kk # 0:
U = -5 (hwUlp) = (Ul p) + :2 grad ¥y (divr([ywU]p)) - (32)

After introducing the “Maxwell single layer potential”

K K 1 T -3/
W(p) :=wh(u) — 2 grad Wi (divpp), pe H, (divp, I) (33)
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the formula (32) becomes a perfect analogue to the representation formula of
Thm. 5:

U = —W5([wUlp) = (U] ) - (34)

Again, the analoguous roles of v and 7y as “Dirichlet traces” and 0, and vy
as “Neumann traces” become apparent, cf. Sect. 3 and [19, Sect. 3].

For k = 0, the jump of the normal trace cannot be elimintated from
the Stratton-Chu representation formula. This stark difference between the
situations £ # 0 and k = 0 can be blamed on the divergence constraint, which
is redundant for x # 0, but becomes essential, if x vanishes. This profoundly
changes the characteristics of the differential operator and in the latter case
we have to deal with yxyU and 7,U as “Neumann data”.

As above we introduce boundary integral operators by taking different
traces of potentials. Their continuity properties can be directly inferred from
those of the potentials, see Thm. 7, and those of the trace operators.

Theorem 9. For k # 0 the boundary integral operators

NH

divp, ') — Hlé(curlp,F) :
divr, )HHﬁgdivF,r),
curlp, I') — Hiz(curlp, I,
curlp, I') — H 2(divp, I,

A = ’ytﬁpg

B™:= j(vy + )T H
Cr =5y +7 )Wy H
N* .= vy, H,

[\Jb—‘ [\J»—A [\J»—‘

)
(
(
(

are well defined and continuous. The same holds for

1
AV =~ Y H (D) n—>HH(F)
1

B := L (vy + 7)Y - H, > (divp,I') — H| (dlvF, r).

We know that the double layer boundary integral operators K* and K"*
are adjoints with respect to the sesquilinear duality pairing (-,-); /2.7 [52,

Thm. 6.17]. A similar property is enjoyed by their counterparts
mathsfB" and C"*:

Theorem 10. If k # 0, the boundary integral operators B and C* satisfy
(B u,v) =—(un,C"v)_ Vue H (lep,F) veH, (curlp, r.
The same relationship holds in the case k = 0, if u is restricted to
H, *(divr0,T) == {n € H, *(divr,I) : divyn=0}.
Proof. We appeal to the relationship, see [39, Lemma 5.2] or [51, Lemma 2.3],

div @ (n) = W (divrm), e H, *(divp,T)
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to conclude
(curl curl +£21d)WE(u) =0 for k #0,
(curl curl +#%1d) W (1) = 0 for p € H} *(divr0,1) .

We use these relationships together with the integration by parts formula
_1 _1 ~1

(11): pick any v € H | *(curlp, I"), p € H) 2(divp, ) (p € H:* (divp0,1),

if K =0) and set V = &%, (v) and U = &%(u) (U =&Y (), if & = 0). Then,

(VAU V)_ = —/ curl U - curl V — curlcurl U - Vdx
Q.

— / curlU - curlV - U curlcurl Vdx = <'y1'\",V7 o >T
2.

<'y;,V, 'y{U)T , by jump conditions of Thm. 8

= / curlU:-curlV — U . curlcurl Vdx
2.

= / curlU - curlV — curlcurlU - Vdx = <'y;,U7 'y{V>
2.

T

We remark that “boundary terms at co” can be discarded due to the decay
O(|x|72) for |x| — oo of both fields. Thus, using the other set of jump relations
from Thm. 8, we have obtained

K 1 — —
(B (1), v}, = = (MU +93 UV = V),
1 - - K
== (WU =RUARV+5 V) == (W),
which finishes the proof. O

Ellipticity estimates corresponding to or extending (30) and (31) are avail-
able, too:

Theorem 11. If Rk? > 0 and Sk? > 0, the following estimates hold true for

1

all Vp € Hﬁz(divlﬂ 0,I') and v € Hlé(curlp,l”)
S{(u A} = 0, RUNTV,v),} >0, S{N“v,v),} > 0.
Moreover, with ¢ > 0 that may depend on I' and k,

R, A"} = el

2
: y [INTv ) 2 celivl -y

(divp,I) T2 (curlp,I)

Proof. As in the proof of Thm. 10, we rely on the integration by parts formula
(11) and jump relations from Thm. 8 to get (for the case k # 0)
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(b, A%, = = (v s ()l p > 15 (1)
= (W51, TE()), — (VEPS (1), 5 (1)),

= / |curl W (u)|? — curl curl & (1) - W (p) dx
R3\I"

= / |curl U (u)* + k2| curl curl W (p)|? dx .
RS\T

If k = 0 we replace ¥’ with @Y, for which we know curlcurl &% (1) = 0, if
divp pu = 0.

This identity can be combined with the continuity of the trace vyy: with a
constant ¢ = ¢(I") > 0

il = [hw®s(w]pll

_1 _1
H| 2 (divp, D) H % (divp, D)

<ec (||cur1 Vsl 20,00, + [curlcurl !'Ig(,u)ug(gcuﬂe)) )
Similar arguments show ellipticity for N*:

(N*v,v), == (\w®h (v), [®h (V)] ) -

= curl %, (v)|? — curl curl &%, - &%, (v) dx
R\ M M ¥y

= / |curl &y, (v) |2 + k2@, (V)| dx
R3\I"

2
>c ||w7\/[(v)”H(curl;QuUQe) .

Now we have to make use of the continuity of the tangential trace ¢: for ¢ > 0
independent of v,

vl = [ ®5s (V)] . < ey (VI eurro.ue,) -

_1 _ >~
HLQ(curlp,I") F”HLQ(curlp,I")
U

The same arguments confirm the following estimates for the scalar single
layer potential boundary integral operator based on the Helmholtz kernel:

R{(p, V@)1 a0t = C||<P||i,_;(m » SUA VD))o b 2 0, (35)

for all(pEH_é(F).

7 E-Based Model

Now we discuss the steps leading to a symmetrically coupled boundary element
formulation for the transmission problem (18).
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7.1 Coupled Problem

Now, let (E, E,) stand for the solution of the transmission problem (18) in
2. and 2., respectively. Suitable trace operators can be applied to the rep-
resentation formulas and this procedure yields the Calderon identities. From
(34) we get
v E= A*(WWE) + (31d+C*)(7¢ E),
WE = (yld+ (36)
maths fB")(7yE) + N*(7¢ E) ,

where k = 11/2(1 4 i),/wopic. Thanks to Thm. 6 we have

Y E, = ) ~A"(VNE,) 4 (31d—CO) (% E,) — grad;VO([E,),
'Y]J\FIET" = (QId - %O)(’YJJ\FTET) - NO((;YtJrET) )
WE = = OLEE) — WEVOWE)  + (31d—KO)(E,) .

(37)

The boundary data for any solution of the interior/exterior E-based eddy
current equations will fulfill (36) and (37), respectively.

The gist of the symmetric coupling approach according to Costabel [27] is
to use all of the equations of the Calderon identities in conjunction with the
transmission conditions. However, here we have to grapple with a mismatch
of interior and exterior boundary data due to the presence of v/ E, in (37).
A remedy is motivated by the observation

curlcurlE, =0 in 2, = divr('y]J{,E,n) =0,

which is an immediate consequence of the identity (13). We observe that v, E,
1

has to be sought in the space Hiz (divp 0, I')!
By the transmission condition for 7y and the fact that curl curl Eg = 0 in
a neighborhood of I', vy E has to be div-free, as well. Hence, we can restrict
!
our attention to boundary data 'yK,E,fy]J{,ET in HH 2(divp 0,I") throughout.
Recalling the dualities, this is a proper test space for those equations of the

1
Calderon identities that are set in H | *(curlp, I'). Since divp is the L*(I)-
adjoint of grad, we find
1

NEHH2(diVFO,F) = <u7gradp<p>_r:0 V(PEH%(F),

This makes the undesirable terms disappear, when switching to a weak
form of the top equations in the Calderon identities (36) and (37)! For all

e Hi% (divp OvF)Hié (divp 0,1") we obtain

(1 nE)_ = (A" (\WE)_ + (p, (31d+C*)% E)_,
(B, = (1, =AY E)Y + (p, (L1d = O E, )
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From the transmission conditions we know v, E, — v, E = —7; E,. Thus,
subtracting the above equations leads to

T

— (1, A (VYE) + AS(yyE)) — (1, CO (% Ey) + C* (v, Ey))
— 3 (% Eg)

for all u € H 2(lepO I'). From the transmission condition Hlo'y}(}Er —

M,.'YNE = _uo 75 Es and the second equations of the Calderon identities we
directly conclude

1 1 B _
(31d =B E, —  N(%E.) = ! (}Id+B")7yE— | N*(1; E)
Ho Ho ¢

As final unknown quantities we introduce the tangential trace of the electric
1

field u := ’yt_E €H,:”’ (curlp7 I') and the tangential trace of the magnetic

field A := 'yNE € HH (din 0,I"). The latter is also known as equivalent

surface current The transmission conditions enable us to express the exterior
traces in these unknowns. We end up with the coupled variational problem:

Seek u € HIé (curlp, IN), X € Hﬂé (divp 0,I") such that

(LNO+ T NF)u, > + ((BY+BYAV). = f(v),
(s (CO 4 CF)u Vo s (oA” + AN = g(p)

1
forallve H ?(curlp,I'), p € H (lep 0, I"). The right hand side is given

R 1 1 0 v 1 0 v
f(v) an ((31d+B°)yWEs,v)_+ " (N°(E,), v)_ (39)

g(w) == (p, (31d + CO)WE)_+ (u, A’ (\WEs))

Theorem 12 The bilinear form d associated with the variational problem
(38) is H | (curlp,F) X H|| (divp 0, I')-elliptic in the sense that there is
c=c(I, H7M07Mc) > 0 such that

v v
d , >c||v
() Oz (M oy W82)

forallve H | (curlp,F) and p € H_;(divFO,F),
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Proof. As a simple consequence of the block skew-symmetric structure of
1
the variational problem (cf. Thm 10) we find for v. € H  *(curlp,I),

j€ H, *(divr0,T) that

d((v, ), (v, 1)) = <(N° + . N”)V7V>T + (o (A 4 e A\ )

Subsequently, the estimates of Thm. 11 permit us to conclude ellipticity of
the whole bilinear form from separate estimates for the individual terms. O

Corollary 1. The variational problem (38) has a unique solution (u,\) €
1

H *(curlp, I) x H| * (divr-0,7).

By the derivation of the boundary integral equations we can be certain
that traces 7, E and v, H will always give rise to solutions of (38). Their
uniqueness then confirms that we get the traces of solutions of the E-based
eddy current model (17). These traces are fixed regardless of the gauging of
E employed in {2..

7.2 Galerkin Discretization

We select a conforming Galerkin boundary element discretization of (38) and
1

(39) that relies on finite dimensional subspaces W), C H | ?(curlp, I") and
1

Vi CH i 2(divy 0, I"). These should be boundary element spaces in the sense
that

1. the functions in both W}y and V), are piecewise polynomial tangential
vector fields with respect to a mesh I, of I' consisting of flat triangles.

2. there are bases of W), and V}, that only comprise locally supported func-
tions.

For the construction of W), we start from H (curl; {2.)-conforming finite el-
ement schemes for the approximation of vector potentials. The simplest is
provided by the so-called edge elements [38]. Keeping in mind that

HI_é (curlp, I') := v (H (curl; £2.)),

we simply take the tangential projections of edge element functions on a mesh

(2, with O = I', as space Wy, This will give a space of piecewise linear

vector fields on I, whose tangential components are continuous across edges of
_ 1

triangles. This is a well-known sufficient condition for W), € H | *(curlp, I').

The local shape functions on a triangle 7" are given by the formula

by, :=Xigrad;\; — \jgradp ), 1<i<j<3, (40)

where A;, i = 1,2,3, are the local linear barycentric coordinate functions in
T. These basis functions are sketched in Fig. 4. They are associated with the
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edges of I}, so that dim W), will agree with the total number of edges of I7},.
Note that W), can also be obtained by 90°-rotation of the lowest order div-
conforming Raviart-Thomas elements in 2D, ¢f. [11, Ch. 3]. More details can
be found in [6, Sect. 2.2].

AN |
\ \ AS—e]
NS
N Q i‘ } N \ AU

N s \\ \ \‘ N \ ; // AN N S
YYD N S ANSSE—.
< ? \ i‘ :\ ‘j ‘\{ w M ) i ’; 7 /,4; A ]
AREEER R RN SR AN
LA B A O T AT AN Ssse o

Fig. 4. Local shape functions of Wy,.

In order to find V;, we remember that A is the rotated tangential trace
of the magnetic field H. As H(curl; {2) is the right function space for H,
too, we get the right boundary element space for magnetic traces by rotating
functions in Wy, by 90°. This will give surface vector fields with continuous
fluxes across edges of triangles, which is a very desirable property for discrete
equivalent surface currents. However, ellipticity of (38) only holds provided
that divp A = 0. Therefore, this property has to be enforced on Vj,. Formally,

we may choose
V= {‘Ll,h €Wy, X n, diVF/J, = 0} . (41)

Using the formula (40), we readily see that 1V, only contains piecewise constant

vector fields.
By Thm. 12 and Cea’s lemma [24, Thm. 2.4.1] conformity of the Galerkin

method directly translates into the quasi-optimal error estimate in energy

norm
— A—A
[l Uh”HI%(Curlp,F) + h”Hié(divF,F) -
<C inf |Jlu—v _ + inf |[A— _ 42
- <Vh€Wh || h”HL% (curlp,I™) ¢LEVR || Ch”HH 2 (din,I")> ' ( )

where uy, and A, stand for the boundary element solutions, and C' > 0 de-
pends on the ellipticity and continuity constants of the continuous variational
problem (38). Hence, approximation error estimates for the finite element
spaces will directly provide us with rates of convergence. Let us assume quasi-
uniform and shape regular families of surface meshes I,, where h denotes the
meshwidth. Provided that the continuous solutions u and A are sufficiently

smooth, we arrive at
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— A=A <
[u UhHHlé(curIF,F) + || h”Hi%(%nf) <

<C (hmin{gwré} |\u||H,7(Cur1F’F) 4+ pmin{3.p+5} H/\”HP(F)) ., (43)
for some n, p > 0. The constant C' > 0 now depends on the shape-regularity of
the meshes, too. Details about approximation by functions in W}, can be found
in [14, Sect. 4.2.2]. The possible ranges of n and p depend on the geometry
of I': the presence of edges and corners will impose limits on 7, p. At worst,
these may only be slightly larger than zero.

The divergence constraint is essential in the definition (41) of the boundary
element trial space for the surface currents. We cannot simply use rotated
shape functions from Fig. 4 to get a locally supported basis, because the
constraint has to be enforced. Two options are available:

Lagrangian Multipliers

We may take the cue from mixed finite element schemes for second order
elliptic boundary value problems[11, Ch. 4] and use Lagrangian multipliers to
impose the linear constraints divp A\;, = 0. The natural discrete Lagrangian
multiplier space is

Mh = diVF(Wh X Il) (44)
={vel*I): i = const VK € I, / ppdS =0} .
r

Care must be taken when selecting the sesqui-linear form m(-,-) that brings
the Lagrangian multiplier to bear on A\ in the sense that

th{uh€Wh><n: m(,uh,z/h):() VVhGMh}.

For the sake of asymptotic stability of the discrete problem, the form m must
be both h-uniformly continuous and satisfy inf-condition [11, Ch. 3]

w |7|n(uh71/h)| >clvnlly  Yvn € My, (45)
UREWR X1 [|Hh Hié(diVva)

where ¢ > 0 should not depend on the meshwidth h. The norm |-||,, with
which M is endowed is still at our disposal.
Next, note that the tempting choice ||-[| ; = [|[| 2y and

m(pn, va) = (div pin, Va) p2ry

must be ruled out, though (45) is easily seen to hold, because this m will fail

to be continuous on Hiz (divp, I') x L%(£2).
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A viable option is
Flag = 0ty and - mlanvn) = (dive pn, Vo),

Here, continuity is immediate from (29) and the h-uniform inf-sup condition
(45) has been shown in [22], see also [10, Sect. 5.3].

Surface Stream Functions

Another way to deal with the divergence constraint resorts to scalar surface
stream functions. Let Sy, stand for the space of I';-piecewise linear and contin-
uous functions on I'. Then, if I" is simply connected, we know from deRham’s
theorem [38, Cor. 3.3] that V), = curly ), . Hence, we may simply use the
surface rotation of the “hat basis functions” of Sy, as a basis for Vp,, see Fig. 5
(left).

Fig. 5. Basis function of V}, associated with a vertex (left). Current sheet along a
section of a path v (right).

Because we have not ruled out more general topologies of I', surface co-
homology vector fields can also contribute to the kernel of div :

Vy=curlp S, @H, , dimHy, =06(1), (46)

where (31(I") is the first Betti number of I', which is twice the number of holes
drilled through (2.. This means that dimV;, will be equal to the number of
vertices of I}, plus B1(I).

To find a basis of Hp we need representatives vi, k = 1...,01(I"), of a
basis of the cohomology group Hi ([}, Z) in the form of oriented closed edge
paths (cycles). In other words, we need a maximal set of closed curves on
the surface that do not cut the surface into two separate parts, and cannot be
deformed into each other by sweeping them over parts of I". Typical choices for
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the torus are depicted in Fig. 3. We can always find such curves that run along
edges of I';, and this can be done with a computational effort proportional to
the number of edges in I7, [41]. To each such path v a “current sheet” 7., can
be associated, a circular current traveling along the path, see Fig. 5 (right).

Consider a non-bounding surface edge cycle v that is bounding with re-
spect to {2, that is, there is an oriented surface X' C (2. such that v = 9X.
Then we get from Stokes theorem

/('yNEr xn)-ds= /curlcurlEr -ndS=0.
o x

As curlcurl E,. = 0 in {2, this means that, in the discrete variational problem
(47), we can confine ourselves to those A, € V), that satisfy fv(/\h xn)-ds =0
for all cycles v bounding relative to {2.. This means that we only have to take
into account current sheets along cycles bounding relative to the exterior. An
algorithm for the construction of these cycles has been developed in [41]. The
resulting basis of the relevant subspace of Hj will be denoted by ¢1,...,¢r,
L =: }B1(I). Then the discrete linear variational problem arising from (38)
read search for u, € Wy, ¢n € Sp/R, (a1,...,ar)T € CE such that

— — L _
—<N0uh,vh> — <BOCUI'1[‘ <ph,vh> — > ag <BOLk,Vh>
T T k-zl T
= f(va) .
— — L N
<BO curly ?/Jh,llh> + <cur1p Yp, AV curl p <ph> + > g <cur1p ’l/)h,AOLk>
T T k:l T
= g(curlp i) ,
— — L N
B0 uy + J, A0 curly @y, + o {7, A0y,
(8% un). { ), 3 o (i, W0u)
=g9() ,
(47)

for all vi, € Wy, ¢ € S,/R, j = 1,...,L. We abbreviated A0 —
1oAY 4 A%, BO = BY 4+ BX, NO := 1 NO 4 .. N*. From (47) we can retrieve

Ho
L
A =curlp o +> 07 L.

Remark 2. If surface stream functions are used, Non-local inductive excitation
can taken into account in an amazingly simple fashion: for each loop of the
conductor there is basis cycle of Hq(I',Z) that “winds around it”, see Fig. 3
for an example. We realize that the circulation of the magnetic field along
that fundamental cycle, which is equal to the flux of A through it, agrees with
the total current in the loop. Hence, inductive excitation amounts to fixing
some of the ay, in the variational formulation (47). More details are given in
[39, Sect. 8].
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8 H-Based Model

For want of a transmission problem, the derivation of symmetrically coupled
boundary integral equations starts from the variational problem (19).

8.1 Boundary Reduction

In order to be able to perform a reduction to the boundary through integration
by parts we have to resort to scalar potentials. Therefore we use (15) to replace
V by

V[H,] = {(V,®) € H(curl; 2,) x H5(2.), 7 V — ~ grad® = v/ H, on I'} .

For the notations we refer to Sect. 4. Thus, (42) is converted into: Seek
(H,¥) € V[H;] such that

(0*1 curl H, curl V) L2(0.) +iwpe (H, V)Lz(()c) +

iwio (H, + grad?, /Vd@) —0, (48
+ twpo ( + grad?, gra Lot (48)

e

for all (V,®) € V[0]. As divH; = 0 in {2, testing with functions compactly
supported either in 2. or {2, shows that for k =1,..., N

curlo ' curl H 4 iwuH =0 in 0., (49)
—AV =0in 2" , [Ongrad¥]y =0, [1¥]; = const. . (50)

Integration by parts can be carried out on both §2. and (2. Thus, setting
7 = (iwopg) ™!, (48) becomes

(o N, V), = (008,7P), 15 900 = (aHss YD)y 19 000 (51)

Here, v/ and 0/, are the standard trace and conormal derivative onto 9§2’. The
definition of 97, relies on the interior unit normal vectorfield on 02’

Remark 3. Splitting the duality pairing (ynH,v'®), /2,60 into contributions
of I' and of the cuts cannot be done immediately, because the individual
integrals are no continuous functionals on the space H : (042"). This procedure
must be postponed until after discretization.

8.2 Coupled Problem

For both (49) and (50) we need a realization of the Dirichlet-to-Neumann
operator by boundary integral operators. For (50) we can rely on the exterior
Calderon projector for the Laplacian on 2’ [58, Sect. 3.6], which gives the
identities
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V= (31d +K)(Y'?) — VI(0p¥)

o= D)+ (Ld— (K))0L) (52

The integral operators match those introduced in the beginning of Sect. 6,
but this time they are defined on 92’ and based on a unit normal vectorfield
pointing into the interior of 2’: K’ is the double layer potential integral op-
erator for A, (K')* its L?(9£2")-adjoint, and D’ stands for the hypersingular
operator, see (29).

What is not reflected in the statement of the Calderon identities is the
special nature of the “Dirichlet trace” 4'¥ and “Neumann trace” 9, ¥ entailed
by the transmission conditions of (50). They imply that

VW € HE(O0) = {v e H:(0'), [u], = const., j =1,...,N},
oL € Hy? (00) = {p e H>(0R2'), ¢* + ¢~ =0on Xy, j=1,...,N}.

For the interior problem (49) we can reuse the Calderon identities (36) with
K= \}2 (1+i)/wou. and H instead of E:

e H= A%(yyH) + (1Id+C") (v H),
wH= (l1d+ (53)
mathsfB®)(yyH) + N* (7, H) .

Now we can merge (51), (52), and (53), making use of 7, V = gradp yto

and H = gradp 'y*W + 1H,. This results in: Seek v € HZ(02)/R,
Y e Hy, (8(2’) n e H|| (lep,I’) such that

n'(u,v) + b(n,v) — K (¢,v) = f(v),
—=b(p, u) + a(n, ) =g(u), (54)
K (¢, u) +d(,0) =0.

for all v € H2 2(002)/R, ¢ € Hy (8(2’) we H,

I ;(din,I’), where

n'(u,v) == 7 (N"(gradp u), grad v) . + (D', v); 5 5
b(n,v) =7 {(31d+ B")n, gradpv> ,
K@) = (0, (31d = K)0), o0
a(n, p) =7 {w, A"n).
d' (¥, ¢) = (,V')1 /2,00 -
fv) == (Mg, )y )5 9o — (N (e Hy), grad pv)
g(p) =7 (p, (31d — C*)Hy)

It is worth noting that (11) yields the identity (cf. [25, Formula (2.86)])

(N*u,v)_ = &% (%P5 (Ru),Rv)_ + (V*(curlpu), curlp V)ijar - (55)
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This leads to an alternative expression for the first contribution to n’(u,v):
(N"(grad u),gradv), = k? (&% (curly u),curlpv)_ .

