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Dedication

| would like to dedicate Calculus Without Limits
To Carolyn Sparks, my wife, lover, and partner for 35 years;
And to Robert Sparks, American warrior, and elder son of geek;
And to Curtis Sparks, reviewer, critic, and younger son of geek;
And to Roscoe C. Sparks, deceased, father of geek.

From Earth with Love

Do you remember, as do |,
When Neil walked, as so did we,
On a calm and sun-lit sea

One July, Tranquillity,

Filled with dreams and futures?

For in that month of long ago,
Lofty visions raptured all
Moonstruck with that starry call
From life beyond this earthen ball...
Not wedded to its surface.

But marriage is of dust to dust

Where seasoned limbs reclaim the ground
Though passing thoughts still fly around
Supernal realms never found

On the planet of our birth.

And |, a man, love you true,
Love as God had made it so,

Not angel rust when then aglow,
But coupled here, now rib to soul,
Dear Carolyn of mine.

July 2002: 33rd Wedding Anniversary



Hippocrates’ Lune: Circa 440BC
This is the earliest known geometric figure

having two curvilinear boundaries for which a
planar area could be exactly determined.



| first began to suspect there was something special about John
Sparks as a teacher back in 1994 when | assumed the role of department
chair and got a chance to see the outstanding evaluations he consistently
received from his students. Of course | knew that high student ratings
don’t always equate to good teaching. But as | got to know John better |
observed his unsurpassed enthusiasm, his unmitigated optimism and
sense of humor, and his freshness and sense of creativity, all important
qualities of good teaching. Then when | attended several seminars and
colloquia at which he spoke, on topics as diverse as Tornado Safety,
Attention Deficit Syndrome and Design of Experiments, | found that his
interests were wide-ranging and that he could present material in a clear,
organized and engaging manner. These are also important qualities of
good teaching. Next | encountered John Sparks the poet. From the
poems of faith and patriotism which he writes, and the emails he
periodically sends to friends, and the book of poems, Mixed Images,
which he published in 2000, | soon discovered that this engineer by trade
is a man with one foot planted firmly on each side of the intellectual divide
between the arts and the sciences. Such breadth of interest and ability is
most assuredly an invaluable component of good teaching. Now that he
has published Calculus without Limits, the rest (or at least more) of what
makes John Sparks special as a teacher has become clear. He has the
ability to break through those aspects of mathematics that some find
tedious and boring and reveal what is fascinating and interesting to
students and what engages them in the pursuit of mathematical
knowledge. By taking a fresh look at old ideas, he is able to expose the
motivating principles, the intriguing mysteries, the very guts of the matter
that are at the heart of mankind’s, and especially this author’s, abiding
love affair with mathematics. He manages to crack the often times
opaque shell of rules and formulas and algorithms to bring to light the
inner beauty of mathematics. Perhaps this completes my understanding
of what is special about John Sparks as a teacher. Or perhaps he still
has more surprises in store for me. Anyway, read this book and you will
begin to see what | mean.

Al Giambrone

Chairman

Department of Mathematics
Sinclair Community College
Dayton, Ohio  October 2003
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The wisp in my glass on a clear winter’s night
Is home for a billion wee glimmers of light,
Each crystal itself one faraway dream

With faraway worlds surrounding its gleam.

And locked in the realm of each tiny sphere
Is all that is met through an eye or an ear;
Too, all that is felt by a hand or our love,
For we are but whits in the sea seen above.

Such scales immense make wonder abound
And make a lone knee touch the cold ground.
For what is this man that he should be made

To sing to The One whose breath heavens laid?

July 1999
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1] Introduction

“If it was good enough for old Newton,
It is good enough for me.”
Unknown

1.1) General

| love calculus! This love affair has been going on since
the winter of 1966 and, perhaps a little bit before. Indeed, |
remember purchasing my first calculus textbook (by Fobes and
Smyth) in December of 1965 and subsequently pouring through its
pages, pondering the meaning of the new and mysterious symbols
before me. Soon afterwards, | would be forever hooked and yoked
as a student, teaching assistant, teacher, and lifelong admirer.

Over the vyears, my rose-colored perspective has
changed. | have discovered like many other instructors that most
students don’t share an “aficionado’s” enthusiasm for calculus (as
we do). The reasons are many, ranging from attitude to aptitude,
where a history of substandard “classroom-demonstrated”
mathematical aptitude can lead to poor attitude. The tragedy is
that with some students the aptitude is really there, but it has been
covered over with an attitude years in the making that says, “l just
can’'t do mathematics.” These students are the target audience for
this book. A long-simmering mathematical aptitude, finally
discovered and unleashed, is a marvelous thing to behold, which
happens to be my personal story.

So what has happened to calculus over the last four
decades in that it increasingly seems to grind students to dust?
Most textbooks are absolutely beautiful (and very expensive) with
articles and items that are colored-coded, cross-referenced, and
cross-linked. Additionally, hand-done “engineering drawings” have
been replaced by magnificent 3-D computer graphics where the
geometric perspective is absolutely breathtaking and leaves little
to the imagination. Note: I have to confess to a little jealously having cut
my teeth on old fashion black-and-white print augmented with a few
Sketches looking more like nineteenth-century woodcuts.



The answer to the above question is very complex, more complex
(I believe) than any one person can fathom. Let it suffice to say
that times have changed since 1965; and, for students today, time
is filled with competing things and problems that we baby boomers
were clueless about when of similar age. Much of this is totally out
of our control.

So, what can we control? In our writing and explanation,
we can try to elucidate our subject as much as humanly possible. |
once heard it said by a non-engineer that an engineer is a person
who gets excited about boring things. Not true! As an engineer
and educator myself, | can tell you that an engineer is a person
who gets excited about very exciting things—good things of
themselves that permeate every nook and cranny of our modern
American culture. The problem as the warden in the Paul Newman
movie Cool Hand Luke so eloquently stated, “is a failure to
communicate.” The volume in your hands, Calculus Without
Limits, is a modern attempt to do just that—communicate! Via a
moderate sum of pages, my hope is that the basic ideas and
techniques of calculus will get firmly transferred to a new
generation, ideas and techniques many have called the greatest
achievement of Western science.

The way this book differs from an ordinary “encyclopedic-
style” textbook is twofold. One, it is much shorter since we cover
only those ideas that are central to an understanding of the
calculus of a real-valued function of a single real-variable.
Note: Please don’t get scared by the last bolded expression and run off.
You will understand its full meaning by the end of Chapter 4. The
shortness is also due to a lack of hundreds upon hundreds of skill-
building exercises—very necessary if one wants to become totally
competent in a new area of learning. However, a minimal set of
exercises (about 200 in all) is provided to insure that the reader
can verify understanding through doing. Two, as stated by the title,
this is a calculus book that minimizes its logical dependence on
the limit concept (Again, Chapter 4.). From my own teaching
experience and from reading book reviews on web sites, the limit
concept seems to be the major stumbling block preventing a
mastery of engineering-level calculus. The sad thing is that it
doesn’t need to be this way since calculus thrived quite well
without limits for about 150 years after its inception; relying instead
on the differential approach of Newton and Leibniz.



Differentials—little things that make big ideas possible—are the
primary means by which calculus is developed in a book whose
title is Calculus Without Limits. The subtitle —Almost refers to the
fact that the book is not entirely without limits. Section 4.3 provides
an intuitive and modern explanation of the limit concept. From that
starting point, limits are used thereafter in a handful (quite literally)
of key arguments throughout the book .

Now for the bad news! One, Calculus Without Limits is a
primer. This means that we are driving through the key ideas with
very few embellishments or side trips. Many of these
embellishments and side trips are absolutely necessary if one
wants a full understanding of all the technical power available in
the discipline called calculus. To achieve full mastery, nothing
takes the place of all those hours of hard work put into a standard
calculus sequence as offered through a local college or university.
This book should be viewed only as an aid to full mastery—a
starter kit if you will. Two, Calculus Without Limits is not for
dummies, morons, lazy bones, or anyone of the sort. Calculus
Without Limits is for those persons who want to learn a new
discipline and are willing to take the time and effort to do so,
provided the discipline is presented in such a matter as to make
in-depth understanding happen. If you don’t want to meet Calculus
Without Limits halfway—providing your own intellectual work to
understand what is already written on each page—then my
suggestion is to leave it on the book-seller's shelf and save
yourself some money.

1.2) Formats, Symbols, and Book Use

One of my interests is poetry, having written and studied
poetry for several years now. Several examples of my own poetry
(I just can’t help myself) appear in this book. | have also included
the famous “The Road Not Taken” by Robert Frost.

If you pick up a textbook on poetry and thumb the pages,
you will see poems interspersed between explanations,
explanations that English professors will call prose. Prose differs
from poetry in that it is a major subcategory of how language is
used.



Prose encompasses all the normal uses: novels, texts,
newspapers, magazines, letter writing, and such. But poetry is
different! Poetry is a highly charged telescopic (and sometimes
rhythmic) use of the English language, which is employed to
simultaneously convey a holographic (actual plus emotional)
description of an idea or an event. Poetry not only informs our
intellect, it infuses our soul. Poetry’s power lies in the ability to do
both in a way that it is easily remembered. Poetry also relies
heavily on concision: not a word is wasted! Via the attribute of
concision, most poetry when compared to normal everyday prose
looks different Thus, when seen in a text, poems are immediately
read and assimilated differently than the surrounding prose.

So what does poetry have to do with mathematics? Any
mathematics text can be likened to a poetry text. In it, the author is
interspersing two languages: a language of qualification (English
in the case of this book) and a language of quantification (the
universal language of algebra). The way these two languages are
interspersed is very similar to that of the poetry text. When we are
describing, we use English prose interspersed with an illustrative
phrase or two of algebra. When it is time to do an extensive
derivation or problem-solving activity—using the highly-changed,
dripping-with-mathematical-meaning, and concise algebraic
language—then the whole page (or two or three pages!) may
consist of nothing but algebra. Algebra then becomes the alternate
language of choice used to unfold the idea or solution. Calculus
Without Limits and without apology follows this general pattern,
which is illustrated in the next paragraph by a discussion of the
quadratic formula.

©

Let ax’ +bx+c=0bea quadratic equation written in the

standard form as shown witha #0. Then ax’+bx+c =0 has
two solutions (including complex and multiple) given by the
formula highlighted below, called the quadratic formula.

_ —b+Ab* —4ac

2a

X




To solve a quadratic equation, using the quadratic formula, one
needs to apply the following four steps considered to be a solution
process.

Rewrite the quadratic equation in standard form.
Identify the two coefficients and constant term a,b,&c .

Apply the formula and solve for the two x values.
Check your two answers in the original equation.

PoN -~

To illustrate this four-step process, we will solve the quadratic
equation2x® =13x+7 .

1
= 2x2=13x+7=
2x2—13x-7=0

;:a=2,b=—13,c:—7
~C1)EJ13) 4D
2(2)

13+4/169+56
X=—"T"———"">=

3
=X =

4
13+£+/225 13%15
X = = f—
4 4
xe {17}

4
I : This step is left to the reader.

©

Taking a look at the text between the two happy-face
symbols© ©, we first see the usual mixture of algebra and prose
common to math texts. The quadratic formula itself, being a major
algebraic result, is highlighted in a shaded double-bordered (SDB)
box.



We will continue the use of the SDB box throughout the book,
highlighting all major results—and warnings on occasion! If a
process, such as solving a quadratic equation, is best described
by a sequence of enumerated steps, the steps will be presented in
indented, enumerated fashion as shown. Not all mathematical
processes are best described this way, such as the process for
solving any sort of word problem. The reader will find both
enumerated and non-enumerated process descriptions in Calculus
Without Limits. The little bit of italicized text identifying the four
steps as a solution process is done to cue the reader to a very
important thought, definition, etc. ltalics are great for small phrases
or two-to-three word thoughts. The other method for doing this is
to simply insert the whole concept or step-wise process into a SDB
box. Note: italicized 9-font text is also used throughout the book to
convey special cautionary notes to the reader, items of historical or
personal interest, etc. Rather than footnote these items, | have
chosen to place them within the text exactly at the place where
they augment the overall discussion.

Examining the solution process proper, notice how the
solution stream lays out on the page much like poetry. The entire
solution stream is indented; and each of the four steps of the
solution process is separated by four asterisks ****, which could be
likened to a stanza break. If a solution process has not been
previously explained and enumerated in stepwise fashion, the

1
asterisks are omitted. The new symbol +>:can be roughly
translated as “The first step proceeds as follows.” Similar
2 3 4
statements apply to—: > : andi—= : The symbol = is the normal
“‘implies” symbol and is translated “This step implies (or leads to)
1
the step that follows”. The difference between “I—=:” and “=" is
1
that > :is used for major subdivisions of the solution process
(either explicitly referenced or implied) whereas = is reserved for
the stepwise logical implications within a single major subdivision.

Additionally, notice in our how-to-read-the-text example

that the standard set-inclusion notation € is used to describe
membership in a solution set. This is true throughout the book.

10



Other standard set notations used are: union\U, intersectionM,
existence d, closed interval[a,b], open interval (a,b), half-open-

half-closed interval (a,b], not a memberg , etc. The symbol .".is

used to conclude a major logical development; on the contrary, ..
is not used to conclude a routine problem.

Though not found in the quadratic example, the usage of
the infinity signecis also standard. When used with interval
notation such as in(—eo,b], minus infinity would denote a semi-
infinite interval stretching the negative extent of the real number
starting at and including b (since ] denotes closure on the right).
Throughout the book, all calculus notation conforms to standard
conventions—although, as you will soon see, not necessarily
standard interpretations. Wherever a totally new notation is
introduced (which is not very often), it is explained at that point in
the book—following modern day “just-in-time” practice.

Lastly, in regard to notation, | would like you to meet

The Happy Integral

b (1)
Iudx

a

The happy integral is used to denote section, chapter, and book
endings starting in Chapter 3. One happy integral denotes the end
of a section; two happy integrals denote the end of a chapter; and
three happy integrals denote the end of the main part of the book.
Subsections (not all sections are sub-sectioned—ijust the longer
ones) are not ended with happy integrals.

Note: you will find out about real integrals denoted by the’ foreboding and

b
esoteric-looking’ symbol I f(x)dx starting in Chapter 6. In the
a

meantime, whenever you encounter a happy integral, just be happy that
you finished that much of the book!

1




Calculus without Limits is suitable for either self study
(recommended use) or a one-quarter introductory calculus course
of the type taught to business or economic students. The book can
also be used to supplement a more-rigorous calculus curriculum.
As always, there are many ways a creative mathematics instructor
can personalize the use of available resources. The syllabus
below represents one such usage of Calculus without Limits as a
primary text for an eleven-week course of instruction.

Suggested Syllabus for Calculus without Limits:
Eleven-Week Instructor-led Course

Week | Chapter Content Test
Introduction,
1 1,2,3 Barrow’s Diagram,
Two Fundamental Problems
2 4.1-4.4 Functions & Inverse Functions 1,2,3
4548 S!opes, (_Zhange Ratios and
Differentials
4 51-54 Solving the First Problem,
T Derivatives and Applications
Higher Order Derivatives and
5 5557 | Advanced Applications 45
Antiprocesses, Antidifferentiation
7 6.1-6.4 . S
and Basic Applications
Solving the Second Problem,
8 7.1-7.3 Continuous Sums, Definite
Integral, Fundamental Theorem
Geometric Applications,
9 7.4-8.1 Intro to Differential Equations 6,7
10 8.2 Differential Equations in Physics
11 83,9 Differential Equations in Finance, Final

Conclusions, and Challenge

Note 1: All primary chapters (3 through 8) have associated exercises
and most of the sections within these chapters have associated
exercises. It is recommended that the instructor assign all exercises
appearing in the book. A complete set of answers starts on page 315.
Note 2: The student is encouraged to make use of the ample white
space provided in the book for the hand-writing of personalized
clarifications and study notes.

Table 1.1 Calculus without Limits Syllabus

12



1.3) Credits

No book such as this is an individual effort. Many people
have inspired it: from concept to completion. Likewise, many
people have made it so from drafting to publishing. | shall list just a
few and their contributions.

Silvanus Thompson, | never knew you except through
your words in Calculus Made Easy; but thank you for propelling
me to fashion an every-person’s update suitable for a new
millennium. Melcher Fobes, | never knew you either except for
your words in Calculus and Analytic Geometry; but thank you for a
calculus text that sought—through the power of persuasive prose
combined with the language of algebra—to inform and instruct a
young student—then age 18. Books and authors such as these
are a rarity—definitely out-of-the-box!

To those great Americans of my youth—President John F.
Kennedy, John Glenn, Neil Armstrong, and the like—thank you all
for inspiring an entire generation to think and dream of bigger
things than themselves. This whole growing-up experience was
made even more poignant by the fact that | am a native Ohioan, a
lifelong resident of the Dayton area (home of the Wright Brothers).

To my four readers—Jason Wilson, Robert Seals, Vincent
Miller, and Walker Mitchell—thank you all for burning through the
manuscript and refining the metal. To Dr. Som Soni, thank you for
reading the first edition and making the corrected edition possible.

To my two editors, Curtis and Stephanie Sparks, thank
you for helping the raw material achieve full publication. This has
truly been a family affair.

To my wife Carolyn, the Heart of it All, what can | say. You
have been my constant and loving partner for some 35 years now.
You gave me the space to complete this project and rejoiced with
me in its completion. As always, we are a proud team!

John C. Sparks
February 2004, January 2005
Xenia, Ohio
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Late August

Brings an end to limits,
Chained derivatives,
Constraints—optimized and otherwise—
Boundary conditions,

Areas by integrals,

And long summer evenings.
My equally fettered students,
Who moaned continuously
While under tight
Mathematical bondage,

Will finally be released—
Most with a pen-stroke

Of mercy!

Understandably,

For meandering heads

Just barely awake,

Newton’s infinitesimal brainchild
Presented no competition
When pitted against
Imagined pleasures faraway,
And outside

My basement classroom.
Always the case...

But, there are some,

Invariably a few,

Who will see a world of potential
In one projected equation

And opportunities stirring

In the clarifying scribble...

August 2001
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2] Barrow's Diagram

Calculus is ranked as one of the supreme
triumphs of Western science. Current equivalents include the first
manned lunar landing in 1969 or the decoding of the human
genome in 2000. Note: My personal lifespan has witnessed both the
advent and continuing cultural fallout from each of these aforementioned
equivalents. Like most modern-day technical achievements,
calculus has taken many minds to develop. Granted, these minds
have not operated in the context of a highly organized team with
intricately interlaced functions as in the two examples mentioned.
Nonetheless, these inquisitive, capable minds still examined and
expanded the ideas of their intellectual predecessors through the
course of almost two millennia (though a Western intellectual
hiatus occupied much of this time interval).

A mathematician can almost envision these minds

interacting and enhancing each other via Figure 2.1, which has
embedded within it a graphic mini-history of calculus.

—

\ 4

Figure 2.1 Barrow’s Diagram

Figure 2.1 was originally created by Isaac Barrow (1630-
1677) who was a geometer, first holder of the Lucasian chair at
Cambridge, and a teacher/mentor to Sir Isaac Newton. Even
today, you will see bits and pieces of Barrow’s diagram, perhaps
its entirety, used in any standard calculus text.

15



Barrow’s 350-year-old diagram is proof that a powerful idea
conveyed by a powerful diagrammatic means never dies. In this
chapter, we will reflect upon his diagram as a creative
masterpiece, much like a stained-glass window or painting.

Table 2.1 is an artist guide to Barrow’s diagram, linking selected
mathematicians to seven coded features. The guide is not meant
to be complete or exhaustive, but does illustrate the extent of
mathematical cross-fertilization over the course of two millennia.

Coded Diagram Feature
Name T L R C A | XY | IDT
Pythagoras
540 BC XXX
Archimedes
og7212BC | X | X | X | X | X
Descartes
1596-1650 X X X
Barrow
16301677 | X | X | X | X ] X X
Newton
16421727 | X | X | X | X X
Leibniz
16461716 | X | X | XXX
Gauss
17774855 | X | X X XX XX
Cauchy
1789-1857 | X | X | X | X | X | X | X
Riemann
18261866 | X | X | X [ X[ X | X | X
Code Feature Description
T Small shaded right triangle
L Straight line
R Tall slender rectangle
C Planar curve
A Area between the curve and triangle
XY Rectangular coordinate system
IDT In-depth theory behind the diagram

Table 2.1 Guide to Barrow’s Diagram
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More will be said about these mathematicians and their
achievements in subsequent chapters. But for the moment, | want
you to pause, reflect upon the past, and just admire Figure 2.1 as
you would a fine painting. When finished, take a stroll over to
Figure 2.2 and do the same. Figure 2.2 presents two different
non-algebraic visual proofs of the Pythagorean Theorem using
traditional constructions. All white-shaded triangles are of identical
size. Armed with this simple fact, can you see the truth therein?

Figure 2.2: Two Visual Proofs
Of the Pythagorean Theorem Using
Traditional Constructions

We close our mini chapter on Barrow’s Diagram with two

light-hearted mathematical ditties honoring Pythagoras, Newton,
and Leibniz. Enjoy!

1



Love Triangle

Consider old Pythagoras,

A Greek of long ago,

And all that he did give to us,

Three sides whose squares now show

In houses, fields and highways straight;
In buildings standing tall;

In mighty planes that leave the gate;
And, micro systems small.

Yes, all because he got it right

When angles equal ninety—

One geek (BC), his plain delight—

One world changed aplenty! January 2002

Within the world of very small
Exists the tiniest whit of all,
One whose digits add no gain
To a nit or single grain;

And if a whit measures snow,
Add one flake to winter’s toll.

Even with size so extreme,

Divisible still is scale by scheme;

For whit over whit tallies well
Numbering a world with much to tell:
From optimum length to girth of stars,
From total lift to time to Mars.

And thus we tout Sir Isaac’s whit
Praising both beauty and benefit,
Yet, ol’ Leibniz can claim...

A good half of it!
September 2004

Note: By the end of Chapter 4, you, too, shall know the secret of Newton’s
whit!
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3) The Two Fundamental
Problems of Calculus

N

»
>
[

Algebra g Algebra
Sufficient Insufficient

Figure 3.1: Two Paths of Varying Complexity

In Figure 3.1, the little stick person (a regular feature
throughout the book) walks twice in the direction indicated by the
arrows on two separate paths. The differences between these two
paths are quite profound and distinguish mere algebra from
calculus. Hence, we will call the leftmost path the path of algebra
and the rightmost path the path of calculus.

On the path of algebra, our stick figure walks atop a line
segment. Although no numbers are given, we have an intuitive
sense that the slope associated with this walk is always constant
and always negative. From algebra, if (x,,y,)and (x,,y,)are

any two distinct points lying on a line segment, then the slope m
of the associated line segment is defined by the well-recognized
straight-line slope formula
m=22""
Xy =X

This definition implies that any two distinct points, no matter how
close or far apart, can be used to calculate m as long as both
points are directly located on the given line segment.
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The definition of slope also implies that if these calculations are
done correctly then m will be the same or constant for every pair
of distinct points (see Figure 3.2) we chose, again, as long as
both points are directly located on the line segment. Hence, the
use of the straight-line slope formula substantiates our intuition
that m is always constant. Secondly, there is an intuitive sense
that m is always negative since our stick figure steadily
decreases in elevation as the walk proceeds in the direction of the
arrow. Again, the straight-line slope formula can be easily used to
substantiate our intuition.

s (L) A (x,, )

(x,,7,) (x,,7,)

v
v

Figure 3.2: Different Points, Same Slope

Next, consider the shaded planar area below the path of
algebra. This area, which we will call 4, is enclosed by the
horizontal axis, the two vertical line segments, and the sloping line
segment. How would one calculate this area? Since the shaded
area is a trapezoid, the answer is given by the associated
trapezoidal area formula

A=%(b+B)h,

where B and b are the lengths of the two vertical lines segments
and / is the horizontal distance between them. Notice that the
shaded area A has four linear—or constant sloping—borders.

This fact makes a simple formula for A possible. In summary,
when on the path of algebra, elementary algebraic formulas are
sufficient to calculate both the slope of the line segment and the
area lying underneath the line segment.
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Turning now to the path of calculus, our stick person walks
atop a curve. During this walk, there is an intuitive sense that the
slope is always changing as the person travels from left to right. At
the start of the walk, our figure experiences a positive slope; at the
end of the walk, a negative slope. And, somewhere in between, it
looks like our figure experiences level ground—a high point where
the slope is zero! So, how does one compute the slope along a
curve where the slope is always changing? In particular, how does
one compute the slope for a specific point, P, lying on the curve
as shown in Figure 3.37 Perhaps we could start by enlisting the
aid of the straight-line slope formula. But, the question immediately

becomes, which two points (x,,y,)and(x,,y,)on the curve

should we use? Intuition might say, choose two points close to P .

But, is this exact? Additionally, suppose Pis a point near or on
the hilltop. Two points close together and straddling the hilltop
could generate either a positive or negative slope—depending on

the relative y, and y, values. Which is it? Obviously, the straight-

line slope formula is insufficient to answer the question, what is the
slope when a line is replaced by a curve? In order to answer this
basic question, more powerful and more general slope-generating
techniques are needed.

- I

(‘xl’yl) xzayz) (xl7yl)

P
(X5,¥,)

\ 4
v

Figure 3.3: Slope Confusion

The First Fundamental Problem of Calculus:

Find the exact slope for any point P
Located on a general curve
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Turning our attention to the shaded region under the
curve, we are compelled to ask, what is the area? Immediately,
the upper curved boundary presents a problem. It is not a border
for a triangle, square, trapezoid, or rectangle. If it were (where
each of the aforementioned figures has a constant-sloping
boundary) then we might be able to use a standard area formula—
or combination thereof—to produce an exact answer. No such
luck. We can go ahead and approximate the shaded area, but our
approximation will be non-exact and subject to visual error—the
same error problem we had when trying to use the straight-line
slope formula to find slopes for a curve.

The Second Fundamental Problem of Calculus:

Find the exact area for a planar region
Where at least part of the boundary is a general curve

This book is about solving the first and second
fundamental problems of calculus. In the course of doing so, a
marvelous set of mathematical tools will be developed that will
greatly enhance your mathematical capability. The tools
developed will allow you to solve problems that are simply
unanswerable by algebra alone. Typically, these are problems
where general non-linear curves prohibit the formulation of simple
algebraic solutions when trying to find geometric quantities—
quantities that can represent just about every conceivable
phenomenon under the sun. Welcome to the world of calculus.

b oo b oo
Iudx J.udx

Chapter Exercise

We end Chapter 3 with a single exercise that cleverly
illustrates the visual geometric limitations of the human eye. Paul
Curry was an amateur magician who practiced his trade in New
York City. In 1953, Curry developed the now widely-known Curry’s
Paradox, as shown in Figure 3.4, where the two polygons are
created from two identical sets of geometric playing pieces
containing four areas each.
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The question is obvious, how did the square hole get into the
upper polygon? Indeed, the eye alone without the supporting
benefit of precise measurement can be deceiving. Have fun as
you try to decipher Curry’s Paradox.

Figure 3.4: Curry’s Paradox

Note: The reader might ask the question, why isn’t the circle included in
the list of elementary areas above, a figure with a curved or non-constant-
sloping boundary and a figure for which we have an elementary area
formula?

The formula A = 7r> was derived over 2200 years ago by
Archimedes, using his exhaustion method, a rudimentary form of calculus.
Though simple in algebraic appearance, sophisticated mathematical
methods not to be seen again until the early European Renaissance were
required for its development.



(This page is blank)
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4) Foundations

“If I have seen further, it is by
Standing on the shoulders of Giants.” Sir Isaac Newton

4.1) Functions: Input to Output

The mathematical concept called a function is
foundational to the study of calculus. Simply put: To have calculus,
we first must have a function. With this statement in mind, let's
define in a practical sense what is meant by the word function.

Definition: a function is any process where numerical input is

transformed into numerical output with the operating restriction
that each unique input must lead to one and only one output.

Function Name

S
Processing
X Rule f (x)
Input Side Output Side

Figure 4.1: The General Function Process

Figure 4.1 is a diagram of the general function process for a
function named f . Function names are usually lower-case letters

chosen from f,g,h, etc.
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When a mathematician says, let f be a function, the

entire input-output process—start to finish—comes into
discussion. If two different function names are being used in one
discussion, then two different functions are being discussed, often
in terms of their relationship to each other. The variable x (see
Appendix A for a discussion of the true meaning ofx) is the
independent or input variable; it is independent because any
specific input value can be freely chosen. Once a specific input
value is chosen, the function then processes the input value via

the processing rule in order to create the output variable f(x) .
The output variable f(x)is also called the dependent variable

since its value is entirely determined by the action of the
processing rule uponx. Notice that the complex

symbol f'(x) reinforces the fact that output values are created by
direct action of the function process f upon the independent
variable x . Sometimes, a simple y will be used to represent the

output variable /(x) when it is well understood that a function
process is indeed in place.

Three more definitions are important when discussing
functions. In this book, we will only study real-valued functions of
a real variable; these are functions where both the input and
output variable must be a real number. The set of all possible

input values for a function f is called the domain and is denoted
by the symbol Df . The set of all possible output values is called
the range and is denoted by Rf .

Now, let's examine a specific function, the function
f shown in Figure 4.2. Notice that the processing rule is given by

the expression x? —3x—4, which describes the algebraic process
by which the input variable x is transformed into output.
Processing rules do not have to be algebraic in nature to have a
function, but algebraic rules are those most commonly found in

elementary calculus. When we write f(x)=x" —3x—4, we are
stating that the output variable f'(x)is obtained by first inserting

the given x into x> —3x —4 and then calculating the result.
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Function Name

A
X x> —=3x—-4 S(x)
Input Side - Output Side
Processing
Rule

Figure 4.2: Function Process for f(x)=x"—-3x—4

Ex 4.1.1: Calculating outputs when inputs are specific numbers.

f(0)=(0)" =3(0)-4= f(0)=—4

SH=(1)’=3D)-4= f(1)=-6

S =T =3(-T) 4= f(-7)=66

Ex 4.1.2: Calculating outputs when inputs are variables or
combinations of variables (see pronoun numbers as explained in
Appendix A).

f(a)=a’>-3a—4, no further simplification possible

fla+h)=(a+h)’ -3(a+h)—4=a"+2ah+h>-3a—-3h—4

Ex 4.1.3: Algebraic simplification where functional notation is part
of the algebraic expression.

fla+h)—-f(a) _ (a+h)* —3(a+h)—4—{a2 -3a—-4} -

h h
—_— 2_
f(a+h2 f(a)zzah+Z 3h s

2]



Now we consider Df and Rf for f(x)=x>—-3x—4.
Since we can create an output for any real number utilized as
input, Df = (—oo,00), the interval of all real numbers. More

extensive analysis is required to ascertain Rf . From algebra,

f(x)is recognized as a quadratic function having a low point on
the vertical axis of symmetry as shown in Figure 4.3. The axis of
symmetry is positioned midway between the two roots—1 and 4
where the associated x value is5 . Using3 as input to /', we

have that /' (3) =—2, which is the smallest output value possible.
Hence, Rf =[—2>,0)reflecting the fact that functional outputs

for f (whose values are completely determined by input values)

can grow increasingly large without bound as x moves steadily
away from the origin in either direction.

Y

A

Figure 4.3: Graph of f(x)=x"—-3x—4

Using the notation f(x)=x"—3x—4 is somewhat

cumbersome at times. How can we shorten this notation? As
previously stated, when it is understood that a function is in place

and operating, we can write y=x2—3x—4 to represent the
totality of the function process. The only change is that
y replaces f(x) as the name for the output variable. Other names
for the output variable such as u,v, w are also used.
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The simplicity that the x, y notation brings to the study of calculus

will become evident as the book progresses. An immediate
advantage is that one can readily plot input-output pairs

associated with the function as (x, y) coordinates in a rectangular

coordinate system. This plotting process is called graphing, and
the finished product is called a graph as shown in Figure 4.3.

t
Ex 4.1.4: Find Dg and Rg for g(¢) =£1. In this example, ¢ is
t_

the input variable, and g(¢) is the output variable. Notice that the
processing rule will not process negative ¢ values or a ¢ value of
1. This implies that the function g simply won'’t function for these
input values. Hence, we must restrict Dg to[0,1) U (1,00) so we
don’t get into input trouble. The domain Dg is called the natural
domain for g since g will produce an output for any value chosen
from[0,1) U (1,00). The reader can verify that Rg = (—co,o0) by
letting @ be any proposed output value in the interval (—eo,0),

t
setting—1 = a, and solving for the input value ¢ that makes it so.
t —
The ¢ will always be found—guaranteed.

We now turn to the algebra of functions. Let f and g be
any two functions. We can add, subtract, multiply, and divide these
functions to create a new function '. This is done by simply
adding, subtracting, multiplying, or dividing the associated
processing rules as the following example shows. Once F is
created, DF will have to be re-examined, especially in the case of
division. Since RF is associated with the dependent variable, it
usually doesn’t need such detailed examination.

Ex4.1.5: Let f(x)=x~18&g(x)=x",Df = Dg = (~e0,0)
To create:
F=g+f setF(x)=g(x)+f(x)=x"+x-1

F=g—f,setF(x)=g(x)— f(x)=x>—x+1
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F=g-f setF(x)=g(x) f(x)=x —x°
F:E,setF(x)zﬂz X
S S(x) x-1

Notice that DF = Df = Dg in the case of addition, subtraction,
and multiplication. However, for division, DF = (—eo,1) U (1,00).

Our last topic in this section is function composition, which
is input/output processing via a series of stages. Let f and g be

two functions. Consider the expression f(g(x)). Peeling back the

functional notation to the core (so to speak) exposes an input
variable x, input associated with the functiong. The output

variable for g is g(x) . But what dual role is g(x) serving? Look at
its position within the expression f(g(x)). Notice that g(x)also
serves as the input variable to the function f . Hence, outputs from

g are the inputs to f*; and the expression f(g(x)) is the final
output variable from this two-stage process. The flow diagram
below depicts the stages by which x is processed into f(g(x)).

B g g(¥)—— f(g(x)

f(g(x)) may also be written f o g(x) where the first function

encountered in normal reading of the symbol (in this case f') is
the last stage of the process. Nothing prohibits the reversing of the
two stages above. We can just as easily study g(f(x)) or

g o f(x) by constructing an appropriate flow diagram.
1 2
o x——s [ £ () —— g(f(x))

Be aware that the final output variable f(g(x)) is rarely the same

asg(f(x)). But we shouldn't expect this. A light-hearted

illustration clarifies: dressing the foot in the morning is a two-stage
process.



First, one puts on a sock; and, secondly, one puts on a shoe—
normal and accepted practice. The result is a product that results
in comfortable walking. But, what happens when the process is
reversed? One wears out socks at an extraordinary rate, and
one’s feet become very rank due to direct exposure to leather!

Ex 4.1.6: Form the two function compositions f(g(x)) and
g(f(x) if f(x)=x"+landg(x)=x—1.
fg))=f(x=D)=(x=-1)"+1=x"=2x= fog(x)

gf () =g+ =(x"+D)-1=x"=go f(x)

Notice f o g(x)# go f(x) (remember the shoe and sock).

Functional compositions can consist of more than two stages as
the next example illustrates.

Ex 4.1.7; Let f(x) = ;Jr

21 ,g(x)=x" and h(x) = Jx.

Part 1: Construct a flow diagram for the composed (or staged)
function H where H =ho f o g . Notice how the notation for the

input variable is sometimes suppressed when speaking of
functions in global terms.

B g(X) > £ g()——> [ (g(x)
.y F(g(x)——=h(f(g(x))
Part 2: Find the processing rule for H(x) = h( f(g(x))).

Reader challenge: Find the associated DH and compare
toDh, Df and Dg .

H(x) = h(f () = h(f(x*)) = h( 2 j Sy R
3x° -1 3x° -1
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Part 3: Find the processing rule for F'(x) = f(g(h(x))).
Reader challenge: compare DF to DH in Part 2.

F(x)= f(g(h(x) = f(g(Wx) = f(Vx)) =

f(|x|) _ |x| +2
3|x| -1

b oo
judx

Section Exercise

Let f(x)=x" —4x and g(x) =+/x.

A. Find processing rules for f + g f—ggfi and %
g

B. Find the natural domain for each of the functions in A.
C.Find fogandgo f;find the natural domain for each.

D. Complete the table below for f(x)

Input Value Output Value

+ | [ W N O N

flat+h)-f(a)
h

E. Simplify the expression
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4.2] Inverse Functions: Output to Input

Suppose two functions f and g have the following

composition behavior g( f(x))=x. What does this mean? To

help answer this question, first construct a flow diagram for the
two-stage process.