The surface gradient of the u-component of the solution of (54) provides
the tangential trace of H, whereas ¢ := 9,¥ can be viewed as the (scaled)
magnetic flux through 0£2’. The meaning of n := vy H is that of a (scaled)
twisted tangential trace of the electric field.

Theorem 13. The bilinear form associated with the variational problem (54)
1 1 1
is HA(002)/R x Hy?(062') x Hﬁz (divp, I')-elliptic

Proof. As in the proof of Thm. 12 we can exploit the block skew symmetric
structure, because the bilinear forms on the diagonal are elliptic on their
respective spaces, see Thm. 11 and (35). O

Remark 4. Actually, the coupled variational problem for the H-based model
fails the condition that only equations on I" may be involved, because some
integral operators rely on cutting surfaces, too. This is an enormous practical
obstacle to the use of the H-based model, because the construction of cutting
surfaces requires a triangulation of some part of the air region and can be
prohibitively expensive [46, 37].

One might wonder why this drawback is inevitable with the H-based model
but not encountered in the case of the E-based model. We owe this to the
second nature of E as a vector potential. For this reason we do not have to
introduce another potential to carry out boundary reduction. On top of that
a vector potential always exists and is not tied to any topological constraints.

8.3 Galerkin Discretization

Assume that a combined triangulation I} of I" and the cuts X, k=1,..., N,
is supplied. As before, we write I, for its restriction to I". Thanks to Thm. 13
a conforming Galerkin discretization will yield quasi-optimal approximations
of solutions u, v, and n of (54).

1

In particular, the space Fp(I}) C H,* (divp,I') can be reused as trial
space for 1. To approximate u and v we can employ the usual conform-
ing boundary element spaces for H2(82') and H~2(942'). Let Sy(I}) and
Qn(I7}) stand for these.

A common trait of the boundary element spaces is that they offer far
more regularity than required by mere conformity. For instance, all boundary
element functions will belong to L°(9f2). Then the constraints inherent in

1 1
the spaces HZ(0f2') and Hy,?(0f2") permit us to restrict the operators V’,
K’, and, D’ to I': Straightforward manipulations using the integral operator

representations of V/; D', and K’ show that for u,v € Hé((‘)ﬂ’) N L (08)

1

and ¢,4 € Hy? (002) N L=(0')
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W V'8)1 200 = <¢7V0¢>1/2,F o (D' v)y s 90 = <D0u’v>1/2f ’

N
(6.K0)1 3 0 = (6K, + D [e] / / o) o) dS () )
k=1

N
O s = 000+ 3 lils, - [ 060 dS)
k=1 o,

(56)

We observe that the cuts will enter the discrete variational problem only
through some global integral quantities that are not sensitive to the choice of
boundary elements on the cuts. Sloppily speaking, this permits us to cover
each cut by only a single surface element. More precisely, we may choose

S(I7) = Sp(I}h) + Span {c},....cp }
On(I},) = Qn(Ih) + Span{x1,...,xn} -

1
Here, cf is a I} -piecewise linear function € C%(042')NH 2(912"), whose restric-
tion to I" has a jump of height 1 across the edge cycle o) and is continuous
1

across any other o;, j # k. The function x; € L>(9£2') N Hy? (942") assumes
the values +1 and —1 on E,j and X, respectively, and vanishes on 002"\ X.

Using the identities (56), the discrete variational problem can be rephrased
as: Seek u;, € Sh(Fh), 1/)h S Qh(Fh), N, € Fh(Fh), a1,...,N € (C,
B1,- -, 88 € C such that

n(iin, vn) + b(ny,,vn) — k(Pn,vn) + Zk:akn(ck,vh) = f(vn),
—b(pn, @n) + a(ny,, pn) - Zakb(ﬂh,ck) = g(pn) ,
k(¢pn, iin) + d(Yn, dn) + Zakk (én,cr) =0,
n(@n,c;) + b(my,ci) — K (Yn,¢5) + Zakn(c ) = Ekjﬂkk'(Xk,Cj) = fles)
Zk:akk(Xl,Ck) =0.

for all vy, € Sh(Fh), Wy € fh(Fh), on € Qh(Fh), j=1...,N,l=1,...,N.
Here we set, using [32, Thm. 7, Ch. XI],

n(u,v) :=_ (N"(gradp u), gradv) o) (A curlru,curlyr U>L2(F) ,
d(wa ¢) = (¢7 Vow)L2(F) 5 k(w7v) = (wa (%Id - KO)U)L2(F) 5

for bilinear forms induced by integral operators on I' alone. The discrete
solution can be obtained as up = @p + Y arcr and Yy = on + > ok BrXe- A
closer study of the boundary integral operators shows that the cuts only come
into play through integrals of the form
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//moxy n(x) dS(y,x) /H -nds,

I Xy

for ¢y, € Qp(I},). Obviously, by Gaufl’ divergence theorem, Xj, can be replaced
by any other surface homologous in Hs (2., Z) without changing the values of
the integrals. Paradoxically, information about the concrete geometry of the
2, seems to be indispensable for the evaluation of the integrals.

The case of lumped parameter excitation is treated in a similar fashion
as in the case of the E-based model. First, note that «j measures the jump
of the magnetic scalar potential across Xk. According to Ampere’s law the
height of this jump agrees with the total current in the loop of the conduc-
tor corresponding to Y. Hence, a prescribed total current in a loop of the
conductor can be taken into account by fixing the value of oy for the related
cut.

Remark 5. The intrinsic use of a (multivalued) magentic scalar potential in {2,
paves the way for accommodating non-local inductive current excitation: by
Ampere’s law, we only need to fix the jump of ¥ across a cut associated with
a current carrying loop of the conductor. In the above variational formulation,
this boils down to fixing some of the ay.

Remark 6. The values of the ) agree with the total magnetic flux through the
cut Y. By Faraday’s law it is proportional to the electromotive force along
ok. Hence, if the voltage around a loop of the conductor is to be imposed,
we can do so by fixing the value of the associated Jy. The possibility to take
into account lumped parameter voltage excitation is only available with the
H-based model.

9 Postprocessing

As we have remarked in the introduction, getting approximate Cauchy data
(1E,vxH) on I' might not be the eventual goal of the computation. Thus,
we have to figure out how to get (i) the total Ohmic losses in £2¢, and (ii) the
total force acting on 2¢. Here, we focus on the E-based formulation of Sect. 7
and assume that by solving (47) we have obtained approximate Cauchy data
(uh, /\h)-

Ohmic losses are the only mechanism for the dissipation of field energy in
the eddy current model. Moreover, since all fields are harmonic in time, the
total field energy inside 2¢ will not change over one period. Therefore, we
get the averaged Ohmic losses by appealing to Poynting’s theorem

Poun = — B /(ExH)-ndS = R,

r
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A natural approximation is
P ~ Ph .1
POhm ~ POhm = 2% <uh,>\h>7_ .

The error can be estimated by

Ponm = Pl = 3R{W A = A) . + (u—uy, An) )

< 1( A=A
=2 ”u”HIé(curlr,F) | h”H\T%(diVF’F)
el Bl )
sl )

where we have exploited the continuity of the pairing (-, -) . This shows that
Ph,. . will converge with the same rate as observed for the Cauchy data.

To compute the total force on the conductor we can resort to the magnetic
Maxwell stress tensor for linear materials [43, Sect. 6.7]

T:=B-H" - 1(B-H)I, (57)

where, B and H denote the real, time dependent fields. Ignoring the electric
forces is consistent with the eddy current model, which rests on the assumption
of negligible electric field energy. Next, we consider T on I" and split both the
magnetic induction B and H into tangential and normal components, cf. [49,
Sect. 6].

B(x) = B,(x)n(x) + Be(x) , H(x)=H.(x)n(x) + He(x), xel.

Using the constitutive equation B = poH, that is valid in (2., we express

1
Hn(x)= B, , Bi(x)=puoHs .
Ho
and get on I
1,1
T(x)n(x) = 2(ﬂOBZ(X) — ho[He[*)n(x) + Bu(x) He(x) , x €.

Hence, the total force on the conductor at a particular time is given by

Fiow — / T(y)n(y) dS(y)

= [ 50 BE) — mole ) nly) + Bo(y) Hal) dS(y)

Let us revert to complex amplitudes B and H, for which the averaged force
over one period is given by
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_ 1.1 1

Far = [ 400 IBa)F = iofHe(y) P)ny) + R {Bu(y) Haly)} dS(y)
¥

From B = (iw)~! curl E we infer B,, = (iw) ! curly u, where curly stands for

the scalar surface rotation (divp applied to the rotated field). On the other

hand, it is straightforward that Hy = —A x n. Thus, we can rewrite
Fiot :/ ()} |eurlru(y)[? = |Ay)P)n(y) - (58)
4dpow? 4
¥

o R {ewlruly) (Ay) x n(y))} dS(y)

Finally, we have expressed the total force in terms of quantities that occur
as unknowns in the variational problem (38). Now, it is straightforward how
to compute an approximation of Fi, from the boundary element solution
(up, An). As far as the approximation error is concerned, the same considera-
tions apply as for the energy flux.

It is important to be aware that the force as given by (58) is by no means
a continuous functional in the natural trace norms, because the inclusions

H,*(curly,T) C L*(T') and H | *(divy,T) C L*(T') do not hold (Com-

pare the case to the Neumann trace space H —2 (I') for second order elliptic
problems). Of course, (58) can easily be evaluated for the boundary element
functions, but unlike in the case of the total energy flux, rates of convergence
for Fio cannot be inferred from (42).

Remark 7. We emphasize that approximations for the traces of the fields onto
I are directly available, because we have relied on a direct boundary element
method. If an indirect method had been used, it would have taken expensive
post-processing, in order to get the same information.
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Summary. When the Boundary Element Method (BEM) is used to analyse elec-
tromagnetic problems one is able to achieve an almost linear complexity by applying
matrix compression techniques. Beyond this, on symmetrical domains the computa-
tional costs can be reduced by significant factors. By using several symmetry consid-
erations (geometry, mesh, kernel, excitation) it will be shown how the combination of
the Adaptive Cross Approximation (ACA) and the symmetry exploitation allows an
efficient solution of electromagnetic problems. This approach will be demonstrated
on the scalar BEM formulation for electrostatics and can also be applied to the vec-
torial eddy current formulations. The symmetry exploting ACA algorithm not only
reduces the problem size due to the symmetry but also possesses an almost linear
complexity w.r.t. the number of unknowns.

1 Introduction

Electromagnetic devices can be analysed by the coupled BE-FE method,
where the conducting and magnetic parts are discretised by finite elements. In
contrast, the surrounding space is described with the help of the boundary el-
ement method (BEM). This discretisation scheme is well suited especially for
problems including moving parts [11]. The BEM discretisation of the bound-
ary integral operators usually leads to dense matrices without any structure. A
naive strategy for the solution of the corresponding linear system would need
at least O(IN?) operations and memory, where N is the number of unknowns.
Methods such as fast multipole [6] and panel clustering [9] provide an approxi-
mation to the matrix in almost linear complexity. These methods are based on
explicitly given kernel approximations by degenerate kernels, i.e. a finite sum
of separable functions, which may be seen as a blockwise low-rank approxima-
tion of the system matrix. The blockwise approximant permits a fast matrix-
vector multiplication, which can be exploited in iterative solvers, and can be
stored efficiently. In contrast to the methods mentioned the ACA algorithm
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[2, 3] generates the low-rank approximant from the matrix itself using only
few entries and without using any explicit a priori known degenerate-kernel
approximation. Special emphasis is put on the handling of symmetry condi-
tions in connection with ACA [13]. The feasibility of the proposed method is
demonstrated by means of numerical examples.

2 Statement of the Problem

The electromagnetic phenomena are described by Maxwell’s equations, which
can be written in the form of partial differential equations as follows

curlH = 3+ 9,D, (1)
curlE = -9,B, (2)
divB =0, (3)
divD = p. (4)

The equations describe the correlation between the magnetic field H, mag-
netic induction B, electric field E and electric displacement D. 3 denotes the
electric current density and p the electric charge density. The equations have
to be supplemented by the material laws

B = uH, (5)
D =¢cE, (6)
1=rE+7g, (7)

where p is the magnetic permeability, € the electric permittivity, x denotes
the electric conductivity and 7 ¢ the impressed source current density.

2.1 Formulation of the problem

For the sake of simplicity we consider in the sequel the electrostatic case

curlE =0, (8)
divD = p, 9)
D =cE. (10)
Based on the potential ansatz
E = —grady, (11)

where ¢ is the electric scalar potential, we obtain the potential formulation
dive grad¢ = —p, (12)

which has to be solved in the whole R? . In order to apply the BE-FE discreti-
sation scheme we perform a domain decomposition (see Fig. 1) of the computa-
tional space into the bounded domain 2pgy containing dielectric components,
the unbounded domain 2ggym and the coupling boundary I' = Qpgyv N 2BEM -
In this paper we put the emphasis on the BE formulation.
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r

QBEM

Fig. 1. Domain Decomposition.

Representation Formula

In the BE domain which usually describes the surrounding air we assume
€ = go. Thus, the potential formulation (12) turns out to be the Poisson

equation
1

Aqb:—gop. (13)

Multiplying (13) by the fundamental solution of the Laplacian

1

14
|z —y| 14

u*(a:,y) =

and performing integration by parts yields the representation formula for
smooth boundary points y € I'

,00) = [0 (@) 2u0(a)dS. ~ [ 0, (,0) ol dS,
r r
vat [ wew s (15)
2BEM

2.2 Discretisation

First, the spatial discretisation has to be introduced. Let

N1
L=
j=1

be a union of boundary elements I'; approximating the coupling boundary I
and

{¢j, i=1,....,Ny} and {¢;, j=1,...,Ny} (16)
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systems of compact-supported ansatz functions for Dirichlet and Neumann
data, respectively. The scalar electric potential and its normal derivative are
discretised by the corresponding scalar ansatz functions

N

P(z) ~ Z a;d;(x), (17)
j]\;w

Ond(z) ~ Y a505() (18)

For the Neumann-type problem the representation formula (15) will be eval-
uated in N, collocation points {y;, i = 1,...,Ny}. Together with the dis-
cretisation (17-18) this yields N, discrete boundary integral equations which
can be written as the matrix equation

(yT+H)a=GCq+b (19)

with the matrices of the single and double layer potential

gij:/ u*(m,yi)wj(a:)de, izl,...,N¢,j:1,...,Nw, (20)

supp ¥;

supp ¢;
The matrices G and H are fully populated and don’t possess any structure.
Thus, the computational costs when setting up the matrices and the memory
consumption are both of order O(NyNy) and O(N, ; ), respectively . Each sin-

gle matrix entry is computed by the use of a combination of analytical and
numerical integration.

3 Hierarchical Matrices

The formal definition and description of hierarchical matrices as well as oper-
ations involving those matrices can be found in [7, 8]. In this section we give
a more intuitive introduction to this topic.

3.1 Motivation

Let K : [0,1] x [0,1] — R be a given function of two scalar variables and
A € RV*M 3 given matrix having the entries

are = K(xp,ye), k=1,...,N, £=1,...,M, (22)
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with (zx,y¢) € [0,1] x [0,1]. Tt is obvious, that the asymptotic memory re-
quirement for the matrix A is Mem(A) = O(N M) and the asymptotic num-
ber of arithmetical operations required for the matrix-vector multiplication
Op(4s) = O(N M) if N,M — oco. This quadratic amount is too high already
for moderate values of N and M. However, if we agree to store an approxima-
tion A of the matrix A and to deal with the product A s instead of the exact
value A s the situation may change. However, then it is necessary to control
the error, i.e. to guarantee the inequality

A= Allr <elAllr, (23)

where ||A||r denotes the Frobenius norm of the matrix A

1/2

Alr = | ak (24)
k.0

for some prescribed accuracy €. The best approximation of the matrix A is
given by its partial singular value decomposition

A A=Ar) =) oiuv/ (25)
i=1

where the rank r = r(¢) is chosen corresponding to the condition

~ min(N,M) min(N,M)
A=Az < Y of < Y ol = <Al (26)
i=r+1 =1

Unfortunately, the complete singular value decomposition of the matrix A
requires O(N?) arithmetical operations when assuming N ~ M, and there-
fore, is too expensive for practical computations. However, the singular value
decomposition can be perfectly used for the illustration of the main ideas.

Ezample 1. Let us consider the following function on [0, 1] x [0, 1]

1

K(Jﬁ,y): Oé-f—(il'—y)Q,

(27)
where o > 0 is a parameter. For a ~ 1 the function K is smooth but for small

values of a the function K becomes an artificial “strong singularity” at the
diagonal {(z,x)} of the square [0, 1] x [0, 1].

The domain [0, 1] x [0,1] is uniformly discretised using the nodes

1 1

(wsye) = (= Dhoy (= D)y he =\ hy= 0 (28)

for k=1,...,N and £/ = 1,...,M. In Fig. 2 the logarithmic plot of the
singular values of the matrix (22) (i.e. the quantities log,y 0y, ¢ = 1,..., N)
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for N = M = 32 (left plot) and N = M = 1024 (right plot) is presented
for @« = 1. It is clear to see that only very few singular values are needed to
represent the matrix A in its singular value decomposition (25) for moderate
value of the parameter £ = 107° — 1075, Almost all singular values are close
to the computer zero for N = M = 1024. Thus the behaviour of the singular
values determines the quality of the low rank approximation (25).

The situation changes if the “singularity” of the function K is more serious.
In Fig. 3 (left plot) the rank 7(g) for e = 107% and N = M = 256 is shown as
a function of the parameter a. The horizontal axis corresponds to the values
—logy () while a changes from 2° till 278. However, if we “separate” the
variables x and y, i.e. consider only a quarter [0,0.5] x [0.5,1] of the square
[0,1] x [0,1] then the situation is better. The right plot in Fig. 3 shows the
same curve for separated z and y which is more or less constant now.

5 5
0 0
S 5 S 5
[ [
ke] ke]
-10 -10
-15 -15
0 5 10 15 20 25 30 0 200 400 600 800 1000
Number of Singular Value Number of Singular Value

Fig. 2. Distribution of singular values for N = 32 (left) and N = 1024 (right).
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60 60
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2 2

<40 <40
< 30 < 30
20 20
10 10

[
0 0

0 2 4 6 8 0 2 4 6 8

-logy o -logz o

Fig. 3. Rank of the matrix A depending on parameter o for non-separated (left)
and separated (right) domains.
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Now the main idea of hierarchical methods is very clear. If we decompose
the whole matrix A in four blocks corresponding to the domains [0,0.5] x
[0,0.5],]0,0.5] x [0.5,1],[0.5,1] x [0,0.5] and [0.5,1] x [0.5,1] we will be able
to approximate two of these four blocks efficiently. The two remaining, main
diagonal blocks have the same structure as the initial matrix but only the
half of the size and their rank will be smaller. In Fig. 4, the left diagram
corresponds to the whole matrix and its rank r(¢) = 73 is obtained for o = 279
and € = 107° for N = M = 256. The 2 x 2 block matrix together with ranks
of the blocks is shown in the second diagram of Fig. 4. The approximation of
the separated blocks is now acceptable and we continue to decompose only the
blocks on the main diagonal. The results can be seen in the third and in the
fourth diagram of Fig. 4. The memory requirements for these four matrices
is quite different. The first matrix needs 146 N words of memory, the second
94N, the third 74N and finally we will need 72N words of memory for the
last block matrix in Fig. 4. Thus a hierarchical decomposition in blocks and
their separate approximation using a singular value decomposition leads to a
drastic reduction of memory requirements even for this rather small matrix
having “diagonal singularity”. Note that the rank of the blocks on the main
diagonal increases almost linear with the dimension: 12 — 20 — 38 — 73 while
the rank of separated blocks has at most logarithmic growth: 7 — 8 — 9.

38 | 9 ik 9 I 1287 9
73 8120 8 =t
9 | 38 9 25 9 \8
8120 8 i

Fig. 4. Initial matrix and its hierarchical decomposition in blocks.

Thus a hierarchical approximation of large dense matrices arising from
some generating function having diagonal singularity consist of three steps

e Construction of clusters for variables x and y,
e Finding of possible admissible blocks (i.e. blocks with separated = and y),
e Low rank approximation of admissible blocks.

In the above example the clusters were simply the sets of points x; which
belong to smaller and smaller intervals. The problem is more complicated for
three-dimensional irregular point sets. Also the admissible blocks in the above
example are very natural. They are just blocks outside of the main diagonal.
In the general case we will need some permutations of rows and columns of
the matrix to construct such blocks. Finally, the singular value decomposition
approximation we have used is not applicable for more realistic examples.
We will need more efficient algorithms to approximate admissible blocks. The
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approximation of the blocks for separated variables z and y in the above
example is based on the smoothness of the function K for x # y. However, if
the function K is degenerated, i.e. it is a finite sum of products of functions
depending only on x and y

Iﬂ%w=§:MWM@) (29)

then the rank of the matrix A defined in (22) is equal to r independent of
its dimension. Thus for N, M > r the matrix A is a low rank matrix. This
property is independent of the smoothness of the functions p;, ¢; in (29). The
low rank representation of the matrix A is now

T
A= Z uv; (30)
i=1

with

(ui)k = pi(wr), (vi)e = qi(ye) (31)

fork=1,...,N and ¢/ = 1,..., M. Note that this representation is not the
singular value decomposition (25). If the function is smooth enough then we
can use its Taylor series with respect to the variable z in some point x*

K=Y T @y Ry (52)

to obtain a degenerated approximation
T
A%Azz:uiv;r, (33)
i=1

with

1 'K (%, ye)
il o xt

for k=1,...,N and ¢ = 1,..., M. Note again that (33) is not the singu-

lar value decomposition of the matrix A. If the remainder R, is uniformly
bounded by the original function K

(wik = (z, — )", (v3)¢e = (34)

R, )| < e[ K2, (35)

for all z and y with some r = r(g) then we can guarantee the accuracy of the
low rank matrix approximation

1A~ A <<l Al (36)
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for all dimensions N and M. The rank r = r(¢) of the matrix A is also in-
dependent of its dimension. Thus, for N ~ M the matrix A requires only

Mem(A) = O(N) words of computer memory. However, an efficient construc-
tion of the Taylor series for a given function in three-dimensional case is prac-
tically impossible. Thus it is rather an illustration for the fact that there exist
low rank decompositions which are not based on the singular value decompo-
sition. A further example of low rank approximation of the given function is
a decomposition of the fundamental solution of the Laplace operator

1 1

for z,y € R?
47|z —y|

u(z,y) =
in spherical harmonics which is used by multipole methods (see [6]).

3.2 Hierarchical Clustering

To find a suitable permutation, a cluster tree is constructed by recursively
partitioning some weighted characteristic points

{(kagk))k:17"'7N}CR3XR+ (37)
and
{(yb%%€=1,...,M}C}R3><R+ (38)

in order to separate the variables z and y. A large distance between two
characteristic points results in a large difference of the respective equation
numbers. While dealing with boundary element matrices the characteristic
points can be the collocation points and the weights the areas of the supports
of the trial functions. A given cluster

m:{@h%%k:L”W@

with n > 1 can be separated in two sons using the following algorithm.
Algorithm 1
1. Mass of the cluster
n
G= Z Ik € ]RJr )
k=1

2. Centre of the cluster

1 — .
X = eR3
sz_:lgkxk
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3. Covariance matrix of the cluster

n
C=> gr(wx — X) (v — X)T € R,
k=1

4. Eigenvalues and eigenvectors
Cvi:)\ivi, i:1,273, )\1 2)\2 Z)\3 ZO,

5. separation
5.1 initialisation

Cli:=0, Cly:=0,
5.2 for k=1,...,n

if (xk —X,Ul) >0 then Cl;:=Cly U ((Ek,gk)
else Cls:=Cls U (zk, k) -

The eigenvector vy of the matrix C' corresponds to the largest eigenvalue of
this matrix and shows in the direction of the longest extension of the cluster.

The separation plane {x ER? : (x— X,v) = O} goes through the centre

X of the cluster and is orthogonal to the eigenvector v;. Thus, Algorithm
1 divides a given arbitrary cluster of weighted points in two more or less
equal sons. In Fig. 5 the first two levels of separation of a simplified model
of an exhaust manifold are shown. The separation of a given cluster in two
sons defines a permutation of the points in the cluster. The points in the
first son will be numbered first and then in the second son. Algorithm 1 will
be applied recursively to the sons until they contain less than or equal to
some prescribed (small and independent of N) number n,i, of points. Next,
cluster pairs which are geometrically well separated are identified. They will be

&7\
SN é:;i‘».
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N Xy

4

S
NS i
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Fig. 5. Clusters of the first two levels.
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Fig. 6. An admissible cluster pair.

regarded as admissible cluster pairs, e.g. the clusters in Fig. 6. An appropriate
admissibility criterion is the following simple geometrical condition. A pair of
clusters (Cl,, Cl,) with 1y > nmin and m, > nmin elements is admissible if

min (diam(Clm), diam(Cly)) < ndist(Cl,, Cl,) | (39)

where 0 < 7 < 1 is a given parameter. Although the criterion (39) is quite
simple a rather large computational effort (quadratic with respect to the num-
ber of elements in the clusters Cl, and Cl,) is required for calculating the
exact values
diam(Cl,) = max |z, — Tk,|,
k1,k2
diam(Cly) = max |ye, — Y|,
£1,L2

dist(Cls, Cly) = nklilp |zr — yel -
In practice we use more rough and more restrictive but easily computable
bounds
diam(Cl,) < 2 mkax|X -z,

diam(Cl,) < 2 max Y — yel,
dist(Cl,, CL,) > |X — Y| — ; (diam(ClI) + diam(C’ly)) :

where X and Y are the already computed centres (cf. Algorithm 1) of the
clusters Cl, and Cl,, for the admissibility condition. If a cluster pair is not
admissible and n; > nmin and my > npin then there exist sons of the both
clusters

Cly =Clyy UCly, Cly=Cly, UCly,.

Let us assume for simplicity that the cluster Cl, is bigger: diam(Cl,) >
diam(Cl,). In this case we check two new pairs
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(sz,l, czy) , (czm, czy)

for admissibility and so on. This recursive procedure stops if n, < nmymip, or
My < Nmin. The corresponding block of the matrix is small and will be com-
puted exactly. The cluster trees for the variables x and y together with the
set of admissible cluster pairs as well as of small cluster pairs allow to split
the matrix into a collection of blocks of various sizes. The block structure of
the Galerkin matrix for the single layer potential on the surface form Figs.
5-6 is shown in Fig. 7. The colour of the blocks indicates the “quality” of
the approximation. The light grey colour corresponds to well approximated
blocks while dark grey and especially black colour indicates less good approx-
imation or even exact computation. Thus the main problem remains is how to
approximate the big blocks without using the singular value decomposition.
The corresponding procedures will be described in the forthcoming section.

L T o

I = i
1 i

]
£

] |
|
|

B L

Fig. 7. Matrix decomposition.

3.3 Adaptive Cross Approximation

On the matrix level the fully pivoted ACA algorithm can be written in the
following form:

Algorithm 2
1. Initialisation

Ro=A, So=0.

2. For 1 =0,1,2,... compute
2.1. pivot element

(ki+1,€i+1) = ArgMax |(Ri)k€| ,
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2.2. normalising constant

-1
Yi+1 = ((Ri)ki+1fi+1) ’
2.3. new vectors
=~ R i =R"
ul+1 72‘#1 Z€€i+1 9 v1+1 7 eki+17
2.4. new residuum
T
Riy1= Ry —uit1v;44 5
2.5. new approximation
T
Siv1 = Si +uip10;4 -

The whole residuum matrix R; is inspected in Step 2.1 of Algorithm 2 for
its maximal entry. Thus the appropriate stopping criterion for a given £ > 0
at step r is

1B |lr < ellAllr-

Note that the crosses built from the column-row pairs with the indices k;, ¢;
fori =1,...,r will be computed exactly, while all other elements are approx-
imated. The number of operations required to generate the approximation
A =8, is O(r> N M). The memory requirement for Algorithm 2 is O(N M)
since the whole matrix A is assumed to be given at the beginning. Thus, Al-
gorithm 2 is much faster than a singular value decomposition but still rather
expensive for large matrices. If the matrix A has not yet been generated but
there is a possibility of generating its entries ay, individually then the follow-
ing partially pivoted ACA algorithm can be used for the approximation.

Algorithm 3
1. Initialisation

So=0, T=0, c=0cRY,

2. Recursion
2.1. Choice of the next not yet generated row

ki1 :min{k : kgéI}, IZIU{]{JZ‘_H},

or stop if all rows are generated, i.e. Z={1,...,N},
2.2. Generation of the row

YT
a=A"ep,.,,
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2.3. Row of the residuum and the pivot column

i
RiChpn =a= 3 (um)heavm,

m=1

ArgMax | (R ), e ,

liva
2.4. Test
if Max|(Ri)ki+1g‘ =0 then goto 2.1.

2.5. Normalising constant

-1
Yi+1 = ((Ri)k,:+1€1:+1) ’
2.6. Generation of the column, Update of the control vector

a=Aey,,, c=c+lal,

2.7. Column of the residuum and the pivot row

)

Rie‘gi+1 =a- Z (vm)4i+1um )

m=1

kiro = ArgMax ‘(Rz)

kliy1| >

2.8. New vectors
_ _ pT
Ui+l = ’Vi+1Ri6a+1 , Vi1 = R; Chkit1>

2.9. New approximation

Sit1 = Si + uir1v;,

i+1 i T Wi41V;4q -

2.10. Recursion
1:=1+1, goto 2.2

Since the matrix A will not be generated completely we can use the norm of
its approximant S; to define a stopping criterion. This norm can be computed
recursively as follows,

K3
181l % = 1SillF +2 > ulyytm vpvis + luip|[Fllvia |7 (40)

m=1

An appropriate stopping criterion in Step 2.8 is then

lurllFllorl[m < el[SellF- (41)
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However, since the whole matrix A will not be generated while using par-
tially pivoted ACA algorithm, it is necessary to check the control vector ¢
updated after every column generation for zero components in not yet gener-
ated rows. If there is some index i* ¢ Z with ¢;« = 0 then the row i* has not
yet contributed to the matrix. It can happen that this row contains relevant
information and, therefore, we have to set i := i+ 1, k;1 = ¢* and to restart
the algorithm in Step 2.2. With this trivial modification Alg. 3 can be used
not only for dense matrices but also for reducible and even for sparse matrices.

Algorithm 3 requires only O(r?(N + M)) arithmetical operations and its
memory requirement is O(r(N + M)). Thus this algorithm is perfect for large
matrices. Using the theory of polynomial multidimensional interpolation the
following result was proven in [2].

Theorem 4. Let the function K(x,y) be asymptotically smooth with respect
toy, i.e. K(z,-) € C®(R3\{x}) for all z € R3, satisfying

0y K (2, y)] < cplz—yl”", p=la| (42)

for all multiindices o € N3 with a constant g < 0. Moreover, the matriz
A € RVXM s decomposed in blocks corresponding to the admissibility condi-
tion

diam(Cl,) < ndist(Cl,,Cl,), n < 1. (43)

Then the matrixz A with M ~ N can be approximated up to an arbitrary given
accuracy € > 0 using a system of given points (Tx, o),

|A—A|lr <e|AllF, (44)
and

Op(A) = Op(A s) = Mem(A) = O(N'F0e=%)  foralld >0.  (45)

4 Exploitation of Symmetry

The exploitation of symmetry is another possibility to reduce computational
costs and has been presented in [1, 4, 5] using linear representation theory for
finite groups. The aim is a decomposition of function spaces into orthogonal
subspaces of symmetric functions, such that each subproblem is defined on a
so called symmetry cell. The global solution can then be reconstructed from
these components. In the following we will give an overview of exploiting
symmetry in the BEM. The considered procedure can easily be extended to
a vector case, e.g. a magnetostatic or eddy current problem as shown in the
numerical results section.
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4.1 Algebraic Description

A (complete) geometrical symmetry of the domain 2ggM is given if there
exists a finite group Q of isometries of R?, such that 2ggw is invariant w.r.t.
Q. For each element of the symmetry group Q there is an orthogonal matrix
Q € R? (i.e. QQT = QTQ = I) and a symmetry point zo € R3 such that

= o + Q(fE - l’o) S QBEMa Va € 28EM - (46)

For the sake of simplicity we assume in the sequel that 2o = 0. The geometrical
symmetry of the domain 2ggy implies that geometrical symmetry also holds
for its boundary I, i.e. the symmetry mapping @ fulfills

¥ =Qrel,Vrxel. (47)

For smooth boundary I" the condition (47) implies the following connection
of unit normal vectors to I" at x and =’ = Qx

Qngy =nQy =Ny, Yx €. (48)

For a symmetric problem only a part, the so called symmetry cell needs to
be discretised and considered. The symmetry cell is the smallest subdomain
which generates the entire domain under the action of the symmetry group.
Let I}, be the discretisation of the symmetry cell of the boundary I'. An
entire boundary mesh can then be obtained by m — 1 consecutive applications
of @ on I}, as shown in Fig. 8.

QI

Fig. 8. Discretisation symmetry.

In the following we consider the most simple case when the system matrix
A can be renumbered and partitioned into m x m blocks structure having
blocks of size exactly n = N/m. This is the case for a piecewise constant
discretisation scheme, where N is the number of unknowns, m is the size of
the symmetry group and n is the number of unknowns in each symmetry cell.
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All considerations can be extended to a more general discretisation scheme
(17)—(18) with N¢ # Nib .

The system of boundary elements, collocation points and the ansatz func-
tions features discretisation symmetry if there exists a permutation o such
that the index set {1,..., N} of all degrees of freedom can be written as

{1,...,n,0(1),...,0(n),...,a™ *(1),...,0™ 1 (n)} (49)
with 0™(i) =i, Vi = 1,...,n, and, additionally, for collocation points and
ansatz functions holds

Q(supp ¢;) = supp ¢,(jy, j=1,...,N, (50)
¢j(r) = ¢o(;)(Qx), Yz €suppg;, j=1,...,N, (51)
QYi = Yoi), 1 =1,...,N. (52)

The permutation o offers the possibility for renumbering unknowns corre-
sponding to the symmetry of the problem. For the general case Ny # Ny
two different permutations o4 and o, of the index sets {1,...,N4} and
{1,..., Ny}, respectively, have to be introduced.

The problem features the symmetry of the kernel if the following condition
does hold for the kernel K

K(Q*z,Q'y) = K(z,Q"*y), Va,y e I', Vk,l € L. (53)

Especially, for k = [ we obtain K(Q*z, Q*y) = K(x,y), Vk € Z. Note that
the BEM matrices in (20)-(21) are both generated by symmetrical kernels.

Lemma 1. The symmetrical BEM discretisation (50)—(52) of the geometri-
cally symmetrical problem (48) having kernel symmetry (53) leads, after num-
bering of unknowns corresponding to (49), to the following property of the
matriz entries:

Ai5 = Qg (i)o(j) » Vlvj . (54)
Proof. Definition of the matrix entries leads after substitution (47) to

Qi3 = / K(xayz) d)J(z) dSa:

supp ¢;

- / K(Qr,Qu)dw(;)(Qx) S, (55)

supp ¢;

~ / K(@, Qyi)bois) (@) dSa
Q(supp ¢;)

= / K(ZL‘, ya(i))(vba(j) (:L'/) dSI/ = aa(i)o’(j) )

Supp ¢, (5)

where the properties (48)—(52) have been used. O
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Since 0™~ *(c*(i)) = i for all i the property (54) implies

ao.k(i)j = aio.m—k(j) 5 vl,j .

Thus the system of linear equations of the symmetrical BEM takes the fol-
lowing block-circulant form

A1 AQ . Am (251 bl
Am Al . Am,1 (V%) bQ
......... . =11 (56)
A2 Ag . A1 Um, bm

Thus only the basis matrices Ay, Ao, ..., A, should be generated and stored.
The amount of numerical work and of memory will therefore be reduced from
N? to N?/m. This factor can be very useful for practical computations. The
numerical solution of the system of linear equations having a block-circulant
matrix can also be implemented much more efficiently than a straightforward
direct elimination method which would lead to O(N?) arithmetical operations
[18]. The main property of the circulant matrices

a1 az asz ... Qm—-1 Qm
am Qap a2 ag Am—1
A= Ampy—1 v v v oo c (Cme
...... a9
a9 asz ... Qm—1 Qm aq

is that all of them are simultaneously diagonalised by the matrix of the discrete
Fourier transform Fj,, :

A=YE, AR (57)
m

Frg = wE=DU=1) = 3T (k=1)(=1)

The most simple nontrivial circulant matrix

0O 1 0 ...0

0O 0 1 ...0
J=

0 0 O .1

1 0 0 .0

has the following eigenvalues

A:diag(wlfl, lzl,...,m).

m
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Using the Kronecker product ® of matrices we rewrite the block-circulant
matrix A of the system (56) in the form (cf. (57))

m

m
1
A= Z ) - . Z (Fp AV ER) @ Ak,
k=1 k=1

where the dimension of the matrices Ay is now n = N/m. Since

F,.E}

m

=FFy =1,
and using the known property of the Kronecker product
(A® B)(C ® D) = (AC) ® (BD)

we obtain

(F;@ ®In) (Jkil ®Ak) (Fm ®In)

NE

(F;:L@In)A(Fm@In) =

k=1
m 1 m

=Y (Fn T T ) @ (nAxly) = Y AV @ Ay
k=1 k=1

The system (56) can now be rewritten in the block-diagonal form

D1 0 ... 0 i by
0 Dy... 0O s b
= : (58)
0 0 ... Dy . b
where
1 m
D = (I-1)(k—-1) nxn
! mem Ay eC (59)
k=1
and

U= (F:®IL)u, b= (F, ®I,)b.
Thus the following algorithm has been derived (similar to proposed in [1])

1. Compute all basis matrices A, k=1,...,m
2. Compute

using n Fast Fourier Transforms (FFT).
3 Forl=1,....m
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3.1 Generate the matrix
D= iéuﬂ“4ﬂk—UAk
mia "

3.2 Solve the system
Dy, = by
4. Compute
u=(FnI,)u

using n FFT’s.

The straightforward implementation of this algorithm leads to O(mn?)
operations and memory units in Step 1., O(nmlog(m)) operations in Step
2., O(mn?) operations and memory units in Step 3.1, O(mn?) operations
for solving all systems in Step 3.2 and finally O(nmlog(m)) operations in
the last Step 4.. Thus Step 3.2 is the most expensive and defines the final
amount of numerical work for the whole algorithm O(mn?) = O(N3/m?).
This amount remains of the same capital order of O(N?), but it is reduced

by a remarkable factor m?2.

4.2 Symmetry of Excitation

As described in Section 2.1 in the BE domain the equation

A¢=—1p
€0
is to be solved, where ¢ is the electric scalar potential and p is the electric
charge density. Discretisation by nodal ansatz functions and point collocation
leads in case of symmetry to the equation system of the form (56). Electro-
magnetic devices often possess the symmetry of excitation, which means for
the electrostatic case, that the symmetry mappings @ fulfill

p(QF2) = apyip(z), Yo eI, k=0,...,m—1, (60)

for some aj € R. In case of an excitation symmetry we don’t perform the
Fourier transform as described in the previous section but simplify the equa-
tion system (56) in a different way. As a consequence from (60) we obtain a
linear dependency of the components of the r.h.s in (56)

b, = apby, k=1,...,m. (61)

Additionally, we require the following condition to be fulfilled
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o (&%) Om—1 (7%

= = ... = = . 62
Qa9 a3 [0 7% aq ( )

Thus the equation system can be reduced to one subsystem
(a1 A1+ aAs + -+ amAp)ur = by (63)

of dimension N/m, where N is the total number of unknowns. The remaining
solution components can be computed by

up = agui, k=1,...,m.

Thus the exploitation of the excitation symmetry leads to reduction of com-
putational costs from N? to N?/m?.

5 Numerical Experiments

5.1 Asymptotic Behaviour

We start the numerical studies considering the most simple smooth surface
I' = 00 for 2 C R?, namely the surface of the unit sphere,

r={cer: [zl =1}. (64)

As an appropriate discretisation of I" we consider the icosahedron that is uni-
formly triangulated before being projected onto the circumscribed unit sphere.
On this way we obtain a sequence {I'x} of almost uniform meshes on the unit
sphere which are shown in Fig. 9 for different numbers of boundary elements
N. This sequence allows to study the convergence of boundary element meth-
ods for different examples. In Fig. 10 the clusters of the levels 1 and 2 obtained

Fig. 9. Discretisation of the unit sphere with N = 320 and N = 1280.
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Fig. 11. An admissible cluster pair for N = 1280.

with Alg. 1 for N = 1280 are presented. In Fig. 11 a typical admissible cluster
pair is shown. We solve the interior Dirichlet boundary value problems for the
Laplace equation using a Galerkin boundary element method. The piecewise
linear basis functions will be used for approximation of the Dirichlet datum
and piecewise constant basis functions for approximation of the Neumann da-
tum. We will use the Ly projection for the approximation of the given part of
the Cauchy data. The boundary element matrices G and H are generated in
approximative form using the partially pivoted ACA algorithm with a vari-
able relative accuracy €1 depending on the expected discretisation error. The
resulting systems of linear equations are solved using some variants of the
Conjugate Gradient Method (CGM) with or without preconditioning up to a
relative accuracy €5 = 1078, The analytical solution is a harmonic function

d(x) = (1 + x1) exp(27 x2) cos(2m x3) . (65)

The results of the computations are shown in Tables 1 and 2. The number
of boundary elements is listed in the first column of these tables. The second
column contains the number of nodes while in the third column of Table 1
the prescribed accuracy for the ACA algorithm for approximation of both
matrices H € RV*M and G € RV*YN is given. The fourth column of this
table shows the memory requirements in MByte for the approximate double
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Table 1. ACA approximation of the matrices H and G, Dirichlet problem.

N M €1 MByte(H) % MByte(G) %

80 42 1.0-1072 0.03 97.8 0.02 48.7
320 162 1.0-1073 0.26 65.6 0.21 27.2
1280 642 1.0-107% 2.45 39.1 1.94 15.5
5120 2562 1.0-107° 20.05 20.0 15.72 7.9
20480 10242 1.0-1076 149.19 9.3 115.83 3.6
81920 40962 1.0-107" 1085.0 4.2 837.50 1.6

layer potential matrix H. The quality of this approximation in percentage of
the original matrix is listed in the next column. The corresponding values for
the single layer potential matrix G can be seen in the columns six and seven.
The partitioning of the matrix for N = 5120 as well as the quality of the
approximation of single blocks is shown in Fig. 12. The left diagram in Fig.
12 shows the symmetric single layer potential matrix G while the rectangular
double layer potential matrix H is depicted in the right diagram. The legend
indicates the percentage of memory needed for the ACA approximation of the
blocks compared to the full memory. Further numerical results are shown in
Table 2. The third column shows the number of Conjugate Gradient iterations
needed to reach the prescribed accuracy 2. The relative Lg-error for the
Neumann datum

Errory = Iy = ¢||L2(F) , (66)

||¢||L2(F)

where 1; denotes the numerical solution, is given in the fourth column. The
next column represents the rate of convergence for the Neumann datum, i.e.

oM. |
i
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]
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T
&

AP || o
m= &= |
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Fig. 12. Partitioning of the BEM matrices for N = 5120 and M = 2562.
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Table 2. Accuracy of the Galerkin method, Dirichlet problem.

N M ITter Errory CF, Errors CFy

80 42 22 9.34-107! — 7.29-107° -
320 162 32 5.06-107! 1.85 3.20-107! 22.16
1280 642 45 2.23-107! 2.27 3.53-1072 9.32
5120 2562 56 1.04-1071 2.14 3.54-1073 9.97
20480 10242 72 5.11-1072 2.03 4.11-107% 8.61
81920 40962 94 2.53.1072 2.02 4.30-107° 9.56

the quotient between the errors in two consecutive lines of column four. Fi-
nally, the last two columns show the absolute error in a prescribed inner point
x* € (2,

Errory = |p(z*) — (z*)|, =* = (0.250685,0.417808,0.584932) T (67)

for the value qg(x*) obtained using an approximate representation formula. Ta-
ble 2 obviously shows a linear convergence O(N ~'/2) = O(h) of the Galerkin
boundary element method for the Neumann datum in the Ly norm. It should
be noted that this theoretically guaranteed convergence order can already be
observed when approximating the matrices H and G with much less accuracy
as it was used to obtain the results in Table 1. However, this high accuracy is
necessary in order to be able to observe the third order (or even better) point-
wise convergence rate within the domain {2 presented in the last two columns
of Table 2. Especially for N = 81920 a very high accuracy of e; = 1.0- 107
of the ACA approximation is necessary.

5.2 Examples with Symmetries

For numerical tests we consider TEAM workshop problem 10 [14] (TEAM=
Testing Electromagnetic Analysis Methods). An exciting coil is set between
two steel channels, and a steel plate is inserted between the channels. The
geometry is symmetrical with respect to all three coordinate planes. In order to
examine the behaviour of the ACA algorithm and the full BEM method when
exploiting symmetries, we consider along with the full model three further
meshes exploiting one, two and all three symmetries respectively (Fig. 13).
Additionally, for each mesh of this mesh sequence we gradually perform two
refinements to show the linear behaviour of the ACA algorithm with respect
to the problem size. Thus we obtain three mesh sequences with altogether
12 meshes. Hexahedral second order FEM elements (20 nodes) are used in
connection with rectangular second order BEM elements (8 nodes) for both
Dirichlet and Neumann data.