B s f() () ——> g (f(x) = x

From the diagram, we see that x is not only the initial input but the

final output. Let’s follow the action stage by stage.
1
> :Stage 1

x—f>f(x) : The input x is transformed into output f(x) by f .

2
> :Stage 2

f(x) T>g(f(x)) =Xx: The output f(x) now becomes input
for g .The function g transforms f'(x) back into the original input x
(as shown by the concise notation g( f(x)) = x).

Definition: Let f be any function and suppose there is a function
g with the property that g( f(x)) = x . We then call g the inverse

function of f and give it the new notation /' . Hence g = /' by

definition, and f ' (f(x))=x. The function f'is called the
inverse function because it reverses (or undoes) the processing
action of f by transforming outputs back to original inputs.

Ex 4.2.1: Let g(x) = Sx+l and f(x) = 2xt] :
x—=2 x=3
A) Show g(f(4))=4.
2(4)+1 39)+1
g(f(4))=g( o j=g(9>= e



B) Showg = 1

s 3+ _Tx _ .
g(f(x) =gy )——(M) S= o =r=g=s
C) Show f(f ™ (x)) = x
-1 3x+1 (3V+1)+1 7_X_
SUT D= CN =005 =7 =

Note: B) and C) together imply /' (£ (x))= f(f ' (x))=x.

What conditions need to be in place in order for a function
f to have an inverse? We will examine the function f'(x) = x”in

order to answer this question. Let x =2. If f_1 exists, then we
must have that /' (f(2))= /' (4)=2. But, we could also have

that /™' (4) =—2. The supposed function f~' can transform the

output4 back to two distinct inputs, 2 and—2 (violating the very
definition of what is meant by the word function). So, how do we

guarantee that f has an inverse? Answer: we must restrict f to a
domain where it is one-to-one.

Definition: A one-to-one function is a function where every unique
input leads to a unique output. Note: you are encouraged to compare
and contrast this definition with the general definition of a function where
any given input leads to a unique output.

A one-to-one function f (sometimes denoted by f, ,,) allows for
precise traceability of each and every output back to a unique
input. As a result, a true action-reversing function f_1 can be
formulated, undoing the forward action of f .

Ex 4.2.2: By restricting the domain of f(x)=x" to the half
interval[0,—o), we create a one-to-one function. The domain-

restricted function f now has an inverse given by £ ' (x) = Jx.

34



Once a function f has been established as one-to-one on
a suitable domain, we are guaranteed f_l exists and has the
property /' (f(x))=x. An immediate consequence is the
property /' (f(x))= f(f~'(x))=x, a composition property
unique to functions in af,f_1 relationship. We will use this last
property to actually find a processing rule forf_1 given a known
processing rule for f, ,,. What follows is a four step algebraic

procedure for finding /.

1
I : Start with (£~ (x)) = x, the process equality that must be
in place for an inverse function to exist.

2
- :Replace /' (x)with yto form the equality f(y)=x, the

second use in this book of simplified output notation.
3

I : Solve for y in terms of x . The resulting yis £~ (x).
4
I : Verify by the property £~ (f(x))= f(f ' (x))=x.

The next two examples illustrate the above procedure.

Ex 4.2.3: Find /' (x)for f(x) = 203
4x+7
L 20 =3
= ff (>€))—4f_1(x)_7 x
2. 2y-3
'4y—7_

3
F:2y-3=@Ay+7Nx=2y-3=4yx+7x
=2y—4yx=Tx+3= y(2—-4x)=Tx+3

Tx+3 O
= = x
2—4x S @)




4
> (Step4): Left as a reader challenge

Ex 4.2.4: Find ' (x) for f(x)=x"+2.

ST =T @) +2=x
(»)’+2=x

(1) +2=x=() =x-2= y=3x—2
@) =00 +2)—2 =3 =x
U @) =0G=2)) +2=(-2)+2=x

N R

boc
J.de

Section Exercise

+
Consider the following three  functions f(x) = 3)611 > :
2— 2 _q
g(0) =% andh(x) =",
8—x

A) What is the domain for each function?

B) Find a suitable restriction for the domain of each function so
that the function is one-to-one.

C)Find /™', g 'andh™".



4.3) Arrows, Targets, and Limits

When arithmetic is expanded to include variables and
associated applications, arithmetic becomes algebra. Likewise,
when algebra is expanded to include limits and associated
applications, algebra becomes calculus. Thus, we can say, the
limit concept distinguishes calculus from algebra. We can also
say—as evidenced by the continuing sales success of Silvanus
Thompson’s 100-year-old self-help book, Calculus Made Easy—
that the limit concept is the main hurdle preventing a successful
study of calculus. An interesting fact is that excessive use of limits
in presenting the subject of calculus is a relatively new thing (post
1950). Calculus can, in part, be explained and developed using an
older—yet still fundamental—concept, that of differentials (e.g. as
done by Thompson). In this book, the differential concept is the
primary concept by which the subject of calculus is developed.
Limits will only be used when absolutely necessary, but limits will
still be used. So, to start our discussion of limits, we are going to
borrow some ideas from the modern military, ideas that Thompson
never had access to.

What is a limit? Simply put, a limit is a numerical target
that has been acquired and locked. Consider the expression
x — 7 where x is an independent variable. The arrow (—)
points to a target on the right, in this case the number7 . The
variable x on the left is targeting 7 in a modern smart-weapon
sense. This meansxis moving, is moving towards target, is
closing range, and is programmed to eventually merge with the
target. Notice that x is a true variable: in that it has been launched
and set in motion towards a target, a target that cannot escape
from its sights. Now, our independent variable usually finds itself
embedded inside an algebraic (or transcendental) expression of
some sort, which is being used as a processing rule for a function.
Consider the expression 2x+3 where the independent variable
x is about to be sent on the missionx — —5. Does the entire
expression 2x+ 3 in turn target a numerical value asx — —57? A
way to phrase this question using a new type of mathematical
notation might be

target(2x+3) ="

x—-5
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Interpreting the notation, we are asking if the output stream from
the expression2x+3 targets a numerical value in the modern
smart-weapon sense as x targets —5? Mathematical judgment
says yes; the output stream targets —7. Hence, we complete our
new notation as follows:

target(2x+3)=-7.

x—=5

This all sounds great except for one little problem: the word target
is nowhere to be found in calculus texts. The traditional
replacement (weighing in with 300 years of history) is the word
limit, which leads to the following definition:

Definition: A limit is a target in the modern smart-weapon sense.

Correspondingly, our new target notation can be appropriately
altered by writinglimit(2x+3)=-7, and further shortened
x—-5

to lim(2x+3) =—7. Let's investigate three limits using our new

x—-5

notation per the following example.

2
X

—4 o
Ex 4.3.1: Suppose f(x) = . Evaluate the three limits:

A) lim(f(x)), B) lim(f(x))and C) lim(/(x)).

A) lin}(f(x)) = lin}(f_‘z“) =5. Here, we just slipped the input
X X

2

X
target 3into the expression to obtain the output target5 .

x=2
Note: this is easily done by mathematical judgment, the mathematician’s
counterpart to engineering judgment.

B) Our judgment fails for lirrzl(f(x)) since a simple slipping in

of 2 for x creates a division by zero. Here, we will need to return to
the basic definition of limit or target. Recall that a target value is
the value acquired, locked, and programmed to be merged with.



X

lim(f (x)) = hg;( : 2“} -

Hence: o
hm( [x+2][x —2]

x—2 x_2

jzling(x+2):4

In the above equality stream, the input x has acquired 2 and has

locked on its target as denoted by x — 2. Turning our attention to
2

the associated output expression , we find that it
X —

algebraically reduces to x+2 for allx traversed in the locking
sequence x — . The reduced expression x + 2 allows us to readily
ascertain what the associated output stream has acquired as a
target, which is4 . Targets are just that—targets! The mission is
not always completed just because the output stream has
acquired and locked a target. In some cases, the mission aborts
even though the output stream is on a glide path to that eventual
merging. In the case above, the mission has been aborted by
division by zero—right at x = 2. However, it makes no difference;
by definition, 4 is still the target.

C) Inx = a, the independent variable x has targeted the
pronoun number a (perfectly acceptable under our definition
since the target is a numerical value). As a result, the output
stream targets an algebraic expression with

a’ -4
;a
a-2

#2.

lim( £ (x)) = lim(xz _4] =
x—a x—a|l x—12

Ex 4.3.2: Let f(x) =x” —4x . Evaluate }imol[ Slat h}: — f(a)} :

Two things are readily apparent. Just slipping in 7 =0 creates the
indeterminate expression2; so, just slipping in won’'t do. Also, the

input target being a pronoun number probably means the output
target will be an algebraic expression.



First, we simplify the expression before the limit

flath)-f(a)
h

is investigated, which is done to remove the perceptual problem
ath=0.

fla+h)—f(a) _ (a+h)’ —4(a+h)—[a’ —4ad]
h h
a’+3a*h+3ah* +h’ —da—-4h—a’ +4a
h

=3a’ +3ah+h* -4

Notice that the perceptual problem has now been removed
allowing one to complete process of finding the limit

lim[f(a_i_h) f(“)} =lim[3a’ +3ah+h’ ~4]=3a" —4.
h—0 h h—0

Limits or targets do not always have to be finite. When we
write x — oo, we mean that x is continuously inflating its value
with no upper bound. A mathematical subtlety is that the infinity
symboleoreally represents a process, the process of steadily
increasing without bound with no backtracking. Hence, the
expression x — <o is redundant. There is no actual number atoo:
just a steady succession of process markers that mark the
continuing unbounded growth of x .

Ex 4.3.3: Let f(x) =2 +l .Then lim{2 +l} =2.
X

X—>00 X

Ex 4.3.4: For f(x) = fx ;1 find lim[ £ (x)].
X x—>00

x—e| | —=3x X—>00 3

: .| 2x+1 .| 2+1 2
)lcl_{g[f(x)]=hm[ }:hm[l 3}:——.
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Before moving on to our final example, a financial
application, we’ll plug a few notational holes. The notation
Xx — —oo simply means the process of decreasing without bound

(i.e. the bottom drops out). Also, if we have that y = f(x), the use
of y again simplifies notation:

x—>a=y—L and lim[ f(x)]= L mean the same thing.
xX—a

Ex 4.3.5: Consider the compound interest formula 4 = P(1 +f)m .

nt

Investigate lim[p(1+%)™] given a fixed annual interest rate
n—yoo

r and total time period ¢ in years. The independent variable n is
the number of compounding periods per year.

To solve this problem, we first move the limit process inside so the
process can join the associated independent variable n :

lim{ p(1+)" ] = pilim{(1+ £)"]}'.

Here, we have a classic battle of opposing forces. Letting an
exponent go unbounded means that the quantitya >1 to which

the exponent is applied also goes unboundedlim[a"]=oo.

n—>o

However, whena =1, the story is different with lim[1”"]=1. In the

n—eo
expression above, the exponent grows without bound and the
base gets ever closer tol. What is the combined effect? To
answer, first define m == n =rm. From this, we can establish

the towing relationship n — oo < m — oo. Substituting, one
obtains

lim[ p(1+5)" ] = p{lim{(1+5)" ]} = p{lim{(1+-)" ]}".

Now let's examine lim[(1+-)" ]. We will evaluate it the easy
m—>oo

way, via a modern scientific calculator.
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m value 1+
1 2

10 2.5937
100 2.7048
1000 2.7169
10000 2.7181
100000 2.7183
1000000 2.7183

We stopped the evaluations atm =1,000,000. Some might say
that we are just getting started on the road toeo. But we quit.
Why? Look at the output stream; each time m is increased by a
factor of10, one more digit to the left of the decimal point is
stabilized. Let’s call it a day form =1,000,000 since four digits to
the left of the decimal point would be quite good enough for most

ordinary applications. If one needs a few more digits, one can
always compute a few more digits. The actually result is the

famous numbere =2.7183..., and our final limit becomes:
A= p{lim[(1+D)"]}" = ple}”.

The expression A = pe" is called the continuous interest formula
(much more on this in Chapter 8). For a fixed annual interest
rate 7 and initial deposit P, the formula gives the account balance
A at the end of ¢ years under the condition of continuously adding
to the current balance the interest earned in a twinkling of an eye.
The continuous interest formula represents in itself an upper limit
for the growth of an account balance given a fixed annual interest
rate. This idea will be explored further in the section exercises.

This ends our initial discussion of limits. We will visit limits
again (though sparingly) throughout the book in order to help
formulate some of the major results distinguishing calculus from
algebra—again, only to be done on an as-needed basis.
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To summarize:

Limits are foundational to calculus and will always be so.
Limits lead to results unobtainable by algebra alone.

b o0
Iudx
a
Section Exercises

2 2
1) Evaluate: A) lim Brhy =9 . B)lim| J;3x+1 ’
h—0 h el 5x° +10

C)lirr51[4x2—7] and D)lim[2 + 1000} .

X—>o0 X

. kY . -
2) Evaluate lim| 1+— | ,k > 1. This is more difficult!

n—yoeo n

f(a+h)—f(a)]
h

3) For f(x) =3x> —7, evaluate %‘“&{

4) Compare the final amount fromA=pe” to the final amount
from A= p(l+L)"forr=7%,t=10, and p=3$2500.00.
In4=p(l++)", use the following compounding periods:

n=2,4,6 and 12 times annually.




4.4) continuous Functions

Time in many ways is a mysterious concept, even though
our modern lives are essentially governed by intervals of time.
Let’'s examine one of these intervals, say the interval from 08:00 to
17:00 (military time) defining a typical workday. We could write this

interval as [8,17] and graph it on an axis labeled 7.

° > [

8 17

Borrowing the stick person from Chapter 3, let's walk through our
daily routine during these wide-awake working hours.

. g\’ >
8 17

Several things are apparent: Our walk moves forward in the
direction of increasing time, our walk does not stop, and our walk
passes through all intermediate times when going from 8tol7.
The last statement says we cannot wave a magic wand at 9:55
and it suddenly become noon, skipping the dreaded 10:00
meeting with the boss. The nature of real life is that, in order to get
from time A to timeB, we must pass through all times in
between. This “passing through” characteristic allows us to say
that time continuously flows from a present value to a future value.
The x axis behaves in exactly the same way. In the diagram
below, the only difference is that the axis has been relabeled.

° !C > X

8 17

Our stick person starting a walk at 8 still must pass through all
intermediate numbers in order to arrive at 17 . By this simple
illustration, it is easy to see that the entire x axis has the
continuous-flow characteristic—just like time. The only real-life
difference is that our figure’s walking motion on the x axis can
occur from left to right (like time) or from right to left (unlike time).




Now consider the function A(f)=3000—16.1¢> where
time ¢ in seconds is the input (independent) variable. The output
or dependent variable A(¢) is the height of a free-falling object

(neglecting air resistance) dropped from an altitude of 3000 feet.

In the above mathematical model, t =0 corresponds to the time
of object release. The object does not fall indefinitely. Soon it will
impact the earth at a future time 7 when/h(7)=0. Using the

equality 2(T) = 0 =>3000—16.17> =0, one can solve for T to

obtainT =13.65. Per the previous discussion on time, we can
assume that time in the interval[0,13.65] flows continuously from

t =0 (release) to t =13.65 (impact). Likewise, the output variable
drops continuously from /% =3000 (release) to /4 =0 (impact),
skipping no intermediate altitudes on the way down. The function
h(t)is graphed in Figure 4.4 where the unbroken curve signifies
that all intermediate attitudes are traversed on the way to impact.

A

(0,3000),

(13.65,0)

Figure 4.4: Graph of A(¢) =3000—16.1¢°

Any break or hole in the curve would mean that the object has
mysteriously leaped around an intermediate time and altitude on
the way to impact as shown in Figure 4.5—quite an impossibility.
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A

(0,3000).
N\

(13.65,0)

Figure 4.5: The Impossible Leap

Let's remove the real-world context. This is easily done by writing
f(x)=3000-16.1x" and treating f'(x)solely as an object of
algebraic study. Expand the domain to the natural domain and
graph f(x) . Note: the variable tin h(t) cannot be negative since tis
representing the real-world phenomena of time. However, the variable
X in f (x) can be negative since it (employed as an object of algebraic
study) is not being used to represent anything in the real world.

A y
(0,3000)

» X

(713.65,0) (13.65\0)

Figure 4.6: Graph of f(x)=3000—-16.1x"
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Figure 4.6 is the result. Notice that the enlarged graph is identical
in part to the graph in Figure 4.4. The two inclusions (due to
expansion of the natural domain to all real numbers) are 1) a left
side and 2) negative y values. Since the entire x axis serves as

the natural domain and has the continuous-flow characteristic, the
output stream should also have the continuous-flow characteristic
when transitioning from one value to another. Again, continuous
flow is the mathematical characteristic that allows us to graph
f(x)=3000—-16.1x> as an unbroken curve on its natural
domain. The following is a working definition for a continuous
function f .

Definition: let f be defined on a subinterval[a, b] of the x axis. We
say f'is continuous on [a,b] if the output values from f flow
smoothly (no gaps or jumps) on a path from f(a) to f(b)as the
input values flow from atob . Note: this definition will allow the
flow path from f'(a)to f(b)to meander, but the flow path can not
have a break or chasm.

The good news is that most functions used to model real-
world phenomena are continuous on their respective domains of
interest. Notable simple and practical counterexamples of
discontinuous functions exist, especially in the world of business
and finance (Section Exercises). Algebraic functions are always
continuous except 1) in those regions of the x axis where even
roots—square roots, etc.—of negative inputs are attempted or 2)
those single x values where a division by 0 occurs.

Ex 4.4.1: Find the region on the xaxis where the algebraic

x+10
function f(x) =, 5 is continuous. The “root exception” 1)
X+

leads to the rational inequality
x+10
2 0= x€ (—o0,—10]U[-2,00).
x+2
Exception 2), division by 0, is also not allowed. Thus, the region of
continuity reduces further to (—eo,—10] U (=2,0) .
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To close this section, we will merge the informal definition
of continuity with the formal definition of limit:

Definition: a function fis said to be continuous at a point x =a

iflim( f(x))= f(a). Via direct implication, three things must
Xx—a

happen for f to be continuous atx = a: the limit as x — a exists
in the modern smart-weapon sense, the output f(a)is defined,
and the actual value of the limit is f'(@) . Interpreting, the definition
states that the output stream f(x) targets f(a) as x targets

a and actually merges with f'(a)as x merges with a . All of this is
just another way of saying continuous flow.

Ex 4.4.2: Use the above definition to show that the function
S(x)=
x_

linzl(f(x)) =2 by Example 4.3.1. However, f(2) does not exist,
x>

-4
is discontinuous atx=2. We have that

which leads to lirrzl(f(x)) # f(2) . Hence, by definition f(x) is not

continuous atx =2 . Note: A graph of f(x) would have a little hole
atx = 2 since x = 2 is not part of the natural domain of f .

b (1]
Iudx
Section Exercises
x* —2x
1) Find the region of continuity for /' (x) = e
x —

2) A parking garage charges $3.00 for the first half hour and an
additional $1.00for every additional half hour or fractional part
thereof—not to exceed $10.00for one 12 hour period. Graph the
parking charges versus time for one 12hour period. Is this a
continuous function on the time interval[0,12]? Why or why not?



4.5) The True Meaning of Slope

The concept of slope is usually associated with a straight
line. In this section, we will greatly expand the traditional concept
of slope and extract its true meaning—that of a change ratio. But
first, let's review slope in its traditional setting via the straight line.

y
A
(x5,7,)
’% Ay=y, =y,
(x1,71) (x5, 1)
Ax=x, —x,
> x

Figure 4.7: Line Segment and Slope

In Figure 4.7, our familiar stick person starts at the point
(x,,,) and walks the line to the point(x,,,). In doing so, the

figure experiences a change—denoted by the symbol A—in two
dimensions. The change in the vertical dimension is given

by Ay =y, —y, . Likewise, the change in the horizontal dimension
is given by Ax = x, —x, . The slope m of the line is defined as the
simple change ratio:
A —
m=Y _Y2"N
Ax  x,—x

Slope can be rendered in English as so many y units of change

per so many x units of change. The two key words are units and
per (the English rendering of the fraction bar) as now illustrated by
the following two walks in dissimilar coordinate systems.
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D
0 (4.15) 1 (4.15)

(2,5) (2,5)

> X >t
Figure 4.8: Similar Walks—Dissimilar Coordinates

In Figure 4.8, the stick person walks two visually-similar line
segments in dissimilar coordinate systems. Granted, the numerical
quantities may be identical in both cases, but the dimensions are
different. In the leftmost coordinate system, the units assigned to
both x and y are inches. In the rightmost coordinate system, the

units assigned to D are miles and the units assigned to ¢ are
hours. Let's compute the slope m in both cases and interpret. In
the leftmost walk:

- _ Ay _(15-5)inches _10inches _ 5 inches
Ax  (4-2)inches  2inches inch

Here, the slope m is 10 inches of ychange per2inches
of x change. Dividing the10by 2 scales the y change to a single

unit of x change, and the final slope can be rendered as 5inches
(of y change) per inch (of x change). When speaking of slope,
the two phrases “of ychange” and “of x change” are usually
dropped. Dropping the phrase “of change” can lead to some
potential confusion between y & Ay and x & Ax if we forget that
we are dealing with a change ratio. In the rightmost walk:

;= AD  (15-5)miles _10miles _ 5 miles
At (4—-2)hours  2hours hour




In this case, the slope m is 10 miles of y change per2 hours

of x change. Dividing the 10 by 2 again scales the y change to a
single unit of x change, and the final slope can be rendered as

Smiles per hour. You should recognize this as the familiar
expression for average velocity over a time interval.

Slope interpretation is always that of unit(s) of change per
unit of change. Suppose the rightmost horizontal axis in Figure
4.8 represents weeks (w), and the vertical axis, the number of

houses (/) built by a major construction company. Then, the
slope m would be:

_ Ah _(15-5)houses _10houses _ 5 houses
Aw  (4-2)week 2weeks week

Here, slope represents an average construction rate or average
construction velocity. In formulating slopes or change ratios, the
denominator is usually the total change in the assumed
independent variable, represented by the horizontal axis. Likewise,
the numerator is usually the corresponding total change in the
assumed dependent variable, represented by the vertical axis. An
actual cause-and-effect relationship between the independent and
dependent variables strongly suggests that a function exists.

A straight line has the unique property that the slope or
change ratio remains constant no matter where we are on the line.

(x3,5,)

téx,y)

(x,y)  (xy) (x5, )

This constant-slope property can be used to develop the well-
known point-slope equation of a straight line. Let (x,))be any
arbitrary point on the line.

a1



Then by similar triangles, we have that

A — —
m:—y:y N _ y1:>
Ax x-x;, x,-Xx

Xy =X

Y=y, =m(x—x)..

The equation y — y, = m(x — x,)can be easily simplified further to
the slope-intercept form y =mx+b, where bis the y intercept

and—b/mis the xintercept. Notice that the slope-intercept
form y = mx + b describes a functional relationship between the
input variable x and the output variable y .

Ex 4.5.1: Write the equation of a straight line passing through the
two points (—2,5)and(3,-9) . In actuality, it makes no difference

which point is labeled (x,, y,) and which point is labeled (x,, v, ).

But, this book will use the following convention: (x,, y,) will be the
point with the smallest xcoordinate. Therefore, we have
that(x,,y,) =(=2,5), and(x,,y,) =(3,-9) by default. The slope
m (units of y per unit of x ) is given by

_[H9-0G)]_-14_ 14
B-(-2] 5 5

Once m is obtained, the equation of the line readily
folowsy—5=—(x+2)= y==x—-2. Reducing to the

slope-intercept and functional form y = —%x—%allows for quick

determination of both the x and y intercepts: (—-,0)and (0,—%).

Sometimes, we say a line has three essential parameters: the
slope, the xintercept, and the y intercept. To characterize a line

means to find all three.
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Section Exercises

1. Write the equation of a line passing though the points
(6,—3)and (—1,7) and characterize.

2. Write the equation of a line with slope m =3and passing
through the point(2,1) . Characterize this line.

3. A traveler travels an Interstate highway for 5 hours starting at
mile marker 200 and ending at mile marker500. Plot these two
points on a Distance versus time (¢, D) coordinate system and

calculate the slope for the line segment connecting the two points.
Interpret the slope in terms of the traveler's velocity. In reality,
what velocity does the slope represent? Assuming a linear (line-

like) relationship, write the distance Das a function of time
i.e. D(t) for tin the domain[0,5].

Captain Kirk, come beam me yonder
To a time of future wonder,

To the years where we could be

If Archimedes on his knee

Alone was left to dream and ponder.

But Rome then skewered from behind

And left us stranded with our mind

To contemplate what might have been

If earth just once could have a win

While on the rise with humankind  December 2001

Note: Archimedes, the inventor of a ‘proto-calculus’, died at the age of 75

in 212BC per Roman hands. His remarkable investigations were not to be
continued again in earnest until the Renaissance.



4.6) Instantaneous Change Ratios

(x5,7,)

\ 4

Figure 4.9: A Walk on the Curve

We are now ready to do an initial exploration of The First
Fundamental Problem of Calculus as introduced in Chapter 3.

Again, let our stick person walk the curve from (x,,y,) to

(x,,y,)as shown in Figure 4.9. The overall Ay and Ax will be

exactly the same as that experienced by the lighter-shaded stick
person on the line segment below, where the slope remains
constant. But, does the slope remain constant while walking the

curve? The answer is no. Let (x, y) be any intermediate point on
the curve. From the relative shapes of the two dotted triangles, we
can easily see that average slope encountered from(x,, y,)to
(x,y) is much greater than that encountered from (x,)) to

(x,,¥,). Also, by comparing these slopes to the three similar
triangles marked with a=, we find that the overall average slope
from (x,, y,)to (x,, y,) satisfies

yz_y<y2_y1 <y_y1
X, =X  X,—X, X—X

for any point (x, y) on this particular walk.
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Suppose the question is asked, what is the exact slope or
instantaneous change ratio at the point(x, y) as depicted by the
thickened triangle in Figure 4.10? For starters, at least three
approximate answers are possible, represented by the three sides
of the above inequality. Each answer depends on an arbitrary
choice of two reference points and the slope formula for a straight
line. Per visual inspection, none of these possibilities seem to
match the exact slope experienced when our stick person is

walking right on the point(x, y). Obviously, some fundamental
improvement in methodology is needed.

(x5,¥,)

(X1, )

=X T X
Figure 4.10: Failure to Match Exact Slope

In order to start developing our improved methodology, we
let y be a function of x (i.e. y = f(x)). Accordingly, we re-label

our walking-the-curve diagram as shown in Figure 4.11. The
problem is to find the exact slope or instantaneous change ratio at

the point(a, f(a)). Our precariously-perched stick person is

definitely experiencing exact slope in terms of a greatly
accelerated heart rate. But, can we compute it?

Continuing, place a second point (a + A, f(a+ h)) on the

curve wherehis a true variable (moving quantity). When #his
large, the point (a+ A, f(a+ h)) will be some distance from the

point(a, f(a)) as shown in Figure 4.11.



A
ih farny 02D

Ay = f(a+h)- f(a)
Ax=a+h—-a=h

(x5 f(x,))

3
>

X

Figure 4.11: Conceptual Setup for
Instantaneous or Exact Change Ratios

Collapsing /4 or letting / draw down to zero will in turn draw the
point (a+h, f(a+h)) back towards—and eventually close to—

the point(a, f(a)). In this scenario, (a, f(a))is the fixed point
and (a+h, f(a+h))is the mobile point. No matter what value
we choose forh#0, we can calculate both Ay and Ax for the

straight line segment connecting (a, f(a))and(a+#h, f(a+h)).

We can also calculate the slope m for the same line segment,
given by

_Ay_ flath)—f(a) _ fla+h)-f(a)
Ax a+h—a h '

Recall that the slopemis in terms of vertical change over
horizontal change: units of the dependent variable y per single unit

of the independent variable x . The slope m is precise for the line
segment, but only serves as an estimate for the slope of the curve
at the point(a, f(a)), in that m is the average slope experienced

when walking the curve from (a, f(a))to(a+h, f(a+h)). So,
how is the estimate improved?



We can use the limit process

lim{&} . lim[f (@th)-J (")}
h—=0| Ax h—0 h

to draw the mobile point (a+ 4, f(a+ h)) ever closer and back
into the fixed point(a, f(a)). Ash — 0, the steady stream of

A
slopes—yproduced should target and eventually merge with the

exact slope as experienced by the stick figure at(a, f(a)). This
exact slope or instantaneous change ratio at(a, f(a)) is denoted
by f’(a) (Figure 4.12). It is time for a very key definition.

A

A\ 4

a a+h X

Figure 4.12: Better and Better Estimates for f”(a)

Definition: Let f be a function defined on an interval [a,b]and let
c be a point within the interval. The symbol f”(c) is defined as the
exact slope or instantaneous change ratio at x = c provided this
quantity exists. One way of obtaining the quantity f'(c) is by
investigating the limit
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lim[&} = lim{f (cth-f (C)} .
h—0 AX h—0 h

If the above limit exists, we will go ahead and define /”(c)to be
the value of this limit:

N &_. f(c+h)—f(c)
f(c)_lhli%[m}‘%[ h }

The quantity /”(c) is known in words as the first derivative

(or first derived function) of f atx =c. The process of obtaining

f '(c) is known as differentiation. One way—the most common

way—of doing the process of differentiation is by using limits.
Another way is by using differentials, to be discussed in chapter 5.

Ex 4.6.1: Using a limit process, differentiate the polynomial
function f(x) =x” —3x—4 for any given x and interpret the result
(refer back to Ex 4.1.3).

In this example Xx takes the place of cin the definition above and
will remain fixed throughout the differentiation process—again, a
process where / is the only true variable. But, once the process is
completed, the product /’(x)will be usable for any givenx,
providing exact slope as a function of x . By definition,

[f(x+h)—f(x)}j
h

f(x)=lim

oy | kB =3(x+h)—4—{x* —3x—4}
f(X)—lhlgOl[ - }

We will stop here for a moment and address an issue that
frustrates those students who try to short-circuit the limit process

by a direct substitution of 4 =0 in the above or similar expression.



Notice that when you do this, you end up with

f,(x):[(x+0)2 —3(x+0)—4—{x° —3x—4}}:%,

0

an indeterminate expression. Why? Setting /4 =0 immediately
creates two identical points (x, /(x))and(x+0, f(x+0)), from

which no slope can be made since slopes require two points—in
particular two points having distinct horizontal coordinates—for
their formulation. So, continuing with the example,

2 —_—
f(x)= %lir%[th_i_hﬂ} = f(x)= yn(}[zx +h-3].

Notice that the problematic 4 now cancels into the numerator.
This is quite acceptable since we are only interested in
ascertaining the limit (target) as/# — 0, not whether the target is
actually achieved whens=0. Also, notice that the
expression 2x + h —3is always based on two points no matter

how minuscule we make /2, making it a valid expression for slope
having the acceptable units of slope. Completing the differentiation
process by use of limits, we have that

1(x)= 1hin01[2x+h —3]=2x-3.

Again f'(x)=2x-3, called the first derivative, is the product
from the just-completed differentiation process. By definition,
f’(x)is the exact slope or instantaneous change ratio at an

arbitrary point x in the domain of the function f(x)=x” —3x+4.

In Example 4.6.1, f’(x)=2x-3is a new function

created from the associated parent function f(x)= x> —3x+4.

We claim that f’(x)is slope as a function of x . Let's check out

this claim as to reasonableness by calculating three slopes in the
domain of f (Figure 4.13).



L\<

Figure 4.13: Three Slopes for f(x) = x> —3x—4

The three points that we shall use arex=-1.5, x= %
and x =3. Computing the exact slope f”(x) for each point, we
have the following: f'(—1.5) =2(-1.5)-3=-6, f'(3)=0, and
f’(4)=5. All three slopes seem to match the visual behavior of
the graph in Figure 4.13. The slope is negative where it should be
negative (—e,3) and positive where it should be positive (2, 0) .
In addition, the slope is O atx :%. This, the lowest point on the
graph, is in the center of the valley and level by visual inspection.

One of the things that we can immediately do with our
new-found slope information is to develop the equation of a
tangent line at a point x = ¢, a line given by the formula

y=f()=fe)x=c).

A tangent line is simply a line that meets the function f at the

point(c, f(c))and has exactly the same slope, /(c), as f at
x =c. The three lines in Figure 4.13 represent tangent lines.




The tangent-line formula is nothing more than the point-slope
formula in Section 4.5 modified for a pre-determined slope. At the

pointx =—1.5, the tangent-line equation is
y—f(=1.5)= f'(-1.5)(x+1.5),  which  reduces after
substitution to y—2.75=-6(x+1.5), which can be reduced
further to the slope-intercept formy=—6x—6.25. Lastly, the
exact slope in this context is in terms of y units of change per

single x unit of change. The next example shows how to adjust
the interpretation of slope while maintaining the fundamental
meaning.

Ex 4.6.2: Differentiate D(¢f)=¢>—3¢t+4and interpret by using

the limit process where distance D is in feet, and time ¢ is in
seconds. This is exactly the same function that we had before
except f is now D and x is now ¢, making the

derivative D’(f) =2t —3. What is the interpretation? If we graph

our function on a D & f coordinate system, the graph will have the
same appearance as the graph in Figure 4.13, and D'(t) will

represent slope. But, D'(t) is more than slope in that it has the
units of feet per second, which are the units of velocity.
Interpreting further, D’(¢) is not just an average velocity but an

instantaneous velocity (like the velocity registered on your car’s
speedometer) for a given timef. As a final note, whenever a

function fhas a derivative f'that can be interpreted as a

physical velocity, we can replace the f' notation withf.
b (1]
Iudx
Section Exercise

1. Differentiate the function g(x)=-7x>+3x+10and find the

equation of the tangent line at 1) x=-2and 2) the value of
x where f’(x) =0 . Graph the function and the two tangent lines.
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4.1) ‘Wee' Little Numhers Known as Differentials

Wee is a Scottish word that means very small, tiny,
diminutive, or minuscule. Wee is a wonderful word that | have
often used (in poetry) to describe something small when compared
to something large. In the context of calculus, | will use it in similar
fashion to help explain the concept of differential—also called an
infinitesimal—which is the core concept providing the foundation
for most of the mathematical techniques presented in this book.

To have a differential, we must first have a variable, say
X, y,zetc. Once we have a variable, sayx, we can create a

secondary quantity dx, which is called the differential of x. So,
what exactly is this dx, read “dee x"? The quantity dx is a very
small, tiny, diminutive, or minuscule numerical amount when
compared to the original x . And it is the very small size of dx that
makes it, by definition, a weex. How small? In mathematical
terms, the following two conditions hold:

0 < |xdx| << 1

0<ﬁ<<1.

X

The two above conditions state|dx| is small enough to guarantee

that both a product and quotient with the original quantity x is still
very small<<1 (read as “much, much less than one”). Both
inequalities imply that|dx| is also very small when considered

independently0<|dx| <<1. Lastly, both inequalities state

that|dx| > 0, which brings us to the following very important point:

Although very, very small,
the quantity dx is never zero.
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One can also think of dx as the final /2 in a limit process £1n3 where
—

the process abruptly stops just short of target—in effect, saving
the rapidly vanishing /4 from disappearing into oblivion! Thinking

of dx in this fashion makes it a prepackaged or frozen limit of
sorts, an idea that will be explored again and again in this volume.

So, how are differentials used in calculus? They are
primarily used to represent tiny increments of change. For

example, supposewis a variable; anddw, the associated
differential. From these two quantities, w+ dw can be formulated,
which represents the basic quantity w with just a wee bit, dw,
added. In this example, the variable itself is changed from
wtow+dw, and the tiny increment of change is the
differentialdw . Now suppose y = f(x), and the independent
variable is changed by addition of the differentialdx. A natural
question arises, what is the corresponding change in the
dependent variable, denoted by the differential dy ? Answer: it all
depends on the processing rule associated with the function f as
the following example augmented by Figure 4.14 will show.

Ex 4.7.1: Calculate dy fory = x”.

xdx

dx .(dx)2

X x2 xdx

X dx
Figure 4.14: Differential Change Relationship for y = x?

Solution: First, we create x + dx by adding a differential increment
dx tox.



This in turn induces a differential increment in y via the functional

relationship y = x>. This induced differential increment is the
desired dy , which will be related to dx . We have that

y+dy=(x+dx)’ = y+dy=x" +2xdx+(dx)’ =
y+dy—y=x"+2xdx+(dx)* —x* =
dy = 2xdx + (dx)* ...

The differential change relationship for the function y = x°can be
diagramed using two nested squares as shown in Figure 4.14.
The total area of the white square is x* = y and the total area of

the larger multi-partitioned square is(x+dx)’ =y+dy. The
induced differential dy , where dy = 2xdx+(dx)’, is represented
by the three grey-shaded areas: two lightly shaded with combined
area2xdx and one darkly shaded with area(dx)>. Now, what

can be said about(dx)> if0<|dx| <<1? Basically, (dx)’is so
incredibly small that it must be ftotally negligible. Hence,
mathematicians will neglect the term (dx)’because it is of no
consequence. Hence, the final answer for Example 4.7.1
becomes dy = 2xdx : where dy , for a given x , is a linear function
of dxin our differential or infinitesimal micro-world.

When dealing with differentials, we always assume that
they are so incredibly small that second-order effects can be
ignored. This leads to the following extension of our previous point
concerning the differential dx (ordy,dz,dw...).

Although very, very small, dx is never zero.
But, it is still small enough to make (dx)’ totally negligible.
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The above is not only true for differentials associated with an
independent variable (sayx), but it is also true of dependent

(induced) differentials related by y = f(x).

For induced differentials our conceptual dx needs to be
small enough so that the associated y and dy likewise satisfies
the two fundamental conditions

0 <|ydy|<<1

ﬂ<<1.

y

0<

Note: When | was in school, seasoned engineering and physics
professors would say, dxneeds to be small enough so that the
associated differential dy behaves itself. Words like ‘behave’ make

theoretical mathematicians cringe. But, over 200 years of engineering
problem formulation via differentials has sent humankind both to the sea
floor and to the moon. Let success speak for itself.

We will finish this section with two rules for differential arithmetic
followed by three examples that illustrate the use of these rules.

1) Since(dx)’is negligible, (dx)" :n>2is also totally
negligible.

2) Ify=f(x), dy wil also satisfy the two fundamental
conditions as long as one makes dx small enough. Thus,
(dx+dy)*is negligible. This last statement implies that

each of the terms in (dx)” +2(dx)(dy)+(dy)’is also
negligible, in particular, the cross term (dx)(dy) .

Note: dependent differentials in a functional relationship given by
y = f(x) are usually written using the simplified y notation.

Ex 4.7.2: Find dy fory =+/x .



y+dy=vx+dx = (y+dy)’ =x+dx =
Y2 +2ydy+(dy)’ =x+dx = x+2ydy =x+dx =
Yydy = dx = dy = & = &

2y 2Jx
, 1
Ex 4.7.3: Find dy fory = —.
X

y+dy:;:>(y+dy)(x+dx):1:>
x+dx

xy+xdy + ydx + dxdy =1=
I+xdy+ydx=1=
—ydx —dx

7
X X

xdy =—ydx = dy =

Ex 4.7.4: Find dy for y = 4x° .

y+dy=4(x+dx)’ =

y+dy =4(x* +3x7dx +3x(dx)* +(dx)’) =
y+dy =4x> +12x7dx +12x(dx)* + 4(dx)’ =
4x® +dy =4x’ +12x°dx +12x(dx)* +4(dx)’ =
dy =12x7dx +12x(dx)* +4(dx)’ =

dy =12xdx ..

In each of the previous examples, the final result can be
written as dy = g(x)dxwhere g(x)is a new function that has
been derived from the original function y = f(x) . The fact that we
can ignore all second order and higher differential quantities
allows us to express dy as a simple linear multiple of dx for any
givenx.



b (1]
Iudx
a
Section Exercises

1. Finddy for y =13x+ 5 and interpret the g(x) indy = g(x)dx .
2. Finddy forA) y =-7x> +3x+10and B) y =3/(2x—5) .

4.8) A Fork in the Road

“Two roads diverged in a wood, and |—
| took the one less traveled by,
And that has made all the difference.” Robert Frost

| learned and grew up with calculus as it was traditionally
taught after the collective shock of Sputnik | in October of 1957.
Rigor was the battle cry of the day; and I, as a young man, took a
lot of pride in mastering mathematical rigor. The whole body of
calculus was built up via the route of definition, lemma, theorem,
proof, example, and application—if one was lucky enough to see
an application. Definitions were as impenetrable to the
mathematically uninitiated as Egyptian Hieroglyphics would have
been to me. An example of one such definition for a function

fhavingalimitL atx=a is

li_r>nf(x):L:>V£ > 0,30 =0(¢)
st.f(x)e N'(L,e)Vxe N'(a,0)

Using modern jargon, you might call the above a “Please don’t go
there!” limit definition. We won't!

In this book, we are going to travel backwards in time—
pre 1957—to those years where the differential was the primary
means by which the great concepts and powerful techniques of
calculus came into play. And, we are really going back further than
that.
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For, our story starts with Sir Isaac Newton and Gottfried Leibniz.
Each of these brilliant rivals independently invented the calculus
towards the later part of the seventeenth century. However,
neither of these men made use of intricate definitions or notations
such as the limit definition shown on the previous page. Rigor was
to come over a century later, primarily through the collective
genius of Gauss, Cauchy, and Riemann. So what fundamental
concept did Newton and Leibniz use to invent/create calculus?
Differentials! Today, the notation dx,dy,dz...etc. is still called

Leibniz notation in honor of the man who first devised and used it.

dx

7
|3

lim

Figure 4.15: And that has made all the Difference...

As Figure 4.15 indicates, this chapter ends at a
pedagogical fork in the road: calculus taught by limits or calculus
taught by differentials. The fork to be taken is calculus taught by
differentials. A good thing is that the foundations, as set forth in
this chapter, are essentially the same no matter which of the two
roads we take. If we were teaching calculus by limits, much more
rigor—especially in the sections on limits, continuity, and
instantaneous change ratios—would have been needed in order to
support subsequent theoretical developments. But, our road has
been set, the road first traveled by Newton and Leibniz. A modern
irony is that, even today, this road remains heavily traveled by
professionals in engineering and physics who must formulate and
solve the multitudinous differential equations (introduced in
Chapter 6) arising in natural science. Often, they first learn the
differential concept in the context of natural science—with very
litle support from a modern, limit-rich calculus. But in this book,
the two great 17" century physicists, Newton and Leibniz, will
again serve as our collective guides.



b (1] b (1]
Iudx Iudx
Chapter Review Exercise

Lety = f(x)=x"—2x". Determine both dy and f”(x) . Find the

equation of the tangent line at x = —2 and those points x where
the tangent line is horizontal.

The Road Not Taken

Two roads diverged in a yellow wood,
And sorry | could not travel both

And be one traveler, long | stood

And looked down one as far | could
To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.
Oh, | kept the first for another day!
Yet knowing how way leads to way,

| doubted if | should ever come back.

| shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and |—
| took the one less traveled by,

And that has made all the difference...

By Robert Frost



“To see a world in a grain of sand

And a heaven in a wildflower,

Hold infinity in the palm of your hand
And eternity in an hour...” William Blake

9.1] Differential Change Ratios

My father graduated from Purdue University in 1934 with a
freshly-minted degree in electrical engineering. | can still revive
him in my thoughts via a conversation from many years ago. | then
asked, “What is calculus?” His answer was; “Calculus, that’s just
dee x, dee y, dee-two x, dee-two y, and dee y over dee x. What
one fool can do another fool can do!” He said it very fast, trying to
imitate an auctioneer. And today, four decades later, | firmly
believe that calculus did not present a major learning problem for
my father. And the reason for this was the power of the differential
as he so ‘eloquently’ expressed it above.

Old (pre 1930) calculus textbooks sometimes had high-
sounding titles that incorporated the word infinitesimal.
Infinitesimal, as stated in Chapter 4, is just another descriptive
word for differential. Yet another word that early 20" century
authors would use when describing a differential is an indivisible.
For example, they would use the symbol dx and call the quantity
represented an indivisible of x . The idea is that dxis so small that
it cannot be partitioned (or divided) any further. The idea of
extreme smallness—as expressed by an indivisible—is definitely
on target, but the idea of not being able to subdivide further totally
misses the mark. Remember my father’s words: dee y over dee x.
In mathematical terms, this rational quantity is written

dy
dx
And, as the symbol plainly states, the above is simply dy divided

by dx —one wee number divided by another wee number.
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d
Now, when formingd—y the two variables x and y are presumed to
x

be in a functional relationship of the formy = f(x)where the
infinitesimal change dy has been induced by the infinitesimal

d
change dx.The quantityd—y is a differential change ratio and has

x
the same units as any other change ratio studied thus far, which is
units of y change per single unit of x change.

Just how big is a differential change ratio since
differentials themselves are extremely small quantities? To

answer, suppose we have a functon y=f(x) where
dx =.00000000001 and the corresponding dyis calculated to

be dy =.000000000073 . Both of these differential quantities are
measured in trillionths, which is undoubtedly small. Let’s divide:

dy _.000000000073 _ 73 units-of -y
dx  .00000000001 T wnit-of -x

Notice that simple division is a marvelous process that can
manufacture numerically significant outcomes from two very small
quantities. Here, two very small quantities have been divided,
producing a respectable 7.3. The digit to the right of the decimal
point is definite proof of precision divisibility at the micro-level.
Let's make one final reinforcing point with this example. Think
about the absolute magnitudes of dx=.00000000001 and

dy =.000000000073 . What could one say about the magnitude

of (dx)*, or (dy)*, or (dx)(dy), or (dx)’, and so on? All of
these higher-order quantities are so small that they have to be
measured in terms of quintillionths or smaller. Hence, these
higher-order quantities don’t even show up on the numerical radar
screen.



d
To computed—y from a functional relationship y = f(x),
X

first develop the expression dy = g(x)dx as shown in Section 4.7.

Next, divide both sides by the differential dx to obtain

dy _
o g(x).

In the following example, this brute-force computational technique
is applied to a moderately difficult problem where the casting out
of higher-order differentials paves the way to the desired solution.

Ex 5.1.1: Find %for y=3(2x=5) or y* =(2x-5)’
X

y=i(2x-5)" =

y+dy=%/(2[x+dx]—5)2 =

(y+dy)’ =(2[x+dx]-5)" =

v +3ydy +3y(dy) +(dy)’ = (2[x+dx]-5)" =

y? +3y%dy = 4[x” + 2xdx + (dx)*]-20[x + dx]+25 =
¥’ +3y%dy =4x* —20x+25+[8x —20]dx =

¥y’ +3y%dy = (2x—5)" +[8x—20]dx =

3y°dy =[8x—20]dx =

dy 8x-20 dy  8x-20

= e
de  3y'dx 3)2x-5)*

Computational shortcuts, bypassing the brute-force approach
shown above, will be developed in Section 5.3. The final result

dy _ 8x-20
dx  33/(2x-5)*
is a brand new function derived from y = %/(2)6—5)2 . Notice that

this new function is not defined at x =%, even though the original
function is defined at the same point.
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We are ready to present one of the major results in this
book. Let y = f(x) . Recall the definition for the derivative f’(x):

f'(x)=£i£10{f(x+h2_f(x)]

fx+h) - f(x)
h

Now /4 — Oimplies that

— f’(x)since f'(x)is

the value of the limit. Now imagine that the limit process for
manufacturing f'(x)is currently ‘in motion’ and not yet been
completed. This should bring to mind the image of an incredible
shrinking / getting smaller by the second. Also, imagine that the
fG+h) = f()
a
h
targetf'(x), eventually to merge with it as / continues on its

dependent  expression s begun to

rapid collapse towards zero. Let’s put on the brakes and stop 4

just short of zero as shown in Figure 5.1. This saves 4 from a
scheduled fate of sliding into oblivion.

Braking and /

Stopping in the
Angstrom Zone!

> o 1

Figure 5.1: Saving / from Oblivion

How short is short you might ask? Short enough so that / for all
effects and purposes is adx. It is short enough so that the

f(x+h]z_f(x) and f’(x)

remaining closing distance between

is of no consequence.

L]



Thus, once K has been brought to rest within the numerical
Angstrom Zone depicted in Figure 5.1 (Note: one angstrom equals
one ten millionth of a millimeter.), we have that:

f+d)=f(x) _y+dy=y _dv

S = dx dx dx

The two ends of the above equality state that the derivative and
differential change ratio are one and the same—an amazing
result. Three immediate and interlinked consequences are

d ’ ’ ¢
d_§:f(X)’ dy = f'(x)dx, g(x) = f'(x).

Recall that Section 4.7 defines g(x)to be the final result in
functional form when developing the differential
relationship dy = g(x)dx .

Ex 5.1.2: Verify that % = f'(x)for f(x)=y=x"-3x—4.
X

By Example 4.6.1, we have that /’(x) = 2x —3.
y+dy =(x+dx)* =3(x+dx)-4=
dy=(x+dx)’ =3(x+dx)—4—-y=
dy = x> +2xdx+(dx)* —=3x-3dx—4—[x*> -3x—4]=
dy = 2xdx + (dx)*> —=3dx = dy = (2x—3)dx =

§—2x—3=f'(x)

X

I




Let's recap the previous sequence of events: 4 has been
brought to rest in the Angstrom Zone; and, in this zone, the now-
resting /7 has become small enough to be converted into a
differential dx . As a result, the following functional equality also
holds for any so-converted / in the Angstrom Zone:

S(x+dx)- f(x)
dx

=f'(x)= f(x+dx) = f(x)+ [ (x)dx
or

+dy— , ,
%:f (x)= y+dy=y+ [ (x)dx.

Figure 5.2 depicts a greatly magnified view—much like
that seen through a modern scanning-electron microscope—of

the graph of the function y = f(x) between the two points (x, y)
and (x+dx, y+dy). This is the world of the Angstrom Zone
where the functiony = f(x) is linear for all computational

purposes between the two points (x, y)and(x +dx, y+dy). The
slope of the straight line connecting the pair is given by the value
of the derivative f’(x) at x.

(x+dx,y+dy)

dy = f'(x)dx

Figure 5.2: Greatly Magnified View of y = f(x)
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Linearity of f in our conceptual micro-world is perfectly consistent

with the notion that dx must be small enough so that all second
order or higher (non-linear) effects can be totally ignored—of no
consequence whatsoever. This micro-linearity, which allowed for
an exact analysis of functionally linked change behavior at a given
point (x, y = f(x)), was precisely the power of the differential as

originally conceived by the super minds of Newton and Leibniz.

Returning to Barrow’s Diagram (Figure 2.1), the small
shaded triangle was called a differential triangle; and dxwas
presumed small enough so that y= f(x) could be

computationally treated as linear—having slope f’(x) —between

the two endpoints of the triangle’s hypotenuse. The lune-like area
nestled between the curve and triangle, though visible in the
representation below, was assumed to be virtually nonexistent.

dy
dx y=f(x)

Today, mathematicians can dream up and construct
numerous functional situations where the differential possesses
none of the classical linear properties as envisioned by Barrow,
Newton and Leibniz. Many counter-examples can be found in the
area of fractal geometry (e.g. the Mandelbrot set) where functional
patterns replicate their intricacies ad-infinitum as one descends
into the Lilliputian world. However, we shall not worry about
fractals and their subsequent lack of linear behavior in the
classical world of the small. For, it was the classical world of the
small—as originally conceived by Newton, Leibniz, and others—
that led to the modern discipline of celestial mechanics and the
first lunar landing on 20 July 1969, a topic explored further in
Chapter 8.

b oo
judx
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Section Exercise

Verify that % = f'(x)fory = f(x)= Lz . Use the process
X X
defined by f(x) = lim{g} = lim{f(x-l_ M- f(x)} to make
=0 Ax h—0 h

f’(x). Use the differential process as defined by the relationship

d
yv+dy = f(x+dx)to maked—y. Which of these two processes
X

represents an easier path to the common final product?

9.2] Process and Products: Differentiation

The title phrase brings to mind visions of a manufacturing
facility where workers assemble products for the modern
consumer via a pre-determined sequence of steps (a process).
This is certainly a correct understanding of what is meant by
‘Process and Products’, but it need not be the only understanding.
Much of mathematics can also be thought of in terms of processes
and associated products. Functions, as defined in Section 4.1, are
great examples of processes and products where numerical input
(the raw material) is being processed by a sequence of steps
(usually algebraic in nature) in order to produce numerical output.
Our newest example is the process of differentiation, which
produces products known as derivatives.

|
' [ dy
VACAY Process: VACONAD dx
»|  Differentiation x}
Inputs: Products:
Functions Derivatives

Figure 5.3: The Process of Differentiation



As Figure 5.3 depicts, differentiation is the process by
which we make, or derive, derivatives from functions. Inputs to the
differentiation process are functions  expressed by

either f(x) or y notation. The products, called first derivatives or
first derived functions, can be denoted as f’(x), ory’, ory,

orﬂ where the hash mark is read prime. All four notations mean
x

the same thing and refer to the same quantity. Typically, f'(x) is
used when we want to emphasize the derivative as a geometric
slope and wish to compute, as a new function of x in its own right,
specific values of f’(x). The notation ” is the symbol of choice
when derivatives, their associated independent variables, and
parent functions appear together in an algebraically assembled
equation known as a differential equation as shown below:

Y —xy=x"+1.

Note: Starting with Section 6.4, we will explore the formulation, solution,
and use of elementary differential equations, one of the major topics in
this book. When the independent variable is time, the derivative
equates to instantaneous velocity; customarily indicated by the dot

. d
notation y . Finally, d—yemphasizes the fact that the derivative is
X

an instantaneous or differential change ratio for the two
infinitesimal quantities dx and dy linked via a functional relationship
of the formy = f(x). Each of four notations can be used to
signify both process and product. For example, the
equation ()" =y’ states that the product from the differentiation

process () is the derivative )" .

Presently, there are two different methods by which we
can conduct the differentiation process. One method utilizes limits,
and the other method utilizes differentials. If properly carried out,
both lead to the derivative being sought. However, neither method
is without computational difficulty as the next example shows.

Ex 5.2.1: Differentiate f(x)=y=/x"+4

18



Method 1: Use the process f”(x) = %m(}{
5

f@+m—qu_
h

Note: In the second and third lines below, the numerator is rationalized
using standard algebraic techniques. This algebraic rearrangement allows
the hin the denominator to be cancelled, which, in turn, creates a limit
that can be determined.

f,(x):yg}[\/(x+h)2 +h4—\/x2 +4]:>f’(x)=
. JEHn) +4 =7 +4 [ Jx+h) +4+4/x> +4 _
=0 h JE+R)? +4++x% +4
f'(x):lim_ (x+h) +4—{x>+4}
0 B+ ) + 44+ 4)
) =i X2 42xh+hr+4—{x" +4)
/e hlilg_h(\/(x+h)2+4+\/x2+4) -
) = lim 2+ b } _
0 B+ ) + 44N +4)
’ . I 2x+h
=1
e hli%(\/(x+h)2+4+\/x2+4)]:>
fo= =

Wit +4 Jxi+4

Method 2: Use the process y+dy = f(x+dx).

y+dy = f(x+dx)=+/(x+dx)’ +4 =

(y+dy)2 =(x+a’x)2 +4=

19



Y2+ 2ydy +(dy)’ = x>+ 2xdx + (dx)*+4 =
Y +2ydy = (x> +4)+2xdx =

2ydy =2xdx =

dy _

x X
dx y x> +4

As Example 5.2.1 shows, both methods lead to the same
result, and both are somewhat cumbersome to execute. Method 1
requires that the numerator be rationalized (via the use of some
fairly sophisticated algebra) before the /4 in the denominator can
be divided out, which is a precondition to taking the limit. Method
2, though much simpler, still requires the attentive use of
differential fundamentals throughout the differentiation process.

In the quality world, we often talk about process
improvement Product improvement is defined as any reduction in
the number of processing steps that leads to time and/or cost
savings in producing the product. The differentiation process, no
matter which of the above methods is used, can be somewhat
lengthy and challenging to execute as illustrated by Example
5.2.1. Some major improvement is clearly desired and needed in
the differentiation process. The next section, Section 5.3, will
present several major process improvements. These
improvements, typically algebraic in nature, will greatly streamline
what pre-quality-era writers called the taking of derivatives.

b (1)
judx

a

Section Exercise

Differentiate y =x, y = x°, y= x, y= x*, and y= x° using the
differential method. Do you notice a general pattern? Now go

ahead and differentiate y = x'* based on your experience.



9.3] Process Improvement: Derivative Formulas

Derivatives are products, obtained from parent functions
via the process of differentiation. This rather extensive section
presents and illustrates thirteen powerful algebraic formulas that
greatly speed up the differentiation process by pattern matching.
In college algebra, pattern matching is the process used when
numerical quantities from a specific quadratic equation are
substituted into the general quadratic formula in order to produce a
solution. Due to length, Section 5.3 is sub-sectioned into
formula/pattern groupings. Each subsection will follow the general
order: presentation of the formula, formula derivation(s), and
formula illustration(s). All thirteen derivative formulas are repeated
for reference in Appendix E.

Most of the formulas presented in this section will be
derived using basic definitions and differentials. In this way, the
power of the differential will be continually displayed. One notable

exception is the function y =e”, a case where differentials and

limits are both used to develop the formula for faking the
derivative. The binomial theorem is also extensively utilized in the
derivation of several of the differentiation formulas. Hence, a brief
review of this fundamental algebraic result is in order. The
binomial theorem states that for a binomial expression

(x + y) raised to a positive integer power n , we have:

" (n o n n!
x+yp)' = x""'y' , where =
() ZO g U i (n—i)!

2 (n o
The expression Z( ]x""y’ is known as the binomial

i=0
expansion for(x+y)". Each of the two terms inside the

parenthesis can be any algebraic quantity whatsoever, simple or
complicated. As we shall see, this makes the binomial expansion a
very flexible and powerful tool for evaluating differential

expressions of the form (x+dx)" or(y+dy)" .
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Ex 5.3.1: Evaluate the expressions (x +dx)"* and (y + dy)° where
the two differentials dx, dy are associated with an independent
variable x and the associated dependent variable y .

By the binomial expansion, we have for (x + dx)*

(x+ dx)4 = i(%}x“_i (dx)" =
i

i=0
4 4' 3 1 4' 2 2 4' 1 3 4 _
x +ﬁx (dx) +ﬁx (dx) +ﬁx (dx)” +(dx)" =
x* +4x° (dx) +[6x° (dx)” +4x(dx)’ + (dx)*]

Now, the trinomial 6x° (dx)” +4x(dx)’ + (dx)" consists entirely

of Higher Order Differential Terms (HODT), terms that are
always totally negligible under the Rules of Engagement for
differentials (Section 4.7). Hence our expansion reduces to

(x+dx)" = x* +4x°(dx) ..

Note: A word of caution is needed here. The binomial expansion is used
throughout mathematics, not just in calculus and with differentials. Higher
Order Differential Terms can be thrown out because each term contains
an infinitesimally small factor being raised to a second-order power or
better. This power-raising, for all practical purposes, makes the term
disappear. In binomial expansions where both terms inside the
parenthesis are of ‘normal’ magnitude, all higher order terms must be
retained.

Continuing with (y +dy)°:

(y+dy)’ =

¥°+6y°(dy)+15y*(dy)’ +20y° (dy)’ +
15y%(dy)* +6y(dy)’ +(dy)’ =
(y+dy)’ =y°+6y°(dy) .~
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9.3.1] Four Basic Differentiation Rules

The four basic differentiation rules can be evenly split into
two categories: 1) Specific Rules for Special Functions, and 2)
General Process Improvement Rules. R1 and R2 are Category 1
rules; R3 and R4, Category 2 rules.

R1. Derivative of a Constant k : [k] =0

Proof:y=f(x)=k:>y+dy=k:>dy=0:>%=0

x
llustration: f(x)=17= f'(x)=0

d
lllustration: y =7 = D~
dx

R2. Basic Power Rule: [x"I = nx""" where 1 can be any number
whatsoever—positive, negative, rational, etc.

Proof for Positive Integers: binomial expansion used
y=x"=>y+dy=(x+dx)" =
y+dy=x"+nx""(dx)+ HODT =

dy = nx"" (dx) = v Y =nx""
dx

Proof for Simple Radicals: binomial expansion used

y=x% :>y+dy=(x+dx)71’ =
(V+dy)" =x+dx=y" +ny""'dy+ HODT = x +dx =

d 1 d 1

" dy=dv =2 = 1:>—y:l—:>
dx nyn_ dx n(x;)n—l

d 1 d , 1

d_ 1 dy_ 1o

dx - dx n



Proof for Negative Integers: binomial expansion used

1
(x+dx)" =
(y+dy)(x+dx)" =1= (y+dy)(x" +nx""'dx+ HODT)=1=
(Y +d)(x" +nx""dx)=1=
yx" +nyx"" (dx) + x"dy + nx"" (dx)(dy) =1 =

y=x"=y+dy=(x+dx)" => y+dy=

dy nyx""!

nyx"dx+x"dy =0= — = —=
dx x"

dy ’ —n—1

— =y =—nx

dx 4

llustration: £(x)=x* = f(x)=45x™
1 d , _ 5
lllustration: y :—Szx‘5 :>—y:y =-5x"° =——
X dx X

Note: as shown above, all exponential expressions must be put in the
general exponential form a b before applying the power rule.

llustration: f(x) = 9\/; = xé = f'(x)= %x%l _ 1

oyt

R3. Coefficient Rule: [Og"] =of " where & can be any numerical
coefficientand f = f(x)

Proof: Letw = of

w+dw=a(f +df)=of +odf = dw=odf =
N A A e

— =
dx dx
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Note: The coefficient rule is our first true process-improvement rule.
Instead of giving a specific result, it shows how to streamline the

differentiation process for a general function f .

. f(x):19x9 :>f’(x):[19x°]’:>
Illustration:

() =19[x"1 =19(9)x* =171x*

R4. Sum and Difference Rule: [fig] = f"+ g’ where
f=f(x)andg = g(x)

Proof: Letw= f+ g

w+dw= f+df t(g+dg)=> w+dw=frg+df tdg =

dwzdfidg:ﬂzi_d—g:
dx dx dx

[ftel'=f"+g

Note: The Sum and Difference rule is our second ftrue process-
improvement rule. The rule can be easily extended to the sum and
difference of an arbitrary number of functions as the following illustration
shows.

w=ftg'=

In the next illustration, the four basic differentiation rules
work together in seamless functioning, allowing one to
manufacture a complicated derivative without any direct use of
limits or differentials. This improved process, totally algebraic in
nature, relies heavily on your ability to pattern-match. Much of the
art of taking derivatives is the knowing of how and when to apply
the general differentiation rules to a particular function. This
knowledge comes from concerted hands-on practice, and not from
the observation of another's mathematical skills in action. My
sincere advice for those who wish to become competent in
differentiation is to spend much of your time in practice!

, 6
lllustration: Find y” for y = 9x* —2+/x +—+17.
X



y=0x* —2\/;+£3+17:>y:9x4 x4 6xT 417>
X

=[9xt —2x7 +6x7 +17] =

o [9x* T —[2x T [6x T +[17] =
O] =2 T+ 6[x T +[17] =
=9.4x’ —2. 1y 46 (=D 40>

9.3.2] Five Advanced Differentiation Rules

R5: Product Rule: [fg] = fg'+gf” where f=f(x) and
g=g(x). The product rule is our first counterintuitive

differentiation rule in that [ fg]'# fg’. In words, the derivative of
a product is not equal to the product of the derivatives.

Proof: Letw= fg

w+dw=(f+df )(g+dg)=>

w+dw= fg+ gdf + fdg +(df )(dg) =

dw = gdf + fdg +(df )(dg) = dw = gdf + fdg =
dv_gdf+fig _dw_ df , dg
dx dx dx dx dx
w=gf '+ fg' = fel'=gf + /&'

The correctness of the product rule [ fg]' = fg'+gf”is
demonstrated in the illustration below, an illustration which also
demonstrates the incorrectness of [ fg]' = f'g”, an error common
to calculus beginners.



llustration: Find [ fg]” when f(x)=x"and g(x)=x".
Correct: y = x’x” = x'* = y"=14x" our benchmark.

y=x"x" =y =["[XT+[x"|[x"I=
Correct: ,
V' =[x"15x* +[x°19x® = »" =5x" +9x" =14x"

y=x"x"= )y =[x"T[x] =
Incorrect:
Y =[9x*[5x*]= y" = 45x" #14x"

Figure 5.4 (akin to Figure 4.14) depicts the differential
change relationship for a product of two functions w= fg. The

four-piece rectangle represents w+dw=(f +df )(g+dg), and

the one non-shaded rectangle represents w= fg . The two lightly
shaded rectangles collectively represent the infinitesimal
change dw in w corresponding to an infinitesimal change dx in the
independent variable x. The one darker rectangle is second order,
and is, of course, totally negligible, leaving us with

dw=gdf + fdg .

gdf (df )(dg)
=

w=fg Jdg

4 dg

Figure 5.4: Differential Change Relationship for w= fg
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R6: Quotient Rule: [i} :gf;zﬁg where f = f(x) and
g g
g =g(x). The quotient rule is our second counterintuitive
differentiation rule in that [i} ;tL,.
g g

Proof: Letw =

A
g

AT

w+dw

s prdwe ST Neg—dg)
g+dg (g +dg)(g—dg)
fe +gdf — fdg —(df )(dg) _,
g’ —(dg)’
fg+gdfj —fdg _,
g
J8 _ gdf —jdg _ . _&df —fdg _

2 2 2

g g g
gdf — fdg df ,.dg

gl —roe
daw _ d)zc :d_WZ dx . dx _,
dx g dx g

’ M:[fg]’:gfg;zfg_-_

w = 2

w+dw=

w+dw=

w+dw=

As we did with the product rule, the correctness of the

quotient rule {i} =M is demonstrated below, as well as
8 8
- LS
the incorrectness of =<, another common error.
8 8



’

lllustration: Find [i} when f(x)=x"and g(x)=x".
g

9
X
Correct: y = — = xt= y' = 4x” our benchmark.
x

x’ ,_PIXT =T
= = f—
y xS y (x5)2
51048 _[+915+4
Correct: )’ = " Px lo[x Ibx =
X
, 9xP-5x" 4xP
y = 0 = 0 =4x
x9 , [x9]’
Y="7=5=YV =57
x [x”]
Incorrect: .
, 9% 9 3
=——=—x" #4x
TS s

R7: Chain Rule for Composite Functions: [f(g)] = f'(g)g’
where /= f(x),g = g(x) and f(g) = f(g(x)).

Proof: Let w= f(g)and recall that dg = g’dx

dw= f'(g)dg = dw= f"(g){g'dx} =
dw= f"(g)g'dx =

j—f - () =W =L () = f(©)e’ -

Although simple to prove if using differentials, the chain rule is not
that simple to use. Pattern recognition, gained only through
practice, is very definitely the key to success as shown in the

following illustration.



llustration: Find y” for y = (x> +1)"°.

Notice that y can be thought of in terms of the composite function
f(g(x))where g(x)=x"+1and f(x)=x"". Proceeding with
the differentiation process, we have:

y' = [(x2 + 1)10]' = IO(x2 + 1)9 {x2 +1} =

Y =10(x> +1)°2x = " =20x(x> +1)°

lllustration: Find y”for y = xv/x* +1

y=)cx/m:>y=x(x2 +1)% =
V=D T+ [T+ 1) =
Y =)+ @]+ +1) =
;X

- (x2 +1)%
, 2x% +1

Vx?+1

Note: In the above illustration, the product rule, chain rule, and three basic
rules were all used in concert to conduct the differentiation process.

y +(x+1) =

Without a doubt, the chain rule is the single most powerful
differentiation rule in calculus. It is actually used to prove the next
differentiation rule in our list, called the inverse rule.

1
S )

R8: Inverse Rule for Inverse Functions: [/~ (x)] =

where the function /' = f(x)is f_,.



Proof: Recall that f(f ' (x))=x

ST =0T = (T @0 =1=

Vw1 .
L er= ey

In words, the final result states that the derivative of an inverse
function is the reciprocal of the derivative of the forward function
composed with the inverse function proper. The inverse rule is
frequently used to develop the differentiation formulas for inverse
transcendental (non-algebraic) functions. We will touch upon this
method in the next subsection. In the meantime, we will reprove
the differentiation formula for simple radical exponents via the
inverse rule.

lllustration: Use the inverse rule to show that [Q/;]' =

Let /'(x)= 4/x and S (x)=x"

I
e T Gl

n / __ 1
[JH‘Z@EFT:
[%], - n 1 n—1

nvx

The Generalized Power Rule, a special case of the Chain
Rule, is especially useful in that it allows the user to quickly break
down complicated functions having expressions raised to powers.

R9: Generalized Power Rule: [(f)”] =n(f)"" ' where again,
n can be any exponent.

Proof: left to the reader...

9



We will close this subsection with a comprehensive
example that brings most of the differentiation rules given thus far
into play. The reader might want to identify the rules used at each
stage in the differentiation process.

2°V2x? +1 223 (2x7 +1)

Ex 5.3.2: Find y fory =
F T ) (x+1)°

’

3 2 1
y,zlzx 2x* +1) } _

(x+1)°
()20 2x 1) T =250 20 + 1) [(x+ )T N
g [+ DT
. D) 2 (2% 1) T =200 (2 + D)7 [5(x +1)*]
y= 10 =
(x+1)
, (e DR2x(2x2 +1)7 T =10x° (2x2 +1)°
o DR 2 +D T 108 2+
(x+1)
, (e D[6x2(2x7 +1)7 +4x* (237 +1) 2 ]-10x° (2% +1)° N
d (x+1)°
e (e DI6x (2 + 1)+ 4x*]-10x° 2 +1) _
2x% +1)7 (x+1)°
5= (x+D[16x* +6x°]-20x" —10x° N
x> +1)2 (x+1)°
, —4x” +16x" —4x° +6x° _ 2x*(3—-2x+8x" —2x7)
(2x% +1)7 (x+1)° (2x% +1)7 (x+1)°

Example 5.3.2 amply reinforces the old teacher’s proverb: You
really learn algebra when you take calculus or calculus takes you.
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9.3.3] Four Differentiation Rules for
Two Transcendental Functions

In this subsection, we are going to develop derivatives for
the two transcendental functions f(x)=e"and g(x)=In(x).

For f(x) =e", first introduced in Section 4.3, both differentials
and limits will be used to find /’(x) . For g(x) = In(x) , we will use
the fact that f(x)and g(x)are inverse functions in order to

find g’(x) . Example 5.3.3 below establishes thatg = f .

Ex 5.3.3: Show that /' (x) = In(x)when f(x) =e".

For any logarithmic function to any positive baseb, we have
thatlog, (@) =w=b" =aby definition. Recall from college

algebra that In(x) is defined as log,(x), which implies

In(x)=w=e¢" =x. In words, the output from the function
In(x) is the exponent that is placed on ein order to make the
inputx. Now, let's follow the action for the two function

compositions  f(g(x)) and g(f(x)) when f(x)=e" and
g(x)=In(x). For the function g to qualify as f ', we must

have that f(g(x)) = g(f(x)) = x. Checking it out both ways:

flgx)=e"" =e" =x
g(f(x))=In(e*)=log, (e*)=x

Since f(x)=e" = f,,and g(x)=In(x)is exhibiting all the
relational properties needed by £, £ (x) =In(x) .~

X

R10: Exponential Rule, basee: [exI =e

xX+dx x _dx

Proof: y+dy=e"" =e"e



In the next step, we are going to merge the limit and
differential concepts in order to get an equivalent binomial
expression fore™ . Follow closely, for this is one of the more
intricate developments in the book.

To take an exponential

With a limit and differential

Is a matter of grit,

Persistence, and sweat

When using just paper and pencil. June 2003

Recalle” = lim[(l +L)" J :
n—oo

t=Lr=dx=e" :1i_>r2[(l+%)"]:>

_ﬂ n '
e =1im| 3| @) |= e =lim| Y — (&) |
Hm_;(i € fim) 2 =0 ()

n

| .
e =lim ZL({—;C)I}:

el S il (n—i))!

o8 i Z n(n—1)(n-2)..(n—i+1) (dx),} -

=l o l'n’

e =1+ (dv)+
n

i S L H |-

e =1+ (dv)+ HODT = ¢ =1+dx
n

Finally:

y+dy=e'e”™ = y+dy=e*(I1+dx)=
d ,
dyzexdx:>—y=y =e’ .
dx
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lllustration: Find y”for y =7e" +2x

y' =[Te* +2x] =y =7[e"] +[2x] =
y'=T7e" +2

lllustration: Find yfor y = x’e”

y' = [xze" =y = x° [e*] + e’c[x2 =

Y =x%e" +2xe" = y = x(x+2)e"

Note: as illustrated above, the differentiation rule for y = e’ operates in
harmony with all other differentiation rules.