In the case when there are some fixed collocation points (e.g. points on
a symmetry face in case of a mirror symmetry), the size of each subblock in
(56) is close to, but not exactly equal to, n = N/m and the matrix blocks
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no symmetry: m =1 1 symmetry: m = 2

Fig. 13. TEAM problem 10. An exciting coil is set between two steel channels, and
a steel plate is inserted between the channels. This geometry is symmetrical with
respect to all coordinate planes.

of the single layer potential become singular. However, the global system has
a unique solution [1]. There are several methods to handle the subsystems
via regularisation or via projections proposed in [1]. Since in our solver no
inversion of approximated matrices takes place, also singular matrices can
be handled and the unique global solution can still be reconstructed without
further difficulties.

TEAM problem 10 is treated as a magnetostatic problem (for details see
[11, 16]). For the numerical solution the potential approach is used, so that in
the BE domain the equation
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AA = —pogg

has to be solved, where A is the Coulomb gauged magnetic vector potential
and 7 g is the impressed source current density. This equation decouples into
three scalar Laplace equations, so that a componentwise discretisation with
nodal elements leads to the equation system (56) for each Cartesian compo-
nent of the vector potential. Additionally, the problem features the excitation
symmetry described in Section 4.2, i.e. each Cartesian component of the exci-
tation given by the impressed source current density j ¢ satisfies the symmetry
conditions (60)-(62). Thus, depending on whether the coefficient sets {«y} are
different for some Cartesian components, we obtain up to three different sys-

tem matrices for reduced systems of equations (63). Let us denote them by
D;, Dyand D, .

1000} 1 2000}

A
A Full BEM..~
g ] 1500(
S 500 e
z 0007 o
5 Full BEM 2 1000}
3 400f ’ =
2001 o | 5001 =
ACA
r n | . . . o X . . . . .
1500 2000 2500 3000 3500 4000 1500 2000 2500 3000 3500 4000
n n

Fig. 14. Memory requirements (left) and CPU times (right) versus problem size for
fixed m = 4 and variable mesh.

In all computations we set the ACA accuracy € = 10~%. The problem is
solved using both the ACA algorithm and the full BEM method. Figure 14
shows for both algorithms the memory requirement of BEM matrices as well
as the CPU time needed for the solution. All values refer to a 450-MHz Sun
Ultra workstation. We compared the average magnetic induction in the centre

of the inner steel plate (B, = 1.663 T') with measurements (B, = 1.654 T')
[16] and found good agreement. The difference of the computed flux densities
with and without ACA is neglectable (AB, ~ 3-107% T).

One can observe for any kind of symmetry that the increasing problem
size due to the mesh refinements results in a linear behaviour of the memory
consumption and the CPU time for the ACA algorithm. Fig. 14 shows the
comparison between the ACA and the full BEM for one kind of symmetry.
Although the ACA algorithm is slower for coarse meshes, its linear complexity
makes it superior for large n.

Now we examine the effect of the symmetry exploitation. It is clear that
the profit using full BEM should be of order O(n?) whereas the memory
requirement and CPU time reduction using ACA is expected to be linear.
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Fig. 15 shows the behaviour of the memory usage and CPU time for the
medium mesh sequence.

—— ‘ ‘ ‘ ‘ ‘ 4000
1000[xM="1 ] I
m=1
_ 800} | 3000
a “.._Full BEM .
< 600 Tym=2 { s
E E 2000} " Full BEM
400} =
2 ACA~n=2
M4 1000}
200} ACA S m=
m=8 E S— m=8
ol ‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ i
8000 7000 6000 5000 4000 3000 2000 8000 7000 6000 5000 4000 3000 2000
n n

Fig. 15. Memory requirements (left) and CPU times (right) with respect to the
symmetry for variable m and fixed mesh (medium discretisation).

As mentioned above in the case of ACA the individual approximation and
storage of all m basis matrices will be performed. The relative size of the
basis matrices resulting from the single layer potential is shown in Table 3.
The assembly of the system matrices in (63) by means of linear combination
is carried out in the matrix-vector multiplication.

Table 3. Relative size of BEM matrices coming from the single layer potential for
the medium mesh sequence. The percentage gives the relative size after compression
obtained by the ACA algorithm for each individual submatrix compared to a fully
populated block. Submatrices which involve transformed nodes show a very good
compression.

Block
matrix
Ay
Az
As
Ay
As
As
A7
As
Total memory

m=1

n = 8142

12.5%

63.2 MB

m =2
n = 4399
15.4%
10.1%

37.6 MB

m =4

n = 2234

20.5%
12.9%
8.7%
6.3%

18.4 MB

m =8
n = 1131
32.8 %
18.4 %
12.3 %

8.2 %
6.1 %
51 %
51 %
31 %
8.9 MB

The full BEM method performs the assembly of system matrices D, D,,
D, during the matrix computation. The number of different matrices de-
pends on the kind of geometrical and excitational symmetry. For the TEAM
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10 example it holds that D, = D, = D, in the case without symmetry,
D, # D, = D, in the case of one symmetry, and three different matrices
arise in case of two or three symmetries. For this reason the curve corre-
sponding to the total memory requirements of the full BEM method in Fig.
15 does not actually decrease like O(n?) but the memory requirements for
each single matrix do.

The numerical example considered here exhibits the property of excitation
symmetry. Note that in the general case of non-symmetric excitation the mem-
ory requirements would decrease linearly w.r.t. the size m of the symmetry
group, as can be seen from the equation (58), and therefore like O(n).

5.3 Industrial Application

In this Section a claw-pole alternator, nowadays a mass-produced article used
for the generation of electrical power in vehicles, is considered as an example.
The complex magnetic flux guidance requires a three-dimensional modelling
of this electrical machine. For an alternator with p = 6 pole pairs Fig. 16, left
shows a 60°-sector of the solid rotor that coincides with one pole pair. For
the same sector Fig. 16, right depicts the supplementary stator part with the
inlying stator coils. The entire geometry of the alternator and the magnetic
fields are obtained by consecutive rotation of the discretised part by an angle
& = 27 /p around the machine axis. This periodic symmetry concerning the
transformation (47) is obvious.

It is well known that modelling of one pole-pitch (¢ = 7/p), that is a
30°-sector in our case, is sufficient for the computation of the magnetic field
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e e 48 s,
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Fig. 16. Discretised rotor part (left) and stator with inlying coils (right) of a claw-
pole alternator.
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Fig. 17. No-load characteristics at 1000 1/min. The agreement of computed values
(solid line) and measurements (dots) is very good.

[10]. For the solution of the eddy current problem hexahedral second order
nodal FEM elements have been used, coupled to rectangular second order
BEM elements. Fig. 17 shows the induced voltage in the stator coils versus
the exciting current at a rotational speed of 1000 rounds per minute.

Table 4. Relative size of matrix blocks of the single layer potential. Submatrices
that describe remote interactions show excellent compression.

Block m =3 (120°) m==6 (60°) m =12 (30°)
matrix n = 27751 n = 13999 n = 7123
Ay 13.8% 16.6% 18.0%
Ao 2.8% 5.8% 8.9%
As 2.9% 1.8% 4.3%
Ay - 1.1% 2.7%
As - 1.9% 1.7%
Ag - 5.9% 1.3%
Az - - 1.2%
Asg - - 1.3%
Ag - - 1.8%
Ao - - 2.7%
Aqq - - 4.3%
A1z - - 8.9%
Total memory 1145.7 MB 494.8 MB 221.1 MB

In order to examine the effect of symmetry exploitation a sequence of
three meshes with different symmetry angles has been analysed. The number
of boundary nodes n approximately bisects from a 120°- to a 60°- and to a 30°-
mesh, respectively, while m reduplicates. For an implementation according to
Section 4, Table 4 shows that it is reasonable to approximate and store the
submatrices Ay individually. Although interactions between more sectors have
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to be represented while increasing symmetry exploitation emerging farpoint-
interaction gives rise to good approximation of the respective submatrices
leading to high-grade compression rates. This is especially important when
solving time-dependent problems with motion.

6 Conclusions

The memory consumption of the standard BEM turns out to be the limiting
factor in many practical applications. The above results show that the ACA
technique is a feasible means to overcome these limitations. ACA can be ap-
plied to several BEM formulations [12, 15, 17] discretised by nodal or edge
elements where matrices are generated by asymptotically smooth kernels. The
combination of the ACA algorithm and the exploitation of symmetry yields an
asymptotically optimal and practically feasible procedure for efficient solution
of electromagnetic problems.
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Summary. The simulation of the real-world industrial problems is nowadays faced
with a number of the challenging requirements, mainly arising in the daily design
praxis of power engineering devices. Complex structures, complex physics, huge di-
mensions and huge aspect ratio in model dimensions are just some of the critical
modelling issues that need to be encountered by the simulation tools. Thanks to the
advances achieved in the last several years, BEM become a powerful numerical tech-
nique for the simulations of such industrial products. Until recent time this technique
has been recognized as a technique offering from one side some excellent features
(2D instead of 3D discretization, open-boundary problems, etc.), but from the other
side having some serious practical limitations, mostly related to the full-populated,
often ill-conditioned matrices. The new, emerging numerical techniques like MBIT
(Multipole-Base Integral Technique), ACA (Adaptive Cross-Approximations), DDT
(Domain-Decomposition Technique) seems to bridge some of these known bottle-
necks, promoting those the BEM in a high-level tool for even daily-design process
of the 3D real-world problems.

The aim of this Chapter is to illustrate how this numerical technique can be
used for the simulation of both single-physics problems appearing in the Dielec-
tric Design (Electrostatics), and multi-physics problems in Thermal Design (cou-
pling of Electromagnetic-Heat Transfer) and Electro-Mechanical Design (coupling
of Electromagnetic-Structural Mechanics) of power engineering devices like power
transformers or switchgears.

1 Introduction

The simulation of real-world engineering problems is nowadays faced with
a number of challenging requirements, mainly arising in daily design praxis
through:

e huge dimensions of the problem to be simulated, especially stressed
when going towards Simulation-Based Design, including assembly simula-
tion as opposed to component simulation.
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huge aspect ratio in model dimensions. For example, in the dielectric
analysis of power transformers, in order to correctly perform a simulation
analysis one is forced to evaluate simultaneously handle massive parts like
windings including shielding rings having a radius of 1 — 2[m], alongside
the very thin paper insulation around them of thickness 1 — 10e=2 [m)].
Another example is the thermal analysis of transformers, whereby the
huge aspect ratio in the dimensions of the tanks (enclosures) 1 — 10[m]
versus their wall-thickness of 10-20 millimeters can lead to difficulties on
both the meshing and numerics sides.

complex physics requiring well founded mathematical formulations and
proper numerical evaluation. As an example, consider the diffusion prob-
lem in low-frequency electromagnetics, where in typical devices ranging up
to several meters in dimensions, the electromagnetic field penetrates into
the magnetic material for just a couple of millimeters. A proper represen-
tation of this diffusion problem is a real challenge, and for the analysis of
3D problems this requires highly sophisticated numerics.

evaluation time, which for the realization of a complete simulation chain
for practical problems can be very long, but from the other side needs to
be as short as possible for a daily design process.

Thanks to advances in numerics made in the last several years, the Boundary
Element Method (BEM) has become a powerful numerical technology for

3D

simulation of complex practical problems. In spite of some limitations of

BEM, for certain classes of problems this method possesses several important
advantages in comparison with the classical differential methods like FEM
(Finite Element Method) or FDM (Finite Difference Method).

Probably the most important feature of BEM is that for linear classes of
problems the discretization needs to be performed only over the interfaces
between different media. This excellent characteristic of BEM makes the
discretisation/meshing of complex 3D problems morestraightforward and
usable for simulations in a daily design process.

Also, this feature is of utmost importance when dealing with the simulation
of moving boundary problems. Thanks to the fact that the space between
the moving objects does not need to be meshed, BEM offers an excellent
platform for the simulation of dynamics, especially in 3D geometry.
Furthermore, the open boundary problem is treated easily with BEM, with-
out needing to take into account any additionally boundary condition.
When using tools based on the differential approach (FEM,FDM), the
open boundary problem requires an additional bounding boxr around the
object of interest, which has a negative impact on both mesh size and
computation error.

Another important feature of BEM is its accuracy. Contrary to differential
methods, where adaptive mesh refinement is almost imperative to achieve
the required accuracy, with BEM it is frequently possible to obtain good
results even with a relatively rough mesh. But, at this point we also don’t
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want to say that “adaptivity” could not make life easier even when using
BEM.

If we limit ourselves to BEM-based simulations of industrial problems, the
classification of the application areas can be done in a variety of different
ways. Here we will follow the classification frequently used in engineering
design, where we often speak about:

e Dielectric Design (Electrostatic problems),
e Thermal Design (Coupled Electromagnetic/Thermal Problems),
e Electro-Mechanical Design

(Coupled Electro-Magnetic/Structural-Mechanics problems).

Under Dielectric Design we usually understand the Simulation-Based De-
sign (SBD) of configurations consisting of one or more electrodes loaded with
either fized or floating potential and being in contact with one or more dielec-
tric media. From the physics point of view, here we deal with a single-physics
problem, which can be described either by a Laplace or Poisson equation.

In multi-physics problems we deal with the coupling of two or more dif-
ferent physical phenomena. The most representative problems appearing in
almost all current-carrying devices are coupled Electro-Magnetic/Structural-
Mechanic problems (Electro-Mechanical Design) or coupled Electro-Mag-
netic/Thermal problems (Thermal Design).

Although in the scope of this material we intend to focus on some practical
aspects of BEM usage in industrial design, we shall try to accompany it with
brief descriptions of the corresponding formulations, pointing the reader to
the relevant references for more background on the theoretical fundamentals
or the numerics involved.

The material in this contribution is structured in the following way. Section
2 is devoted to BEM applications for Dielectric Design, where alongside
the basic formulation we point to some important aspects of simulations for
dielectric design in real-world practice.

In Section 3 we present the simulation workflow for coupled FElectro-
Magnetic / Structural-Mechanics problems, where we limit ourselves to linear
elasticity problems on the mechanics side. We show the possible approaches
for the calculation of the physical quantities on both electromagnetic and me-
chanics side using BEM. As a knowledge of the electromagnetic force density
distribution is an essential part of the simulation of coupled FElectro-Magnetic
/ Structural-Mechanics problems, we shall give here a brief introduction into
the force analysis. Additionally, special attention will be paid to the BEM
simulation of eddy-current problems including skin-effects, probably one of
the most complicated physical problems in low-frequency electromagnetics.
We also stress the importance of the usage of acceleration methods such as
MBIT and ACA for practical simulations tasks.

Finally, in Section 4 we give a brief overview of coupled Electro-Magnetic/
Thermal problems. In this case it is shown how when using an integrated
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environment based on BEM one can efficiently simulate complex practical
problems like power transformers and switchgear.

2 Dielectric Design Using BEM

Dielectric design generally covers the design of devices influenced by the
action of electrostatic, or in certain applications, quasi-electrostatic, fields. In
the scope of this section we shall limit ourselves to electrostatic problems.
These appear in all devices being subjected to different potential loads.

The simulation workflow of such problems consists of several steps, shown
for illustration in Fig. 1. The first step is Geometry design. In the real de-
sign process we usually speak about CAD-based! design, assuming that the
apparatus geometry is modeled by one of the popularly available CAD tools.
This step is usually the most time consuming step in the whole simulation
workflow. The next step is discretization of the model, i.e. the Mesh gener-
ation. As mentioned before, when working on linear problems with BEM we
need to discretize only the interfaces between different media. For non-linear
problems the volume of the parts whose materials posses non-linear features,
Krstajic [37], must also be discretized. In the Analysis step we perform the so-
lution of the problem, usually resulting in the calculation of the distribution of
significant physical quantities (fields, potentials, stresses,...). The knowledge
of those distributions may be called primary information, i.e. it is a nec-
essary but not a sufficient condition for the designers. The quality of the
real design is judged in the next step: by the evaluation of Design criteria,
mentioned briefly in Example 2, page 292. Finally, the ultimate goal of each
simulation process, or more correctly of each design process, is to achieve a

O
O

Geometry' Mesh . " Criteria R—
Design ~ _Generaion  A"SS - Eiqiatin  OPtimization :H

m— L —
— APE—

Fig. 1. Simulation workflow.

!Computer-Aided Design
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degree of Design optimization. Thanks to the inherent features of BEM out-
lined at the beginning of this chapter, this method offers an excellent platform
for 3D automatic procedures for design optimization, Andjelic [1].

In the scope of the following section we shall give a brief illustration of
some of these steps, starting with the Formulation of the problems used for
the Analysis step in Dielectric Design.

2.1 Formulation

Staying with electrostatic problems, the equations that must be satisfied by
the field caused by a stationary charge distribution can be derived directly
from the Maxwell equations, assuming that all time derivatives are equal to
zero. Then, for all regular points in space:

VxE=0 (1)

and
V-D=p (2)

i.e. divergence of the electrostatic flux density D is equal to the charge p.
This is a differential form of Gauss’s law of electrostatics. The conservative
nature of the field is necessary and sufficient condition for existence of scalar
potential whose gradient can be expressed as:

E=-Vg (3)

If the medium is homogeneous and isotropic, i.e. described by a single dielec-
tric constant €, we can write:

D=—-¢E=—-¢cVyp (4)
For homogeneous media the Poisson equation should then be satisfied:
Vip = - (5)

If there are no space charges (p = 0), the equation can be reduced to the
Laplace equation:
Vip =0 (6)

There are basically two fundamental approaches for the translation of the
partial differential equation to the integral equation formulation used in BEM.

The first one is the so called direct method (ansatz) whereby an integral
formulation is achieved by the application of Green’s second theorem to the
Laplace equation. The second approach is the indirect method, based on the
assumption that the solution can be expressed via equivalent source density
functions prescribed over the boundaries, Banerjee [10]. Although the direct
formulation is usually preferred, we use here some advantages of the indirect
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Fig. 2. Position vectors in R3.

approach for the formulation of electrostatic problem explained later in this
section.

Suppose for now that the system consists only of electrodes in free space. In
this case the relation between the potential ¢ in some point z and the electric
surface charge densities o¢(y) is described by I Fredholm integral equation,
Tozoni [61], Koleciskij [35]:

1 M
o) = @)+ o S [ o ) 7

where K7 = i = ‘xiy‘
the calculation point z and integration point y as shown in Fig. 2, M is the
number of closed surfaces I" := 92 around the electrodes? and ¢! (x) is the
potential of an external electrostatic field in the point z. If we apply (7) to
all calculation nodes lying on the electrodes, we obtain a system of equations

that can be written as:

is a weakly singular kernel, r is a distance between

[A] - [o] = [V] ®)

where o€ is the vector of unknown charge densities, and V are the known
values of the applied potential. After solving (14), we obtain a vector with
the calculated equivalent surface charge densities o€. At this point it must
be noted that, if for a node lying on the electrode and assuming that the
electrode is not on a floating potential®, the electrical field on the electrode is

2As we shall see later, in cases where we also have dielectric interfaces in the
model, M is the number of all closed surfaces in the model, including those between
different dielectrics.

3For the electrodes on a floating potential, a modified approach for the field
calculation has to be used, Bachmann [9], Andjelic [3].
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directly related to those charge densities through* :
eE =4non 9)

This fact leads to two important conclusions:

e The indirect ansatz delivers as the matrix solution not only the equiva-
lent charges, but also (indirectly) the values of the electric fields on the
electrode surfaces,

e The direct consequence of this is that the field is calculated without any
differentiation of the potential, which enables more accurate field compu-
tation compared to other methods.

Additional steps should be taken in cases where the space of interest is filled
with multiple different dielectric materials. On the boundary surfaces between
different materials it leads to the induction of polarized charge, which causes
changes in field distribution. Maxwell [40] has in his early work shown that the
analysis of the field in the space containing conductive bodies and different
dielectrics can be reduced to the analysis of the field in space containing the
bodies positioned in the vacuum. In that case it is necessary to introduce
so called equivalent charges distributed over the boundary surfaces between
different dielectrics. The distribution of equivalent charges must be such that
the field produced by those charges and the charges of previously charged
bodies situated in vacuum is the same as the field produced by the charged
bodies in presence of different dielectrics. Thus, the distribution of equivalent
charges may not be arbitrary, i.e. it has to satisfy some integral equations.
Let surface I' be the interface surface between two different dielectrics hav-
ing dielectric permittivities e, and g;, respectively, (Fig. 3a). The choice of the
equivalent charges (singe layer charges or double layer charges) is determined
by the choice of the observed field quantities that should not be altered when
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Fig. 3. Equivalent Charges.

“See Tamm [60] - Dielectrics for more detailed discussion.
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replacing the real charges with the equivalent charges: electrical field E or flux
density D. If we prefer to keep the field E unchanged, then we use the single
layer charge distribution, Fig. 3b, thus forcing the following condition (10) to
be fulfilled:

e B =¢; - EY, (10)
alternatively, in the second case where the flux D is to be unchanged, we use
the double layer charge distribution, Fig. 3c, fulfilling the condition

e X3

by _Di, (11)

€e =
Here €. and €; represent dielectric permittivities outside and inside of the
boundary I', E,¢ and E,* are the external and internal normal components
of the electrostatic field E, and DY and D} are the external and internal
tangential components of the flux densities D.
It can be easily shown, Tozoni [61], that fulfilling the condition (10) leads to
the II Fredholm integral equation of the form®

M
ot@) =g 3 [ o) ) (12)

m=11—,m

where n is a unit normal vector in point z directed into the surrounding
medium, and \ = 5;?

This expression provides the relationship between the unknown values of sur-
face charge densities 0¢(x) and surface charge densities o¢(y), whereby the
point z is a point lying on the boundary between two different dielectrics, and
point y can be positioned anywhere in space, including the electrode surfaces.
We already saw that equation (7) gives us the relation between the known
potential in the points lying on electrode surfaces and surface charge densi-
ties over both surfaces with known potential - electrodes and surfaces with
polarized charges - surfaces between different dielectrics. Thus, using equa-
tions (7) and (12) it is possible to obtain an equation system which enables
us to calculate the equivalent charge densities over all surfaces in the space of

interest 4
1 B1 O'f _ \%
i) [ - 10) a2

where ¢ and o5 are the electric surface charge densities on the electrodes and
dielectric interfaces, respectively. A1, B1, A2 and B2 are the matrix blocks
representing the electrode, electrode-dielectric, dielectric-electrode and di-
electric coefficients, respectively. Knowing the equivalent charge distributions
o¢ = (0%, 0%5), the electrostatic field strength E in any point of space of inter-
est® can be determined as

°In the presence of the bound surface charges, the equation (12) should be mod-
ified, see Andjelic [3].

5We already saw that in the points on the electrodes we do not need to perform
this derivation of potential, but rather use the expression (9) for the field E.
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1 M
E(z) = —Vo(z) = — tmeq > / o°(y) - VE1d L (y) (14)
m:lp

whereby the position vector r = x—y in K7 is pointed towards the collocation
point z.

Ezxample 1: Spherical capacitor

To illustrate briefly the above procedure, we have solved an academic ex-
ample, with known analytical solution for the field and potential distribu-
tion. The example presents a spherical capacitor with two types of dielectrics,
€1 = 1 and g5 = 5, Fig. 4. The analytical solution for the maximal field
strength appearing on the € = 1 side of the interface between two dielectrics is
E =190.47 [V/m], and for the maximal field appearing on the inner electrode
E = 85.74 [V/m)]. To illustrate the dependency between the calculation error
and the mesh size, we performed a calculation of this example for different
mesh sizes’, starting with the minimal mesh size possible (1 element per sphere
octant, i.e. per 90 degrees curvature).