R11: General Exponential Rule, base e : [ef()‘)] = f(x)e’™

Proof: Direct application of R7.

x2+42x

lllustration: Find y’for y =9e

y’ — [9ex2+2x ]/ — yl — 9[ex2+2x ]/ =
y/:9[x2 +2x]/ex2+2x :>y/:18(x+l)ex2+2x

. !

R12: Logarithm Rule, base e : [ln(x)] =—
X
ex

Proof: Use chain rule R7 with f(x)=e", ' (x) = In(x)

" =x ="V =[x] =

e"[In(x)]'=1= A[In(x)]'=1=

()] = -
X



lllustration: Find y”for y = In(x)e”
¥ =[In(x)e*] = y =In(x)[e* ] +e*[In(x)] =
¥ ,_[xln(x)+l}ex

¥y =In(x)e" +& o %
X X

R13: General Logarithm Rule, base e : [ln{f(x)}]’ = M
S (x)

Proof: Direct application of R7.

llustration: Find y"for y =91n(x* +1)

Y =[9In(x> +1)]' =y =9[In(x* +1)]"=

,_9{ 2x }: , 18x
4 x*+1 4 x+1

Note: Don’t assume Y is algebraic in form just because y' is algebraic in

form. Two immediate counterexamples are the functions y = In(x) and

v =In(f(x))where f(x) can be any rational function.

Ex 5.3.4: Our final big audacious example in this section uses
most of the thirteen differentiation rules. Again, success in
differentiation is knowing how and when to use the rules—

knowledge achieved only through determined practice.

2 2
x“e”

Find y"fory = In(x)

e {4x2ex2 } _In[4x’e” I -dx’e” [In@)] _
In(x) [In(x)]*



, 4x2e” -
77 )
_ ln(x)[4xzex2 ]'—4xzex2 [In(x)] N

[In(x)]*

2 X2
ln(x)[8xe)‘2 +8x%e” 1- 4x’e
’ X

Y [in()T
, ln(x)[8xex2 +8x%e" ]—4xe”
B [In(x)]’
, ln(x)[8xe"2 +8x%e" 1- dxe™
B [In(x)]?
o 4xe* [2x% In(x) + 2 In(x)—1]
[In(x)]*

2

b L1)
Iudx
Section Exercises
Differentiate the following functions:

2 2

1) y=7x’ —dx+2e* 417 ) y= X ¥2X AL
2x+1

3) y=x"In(x>+1) 4) y=4x> —12x

_In(x)

X

5) f(x)=(x" +1)?e* 6) y
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9.4) Applications of the Derivative

Now that we have an efficient means to produce the
product f”from a given function f, is this product useful? The

answer is an absolute yes. Not only will the derivative enable us to
quite handily solve the First Fundamental Problem of Calculus set
forth in Chapter 3, but it will also allow us to solve a variety of
other problems that require a much deeper analysis of functions
than algebra alone can provide.

Six generic applications of the derivative will be explored
in Section 5.4. Each application is supported by one or more
examples. The six applications by no means represent all possible
applications, only a sampling of those which are more basic and
foundational. Again, due to length, this Section is portioned into
subsections.

Note: The power that Newton and Leibniz brought to the analysis of
functions via the invention of the derivative is equivalent to the power that
Galileo brought to the analysis of the universe via the invention of the
telescope. Today, Galileo’s universe is also being examined with
mathematical functions, which are analyzed, in part, using the derivative
as invented by Newton and Leibniz.

9.4.1) Tangent Lines and Normal Lines

Definition: Let f be a differentiable (able to manufacture the
derivative) function at a pointx,. Then f* has both a tangent line
and normal line at the pointx,, . These lines are defined by the two
equations:

Tangent: y— f(x,) = f,(xo )(x—x,)

Normal: y— f(x,) =,_—1(x—x0) .

S (xg)

If /'(x,) =0, the two equations reduce to:

Tangent: y= f(x,)+0-x

Normal: x =x,+0-y.



N.L.

(X9, f(xp))

Figure 5.5: Tangent and Normal Lines

As Figure 5.5 shows, the tangent line (T.L.) is that line
which passes through the point (x,, f(x,))and whose slope is
identical to the slope of the function f(x) atx, . Hence, now that
we have solved the First Fundamental Problem of Calculus, the
slope of the tangent line is f”(x,) .The normal line (N.L.) is that

line which passes through the point (x,,f(x,))and is

perpendicular to the tangent line. By elementary analytic
geometry, if two lines are perpendicular, then their two slopes

-1
m,and m, must satisfy the reciprocity relationship m, =—, from
m,

which we can deduce that, the slope of the normal line is

(x,)

One can view the normal line as the path offering the quickest exit
away from the graph of y = f(x)at the pointx,. In Figure 5.5,
pretend that the graph of y = f(x) forms the upper boundary for

a hot surface and that you are located at the point(x,, f(x,)) . By

moving away from the surface in the direction given by the normal
line, you get the fastest cooling possible.



Ex 5.4.1: Giveny= f(x)=x¢e", find the equations of the
tangent and normal lines atx =1.

By the process-improvement formulas in Section 5.3, we have
that "= f’(x) =2xe* +x°e*. Since both tangent and normal
line equations require evaluation of fand /” atx =1, substitute

x=1to obtain f(1)=1¢' =eand f’(1)=3e. Completing the
equations, one obtains y —e =3e(x —1)for the tangent line and

-1 _
y—e= 3—(x—1) for the normal line.
e

Ex 5.4.2: Find the equations of the tangent and normal lines for
the function y = f(x) = x* —6x at the pointx = 4 . Repeat for any

other x value(s) where we have f'(x)=0. In this example, we
also start using the symbol— as defined in Chapter 1.

Where x =4:

f(xX)=x"=6x= f(x)=2x—61>
f@==8f4=2
y+8=2(x—-4):TL
y+8=35(x—4):NL

Where f/(x)=0:

f(x)=2x-6=0=>x=3

f3)=-9,f3)=0r

y==-9+0-x:TL

x=3+0-y:NL

The slope of zero at x =3 corresponds to a horizontal or level

tangent line running parallel to the x axis. Hence, the normal line
is vertical—straight up and down—running parallel to the y axis.
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9.4.2) Newton’s Method and Linear Approximation

Newton’s method is an approximation method for finding
solutionsx to equations of the form E(x)=0 or E(x)=a
where a is a real number. The expression E(x) can be algebraic,
transcendental, or combination thereof. Two such expressions are
x*+2x+1=0ande” —x> =6. Newton's method is a very
simple example of a numerical technique. Numerical techniques in
general are powerful mathematical number-crunching methods.
They are used most often in conjunction with modern high-speed
computers to solve equations that can’t be solved in terms of a tidy
algebraic and/or transcendental expression. Numerical analysis is
the discipline where numerical techniques are studied in depth.

The first step in applying Newton’s method is to recast the
equations as functions, either f(x)=E(x)or f(x)=E(x)—a.
Hence, solving either one of the above equations is equivalent to
finding the x intercepts for the function /.

X, =x, — S (x,)
f,(xo)
)

xn+1 :xn f/(x )
n

g(xo:f(xo )

X intercept

A\ 4

Figure 5.6: Schematic for Newton’s Method

As depicted by Figure 5.6, the goal when applying Newton’s
Method is to find an approximate value for the desired x intercept.
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The process is rather simple. First, pick a value x, known to be
somewhat close to the intercept. Next, formulate the equation of
the tangent line atx,: y— f(x,) = f"(x,)[x — x,]. The approach
is to use the x intercept of the tangent line (easy to obtain) as an
approximation for the xintercept of the function f (hard to

obtain). Now set y = 0 in the above equation to obtain

_f(xo):f,(xo)[x_xo]:>
S )

0 7 X=X~
S (x0) S (x0)

By Figure 5.6, Xx,is closer to the actual x intercept and becomes

a new starting point for an even better approximation as the
process is repeated as many times as necessary in order to
achieve the desired accuracy.

Note: sometimes Newton’s Method, as with any numerical technique, fails
to converge—i.e. fails to come closer and closer to the desired solution—
as the process continues to cycle itself. Convergence criteria (in terms of
conditions on derivatives, etc.) exist for Newton’s Method and for most
other numerical methods. However, a discussion of convergence criteria
is way beyond the scope of this primer. The ‘new-fashion’, practical way
to test for convergence is to let the computer run the process and declare
success if more and more digits are stabilized to the right of the decimal
point. Likewise, if the computer crashes or gets in an endless do-loop, we
definitely know that our particular problem did not converge. User
judgment and experience becomes the deciding factor in either case.

The following example illustrates the use of Newton’s Method.
Ex 5.4.3: Find the negative real zero forx” +2x+1=0.

Let f(x)=x"+2x+1, f(x)=3x>+2. By the continuity
discussion in Section 4.4, a simple polynomial function such as
f(x)=x"+2x+1does not have a break in its graph. Hence,
one can claim that there is an x-axis crossover point (x
intercept) in the interval [—1,0]since f(—1)=—2and f(0)=1.
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Newton’s Method, an iterative process, needs to be primed (like a
pump) with a reasonable first guess or choice. Pickx, =0and
begin.

X 1

X, =X, > =0-—=-5=
J(x) 2
X, =-5 T gsas—
2.75
x, =—.4545 (00288 __ 4534
2.6197

We could continue with the process and expect to stabilize
increasingly insignificant digits as the cycles repeat. The
hundredths place, by all reasonable appearances, has been
stabilized with three cycles. With an additional cycle, one could
expect the thousandths place to be stabilized and so on. Notice

that 1(.4545) =—.00288. Remember that the goal is to find the
x intercept, i.e. that value of x where f(x)=0. Checkingx,, we

have that f(—.4534) =—-.00000615. Since x, results in a

functional or output value which is only six millionths away from
zero, we choose to stop the process via a judgment call.

Newton’s method works very well for polynomial functions
and converges quite rapidly when this is the case. For other
classes of functions (e.g. exponential or logarithmic), Newton’s
Method can be a bit stubborn and take quite a few iterations to
converge. Or, Newton’s Method could fail to converge. User
experience definitely counts.

We will finish this subsection with a discussion of simple
linear approximation as given by the formula:

Linear Approximation Formula

S(x)= f(xy)+ f'(xg)Dx: Dx = x, = x,
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A
(xl,f(x0)+Dy)
(X1, /(%) + Ap) R

(x9S (x, ))\

N
4
/ X9 Xy

J )= f(xy)+ f(x0)Dx

Figure 5.7: The Basis of Linear Approximation

In Figure 5.7, the depicted tangent line has the
equation y — f(x,) = f(x,)(x—x,). Letx=Xx,and y,let be the
associated y value. Define the macro quantity Dxto bex, —x,
and the macro quantity Dyto bey, — f(x,). Hence, we can
rewrite the tangent line equation as Dy = f"'(x,)Dx.

Note: This is one of the few places in the book where | deviate from
standard usage. When discussing approximation methods, many authors

will reemploy the symbols dx and dy to represent the quantities Dx and

D d
Dy . This is since =Y _ f'(x) s But, even though the above
Dx dx

change ratios are identical, the actual D & d quantities are a universe
apart. Recall that dx, dy are infinitesimals, while Dx, Dy are at least big
enough to be seen with the naked eye on graph paper.

Continuing the discussion Ay = f(x,)— f(x,)is the actual

change in the function f when moving from x, to x;, .

104



As shown by Figure 5.7 Ay # Dy, but there are many situations
where Ay = Dy . The error, given by| Dy —Ay |, shrinks as Dx

shrinks, which leads to the common-sense rule: a smaller Dx is
definitely more prudent. Putting the pieces together, we have:

Ay=Dy= f'(x,)Dx =
SO = f(x) = f(x)Dx =
f(x)= f(x)+ f(x,)Dx

The last line is the linear approximation formula as previously
blocked in gray. Two examples follow.

Ex 5.4.4: Approximate /27 using linear approximation.
Definef(x)=\/;. The old trick is to pick the perfect square
closest to27, in this case25. Set x, =27,x,=25which

implies Dx = 2. One quickly obtains /27 = V25 + 2 =5.2.

2425

Compare this to the actual value of 5.196.

Ex 5.4.5: Find the approximate change in volume of a big snowball
when the radius increases from 2 feet to 2.1 feet.

DefineV (r) = gizf. Hence DV = 4m°Dr. Substituting 7 =2

and Dr =.1, we have DV =5.0265. Again, compare this to the

actual value of AV =5.282. The5%difference is probably
pushing the upper limits of a reasonable quick approximation.

Note: In the days before large mainframes, simple hand-approximation
techniques were indispensable to the practicing scientist and engineer in
terms of time/labor saved. But as in Poker, you had to know ‘when to fold
them or when to hold them'—knowledge always gained through
experience. It was this experience that lead to expert familiarity with the
behavior of functions.
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9.4.3) Finding Local Extrema

Chapter 5 is the longest and most extensive in the book,
and Section 5.4 is the longest and most extensive in Chapter 5.
Chapter 5 can be likened to a climb of K2, with the climb of Mount
Everest to come later. One of the ‘K2’ topics that completely
amazed me when first encountered was that of finding local
extrema—to reveal itself as being exclusively in the realm of
differential calculus, well beyond the reach of ordinary algebra.

0 (X0, £ (%))
%I

(x;, £(x)))

\ 4

Xo Xy
Figure 5.8: Local Maximum and Local Minimum

Let f be a function having a high point(x,, f(x,))and a

low point (x,, (x,)) as shown in Figure 5.8.

Definition: The function f'is said to have a local maximum at the
point (x,, f(x,))if there exists an interval (x,—h,x,+h)
centered at x,such that for allxin(x, —#,x, +/)we have the
relationship f(x) < f(x,). Exactly the opposite relationship

exists, i.e. f(x)> f(x,), if we have a local minimum.

Translating, a local maximum is the highest point in a
surrounding interval of points; and a local minimum, the lowest
point in a surrounding interval of points. The key word is local: a
local maximum may be akin to the tallest building in a small town.
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Depending on the size of the town, the tallest building may or may
be significant in terms of overall global stature (i.e. the tallest
building in Dayton, Ohio is insignificant when compared to the
tallest building in Chicago, lllinois). Looking again at Figure 5.8,
one sees that there are points both higher and lower than

(xy,f(x,)) and (x,, f(x,)) on the graph of 1.

Now we are ready to present a MAJOR result addressing
local extrema, the collective name for local maxima and minima.

Let f be differentiable in the interval (x, — 4, x, + /)and

Suppose f has a local extremum atx,, then /'(x,)=0.

Make sure you know what the above result is saying: the
existence of a local extrema at the point x,coupled with

differentiability in an interval surrounding x,implies /’(x,)=0.
The result does not say: when f’(x,) =0, the point (x,, f(x,)) s

a local extrema for f .

0 (x9, f(xy))

(x5, f(x,))

A\ 4

/ X Xo Xy
Figure 5.9: Local Extrema and Saddle Point

In Figure 5.9, the graph of f has a horizontal tangent line at the

three points (x,, 1 (x,)), (x,, f(x,)and(x,, f(x,)).
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This implies that /'(x,) = f"(x,) = f'(x,)=0. However, f has
local extrema only at(x,,f(x,))and(x,,f(x,)). The point

(x,, f(x,))is known as a saddle point, which can be envisioned

as a level resting spot on the side of an ascending or descending
portion of a functional curve.

To prove our MAJOR result for the case of a local
maximum, we appeal to the fundamental expression:

S (xy +dx)— f(x,)
dx

= f'(x)

Notice that f(x, +dx)— f(x,)<0for all x values in a
neighborhood of x,, irregardless if the infinitesimal dxis positive
or negative. Dividing f(x,+dx)— f(x,)bydx, one obtains
f'(x,)=00r f’(x,)<0depending on the sign of dx. This

immediately leads to the conclusion f"(x,)=0.

The one remaining issue is how to distinguish, without
graphing, a local maximum from a local minimum, or either of the
local extrema from a saddle point. But, before we address this
issue, we need to have a short discussion of increasing and
decreasing functions. We also need to define critical point.

Definition: a critical point x,, is simply a point where /”(x,)=0.

The sign of f’ is a very important indicator when
analyzing functions, for it is the sign of f”that will tell us if f'is
increasing or decreasing. By knowing where [ is increasing or
decreasing with respect to a point (x,, /' (x,))with f(x,)=0,

one can determine the exact nature of the critical point in terms of
the behavior of the function /. If f(x)>0&dx>0, then

f(x+dx)— f(x)= f'(x)dx >0, which immediately leads to the
cause-and-effect relationship x + dx > x = f(x+dx) > f(x).
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In general, if f' > (throughout an interval, we have
that f(b) > f(a) for any two points a, b in the interval withb > a :
accordingly, f'is said to be increasing on the interval. As shown
by Figure 5.10, our now-familiar stick figure would be walking up a
hill as it traverses the graph of f from left to right in an interval
where the slopes f’ are positive. On the other hand, if
f” < 0throughout an interval, we will have that f(b) < f(a)for
any two points a,b in the interval withb > a: hence, f is said to
be decreasing on the interval. Again, by Figure 5.10, our figure is
shown as walking down a hill in an interval where the slopes f'
are negative.

Figure 5.10: First Derivative Test

Figure 5.10 is a complete graphical layout of the First Derivative
Test. The First Derivative Test, hereon abbreviated as FDT, forms
the basis for a powerful two-step methodology for investigating
local extrema:

1
> : Identify critical points by solving the equation f’(x)=0.

2
> : Characterize the critical points found in Step 1 as to local
maximum, local minimum, or saddle point.

Now we are ready to formally state the FDT.
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First Derivative Test (FDT)

Precondition: let x, be a solution to /’(x,) =0
Nifx<x, = f(x)<0&x>x, = f'(x)>0,
Then f has a local minimum at x,, .
2)lfx<x,= f(x)>0&x>x, = f(x)<0,
Then f has a local maximum atx,, .
3) If f' has the same sign on either side of x,

Then f has a saddle point at x, .

In Figure 5.10, the pointx,corresponds to a local
maximum or local hilltop. As shown, there is an interval
surrounding x, where one strenuously climbs up to the hilltop

(x<x, and f'>0), and where one carefully walks down from

the hilltop (x > x,and f'< 0). This corresponds to 2) in the FDT

as stated above. You are encouraged to correlate 1) and 3) to
Figure 5.10 where a saddle point (resting ledge) is shown at

X, and a local minimum (valley low) is shown at x, .Note: though not
shown, saddle points can also occur while walking down a hill.

We end this subsection with four examples illustrating the

use of the FDT and the associated two-step process for identifying
and characterizing local extrema.

Ex 5.4.6: Find the local extrema for f'(x) =x* —x—6.

1
B f(x)=2x-1—
f(xX)=0=>2x-1=0=>x=1

*kkk

2
. 1 4 1 4
Hix<;= f<0&x>5;= >0
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Therefore, by the FDT f(x)=x>—x—6has a local minimum
at< . Finally, we have f(£) =—2> , which completes Step 2.

Note1: when we find local extrema, we not only identify critical points, but
also characterize them and evaluate the function (obtain the output

values) for these same critical points. Many students think the job is over
once the critical points have been identified. This is simply not true.

Note2: The result matches what would be obtained if using techniques
from intermediate algebra. The quadratic function f has X intercepts at

— 2 and3 ; hence, the local extrema lays half way in between at% . Since

the coefficient of x” is positive, f(%)=—2>is a local minimum.

Ex 5.4.7: Find the local extrema for f(x) = 2x> —9x” —24x+1.

I;:f'(x)=6x2 —18x-24=6(x—4)(x+1) >
f(x)=0=6(x—4)(x+1)=0=x=4,-1

*kkk

é:f’(x) >0 = x€ (—oo,—1) U (4,)
f(x)<0=>xe(-1,4)—

n y
++++[-1]-———[4++++
0 0

The new item in Step 2 is called a sign-change chart, a simple but
valuable graphical technique that allows us to visualize all of the
information obtained in both steps. The sign-chart chart is a

n U
stylized number line where the two critical points [—1] and [4] are
0 0

identified as such by the small zero below. Critical points are
characterized as local maxima or minima by the symbols(]andU .
If a saddle point were present, we would simply use the
letter S’ .The sign of f’ relative to the two critical points is indicated
by the sequence++++————++++.
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Finally, in order to complete the job, we must evaluate f at the
critical points—1 and4 . We obtain f(—1)=14and f(4)=-111.

Ex 5.4.8: Find the local extrema for f(x)=x"*—2x".

Using highly condensed notation, we have:

|—1>:f'()c)=4)c3 —Adx=4x(x-1D(x+1) >
F(x)=0=4x(x-D(x+1)=0=x=0,1,-1
S (1) > 0= xe (—L0) U (1,00)
f(x)<0= xe (—oo,—1) U (0,])

U n y
————[-1++++[0]-———[l[++++ >
0 0 0

f=D=-1£(0)=0,/(1)=~1

Ex 5.4.9: Find the local extrema for f(x)=x"e™".
1
= f(x)=3x"e —x’e " =x’B-x)e "

f()=0=>x"B-x)e " =0=>x=03

*kkk

2
> f(x) >0 = xe (—,0) U(0,3)
£(x) <0= xe (3,00)
s N
++++[0++++[3]-———-
0 0
7(0)=0, f(3)=27e> =1.344...
In this example, we encounter a saddle point at x = 0while
climbing up to the local maximum atx =3. Note: This is a great

place for you to stop and thoroughly review the concept of continuity
(Section 4.4) before continuing with the next subsection.
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9.4.4] Finding Absolute Extrema

Continuous functions have many deep and interesting
properties that would be examined in detail via any real analysis
(see note at bottom of page) course. One of these deeper
properties, stated below without proof, is the essential starting
point for the investigative technique developed in this subsection:

The Absolute Extrema Property
Let the function f be continuous on a closed interval[a,b]. Then,

f has an absolute maximum and absolute minimum on[a,b].

A Absolute
Maximum

Absolute
Minimum

aE b

v

Figure 5.11: Continuity and Absolute Extrema

In Figure 5.11, the function f is continuous on [a,b]. Recalling

Section 4.4, this means that one can make a smooth pencil
trace—no hops, skips, or impossible leaps—from the point
(a,f(a)) to the point (b, f(b))when graphing f(x).
Accordingly, the path so traced will have an absolute high and an
absolute low point as shown.

Note: real analysis is the formal study of limits, in particular, limits as they
apply to functions where both the inputs and outputs are real numbers.
Two theorems foundational to the thorough logical development of many
of the deeper properties associated with functions (such as the absolute
extrema property) are the Bolzano-Weierstrass and Heine-Borel
theorems. Both of these theorems can be found in any standard real
analysis text.
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Figure 5.11 also suggests a methodology for obtaining the
absolute extrema, given the function fis continuous on the

closed interval[a, b]. As shown, the absolute maximum is also a

relative maximum and the absolute minimum occurs at an
endpoint. In general, absolute extrema occur either 1) inside an
interval or 2) at one/both endpoints. When absolute extrema occur
inside an interval, they correspond to local extrema occurring
inside the same interval. Otherwise, absolute extrema occur at
one or both endpoints. This suggests the following procedure for

finding the absolute extrema for a continuous function f on[a,b].

Let f be continuous on [a, b]and differentiable on (a, b) . To find

the absolute extrema of f*, perform the four steps below:

1
> :Find the critical points of f within[a,b]. Recall that critical

points are points x where f'(x) =0.

2
> :If need be, also find those points where /* does not exist

within[a, b]. Such points may be few and far between. But,

remember that the function / itself must be continuous—no

exceptions—at these same points in order for the underlying
theory to apply.
3

> :Evaluate f at all points found in step 1), in step 2), and at the

two endpoints a, b .

4
> :Order the functional values obtained in 3) from largest to
smallest. The largest value is the absolute maximum; the smallest
is the absolute minimum.

Ex 5.4.10: Find the absolute extrema for the function
f(x)=x> —3x* —24x+2 on the closed interval[-6,5] .

To start, we notice that the function fis continuous

on[—6,5] since it is a well-behaved polynomial. Polynomials do not
have breaks or hiccups in their graphs—anywhere! Hence, we are
guaranteed that f has absolute extrema on[—6,5] allowing us to
continue with our quest.
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lng'(x)=3x2 —6x-24=3(x-4)(x+2)—>
F()=0=3(x-4)(x+2)=0=>x=4-2>
4e[-6,5]&-2¢€[6,5]

*khkk

2
I—: Skip since f” exists everywhere on (—, )

*khkk

3
>: By the subsection discussion, x = —6,—2,4,5 are the only

possible points where f can have an absolute extrema.
Evaluating f at each of the above x values, we have:

f(=6) =178, £(~2) =30,
f(4)=-78, £(5) =26

>: After ordering, f(—2)=30is the absolute maximum
and f(—6) = —178 is the absolute minimum.

Ex 5.4.11: Find the absolute extrema for the function
f(x)=x =3x> —=24x+2 on the closed interval[0,5] .

The only difference between this example and the previous
example is the change of interval from [—6,5]to[0,5]. In our new
Step 1) below, one of the two critical points is not in the
interval[0,5]. Hence, it is not a point for consideration in Step 3).

Note: Evaluating f at all critical points found in Step 1), even those

critical points not in the interval of interest, is a common source of error
when working these problems.

Hl:f'(x)=3x2 —6x—-24=3(x-4)(x+2)—>
F(0)=0=3(x-4)(x+2)=0=>x=4-2
4€[0,5]& -2 [0,5]

*khkk
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2

> : Skip

3

*kkk

> : Here, the pointsx =0,4,5are the only possible points
where f can have an absolute extrema. Evaluating f at
each of the above x values, we have:
f0)=2,7(4)=-78, f(5)=-26
4
:  f(0)=2is the absolute maximum, and f(4)=-78is
the absolute minimum.
Ex 5.4.12: Find the absolute extrema for the function

f(x)=(2x—1)e " on the closed interval[0,5] .

Products of simple exponential and polynomial functions are
continuous. Hence the function above has absolute extrema on

the interval[0,5] . Continuing:

1
1 f(x)=—Q2x—1)e™ +2e™ =(3-2x)e”™ >
f(x)=0=3-2x=0=>x=15~
1.5€[0,5]

2
=

3
=

4

*kkk

Skip since /" exists everywhere on (—oo, o)

*kkk

The three candidate x values are x =0,1.5,5. Evaluating
£ at the same points results in:
f(0)=-1, f(1.5)=.44626, £ (5) =.0606.

*kkk

> :The absolute maximum is f(1.5) =.44626, and the

absolute minimum is f(0) = —1.
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Ex 5.4.13: Find the absolute extrema for the function
2

f(x)= — Y onthe closed interval [4,6].
In(x)—1

A little preliminary discussion is in order. The function f is not

defined at the two x values 0 & e. Subsequently, the graph of
f does not exist at either 0 or e, implying 1) there is a hole in the

graph at these two xvalues and 2) f'is discontinuous at the
same. Now, if we would have been asked to find the absolute
extrema of f on [0,4], we would have had to capitulate. This is

because f has two bad points 0 & e inside the interval [0,4],
which implies functional discontinuity on[0,4]. But none of this is

true for the interval [4,6], our interval of interest! Thus, the theory
applies, and one can proceed as before.

o, In(x)-1)2x-1(x*) x(2In(x)-3
Hif(x):( (zln(i)—l)z( = ((ln(x()—)l)z)
f(x)=0=2In(x)-3=0=
In(x)=15=>x=e"

e’ =4.48¢[4,6]

*kkk

li: Notice that /”is also undefined at 0 or e. However, we
shall disregard 0 or e since again, these points lay
outside the interval[4,6] of interest. Note: It is really
immaterial to even discuss either 0 or ein the context of

| since the function f itself is not even defined at 0 or e.
*kkk

> : The three candidate xvalues arex=4,x=¢" =4.48,
and x =6 . Evaluating f at the same:

F(4)=41.42, (4.48)=40.7, £(6) =45.46.

*kkk
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4
> : Finally, the absolute maximum is f(6)=45.46 and the

absolute minimum is f(4.48) =40.7 .

Ex 5.4.14: Find the absolute extrema for the function

f(x)= X" on the closed interval [-1,1].

The function itself is continuous on [—1,1] (in fact, on (—eo,o0)
since we can take the cube root of any number and subsequently

square it (the true meaning of x° ).

L, 2 2 2
P f(x)=—x° =—F—=
37 3x
For this function, there is no x value where f”(x)=0.

*kkk

> : Notice that even though fis defined atx=0, its
derivative /' fails to be defined at the same. Since
x =0is inside the interval[—1,1], we  will need to
investigate this curious phenomena just like we would
investigate a normal critical point where f'(x)=0. A
simple graph (Figure 5.12) will help.

A\ 4

2
3

Figure 5.12: Graph of f(x)=x
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As we move down into the low pointat x=0, the two
converging and merging walls become very, very steep.
This leads to an exact vertical slope atx=0. Vertical
slopes have rise with no run. The no run situation creates

a division by zero in the slope formula m =%and will
run

render /’(x) as undefined at the point in question. In this

case it isx=0. In common terms, the graph of the

function f has an extremely sharp knife edge at the

pointx = 0. Subsequently, in the absence of any sort of

rounding atx =0, the function f will not support a slope

at the same. All such points, when they occur inside an
interval of interest, must be investigated along with regular
critical points. As this example shows, the point may be
exactly the value we seek.

*kkk

o The three candidate xvalues arex=-1,x=0 and
x=1.Evaluating f at the same:

f=D=1L£0)=0,f1)=1.

*khkk

>: The absolute maximum is f(1)= f(-1)=1 and the
absolute minimum is £(0)=0.

Note: it is quite alright for two points to share the honors regarding
absolute extrema, or local extrema for that matter.

In light of the last example, we close this subsection with an
expanded definition of critical point.

Expanded Definition of Critical Point: a critical point x,for a

function f'is simply a point in the domain of f where one of the
following happens: 1) f”(x,) =0 or2) f”(x,)is not defined.
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9.4.9) Geometric Optimization

This, the last subsection, addresses those infamous word
problems as they apply to the optimization of geometric quantities.
We will not give you ‘six easy steps’ as do many authors. At least
in my personal experience, the way to mastery of word problems
is by chewing on, failing at, and, finally, succeeding at the task.
Lots of struggling practice gives one a feel for what works and
what doesn’t. Don’t despair when first starting out towards the end
goal of mastery, for mastery is reached by a road paved with
hours of practice.

Note: both in quality circles and in this book, the word optimize can mean
one of three things: maximize, minimize, or nominalize.

Two major points must be made before proceeding on
with three classic optimization examples. The first major point is
that the drawing of a diagram or picture representing the situation
at hand, no matter how silly or simple, is a great aid in solving
word problems. Diagrams allow for the visualization of non-linear
and/or spatial relationships, enabling better right-left brain
integration, whereas equations by themselves are primarily linear
or left brain in nature. The other major point is that when an
equation is finally put together that algebraically represents the
quantity to be optimized; it must be expressed in terms of a
differentiable function that accurately models the situation when
restricted to a suitable domain. Once such a function is
constructed, the hard work is done. We can then go ahead and
proceed as we did in the two previous subsections.

Ex 5.4.15: The Famous Girder Problem: Two people at a
construction site are rolling steel girders down a corridor 8 feet

wide into a second corridor 5\/§ feet wide and perpendicular to
the first corridor. What is the length of the longest girder that can
be rolled from the first corridor into the second corridor and
continued on its journey in the construction site? Assume the
girder is of negligible thickness.
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Note1: The famous girder problem started to appear in calculus texts circa
1900. My father first encountered the girder problem in 1930 when he was
still an engineering student at Purdue. Thirty-six years later, | too
encountered and defeated it after eight hours of continuous struggle. The
girder problem still appears in modern calculus textbooks disguised and
somewhat watered down as a geometric optimization problem. The
problem is famous because of the way it thoroughly integrates the
principles of plane geometry, algebra, and differential calculus. My
experience as a teacher has been—when assigning this gem—that ‘many
try, but few succeed.’ In this book, we will guide you through the entire
thought process needed to obtain a solution. Your job is to thoroughly
understand the thought process as presented.

—>(f 8

£
|

545

Figure 5.13: Schematic for Girder Problem

Figure 5.13 is a suggested schematic for the girder problem
where all the information given in the verbal description is visually
laid out in a spatial format (remember my opening comments on
left-right brain integration). Two things are readily apparent: 1) the
girder as pictured will roll around the corner without jamming,
allowing the two workers to continue their task; and 2) there are
longer girders that will jam when the two workers attempt to roll
them around the corner.

Girder Problem Objective

The objective of the girder problem is to find the
longest possible girder that will roll around the corner.
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Figure 5.14: Use of Pivot Point in Girder Problem

Continuing, Figure 5.14 depicts a thought experiment that shows
the most geometrically advantageous way of rolling girders around
the corner. Two girders of equal length are pictured in transit from
the first hallway to the second. The rightmost girder has an
imaginary pivot point near the middle of the entrance to the
second hallway. As shown, this girder will probably jam and a
backup/start-over will be necessary. On the other hand, if the
workers use the left-most entrance wall as a pivot point, the girder
will definitely roll around the corner. We conclude that the longest
possible girder that can be rolled around the corner must use the
left-most entrance wall as a pivot point.

Let's take the thought experiment to an additional level of
complexity. Imagine that our pivoting girder has spring-loaded
extenders on both ends. These extenders extend or compress in
order to maintain contact with the two walls as shown in Figure
5.15 while the girder rotates around the pivot point. During the

rotation process, the length AB from extender tip to extender tip
will vary. Just going into the turn, the rightmost extender is shorter
than the length of the girder itself; but the leftmost extension could
be several times the length of the girder. The opposite situation
applies when coming out of the turn. Moving through the turn, as

long as AB is contracting while the girder is rotating, then a fixed
beam of length 4B will not make it around the corner. Once

E stops contracting, this shortest E corresponds to the length
of the longest rigid girder that can be rotated around the corner.
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Note2: The original problem was stated in terms of maximizing a quantity.
The problem has turned out to be one of minimizing a quantity, in

particular the geometric quantity AB .

Figure 5.15: Girder Extenders

At this point, we are ready to construct a bare-bones
geometric diagram (Figure 5.16), which will guide us as we begin
to abstract our physical situation into a mathematical model (i.e.
start the necessary function formulation).

4
8 X
Vx? —64 LA SN

5V5 x4
B y= 5\/§x

545 Vx? — 64

Figure 5.16: Geometric Abstraction of Girder Problem

Algebraically, the problem is to minimize the diagonal

5\/§x
Vx> —64

Iength@whereﬁ =x+y=x+
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Define a length function L as follows:

5\/§x

L(x)=x+
x> — 64

Even  though L is  algebraically  defined on the
domain (—e0,—8) U (8,e0), L only makes physical sense (in the
context of our problem) on the interval (8,oc) where the output
values are always positive. Notice that the output values
for L grow without bound as the domain values x approach 8 from
the right. The output values also grow without bound with
increasing x values on the left. Both end-of-interval situations
match the physical context. Again, the sweet spot will be that point
where L is minimized. Figure 5.17 is a notational diagram of how
we have intuited the behavior of the function L thus far.

Figure 5.17: Notional Graph of L(x)

After four pages of preliminary discussion and analysis,
we are ready to analyze the function L(x) using the two steps in
Subsection 5.4.3. This is the way it always goes with word
problems: lots of preliminary consideration and conceptualization
before the function is finally framed. In this key example, we have
allowed you to peak at this not-so-cut-and-tried process first hand.
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(x> —64)" - 1-L(x* —64) > 2x-x
((F -64)')
3205 _ (% —64)° —32045 R
(x* —64): (x* —64)
L'(x)=0= (x> —64)> —3205 =0 =

X2 —64=(32045)" = x> — 64 =80 =
x=12ft

1
= L/(x)=1+5V5

L'(x)=1-

54/5(12)
V122 — 64

We also have that L(12) =12+ =27ft.

*khkk

2
> : Here Step 2 is used to confirm our conceptual analysis.

L'(x)<0= xe (8,12)
L'(x)>0=xe (12,00) >

U
@————[12[+++++++...0)
0

EUREKA!!l—Remember Archimedes?

The famous girder problem has finally come to a close and the
answer is 27 feet. This is the length of the longest girder that can
be moved around the corner without destroying a wall.

Our next two examples are not nearly as involved.
Therefore, many of the conceptualization and setup details will be
left to the reader as part of the learning process. But don’t forget,
we have just presented, in excruciating detail, one of the hardest
word problems in elementary calculus. Anything else is cake.
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Ex 5.4.16: A small rectangular box with no top is to be made from
a square piece of cardboard that measures 10 inches on a side. In
order to make the box, a small square is first cut out from each of
the four corners. Next, the remaining part of the side is folded up
as shown in Figure 5.18. What size square must be cut out to give
a box of maximum volume? What is the maximum volume?

<— 10-2x —> >

V(x)=x(10-2x)’

Figure 5.18: Box Problem

The function describing the volume of the box so made is
given by ¥ (x) = x(10 — 2x)*, which is algebraically defined for all
real numbers. Hence, the algebraic domain is given by (—eo,o0).

However, in the context of our real-world problem, the physical
domain is[0,5]. The endpointx = 0 corresponds to no cut at all,

and the endpointx = 5 corresponds to the whole piece being
quartered. Each of these extreme conditions leads to zero volume
for the folded-up box. For all xvalues in(0,5), it is intuitively

obvious that we will get a positive volume. Since V is continuous
on[0,5], we know that J must achieve a maximum. Also,

sinceV(0) =V (5) =0, we know that the maximum must occur
within the interval[0,5] and at a domain value where?V’ = 0. We
continue our analysis of } using absolute extrema methods.
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|—1>:V'(x)=x-2(10—2x)1(—2)+1-(10—2x)2 =
Vix)=4(5-x)(5-3x)
V(x)=0=>x=53-

2€(0,5)

Note: the critical point x = 5 is not included since it already has gained
admittance to the examination process by being one of the two endpoints.

*kkk

2
> Since V'is defined everywhere, this step does not apply.

*kkk

3
I : The three candidate x values arex=0,x=§, and

x = 5. Evaluating V at the same:

V(0)=0,V(3) =" =74.07in’,V (5)=0.

27

Now we can verbally answer the two original questions. Our small
squares should be 1%inches to a side. Finally, the volume of a
box constructed to this specification—the largest possible using
the given configuration and resources—is given by 74.07in" .

Ex 5.4.17: The strength of a beam with rectangular cross-section
is directly proportional to the product of the width and the square

of the depth (thickness from top to bottom). Find the shape of the
strongest beam that can be cut from a cylindrical log of diameter

d feet as shown in Figure 5.19.

/\

/ dx P=(x, dj—xz)
NENY

Figure 5.19: Beam Problem
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Let P be a corner point as shown. Then the strength § = S(x)is

> 2
given by the expression S(x) = k(2x)(2 4 x? ) where the

letter k is the constant of proportionality. The function S is
physically defined on the interval[0,4] and can be immediately
reduced to S(x) = 2kx(d* —4x”) . Also, observe the endpoint

equality S(0) = S(£) = 0, which means beams cut to the
extremes of one dimension have little or no remaining strength.

Note: The reduced functionS has (—eo,o)as its algebraic domain.

Hopefully by now you are beginning to see the difference between the
algebraic and physical domains when solving word problems.

1
1 87(x) = 2k(d? —12x%) >
S'x)=0=> x=- -4

232 243

d d
25€ (0%

2
=

3
=

*kkk

This step does not apply.

*kkk

The only candidate value left after endpoint considerations

isx=_"7~. Evaluating S , we have

N 0 U A
S35 =2k -[55]) = "k

*khkk

Summary: in order to maximize strength, our beam should be cut

to a total width of %and total depth of%d. The strength of a

beam constructed to this specification is

lkd?

1243

128



Always Remember

No word problem is complete until all the original questions, as
initially stated in the problem, are answered.

b o0
Iudx
a
Section Exercises

1. Consider the function f'(x)=5+3x—2x’

. Find the equation of the tangent line atx =2 .
. Find the equation of the normal line atx =2 .
. Find the local extrema for f.

b
c
d. Find the absolute extrema for f on[-2,2].
e
f.

Y]

. Find the absolute extrema for f on[1,3].
Find the shortest distance from the point (2,1) to the
graph of the function f .
2. The graphs of the two quadratic functions f(x) = x> +2 and

g(x)=4x—x" touch each other at one common point of

tangency. Find the equation of the common tangent line at this
same point.

3. Consider the function f(x) = x> +2x” +x+1
a. Find the local extrema for /.
b. Find the absolute extrema for f on[—7,1].

c. Use Newton’s Method to evaluate the one x intercept
accurate to three decimal places.
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4, Concrete is being used to pour a huge slab of
dimensions 3 f# X150 f¢ X150 f¢ . The thickness is correct; but,
three hours into the pouring process, the two lateral dimensions
are re-measured at152 f#. Using linear approximation methods,

quickly determine the additional amount of concrete (in cubic
yards) needed at the pouring site.

5. Use linear approximation to evaluate~/76 and3/29 .
6. Find the local extrema for f(x) = %x“ —x’ +4x-1.

7. Consider a triangle inscribed within a unit half circle as shown
below.
a. Find the area of the largest triangle that
can be inscribed in this fashion.
b. Find the perimeter for the same.

8. Find the absolute extrema on the interval[0,10] for each of the

following functions: f(x) = xe™ and g(x)=In(x*> —x+1).
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The previous section (the longest in the book) explores
several elementary applications of the derivative. In this section,
we are going to modify the differentiation process itself in order to
find derivatives for those functions that are defined implicitly.

1
To start the discussion, considery = f(x)=—. This
X

function is defined explicitly in that we can easily see the exact
algebraic expression for the input-to-output processing rule,

1
namely —- . Differentiation of such explicitly defined functions is
X

easy. All we have to do is follow the rules in Section 5.3. Applying
the basic power rule to y = f(x) = x>, we obtain

y= Xt =
D =x"1=

y,:—2x73 :_x—3

You might ask, why go to such detail? It seems to be algebraic
overkill. The answer is that it illustrates what is really going on in
the now pretty-much automated differentiation process. In words,

1
since the output expression for yis equal to—-, then the
X

1
derivative for y will be equal to the derivative of —-. Thinking
X

back to the rules of equality first learned when solving elementary
linear equations, one could say that we have just added yet
another rule:

Derivative Law of Equality: If A= B, then A'=B’

Where all equality rules can be reduced to the single common
principle:
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Whatever is done to one side of an equality statement must
be done to the other side of the equality statement in order to
preserve the equality statement after completion.

So, why are we having all this fuss about equality statements?
Answer: a proper understanding of equality statements is one of
the necessary preparations when learning how to differentiate
implicit functions.

It doesn’t take a whole lot of algebraic manipulation to

1
turn y =—-into an implicit function. By simple subtraction of
X
: 1 1 :
equals, the function y =—-becomes y ——-=0. The expression
X X

1
y—— =0is called an implicit formulation of y as a function of x
x

because the expression hints or implies that y indeed is a function

of x , but does not specifically showcase the exact algebraic and/or
transcendental formula for yin terms ofxas does the explicit

1
formulation y =—-. The differentiation of the implicit formulation
X
of y= f(x) is quite easy if we use the equality rules just
presented.

’

X
, |1
[y]{—z} =0=
X
, 2 , =2
yV+—5=0=>y =—
X X

Notice, that in the above, we simply use derivative rules to
differentiate both sides of the expression, being careful to preserve
the equality during all steps in the process.
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The last step is the actual solving for the derivative y” with the final

answer matching (as we would expect) the result obtained from
the explicit differentiation.

Suppose we create a different implicit functional form

1
from y =—- , say the expression yx2 =1. Could we use this as a
X

-2
new starting point to obtain the known final result y’ =—"7 The
x

answer is a resounding yes. But, before we proceed, notice that
the left-hand side of yx2 =1lis now a product of two factors: the
implicit function y = f(x) (see bottom note) and the explicit
quantityxz. Hence, when differentiating the expression
yx* = f(x)-x°, we will need to use the standard differentiation
process associated with the product rule. Continuing:

LT =[]=

DI T +DTx*]1=0=

2xy+x°y =0=

x*y ' =-2xy=

,_—2xy =2y
x’ x
In the above expression fory’, we actually know whatyis in
1
terms of x since yis solvable in terms of x . Substituting y = —-,
X

we finally obtain y' = —-, which again matches the original y' .
X

Note: To reiterate, y is called an implicit function because we assume
that a functional relationship of the form y = f(x)is embedded in the

expression yx2 =1. There is a powerful result found in advanced

calculus, known as the Implicit Function Theorem, that stipulates the
exact conditions for which this assumption is true. In this book, and in
most standard calculus texts, we are going to proceed as if it were true.
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If the previous three pages seem like unnecessary
complexity for obvious and simple examples, consider the more

complicated expression 2x+xy3 +1=x +y2 . Here, we can't
solve for y explicitly in terms of x . But, we can find )’ using the

techniques of implicit differentiation if we assume y = f(x)and

proceed accordingly using standard differentiation rules as now
illustrated in Example 5.5.1.

Ex 5.5.1: Find j)'for y= f(x)embedded in the defining

expression 2x+xy3 +1=x +y2 . When done, find the equation
of both the tangent line and normal line at the point(3,1) .

Part 1: Pay careful attention to how both the product rule and
generalized power rule are used under the governing assumption

that yis indeed a function of x(i.e.y= f(x)). Hence, when

differentiating y3 and y2 , we have the following:

T =[P T=3{/()}" /' (x)=3y")
T =[S T =2{f ()} f'(x) =23

Continuing:

2x+xp’ +l=x"+y’ =
2x+x)° +1]' =[x+’ =

2x] +[0/ T+ = [T+ [y =

AT+ T+ Y+ =[]+ [T =
24+xy°y +1-3° =2x+2 >

xp°y =2y =2x-2-y’ =

(xy>=2y)) =2x-2-y’ =

, 2x-2-y°

- xy2—2§
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Part 2: Evaluating )" at the point(3,1), we obtainy”=3. The
equation of the tangent line is given by y—1=3(x—3); the
equation of the normal line, by y —1=3'(x-3).

Marvel at the power of this technique. Even though we
don’t know the explicit expression for y in terms of x , we can use

implicit differentiation to find a viable y'. Subsequently, we can

use this same y' to generate equations for tangent and/or normal

lines given known points that satisfy the original expression. In
many cases, this original expression can not be visualized via an
actual graph unless done by math-enhancing software. The
bottom line is that implicit differentiation greatly enhances the
flexibility and applicability of the differentiation process in general.
One could say that implicit differentiation allows us to differentiate
‘functions in hiding’, hiding in either expressions or equations.

Let’'s do two more tedious examples in order to firm up the
implicit differentiation process before moving on to some practical
applications involving related rates.

Ex 5.5.2: Find " for xy° —y* =x" +10

-y =x+10=>
[xy° =y’ =[x’ +10] =
Lo’ =[] =[x’T+[10] =
A T+ Ty 1-[y* ] =[x T +[10] =
6xy°y +1-y° =2y =3x" =
(6xy° =2y)y" =3x> -y’ =
, 352 _y6
- 6xy° —2y

Ex 5.5.3: Find )’ for x°y’ X =1+y’
y
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x’y’ —£=1+y2 =
{xzyz—f} =[1+y°T =
y

[xzyz]'—H =[]+ =
y

’ 1- ’ ’
2x "+ 2xp° —{yy—zxy}:Zyy =

2x2y3y'+2xy4—y+xy'=2y3y':>
2x* Yy +xy =2y’ y =y 20" =
Q2x*y +x-2y")y =y-2x* =
, y—2xy4
y _2 2 3 3

Xy +x=2y

Implicit differentiation can be immediately used in practical
applications involving related rates. In related rates problems,
several time-varying quantities are related in an algebraic
expression or equation. Hence, each quantity within the equation
or algebraic expression is a function of time, the whole of which
can be differentiated using implicit differentiation. The derivatives
produced are time-rates of change and can be algebraically
related—origin of the term related rates—in order to solve a
particular problem. Let's see how this process works in two
practical applications

Ex 5.5.4: A spherical ball of ice is melting at the rate of4r’%;. How

fast is its radius changing when the radius is exactly 3 inches?

For a sphere, the formula relating volume to radius (Appendix B)
isV = §r3. Also, in the situation just described, both V" andr are

functions of time in minutes implying V' (¢) = %[r(t)]3 :
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The expressionV(t)=§[r(t)]3algebraically relates the two

functions V(¢t)andr(z). Using implicit differentiation to
differentiate the above expression, we obtain

V(t)=4[r(]’ =

oy =Lror] =
V() =4 (O ¥ (2)

The last expression relates (¢) and the two ratesV'(t) &’(t) . By
the problem statement, we know that the ice ball is melting at a
steady rate V’(t) =42 To find #’(t)whenr(t) = 3in, first solve

V()
401
two specific values for »andV”in order to finish the job and (of
course) answer the original question.

the last equality for 7’(¢) to obtain r'(¢) = . Now plug in the

23
m

l",(t) i = é nflrlln )

~ aBin]?

Ex 5.5.5: A 20 foot ladder is leaning against a wall. A large dog is
tied to the foot of the ladder and told to sit. Five minutes later, the
dog is pulling the foot of the ladder away from the wall at a steady

rate of3% . How fast is the top of the ladder sliding down the wall

when the bottom is 14 feet from the wall?

Figure 5.20: ‘Large Dog’ Pulling Ladder
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By the Pythagorean Theorem, we have x°+ > =20°. Since
xand yare both changing in time, x=x(¢)andy = y(t).
Substituting into the Pythagorean expression, we have
that[x(¢)]> +[»(¢)]° =20° which is our fundamental algebraic
expression relating the rates. Differentiating (implicit style),

[x(OF +[y(O))F =20° =

[xOF +Dy 7] =207 =
2x(0)x' () +2y()y (1) =0

We want »'(#) when x(¢) =14 fi and x(¢) = 32 . Solving the last

sec

—x(0)x'(1)

v
Pythagorean Theorem yet again, we have that y(¢) =14.28 f at
the instantx(¢) =14 f¢. Finally, substituting all the parts and
pieces into the general expression fory’(t), one

—14f-3 L .
M3 poat

obtains y,(t) = W = . oo

equation fory’(f), we obtainy’'(¢) = Using the

b oo
judx

a
Section Exercises

1. Use implicit differentiation to differentiate the following:
3

a)x2+3xy+y2:4 b) =7y2 c) In(x+y)=y

xX+y
2. Find the equations for both the tangent line and normal line to
the graph of the expression x”y + y = 2 at the point (1,1).
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3. A person is walking towards a tower150 feet high at a rate
of4§ . How fast is the distance to the top of the tower changing at
the instant the person is 60 feet away from the foot of the tower?

4. Two ships are steaming in the Gulf of Mexico. Ship A is
precisely 40 nautical miles due north of ship B at 13:00 CST. Ship
A is steaming due south at 15knots and ship B is steaming due

east at 5 knots. At what time will the closing distance between the
two ships be a minimum? What is the minimum closing distance?

9.6) Higher Order Derivatives

Consider the function f(x)=4x"-7x>+x+11 which

can be differentiated to obtain /”(x)=12x" —14x+1. Now, the

newly-minted derivative f'(x)is a function in its own right, a
function that can be differentiated using the same processes as
those applied to our original function /. Hence, we can define a

second derivative f”(x)for the original function /(x)by the
iterative process f”(x)=[f’(x)]'. Going ahead and taking
f”(x), we obtain

=0 =
F(x)=[12x" —14x+1] =
F7(x) =[12x] —[14x] +[1] .
F7(x)=12[x*T = 14[x] +0
F7(x)=24x—14

Second derivatives can be denoted by either prime or differential
notation. A listing of common notations follows:

1. f"(x):read as f double prime of x
2. f”:readas f double prime
3. y”:readas y double prime
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2

d’y
dx?

:read as “dee-two y by dee-two x”

or “dee-two y by dee x square”

One can iterate a second time in order to obtain a third
derivative f”(x)=[f"(x)] =[24x—14]'=24. A third iteration
gives a forth derivative ¥ (x)= " (x)=[f"(x)] =[24] =0;
and in this illustration, any derivative higher than the forth
derivative is also zero.

Note: In many texts, Roman numerals are used to denote all forth-order
and higher derivatives. Parentheses are always used in conjunction with
numerals in order to distinguish from exponents.

Ex 5.6.1: Find all orders of derivatives for y = x” —3x* +7x* +9
Ié:yzx5 “3x'+7x° +9=>
Y =[x =-3x*+7x*+9] =
y =5x" —12x° +14x

2
)" =20x —36x° +14 =

y” =60x> —72x =
yP =120x-72 =
¥ =120=>

©) _ 7 _

y 0=y 0=>..

As the above example demonstrates, the derivatives of polynomial
functions decrease in algebraic complexity with an increase in
order. The following two examples show the same is not true with

rational and/or transcendental functions.

2

X
Vxt+1 '

Ex 5.6.2: Find f”(x)for f(x)=
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First, we must generate /().

2 2
X X

P T T ey

D T =R D)

=

@) Tox X
[(x"+1)7]
F) = (x* +1)2 -2x—)§2 AP+ 2x .
(x*+1)
) = X’ +2x
(x> +1)

Next, the newly-minted ”(x) becomes the input to the derivative-
taking process in order to generate f”(x).

’

S f7(x) = {)ﬁ-i—_Zx} -

(x> +1)°

_ D 420 = (200 + )T

f'(x) i
[(x* +1)?]
f”(x)=(x2+1);(3x2+2)_(2x3+32x)-2(x2+1)3-2x:»

(x~+1)
fr = S ERO
(x”+1)°
f"(x):(x +1)(3x +22)—(5x +2x)-3x:>
(x=+1)?
f”(x):z_—x

5
2

(x*+1)

L)



dzy

Ex 5.6.3:Find - fory = x’e* .

1 2
H:yzxg’e'r =

ﬂ_ 3 i x? x? i 3
dx_(x )dx[e 1+ (e )dx[x 1=

L (x*)-2xe" +(e*)-3x* =
dx

L =(x’)- 2xe” + (ex2 )-3x% =
dx

L =x*(2x* + 3)e"2
X

*khkk

e

2
: d 2; :i{d_y} =i[x2(2x2 +3)ex2 ]:>
dx dx| dx dx

d’y _ 2x +3) L e T4e” L 2x +3)] >
dx? dx dx
dzy_ 2 2 2 3 2 x? x2 8 3 6
dxz—x(x +3)-2xe” +e" -(8x” +6x)=>

2
‘; Y 2x(2x* +7x% +3)e”

X

One can also use implicit differentiation to find a second-order
derivative.

Ex 5.6.4: Find y"forx’y+y°x=2y+7x+10
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1
=X’ y+y°x=2y+7x+10=

[x*y+y’x] =[2y +Tx+10] =
[y +[y°x] = 20y + 7[x] +[10] =
2xy+x*y + 7yt 1+x-2y)" =2y +7=
2xy+xy +y 1+ x-2yy =2y"+7
(xX*+2xy-2)y'=7-y’ =
y=l Y

x*+2xy -2

We can continue with the above expression in order to find y”; but

the previous expression lacks a denominator, which makes the
algebra a little simpler.

Note: Mathematicians—if you can believe it—are basically a lazy lot
always looking for ways to improve the process. Dr. C. E. Deming was a
mathematician/statistician long before he became a champion of the
American Quality Movement.

Continuing:

|—2>:[(x2+2xy -2)yT=[1-y1T=>
(x*42xy =2) - [V +[(x*2xy =2)] -y = [T - [y*T =
(x*+2xy—2)- Y +(2x+2y+2xy") -y =2y =
(X *4+2xp=2)-y" =2y = 2x)" =2 = 2x())* =
(x*+2xy—2)-y" =—4yy' = 2xy" - 2x(y")* =
V= —2y'§2y+x+xy')

X H2xy—2

7—y2

Finally, substituting =
4 X 4+2xy -2

, we obtain
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2 7—)/2
s, -2(7-y ){2y+x+x[x2+2xy_2}}
Ty (C+2xy—2)°
y”:—2(7—y2){(2y+X)(x2+2xy—2)+X(7—y2)}:
(x*+2xy-2)°
s —=2(7—=y){x’ +4yx” +3xp° —4y +5x}
Y= (C+2xy—2)°

Now, for any function f having both first and second
derivatives, the following fundamental syllogism applies:

The second derivative /”is to [ as
The first derivative f”is to f

Hence, we can use f”to analyze f’ in exactly the same way that
we used f'to analyze f . An immediate application is the finding

of those points of the graph of f where the slope values (not to be

confused with the functional values) have a local extrema. This
simple observation leads to an equally simple definition.

Definition: A function f is said to have a hypercritical point at x,, if

either /”(x,) =0 or /” does not exist at x,, .

Notice that both critical points and hypercritical points (hypercritical
points are also known as inflection points) are functional attributes

referenced to the original function /. This is made clear by the
problem statement in our next example.

Ex 5.6.5: Find both the critical and hypercritical points for the
function f(x)= x> —6x" +9x .
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|—1>:f(x):x3 —6x° +9x =
f(x)=3x" -12x+9=3(x-1)(x-3)
f(x)=0=3(x-D(x-3)=0=
x=13

The points x =1and x = 3 are critical points for f since /' =0.
2
= (x)=6x-12=6(x-2) —>
ff(x)=0=6(x-2)=0=
x=2

The pointx=2is a hypercritical (or inflection) point

for £ since 1" =0.

Let's take Ex 5.6.5 one step further by giving it a physical
context. Suppose a roller coaster is moving on the graph of

f(x)=x’ —6x* +9x as shown in Figure 5.21.

A

(1.4

(2,2)%

\ 4

(0,0) (3,0)

Figure 5.21: A Roller Coaster Ride

After rounding the peak at(1,4) , the coaster dives towards the low
point at (3,0) (note: the reader should verify that (1,4)is a local

maximum and (3,0)is a local minimum). The dive angle initially
steepens as the coaster descends, causing weak stomachs to fly.
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However, this steepening must cease about midway into the dive;
or else, the coaster will forcibly bury itself at the bottom.

Consequently, there is a point, the hypercritical point at (2,2), on
the dive path where the coaster starts pulling out of the dive in
order to end up with a horizontal slope at(3,0). Thus, the

hypercritical point (2,2) marks two important events on our

coaster ride: 1) the location of maximum steepness and 2) where
the much-needed pull-out begins. Finally, if we were climbing from
a low point to a high point, a similar analysis would apply. There
would have to be a point in the climb path where we would need to
start a leveling process in order to become horizontal at the high
point.

To finish Section 5.6, let's briefly explore the relationship
between derivatives of various orders and simple motion. Suppose
the horizontal displacement, in reference to a starting point, of an

object after ¢ hours is given by P(¢) = 5t +10¢> where P(t) is in

feet. We have already seen that the first
derivative P’(t) = 5+ 20t has units ;{5_5: and can be interpreted in
this motion context as instantaneous velocity. Likewise, the
Sfeet
hour feet

second derivative P”(¢) = 20 has units Do =——and can be
Ouf" our

interpreted as instantaneous acceleration. Recall from physics that
acceleration is defined as the time-rate of change of velocity. The

third derivative P”(f) = 0 and has units 2% . The third derivative

defines a quantity called instantaneous jerk. Jerk is well named;
for when jerk is non-zero, one will describe the associated motion
as jerky or non-smooth.

hour

%

Ex 5.6.6: A hammer is dropped from the roof of the Sears Tower
in Chicago, lllinois. Find the impact velocity and acceleration at the

time of impact if P(¢) =1450—16¢° gives hammer height above
street level f seconds after hammer release.
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To find the total elapsed time from hammer release until hammer
impact, set P(z) =0 .

P() = 1450-16t> =0 =
1450-16t* =0 =
t=9.51sec

To find hammer velocity and acceleration at impact, evaluate

P'(t)=-32tand P'(9.51) = -304.63 L
P’(f)=-32and P"(9.51) =322

sec

b (1]
Iudx
a
Section Exercises

1. Find y"and y” for the following functions:
2

X
Nx*+9

a)y="7x"-5x>+17 b)y= c) y=xe' —xlnx

2.Find y"fory =xy”> +x> +2.
2 2

3. The point (2,3)is on the ellipse defined by%+i}—8 —1. Find

the equations for both the tangent line and normal line.

4. How far will a truck travel after the brakes are applied if the
braking equation of forward motion is given

by D(t) =100t —10¢*, where D(t)is in feet and? s in seconds?
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9.7) Further Applications of the Derivative

9.1.1) The Second Derivative Test

Definition: A function f'is called twice differentiable on an interval

(a,b)if one can generate both /" and f” for every point within the
interval.

Now suppose f is twice differentiable in (a,b)and there is
a critical point x,within (a,b)where f’(x,)=0. Then, by the
fundamental differential relationship, we have the following result:

f,(xo +dx)— f(x,) = f”(xo)dx =
['(x)=0=> f(x, +dx) = f"(x,)dx

The expression f’(x, +dx) = f"(x,)dx forms the basis for the

second-derivative test. This test distinguishes a local maximum
from a local minimum.

Second Derivative Test for Local Extrema

Let f be twice differentiable in (a,b)and let x,be a critical point
within (a,b) . Note: the fact that f is differentiable in (a,b) means
thatx, will be restricted to the type of critical point
where f'(x,) =0 . Then:

Case 1: f”(x,) > Oimplies / has a local minimum at x, .
Case 2: f”(x,) <Oimplies f has a local maximum at x, .

Case 3: f”(x,) =0means the test can’t be used.

f"(x,) = 0also means that we must resort to the first derivative
test if we need the information bad enough.
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To prove the second derivative test, the
expression f'(x, +dx) = f"(x,)dx is repeatedly used for

various sign combinations of dxand f”(x,) as we progress

through the three cases. Overall conclusions are captured visually
via three generic sign-change charts.

1: for f7(x,)>0:dx>0= f'(x,+dx)=f"(x,)dx>0

and dx<0= f'(x, +dx)=f"(x,)dx <0

u
==X, [+ +++.
0

2: for f7(x,)<0:dx>0= f'(x, +dx)= f"(x,)dx <0

and dx<0= f'(x, +dx)=f"(x,)dx>0

n
it +++[x -———
0

3:for f7(x,)=0:Vdx= f'(x,+dx)= f"(x,)dx=0

9

0

Thus, the test fails miserably in 3 (Case 3)

Note: All is not lost if f”(x,) = f”(x,) = 0. Double zeros are a strong

indicator of a saddle point. However, we will still need to perform the first
derivative test in order to definitively check out our hunch.

Ex 5.7.1: Find the local extrema for f(x) =2x> —9x* —24x+1.

This example is the same as Ex 5.4.7. But here, we modify Step 2
in order to incorporate the second derivative test.

> f(x) = 6x> —18x— 24 = 6(x — H)(x +1) >
F()=0=6(x—4)(x+1)=0=>x=4,-1
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*khkk

2
() =12x-18
(=) =12(-1)-18=-30< 0=
f7(4)=48-18=30>0=>U
3
= f(x)=2x" —9x* = 24x+1=>

f()=14& f(4) =111

In order to complete the job, we must evaluate f at the critical
points —1and 4 (see Subsection 5.4.3).

Ex 5.7.2: Show thate” > x°¢.

Note: | first encountered this devilish problem while taking a college
algebra class (fall of 1965) and have never been able to solve it using just
algebraic techniques. In 1965, the slide rule was still king. So, no fair
plugging numbers into your hand-held graphing marvel. Calculus finally
came to my rescue some 20 years later. The limerick at the end of the
chapter commemorates this victory via a mathematical challenge.

Define f(x) =e* —x“on the interval[0,10], an interval for
which f'is twice differentiable. Notice that =z e (0,10)and

f(m)=e" —m’is the quantity to be examined.

1
> :  Find the critical points for f .
f(X)=e' —x*= f(x)=e" —ex” —
f()=0=e" —ex"' =0
e" =ex” = In(e’) =In(ex") =
x=In(e) +(e—1)In(x) =

x=1le
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2
—: Apply the second derivative test.

f(x)=e" —e(e—1)x*"
f”(l):€—€(€—1)=e(2—e)<O:>ﬂ
fle)=e"—efe-De =" >0=>U

3
> Interpret the results. Now f(e)=0is the only local

minimum on[0,10]. Since f(0)=1>0, f(1)=e—-1>0
and £(10)=¢e'"" —10° > 0, we also have that f(e)=0 is an
absolute minimum on[0,10]. Hence, we conclude f(x) > 0for
all other x € (0,10) and, in particular, for x = . Thus:
f(r)>0=

f(ry=e"-7°>0=>

e" >n° .
Ex 5.7.3: Find the local extrema for f(x) = x> —3x* +3x+4.

I;Zf'(x)=3x2 —6x+3=3(x-1)°
f(x)=0=3x-1)"=0=>x=1

*kkk

szf"(x)=6x—6l—>
) =6(1)=6=0

The second derivative test fails since f”(1) = 0. Therefore, we
must use the first derivative test in order to complete the analysis.

li:f'(x)=3(x—1)2 BN

N
++++[1H++++
0
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The critical point at x =1 is revealed by the first derivative test to
be a saddle point with f(1)=5. This supports the previous
comment on double zeros.

: 1
Ex 5.7.4: Find the local extrema for f(x) = x+—.
X

1 2 _
H:f’(x)=1—i2=x L
X

2_
F=0= "o =11
X

*khkk

é:f”@):%a

X
f)=-2<0=/
f"=2>0=U

3 1
P f(xX)=x+—=

X
fED==2& f(1)=2

9.1.2) Geometric Optimization with Side Constraints

Sometimes an optimization problem will require a primary
quantity to be optimized when a related quantity is being
constrained. Ex 5.4.16 can be thought of in these terms: a volume
of an open-topped box is to be maximized under the condition that
a square piece of paper is to be constrained to a side length of 10
inches. Viewing an optimization problem in terms of constraints
can often be a viable approach in solving word problems where
several different expressions are related to the quantity to be
optimized. Two examples will illustrate the process.

Ex 5.7.5: A closed rectangular box is to be constructed that has a
volume of4ﬁ3 . The length of the base of the box will be twice as
long as its width.
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The material for the top and bottom of the box costs $0.30 per
square foot. The material for the sides of the box costs $0.20 per
square foot. Find the dimensions of the least expensive box that
can be constructed. What is the cost of such a box?

A=2lh+ 2w+ 2hw
h V =lhw

Figure 5.22: Enclosed Rectangular Box

Figure 5.22 shows an enclosed rectangular box with three labeled
dimensions. The cost of producing such a box irregardless of size
will be

C(l,h, w) = (30.20)21h + (30.30)21w + ($0.20)2hw =>
C(l, h, w) = $0.401 + $0.600w + $0.40/hw

One immediately notices that C = C(/,h, w)is a function of three

independent variables, as opposed to a function of a single
independent variable. Thus, the first order of business is to reduce
the number of independent variables from three down to one, so
we can apply the single-variable optimization techniques as found
in this chapter.

From the problem statement, we have that the length of the base
of the box will be twice as long as its width. This condition is a side

constraint, which is easily captured by the expression/ =2w.
Hence, the independent variable /is not so independent after all.

Consequently, the substituting of / = 2w into the expression for
cost leads to a reduction in the number of independent variables.

C(I,h,w) = $0.80wh +$1.20w* +$0.40hw = C(h, w) =
C(h,w)=$1.20wh +$1.20w"
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Two independent variables is still one too many. To reduce further,
we employ the additional side constraintV = Iwh =4 ft>, which
leads to the following:

wh=4=2wh=4=h="
w

C(h,w)=$1.20wh+$1.20w* =
C(h,w) = $1.20w{%} +$1.20w° = C(w) =
w

$2.40

C(w) = +$1.20w°

With the help of two side constraints, we have
reduced C(/, h, w)to the function C(w), a function having a single
independent variable. Notice that in the context of the physical
problem, the function C(w) has natural domain (0,), much of
which is unusable since costs become extremely large as
w — Oorw — oo . So, hopefully, there is a ‘sweetw’ somewhere
in the interval (0,o) , which is of reasonable size and minimizes

the cost of construction. Formulation complete, we are now ready
to continue with the easier pure-math portion of the problem.

1
= C'(w) = —2'—420+ 2.40w >
w

C'm=0=>w=1

*khkk

4.80

3
w

C’(1)=720>0=U

*khkk

2
= C"(w) = +2.40 -
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3
> : Answer the two questions.

w:1ft:l:2w=2ft:>h:iz=1ft
w

$2.40 | 6120w = (1) = $3.60

C(w) =

Ex 5.7.6: Of all rectangles with given perimeter, which has
maximum area? What is the maximum area so obtained?

A=1Ilw
P=2]+2w

Figure 5.23: Rectangle with Given Perimeter

Figure 5.23 shows the layout of this rather elementary, but
fundamental, example. We are to maximize 4A(/, w) = [w subject to

the side constraint P =2/ +2w. The first task is to reduce the
number of independent variables as before:

P=2l+2w=1= P_2W:>

A(Z,w)={P_2W}w=A(w):
Pw—2w*

Aw) === we [0.]

Al areas corresponding to points in (0, %) are positive. Also, notice

that 4(0) = A(5) =0, which corresponds to the using of all
available perimeter on width.
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e A (W) = L[P-4w]>

Aw)y=0=>w==

*kkk

2

A" w)=-2<0=)

’ P P P P’
'_):WZIDIZTSA(T):E

Conclusion: the rectangle enclosing the greatest area for a given
2

perimeter P is a square of side% . The associated area isg .
b (1] b (1]
I Udx Iudx

e tothe 7T beats 7T to the e.
I claim it so! Do you agree?
The calculus rules
But algebra fools—
No fun if done with keystroke and key!
October 2001

Chapter Exercises

1. The U.S. Postal Service will not accept rectangular packages
having square ends if the girth (perimeter around the package)
plus the length exceeds 108 inches. What are the dimensions of an
acceptable package having the largest possible volume? What is
the associated volume?

2. Small spherical balloons are being filled with helium at a steady
volumetric flow rate ofSO% via a commercial gas injector. One
particular brand of balloon will pop if the total surface area
exceeds 144in” . How many seconds do you have to remove this
particular brand of balloon once the fill volume reaches 100in> ?
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3. Find the local extrema for each of the following functions.
2 X
a)f(x)=(x-Dx* b)f(x)=

x> +1
c) f(x)=x"e"

4. Find the equation of the tangent line at the point (2,—1) for the
function implicitly defined by2y +5 = x’ +y3. Find the equation
of the normal line at the same point. Finally, find y”.

5. A box with a square base and an open top is to be made with
27 ft* of cardboard. What is the maximum volume that can be
contained within the box?

6. Find the absolute extrema for f(x) = x> +3x> —24xon[0,3].
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“To every action there is always opposed an equal reaction:
Or, the mutual actions of bodies upon each other

Are always equal, and directed to contrary parts”

Sir Isaac Newton

6.1) Antiprocesses Prior to Calculus

When Isaac Newton made the above statement, he was
speaking about a principle in the realm of physics linking mass,
force, and motion. In the realm of mathematics, we have a similar
principle; and, mimicking Newton, we can state this principle in
terms of processes.

For every mathematical process, there is always an associated
antiprocess: which, by definition, is a new mathematical process
that reverses the action of the original process.

Our first encounter with this principle came in 2™ or 3™
grade when we started to learn subtraction (sometimes called take
away) which undoes the process of addition. Our second
encounter was when we started to learn division which undoes the
process of multiplication. This process-antiprocess pedagogy
continued to follow us into algebra, where the general educational
pattern was always the same: first introduce the process and then,
the associated antiprocess. In this book, we introduced the
concept of function—as a particular type of process—in Section
4.1. Inverse functions (one could call these antifunctions) followed
in Section 4.2.

If you reflect back on your mathematics education to date,
you probably realize that the antiprocess, in most instances, is a
litle more difficult to master than the original process. A somewhat
strained metaphor, but | liken the performing of an antiprocess to
reassembling a shattered Humpty Dumpty (Figure 6.1) after
performing the forward process of shoving him off the wall.
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This is because forward processes tend to be straightforward and,
as a rule, break the problem down into successive little steps
where each step is easily accomplished given enough
understanding and practice. Antiprocesses start with the outputs
produced by associated forward processes and attempt to
recreate the original inputs. This recreation can be extremely
difficult since the output produced by a forward process is usually
algebraically simplified to the point that the steps that led to the
output are obscured. Hence, antiprocesses require more pattern
recognition and intuition when being applied.

Humpty Dumpty sat on a wall,

Humpty Dumpty had a great fall;

All the King’s horses and all the King’s men
Could not put Humpty Dumpty together again.

Figure 6.1: Poor Old Humpty Dumpty

Below is a small table listing some elementary processes
from arithmetic and algebra with their associated antiprocesses.

Subject Process Antiprocess
Arithmetic Addition Subtraction
Arithmetic Multiplication Division
Algebra Building Fractions Reducing Fractions

Polynomial Polynomial
Algebra MuI)’:ipIication Fac¥[oring
Algebra Adding Fractions Partial Fractions
Algebra Function Inverse Function

Table 6.1: Selected Processes and Antiprocesses
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The list in Table 6.1 is not meant to be all inclusive. It is only to
show that the process-antiprocess idea has been a part of our
mathematics education for a long time—even though we may not
have verbalized it as such in textbooks.