The graph in Fig. 6 shows the behavior of the relative error as a function
of the mesh size. It can be seen that for the nodes on electrode the error is
smaller, thanks to the fact that the field can be calculated without performing
the derivation of the potential. Already with the relatively rough mesh (5
elements per 90 degrees curvature) the calculation error on the electrode is
less than 1% , whereby for the dielectric interface we need 8 elements to reach
the same accuracy.

ov

1.9000
1.8000
1.7000
® 1.6000
1.5000
1.4000
1.3000
= 1.2000

Fig. 4. Spherical capacitor. Fig. 5. Electrical field strength
E[V/m] on the spherical capacitor.

"Thanks to the symmetry, only 1 /8 of the whole model needs to be taken for the
calculation.
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Fig. 6. Relative error vs. mesh size.

Simulation-Based Design

A general trend in almost all industrial branches is to replace costly Ezxperi-
mentally-Based Design (EBD) with Simulation-Based Design (SBD). In other
words, the aim is to replace the process of experimentally-based prototyping
with digital prototyping using numerical simulations. Then, at the final stage,
experimental validation should be performed. Again BEM offers an excellent
platform for SBD, thanks to the features already mentioned at the beginning
of this chapter.

Regarding SBD for Dielectric Design, the main question that needs to be
answered by the simulation is: whether the analyzed design fulfils the required
safety margin? Experience shows that often the judgement about the safety
margin of an entire device cannot be based only on the separate analysis of
the device’s components. An important implication of this is that in the scope
of SBD for Dielectric Design, the entire assembly needs to be considered in
order to take into account the mutual field interferences between the device’s
components. Analysis of real-world apparatus in the frame of such stringent
demands imposes very rigorous requirements on the numerical tools employed:

e accuracy - the tools need to delivery accurate, reliable, and reproducible
results. Qualification of the tool for SBD assumes the successful comple-
tion of a series of walidation pre-tests, usually involving comparison with
experimental data or known analytical solutions in the simpler cases.

e robustness - the tool needs to deliver correct results independent of the
mesh quality. Designers are usually not trained to “play” with the mesh
in order to produce good results. It is then necessarily the task of the
tool to provide numerically correct treatment of all “tough” cases arising
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from irregular meshes. In the BEM case this means that the underlying
numerics should be well tuned to handle on one side the mesh irregu-
larities arising from high aspect-ratio elements, skewed elements, nearly-
singular elements, etc. and from other side the peculiarities encountered
with some physical problems, for example the field penetration appearing
in diffusion problems (more in section “BEM-based Eddy-Currents Anal-
ysis, page 312).

e speed - the tool needs to deliver results in a time-frame that is acceptable
for the design process. Simulation of complex practical structures involves
large meshes. Even when working with BEM, i.e. when meshing only the
interfaces between different media, it can lead to meshes that range from
several tens of thousands to several hundreds or even million of elements.
Solving this with classical BEM, which results in a fully-populated matrix,
would be practically impossible on a standard, single-node machine. One
solution to solve the problem is to use a parallel version of the code, see the
Example 2, page 292. Another solution is to perform accelerated matrix
computation and matrix compression using the emerging numerical tech-
niques that have appeared in the last several years such as Fast Multipole
Methods, Greengard [25] or ACA®, Bebendorf [13]. The application of Fast
Multipole is discussed briefly in the following section, and the application
of the ACA method is discussed in more details in “ACA for eddy-current
computation”, page 322.

Fast BEM in Electrostatic Problems

The discretization of equations (7) and (12) yields a densely populated ma-
trix, which is well known as the major bottleneck in BEM computations. The
amount of storage is of order O(N?), with N being the number of unknowns.
Furthermore, the essential step at the heart of the iterative solution of this
system is a matrix-vector multiplication and the cost of such a multiplication
is also of order O(N?). Thus a reduction of the complexity to O(N log N) or
O(N) would naturally be very desirable. Developments started with a sem-
inal paper by Greengard [25] that proposed a Fast Multipole Method, which
became highly popular in several numerical communities. Another fundamen-
tal development was brought about by Hackbusch [27, 28]. In the following
we present a brief description of the MBIT? algorithm that is used in our
computations. The central idea is to split the discretized boundary integral
operator into a far-field and a near-field zone. The singularity of the kernel
of the integral operator is then located in the near-field, whereas the kernel
is continuous and smooth in the far-field. Compression can then be achieved
by a separation of variables in the far-field. In order to reach this goal, the
boundary in the first stage is subdivided into clusters of adjacent panels that

8ACA stands for Adaptive Cross-Approximation.
9Multipole-Based Integral Technique
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are stored in a hierarchical structure called the panel-cluster tree. Then, in
the second stage we collect all admissible pairs of clusters, i.e. pairs that fulfill
the admissibility condition |x — x| + |x° — x§| < 7 |x0 — x§| where 0 <n <1
into the far-field block. The centers of gravity of the clusters are here denoted
by xg, x§ . All other pairs of clusters (the non-admissible ones) belong to the
near-field. Then the matrix entries corresponding to the near-field zone are
computed as usual, whereas the matrix blocks of the far-field are only ap-
proximated. This is achieved by an expansion of the kernel function k(x,x¢)
that occurs in the matrix entries

aij = //@i(x)k(x,xc)goj(xc)df(x)df(xc). (15)
I T

The expansion

k(xvxc) ~ km(xaxc;xo7x(c)) = Z k(u,y)(X,X(C))XM(X,Xo)YV(XC,XS) (16)
(p,v)Elm

decouples the variables x and x° and must be done only in the far-field. Then,
the matrix-vector products can be evaluated as

v=A-u=N-u+ > XI(Fr (Yr-u)). (17)
(o,7)EF

Several expansions can be used for this purpose: Multipole-, Taylor- and
Cebyshev-expansion. The procedures lead to a low rank approximation of the
far-field part and it is shown in Schmidlin [50] that one obtains exponential
convergence for a proper choice of parameters. A more detailed elaboration
and comparison of all three type of expansions can also be found in the same
reference.

Ezample 2: SBD for a generator circuit-breaker design

In this example it is briefly shown how Simulation-Based Design of the Gen-
erator Circuit-Breaker (GCB) is performed using a BEM'Y module for elec-
trostatic field computation. Generator circuit-breakers, Fig. 7, are important
components of electricity transmission systems. Some of the main tasks they
have to fulfil are for example, Zehnder [63]:

Synchronize the generator with the main system

Separate the generator from the main system

Interrupt currents

Interrupt system-fed and generator-fed short-circuit currents
Interrupt currents under out-of-phase conditions

19This BEM module is a sub-module for electrostatic analysis in POLOPT, a 3D
BEM-based simulation package for single and multi-physics computation.
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Fig. 7. ABB generator circuit- Fig. 8. Main assembly of GCB.
breaker.

Fig. 8 shows the complete assembly of a GCB containing, beside the inter-
rupting chamber as a key component, all other parts such as current and
voltage transformers, earthing switches, surge capacitors, etc. The detail of
the corresponding CAD model is shown in Fig. 9, while the triangle mesh is
shown in Fig. 10. From Fig. 9 and 10 it can be also be seen that such small
details as screws and thin connecting wires have been included in the input
to the simulation model.

Fig. 9. CAD-model of the GCB. Fig. 10. Meshed model of the GCB.

Step I: Primary Analysis

The simulation details for the above shown generator circuit-breakers case
were:

e The discretization of the model has been performed using second order
triangle elements.

e The stiffness matrix has been assembled using an Indirect Ansatz with
collocation in the main triangle vertices, formulas (7) and (12), page 285.
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Fig. 11. ABB Generator Circuit-Breaker: Electrostatic field distribution, E[V /m].

It has to be mentioned here that in both the real design and consequently
then in the simulation model, geometrical singularities like edges and cor-
ners have been removed through rounding. In the real design this is a
common practice in all high-voltage devices in order to prevent the occur-
rence of dielectric breakdown. On the numerics side, this fact enables usage
of the nodal collocation method - which is also the fastest one - without
violating the mathematical correctness of the problem. The nodal colloca-
tion method is often questionable when being applied to models containing
geometrical singularities. A useful discussion on geometrical singularities
can be found in Bladel [16].

The coefficients of the stiffness matrix have been calculated using the mul-
tipole approach, Greengard [25], with monopole, dipole and quadropole
approximations for the far-field treatment, Andjelic [5]. Diagonal matriz
preconditioning has been used, which enables fast and reliable matrix so-
lution using GMRES. This run has been accomplished without any matrix
compression, but using a parallelized version of the code, Blaszczyk [17].
For a parallel run we used a PC cluster with 22 nodes. The data about
memory and CPU time are given in Table 1.

The calculated electrostatic field distribution is shown in Fig. 11. It can be
seen that the highest field strength appears on the small feature details,
such as screws.
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Table 1. The analysis data for GCB example.

Elements Nodes Main vertices Memory CPU
145782 291584 80230 42GByte 2h20

Step II: Criteria Evaluation

As mentioned before, the field and potential distribution are only the first
level of information needed by the designers , i.e. they are a necessary but not
a sufficient condition by which to judge the safety margin of a design. The
complete information satisfying both conditions usually calls for additional
criteria evaluation, based on the potential and field distribution. There are
a number of different criteria required for proper judgement about the safety
margin of a design, Andjelic [2]. One possibility is to use so called FLC (Field
Line Criteria), whereby the specific design criteria are evaluated based on the
field /potential distribution along the field lines. This requirement requires
the additional computation of the field lines, starting from the locations with
critical field strengths. As is visible from Fig. 12, the critical points appear
on the screws, emphasizing the point that such small details should not be
omitted from the simulation model.

Field lines lunched from
the locations with the
critical field values

Fig. 12. Field lines starting from the locations having critical field strength.
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Again, BEM in combination with fast multipole method offers an excellent
platform for the fast and accurate evaluation of post-processing steps such as
field line calculation. The field line computation is performed using formulas
(7) and (14), together with multipole acceleration for the sub-integral coeffi-
cients calculation.

3 Electro-Mechanical Design

Under electro-mechanical Design we usually understand the design of elec-
trical apparatus and devices, whereby of primary interest is the mechanical
response of structures under the influnece of acting electromagnetic forces.
This problem appears in any device conducting DC or AC current, or sub-
jected to the action of an external electrostatic or magnetic field!!. For ex-
ample, in transformer design we are interested in the mechanical stability
of the windings’ structures, when subjected to short-circuit forces. Similarly,
in circuit-breaker design we are interested in the mechanical response of the
bus-bar structures, caused again by short-circuit stresses. By contrast with the
above examples, where we are usually looking for a design with minimal me-
chanical response to electromagnetic forces, in some devices such as MEMS'2
sensors/transducers we are looking for mazimal mechanical response, produc-
ing measurable output information about the input physical quantities.

From the physics point of view, here we deal with the coupling of the
electromagnetic (or electrostatic) problems and structural-mechanics prob-
lems. The coupling can be either weak or strong. Under weak coupling we
understand the sequential analysis of each phenomena separately, coupled to-
gether via an iterative scheme. In strong coupling we usually deal with the
simultaneous solution of both problems, whereby the coupling is preserved on
the equations level. With the exception of quantum mechanics and particle
physics, there are quite few approaches where strong coupling is used in engi-
neering practice. In most industrial applications, which are the main subject
of the present material, we deal with weak coupling.

Weak coupling usually assumes two main steps:

e calculation of electromagnetic (EM) /electrostatic (ES) forces,
e calculation of mechanical response (displacement, stresses)

"Tn certain applications (force sensors, pressure sensors, accelerometers) we are
not looking for mechanical response caused by the electromagnetic forces, but rather
for electrical response caused by the mechanical forces (piezoelectric problem). This
case will not be covered in the scope of this material. More information about BEM
treatment of these classes of problems can be found in Gaul [23], Hill [30]. Here
we shall also not cover the topic of coupled Electro-Magnetic/Mechanics problems
related to magnetostriction phenomena (change of the shape of magnetostrictive
material under the influence of a magnetic field). More information for example in
Whiteman [64].

12Micro Electro-Mechanical Systems
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Electromagnetics :l f N Structural l
Electrostatics Llomsr Mechanics

Change of material parameters
dué 1o mecharical stresses

Fig. 13. Weak coupling scheme for EM-SM problems.

In such coupled schemes the role of the electromagnetic (electrostatic) solver
is to deliver correctly calculated forces, which are then further passed as an ex-
ternal load to the mechanical solver, Fig. 13. In the following sections we shall
briefly elaborate the main steps for the BEM-based simulation of these types
of problems. As the “forces” are the main link between the electromagnetics
and mechanics, let us start with a short overview of force analysis.

3.1 Force Analysis

Force analysis covers an extremely broad field, and in certain areas is still a
subject of contradictory discussions in the research community, Reyne [48]. In
the scope of this section we shall focus on the analysis cases most commonly
appearing in industrial praxis.

Generally speaking, if we limit ourselves to the macroscopic view of mate-
rial properties, then the force acting on some macroscopic system is a sum of
the partial forces acting on each volume element that constitute the system.
This means that the total force can be expressed as

F= [ f(r)d0 (18)
/

where f is a volume force density in [N/m?]. The local forces f between the
completely internally positioned volume elements cancel, thus the only contri-
bution to the total force comes from the volume elements interfacing with the

Fig. 14. Force on the volume element dV.
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surrounding medium. This leads to the conclusion that it could be possible
to replace the integration over an volume with the integration over the closed
surface I" := 02 around the body 2. In other words, the aim is to replace the
ponderomotive (body) forces with tensile forces acting on the surface (stress).
From the physics point of view, it is described by the well know principle
of conservation of momentum saying that the momentum does not change
(is conserved), i.e. can be neither created nor destroyed, except through the
action of external forces, Jackson [33].

Using vector analysis, we can express the volume integral of the force
density vector f as a surface integral in the case that f is expressible as the
divergence of the stress tensor S of rank two, Melcher [45],

f=v.8S. (19)

So for the total force F in [N]

F = /f(r)dQ = Z(é -ndl" :ftdr (20)

where t is a traction vector or the tensile forces per unit area acting on the
closed surface I3,

Forces in the Stationary Fields

Assuming an isotropic, homogeneous solid body, having permittivity € and
permeability p that are not field dependent, it can be shown, Stratton [59],
Melcher [45], that the volume force densities in the body exposed to the
electro- and magneto-static fields can be expressed for the electrostatic case
as

1
f. = pE — 2E2V5 + f5, (21)

and )
f,=JxB - 2H2Vu+fin (22)

for the magnetostatic case. In (21) the p stands for a net (unpaired) charge
density.'* The f$ and £, are the forces associated with the pure strain caused
by the electrostatic and magnetostatic fields, Stratton [59].

Representing the (21) and (22) as the divergence of a tensor, we can obtain
the expressions for the same forces using the surface integration

as — ay

2

e+ as

. E*n (23)

te = (c + )E(E - n)

3should not be understood as a surface force density
4, = Niq. — N_q_, where N_ and N stand for the number of negative and
positive charges g— and g4, respectively.
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for the forces exerted by the electrostatic field E, and as

by — by
2

_ ptbe

JHE w7

ty = (1 + H?n (24)
for the forces exerted by the magnetostatic field H, respectively. The constants
ay,az in (23) and b1, be in (24) have to be taken into account if the elastic
deformation of a body needs to be calculated!'®. If we are interested in the
total force acting on the body, than due to their local compensation by induced
elastic stresses, they can be omitted.
Thus, the total force acting on the body in an electrostatic field can be
obtained as
F. = 7{ (aE(E ‘n) — ;EQn) dr (25)
r

and in a magnetostatic field as
F,, = 7[ (uH(H ‘n) — gHQn)dF. (26)
r

Note again, that when calculating the total force, the term containing the
constants ay, ag and by, bs are not present due to the compensation by elastic
stresses mentioned above.

Some Special Cases

Volume force densities in a non-permeable conductor (u=1)

If the body being exposed to the magnetostatic field is made of a material
with ¢ = 1, then equation(22) for volume force density reduces to

f,=J xB. (27)
The total force on the conductor is then simply
F.,, :/(J x B)d{2. (28)
0

Equation (28) is a well-know form of the Lorentz equation for the forces on
the current-carrying conductor.

5These constants usually have to be determined by measurement. Physically,
for example, the parameter a; expresses the increment of e corresponding to an
elongation parallel to the lines of field intensity, while a2 determines this increment
for strains at right angles to these lines.
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Force on body itmmersed in a medium with p= pg

If the body is positioned in the medium with the permeability u= pg, than
the tensile forces acting on the body surface can be obtained after integrating
the equation (24) on either side of the body surface

- - b bi—b
tn =200 {H§+ <H2u HO) -ng} mity Him kT T HiHy (29)
0

whereby the n; is a normal vector pointed to the surrounding medium with
U= o, Ho is the magnetic field inside the body surface, H,2 is the normal
component of the magnetic field within the body, and b; and by are the con-
stants applied to the magnetic body. For a linear, homogeneous, isotropic and
incompressible medium, it can be further simplified, Reyen [48]:

tm = H1 (Bl.l’ll) - ((BlHl)/Q)nl - HQ(BQ.Ill) + ((BQHQ)/2)H1 (30)

Up to now we have spoken about the forces appearing in stationary cases. In
practice it is also often asked to determine the forces, and consequently then
also the mechanical response, in the time-varying field.

Forces in Time-Varying Fields

In the previous section, we saw that for stationary fields the total force trans-
mitted by the electromagnetic field across any closed surface can be obtained
by combining equations (25) and (26)

F=F.+F, :7{<5E(E~n) - ;E2n+uH(H~n) - gHQn)dF (31)
r

whereby all quantities were only functions of the position in space. While in
that case the force has been interpreted as the force exerted by a field on
the matter, in the case of time-varying fields we deal with the inward flow
of momentum per unit time through the surface I', whereby all the physical
quantities are functions of both space and time. In Stratton [59] it has been
shown that the total force on a body in time-varying field can be calculated
asl6

e — 108

LG de (32)

1 1
F(t) :/(pE+J xB— QEQVE— 2H2Vu+
2

or, when integrating over the surface

16The bold-typed vectorial quantities are in time-varying case the complex-valued
vectors.
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F(t) = 7{ (g(E n)E — ZEQn + p(H-n)H - gHQn)dF —(33)
r
_;i/mxﬂmn
2

! and S = E x H is a Poynting vector. The

where the constant ¢ = (gqp0)~
last term in (33) is very small due to factor ¢ = (egup)~' , and for many
practical calculations can be omitted. If we are considering the force on a

conductor with p=1, than (33) is reduced to

Hﬂ:/UxBMQ (34)

2

Usually in praxis we are interested in the time-averaged force density f [N/m?]
~ 1
f= 2Re{peE*+J><B*+pmH*—|—M><D*} (35)

where M = iwP™ = iwpug(p, — 1)H are the bounded magnetic currents, and
p™ are the bounded magnetic charges.

The time-average Lorentz force density in a non-permeable current-carrying
conductor (u=1) is

— 1

f= 2Re{J x B*} (36)
where (*) denotes a complex conjugate.
Force analysis - summary

e To sum up the results elaborated above, if we need to find the total force
on a body in a stationary field, we shall either ¢) sum up the volume forces
inside the observed body by integrating over its volume {2, using (21)
for electrostatic case or (22) for magnetostatic case, or ) integrate the
divergence of the tensor T over the surface I', completely containing the
observed body (2, using (25) or (26) for electrostatic and magnetostatic
case respectively!”.

If we have a body in a time-varying field, than the total force should be
calculated either using volume integration, formula (32), or using surface
integration, formula (33).

"Here two more facts need to be noted: i) for equivalence of the volume forces
and traction, it is necessary that not only the resultant of the forces applied to
an arbitrary volume remain constant, but also that the moment of these forces
remains constant when body forces are replaced with equivalent stresses; i) an
additional condition for above equivalence is that the stress tensor is symmetrical,
see Tamm [60] for more information.
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e When performing a coupled electromagnetic-structural mechanics analy-
sis, we are not interested in the total force, but rather in the local force
density distribution, i.e. in:
i) forces per unit volume, [N/m?], formulas (21) or (22) for stationary
case or sub-integral function in (32) for time-varying fields,

or in the:

ii) forces per unit area, [N/m?], formulas (25) or (26) for stationary
case or sub-integral function in (33) for time-varying fields.

These local forces are then further passed as an external load for the analysis
of the mechanical quantities, see section “BEM for Structural Mechanics”,

page 329.

In the following we shall limit ourselves to the coupled problems appearing
in electrical apparatus, whereby the forces are caused either by the magne-
tostatic or time-varying electromagnetic field'®. Fig. 15 shows a workflow for
the BEM-based coupled analysis of Electro-Magnetic/Structural-Mechanics
problems. Following the steps shown in this workflow, let us first introduce
some numerical procedures and examples related to the calculation of forces
in both stationary and time-varying fields.

Stationary fields

Stationary excitation § Stationary
volume currant axcitalion flux
density Iy density By
Stationary excitation [ Stationary
surface currznt sxcitation flux
density Fi° density By

Stationary excisation

___ Time-varying fields
| Statonary excitaion

[ Volme eddy.

FM—* a) Volume force density I

Mechanics
salver

|——= b} Force per area unit I

surface currant magnetic field curent density
density Jo L Iy

¥ " I
Stationary excitation § Staionary excitaion | Surface eddy-
surface currant magnetic figld curent density
density J% $i i

Fig. 15. Coupled EM-EM workflow in the current-carrying structures.

3.2 BEM for Force Analysis in the Stationary Fields

Forces on the Non-permeable Structures

As mentioned before, for the analysis of coupled electro-magnetic / structural
mechanics problems it is necessary to calculate the local forces. In this section

1811 the scope of this material we shall not cover forces due to electrostatic fields.
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let us limit ourselves to the analysis of forces on a conductor made of material
with permeability 4 = 1. This is typical of copper or aluminium bus-bars or
windings in switchgear and transformers. In that case we can use the formula
f,, = J x B for volume force density, where J is a volume stationary current
density in [A/m?], and B is a corresponding magnetic flux density in [T]. As
can be seen from Fig. 15, the knowledge of the stationary current distribution
is an initial step, required for both stationary or time-varying case. In the
following section we shall briefly elaborate some procedures to compute it.

Computation of the Stationary Current Distribution
Current distribution in homogeneous structures (Single-material case)

The calculation the stationary current distribution in the conductors assumes
the solution of the Laplace problem, analogous to the previously described
electrostatic case. If the conductor occupying the volume (2 is filled with a
uniform and isotropic medium, we solve the Laplace equation (37)

Ap(x) = 0; Va € (2 (37)

with boundary conditions (38) in the case that we work with known po-
tential ¢ at the inlet and outlet surfaces I'y (Dirichlet type of boundary
conditions),

dp()

on =0 Veel\lL, pla)=U Vzely, (38)

or (39) in the case that we work with known current I boundary conditions
on the inlet and outlet surfaces I'y (Neumann type of boundary conditions),

O ()

B dp(x) I
on. =0 Vo€ I\, =+ . Veel.  (39)

ong oIy

where o is the electrical conductivity, I'y i.e. I'_ stand for inlet and outlet
conductor’s surfaces respectively and I is the value of the current in [A] flowing
through the conductor.