We end this section with some elementary factoring and
check problems. Why? Factoring is a crucial algebraic skill that
illustrates the process-antiprocess idea in a concise fashion. The
forward process, polynomial multiplication, has set algebraic
procedures requiring very little pattern recognition and/or intuition.
However, the reverse process—polynomial factoring—is much
more subtle. Polynomial factoring requires subtle pattern-
recognition skills, obtainable only through practice, as we attempt
to reconstruct the individual factors from which the polynomial
product has been made. Re-examining polynomial multiplying and
factoring from a process-antiprocess viewpoint is a great warm up
for our next major section, which introduces the subject of
Antidifferentiation.

b (1)
Iudx

a
Section Exercise

Factor (antiprocess) the following polynomials and check by
multiplying (forward process). For each problem, reflect on the
relationship between the two processes and the relative degree of
difficulty. Note: Appendix C has a list of factor formulas.

a) x> +14x+49 b) x* + x> +3x+3 c¢)3x* -48
d) 4x> +16 e) 6y° —8y° +4y* f) 36x> =25
g) 6x° —5x+1 h) x* —x—12

i) 8x° +22x* —6x  j) 3x* —10x -8

k) 3m* —9mn —30n> 1) 25x> —20x + 4
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6.2) Process and Products: Antidifferentiation

_n
' [ dy
f(x)y Process: VACORD dx
> Differentiation x)
Inputs: Products:
Functions Derivatives
_n
f' (.X)dx, dy Process: f(x)9y
> Antidifferentiation >
Inputs: Products:
Differentials Antiderivatives
(The Original
Functions)

Figure 6.2: The Process of Differentiation
Shown with the Process of Antidifferentiation

Figure 6.2 shows the process of antidifferentiation along
with the forward process of differentiation (see Figure 5.3).
Antidifferentiation is the process by which we reconstruct the
original function (called an antiderivative) from the associated
differential (i.e. put Old Humpty Dumpty back together again).
Together, differentiation and antidifferentiation comprise the two
main processes of calculus.

Each of the two processes has its own historical
conventions and corresponding symbols. In differentiation, the

prime notation [f(x)]'means to find the derivative for the
function f(x)and can also be used to denote the finite product
as /”(x) . Hence the fundamental equality[ /'(x)] = f’(x) makes

perfectly good sense because it states that the result from the
differentiation process (left hand side) is the derivative as a
product (right hand side).
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Likewise, antidifferentiation comes with its own processing
symbols and conventions. In antidifferentiation, we start the
function reconstruction process with differentials as opposed to
derivatives. Recall that if y = f(x), associated differentials,

differential change ratios, and derivatives are tightly interlinked
and related by the foundational two-sided implication

% = f'(x) & dy= f'(x)dx.
X

This makes any one of the three aforementioned quantities an
appropriate starting point for reconstruction of the original

function y = f(x). The traditonal starting point is the

quantity /”(x)dx . The rationale for this choice will become readily

apparent in the next chapter as we solve the Second
Fundamental Problem of Calculus.

The symbol used to annotate the antidifferentiation or
function reconstruction process is the traditional long S

symbolj which is called an integration (or integral) sign—not an

antidifferentiation sign.

Note: The injection of this additional ‘integration’ terminology calls for an
explanation. Historically, antidifferentiation has been known as indefinite
integration. The term integration is a very appropriate term describing
function reconstruction in that it conveys the idea of function reassembly
from various parts and pieces. In today’s engineering world, the term
integration is used extensively and means the formation of a viable,
interacting engineering system from component parts. Hence, integration
is a good modern word. But antidifferentiation, a late twentieth-century
term, is more suggestive of the actual function reconstruction process
being performed, especially in terms of inputs to the process. Hence, it is
also a good word. What do we do in mathematics when we have two
good words, one historical and one descriptive? Answer: Keep them both
and use them both to describe the same process.

In practice the symbol'[f'(x)a’x tells us to find a function whose

differential is f'(x)dx. Simple intuition would immediately
recognize one such function as f'(x) .
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Thus, one could be tempted to write If'(x)dx = f(x) as a correct

description of the antidifferentiation process.

But is this totally correct? Not quite. Examine the
3

X
expressionszdx :?. Here, the differential is x°dx = dy and

3
X
the reconstructed function is?z f(x)=y. By definition, the

3
X
function f'(x) :?certainly is an antiderivative for x’dx since

f’(x)=x>. However, it is not the only one. The function
3
X

f(x):?+7is also an antiderivative forx’dx. In fact, any

3
X
function of the general form f'(x) = ?+ C where C'is an arbitrary

i . . . 2
constant qualifies as an antiderivative for x“dx . Hence, a far more

3
X
correct answer when evaluating J.xzdxis J-xzdxz?+C,

where C'is understood to be an arbitrary constant.

We shall now state and prove a fundamental theorem
which will lead immediately to the basic antidifferentiation formula.

Let /(x)and g(x) be such that 7’(x) = g’(x)
for all x values in an open interval (a,b).
Then we have f(x) = g(x)+ C for all x valuesin(a,b).

The theorem states that if two functions have identically matching
derivatives on an interval, then the functions themselves must
match to within a constant on the same interval.
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The proof is very simple.

Define F(x)= f(x)—g(x)on (a,b) and differentiate F'. We
have that F'(x)= f'(x)—g’(x)=0 for all xvalues in(a,b).
Therefore the function F itself (since the slope is identically zero)
must be a horizontal line parallel to the x axis. This means F has
the general functional form F(x)=C which

implies f(x)=g(x)+C ...

Figure 6.3 illustrates the last result by depicting several functions
from a notational functional family where each function has the

general form f(x)+ C . All functions in this family have identical
slope behavior as given by /”’(x) but different y intercepts, which

correspond to various selected values for the arbitrary constant C .
An important point to remember is that we can not escape the
functional family once our derivative is known. For if gis any

function whatsoever with g’(x)equal to f’(x); theng(x), by
necessity, also has the form f(x)+ C .

A

f)+C

v

Figure 6.3: The Functional Family Defined by f’(x)

-
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Basic Antidifferentiation Formula

Let F(x)be such that F'(x) = f(x).
If C is an arbitrary constant, then F'(x)+ C represents the

complete family of antiderivatives for f(x) and
j f(x)dx=F(x)+C.

In reference to the Basic Antidifferentiation Formula, let’'s
discuss the symbol hierarchy used in calculus. The two basic
calculus processes, differentiation and antidifferentiation, are
performed on functions. In the case of antidifferentiation, these
functions serve as derivatives. But, nonetheless, they are still
functions by definition and are typically given the generic input
name f(x),g(x), etc. If f(x)is serving as an input to the
differentiation process, we will represent the output (derivative) by
the prime notation f”(x) . However, if the same f(x)is serving as
part of an input to the antidifferentiation process, we will represent
the output (antiderivative) by the capital-letter notation F'(x). The
prime/capital-letter notation is the standard symbol hierarchy for
differentiation and antidifferentiation and was first used when
stating the Basic Antidifferentiation Formula. This standard
notation is shown diagrammatically in Figure 6.4.

SOl [ f () s F ()

Input Process Product

J&) — [f0)] (%)

Figure 6.4: Annotating the Two Processes of Calculus
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Now, let's use the Basic Antidifferentiation Formula to
work four relatively easy antidifferentiation examples.

Ex 6.2.1: Find G(x)for g(x)=x" +1and check your answer.

The associated differential for the function g(x) is(x” +1)dx and

the symbol J.()c2 +1)dx means to conduct the antidifferentiation

process. At this point in the book, we do not have a set of handy
antidifferentiation rules to help us obtain the answer. Thus, our
method for this example will be educated guessing. Note: educated
guessing is also used in many instances to perform trinomial factoring.
Our educated guess is

3 3
j(xz+1)dx=%+x+c:>c;(x)=%+x+c.

So, how does one verify the above guess? Simply differentiate
G’(x). If we have G'(x) = g(x), then you have the right answer.
For this example G'(x) =1[3x?]+1+0=x"+1= g(x), which
is a match.

Note: checking an antidifferentiation problem is akin to checking a
factoring problem. In factoring, you multiply the factors obtained in hopes
of replicating the original expression. In antidifferentiation, you
differentiate the antiderivative obtained in hopes of obtaining the original
function. Unfortunately, checking factoring is far easier than doing
factoring. The same is true for antidifferentiation!

Ex 6.2.2: Find F(x)for f(x)=x"+2x” +Xx+5and check your
answer.

Again, we use educated guessing to obtain

oot x?

F(x):J-(xS +2x? +x+5)dx=%+7+7+5x+C

The answer check is left to the reader.
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Before continuing with our last two examples, start
noticing the general patterns associated with antidifferentiation in
the first two examples, particularly when we have antidifferentiated
powers, sums of terms, and constant multipliers. These general
patterns will mimic the ones found in differentiation. For example,
in differentiation, we reduce a power by one. In antidifferentiation,
we increase a power by one. In Section 6.3, we present a
complete set of elementary antidifferentiation rules—rules also
commonly known as integral formulas or integration formulas—
that will put some systematic process into the educated guessing.
But for now, we will still guess.

X
Ex 6.2.3: Find F(x)for f(x)= " and check your answer.

x2
. 2x 2
Solving: F(x) = J.z—ldx =ln(x"+1)+C
X"+

F(x)=In(x> +)+C=

Checking: _ [x2 +17 B

Fy= 2 _ o
x +1 x +1

Ex 6.2.4: Find F(x)for f(x)= Jx +2such that F(1)=3. For
this same function, find F'(0).

24/ x°
3

+2x+C

lé : (My guess) F(x) = J-(\/;+ 2)dx =

The equality F(1)=3 is called a boundary or constraining

condition and is used to precisely lock in the value for C as
shown in Step 2.
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2
—:F(1)=3=>
241°

+2(1)+C:3:>§+C:3:>C:%:>

2% 1

+2x+—
3 3

F(x)=

With Cnow precisely determined, we can answer the last
question as shown in Step 3.

2J0°
3

é :F(0)= +2(0)+

1.1
303

b (1)
Iudx

No Exercises in This Section

6.3) Process Improvement: Integral Formulas

Integral formulas are the reverse of derivative formulas.
Integral formulas are also called integration formulas,
antidifferentiation formulas, or antiderivative formulas (all four
terminolgies are used via mix-or-match style in modern textbooks).
The terms integral and antiderivative place the emphasis on the
product whereas the terms integration or antidifferentiation place
the emphasis on the process. This book also uses a mixed
terminology so that you become comfortable with all the words in
the antidiiferentiation vocabulary.

Since integration (or antidifferentiation) is the antiprocess
for differentiation, it makes sense that many of the derivative
formulas in Section 5.3 can be reversed in order to obtain the
appropriate integral formula.
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This will be the procedure used in this volume. Hence, we will not
prove most of the integral formulas in Section 6.3 since such a
proof would be nothing more than a reversal of the proof for the
associated derivative formula.

One final point is repeated from the Humpty Dumpty
example, “...all the King’s men could not put Humpty Dumpty
together again.” The same can happen when doing
antidifferentiation. In this book, we will present a few basic
antidifferentiation formulas and illustrate their use. But, be warned,
it doesn’t take a whole lot of imagination to create an algebraic
expression that is very difficult (if not impossible) to
antidifferentiate. An immediate example, where it is not easy to

find an antiderivative F'(x)with F’(x) equal to a given f'(x), is the

simple-to-look-at expression f(x) =+1—x* . In this book, we
steer clear of advanced techniques and ftricks; also, simple-to-
look-at examples whose antiderivaties embody functions not
covered in this volume (e.g. trigonometric and hyperbolic
functions). To include these methods would require a volume
about double the size of the one that you are currently holding and
more formulas than you can imagine.

Note: While writing this section, | have before me a small out-of-print book
entitled A Short Table of Integrals by B.O. Peirce, dated 1929. My father
used it while studying radar at Harvard just after the start of WWII. There
are 938 integral formulas in this book, and this is the short version. | have
personally seen as many as 3000 integral formulas in a book. With all
these ‘instantaneous’ integral formulas available, the antidifferentiation
process quickly turns into a pattern-matching quest once the formal
calculus course is passed.

6.3.1) Five Basic Antidifferentiation Rules

The five basic antidifferentiation rules stated in term of
traditional integral/integration formulas are given below without
proof. If a rule completes the antidifferentiation process, as in R1,

R3, and R4, then the necessary constant C is traditionally shown.
If a rule states an antidifferentiation process improvement, as in
R2 and R5, the constant Cis not shown. But, the constant
Cmust be shown once the antidifferentiation process is
completed.
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Three comprehensive examples are given at the end of the set.

RA1. Antiderivative of a Constant: j kdx = kx + C

Casefork =1: J.dx=x+C

The special case for the value k = 1 states that the antiderivative
for a differential is the variable itself (to within an arbitrary
constant). This leads to the following fundamental equality stream
relating differentials, derivatives, and antidifferentiation.

Y _ rwy= dy= rvyax=
dx

jdy :jf(x)dx =y :jf(x)dx+c

R2: Coefficient Rule: Ifk is a constant, ka(x)dx = kJ- f(x)dx

R3. Power Rule:

.[x"dx =

n+l

+C,n#-1
n+1

R3. Power Rule (continued):

.[x_ldx = Ildx = ln|x| +C,n=-1
X
R4: Exponential Rule Base e Iexdx =e' +c

R5. Sum/Difference Rule:

[lro = g@ldx = [ f(x)dx + [ g(x)x

10




Ex 6.3.1: Find F(x)for f(x) = 8x’ —17 +3e”.
X

F(x) = [(8x7 —8x7 +3¢")dr =
F(x) = [8x7dx— [8x7dx + [3e"dx =
F(x)= 8jx7dx— 8J.x’7dx + 3Iexdx =

8 -6
F(x)=8—¢g* |+3e"+C=>
8 -6
8 4 x
Fx)=x"+_—(+3e" +C
3x

Note: As in differentiation, there are both process improvement rules
(R2&R5) and process completion rules (R1&R3&R4). All five rules are
meant to be used in concert with each other.

Ex 6.3.2: Find j[9x4 4y rbxt+ 2]dx.
X

Here, neither f'(x)or F(x)is explicitly stated. We proceed with

3
the understanding that £'(x) = 9x* —4x” + 6x+=+2.
X

j[9x4 4y 4+ 6x 42+ 2]dy =
X

I9x4dx - I4x3dx + J-idx + J.de =
X
9Ix4dx - 4jx3dx + 3Ix_ldx + 2_[ dx =

5 4
0 —4X 43In|x|+2x+C
5 4
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Ex 6.3.3: Find f(x) if f'(x):%and f=1
X
é:f(x):j[% +C =
f()=[9x dx+C=
S()=9[x"dx+C=

273x%

+C
2

*kkk

f(x)=

S fl)=1=
271?

12
2

+C=1=>

o 27\/5—25

There are at least three acceptable ways to write the final answer
as shown on the next page. The way we use is solely a matter of
how we subsequently use the answer.

1. Emphasizing the antidifferentiation process
3
j[9x4 —4x° +6x+2+2]dx =
X
9x> 4x* 6x’

5 4

+3In|x|+2x+C

2. Emphasizing the newly created antiderivative

5 4 2
F(x):9;‘ _& +6;‘ +3In|x|+2x+C
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3. Emphasizing the original function/derivative relationship.
9x° 4x* 6x7
5

f)=2

y= +3In|x|4+2x+C or

X 4xt 6x?
-+
5

+3In|x|+2x+C

As the reader can well discern, context is everything when dealing
with the symbols annotating the process and products associated
with antidifferentiation.

6.3.2) Two Advanced Antidifferentiation Rules

R6. Parts Rule: j F(0)g' (xX)dx = f(x)g(x)— j 2(x) £ (x)dx

The Parts rule is the reverse of the product rule for differentiation
and is proved using the product rule as a starting point.

Proof: Let y = f(x)- g(x)

d

d—y = [(0)g' () +g(x) [ (x) =
X

dy =[f(x)g"(x)+g(x) f'(x)ldx

Antidifferentiating both sides of the last expression results in

[dy = [1/(0)g'(x)+ () £/ (x))dx =
= [ £ (x)dx+ [ g(x) £ (x)lx

Recalling that y = f(x)- g(x), we have

f()-g(x) = [ f(0)g ()dx + [ g(x) £/ (x)elx

13



Rearranging and neglecting the constant C, since the Parts rule
is a process improvement rule, we obtain the desired result:

Integration by Parts—a Most Flexible Rule.

[ 108/ dx = 1 (x)g(x) = [ g0 /() .

The Parts rule is most useful when trying to find an
antiderivative for an expression having a mixed nature (for
example, an expression which is part algebraic and part
transcendental). However, the Parts rule is somewhat tricky to use
as success in finding an antiderivative depends on one’s choice

for f(x)and g’(x). When using the Parts rule, intuition guided by

experience is the best approach. As with differentiation,
experience equals practice. Notice that the Parts rule is a staged
rule. This means that when we apply the Parts rule, we are still left

with a remaining piecejg(x)f'(x)dxof the antidifferentiation

process, a piece yet to be evaluated. Thus, the total process can
be quite long and tedious.

Ex 6.3.4: Evaluatesze”‘dx
Stage 1:let f(x)=x",g"(x)=e"

_[xzexdx =x’e" — I2xe“‘dx =x’e" — ZI xe"dx
Stage 2: let f(x) = x,g’(x) = e* and evaluate Jxexdx
J.xexdx = xe” —J-e"dx =xe' —e" +C
By algebraically assembling the parts and pieces, we finally obtain
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Ixzexdx =x’e" —2[xe* —e* +C]=
x’e' —2xe* +2e* —2C =(x —2x+2)e" + C
where C =-2C and C remains an arbitrary constant.

Note: When arbitrary constants are algebraically combined with other
numbers, the final algebraic expression is just as arbitrary. Hence, it is
customary to give the whole expression the same name as the arbitrary

A

constant embedded within it. Thus, in the above, we let C = C .

To verify the answer, simply take the derivative of the
expression (x> —2x+2)e* + C . If the antidifferentiation process

is properly performed, then [(x* —2x + 2)e" + C] should match

the original derivative x’e" (left to the reader).

Ex 6.3.5: Evaluate j x? In(x)dx
Stage 1: let f(x) = In(x),g’(x) = x°
3 3
1
2 In(x)dx = In(x) - [~ dx =
[ In(ydv == In(x) = [ <=
X’ ¢, X’ 1,
—In(x)——|x"dx=—In(x)——x" +C
S -2 S () -

3

x> 1
Since J. ? -—dx can be directly evaluated, there is no need for a
b

second stage.

You are once again encouraged to check by differentiating.

R7. Chain Rule: jf’(g(x))g'(x)dx = f(g(x)+C

The Chain rule is an obvious reverse of the Chain rule for
differentiation and will not be proved.
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Sometimes, the Chain rule is also  written as
IF'(g(x))g'(x)dx=F(g(x))+C in order to emphasize the

antiderivative.

There are two often-used special cases of the Chain Rule (some
people would say three) as shown below.

Special Case 1:
fl(x)=e" = J.eg(x)g'(x)dx =ef™ 4 C

Special Case 2: also known as the Generalized Power Rule
f(x)=x"=

| [ (x)]" "(x)dx = —[g( )]"“ +C,n#-1
g g
n+1

[le] g’y = [£ X de = a0+ Con =1
g(x)

2
Ex 6.3.6: Evaluatej{ x2+1-2x+ 5 X de
X"+

I[ x*+1-2x+ 22x }dxz
x°+1
I\/x2+l-2xdx+j[ 22x }dx=
x“+1

I(xz +1)% -2xabc+_[(x2 +1)72xdx =

—“(x;)ﬂn(x2 +)+C
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Ex 6.3.7: Find f(x)if //(x)=2xe" +xand f(0)=1.
S () = [@xe” +x)dx+C=
f(x)= Iexz -2xdx+jxdx+C =

2

f(x)=e* +x7+C

*kkk

2
H:f0)=1=
. 0°
60 +7+C:1:>

C=0=>
2
X2 X
x)=e* +—
S(x) 5

6.3.3) The Seven Rules and Some ‘Tricks of the Trade’

As one can imagine, there are hundreds of techniques,
most of which are algebraic in nature that can be used to soften up
the expression—technically called an integrand—within the
integral sign. This softening up is for the purpose of preparing the
integrand for subsequent antidifferentiation.

Note: tricks have a way of becoming techniques as your facility with
algebra increases. All techniques are used in hopes of changing an
obstinate expression into a new but algebraically equivalent
expression matching known antidifferentiation rules. In this book,
we will illustrate via several examples just three of these
techniques and how they allow the use of our seven
antidifferentiation rules.

Technique 1: Modify the Integrand to Conform to the Chain Rule

Suppose one has the task to evaluate '[f'(g(x))h(x)dx

where g’(x) = kh(x) and k is a constant.

m



The integral expression I f(g(x))h(x)dx can be easily adjusted

to conform to the sought-after expression J f(g(x))g’(x)dx by

the following modification stream

[ 1 (eCeph(x)dr = [ f/(g(x))-1-h(x)dx =
[ 7@ H [k B = [ g - -

[ 7o g e =LED,

The final result states that if we miss the derivative g'(x) by a

constantk , then the basic antiderivative pattern for the chain rule

is divided by the samek . In practice, it is better to employ this
technique on a case-by-case basis, instead of remembering an
additional formula, as shown in the next two examples.

Ex 6.3.8: Evaluate j (7x% +1)"° xdx .

Technique 1 is directly applicable as shown.
[ +1)% - xde = [ (727 +1)" -[i}-m-xdx =

[x*+1)'. { } 14xdx_—j(7x +1)"% 14xdx =

15 15
1 ‘(7x +1) +C:(7x +1) L C
14 15 210

To check, just differentiate (left to reader).
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Ex 6.3.9: Evaluate Ie“dx )

Ie”dxz_[e” -[%]7-&:

7x

lje“ Tdx=5—+C
7 7

er
Ex 6.3.10: Evaluate | @ra dx
e +

This example may look impossible at first glance, but a little
algebraic pre-softening serves well. Also notice the deft interplay
of logarithmic/exponential integral formulas along with the use of a
standard log rule (Appendix C).

B 2x 2x
e—2 dx = 28 dx =
| (e")" +4 e’ +4
I_ezx- > ——J‘ 2x 2dx

i e +4 e 14

%m(e“ +4)+C=1In+/(e" +4)+C

—

LICSI

Ex 6.3.11: Evaluatej
Yy

In this example, an adjustment by a constant is not necessary
even though it may seem so at first thought. Always let the
process unfold before taking any unnecessary action.
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| [In(y*)T’ dy = J'Mdy -
y y

1 \ N

8] [In()]* -~ -dv :8-%% = In(y)]* +C
Y

We finish our discussion of this technique with a very stern

warning about a common integration error.

Stern Warning
Never adjustj-f(g(x))h(x)dx by a variable as in the

False Equality: [ f(g(x))h(x)dx = % [ f(2(0)-x- h(x)dx

Only constants can be moved through the integral sign
as stated by antidifferentiation rule R2:

If kis a constant, then '[kf(x)dx = kj f(x)dx

Hence, the integration attempt

2 4
_GT )
8x

j(x2 +1) dx ¢ij(x2 +1)° - 2xdx C
2x

Is Totally Wrong!

Note: Believe it or not, | have seen all levels of mathematics students fall
into the trap referred to by the warning. Don’t do the same.

Technique 2: Use Ordinary Algebra to Simplify the Integrand

Ex 6.3.12: Evaluatej(x2 +1)’dx .
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So how do we evaluatej(x2 +1)’dx ? Answer: just cube it.

I(xz +1)3a'x='|.(x6 +3x* +3x% +1)dx =

7 5
X

X Y axeC
7 5

Note: Multiplying or dividing out is sometimes the only way to soften up
the integrand as we prepare it for the process of
antidifferentiation/integration.

Ex 6.3.13: Evaluate j 4)d

4
.[dez
X
I[x‘* +8x° +24x° +32x+16}d _
X

J[x3+8x +24x 432+ 6}dx—

X

4
%+%+12x +32x+16In|x|+C

Ex 6.3.14: EvaluateI(Sx + \/;)2dx.

In this example, one must remember both the algebraic rules for
radicals and the rules for their exponent equivalents.
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j (5x ++/x)’dx =
I(Zsz +10x+/x + X)dx =
I(Zsz +10x° + X)dx =

3 3 2
25 +10~ +%+C=

5
2

o) 3 5 2
o +4x? +%+C

Technique 3: Expand the Integrand Using Partial Fractions

By creating a least common denominator, we can add

1
to

, obtaining the equality
I+x 1-x

I+x 1-x 1—-x

The antiprocess for this addition process is the splitting of the final

result " 5~ back into the component fractions
—-X
2 1 1
- = + .
1-x I+x 1—-x

The method used for performing the antiprocess is known as the
technique of partial fractions. We will not develop the technique of
partial fractions in this book, but only illustrate its use via our last
two examples in this section.

2
Ex 6.3.15: Evaluate | { : }dx.
1



- X

i

I}ix+ {Jd:
M|
IHJ Nk

In|1+x|=In|l-x]|+

-
£

In +C

1—x

x+x+1

Ex 6.3.16: Evaluatej[ﬂ
x(x+

.2
xz+—x+1dx:
| x“(x+1)

J
j —%+L}dx =
J

Lx~ x+1

o |
x° ! J.[x+l}x

[x 2dx+J'[x+de_

-1
1T+hux+u+c:

ln|x+1|—l+C
X
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e +x
Ex 6.3.17: Evaluatej{ - }dx.
xe

Id—;+(—1)je‘* (=1)-dx

In(x)—e"dx+C
b (1]
Iudx
Section Exercises

1) Find /(¢) such that 4’(f) = t/4—> and h(2) =2 .

2) Find G(s)such that g(s)=s"e*and G(0)=1.

3) Find a polynomial P(x)such that P(x)has critical points at
x =1 and x =-5and such that P(1)=4.

4) What is wrong with the following equality stream?

4 5
D

[ +)ar =% [+ ax'd C
X

20x
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5) As indicated by the following integral expressions,
antidifferentiate (or integrate) the associated integrands. Then

check your results by differentiating the antiderivative.

a) J.{/;dx b)J-(x3 +3x° — x)dx
1
P +3x7 —— d) [ 20x(x’> +1)*d
c)J[x +3x xz}a’x )I x(x” +1)"dx
e) I(\/;+1)2dx f)j(5x+10)dx

g)J-(x+x2 +x° + x4+ x7)dx i)J-ln(t)dt

j)J' _(x + i)(_xl2 - D}dx k)J.e““ (e* +1)’e™dx
I)J‘ _%}dx m) j(2a2 +3)""" ada

10

n) ji—;dx 0) j2w(w3 +1)"? wdw
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6.4) Antidifferentiation Applied to
Differential Equations

Ordinary differential equations equate two algebraic
expressions where each the term(s) in each expression combine a
single independent variable, the associated dependent variable,
and associated derivatives of various orders. Four illustrations of
differential equations are

1)y'y+2x2=x+y 2) 2y”—3y'+4y=0
3) 20w =t+y"y 4) y'=xy

To solve a differential equation means to find a functional
relationship between the dependent and independent variable that
identically satisfies the given equation for all values of the
independent variable. Such a function would have the general

form y = f(x)in illustrations 1) and 4) and the general form

y = f(t)in illustration 3). Either general form is acceptable in

illustration 2) since the independent variable does not appear
explicitly by name.

Note: Naming an implicit independent variable is generally the user’s
choice if there is no mentioned context such as time, where the
independent variable is traditionally denoted by t .

2

X

In illustration 4) the function y = f(x)=4e’ is a solution to

’
2

y' = xy since [4e5} =x-4e? forall xinthe domain of f .

Each of the above differential equations has an implicit-
style formulation meaning the derivative is not explicitly stated in
terms of the independent variable as done in the differential
equationy’=2t+4. As you might guess, explicitly stated
differential equations are much easier to solve than implicitly
stated differential equations. Both types of differential equations
are used extensively to formulate many of the physical principles
governing the universe.
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For the serious student of calculus, the following statement should
be somewhat eye-opening and sobering.

Note: partial differential equations, the term introduced below, are
differential equations where several independent variables come into play.
They are ever so briefly described in Chapter 9 and still await you in a
formal course.

Most modern applications of calculus encountered in
science or engineering require the use of either
ordinary or partial differential equations.

A simple but fundamental example, found just about
everywhere in totally diverse contexts, is Isaac Newton’s Second
Law of Motion

F=(my")

In words, Newton’s Second Law states that the force applied to a
body is equal to the time-rate-of-change of momentum of that very
same body. The expression time-rate-of-change refers to a
derivative where the independent variable is 7. Also notice that
momentum in itself is a product of mass and a first derivative,
velocity in a time-rate-of-change context. Thus, any problem
involving force applied to a physical body and any subsequent
motion experienced by the same body will require the use of a
differential equation in order to formulate the appropriate
mathematical model governing the body’s motion. Depending on
the physical context, the actual solving of a particular differential
equation of motion formulated via Newton’s Second Law may be
quite simple or extremely hard. Whether simple or hard, the
solving of differential equations is one of the major tasks facing
modern scientists and/or engineers. Because of their great
flexibility in being able to model physical phenomena involving
both changing and related variables, differential equations are
here to stay. And please ask yourself, what have you seen in this
world or beyond that is not subject to change?

Since differential equations stand at the very center of the
calculus as it is practiced today, we will use differential equations
to formulate all primary calculus applications remaining in this
book.

181




This includes the use in Chapter 7 of a relatively simple differential
equation to formulate the Second Fundamental Problem of
Calculus—the problem of finding planar area—first presented in
Chapter 3. But, before we can apply differential equations to actual
problems, we must first learn how to solve them. Understand that
the subject of differential equations is quite extensive requiring
advanced courses over and above the basic calculus sequence
found in colleges today. In this book, we only scratch the surface.

So, besides Newton’'s Law, where might a differential
equation come from? A purely mathematical illustration will help

clarify this question. Let's start with the function y =3x*+27.
The following chain applies

y=A x*+27 =
Yy =x'+27=
VT =[x"+27=
3y*y =4x’ =
3y’ —4x’ =0

By definition, the end product 3y°y’—4x’ =0is a differential

equation. In this illustration, the differential equation has been
generated through the process of implicit differentiation studied in
Section 5.5.

A second question becomes, how do we recreate the

function y =3/x* +27, an obvious solution to3y?*y —4x’ =0,
from the information contained therein? The answer is: use the
implicit-differentiation process in reverse. First, rewrite y'as a

. . ., dy , , dy
differential change ratio, i.e. y' =——. Next, substitute y =—
dx dx

into the differential equation 3y*y"—4x> =0 to obtain

dy
3y’ = —4x’ =0.
Y dx
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The last equality exposes the embedded differentials for
both the independent and dependent variables, making a true
differential equation as opposed to a derivative equation.

Note: the name differential equation comes from both the solution method
used to solve differential equations (i.e. differentials) and the method by
which these equations are primarily formulated (by differentials—more in
Chapter 7).

Next, separate the independent and dependent variables
3y°dy =4x’dx |

a result which strongly suggests that we antidifferentiate both
sides. A new but totally reasonable equality law (revisit Section
5.5) allows us to do just that.

Integral Law of Equality:

If A(y)dy = B(x)dx , then j A(y)dy = j B(x)dx+C.

With the Integral Law of Equality in hand, we can complete the
process of recreating the original function y = Vx* +27 from the

separated differential equation3y°dy = 4x’dx via the process of
antidifferentiation:

3y’dy =4x’dx =
I3y2dy = J.4x3dx =
y=x'+C=
y=3x*+C
We have slightly missed the mark. Instead of recreating the

original function y = A x*'+27 , we have recreated a more generic

. 3/ .4
versiony =3 x" +C .
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So what additional information do we need in order to obtain

recreate the exact function y =3x*+27? Answer: a boundary
condition, in this case y(0) =3, that allows the determination

of C'. Applying the boundary condition to y = x* + C leads to an
exact value forC', and, in turn, allows recreation of the original
function y = y(x).

y(x)=Vx*+C =
y(0)=V0*+C=3=
Yc=3=>Cc=27>

y(x)=Ax*+27

Ex 6.4.1: Solve )" = xy where y(0) =2

The separation-of-variables technique will be the technique of
choice. This technique usually entails two steps. Step 1) is the
creation of a generic family of functions (via antidifferentiation)
where each function in the family satisfies the differential equation
without the boundary condition. Step 2) is the creation of a specific
function that satisfies both the differential equation and boundary
condition. This specific function is the final answer.

v dy
iy =xyy=>—=xy=
dx

ﬂzxdx:
y

Idjyzjxdx:

2
ln|y|=%+C:

y=e’
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2
H:y(0)=2=

y(0)=e07+c =2=
e =2=

il
2

y(x)=2e

The separation-of-variables technique is only one of many
solution techniques encountered when embarking on a serious
study of ordinary differential equations. Nonetheless, the
separation-of-variables technique is foundational for many of the
advanced techniques presented in a later course. In this book, the
separation-of-variables technique has sufficient enough power to
solve all remaining differential equation formulations within the
scope of this study. Let’s review the solution process in general.

We must start with a differential equation that allows for—

s dy dy :

after replacement of y with — or —, etc.—algebraic
dx dt

separation of the dependent and independent variables, along

with their respective differentials, across the equality sign. When

successfully completed, this algebraic separation appears as

follows:

g(y)dy = f(x)dx.

Note: It doesn’t take much algebraic complexity for a differential equation
to become unsolvable by the separation-of-variables technique. Raising
derivatives to powers and having several orders of derivatives within the
same equation can quickly render it unsolvable by the separation-of-
variables technique.

The next step is the antidifferentiation of both sides of the equality.

[edy =] f(x)dx+C

By the Integral Law of Equality, this is a process which preserves
the equality.
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If G(y)and F(x)are two associated antiderivatives, then
G(y)=F(x)+C

We can use both sides of the above equality as input to G~ () in
order to obtain the generic form of the sought-after function:
G (G(y)=G ' (F(x)+C)=
y=y(0)=G"(F(x)+C)

Finally, applying a boundary condition, usually expressed
as y(a)=>b, locks in the arbitrary constant C by means of the

equation
ya)=G ' (F(a)+C)=b=
G(F(a)+C)=b

which is algebraically solved for C on a case-by-case basis.

’

Y~ x’where y(1)=5
x+1

Ex 6.4.2: Solve

We will follow the same two-step process as in Ex 6.4.1.

’

oy

B =x" =y =(x+D)x* =
x+1

d

D )t =

dx

dy = (x+Dx’dx =
[dy=[G+Dx’de+C=[[x" +x"Jdx+C=

4 3

X X
= ==+ +C
y=y(x) 113
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*khkk

2
Hiy()=5=
14 3

1
D=—+—+C=5=
y(1) 23

4 3

1—+1—+C:5:>C:5—3:>

4 3 12
x* x? 53

X)=—+—+—

) 4 3 12

The above answer can be promptly confirmed by 1) checking the
boundary condition for correctness and by 2) taking the derivative

y'and substituting the algebraic expression obtained for y' into

’

the differential equation = x”in order to see if an identity is,

x+1
in fact, produced.

Ex 6.4.3: Solve (xi}—2)2 = y*where y(0)=1
' y’ 2 Y’ 2
P ———=y =>—==x-2)" =
(x=2)’ y?
d d
iz-—y=(x—2)2:>—f=(x—2)2dx:>
X Y

jd—f=j(x—2)2dx:>
y

A3 3
—_1:(x 2) +C:(x 2) +3C:>
y 3 3

-3
= x -_-——
Y=y (x=2)+C

Note: see note comments on Page 175 in regard to manipulation and
renaming of arbitrary constants. The same applies here.
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*khkk

;:y(O)zlz
y(0)=_—3:1:>
0-2)+C
-3
-8+C

=l=C=5=>

-3

y(x) = m

Ex 6.4.4: Newton's Second Law: An extremely large rivet is
accidentally dropped from the top of the Sears Tower in Chicago.
How many seconds does it take for the rivet to impact the street
below? What is the velocity of the rivet at impact?

1(0) = 1450 ft
1450 fi f O -0
F=my’) = fr=-mg
—mg=(my’y
y(M)=0
0fi. V(2)=2

Figure 6.5: Newton, Sears, and the Rivet
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Figure 6.5 is a sketch of the problem. The Sears Tower is
1450ftin height, and the twin antennas extend about

300 f further. Since the problem states that rivet is dropped from
the roof, we will use 1450 ft as the location for this incident.

Let y = y(¢)be the vertical position of the rivet in feet as a
function of time in seconds. At # =0we will assume, having no
better information than accidentally dropped, that the rivet is
dropped precisely from the roofline y(0) =1450 f# and that the
initial velocity is zero y’(0)=0. Once released, the only force
acting on the rivet is the downward force due to the earth’s gravity.
This force is given by the expression ' = —mg where m is the

mass of the rivet and g=32.2£ is the acceleration due to
gravity near the earth’s surface. The negative sign applies since
the force due to gravity is acting opposite of increasingy .
Applying Newton’s Second Law gives the equality —mg = (my')'.

Since the mass of the rivet is constant during its fall, the above
equation reduces to the differential equation

dy’ dy
'

_ — Il:>_ 2 _
g=0") g=— 8

where the last equality starts the formal solution process.

The solution process is a three-step approach. Step 1 is
the construction (or reconstruction) of the velocity function from
the given information. Step 2 is the construction of position as a
function of time using the velocity function constructed in Step 1 as
a starting point. Step 3 is the answering of the two questions using
the two functions from Steps 1and 2.
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dy’ = —gdt =
jdy'zj—gdt+C:>

Yy =y ({t)=-gt+Cr>

Y (0)=0=-g-0+C=0=
C=0=>

y(t)=—gt

*khkk

2
iy =—gt =

dy

— =—gt =
i

dy =—gtdt =

[dy=]-gtdt+C=
y=y)=—1gt"+Cr>
¥(0)=1450= -1 g-0> +C=1450 =
C=1450=

y(t) =1450—1 gr?

3
> : To obtain the time at impact, set y(¢) = 0 (the position at

impact) and solve for the corresponding time.

0=1450-1gr’ =
16.1* =1450 =
t=9.49sec
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To obtain the velocity at impact, evaluate the velocity function
obtained in Step 1 at 9.49sec.

1'(9.49) =-305.58 £

This is our first exposure to the tremendous power of
differential equations which will be seen many times throughout
the remainder of the book. In this example, we were able to
construct a complete physical description of motion-versus-time
(position, velocity, and acceleration) for a falling object via the use
of antidifferentiation and Newton’s Second Law as it is stated in
terms of a differential equation.

We close this chapter with one more example. Our
example is an engineering application that comes from the theory
of heat and mass transfer where the governing physical principle
is known as Newton’s Law of Cooling.

Newton’s Law of Cooling states that for an object of uniform
temperature, the time-rate of object cooling is directly proportional
to the temperature difference between the object and the

surrounding medium. If 7'(¢)is the temperature of the object at a
given time 7, then Newton’s Law of Cooling can be expressed as

T'=p(T-T.,)

where pis the constant of proportionality and T7_is the

temperature of the surrounding medium. When using Newton’s
Law of Cooling, we must insure that the object is small enough (or
has a large enough thermal conductivity) so that the uniform
temperature distribution assumption is reasonable.

Ex 6.4.5: A small iron sphere is suspended from a ceiling by a
piece of high-strength fishing line as shown in Figure 6.5. The air

in the room below has a uniform temperature of 60° F . It takes
the ball one hour to cool from an initial temperature of 200° F'to a
temperature of 130° F . How long does it take the ball to reach a
temperature of 80° F ?
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T'=p(T-T.)

@ r

Figure 6.6: Newton Cools a Sphere

The governing differential equation for this particular problem is

T'=Cf1—T=p(T—60),where T(0)=200and 7(1)=130.
t

Here, we have two known boundary conditions. Since there are
two unknown constants, the integration constant Cand the
constant of proportionality p, both boundary conditions must be

utilized in order to fix values for Cand p .

1
— : Solve the differential equation.

dT

dt

dT = p(T - 60)dt =
dT

= p(T - 60) =

[ [parrc =

In(T - 60) = pt +C =
T-60=e"" =

T =T(t)=60+e""c
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2
. Apply the two boundary conditions in order to determine

Candp.

7(0)=200=
60+ e =200 =
e =140 =

T(t) = 60 +140¢”

T()=130=

60 +140e”" =130 =

e’ =5= p=In(5)=-693=
T(t) = 60 +140e =%

Conclusion: the object cools according to T(¢) = 60 +140e = |

We are now in a position to answer the original question. This is
done by setting 7'(¢) = 80 and solving for ¢ .

80 = 60 +140e~ % =
e~ = 14286 =
In(e™%*) = In(.14286) =
—.693t =-1.9459 =
t=2.81hr

b ee b ee
Judx Judx
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Chapter Exercises

1) Solve the following differential equations and check.

’

,  2x+1
a)%=xy+y:y(0):2 b)2yy :—;y(]):l
y x(x+1)

2) Suppose the rivet in Ex 6.4 is tossed straight up at an initial
velocity of 50% and an initial elevation of 1450 f¢. On its way

down, the rivet barely clears the roof of the Sears Tower and
drops to the street below. Find the flowing four quantities: time to
impact, impact velocity, highest elevation above street level, and
time to achieve the highest elevation above street level.

3) A person having a body temperature of 98.6° F falls into an icy

cold lake with water temperature 34° F . 30 minutes later, severe
hypothermia sets in when the person’s average body temperature

becomes 87°F . The accident happens at 10:00PM and
rescuers finally arrive on the scene at 1:00A.M. If the human body

cools below 65° F, survival is doubtful. Using Newton’s Law of
cooling as a crude, but in this case a necessary, body-temperature
estimation technique, what do you think the person’s chances are
for survival?
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1 Solving the Second Problem

“We cannot in any manner glorify the

Lord and Creator of the universe than that in all things—

How small so ever they appear to our naked eyes,

But which have yet received the gift of life and power of increase—
We contemplate the display of his omnificence and perfections
With utmost gratification.” Anton van Leeuwenhoek

1.1) The Differential Equation of Planar Area

We are now ready to solve the Second Fundamental
Problem of Calculus as stated in Chapter 3.

Find the exact area for a planar region where
at least part of the boundary is a general curve.

Let /' be a function with /(x) >0and f’(x)existing for all xon

an interval[a,b]. The Second Problem translates to finding the
exact numerical area of the shaded region as shown in Figure 7.1.

YA
y=f(x)

Figure 7.1: Planar Area with One Curved Boundary

The underlying premise that the shaded region has an
exact numerical area is easily seen with the following thought
experiment. Suppose we could construct a flat-sided beaker
having a flat rectangular base.
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Make the beaker so that two opposite parallel walls conform to the
exact shape of the shaded region and let the inside distance
between these walls be one unit. Let the top be closed except for
one small nipple at the high point for the pouring in of water as
shown in Figure 7.2. The right extension has been left in order to
provide a handle. The left extension has been removed.

Figure 7.2: A Beaker Full of Area

If we fill our beaker of water, then the volume of the water is
numerically equal to the shaded area since the inside distance
between the two shaded walls is one unit. To measure the volume
in the odd-shaped beaker, simply pour the water into a standard
glass graduated container as again shown in Figure 7.2. If one
follows this scenario, then the measured volume will be
numerically equivalent to the area under the curve.

Continuing with the Second Problem, define the
function A(z) to be the area of the shaded region defined on the
interval [a,z]as shown in Figure 7.3.

y)\

y=7(x)

Figure 7.3: The Area Function
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As a function, A(z)associates a unique area for eachz € [a,b].

A common-sense examination of A(z) will convince the reader
that the following three properties hold:

1. A(a)=0
2. A(z)is increasing on[a, b]

3. A(b)is the total area sought in Figure 7.1

We will now examine the differential behavior of A(z) . But first, an
expression for dA in terms of zanddz must be created. The
differential increment of area dA created when z is incremented
by the differential dz is shown as the solid black line in Figure
7.4. This line is greatly magnified in the lower half of the figure,
clearly showing the linear behavior (Chapter 5) of y = f(x) on the
differential interval [z, z + dz].

dA
Y y=f(x)

> \
a znb X .
z+dz !

(2, £(2))

(z+dz, f(2)+ f(2)dz)

dA

z z+dz

Figure 7.4: The Differential Increment of Area
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The actual physical area of dA is the area of the black trapezoid
and is given by (formula in Appendix B)

dA=3[f(2)+{f(2)+ ['(2)dz}]dz =
dA=L[2f(2)+ f'(2)dz} |dz =
dA= f(z)dz+1 f'(2){dz}’

The term f(z)dz represents the area of a rectangle of height

f(z)and basedz . The term< f'(z){dz}’ represents the area of
a triangle that is either added to or subtracted from the area of the
rectangle depending on the sign of /'(x). In Figure 7.4, it is
subtracted. ~Whether added or subtracted, the term
1 1(2) {dz\* doesn't affect the magnitude dA since it is second
order and can be ignored per the rules of differentials stated in
Chapter 4. Ignoring the second-order term leads to the
fundamental differential equality highlighted below.

Note: we made sure that f’(x) would not give us an unbounded-size
problem in the term % f”(z) {dz\* by requiring the existence of ()
for all x in the interval [a,b] .

The Differential Equation of Planar Area

dA= f(z)dz

The beauty and simplicity of this result is astounding. In words it
states that the differential increment of area dA4 at zis given by
the area of an incredibly thin rectangle—a mere sliver—having a
height of f(z)and a width of dz. Not only is this result

dimensionally correct, it also makes perfect common sense. Note:
It has always filled me with a sense of wonder.

Let the wonders continue! The differential equation
dA = f(z)dz also has a boundary condition given by 4(a) = 0.
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Together, the two pieces of information comprise a completely
solvable differential-equation system, as we will now demonstrate.

Solve: dA= f(z)dz, A(a)=0
Let F(z) be any antiderivative for f(z). Then

dA=f(z)dz=>
jdA:jf(z)dHc:s
A=A(z2)=F(2)+CrH
A(a)=0=
Fla)+C=0=
C=-F(a)=

A(z) =F(z) - F(a)

In particular, we would like to evaluate the total area under
consideration, the area given by A(b):

A(b)=F(b)—F(a)

Here, we introduce the process symbol F(z)|"= F(b)— F(a),
which allows our final result to be stated as follows:

Let f be a differentiable function with f(x) > 0 on an interval

[a,b] and let F(x)be an antiderivative for /. Then the area

A(b) above the x axis and below the graph of y = f(x) and
between the two vertical lines x = aand x = b is given by

A(b)=F(z)|,=F(b)— F(a)

The above equality is without a doubt the most famous
result in elementary calculus. For this reason, it is rightfully called
the Fundamental Theorem of Calculus.
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What makes the previous result so fundamental is that
identical differential techniques are used to solve both the First
and Second Fundamental Problems of Calculus. In Chapter 7, our
starting point for solving the area problem is the simple explicit

differential equation d4 = f(z)dz . This very same equation could
have been just as easily used in Chapter 5 to find the derivative of

dA
A(z) via one straightforward division: a’_: f(2). Hence, area
z

problems and slope problems are two sides of the same coin.

The result A(b)=F(z)|"=F(b)— F(a)will now be

used to verify the area of a trapezoid which is perhaps the most
complicated of the elementary polygonal figures.

Ex 7.1.1: Use the Fundamental Theorem of Calculus to find the
area of the trapezoid defined by the xaxis, the

linesx =2andx =5, and having upper boundary f(x)=2x +3.

Figure 7.5 shows the desired area with value 4 =30 obtained via
the use of the elementary trapezoid formula. We need to see if

we can match this result using 4= F(z)|"= F(b) — F(a)where
the bin the interval [a,b]is to be understood by the problem
context.

(5,13)
f(x)=2x+3
(2,7)
2 s 0"

A=1(7+13):3=30

Figure 7.5: Trapezoid Problem
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An antiderivative for f(x)=2x+3 is F(x)=x" +3x. Applying
the Fundamental Theorem gives

A=x"+3x|;=

(5°+3-5)-(2°+3-2)=

40-10=30

And, as advertised, the final result matches what we already know.

We end Section 7.1 with a classic example that allows us
a first taste of computational mastery in the wondrous new world
of curvilinear area.

Ex 7.1.2: Use the Fundamental Theorem of Calculus to find the
area of the region defined by the x axis, the linesx =4andx =6,

and having upper boundary f(x) = x> —3x — 4.
Figure 7.6 shows the desired area.

y (6,14)

A

(430) » X

N ]

Figure 7.6: Area Under f(x)=x" —3x —4on [4,6]

Note: in practice, a necessary first step in solving any area problem is the
sketching of the area so we know exactly what area is to be evaluated.
Many errors in area evaluation could be avoided if students would just
sketch the area.
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The reader may recognize the quadratic function
f(x)=x* —3x —4from Chapter 4. Since f(x)>=00n[4,6], the
Fundamental Theorem can be used to evaluate the area by way of

3 2
the antiderivative F'(x) = %—&— 4x . Hence
3 2
A= 3 ae=
3 2

3 g2 3 42
6 36 || X3 44
3 2 3 2

216 108 o 1 |64 _ 48 ol
32 32

15260 ¢ 152 o 152 11438
3 2 3 3 3 3

A good computational practice is to keep denominators
segregated in denominator-alike groups as long as possible.
Combining unlike denominators early in the calculation usually

means that you must do it twice, for terms in F'(b) and for terms in
F(a) , doubling the chance for error.

b (1]
Iudx
a
Section Exercises

1. Find the area under the curve f(x)=x"+x’on a) the
interval[0,4], on b) the interval[—4,4].
2. Find z >3 so that the area under the curve f(x)=x> +2on

the interval [3, z]is equal to10.

3. Use the Fundamental Theorem of Calculus to develop the
general area formula for a trapezoid (Appendix B).
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1.2) Process and Products: Continuous Sums

In Figure 7.4 the differential increment of area dA4 is
given by the expression d4 = f(z)dz once second order effects

have been eliminated per the rules for differentials. This
expression represents the area of an infinitesimally thin rectangle

having height f(z) and width dz. Suppose we were to start at
x=a and mark off successive increments of this same width

dz until we finally stop atx =a. Since dzis a differential, it will
take millions upon millions of these ‘itsy bitsy’ infinitesimal
increments laid end to end, with no overlap, in order to traverse

the total distance from x =a to x =b. Figure 7.5 shows just one
increment of width dz as it occupies an infinitesimal fraction of the
interval [a,b]. Likewise, the associated differential area dA4
occupies an infinitesimal fraction of the total area under the curve
from x=a to x=5b.

&z dA = f(2)dz

adz b

Figure 7.7: One ‘Itsy Bitsy’ Infinitesimal Sliver

Let's sum all the infinitesimal areas from x=atox=5b.
The symbol used to denote this one infinitesimal at-a-time

summing process is
x=b x=b
D dA=) f(2)dz.

X=a
x=b
How do we evaluater(z)dZ? Once seen, both the evaluation

process and the final answer are going to absolutely amaze you.
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Let F(z) be an antiderivative for f(z). In picking dz for
subsequent summation, we are going to make sure it is small
enough so F'(z)has the standard differential linear behavior on

each infinitesimal subinterval [z, z + dz], i.e.

F(z+dz)=F(2)+ f(2)dz=
F(z+dz)-F(z)= f(2)dz

Also, choose dzso that the right endpoint of the very last

subinterval corresponds exactly with x = b . If all of this has been
prearranged to be the case, then

> f(2)dz =

XZ:]‘:[F(z+dz)—F(z)]=

tF(a +dz) - F(a)]+
[F(a+2dz)-F(a+dz)]+
[F(a+3dz)— F(a+2dz)]+
[F(a+4dz)—- F(a+3dz)]+
.t
[F(a+{?}-dz)— F(a+{7-1}-dz)]+
[F(b) - F(a+{?}-dz)]=
F(b)—-F(a)
As you can see, millions upon millions of tiny terms—the question

mark signifies that the exact number is unknown—cancel in
accordion fashion. This leaves us with just the two already-familiar

macro terms F'(b) and F'(a). Hence,
x=b X=

D dA= Zb f(2)dz=F(b)—F(a).

xX=a
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Recall by Section 7.1, the total area A also equals F'(b) — F(a) .

Hence, we have 4 = xzzii f(z2)dz=F(b)—F(a).

X=a

x=b
Examining A4 = Z f(z)dz = F(b) — F(a) immediately suggests

a known process for finding the sum: simply find an antiderivative
F(z)for f(z)and then evaluate the expression F(z)|" .

In Chapter 6, the integration signjf(z)dz is the process

symbol used to denote that an antiderivative is to be found. When
finding a differential sum, the above integration sign is slightly
modified as follows

j f(2)dz .

With definition
Jf(Z)dZ =F(2)|,;=F(b)~F(a): F'(z) = f(2)

Note: the reader should show that the using of F(z)+ C for an
antiderivative in (F(z)+ C)|’ the above expression is unnecessary

due to the cancellation of the constant C .

The amazing chained expression

A=[f@d=F(@),=F®)-F(a): F'(2)= f(2)

is quite suggestive in itself. The integration sign .[ looks like a

smoothed-out version of the summation symbol Z .
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Indeed, that is exactly how the differential summing process
works: by smoothly and continuously building up the whole from

millions upon millions of tiny pieces f(z)dz . In this introductory
example, the whole is a total area, but doesn’t necessarily need to
be as we shall soon discover. The numbers a and b signify the
start and the end of the continuous summing process. Finally, the

expression F'(z) |" = F(b) — F(a)gives an alternative means, by

way of antidifferentiation, for performing the continuous
summation—a significant process improvement.

Note: In nature, large structures are also built from a vast number of tiny
pieces: human bodies are built from cells and stars are built from atoms.

b o0
Iudx
a
Section Exercises: None

1.3) Process Improvement: Definite Integrals

Let's take a brief moment and review the process and
associated products for the following two expressions:

_[f(x)dx and jlf(x)dx_

Recall that the expression J-f(x)dx tells the user to find a family

of antiderivatives for the differential f(x)dx . If F'(x)is one such
family member with F'(x)= f(x), then all other such family

members can be characterized by F(x)+ Cwhere Cis an
arbitrary constant. We then have that

j f(x)dx=F(x)+C.

Note: F'(x) without the constant C is sometimes called the fundamental
or basic antiderivative.
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The process on the left-hand side is known either as indefinite
integration (older terminology) or antidifferentiation (newer
terminology). The associated product on the right-hand side, in
this case a function, is known either as an indefinite integral or
antiderivative. The term indefinite refers to the arbitrary constant

C . Whether called indefinite integration or antidifferentiation, the

symbol I is always known as an integral or an integration sign.

b
The symbol .[ f(x)dx carries the process of

antidifferentiation (or indefinite integration) a step further than
required byjf(x)dx. Not only is an antiderivative F'(x) found,

but additionally, the antiderivative is evaluated at the two
endpoints @ and b per the process-to-product evaluation scheme

[ f(o)de=F(x) ;= F(b)— F(a).

The process in this case is called definite integration and the
associated product is called a definite integral. The integration
process is viewed as definite since 1) the arbitrary constant C'is
no longer part of the final product and 2) the final product has a
precise numerical value, which is very definite indeed.

Note: Somehow, the modern antidifferentiation/antiderivative terminology
never came to use as a way of describing definite integration.

b
The symbol J.f(x)dxis perhaps the most holographic in all of

calculus. It can be interpreted in at least three different ways.

b
1. As a processing symbol for functions, J.f(x)dx instructs the

operator to start the process by finding the basic
antiderivative F'(x)for f(x)dx and finish it by evaluating the

quantity F'(x) |’ = F(b)— F(a). This interpretation is pure
process-to-product with no context.
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2.

As a summation symbol for differential quantities,
b

J.f(x)dx signals to the operator that myriads of infinitesimal

quantities of the form f'(x)dx are being continuously summed
on the interval [a,b] with the summation process starting at

x=a and ending at x =b. Depending on the context for a
given  problem, such as area, the differential
quantities f(x)dx and subsequent total can take on a variety

of meanings. This makes continuous summing a powerful tool
for solving real-world problems as will be shown in subsequent
sections. The fact that continuous sums can also be evaluated

by jf(x)dx =F(x)|"=F(b)-F(a) is a fortunate

consequence of the Fundamental Theorem of Calculus.

b
Lastly, J.f(x)dx can be interpreted as a point solution y(b)

to any explicit differential equation having the general form
dy = f(x)dx:y(a)=0, such as the differential equation of
planar area discussed in Section 7.1. In this interpretation

j‘ f(x)dxis first modified by integrating over the arbitrary
saubinterval [a,z] c[a,b] which results in the expression
y(z)= if(x)dx =F(z)—F(a). Substituting x=a gives
the stat;d boundary condition y(a)=F(a)—F(a)=0 and
substituting x =b gives y(b)=F(b)—F(a)= if(x)dx. In

this context, the function y(z)=F(z)—F(a), as a unique

solution to dy = f(x)dx: y(a)=0, can also be interpreted
as a continuous running sum from x=a to x=z.
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For the rest of Section 7.3, we will concentrate on

b
interpreting the definite integral If(x)dx as a computational
processing formula using a rule that we will call the Rosetta Stone
of Calculus. This is one of several possible alternate formulations
of the Fundamental Theorem of Calculus.

The Rosetta Stone of Calculus

[ fG)dx=F(x)|,= F(b) - F(a): F'(x) = f(x)

Like the original Rosetta Stone that allowed for decoding of
Egyptian hieroglyphics, the Rosetta Stone of Calculus will allow for
the swift and easy evaluation (a decoding if you will) of the definite

b
integral If(x)dx. The amazing thing is that the evaluation is

always the same irregardless of the contextual interpretation under
b

which If(x)dx was formulated, a major process improvement.

a

7
Ex 7.3.1: Evaluate the definite integral J.(2x +3)dx .
4

7

[@x+3)dx=(x* +3x)[}=
4

(77 +3-7)— (4> +3-4)=
70-28 =42

Note: As stated, this example has no context. The reader is encouraged
to give it a context by letting f(x) = 2x + 3 be the upper bounding curve

for a trapezoid defined on the interval[4,7] . In the context of planar area,
is the answer reasonable?
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4
xdx
Ex 7.3.2: Evaluate the definite integraljz— and interpret as
1 (x7+3)

a planar area.

xd. _1 J- 2xdx
(x2+3) (x +3)
In(x* +3)[{=

“In(17)— —ln(4) = —1n(4 25)

N | — [\)|._. ——

4

X xdx

Since f(x)=———>0for allxe[l4], _[2— can be
x°+3 1 (x7 +

interpreted as the area between the x axis and

f(x)fromx=1tox=4.

Note: In this example, the first step is the obtaining of the antiderivative
using all known rules and methodologies discussed in Chapter 6. Only

after the antiderivative is obtained, do we substitute the two numbers 4

and 1. These two numbers are formally called the upper and lower limits
of integration—yet another deviation from the title of this book.

5
Ex 7.3.3: Evaluate the definite integral J‘(7x3 —4x* +x+1)dx.
2

5
j(7x3 —4x* +x+1)dx =
2

7'54—4'53+i+5 (72 4.2 ﬁ”
4 32
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4375 500 25 112 32 4
—————+—+5 ———+ +2 =

4 3 2 4
4375 112 500 32 25 4 _
(4_4](3 j(_"] -
4263_468 21
4 3 2

12789_1872+126 36 11079 3693

+ =
12 12 12 12 12 4

Ex 7.3.3 is typical of the stepwise precision necessary when
evaluating the definite integral of a polynomial function. | have
always cautioned my students to keep the inevitable rational terms
in denominator-alike groups, adding and subtracting within a group
as necessary. The final result from each group can then be
converted to equivalent fractions having like denominators,
preparing them for the grand total. By proceeding in this fashion,
we utilize the error-prone like-denominator process only once.

b (1]
Iudx
Section Exercises
1) Evaluate the following definite integrals
7
I b)J-(x3+x2+3x+5)dx
0 3
T (Inx) l 10
) [~ d) [ 2x+1)dx
e 0

2) Use a definite integral to find the total area above the x axis
and below y = x++/x on the interval [1,4].
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1.4) Geometric Applications of the
Definite Integral

In this section, continuous sums are used in order to
obtain planar areas, volumes of revolution, surface areas of
revolution, and arc lengths. Each of these aforementioned
quantities can also be formulated in terms of a differential
equation. Whether framed in terms of a continuous sum or
differential equation, the solution for the associated volume, or
area, or surface area, or arc length will be given in terms of a
definite integral, which is indistinguishable in either case.

1.4.11 Planar Area Between Two Curves

dA=[f(x)-g()dx
y=re |

fx)=gx) =

x=c,x=d

y=g(x)

Figure 7.8: Area Between Two Curves

Suppose we were required to find the area of the shaded
region shown in Figure 7.8. A differential element of rectangular

area would take the form dA=[f(x)—g(x)]dxwhere the

function f'(x)is the upper bounding curve, and the function g(x),
the lower bounding curve.
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The expression [ f(x)—g(x)]dxis always positive—no matter
where the overall figure happens to be located within the four
quadrants—if one remembers that f(x)is to be the upper
bounding curve (in the direction of increasing y ), and g(x)is to
be the lower bounding curve as shown in Figure 7.8. Hence, all
differential areas of the general form dA =[f(x)—g(x)]dx are

positive. This definitely needs to be the case if we are trying to
sum millions upon millions of tiny quantities in order to make a
total area.

To obtain the shaded area, simply use continuous
summing to add up all the differential elements of area having

general form dA =[f(x)—g(x)]dx. Start the summing process

at x = ¢ and finish the process atx = d , where the two endpoints
c&d can readily be obtained by setting f(x)=g(x) and

solving for x . The general setup for finding the area between two
curves can be expressed in terms of the definite integral

A= [[f()-g(x)ldx

or the differential equation
dA=[f(x)—g(x)]dx: A(c)=0.

Per previous discussion, solving the differential equation and
finding the particular value A(d) also corresponds to evaluating

[Lf(0-g(x)ax,

again making the definite integral our magnificent tool of choice.

Ex 7.4.1: Find the area between the two curves f(x) =6—x" and
g(x)=3-2x.

219



f(x)=6-x

(-1,5) -

X

g(x)#3-2x (-3

Figure 7.9: Area Between /(x) =6—x"and g(x) =3—2x

Figure 7.9 shows the desired area. Note: it is a necessity to draw the
area before one evaluates the same. Only a drawing can allow us to
determine the relative positions of the two curves. Relative position—
upper boundary respect to lower boundary—is of prime importance when

formulating the quantity dA=|f(x)—g(x)]dx, which could be
rephrased in verbal terms as dA = [upper —lower]dx .

First, we solve for the endpoints:
f(x)=gx)=
6—x>=3-2x=
342x—x"=0=>
B-x)(1+x)=0=>
x=3&-1

Next, we set up the associated differential area.
dA=[f(x)—g(x)]dx =
[(6—x7)—(3=2x)]dx =
[3+2x—x"]dx

220



3

Finally, we evaluatej(3+2x—x2)dx, interpreting it as planar
-1

area obtained by a continuous summing process.

3
A= J-(3+2x—x2)dx=
-1

3
{3x+x2 —%}P_l:
[9+9—2}—[—3+1+1}:
3 3

18- 2T 4p L _pp_28_32
3 3 33

Ex 7.4.2: Find the area between the curve
f(x)=x>—3x—4and the x axis on the interval[0,6] .

y
\ (6,14)

f(x)=x"-3x—{4

g(x)=0

Kl (470) A2 -~ X

(0.-4) 4/ B

Figure 7.10: Over and Under Shaded Area

Figure 7.10 shows the desired area. Define g(x)=0.
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The interval of interest [0,6] has both endpoints given. Thus, we

don’t have to solve for endpoints in this example. However, we do
have to solve for the crossover point since the upper and lower
bounding curves reverse their relative positions.

f(x)=gx) =
x*=3x-4=0=
x—-4Hx+DH)=0=>
x=4,&-1

The value x =—1is outside[0,6], the interval of consideration.
Thus, x =4 marks the one crossover point. It is not much of a
stretch to see that 4,,,, = A4, + 4, . Since f(x)and g(x) switch

roles on [0,6], we must set up two separate definite integrals—

with upper and lower properly placed in each—in order to evaluate
the total area.

A, =A +A, =

Total

jf[{O}—{x2 —3)6—4}>]abc+j.[{x2 —3x—4}—{0}]dx =

4
J(—x2+3x+4)dx+ﬁ=
) 3
8,38 %5
33 3

1.4.2) Volumes of Revolution

Under suitable restrictions, the graph of a function f(x)
can be rotated about the x axis, or the y axis, or a line parallel to
one axis, or the other. The rotation of the locus of points defined
by the graph of f(x) about a fixed axis sweeps out a surface area
and an associated interior volume.
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Both of these quantities, surface area of revolution and volume of
revolution, can be ascertained by use of the definite integral. In
this subsection, we will focus on determining volume of revolution.

AV =z f(x)] dx
r=f(x)

Figure 7.11: Volume of Revolution Using Disks

Figure 7.11 shows the graph of a function f(x)being rotated

counterclockwise about the x axis on the interval[a,b]. A goblet

shape will be generated in this fashion where either end could
serve as the end used for drinking. The stem will be a single point
of zero thickness as shown on the graph. To determine the volume

of the goblet, first remove a slice of thickness dx (the gray-shaded
region), which has been cut orthogonal to the x axis (the axis of
rotation). This differential slice has a circular cross section with

frontal area given by 7] f(x)]*. Multiplying by the thickness
dx gives the volume of the differential slice dV =z f(x)]’dx.

Hence, the total volume ¥V of the goblet can be obtained quite
easily by continuous summation of all the differential quantities
dV startingat x=a and endingat x=5.
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Hence, the total volume is given in terms of the definite integral
b
V= j Al f () dx.

The same integral is also point solution (at x=»5) to the
associated differential equation for the volume of revolution:

AV = f()Pdx:V(a)=0.

Again, both roads lead to the same definite integral no matter
which thought process we use, continuous sum or differential
equation, to interpret and subsequently solve the problem.

Ex 7.4.3: A) Use the method of disks to find the volume of rotation
when the graph of f(x)=x" —1lis revolved about the x axis on
the interval[0,2]. B) Find the volume when f'(x) is revolved about
the line y =3 and C) about the line y =-2.
yA 2 2 2
f(x)=x" -1 dV =r[x" —1]"dx

r=x*-1

C x=0, U x=2
X

Figure 7.12: Rotating /' (x) = x* — 1 about the x axis
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Part A: Figure 7.12 shows f(x)=x’—1 as it is rotated around
the x axis. Even though the functional values are negative on the
subinterval[01], dV'is never negative due to the squaring

of £(x) . Note: One of the advantages of the disk method for finding a

volume of revolution is that dV never turns negative during the
continuous summing process. Hence, one doesn’t have to adjust f (x)

on subintervals where f(x) < Qin order to maintain positive dV's .

The total volume is given by

2
V:j;z[x —1PPdx =
2 5 3
ﬂ'J.x —2x% +1]dx = ﬂ_x__2i+ o=
) 5 3

5 3
7{2__2 2 }_[0]:7[[%_E+2}:46_”

5 3 15

dV=n3—(7 —1)Pdx
F=3-( )

f)=x -

Figure 7.13: Rotating f'(x) = x° —1about the Line y =3

225



Part B: As shown in Figure 7.13, dV =[3—(x’ —1)]’dxis the
appropriate differential volume element. You should verify why this
is so. Once dV is determined, you can determine the
corresponding V' by

V:jn[3—(x2 —1)]2dx:jn[4—x2]2dx

0

2 5 3
7[[x" —8x” +16]dx =7 X8 x|
) 5 3

5 3
A8 —[o]:yz[ﬁ—ﬁuz}:@
5 3 5 3

15

Note: Volume of revolution problems using the disk method can be quite
tricky when rotating about an axis other than the X axis. Great care must
be taken to draw a representative disk and associated frontal area. Of

prime importance is the relationship of the function f(x) to the radius of

the disk so drawn. There is no golden rule except think it through on a
case by case basis.

Part C: No figure is shown. The reader should verify that the
differential element of volume dVis given by the

expressiondV =[2+(x* —1)]*dx . Hence
2 2
V:j;z[2+(x2 —1)]2dx:j7z[1+x2]2dx
0 0
2 5 3
frj.[x4 +2x° +1ldx=x x—+2i+x o=
0 5 3

5 3
) ~[o]=7 32,16, | 207
5 3 5 3

15
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Ex 7.4.4: Verify that the volume of a right circular cone is given by

the expression V'
h is the altitude.

YA

=%7z7f2h where ris the radius of the base and

2
dv = ;{E} dx
h

.

—=

LY

dx v

Figure 7.14: Verifying the Volume of a Cone

Figure 7.14 shows the setup for this problem. A right circular cone

. . . rx
can be generated by revolving the line given by f(x) =7about

the xaxis on the interval[0,/].

The associated differential

2
element of volume is given by dV = 7{ P } dx . The volume V' is

given by

Y

0
fﬂ’_ﬁ_
hrl 3

s %T %

717"2 2

h 3
x’dx :m_{x_} b=
h’ 'l‘ |3
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The disk method for finding a volume of revolution is the method of
choice when rotating about the axis representing the independent
variable (or a line parallel to this axis) as shown in Figure 7.15.

dV = f(x)]*dx

Figure 7.15: When to Use the Disk Method

But, suppose we wish to rotate this same graph about the
y axis from x=atox=>~. In this case, the y axis represents
the dependent variable. Hence, the associated method of choice
for finding a volume of revolution is the method of cylindrical shells
as shown in Figure 7.16.

YA i
 —>)

__________ y=10 | h=f@

r=x:c=2nx

=0 dr x=b>x dV =2mf (x)dx

) V= .}ichf(x)dx

Figure 7.16: Method of Cylindrical Shells
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A cylindrical shell is akin to a short piece of thin copper tubing
(much like that used in home construction). When the graph of

f(x)is rotated about the y axis, it can be thought of as sweeping
out millions upon millions of these thin cylindrical shells where
each has thicknessdx. At any particularx location in the
interval[a,b], the surface area of the shell is given

by A =27mxf (x) . Multiplying by the associated thickness gives the

associated differential element of volumedV =27xf (x)dx .

Figure 7.17 shows the shell in Figure 7.16 after it has been cut
and flattened out, better exposing all three dimensions.

« 2>

Al )’
x
e | A =2mf(x) %

dV =2mxf (x)dx

Figure 7.17: Flattened Out Cylindrical Shell

Unlike the disk method, when using cylindrical shells in a
continuous summing process in order to build up a total volume,

care must be taken to insure that f(x)is always positive. Hence,
in practice, dV =2mx| f(x)|dx. Using | f(x)| guarantees a

positive 4 and associated dV which, in turn, guarantees no
dV cancellation as we build up the total volume V' .

Ex 7.4.5: A) Use cylindrical shells to find the volume of rotation
when the graph of f(x)=x” —lis revolved about the y axis on
the xinterval[0,2]. B) Find the volume when f(x)is revolved
about the line x =—3.
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Part A: Figure 7.18 shows the volume of revolution to be
determined. In this example the function f(x) = x —1is negative
on the subinterval[0,1]. Therefore, we will need to use

dV =27 | x* —1| dx as our differential volume element.

" re=x -1 i

h=f(x)]

-
r=x:.:c=2n

. dx X
x0 x=1x=2" gy _om|x’—1|dx

2
V=[2m|x* 1| dx
0

Figure 7.18: Rotating /' (x) = x° —1about the y axis
The associated V is given by the definite integral
2 1 2
14 :jzzzx |x% —1|dx = I27Dc(l—x2)dx+.|‘27zx(x2 ~1)dx,
0 0 1

which must be split (as shown) into two integrals where the first
sums the volume elements (per a properly-signed f(x)) on the

interval [0,1] and the second sums the volume elements on [1,2].
Continuing with the evaluation:

1 2
V= jzm(1—x2)dx+j2m(x2 —1)dx =
0 1

27

[ ——

(x—)c3)abc+j()c3 —Xx)dx | =
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(1 1
2r| A=+ 2}t =57
L4 4
Part B: No figure is shown. The reader is to verify that the radius of

rotation is now x + 3. Accordingly, the desired volume is given by
the definite integral

2
V:jzn(x+3)|x2—1|dx:
0

j2ﬂ'(x +3)(1—x")dx + jZf[(x +3)(x* —1)dx =

27Z'_j. (x—x7)dx + j.(x3 — x)dx} +

0

1

67 I(l—xz)dx+j(x2 —l)dx}:

L0

sﬂ+6ﬁ;{x_x3_3} ; +{X_;_x} @ _
b5 )
wefo B

Note: notice how we able to use the results from Part A in order to ease
our workload in Part B.
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. rx .
Ex 7.4.6: Rotate the function f(x) :7 in Ex 7.4.4 about the

y axis and show that the role of 7and A is reversed in the conic
volume formula when creating the cone as shown in Figure

i

7.19—i.e. volume in this case is given by the formula V' =

Figure 7.19 shows the function being rotated about the y axis.