Using the direct collocation approach described in Lean [44], we can obtain
the following equation for the unknown potential ¢ in the conductor,

F 6t 7 @dra) - o) 50 @ire = "Pot), yer @)
r r

where G is the fundamental solution associated with the Laplace equation in
3D: G(z,y) = 1/4w|x —y|, z and y are respectively the source and field points
and @ is the solid angle which is defined as follows,

o) = [ Y drw). (41)
J |z —yl
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For a Neumann-type of boundary condition, the matrix needs to be regular-
ized, usually by means of the Lagrange multipliers technique, Bochev [18].
Using the potential ¢ obtained by (40), one can finally obtain the station-
ary current density as
J=—-0Vop. (42)

Ezxample 3: Three-phase industrial transformer

Here we have used the above formulation for the force analysis in a three-phase
industrial transformer. One of the typical duties of industrial transformers
is to serve as a steel arc furnace transformer, operating under very severe
conditions with regard to frequent over-currents and over-voltages generated
by short-circuits in the furnaces and the operation of connected HV circuit
breakers. Fig. 16 shows the bus-bar structure, together with the three windings
(U,V,W) of a three-phase industrial transformer.

Fig. 16. CAD model of the three-phase industrial transformer’s busbar structures.

In order to illustrate the major advantage of BEM as a boundary method
over other domain methods (FEM for example) this complicated geometry has
been calculated without any advanced technique for matrix compression or
preconditioning. The surface of the conductors has been simply meshed, the
boundary conditions for inlet and outlet surfaces have been defined and the
Galerkin BEM has been used for the discretization of the integral equation.
The resulting large dense linear system has been solved using a direct solver
[32]. Since the bus-bars from Fig. 16 contain several bodies insulated from each
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other, the solution process can be accelerated by solving only one conductor
(body or bus-bar) at the time. The mesh size, number of degrees of freedom
(DOFs) and matrix memory allocation for each body (conductor) is given in
Table 2. As one can see the amount of memory needed for matrix storage
is relatively small and complete bus-bar can be solved on standard PC. The
number of DOFs (the fourth column of Table 2 is always bigger by one than
the number of nodes. This comes from the fact that our integral formulation
was applied for a pure Neumann problem. Hence, regularization has been used
by simply augmenting the original system of equations.

Table 2. Numerical data for the current distribution analysis of the industrial
transformer bus-bar presented in Fig. 16 are given.

Bus-bar ID NE NN NDOF MDENSE (MB)
1 phase U 4292 2134 2135 35
2 phase U 4050 2013 2014 31
3 phase U 4022 1999 2000 31
4 phase V 5320 2648 2649 54
5 phase V 5534 2755 2756 58
6 phase V 7626 3801 3802 110
7 phase W 4226 2101 2102 34
8 phase W 4486 2231 2232 38
9 phase W 4052 2014 2015 31

NE number of elements; NN number of nodes; NDOF number of
DOFs (matrix dimension); MDENSE (MB) memory of dense matrix
given in MB

The calculation of the stationary current distribution has been performed
in order to estimate the forces acting in the presence of the short-circuit
currents. Fig. 17 gives a detail of the calculated current distribution in one
of the phases shown in the dotted polygon of Fig. 16. The force densities
are calculated using (27), whereby the magnetic flux density B is calculated
as B = Buyindings + Bbus—bars, i.€. taking into account the influence of the
magnetic field of windings. A force density distribution on the one of the
phases is shown on Fig. 18.

Current distribution in non-homogeneous structures (Multi-material case)

The formulation (40) is restricted to structures composed of one single homo-
geneous material. In praxis it is often asked to analyze problems in multi-
material structures. In the following we give a formulation suited for the
stationary current density calculation in the multi-material structures, Sma-
jic [55]. It must be noted that this formulation results in a well-conditioned
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Fig. 17. Transformer busbars: cur- Fig. 18. The complex magnitude of

rent density distribution [A4/m?]. the volume force density [N/m?] for
the electric current phase W is pre-
sented; One can clearly recognizes the
parts with large mechanical tension.
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Fig. 19. Conductor made of two different materials.

matrix, i.e. no any regularization is needed. Further, it also enables the “sym-
metrization” of the matrix, explained later in this section. Fig. 19 shows a
single conductor made of two different conductive materials and with two
contacts (Neumann null-boundary condition on the lateral surface I'c4 and
Dirichlet on the contact surface I'c),

0

a‘ﬂnm () =0, z€lca,lcaz, ¢i12(x)=Fa, I€lci,Ic2. (43)
On the interface between the two materials (I'cc1) the following potential
continuity conditions hold,

g;’ji (z) =02 g:i (x), zelce (44)
One starts by writing an integral equation (40) for the boundary of each
different material. As a result, on I'cc1 both the potential and its derivative
are unknown. To eliminate this, a linear combination of the integral equations
is performed ( o7 times integral equation on first domain plus o9 times integral
equation on second domain). Then continuity (44) is embedded, yielding the
following integral formulation

p1(x) = p2(z), o1
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0 0
1 ﬁ)wl(yHUz Z(f) o (y) — (45)
Jp dp
o [ G y7 @ dr@ -0 [ Glaw) )7 @) dr@
(I'ct) (I'c2)
oG oG
von [ e g wa)dr@ voe [ ela): [ (@) dr@) +
(I'ca1) (I'ca2)
oG
tor—on) [ ela): ) (m)-dr (o) =
(I'cct)
oG oG
—-For [ @y dl@) - R [V @) dr@), g e,
(I'c1) (I'c2)

Equation (45) is written for the problem consisting of two different materials.
The generalization of equation (45) for an arbitrary number of materials is
given in (46):

= 0i(y) e o
1-k)Y. “Woieit) - 3 o [ Gl @dr) +0
= SRS
Npar
oG
+Y o [ el @@+
=1 N
(IFéas)
NinT
> Cnmon) [ eyl @are) =
- (e
Np Ncon
0; oG
kWY "Wont) - 3 Ro [ 99 @pdrays ye®
i=1 i=1 *
(rdy

where: Np - number of conductive bodies; N;yy7 - number of interfaces be-
tween different conductive materials; Ny a7 - number of lateral surfaces (in-
terface air/conductor); Noony - number of contacts; ooy - conductivity of
the material in the direction counter to the normal vector; oy - conductivity
of the domain in the direction of the normal vector,

Lye U T
6 .
K(y) — Y e Ciy (47)
0.
If there are no interfaces, i.e. no different materials involved, the formulation

(45) or its simpler counterpart (44) reduces to its special case, i.e. the classi-
cal formulation (40). To sum up there are two strong point of this approach:
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firstly, one can conveniently compute problems with conductors excited with
prescribed voltages (Dirichlet BC) or with prescribed currents (Neumann BC)
or with a combination of those boundary conditions. Secondly, the formula-
tion allows one to compute complex configurations involving several different
conductive materials, with multiple interfaces and contacts.

Nearly-symmetric formulation

The integral formulation (40) of the classical single-material problem can also
be used as starting point for the derivation of a symmetric formulation, Sir-
tori [54], Costabel [20]. Namely, the integral form (40) can be written in the
operator notation as

O(y)

1 P = (Vone)(y) = (Ke)ly) yel (48)

where

I
Vo) = § G, @S
(8)
is a single-layer boundary integral operator acting on the Neumann data of

type On¢, and .
K()) = § ¢la) ) (.0)dS(a)

(s) ’

acting on Dirichlet type of data ¢. The BEM discretization of the integral
equation (45) will produce an asymmetric matrix. Following [20, 54], the
Calderon projector (i.e. the Dirichlet trace over the Neumann boundary and
Neumann trace over the Dirichlet boundary) applied to the integral form (47)
leads us to the symmetric system

] I8
where D is the hypersingular operator arising from the application of the
Neumann trace to the double-layer integral operator, and the right hand side
fp, fn is determined by known values of potential at contacts (Dirichlet BC)
and zero normal current on remainder of the boundary (Neumann BC). Using
the symmetric formulation (48) instead of the asymmetric one (47) allows one
not only to use the advantages of symmetric matrices but also to produce
better conditioned systems of equations.

At this point it is worth mentioning that there is the possibility to make
a large part of the matrix arising from multimaterial formulation (40) sym-
metric (reducing memory requirements), while at the same time keeping the
algorithm simple enough for practical implementation. The symmetrization
improves the algorithm not only from a memory viewpoint, but also with re-
gard to the stability and convergence behaviour of the iterative solver. For the
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simple multimaterial configuration depicted in Fig. 19 it is possible to write
the following integral equation based on (40)

o(y)ply) = / o(2)G(x, y)On, p(x)dS, — (50)
(802 - 8int)
o(@)pl@)0n, Gla)dSs + [ [02(2) - 01(2)}p(0)0,. Gl )dS,
(992-8int) dint

where y represents the field point somewhere in the volume of the first or
second material, 0;; is the surface interface between the domains and 942 is
the union of boundaries of both material domains. Equation (50) is obtained
by adding the equations written for the same point y for two different do-
mains from Fig. 19. Before adding, each equation has been multiplied by the
corresponding electric conductivity o(y). Regarding equation (50), it is also
important to notice that the Neumann data over the interface are eliminated
using the boundary conditions (43). The procedure of symmetrization goes as
is usual by applying the Calderon projector on equation (50), i.e. by applying
Dirichlet and Neumann trace on (50). In addition to this standard procedure
here we have an “Interface trace” that has been performed in Dirichlet’s sense.
According to the notation used earlier it is useful to introduce the following
integral operators:

(Viogr—ommty o) (4) = / o(2)G(&,1)0n, p(2)AS(@)  (51)
(892—8Int)
(K or—o1m6) (4) = / o(2)p(2)0n, Clz,y)dS(z)  (52)
(892—8Int)
(K om0 () = / (03(x) — 01(2)) p(2)n, G(2,1)dS(@)  (53)
(8Int)
(Diosr—otmeye)(y) = / o(2)(2)n, B, Gz, y)dS(x)  (54)
(892-0Int)
(Danyd)) = [ (02(0) = 01(0)) 6(@)00, 0, Gle,)dS(@) (59
(8Int)

After Dirichlet-, Neumann- and “Interface-” traces of equation (50) by tak-
ing into account an assumption that the boundary was everywhere smooth
(O(y) = 2m) the following system of equations has been obtained for y € 02p

o(y)

5 oY) = Von—oint)0n0) () — (Kao-ome)y) + (Kamye)(y), (56)
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for y € 02N

7D 01p(0) = (K{anr— o102 )+ (Dioro—o12)(0) HDoray ), (57

and for y € 002y,

71w 42_ OQ(y)w(y) = (Moa-o1nt)0n®) (YY) — (K@ao-arnt) ) (Y) + (Kot 9) (y)-

(58)
After employing a set of auxiliary functions (a standard procedure for ob-
taining a symmetric formulation in the case of a single material), the system
(56)-(58) can be written in the following way

Vioa—ornt) —K@0-omm) Ko OnPoon foon
K oa_ormy Doe-omy Doy | - Poay ¢ = Joan (59)
Vioor—omnt)y —K@o—ormt) Kot PO s fo2.

where

o  0nPon,- unknown Neumann-data over the Dirichlet-boundary,
o  ©pn,y- unknown Dirichlet-data over the Neumann-boundary,
® $pp,,,- unknown Dirichlet-data over the Interface-boundary.

In is easy to recognize a large symmetric part of the system matrix arising
from classical Calderon projector. The discretisation of the system (59) has
been performed using Galerkin algorithm in continuous sense. Constant shape
functions are used for Neumann data and linear ones are used for Dirichlet
data. After the system (59) has been solved, the Neumann data over the
interface are still not known. Based on known Dirichlet data everywhere, and
the integral equation (40), one can easily obtain those data over interfaces
by solving a system of equations that is usually much smaller than the size
of the system (59). However in the case of stationary current distribution,
the Neumann data over interfaces (normal component of the current density)
are not needed at all. For postprocessing (magnetic field computation) the
potential distribution is enough. Although the system of equations (59) has
been derived for two-material configuration, the structure will be the same
for multimaterial conductors involving several interfaces. The only difference
will be that the part belonging to “interface trace” will grow as interface area
increases and the jump of conductivity in the integral operators (4, 6) will be
different for different interfaces.

It is useful also to note that there is also a way to produce a fully symmetric
formulation by keeping unknown Neumann data over the interface and by
doing the interface trace in the Neumann sense in addition to the existing
interface trace in the Dirichlet sense.

The integral operators in (50) have the same meaning as in (49), as do the
right hand side terms. The formulation (50) is not fully symmetric as one can
observe comparing (50) with (49). The symmetry is broken by the presence
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of the interface equation. However, according to our experience, in industrial
applications the “interface” type of boundary is rather small compared to
the size of the Dirichlet and Neumann boundaries. Hence, a large block of
the matrix arising from the equation (50) is symmetric and hence memory
requirements can be significantly reduced (by almost as much as half of the
matrix in case of the asymmetric formulation). In addition to this, working
with the symmetric formulation we usually obtain a system that is much
better conditioned when compared to an asymmetric one. The aim of this
symmetric approach is to show that one has also possibilities to improve the
asymmetric method and to finally find a fully symmetric formulation for the
multimaterial case.

Ezample 4: Multi-material conductor with Voltage/Current
excitation

To illustrate the method described above we have calculated a simple prob-
lem and compared it with the solution obtained by FEM. The geometry of
the massive conductor involving inhomogeneous material properties, bound-
ary conditions and surface mesh (9232 triangular elements) can be seen in the
Fig. 20. The potential calculation is done using equation (50), and then the
current density using equation (42). Results for the current density distribu-
tion are shown in Fig. 21. One can observe that the current distributes accord-
ing to the conductivity of the material (almost no current flows through the
conductor with oo = 0.5¢°[Sm~1]). The maximum appears at inner corners,
also as expected. In Table 3 we present a comparison with a FEM simulation.
Agreement between the two methods is good.

Fig. 20. Conductor composed of three different materials.
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Fig. 21. Conductor composed of three different materials.

Table 3. FEM-BEM comparison.

Ne  Io[A] Io2]A] Ios[A] ST [A] €

BEM 9232 27867 891 -28862 -104 0.3

FEM 25073 27845 865 -28779 -69 0.1
(179619)

Forces in the Time-Varying Fields
BEM-based eddy-currents analysis

As written at the beginning, the final goal of this Section is to illustrate BEM-
based procedures for the analysis of coupled Electro-Magnetic and Structural-
Mechanics problems. In the Sect. 3.2 it has been shown that the calculation
of forces in the current-carrying regions requires knowledge of the current and
magnetic field distribution. In the previous section we have shown how the
stationary current distribution can be calculated in current-carrying struc-
tures using BEM. In the following section we shall briefly elaborate the BEM
approach for the analysis of eddy-currents, appearing in metallic structures
under the influence of time-varying fields.

Eddy-current formulation

In most industrial applications the low frequency condition is valid (o >> w-¢),
i.e. the displacement current term OD/dt in the Maxwell equations can be
neglected. Then, when the exciting current is sinusoidal time periodic, the
eddy-current problem is described by the reduced Maxwell’s equations

V x E = —jwB, (60)
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VxH=J+J,, (61)
V-B=0, (62)
V-D=0 (63)
where
B = uH, (64)
D =c¢E, (65)
J =0oE. (66)

There are a number of the formulations in computational electromagnetics
for the treatment of eddy-current problems. Each of these approaches has
its own strengths and weaknesses, many of which are problem dependent. A
useful overview of the available eddy-current formulations can be found in
Kost [36]. In the following we shall focus on the H — ¢ method, as one of the
formulations having some comparative advantages for the simulation of large
practical problems.

The H — ¢ formulation is based on the indirect Ansatz, leading thus to the
minimal number of 4 degrees of freedom (DoF) per node!?. This nice feature
makes this formulation suitable for the eddy-current analysis of complex, real-
world problems. The H — ¢ formulation need to be used with a care in cases
where the problem is multi-valued, i.e. when the model belongs to the class
multi-connected problems, Tozoni [61], discussed later in this session.

Furthermore, we shall give a brief description of the H — ¢ approach for the
treatment of eddy-current problems in current-carrying conductors, whereby
particular attention needs to be paid to the modeling of skin-effect phenom-
ena.

Skin-Effect Treatment

In Mayergoyz [42] it was proposed to treat the skin-effect problem by introduc-
ing a virtual filament, carrying the same total current as the conductor itself.
Although Mayergoyz’s approach offers an excellent way to treat skin-effect
problems, it is linked with some inherent modeling problems for complex 3D
geometries, i.e. the filament needs to be modelled and added to the original
model geometry. The formulation presented here, Andjelic [3], differs the from
the formulation given in [42] in so far that it is not necessary to model such
additional filaments.

If besides the external source, (the coil excited by the current I, in Fig.
22), there is also an exciting current J§* flowing in the interior of the conductor
0% and producing a magnetic field HZ", then the exterior magnetic field

YWith H — ¢ formulation it is possible to work even with only 3 DoF /node,
whereby the eddy-currents on the surfaces are described in a surface coordinate
system instead of Cartesian, Yuan [62].
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H,(r)=H,, = Hy +HZ

Fig. 22. Field Hy in the conductor’s surface point(P) is composed of the field
produced by the external sources H§", and the field produced by the conductor
current itself, Hg".

H™ in any point P lying on the conductor surface I', can be written as a
superposition of the scalar magnetic potential ¢ and the exciting field (67),

H =-Vp+H, (67)

whereby the exciting field Hy is composed of the exciting field H§*produced
by the external sources, and the field Hi" produced by the internal exciting
current. Both components of Hy, HE® and H{*, can be calculated by Biot-
Savart’s law. For the field H{" it yields

H"(z) = / 0 Z(é’r)r: 40, VieR® (68)
(]

where Ji" is a stationary current distribution, pre-calculated by the proce-
dures described in the previous section, r = |x —y|, and vector rq is a unit
vector directed from the current element towards the point of observation.
The interior field H™ remains unchanged, and we can write

VxVxH" = —jwopH" VzeN (69)
Ap =0; Vo e 2 (70)
with the boundary conditions
nx (H" +Vy)=nxH, Vzel (71)
n- (WH' 4+ 1oVep) = po-n-Hy Vz el (72)

The advantage of the H — ¢ formulation is that the vector-valued equations
are only used inside the conductor 2. Furthermore, only a scalar potential
equation has to be solved on the exterior of the conductor. The main idea
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is to separate the (virtual) sources on the surface for the field inside and
outside of the conductor 27. Accordingly, the virtual surface current density
j distributed over I' will be employed for the calculation of the magnetic
field within the conductor, while the magnetic surface charges ¢ distributed
over the same Gamma will be used for the calculation of the scalar potential
outside of the conductor. The following integral representation is used

1 e—(l-i—i)k‘nT‘
HY @)=V | %j(y) Car), aear, (73)
r
1 m
o (@)=, jq{ 7 r(y) ar, z e (74)
r

where k = \/w;w/Q denotes the skin-depth and pu = pop,, 0 and w are the
magnetic permeability, conductivity and frequency of the time harmonic fields,
respectively. For any j(y) and ¢ (y) the magnetic field H given by equation
(73) and the scalar potential given by equation (74) satisfy the equations (69)
and (70). Using the jump relation of the boundary integral operators (73)
and (74), the boundary conditions equations (71) and (72) are fulfilled if the
virtual current j and the virtual charge o™ are the solutions of the following
system of boundary integral equations:

e—(l i)kr
i@+ < (i< )arw (75)

2 47
r
- 417T 74 o™ () (n(z) Vidf(y) — n(z) x Hy(2)
r
@)+ fomwnt) - V(e (76)
r
6*(1+i)k’r
@ (1< ) are) = —nw) Ho
r

These equations are valid if the points z and y do not lie on an edge or corner.
If the nodes are on edges or corners, the coefficient 1/2 in the above equations
has to be replaced by the appropriately calculated space angle.

This boundary integral equation system can be written in operator form

A1 Bl _] - —2n x Ho
|:B2 A2:| <0’Tn o —QH-HQ ’ (77)
For more details on a numerical side of this approach the reader is referred
to Schmidlin [51]. Solution of the equation system (77) gives the virtual mag-

netic charges o™ and virtual current density j. Then, the magnetic field in
conductive materials can be expressed as
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HY@) = § VxR @ldi); cetyeat (1)
and
H(0) = How) = ¢ 0,()V.Gla)il(us we e (1)

in the non-conductive materials. Hy is the primary magnetic field produced
by the exciting current Jo and K = e~ (MH0kr /G =1 /p

To sum up, following the above procedure we are able to obtain expres-
sions for the computation of skin-effect problems in current-carrying regions.
The price we had to pay in order to avoid the usage of the filament, May-
ergoyz [42], was a pre-calculation of the field H{", that is later incorporated
in the right-hand side of (77). Further, we have to note here that the same
procedure is applicable also for the calculation of eddy-current problems in
passive structures, i.e. in structures that do not carry the excitation current.
The only difference is that the term HZ* will then be zero.

Ezample 5: Skin-effect in a cylindrical conductor

To test the above described approach we used an analytical solution, Si-
monyi [53], for a cylindrical copper conductor, of radius 10 [mm] excited
with a current value of Irpg= 1000 [4], frequency f= 50 [Hz], Fig. 23. It
must be noted that the analytical solution assumes an infinite-length cylin-
der, and in this test example we took a finite length cylinder. The analytical
values are compared with the calculated values in the middle of the cylinder

I =1 KA

o
- R=10mm

H=80mm

H=2Llmm

l-.-..mu il ey

Fig. 23. Copper-made cylindrical Fig. 24. Copper-made cylindrical

conductor of finite length. conductor of finite length. Additional
virtual filaments added to compensate
the influence of the infinite long con-
ductor.
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Fig. 25. Magnetic field distribution along the cylinder radius of a Cu conductor;
r=0 corresponds to the center of the cylinder.

where end-effects are at a minimum. To calculate the skin-effect problem, we
followed the procedure described in the previous section, whereby the skin-
effect is calculated in a manner such that the Hy in equations (75) and (76) is
pre-calculated as a function of the excited stationary currents. The graphs of
complex magnitude of magnetic field H for the example given in Fig. 23 are
shown in Fig. 25. It can be noted that there exist a deviation of the calculated
field comparing to the analytical solution. This deviation is caused because in
this example we neglected the rest of the infinite conductor used for analytical
calculation. Even when comparing the values in the middle of the cylinder,
these missing parts cause some error of cca. 10%. The contribution of the
field of the missing part of the conductor can be taken into account by virtual
filaments carrying the same current, Fig. 24. For such a case the graphs of
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Fig. 26. Magnetic field distribution (real component) over the cross-section plane
of a Cu-made cylinder.
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complex magnitude of magnetic field H and eddy-current j along the radial
line of the cross-section plane in the middle of the conductor are shown in Fig.
27 and Fig. 28, indicating a good agreement with the analytical solution.
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Fig. 27. Magnetic field distribution Fig. 28. Eddy current distribution
along the cylinder radius of a Cu con- along the cylinder radius of a Cu con-
ductor; r=0 corresponds to the center ductor

of the cylinder.

For the case that the conductor is made of a magnetic steel, having for
example permeability g = 200 and conductivity o = 6.66e°[Sm/m?], the

graphs for the same physical quantities are shown in Fig. 29 and Fig. 30,
respectively.
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Fig. 29. Magnetic field distribution Fig. 30. Eddy current distribution
along the cylinder radius of a steel along the cylinder radius of a steel
conductor; conductor;

= 200, 0 = 6.66e°[Sm/m?*];r =0  p =200, 0 = 6.66[Sm/mm?
corresponds to the center of the cylin-

der.
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It can clearly be seen that due to the smaller penetration depth for steel
(~ 1.95 [mm]), the current tends to concentrate more towards the conductor’s
surface then in the copper conductor case.

Ezxample 6: Eddy-current calculation in the ’passive” structures

In the previous example we have illustrated how eddy-currents, including skin-
effect, can be calculated in current-carrying structures, i.e. structures carrying
some impressed (injected) current. Very often it is required to calculate the
eddy-currents that are induced in ”passive” metallic structures, i.e. in the
structures that are not subject to an injected current. In the previous section
we have already mentioned that for both type of the problems we can use the
same H — ¢ formulation described before, with a small difference explained.
The following example is a well known TEAM-Bechmark?® problem No. 7,
Fujiwara [22]. The problem consists of an aluminium plate with an asym-
metrically positioned hole. The plate is illuminated by an electro-magnetic
field produced by a time-varying current flowing through a coil, Fig. 31. From
the mathematical point of view, this is a typical multi-valued problem, well
elaborated in the literature Tozoni [61], and used to test the capabilities of
codes treating these classes of problems. Fig. 32 shows the distribution of the
calculated magnitude of the y-components of complex eddy-current j, used as
a reference in Fujiwara [22]. Fig. 33 shows the vector flow of the real part of
the calculated eddy-currents. The graph shown in Fig. 34 gives a comparison
between the measured and calculated values of the magnitude of j. It has to be

Fig. 31. Asymmetrical conductor with a hole.

20TEAM-Benchmark problems are the series of the electromagnetic problems de-
fined in the electromagnetic community around COMPUMAG (Int. Conf. on Com-
putational Electromagnetics), with the goal to compare different codes and proce-
dures on well-defined problems validated by experimental results.
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Fig. 34. Calculated vs. measured values of the magnitude of j, .

noted that following [22], if the real part of j is negative, than the magnitude
is also shown negative in the graph.

Fast BEM for Eddy-Current Computation
Fast multipole for eddy-current computation

As mentioned at the beginning of this Chapter, the Fast Multipole algorithm
is a well known approach for BEM matrix compression, Greengard [25], and
can be applied also for eddy-current analysis. This algorithm reduces the
memory required for matrix storage, as well as the complexity of matrix vector
multiplication which is of crucial importance for iterative solvers. It can be
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also successfully applied for acceleration of the BEM integration in the case of
the right-hand side (RHS) computation and postprocessing. This is depicted
on the left-hand side of Fig. 35. There are basically two main drawbacks of
fast multipole technique:

e necessity to have a suitable kernel expansion. That means that different
types of kernels require different types of expansions, as mentioned already
in the section “Fast BEM in Electrostatic problems, page 291,

e not easy to perform the matrix pre-conditioning.

The ACA technique described in the following overcomes both of these diffi-
culties.

BEM edd it H- matrices and
Fast Multipole Approach SO FECHR 3Hs Adaptive Cross
workflow Approzimation (ACA)
Geometrica modeling
and meshing, materia
assignment, boundary
conditions, etc.
(CAD system)
Arcel eration of Al RHS L -
integration computation |
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MNear/Far field Geometry —=DOFs
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Fig. 35. Fast BEM for eddy-current computation.
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ACA for eddy-current computation

ACA - Adaptive Cross-Approximation is another more recent alternative tech-
nique for matrix compression. The workflow of ACA for eddy-current analysis
is depicted on the right-hand side of Fig. 35. This method is based on the Hier-
archical Matrices (H-matrices) Arithmetic Grasedyck [24] and Adaptive Cross
Approximation (ACA) Technique Bebendorf [11], Bebendorf [12]. The name
Adaptive Cross Approximation comes from the basic algorithm for a low-rank
approximation of matrix block. Namely, it uses elements of the original matrix
in a sequence of pivot-columns and pivot-rows making every time a sort of
cross over the block. Similar to the previously discussed technique, the ACA
technique is also based on the low-rank approximation of far-field blocks of
system matrix. By contrast with the Fast Multipoles method, the ACA tech-
nique computes low-rank approximants from the matrix entries themselves
without explicitly dealing with the kernel, Bebendorf [11], i.e. the kernel ex-
pansion is not needed. Therefore, the matrix entries computation routines
can be used from existing codes without any change, which is of course a
major advantage. As one can see on the right hand side of the Fig. 35, the
ACA approach consists of several steps that have to be performed. It is very
significant that the required inputs for ACA are relatively simple and are usu-
ally already present in every code for field computations. Namely, the ACA
routines need the geometry description of the degrees of freedom DOFs, i.e.
the system unknowns, which can be obtained easily from the mesh with re-
spect to the integral formulation that we are dealing with (one single node
can be related to more than one DOF). Besides the geometry description of
DOFs, ACA requests from our code only computation of certain matrix en-
tries, and these functions are the same as for dense matrix computation. From
a practical viewpoint this makes ACA much more programmer friendly than
fast multipoles and allows us to consider ACA almost as a black box. If the
geometry description of DOF's is provided the ACA module starts with ma-
trix partitioning. At the beginning the cluster tree and block cluster tree are
generated [1-3] which is of crucial importance for matrix partitioning and gen-
eration of the hierarchical low-rank matrix approximant. It has been already
proved and published that the matrix partitioning algorithm complexity and
memory requests of partitioning are of the following order, Bebendorf [11]:

ComplexityMatrix—partitioning = O(ni(dil)NIOg N) (80)

The number of blocks generated is of order N. The next step according to
Fig. 35 is the hierarchical matrix approximation generation. According to the
available theoretical results, Bebendorf [11], [12], this can be done using ACA
with the following numerical effort:

OomplexityMatrix—appro:cimation = O(ni(dil)kQNlog N) (81)

Memoryh—Matria:—approacimant = O(n_(d_l)kN log N) (82)
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ComplexityMatrix—vector—muptiplz’cation = O(n_(d_l) kN IOg N) (83)

where k is the maximum rank of approximant, N is the matrix dimension, d
is the number of dimensions of problem (for example 3 for 3D problem) and
7 is a parameter of the following admissibility condition:

min{diamX;,,diamXy, } < n- dist(Xy,, Xt,) (84)

where t; and t5 are the index subsets (clusters) that determine certain matrix
block and Xy, , X, are the supports of the clusters ¢; and t, , i.e. as follows:

th = U Xi;th = U Xl (85)
1€ty S 2
where X,;=supp(y) and @, - an ansatz function. After all these theoretical
results it is possible to see that almost linear complexity is achieved. The
final step of the ACA approach is the construction of a cheap (in the sense
of time and memory) and efficient matrix preconditioner. Due to the fact
that the spectral equivalence of the matrix approximant and original matrix
is preserved even for relatively rough approximations Bebendorf [14], ACA
can generate an ILU preconditioner with L and U factors much smaller (and

less precise, of course) than the memory needed for the matrix approximant
Bebendorf [14].

Table 4. Comparison of the theoretical abilities of ACA and Fast Multipols.

Property ACA Fast Multipoles
Generality with respect to the kernel -
Compression efficiency + +
Acceleration of the BEM integration - +

Efficient and cheap preconditioning 4+ -

Furthermore our LU factor can be used as a direct solver by setting the
same accuracy for the LU factors as for the matrix approximation Beben-
dorf [14]. This appears to be a significant advantage of ACA versus Fast
Multipoles and is very important for real-life problems that typically produce
ill-conditioned matrices due to bad mesh quality or high contrast between
different materials. On the other hand, fast multipole has one significant ad-
vantage versus ACA. Namely, that fast multipoles can significantly increase
the speed of the integration routines for both computing the RHS and post-
processing which is, typically for BEM, very time-consuming. Up to now, in
the existing ACA solutions Bebendorf [15] this possibility does not exist.

As a summary in the following table the abilities of the fast multipole
algorithm and the ACA are compared: In order to check these theoretical
statements in the case of BEM based eddy-current analysis, the example of



324 Z. Andjeli¢, J. Smaji¢, and M. Conry

conductive sphere in homogenous magnetic field has been chosen. An analyt-
ical solution exists for this example and this is used as a reference in order to
verify the same level of solution accuracy for fast multipoles and ACA. The
test has been performed for several different meshes, i.e. for different number
of DOF's. The mesh quality is kept the same in order to prevent different con-
ditioning of the linear system due to different mesh quality. For each case the
memory requirements for matrix storage are compared. The condition number
is not estimated but computed directly using SVD because the matrices are
relatively small. In the following Fig. 36 numerical results of this eddy-current
example are presented. Fig. 36 confirms the theoretical statements that ACA
typically has worse compression than Fast Multipoles, but still much better
than the dense matrix. At this point it is worth mentioning that successful
ACA application on the BEM-based eddy-current analysis can not be done
working directly with the system matrix arising from the integral formulation
(74, 75). Usually, it is not good idea to construct one single approximant for
more than one integral operator. Hence a separate approximant is generated
for each matrix block of the block matrix structure (76). In order to illustrate
the efficiency of the ACA approximation typical H-matrix block approximants
of the eddy-current matrix are depicted in Fig. 2 along with its rank distribu-
tion. The matrix blocks from equation (76) are separated with black solid lines
in order to distinguish the blocks produced by different integral operators. The
block (0,0) and the block (1,0) are related to the Helmholtz like kernels with
complex exponent (e~”"/r?). Consequently, as one can see from Fig. 36 the
compression is excellent for both blocks. The block (0,1) and the block (1,1)
are related to the double-layer like kernels and the matrix compression is much
worse for this particular example of a sphere.
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Fig. 36. Fast Multipole versus ACA.
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In order to illustrate the ability of the ACA concerning matrix precondi-
tioning one has to look at an example with an ill-conditioned matrix, i.e. with
problematic convergence. For an eddy-current analysis this occurs when we
encounter bad mesh quality or with a material with a high value of magnetic
permeability, Schmidlin [51]. Fig. 37 and Fig. 38 shows the spatial distribution
of the calculated matrix coefficients for copper with g = 1 and for iron with
1 = 200, respectively. The maximal coefficients are presented in red color. It
can be seen that in the first case we have a very well conditioned matrix, by
contrast with the second case where the matrix is poorly conditioned due to
the presence of highly permeable material, or in the formulation sense, due to
the term g/ po in the equation (76).

POLOPT Matr b View

FOLOFT Matrin View

aord =1BET
Fig. 37. Size of the matrix coeffi- Fig. 38. Size of the matrix coeffi-
cients for copper sphere (red color rep- cients for iron sphere (red color rep-
resents the maximal size coefficients). resents the maximal size coefficients).

If the fast multipole algorithm is applied in that case a special block pre-
conditioner based on the Schur complement has to be constructed, Schmidlin
[51], which appears to be very cumbersome. The eddy-current example with
conductive sphere is appropriate for this analysis as well. The magnetic per-
meability of the material has been increased and the condition number of the
matrix is calculated. The efficiency of the fast multipole algorithm along with
the Schur complement based preconditioner has been compared against the
efficiency of the ACA algorithm with ILU hierarchical preconditioner.

3.3 ACA Approach for Matrix Preconditioning in BEM Based
Eddy-Currents Analysis

In the previous section concerning the ACA compression of BEM matrices it
has been mentioned that the ACA scheme can be very successfully used for
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Fig. 39. The rank distribution for the Fig. 40. The rank distribution over

copper sphere. the blocks of a typical BEM ma-
trix approximated by H-matrices and
ACA (an eddy-current example from
the Table 1 with 9224 DOFs).

the construction of cheap and efficient pre-conditioners. In order to demon-
strate this theoretical statement, Bebendorf [14], let us apply this method to
the ill-conditioned complex matrices arising from BEM-based eddy current
analysis. As has been already pointed out, the eddy-current matrix is a block
structure that can be very well compressed block-wise using either fast mul-
tipoles or ACA (the compression quality of ACA is depicted in the Fig. 39
and Fig. 40). According to the reference Bebendorf [14] our block structure
of eddy-current matrix is appropriate for ACA preconditioning based on the
Incomplete LU decomposition (ILU). Namely, for construction of an approx-
imative LU decomposition the ACA algorithm is almost ideal due to the fact
that even low precision LU factors will preserve spectral equivalence with the
original dense matrix, [14]. Having this spectral equivalence of the rough ILU
approximant, the quality of preconditioner is guaranteed. At the same time
the computational effort for the construction of the preconditioner can be ne-
glected due to the rough approximation, [14]. That is practically all that is
needed for practical BEM-based eddy-current analysis.

For the same reasons as in the previous section, the conductive sphere in
homogenous time-harmonic magnetic field will be used. Ill-conditioning of the
matrix will be produced by the large value of relative magnetic permeability.
The preconditioning quality of the ACA algorithm will be compared against
the Schur complement based block matrix preconditioner used together with
fast multipoles.

According to the existing literature Bebendorf [14], Golub [26], the block
structure of eddy-current matrix can be efficiently used for ILU preconditioner
construction in the following way
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ABl o [Ly 0][UnUn
[CD] ~P=LU= [Lm L22] [ 0 U22] (86)

where A, B, C, D are original blocks of the matrix, P is a rough approximation
of the original matrix that will be computed in the factorized LU form.
From equation (86), the following can be verified:

LU= A (87)
LU =B (88)
Loy Uy =C (89)
LyoUsy = D — L2 U5 (90)

Obviously, from the first equation one can compute factors L11 and Ull as a
LU decomposition of A (the rough approximation of block A). The next step
would be to compute Uis from (87) using the already computed L11, which
is inexpensive due to the fact that this is a triangular system with multiple
right-hand sides (88). After that, using (89), it is possible to compute Loj
by solving the problem of similar structure as in (88). Having those factors
already computed, the last and final step is relatively simple - using (90) the
factors Log and Uso are computed. This method is used for all the calculations
presented here and it appears to be very efficient.

The ILU factorisation (86) of the matrix from the Table 4, (the example
with 2712 DOFs) of the previous chapter, is depicted in the Fig. 41 as a
H-matrix with its rank distribution.

Approximation of the blocks used for ILU factorisation can be very rough,
and so accuracy is chosen to be 0.1, as opposed to the accuracy of the matrix

Fig. 41. ILU factorisation of the Eddy-current matrix (an eddy-current example
with 2712 DOFs, Fig. 36).
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approximation which is 0.0001. In the following Table 3, we see results of
the eddy-current analysis (conductive sphere) with various different matrix
conditioning. The condition number has been increased using a high value
for the magnetic permeability. The condition number has been calculated
(not estimated) using the SVD algorithm Golub [26]. Since the SVD is very
expensive in terms of memory and CPU time, the matrices under consideration
are kept relatively small. Some of the examples shown in the graph in Fig. 36 in
the previous section have been taken, the relative magnetic permeability and
the electric conductivity have been changed from p,=1 and o = 5.7¢7[S/m]
to p-=200 and o = 6.66¢°[S/m], respectively (the ferromagnetic iron). At the
beginning, all examples are solved with GMRES and diagonal preconditioning
Golub [26]. Then the fast multipoles and the Schur complement-based block-
preconditioning are applied and finally the problems have been solved by using
the H-matrices/ACA compression and ACA/ILU preconditioning. The results
are given in Table 5.

Table 5. ACA vs. MBIT — Data comparison.

| Problem Landition

Bize | Mumfer Dense Matriz Fast Multipoles Adaptive Cross Approx (ACA)
o, Schur
Ko p Malriz | GMRES | Malrix | Comple | GMRES | Malrix LU GMRES
"lLlom | +op | @ [ om [ +sc | o | am | +ov
DOFs (iter) (iter) (itar
[ 2712 977 112 128 56 49 4 46 48 B
" 3s08 1227 199 134 71 59 [ 57 53 10
I s192 1603 411 148 104 130 6 113 g2 10
" 7064 761 129 176 7

It can be seen that for equal mesh quality and geometry the spectral condi-
tion number increases with matrix size. This is a clear sign that this method is
producing ill-conditioned matrices, Steinbach [57]. Hence the matrix precondi-
tioning is of paramount importance. In the 4-th column of the Table 3 one can
see that the number of iterations of GMRES with diagonal preconditioning is
above 100, even though our geometry is a simple sphere, the mesh is almost
ideal, and only one material is being used. This confirms the previous state-
ment and shows that the method will have very problematic convergence in the
case of bad mesh quality or high contrast between different materials. In the
case of fast multipoles for matrix compression along with a Schur-complement
based preconditioner Schmidlin [51], one can see that the compression of the
matrix is very good. On the other hand, the Schur-complement preconditioner
size is not so promising and it is typically larger than near-field matrix itself.
This appears to be a bottleneck in the case of real-life problems. The sec-
ond option and more recent one, is H-matrices/ACA compression with ILU
preconditioning. The results of this approach are presented on the right-hand
side of the Table 5. It is obvious that rough approximation of the matrix
for ILU preconditioner construction preserves spectral equivalence with the
dense matrix and the number of iterations of the iterative solver GMRES
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is dramatically reduced. It shows and confirms the preconditioner efficiency.
Furthermore, the preconditioner size is typically well under the size of the ma-
trix approximant (rough approximation) which means that the preconditioner
itself is cheap in the sense of memory requirements, as well as in the sense of
computational effort and time. The matrix approximation accuracy used here
was and the accuracy of the ILU preconditioner generation was, which explains
the smaller size of preconditioner. In order to make this clearer the data from
Table 3 are graphically presented in Fig. 42. As one can see the size of the
ILU preconditioner based on ACA is significantly smaller than the size of the
Schur complement based block preconditioner for the fast multipole method.
It seems that the size difference increases as matrix size becomes larger. This
is of great importance for large real-life problems. The compression quality is
about the same for both methods.

450

400
m .
= 250 @ Dense matrix
-
S 300 m Fast Multipoles Mear-
£ Field matrix
_2 250 OACA matrx
= approximant
o200
Hed 0 Schur Complement
2 150 Based Preconditioner
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¢ 100 4 preconditionsr
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O -

2712 3608 5192
Matrix Size (DOFs)

Fig. 42. Memory requirements for various matrix compression and preconditioning
methods.

3.4 BEM for Structural Mechanics

As mentioned before, our goal is to perform coupled Electro-Magnetic / Struc-
tural Mechanics run using BEM. So far we have elaborated how to treat the
electromagnetic part with BEM in order to compute the electromagnetic forces
that should then be passed further to the mechanics module. Let us now give
a brief introduction about the BEM formulation for the linear elasticity prob-
lems.
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Basic Equations

The equilibrium behavior of a linear elastic, generally anisotropic, solid can
be conveniently expressed using tensorial notation as shown below in equa-
tion (91), where indices i and j vary over 1,2,3. The usual tensor summation
convention is assumed 5
Sij
on, = fi- (91)
Here, s;; is the stress tensor (a symmetric quantity), while f; is a body force
per unit volume acting on the elastic medium. For an elastic medium, the
stress tensor can be related to the strain tensor for a general anisotropic
material using the Hooke stiffness tensor, c;jr;. This gives the constitutive
relation shown in (92),
8ij = CijklCkl- (92)

The definition of the strain tensor links it directly to the displacment via the
partial derivatives presented in (93),

1 U U
er =, (gx;i + g;) . (93)
Clearly this quantity is again symmetric and e;; = ej;.

The stiffness tensor ¢;;; has 3% = 81 entries, but even for the most general
material many of these terms are not independent. Due to the symmetry of
545 and eg;, we have ¢, = cjirt = Cijik = cjur By energy considerations
Nayeh [46], Auld [7], it can be shown that there is further symmetry in the
stiffness tensor, leading to the result that c;j; = cri; These simplifications
mean that rather than having 3 x 3 x 3 x 3 = 81 independent values, c;;jx; has
at most 21 independent coeflicients, even for the most generally anisotropic
materials.

In many engineering design problems, we can at least approximate the
material behaviour as being isotropic. That is to say, we can assume that ma-
terial properties, and in particular the stiffness, are the same in all directions.
Equivalently, we could say that the stiffness tensor entries c;;1; are the same
irrespective of the coordinate system used. The consequence of this condition
is that only two independent stiffness constants remain. There are various
possibilities for the expression of these two constants. Young’s modulus (E)
and Poisson’s Ratio () are a common choice, used frequently in engineering
calculations. Another common choice, convenient in formulating expressions
describing material behavior, are the Lamé constants: A and p. For a given
material, all such pairs of constants are in any case equivalent. In this way,
the pair of Lamé constants can be expressed in terms of Young’s modulus and
Poisson’s ratio as shown in equation (94),

vE E
= -w) T o) (54)
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If we start from the equilibrium and constitutive relations above, spe-
cialised for an isotropic material and utilizing the Lamé constants, we get the
following equilibrium relation:

—mAu(z) — (I+m)VV -u(x) = f(x) (95)

Representation formulae

In order to construct a Boundary Element Method approximation of our prob-
lem, we must formulate a representation formula Steinbach [56]. This formula,
for displacement component uy(Z) where & is a point within the domain (2,
bounded by the boundary I', gives

(@)= [Gi@nnwdre)- [Ti@pu@drer (Vi@ oiwie.
T T Q
(96)
In this expression, U*(x, y) is the displacement associated with the fundamen-
tal solution for an infinite body (the Kelvin solution, shown in equation (97)),
while T (z,y) is the associated stress,

. L I+m
M8 m (14 2m)

I4+3m O (yk—ﬂfk)(yl—ﬂfl) (97)
I+m [z —yl o =yl '

Following a limiting process, where = is brought to the boundary I,
Z € 2 — x € I', introduces a jump-term (which is 1/2 due to the fact
that we are working with a Galerkin formulation) and so the representation
formula becomes

ug(z) = / Upi(z, y)ti(y)dl'(y) + ;u;c(x) - / T (w, y)wi(y)d(y) (98)

+ / Uz, (2, 9) £ (y)d2y)-
(]

This representation formula is used on the regions of the boundary where
displacement is prescribed, that is to say, where we have Dirichlet boundary
conditions,

x€Ip = u(x) =gp. (99)

Shortening the notation somewhat, we rewrite the representation on I'p as

Lop(@) + (Ku) (2) — (Nof) (), z€Tp.  (100)

V) (z) =,

In this expression, V is the single-layer potential, K is the double-layer poten-
tial, Ny is the Newton Potential (applied to body forces f), while gp denotes
the given Dirichlet data.
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The complementary region of the boundary is where we have prescribed
Neumann boundary conditions (i.e. prescribed traction),

x€I'n =t(x) =gn. (101)

On this region, we use a different representation formula, formed by taking
the normal derivative of the already presented representation. The results of
this operation are shown in (102),

1

(Du)(2) = ,

In this expression, two new terms have been introduced: D denotes the hy-
persingular operator, while N7 is the first Newton potential. These are given
by

gy (@) + (K't) (z) = (N1f) (2), 2 €. (102)

(D), () = - T, / T3 (2 y)u (v) AT (y), (103)
I
(N1 f)y (@) = T / Uz () fi(y)A2(y)- (104)
N

Here the T, operator represents the normal derivative operation just men-
tioned.

Now, with appropriate representation formulae established for I' = I'p U
I'y, the system under consideration that will be solved is comprised of (100)
and (102) (see Steinbach [57], page 130).

Discretisation

The discretisation applied is based on a surface triangulation using 3-node
planar elements. Tractions are approximated with constant basis functions,
while displacements are approximated using linear basis-functions.

Galerkin integration is employed throughout. This results in double inte-
gration over the solution domain’s surface, but with the benefit of improved
smoothness in the results by comparison with more straight-forward colloca-
tion methods.

The evaluation of the system matrix terms is done using the OSTBEM [58]
integration routines. This means that the elasticity single layer potential, V,
is obtained from the Laplace single layer potential (n x n), and 7 further n xn
sub-matrices. The elasticity double layer potential, K, is obtained from V', the
Laplacian Double Layer, and the Surface Curls. The Elasticity Hypersingular
is evaluated using V' and the Surface Curls.

The Newton Potential, Ny, which appears when body forces are encoun-
tered (e.g. in coupled electromagnetic-mechanical systems) is evaluated by
an integration over the volume of prescribed Body Forces multiplied by the
fundamental solution displacments.
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The N; Newton Potential is not calculated directly from its definition as
presented earlier. Before computing N7, some manipulations are helpful. From
the boundary integral equations we can rearrange the two representations
presented earlier to get expressions for ¢(x)

t(a) =V~ (;I + K> u(z) =V (Nof) (2), (105)

t(z) = (Du) (x) + (;1 + K’) t(x) + (N1f) (). (106)

Substituting from the first expression (105) into the second (106) for ¢(x) gives

the result
t(x) = <D+ (;IJF K’) vl (;I+ K)) u(z)
- <;I+KI> VT (Nof) (z) + (N1 f) (). (107)

Comparing (107) with (105), and noting that these relations are true in gen-
eral, it follows from considering u(x) = 0 that:

— (A + KV (Nof) (2) + (N1 f) () = =V (Nof) () (108)
= (Nif)(z) = (K' = J1) V7' (Nof) (x) (109)

The quantity of present interest, coming from the equation shown in (102),
is N1f. From (109), it is seen that this can be calculated from the elasticity
double-layer potential, an identity operator (mass matrix) and the Ny Newton
potential. The remaining quantity is the inverse of the elasticity single layer
potential. Rather than directly calculating this quantity, it is better to solve
the linear system

Vw = (Nof). (110)

Then w = V=1 (Npf) can be substituted immediately into (109) to evaluate
the N1 Newton potential.

The resulting system of equations can be solved in various ways. For
the mechanical examples presented in this chapter, a preconditioned Schur-
complement, conjugate gradient scheme is used. The preconditioners are based
on the underlying integral operators [56].

Adaptive Cross-Approximation

Adaptive Cross Approximateion (ACA) [11] has been used to accelerate the
operations required to solve a given mechanical system, and to reduce the
storage requirements. This has been done at the level of the component ma-
trices described in Section 3.4. Based on these approximations, the solution
scheme and all operations involving the components of the system matrix can
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be easily re-implemented using ACA-based matrix-vector multiplication. In
fact, by careful programming, it is possible to develop code that allows the
solution of the system using either ACA or Dense storage by a simple redefini-
tion of the fundamental vector-matrix multiplication routines. This compres-
sion/acceleration process is vital if one hopes to implement a practical solver
as otherwise computational cost and storage requirements grow according to
the problem size squared. A comparison of matrix storage requirements for
uncompressed (Dense) and compressed (ACA) systems is shown in the next
section.

Ezxample 7: Prism

It is useful first to consider a test-case to evaluate the performance and
accuracy of the described solver when dealing with a simple mechanical
problem. For this purpose, consider a prism, with square cross-section of
1.0 [m] x 1.0 [m], and 2.0 [m] long.

i
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Fig. 43. Displacement Profile for Aluminium Prism in Compression (2 [kPa]).

This prism is loaded at its end by a compressive pressure of 2 [kPa], while
the other end is fully constrained. The prism has the material properties of
aluminium (Young’s Modulus E = 70[GPa], Poisson’s Ratio v = 0.333). From
a quick analytical calculation, we would expect to have a strain of a little less
than

533 263

B = 70760 = 2.857¢ 5. (111)

€33 =
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This would give a distortion of [ x e33 = (2.0)(2.857¢78) = 5.7¢~8[m]. Even
with a very coarse mesh (48 elements), as shown in Fig. 43, we see that this
result is very nearly exactly obtained. Notable also is that the displacement
is very smooth, as would be hoped, and that the “bellying” of the prism (due
to the constraint at its base) is captured.

Elasticity Single Layer Computation
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Fig. 44. Comparison of Dense and ACA Single Layer Computation.

By progressively remeshing the prism, and running the model both with
and without ACA compression, it is possible to assess the effectiveness of
ACA in accelerating the analysis of the problem (and simultaneously reducing
storage requirements). Fig. 44 shows the variation of the memory required to
store the single layer potential for elasticity, this being the largest and slowest
part of the problem analysis. The time performance follows essentially the
same trends as memory use, both for dense storage and for the case of using
ACA approximations.

Note that when using dense matrices, it is not possible to compute prob-
lems larger than about 5000 elements on the computer used. Even looking just
at the results up to this point, we see that there is a clear quadratic increase
in computation time as the number of elements increases. By contrast, when
computing an ACA comparison there is a steadily increasing computational
efficiency as the number of elements increases.
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Ezxample 8: Conducting cylinder

In order to examine the basic principles of coupled electromagnetic and
mechanical interactions, it is useful to look at a simple example. One such case
is a current-carrying cylindrical conductor. The cylinder that will be presented
here has an inner radius of 5 [cm], a wall-thickness of 1 [cm] and a height of
9 [cm]. The current passes circumferentially through the conductor, and has a
current density of 5 [A/mm?] (equivalent to a total current of 4.5 [A]). After
performing a current-distribution analysis on this component, distributed in-
duced body-forces are produced. Based on this input, the mechanical response
can be evaluated. The displacement profile resulting is shown in Fig. 45.

Barely visible, at the rear of the model, is the “cut” in the cylinder intro-
duced in order to allow current to be injected into and to exit the conductor.
Naturally, in this region the conductor is far less stiff than it would be if it had
not been cut. However, at the front of the model, we can see the displacement
profile that would be found in an intact cylinder. This allows easy comparison
with the results reported by Euxibie et al [21]. In the results shown here, the
maximum displacement reported on the cylinder directly opposite the cut is
1.97 x 10~?[m], which compares very well with the value of 1.95 x 10~%[m]
calculated by Euxibie et al.
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Fig. 45. Coupled Electromagnetic and Mechanical Loading on a Cylindrical Con-
ductor.
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Ezxample 9: Two parallel bus-bars

In the following example we want to apply the previously described scheme for
coupled Electro-Magnetic / Structural Mechanics analysis to a simple configu-
ration consisting of two parallel, finite length, copper bus-bar like conductors.
The injected currents is I = 10 [kA], flowing in opposite directions through
the two conductors. Our aim is to compare how the mechanical responses
(displacement, traction) differ if we treat the above example from the elec-
tromagnetic side first as a static case (stationary current distribution), and
than as a quasi steady-state case (eddy-current distribution, including the
skin-effect).

Outlet 1 —

Inlet 2

Fig. 46. Two conductors with Inlet Fig. 47. Forces acting on two bus-
and Outlet surfaces. bars with opposite current directions
(top view).

Case 1: Static case

Assuming a constant distribution of the excitation (injected) current over
the cross-section of the conductor, the analytic value of the current density
for given dimensions is 5e® [A/m?]. For a conductor of given length, and
with rectangular cross-section, it is possible to obtain the value of the mag-
netostatic field in closed-form, Andjelic [6]. Fig. 48 a shows the analytically
calculated distribution of the magnetic flux density, with the maximal value
of 7.48¢~2[T).

The calculated values for magnetic induction B, current density 7, volume
volume nodal forces f, displacement w and traction ¢ are shown in the Fig.
48.

Case 2: Quasi steady-state case

The same example is next solved as a quasi steady-state case, i.e. taking the
time-varying excitation current with Igys = 10 [kA]. Eddy-current problem
taking into account the skin-effect is solved exactly in the same way as in
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Fig. 48. Calculated B, 3, f, u, t for a steady-state case.

Example 5, page 316, following the formulation given in Section 3.2. Fig. 49
shows the calculated values for magnetic induction B, eddy-current density
4, volume nodal forces?' f, displacement w and traction t. For B, j and f
the complex magnitudes are shown.
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Fig. 49. Calculated B, j, f, u, t for a quasi-steady state case.

2INodal forces are obtained after dividing the force densities in the volume nodes
with the corresponding volume around each node.
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When comparing the two cases, the following conclusions can be drawn:

e The spatial distribution of the physical quantities is as expected different.
In the steady-state the flux, and therefore also the forces, are concentrated
in the middle of the conductors.

e In the quasi-steady state the maximal flux, current and force appear along
the vertical edges of the conductors.

Example 10: Earthing switch in GCB

Turning our attention to a full engineering problem, we can now consider the
coupled electromechanical loading of a switch found in the generator circuit
breaker (GCB) seen already in Example 3 (SBD for a Generator Circuit-
Breaker design). Following a current-distribution and eddy-current analysis,
it is possible by Biot-Savart calculation to find the body-forces arising out of
Lorentz interactions, page 302. In fact, these forces are often of interest only
in a limited region of the entire engineering system, typically in moving parts.
In the GCB case presented here, a point of particular interest is the “knife”
switch, where there is a tendency for the generated Lorentz forces to act so
as to open the switch. The position of the switch is highlighted in magenta in
Fig. 50.

Fig. 50. Location of One-Knife Switch in overall breaker assembly.

Taking the example from earlier, for the mechanical part of the analysis
only a limited portion of the mesh needs to be evaluated. Results were cal-
culated using a mesh comprising 4130 triangular planar surface elements and
2063 nodes.

The volume discretization (necessary for the body-force coupling) com-
prises 14000 tetrahedra. This model has been analyzed taking advantage of
the ACA approximation for the single and double layer potentials described
earlier in the outline of the formulation. Results from this analysis are shown
in Fig. 51.

Clearly visible is the effect of the coupling forces on the switch, which
has a tendency to move out of its closed position under the action of the
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Original position
of the knife

Fig. 51. Deformation of the earthing knife (overscaled), caused by the action of the
short-circuit forces.

electromagnetic loading. This quantitative and qualitative information is a
valuable input into the design process leading to the development of complex
electromechanical systems.

4 BEM for Thermal Design

As mentioned at the beginning, under Thermal Design we assume only weak
coupling of Electro-Magnetic process with the Heat-Transfer process provid-
ing the thermal response of the structure. In reality, the physics describing
this problem is rather complex. There are three major physical phenomena
that should be taken into account simultaneously: the electromagnetic part
responsible for the losses generation, a fluidic part responsible for the cooling
effects and thermal part responsible for the heat transfer. The simulation of
the such problems, taking into account both complex physics and the complex
3D structures found in the real-world apparatus is still a challenge, especially
with respect to the requirements mentioned in the Section ”Simulation-Based
Design”, page 290: accuracy-robustness-speed.

A somehow simplified approach, that for many practical problems can still
produce acceptably good results, is shown in Fig. 53. Instead of performing
a complex analysis of the cooling effects by a fluid-dynamics simulation, a
common practice is to introduce the Heat-Transfer Coefficients (HTC) ob-
tained either by simple analytical formulae, (see for example Boehme [19])
or based on experimental observations. For this type of analysis the link be-
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Heat Transfer

(convection,
conduction, radiation)
. ) i N
Fluid-dynamics ’

{cooling)

Electromagnetic
{eddy-losses)

Fig. 52. Real physical cycles existing in the current-carrying structures.

tween the electromagnetic solver and heat-transfer solver is true the losses
calculated on the electromagnetic side that are then passed as external loads
to the heat-transfer module.

As it is well known, heating of the material leads to changes of the material
parameters. The proper simulation of such phenomena would then require the
iterative update of the material parameters, leading to a nonlinear process.
In most of the industrial apparatus the increase of temperature has to be
kept under certain prescribed limits. Mostly the temperature changes within
these limits do not lead to significant changes in material properties. In that
case, for certain applications we can work only with uni-directional coupling,
ignoring changes of the material parameters due to temperature change. In
our simulation workflow this means dropping the feed-back loop shown by the
dotted line in Fig. 53.

The Electromagnetic part of thermal simulation is exactly the same as
already described in the previous section for force analysis.

Heat-transfer
coefficients
—

Electromagnetics Heat Transfer

Fig. 53. Simplified Electro-Magnetic/Heat-Transfer workflow.

Losses calculation

For both stationary and time-varying fields, the losses are calculated using
the Poynting vector. For stationary case the losses are then calculated as the
integral of the Poynting vector over the surface of conductor
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P= ¢ (ExH)dS (112)
/

or over the volume of the conductor using integral conservation law, Haus [29],

P = /oE-EdV (113)
\4

where E and H are the electric and magnetic fields for the stationary case.

In the case of the time-varying fields, the losses are calculated as the time-
average of the total energy P dissipated through the surface of surrounding
the conductor

P= ;Re%(E x H*) - ndS (114)
S

where E and H are now the electric and magnetic time-varying fields (complex
vectors), and * stands for conjugate complex.

4.1 Temperature Calculation

The weak coupling between electro-magnetic and thermal calculations is ac-
complished by using the eddy current losses as source terms for the thermal
computations with the aid of the heat conducting equation. The heat conduc-
tion equation can be reduced to the simple conservation law

V. (kYT (x)) =0, Yxe (115)

for steady states with the thermal conductivity coefficient . For the solution
of the above Laplace-equation a direct approach was used, Andjelic [4]. A
solution can be found by using Green’s representation formula for x € 912

00T = [0,10), 1 are) - [16) " e )
r

3
|z —yl

with the solid angle O©.

In the AC case, the power that flows into the item is supposed to be
generated in a region very close to the surface of the conductor due to the
influence of the skin-effect. Therefore it can be taken into account via the
boundary condition

X 0,T(x) = §(x) (117)

for all points x € I' of the boundary. The energy flux ¢(x) is computed
by means of the Poynting vector, equations (112) or (114). Convection and
radiation can be approximated by a term proportional to the difference of
the temperature Ty of the item and the temperature of the environment. The
resulting boundary condition is
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A0, T(x) =q¢(x) —a(T(x)—Tp); VxeTl (118)

with the heat transfer coefficient «. Plugging the boundary condition (118)
into the representation (117) yields

A|yeere s [1w), Y mwarw)| + (119)
r
1 _ 1 o
o F/ 7)o 00 = F/ @@)+T), | ALy Vel

Ezxample 11: Thermal analysis of earthing switch in GCB

Thermal Design in circuit-breaker production, together with Dielectric and
Electro-Mechanical Design, is one of the most important tasks accompanying
the design of any new member of the breaker family. Very strict international
norms like IEC and TEEE, require careful layout of the breakers components
in order to stay within the prescribed limits.

In the case of thermal analysis, special care must be paid to hot-spots
appearing on and around the contact areas between the different parts. For
example, the maximum temperature allowed of any hot spots on the silver-
plated contacts is 105 °C. The simulation of such phenomena is connected
with different difficulties and usually accompanied with certain simplifications.
For example, consider the fact that the size of the contact surfaces area is
usually a function of different influencing quantities (mechanical pressure,
material characteristics, friction, etc.) and is not easy to define in real-world
configurations. From the other side, the value of the contact resistance is one of
the key parameters influencing the overheating of contact areas, and therefore
of the entire apparatus.

In the present example we have performed a coupled Electro-Magnetic /
Fluid-Dynamic / Thermal analysis of a circuit-breaker component according
to the workflow shown in Fig. 54. The geometry has been generated using
Pro/Engineer?2. The electromagnetic part of the analysis was performed by
POLOPT /em?3. The fluid dynamic analysis, including the thermal simulation
has been done by STAR-CD?%. Fig. 55 shows the component of the circuit-
breaker model used for the thermal simulation. The calculated results are
compared with experimentally obtained temperature on the selected positions,
Fig. 56. The simulation and the measurement have been conducted for four
different current levels (2, 4, 13, and 18 [kA]). The graph in Fig. 57 shows
the time development of the temperature in the selected point indicated by
the arrow. The markers are the positions in time where the experimental

*2Pro/Engineer is a trademark for the PTC product line (http://www.ptc.com).

ZBPOLOPT /em is a module for eddy-current analysis in POLOPT multi-physics
environment.

2STAR-CD is a trademark for the CD-adapco product line (http://www.cd-
adapco.com).
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CAD: Pro/E model

STAR-ProlE

EM: POLOPT

Surface heat . CFD: STAR-CD

At high-power operations — surface '
temperatures to recaleulate solld | ---ooooooooeool i
properties

Fig. 54. Coupled EM-CFD simulation for thermal analysis of GCB.

Fig. 55. Model of the breaker’s component used for the simulation.

3
E
]

Fig. 56. Experimental set-up used for the temperature measurement.
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Fig. 57. Measured vs. calculated temperature distribution on the breaker compo-
nent.

results were available. A good agreement between simulation and experiment
confirms the validity of the coupled analysis performed.

Ezxample 12: Thermal design of power transformers

In the previous example we performed the coupled Electro-Magnetic / Fluid-
Dynamic / Thermal analysis of a circuit-breaker component. In the current
example we shall illustrate how using the previously described BEM formal-
ism for electro-magnetic and thermal calculation one can in an integrated
environment analyze the thermal problems in power transformers, Fig. 58.
In this simulation run we perform the coupled Electro-Magnetic / Thermal
analysis, using estimated values for heat transfer coefficients instead of a full

P Core

e

Fig. 58. ABB Power transformer: Test Unit, Vaasa, Finland (ProE model).
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fluid-dynamic run. The simulation workflow is shown on Fig. 59. The goal
was to obtain the temperature distribution over the transformer clamp. In
this case the clamp is a“passive” structure, i.e. the eddy-current are induced
by the external stray field produced by the windings. The first step after com-
pleting the pre-processing steps (meshing, boundary conditions, materials,...)
is calculation of the excitation field distribution, Section 3.2, page 303. It is
followed by the eddy-currents analysis based on the formulation described in
section Section 3.2, page 312.

[";;t;.;;;. ' } 1
= [
=1

= CAD-geometry

Fig. 59. Integrated environment for thermal analysis of power transformers.

The material used for the clamp is a magnetic steel with permeability
p = 200% and electrical conductivity o = 6.66e6 [£2/m]~!. With a frequency
of 50 [Hz], the penetration depth of the magnetic field in magnetic material
is
o =105
0= = 1.95¢™°[m]. (120)
wpo
This small penetration depth of less than 2 [mm] would require appropriate
mesh quality in order to capture the diffusion phenomena, especially taking
into account that the overall clamp length is more than 4 [m]. Here we want
to stress once again the excellent capabilities of BEM, enabling the solution
of this complex diffusion problem using only a boundary mesh2°.

2Swe assume a linear material with a constant value of the material permeability.

26When solving the same problem with FEM, this would require a volume mesh
both in magnetic material and in surrounding media. An work-around when using
FEM would be the usage of IBC (Impendence Boundary Condition) to avoid the
meshing of the inner volume of magnetic materia. But, this approach leads to addi-
tional errors caused by the fact that IBC assumes i) geometry without geometrical
singularites, ii) the electromagnetic field is assumed to be a plane wave, iii) the pen-
etration depth need to be very small i.e. the current flows only on the surface of the
conductors.
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Fig. 60 shows the calculated eddy-currents in the transformer clamping
plate. Using the eddy-losses as inputs in the thermal module, one can obtain
the temperature distribution over the clamp’s surfaces, Fig. 61. The calcula-
tion has been performed using the MBIT module for eddy-current analysis,
Section 3.2, page 320, i.e. using both accelerated matrix generation and fast-
multipole based matrix compression.

Clamping plate

Helical LV winding &

Cylindrical HY winding

2I0E+T

= 1.5000
1.4000
1.3000
1.2000

= 1.1000

S 10000
= p.g000
0.8000
0.7000

Helical Ly winding

Fig. 61. Temperature distribution on the clamping plate.

5 Some Concluding Remarks

In this chapter we have tried to illustrate some BEM-based approaches for
the simulation of different problems appearing in engineering design praxis.
The excellent features of BEM for both single and multi-physics tasks are
highlighted, together with some emerging numerical techniques like MBIT
and ACA, recognized as the major drivers leading to the real breakthrough
in BEM usage for practical design tasks.

Beside these and many other good features of BEM, and staying at the
level of static or quasi-static simulation tasks, there are still a number of
potential improvements that could be made to achieve the “best in the class”
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tool desired for the advanced simulation tasks in the industrial design. Let us
mention just some of them.

At the formulations level there is still a piece of work for the mathemati-
cians to offer sound, BEM-oriented, formulations for strongly coupled
physical problems. With the exception of some examples mentioned at the
beginning of this Chapter, to our knowledge there is still a lack of prop-
erly founded, BEM-based mathematical formulations for coupled Electro-
Magnetic / Thermal or Electro-Magnetic/Structural-Mechanics problems.
The recent achievements in the field of the “Matrix symmetrization” high-
light the new possibilities for the acceleration of matrix generation or/and
solution. Extending of such (or similar) approaches to the most important
mathematical formulations (part of them mentioned within the scope of
this material) could contribute a lot to the advanced treatment of complex
real-world problems, especially with regard to the required memory usage
and matrix “conditioning”.

Non-linearity treatment is one of the topics often recognized as the “weak-
est” point of BEM. The authors experience with the BEM?” treatment of
non-linear magnetostatic problems indicates that for certain application
BEM can successfully (and efficiently!) be used also for non-linear classes
of problems. Appropriate formulations of non-linear problems via BEM in
some other areas are still an open issue. For example, the more advanced
formulations of non-linear problems in eddy-current analysis, or even more
in coupled eddy-current / thermal analysis could be of great benefit for
certain classes of practical problems, touched also within this material in
the examples given in Section 4.1, page 345 or in Section 4.1, page 343.
Speaking about the BEM-based analysis in the Structural Mechanics, there
exist now the well elaborated formulations for the standard tasks appear-
ing in the linear elasticity analysis. The treatment of the non-linear prob-
lems in mechanics is also rather well elaborated, but probably not enough
highlighted, with some exceptions like in automotive industry.

But, there are some important and, in the practical design often unavoid-
able, class of the problems where to authors knowledge the BEM-based
formulations are still not enough promoted. As an example, there are just
a few available publications where BEM-based treatment of contact prob-
lems is analyzed! This important area, together with the efficient treat-
ment of eigenvalue problems via BEM would significantly expand the ap-
plications area of this method, especially when doing the coupled Electro-
Magnetic/Structural-Mechanics type of analysis.

Finally, the authors general opinion is that the BEM already offers an

excellent platform for the simulation of 3D real-world industrial problems.

2"Here we still use the “BEM” notation, although in the reality, for non-linar

problems we have to treat a “volume” as well, Krstajic [37].
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Especially when speaking about some of the major requirements appearing in
the Simulation-Based Design nowadays, like:

assembly instead of component simulation,

simulation for the daily design process,

user-friendly simulation, but still preserving the full geometrical and phys-
ical complezity,

BEM-based numerical technology seems to fulfil the major requirements de-
manded of simulation tools.
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