The cone we want to create is an inverted cone of radius /% and
heightr .

Figure 7.19: The Volume of an Inverted Cone

This example is a bit trickier than what it appears to be at first
glance. The height of a cylindrical shell associated with the

rx
inverted cone is given by the expression r—;, and not the

X . . .
expressuonz. The associated differentiate volume element

isdV = 27zx[r —%}dx .
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We are to continuously sum these differential volume elements on
the interval[0, 4] . Hence

2w —

Notice that the method of cylindrical shells again verifies a known
result—another testimony to the power of calculus.

As a final comment, the disk method and cylindrical shell
method offer a great deal of computational flexibility to the user
provided the setup is correct. The errors most often made are
setup errors and include: the wrong radius, the wrong height, the
wrong limits of integration, or a combination thereof. The initial
drawing of an accurate picture, as in any word problem, showing a
properly chosen differential volume element is the key to success.

14.3) Arc Length

Our next topic addresses the issue of finding the arc
length (or curve length) for a function f(x)defined on an
interval[a,b] . Figure 7.20 shows arc length, traditionally denoted

by the letter s, for such a function and the associated differential
methodology used to obtain it.
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I\ s ds® =dx® +dy’ =
=10 Y @ =

> 2
ds = 1+{Q} dx =
d dx
X
x=a  x=b ds =1+ [ f"(x)] dx

b

s = Iq/l+[f'(x)]2dx

a

Figure 7.20: Arc Length and Associated Methodology

Since the function f(x)has linear behavior on any
differential interval[x, x + dx], the associated differential element

of arc length ds (shown by the dark line capping the trapezoid in
Figure 7.20) is a straight line segment. By the Pythagorean

Theorem, we have thatds = \/dx” +dy” . Since dy = f’(x)dxon
a differential interval[x,x +dx], the differential element of arc

length reduces to ds=+/1+[f’(x)]’dxafter some algebraic

manipulation. Continuous summing of these differential elements
from x = a to x = bis accomplished by the definite integral

b

s:j1/1+[f’(x)]2dx

a

where s is the desired arc length.

Note: Little did Pythagoras realize where his theorem would eventually
appear. Can you see the Pythagorean Theorem embodied in the
tremendous result (framed in terms of a definite integral) above?
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A good thing about the differential element of arc length
dsis that ds>0no matter the sign of /’(x). This means in

practice that intervals don’t have to be broken into subintervals in
order to adjust for a negative differential element: as sometimes is
the case in planar area between two curves or volumes of
revolution using cylindrical shells. A frustrating thing about arc

b
length is that s :J.\/l+[f'(x)]2 dx can become extremely hard

to evaluate, even when f'(x)is quite simple. Techniques beyond
the scope of this introductory volume must then be employed in

order to obtain an antiderivative for/1+[ 7”(x)]’

Ex 7.4.7: Find the arc length of the graph of f(x)zx% on the
interval [0,1]. The figure associated with arc length is always
identical to the graph of f'(x) itself. In this case, we shall dispense
with the figure since fis a relatively simple function to visualize
and defined everywhere on [0,1]. Continuing

Hf(?f) X’

(4+9x) -9 dx =

(4+9x)* , (13;— )_1.5878

27 ‘
As an order-of-magnitude check, simply compute the straight line
distance between the two endpoints of the graph (0,0) and (1,1).

The answer is \/§=1.414, which is the shortest distance
between two points; and, as it should, 1.5878 > \/E
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Ex 7.4.8: Find the arc length of the graph of f(x)=x> on the

interval [0,1]. Again, no graph is shown due to the visual simplicity
of the example.

lé:f'(x):2x:>

ds =\J1+[2x)*dx = ds =1+ 4x7 dx
2 1
H:sz.[\/l+4x2dx

0

Now—believe it or not—we are stuck. and our function is quite
simple. We have no means to evaluate the above integral utilizing
the methods presented in this book.

And, again, the following is totally wrong:
1 : 1} :

s =J.(1+4x2)5dx ;«r&—,|‘(1+4x2)E -8x-dx
0 8X 0

®

Functions known as trigonometric functions and inverse
trigonometric functions are needed in order to construct an

antiderivative for the expression V1+4x* . So, in this example, |

will just state the correct answer, which is 1.47815, and ask you
to perform an order-of-magnitude check as done in Ex 7.4.7.

We'll stop here with our arc length discussion. As stated at
the beginning of this subsection, it doesn’t take much of a function
to create a definite integral that in today’s vernacular is a “real
bear”. Even authors of standard “full-up” calculus texts carefully
pick their examples (insuring that they are fully doable) when
addressing this topic.
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1A.4) surface Area of Revelution

dSA, = 2mxds
(Ar

| [ > dSA. =2af(x)d
x=a dx x=b Q ! 7 (x)ds

Figure 7.21: Two Surface Areas of Revolution
Generated by One Graph

Figure 7.21 shows the differential element of arc length
ds in Figure 7.20 being rotated about the x axis. When ds is
rotated in this fashion, it sweeps out an associated differential

element of surface area given by dSA, = 27xf (x)ds . The total of

all such elements fromx = a to x = b can be found by evaluating
the definite integral

S4, = [ 27 N1+ ()] dix

The quantity SA4_ is called the surface area of revolution for the
function f, rotated about the xaxis fromx=a to x=5b.
Likewise, the same function f can be rotated about the y axis

fromx=atox=>5b. The associated surface area of revolution is
given by

54, =i2m/1+[f'(x)]2dx
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Since there is nothing that disallows f(x) being negative
on subintervals or the whole of[a,b], the formula for S4 should

be modified (similar to what we did in the case for cylindrical
shells) to read

S4, = [27| f(0) [N+ (0] dx.

With this change, we can proceed safely with the actual evaluation
of surface areas of revolution, splitting the interval [a,b] into

subintervals as necessary to accommodate for the negativity of 1.

Ex 7.4.9: Find S4 for f(x)= x”on the interval[0,2].

(A
fx)=x
(2,4)

FPEX 7 gs = 1+ [2x]2 dx

o dSA, =2nxds

(0,0 dx
Figure 7.22: Surface Area of Revolution S4, for f'(x) = x’

Figure 7.22 shows the desired surface area of revolution. Setting
up the appropriate definite integral, we have

b
o S4, = jzm/l H (O dx =
2
$4, = [ 27me\1+4x d
0
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2 2
¢ [2me 14+ 4x% dx =
0
27 ¢ 2L
—I(1+4x )2 -8x-dx=
8 0

T 3
g(l'|'4x2)2 o=

%[(1+4-22)

3
2

—(1+4-0%)']=
%Km% —()']=
SA, =36.1769

An important point needs to be made regarding this
example. Notice that it is workable using the methods in this book.

Rotating f'(x) about any other line of the form x =—r parallel to
the y axis leads to the following surface area integral

2
SA_, = [2m(x+r)W1+4x>dx =
0
2 2
jzm/l +4x2 dx +j2m/1 +4x2 dx
0 0

The first definite integral is again workable. But alas, the second
definite integral is now unworkable by elementary methods.
Hence, as previously stated in the subsection addressing arc
length, it doesn’t take a great deal of algebraic change to turn a
workable problem into an unworkable problem (at least by
elementary methods). Additionally, if Ex 7.4.9 had called for the

calculation of S4_, then appropriate definite integral, given

2
by SA4, =J-27062\/1+4x2dx, would have also been found to be
0

unworkable by elementary methods.
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Ex 7.4.10: Find S4_for f(x)=x"on the interval[0,1].

No graph is shown to the visual simplicity.

1 b
84, = [ 27 oI+ (0 dx =
1
$4, = [ 2 V1+9x* dx
0
2 1
H:j2ﬂx3\/1+9x4dx=
0
27 | 4t 3
—j(1+9x ) -36x° - dx =
369
% av3
—(1+9x") |,=
27( x") o
L IA+9-1) —(149-0*)*]=
27

T 3 3
(10 —(1)*]=
571107 =]
S4,=3.5631

1
In this example,SAy:J.2ﬂx\/1+9x4dx, a definite
0

integral which again requires advanced methods for completion.

b [ b oo
Iudx J.udx
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Chapter/Section Exercises

Note: in the following exercises, part of the challenge is the identifying of
an appropriate definite integral—planar area, volume of revolution, arc
length, or surface area of revolution—to apply in the specific instance.

1. Use a definite integral to verify that the total surface area for a
frustum (Figure 7.23) of height/, lower radiusb, and upper
radius a is given by the formula

SA = r(a? +b2)+2ﬂ{a;b}/h2 +(b-a)’.

Figure 7.23: A Frustum

2. Use a definite integral to find the total volume of the frustum
shown in Figure 7.23.

3. Use a definite integral to find the area between the two curves
givenby f(x)=x>—5x+7andg(x)=4-x.

4. Use a definite integral to find the arc length for the graph of
f(x)="7x+1on the interval[1,3] . Verify by the distance formula.

5. Usex’ +y2 =r”, the equation for a circle centered at the
origin and with radius r, and appropriate definite integrals to verify
that the surface area for a sphere is given by S4 =47 and the
volume by V =47,

6. A) Find the area below the curve y = x”and above the x axis

on the interval[2,3]. B) Find the volume of revolution generated
when this same area is rotated about the x axis. C) The y axis. D)

The liney=-2. E) The linex=-2. Note: B, C, D & E are all
workable.
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“It suddenly struck me that

That tiny pea, pretty and blue, was the Earth.
I put up my thumb and shut one eye,

And my thumb blotted out the planet Earth.

| didn’t feel like a giant; | felt very, very small.”

Neil Armstrong

8.1] Differential Egualities

In one sense, Calculus can be thought of as the
mathematical art of using the small to measure or build the large.
Just as Neil Armstrong raised one tiny thumb to metaphorically
examine the entirety of planet Earth, we can use the tiny
differential to examine all sorts of physical and human phenomena
on scales far exceeding what is capable via direct experience or
observation.

Chapter 7 introduced us to several new differential
equalities. Differential equalities are simply equations that relate
two or more tiny differentials through some algebraic means. A

primary example of a differential equality is dy = f'(x)dx, first
derived in Chapter 4. Hence, a differential equality is nothing more
than a differential equation. The expression dy = f’(x)dx can

then be thought of as the original differential equation,
encountered quite early in our study.

The Original Differential Equation

dy = f'(x)dx
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Consequently, far from being an exclusively advanced topic in
calculus, we see that differential equations soon arise after the
differential concept is developed as an immediate and natural
follow-on. In Table 8.1 below, we list the various differential
equations encountered thus far with the associated application.

Chapter and Equation Application
a:dy = f'(x)dx Function Building
6:F =(my’) 2" Law of Motion
6:.dT = p(T—T_)dt Law of Cooling
7. dA= f(2)|dz Planar Area
7: dA=[f(x)— g(x)]dx Planar Area

between Curves

. ~ 5 Volume of
7. dV =x[f(x)] dx Revolution: Disks

. _ Volume of
7o dV =2mx| f(x)|dx Revolution: Shells

7 ds = /1 +[f'(x)]2 dx Arc Length
P Surface Area of
7. dSA, =27 | f(x) [V1+[f ()] dx | Revolution: x axis
p Surface Area of
7: dSA, = 2me\1+[ f'(x)]’ dx Revolution: y axis

Table 8.1: Elementary Differential Equations

The two new differential equations introduced in Chapter 6
are from physics. Both equations are highly flexible and can be
used to solve diverse problems. We will see more of Newton's 2
Law in this chapter. What makes the equations in Chapter 7
unique is that all of them can be solved using the continuous
summation interpretation of the definite integral. This interpretation
is possible because any geometric quantity can be thought of as
the summation of many tiny pieces.
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Once this conceptualization is in place, the trick (or the artistry)
reduces to the characterization of a generic differential piece by an
appropriate differential equality. The sought-after whole is then
assembled from millions upon millions of differential pieces via the
continuous summing process, a process whose product can be
conveniently generated using the definite integral.

In Chapter 8, we are going to expand our use of
differential equations by exploring applications not exclusively
geometric. Two major areas will be sampled, physics and finance.
Both are very diverse and are diverse from each other. But, we
shall soon marvel at the flexible power of problem formulation by
the skilled use of differential equations, a power that allows the
trained user to readily develop the mathematical micro-blueprint
associated with a variety of phenomena in the heavens, on the
earth, and in the marketplace. And from the micro blueprint, we
can then build a model for the associated macro phenomena.

Section Exercises

1. As a review of Section 6.4, solve the following differential
equations and characterize as either implicit or explicit.

a)xdy = y*x dx: y(1)=2
b) y'=x>+x:y(0)=3

c)xy':2y'+l:y(4) =1
y
d)y’=4y:y(0)=1

2. Let dA=kx": A(2)=2be a differential equation associated
with planar area. Determine the constant k so that A(4)=16.
Evaluate A(6).
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8.2) Applications in Physics

8.2.1) Work, Energy, and Space Travel

Work is a topic typically found in a chapter on applications
of the definite integral and is typically introduced right after surface
areas, volumes of revolution, and arc lengths. In this book, we will
use work as a bridge topic. In doing so, we will bounce back and
forth between continuous summation interpretations and more
fluid interpretations requiring alternative approaches to the solving
of work associated differential equations. Eventually, we will
bounce into space and escape from planet earth.

The classic definition of work is given by the algebraic
expressionW = F-D . The force F'is assumed to be constant
and aligned in a direction parallel to the distance D through which
the force is applied. As long as F' is constant and aligned parallel
to D, the above definition holds, and problems are somewhat

easy to solve. Note: When F and D are not aligned, then we need to
employ the methods of vector analysis, which is way beyond the scope of
this book. Hence, we shall stay aligned.

To illustrate, suppose F =10/b, and acts in alignment
through a distance D =7 ft. Then the total work performed is
W =(Q10ib,)-(7ft) or 70fi-Ib, (read foot-pounds). Figure 8.1
depicts a typical work situation as introduced in elementary
physics texts: where a constant force [ aligned with the x axis is

being applied by the stick person in moving a box through a
distanceD=b—-a.

>
X
Figure 8.1: Classic Work with Constant Force
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It doesn’t take much modification to turn the classic work
situation into one requiring the use of calculus in order to obtain a
solution. All one has to do is make the applied force non-constant
as the effort proceeds from x =atox =5 . By doing so, F now

becomes a function of the position variable x (i.e. F = F'(x) ); and
work (as opposed to the basic macro-definiton W =F-D)

becomes redefined in terms of differential behavior via a simple
explicit differential equation.

Differential Equation of Work

dW =F(x)-dx

Finding the total work is simply a matter of continuous summing of
the differential work elements dW from x=atox=5b. The
result is given by the definite integral

W:jiF(x)dx.

Figure 8.2 depicts the revised scenario with a non-constant
force ' = F(x) .

i(,x) w :j:F(x)dx
Il ;
Il dx L X
- dW=F(x)-dx B

Figure 8.2: Work with Non-Constant Force

Ex 8.1: Find the total work performed by F(x)=x+4as it is
applied through the interval[2,5]. Let the x units be feet and, the
F units, pounds force.
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sz-F(x)dxzji(x2 +4)dx =

3 3 3
X vax|=|vas|-| Eran|-
3 3 3

HT7+12:51ft-lbf

Grabbing a work example from materials science, Hook’s
Law states that the force required to stretch or compress a string

X units beyond its natural or resting length is given by F'(x) = kx

where kis called the spring constant (a constant of
proportionally). Hook’s Law is only good for stretching lengths
within what is called the elastic limit. Beyond the elastic limit,
permanent deformation or set will take place; and Hook’s law is no
longer an appropriate mathematical model. Hook’s Law also can
be applied in other non-spring scenarios along as the material
being studied is behaving in an elastic manner.

Ex 8.2: Suppose 10in-lbf of work is required to stretch a spring

from its resting length of 3inches to a length of 5inches. How
much work is done in stretching the spring from 3inches to a

length of 9inches? Assume that the stretching is such that Hook’s
Law applies. Figure 8.3 diagrams the situation where the spring
(drawn as a double line) is shown at its resting length of 3 inches.

F(x)=k(x-3)
=.‘——)
’7< 3in >
| [ [ 7x
3in Sin 9in
W=0 W=10in‘lbf W =2

Figure 8.3: Hook’s Law Applied to a Simple Spring

247



1
> : Determine spring constant &

5
szk(x—3)dxz10:>
3

{_k(x—3)2}|§:103
2

k[(zz)z —o} =k2]=10=

k=5

*kkk

2
> : Determine work needed to stretch from 3in to 9in

W=i5(x—3)dx=

{M}gﬂ[ﬁ_o}:
2 2

5[18] =
90in-Ib 7

Now, let’s really demonstrate the power of the differential
equation as it is used to formulate an alternate expression for work
in terms of kinetic energy. The Kinetic Energy ( KE') for an object
of mass m traveling at a constant velocity v is given by

Kinetic Energy

KE =L m?

2

Suppose an object of constant mass travels from x =ato x=5b
and, in doing so, increases its velocity as shown in Figure 8.4.
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r dv
dv W = J{m—}dx

F=m— dt
X l a dx X =| b *
W=v, g dvo o v(B)=v,
dt

Vv, >V,
Figure 8.4: Work and Kinetic Energy

Since velocity has increased from v, to v,, acceleration has

occurred on the interval [a,b]. According to Newton's Second

Law, this can not happen unless there has been an applied force.
In the case of a constant mass m , this force is given by

F=(mv)'=mﬂ=ma.

dt

dv
Substituting m? into the differential equation for work
t

dv
givesdW = m;dx. From the differential expression, the total
t

work performed on the interval can be immediately obtained via

__ ¢ dv . :
the definite integral W =Im?dx. On first glance, evaluating
t

this integral, which contains three differentials, seems to be an
impossible task. Enter the power of a little differential

rearrangement, which is a totally legitimate operation since
differentials are algebraic quantities like any other algebraic

dx
quantity. The first move is just noticing that velocity v = 7 which
t
leads to
dv d

—dx=—xdv:vdv
dt t
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Then, in order to prepare for a definite integration with respect
tox, the stated independent variable, we continue our
transformation as follows

vdv = v@dx =w'dx,
dx

dividing and/or multiplying by appropriate differentials at will as
long as we retain the algebraic balance. Tracing the whole
development which equates work to a change in Kinetic Energy,
we have:

Lodv
W=jm—dx:>
Y
b dx b
szm—dv =J.mvdv:
a dt a
b dv b
W= | mv]' —dx =| m[v]'vdx =
![]ﬁ ![]

a

W:Vmunﬂfj
2

W=imy,> ~1my,’ = AKE

Taking the analysis one step farther, suppose the object in
Figure 8.4 falls from a height 4, at x = a to a height h, at x =b

where h, > h, . Note: Imagine an upward tilt at the left end.

The only force acting is that due to gravity given by F'=mg,
which acts through a net distance of /4, —h,. Hence, the work

done on the object due to gravity is W =mg[h, —h,]and must

be equivalent to the change in Kinetic Energy experienced by the
object. Thus,

—1 2_1 2
mglh,—h]=5mv,” —smv,” =

mgh, ++mv,* = mgh, +Lmv,’
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The term mgh is called potential energy (e.g. energy due
to an elevated position), and the last equation expresses an
energy conservation principle between two points a and b. It
essentially states that the sum of kinetic and potential energy
between any two points @ and b on the path of the object remains
constant no matter where aandb are located on the path of

motion. The conservation principle holds as long as altitude
changes are small with respect to the radius of the earth.

We shall formally state this conservation principle as
expressed below, giving it Newton’s name in honor of his Second
Law of Motion, by which it was formulated through the power of
calculus.

Newtonian Conservation of Energy Principle

In the absence of all external forces except that force due to
gravity, the sum of the potential and kinetic energy
for an object of constant mass m remains unchanged
throughout the object’s path of travel.

If @ and b are any two points on the path of the object,
and if the altitude changes are small when compared
to the radius of the earth, this principle can be
algebraically expressed (after canceling the m ) as

1., 2 _ 1,, 2
gha +3va _ghb +5vb '

To summarize, the elegant expression of this magnificent energy-
conservation principle on a macro scale was made possible by the
careful algebraic manipulation of the tiny differential as it was
found in Newton’s Second Law. Granted, in our modern atomic

age, Einstein’'s mass-to-energy conversion expression £ = mc*
can annihilate Newton’s Conservation of Energy Principle in a
flash. Nonetheless, his principle still reigns supreme, 300 years
after its inception, as the right tool for most applications in our
everyday and earthbound world.
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Note: | am a native Ohioan. Two famous Ohioans whose historic altitude
changes temporarily revoked the Newtonian Conservation of Energy
Principle are John Glenn and Neil Armstrong. Ohio is also home to King’s
Island and Cedar Point, two famous amusement parks. And, for what thrill
are these two amusement parks legendary?—roller coasters! Let’s take a
ride on an earthbound Rocket (or Beast) in our next example applying
Newton’s Conservation of Energy Principle.

Ex 8.3: A roller coaster descends through a vertical drop of 250
feet. At the apex, just before the drop, the velocity is

4.4’%(3mph ). What is the coaster’s velocity at the bottom of the
drop ignoring rail and air friction?

A

v, =441
(a,250)

gha-’_%vaz = ghb+%vb2

N

(6,0)
v, =7

Figure 8.5: Newton Tames the Beast

Figure 8.5 shows our roller coaster ride and names the law that
governs it. At the apex, leth, =250 ft,v, = 4.4%. Since potential

energy is a linear function of altitude, set /4, =0 in order to get

the needed drop or change. The appropriate units for the
gravitational  acceleration  constant g in this example

areg = 32.2%. With these preliminaries in place, we can now

calculate v, via the formula gh, +1v,* = gh, +1v,”.
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2 2
gha+%vu :ghb+L2vb =

v, =+/2gh, +va2 =

v, =v2gh, +v,’ =

v, =4/2(32.2)250+ (4.4)* =
v, =4/16,100.10+19.36 =

v, =4/16,119.36 = 126.96% =86.5mph

The final velocity of 86.5mph seems rather fast and scary. You

might want to check the dimensional correctness of the above
equality stream by ensuring both sides indeed reduce to the units
of velocity (feet-per-second) throughout. Note that the conversion

from feet-per-second to miles-per-hour is 88% =60mph .

Enough of roller coasters! | think it is time to escape the
earth and go to the moon. Newton again shall be our guide via his
Law of Universal Gravitation (remember the apple?). This law
states that if two bodies of masses m, and m,are such that their

respective centers of mass are r units apart, then the force due to
gravity between them is given by

Newton’s Law of Universal Gravitation

_ fmym,

2
7

F

where kis called the universal gravitational constant of
proportionality, given by k =6.67x107" Nk’T’;’z in metric units.

To start our escape, suppose a rocket ship of mass m is
poised for takeoff on planet earth, one such as the Saturn V that
took the crew of Apollo 11 to the moon in July of 1969.
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While sitting on planet earth, the rocket ship is experiencing a
force due to gravity given by F'=—mg. It is also positioned a
distance R from the earth’s center, which doubles as the earth’s
center of gravity. Let M be the mass of the earth. Then, after
equating Newton’s Law of Universal Gravitation to ' =—mg, we
have

kmM R’
e =-mg=k=- £

Substituting this expression for & back into Newton’s Law of
Universal Gravitation gives after some quick algebraic rearranging

2
R
F=—mg(—j .
r

Let’'s pause here for a second and examine the above. Notice that
the force due to the earth’s gravity upon an object of mass
m depends on how far that object is away from the earth’s center.

When r=R, corresponding to the earth’s surface
where R = 4000 miles, the force reduces to the good ‘ol familiar
F =—mg . For distances / above the earth’s surface, the force
can be written as

RV 1Y
Pl gly) el

Hence, when #his small compared to R, whether be it the
altitudinal extent of a roller coaster ride or a supersonic trip in the
Concorde, the force F'is approximately equal to—mg . In cases

such as these, the Newtonian Conservation of Energy Principle

(as stated by gh, +%va2 = gh, +%vb2) applies quite well. But,

we are going to the moon as shown in Figure 8.6, and our /
values will be large. With this in mind, how does the Newtonian
Conservation of Energy Principle change?
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r
NG -y, > (W)
Earth /R dr o
r=R+h

Figure 8.6: From Earth to the Moon

The answer is that Newton’s Energy Conservation
Principle really doesn’t change at all if we recall that it was
developed from the more basic relationship

W=1imV,? —imV,* = AKE .

What has changed is the nature of the applied gravity force, which
now varies as a function of 7 . The change in kinetic energy for our
rocket still equals the work done against the force of gravity. After

a high initial velocity ¥, , achieved after a hundred or so miles in

altitude, one would expect that the velocity would decay with
distance as the rocket seeks to free itself from the drag force of
gravity. The change in kinetic energy is equal to the work done
against this force, which is now a function of the distance 7 from
the center of the earth. Using a definite integral to express the total

work done on the interval [R, R+ /] in moving an object of mass
m against the force of gravity, we have

R+h 2
W=- J. mg{ﬁ} dr.

2 r

Equating work to the corresponding change in kinetic energy gives

Rth R 2
2 2
MV —3mVy Z_J mg[?} dr.
R
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After canceling the m and evaluating the definite integral, the last
expression reduces to

R R
%thz _%VRZ :g|: __}j

R+h R

Rh R
1y 2_1y2_—_ - _
2V Rtk 2V R gR+h g1+£

h

Continuing, what is the initial velocity?, needed at r =R to

guarantee a forward velocity V,,,at » =R+ h? Solving the last

+h

equation for V/, gives the answer:

Now, escape velocity is defined as that initial velocity needed to
guarantee some forward velocity V,,, >0 as & — oo. The last

condition can be expressed as llqim[VRM]:O, the first limit
—oo

encountered since Chapter 5. Applying the limit gives

The Equation for Escape Velocity

4

Escape = hm

h—oo

In the case of planet earth, we have g = 32.2§,R =21,120,000 /7.

Thus V, =,/2gR = 36,937.17% = Tmps (miles per second).

Escape
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Ex 8.4: What initial velocity V,is needed to insure that an

interplanetary space probe has a forward velocity of 1.0mps at

the point of the moon’s orbit?
We shall use R =21,120,000 f# and & =240,000miles , which

equals 1,267,200,000 f . Hence the % ratio is %z 016667 .

Letting V., = 5280’% and g = 32.2% , we obtain

= \/[(5280)2 N 2(32.2)(21,120,000.0)} _

1+.016667
V, =36,955L =6.999mps

Notice that this last answer is only slightly larger than the value for
V given on the previous page. This means that a space

Escape

probe propelled to V,

scape

in the very early stages of flight will still

have a forward velocity of 1.0mps at the point of the moon’s orbit.

Ex 8.5: Find V,

Escape fOT the moon.

For the moon, R =1088miles and g = 5.474:—2. Thus, we have
Viseape = 28R =79304-=1.502mps .

Gulp...Roger Hey Neil, | sure

that Buzz! hope Newton
\ was right!
Empe 1 502mps!

Figure 8.7: Just Before Lunar Takeoff
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8.2.2] Jacoh Bernoulli's Multi-Purpose
Differential Equation

Jacob Bernoulli (1654-1705) was nestled in between the
lifetimes of Leibniz and Newton. Being about 10 years younger
than either of these two independent co-developers of Calculus,
Jacob was, the first of many to continue the tradition of ‘standing
on the shoulders of giants’. One of Jacob’s greatest contributions
to mathematics and physics was made in the year 1696 when he
found a solution to the differential equation below, which now
bears his name.

The Bernoulli Differential Equation

L ry+g@y",
X

Bernoulli’s equation is neither explicit nor immediately separable
into the form P(y)dy = Q(x)dx . Hence, after a flash of pure
genius, Jacob rewrote the equation as

Y =0y +g ().
He then made the following change-of-variable substitution

z=y"=7=>1-n)y"y
to obtain

’

z

=f(¥)z+g(x).

1-n B

In the next subsection, we will solve a specific example of
the above differential equation using Bernoulli's change-of-variable

technique for the casen = 2. In this subsection, we will solve the
general Bernoulli equation for the casen = 0, which reduces to
(after replacing z with y)

dy

E=f(X)y+g(X)-
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Proceeding stepwise with Bernoulli’'s general solution:

1

> :Let F(x)be such that F'(x) =—f(x).
2

> :Form the function e

3
> : Multiply both sides of % = f(x)y+g(x)by e
X

Feo (called an integrating factor)

F(x)

s oF® [%} ) U(x)y+ g(X)]:>

| D ser sy = gt

Notice that the left-hand side of the last equality is the result

of differentiating the product el y:

i[ep(x) ) y]: eF(x) {d_y:l + eF(x) [_f(x)]y = eF(X) . g(x)
dx dx

Consequently, the term e" s known as an integrating factor
because it allows the integration shown in Step 4 to take place.

4
S Leror )= e g =
dx

e .y = .[eF('”) g(x)dx+C =

y=e W Ue”” -g(x)dx]+ Ce ™ .,

Admittedly, the final equality is a rather atrocious looking
expression, but Bernoulli's 300-year-old masterpiece will always
give us the right solution if we faithfully follow the solution process
embodied in the formula.

d
Ex 8.6: Solve the differential equation % =ay+b:y(0)=y,

where a, b are constants, and ¢ is the independent variable.
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The given differential equation is Bernoulli in form. In practice, we
solve using the following process (which is slightly modified from
the process shown for the general solution)

I d d
i—>:—y=ay+b:>—y—ay=b
dt dt
2
> :Create ¢/ ¥ = ¢~ the integrating factor

3 d
e L ge
dt

t

y=e " b=

%[e‘“’ yl=e b=
ey :J’e‘”’ -bdt+C =
R

e y==2"+C=

y==2+Ce"
4
> :Apply the initial condition y(0) = y, .
y,=L+Ce™ = C=y,+L
5
> : Substitute the value for C and finalize the solution.

y:_7b+[yo +%]em =
y=y.e” +§[e”’ —1].‘.

Note: The final result is going to prove itself extremely useful throughout
the remainder of this section and the next section.

The reason that Bernoulli’s Differential Equation is so
important is that it “pops up” (albeit with various values of the
exponent n) in a variety of diverse situations where physics is
being applied from free fall with atmospheric drag to elementary
electric circuit theory.
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For example, if we assume atmospheric drag is a primary player
affecting the motion of a falling body of massm, then the
governing equation is

dv

—-m—=—-mg+kv".

dt
The term kv"is the atmospheric drag force that acts in opposition
to the falling motion. For some objects, this drag term is

proportional to the square of the velocity. For others, it is
proportional to the first power; and yet for others, whatever
empirical testing supports. When n =1, the equation is Bernoulli
in form and solvable by Bernoulli's method. The example below is
a free-fall problem where n =1.

Ex 8.7: A 160 pound sky diver bails out of an airplane cruising at
7000 feet. The free-fall phase of the jump lasts 15 seconds. Find
the velocity and position of the sky diver at the end of free fall.

The governing differential equation for a human body in free fall is
dv

given by — m? =—mg +(.5)-v'where the drag term(.5)-v'
t

has been empirically deduced via years of data. Continuing:
dv
—-m—=-mg+(5 Vv =
dt

DY 4 giv(0) = 04, y(0) = 7000
dt 2m ‘

Since the above differential equation is Bernoulli in form, one can
immediately write the solution using the result from Ex 8.6

witha = 7+ = —-0.100625,b = 32.2,v(0) =0 . The weight of the

2m

sky diver must first be converted from pounds force Ibf to
pounds mass /bm , which is done by dividing by g . Continuing:

W) = 320[6—04100625[ _ 1]:
$(20) = 320[e 1509 _1]= _249 % = _170mph

where the minus sign indicates the direction of fall is towards the
earth.
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From the previous expression, notice that velocity will never
exceed—320f7i:—218mph. The velocity —320§is known as
the terminal velocity and is the velocity at which gravitational and
atmospheric drag forces balance. Solving for y(¢) = Iv(t)dt, we

have:
() = % =320 1" _1]=
dy =320[e ™ _ 1}t =
y=y(0) = [320f ™= —1gr+ € =
(t) = =3180e™ %" —320¢ + C
s ¥(0) = 7000 = C =10180
o (t) =10180 —3180e "7 —320¢

4
= p(15) =10180—3180e """ —320(15) =
y(15) = 4677 ft
Note: a very good model for the parachute-open portion of the sky dive
. dv 2 L .
is—m—=—-mg + (.42) -V~ , which is not Bernoulli in form. However,

it is still solvable via the slightly more advanced methods presented in an
introductory course on differential equations.

In general, suppose the drag coefficient is k for the term

kv' and the mass of the object ism . Thenv(t) = %[ei’T —1]and

. e —gm
the terminal velocity is given byT. Hence, for a 160/bf sky

driver, a drag coefficient of k& > 8would be needed in order to
keep the terminal velocity below — 20%.

Our next example, one also requiring the solution of a
Bernoulli equation, is taken from elementary circuit theory.
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Ex 8.8: A simple electric circuit consists of a resistance R, an
inductance L , and an electromotive force, £, connected in series
as shown Figure 8.8. If the switch, S, is thrown at time 7 =0,
express the current i as a function of time.

Figure 8.8: A Simple Electric Circuit

Once the switch is thrown, the governing differential equation is
given by

L Ri=Ei(0)=0,
dt

derivable using Kirchoff's laws for electric circuits. The above
equation can be rewritten as

i R E0)=0.
it~ L L

This should be immediately recognized as Bernoulli in form and
matching the pattern of Ex 8.6 witha ==X,b=£_ Hence the

i(t) :%[1—57]

E
With time, the current iapproaches a steady state value ofE,

solution is given by

which is akin to terminal velocity in the free-fall problem.
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We end this subsection with an example coming from
mass flow, an everyday earthbound problem, having a somewhat
sophisticated and unique Bernoulli solution.

Ex 8.9: A 1000gal water tank is holding 100gal of pure water.
Brine containing 2/bm of salt per gallon starts to flow into the tank

at a steady rate of 4%. Concurrently, the brine mixture starts to

gal

flow out of the bottom of the tank at a steady rate of 2mm.

Assuming thorough mixing throughout the salinization process,
write an expression for s, the number of pounds of salt in the
tank, as a function of time 7.

gal

42
min ﬁ_g_ 2S
dt 100 + 2
G(1) =100+2t @G |,

Figure 8.9: Dynamic Brine Tank

Figure 8.9 shows the brine tank in process. After ¢ minutes of
operation, the amount of gallons in the tank is given by
the G(¢) =100+ (4—-2)t =100+ 2¢, a simple conservation of
volume expression for an incompressible liquid. Since the tank’s
capacity is 1000 gallons, we can immediately find the total time of
operation by solving the equation

1000 =100+ 2t = ¢ =450 min(7.5Ar) .

During any one instant of time, the time rate of change of salt in
the tank is equal to the rate that salt is flowing into the tank minus
the rate that the salt is exiting the tank. The expression time rate of
change clues us to the fact that we are dealing with differentials
and hence, a differential equation. The inflow of salt is equal
to (Z’bi)-(4g—“l)=8i—‘i’i. The outflow expression is a bit more

gal min

difficult to obtain, but workable.

264



Let s be the pounds of salt in the tank at time ¢. The number of
gallons in the tank associated with this same time is 100+ 2f.

Ibm
gal

Thus, the concentration of salt (<7 ) at time ¢ is given by

S
100+ 21

Finally, since the liquid is flowing out at a steady rate of 2% | the

min

amount of salt being carried out with the exit flow is .
00+2¢

Inserting the various mathematical expressions into the rate-
equality statement (italicized) leads to the following Bernoulli-in-
form differential equation

2
S _g_ 25 . s0)=0.
dt 100+ 2¢
Solving:
I ds 2s
> —=8— =
dt 100+ 2¢

ds 2s

_+ =

dt 100+ 2¢

2
> :Let &%) =100+ 2¢ be the integrating factor.

2s
100+ 2¢

3
H:(100+2t){%+ }:8(100+2t):>

(100+2t)§+2s =8(100+2f) =

% [(100+2¢)s]=8(100+2¢) =

(100+2¢)s =4[ (100+2¢)-2-dt +C =

(100 +2¢)s =2(100+2¢)* +C =
C
100+ 2¢

s =s5(t)=2(100+2¢)+
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4
> :Apply the initial condition s(0) =0 .

0=2(100+2-0)+———— =
100+2-0
C =-20,000

The final solution for the amount of salt (/bm ) in the tank at time
tis given by
20,000

£) = 2100+ 27) - =299
S0 =2 Ty

From the above, we can immediately calculate the amount of salt
in the tank at the instant that the tank is filled.

20,000

—————— =1980/bm
100+2-450

s(450) = 2(100+2 - 450) —

We can also determine the concentration of salt at that point

1980/bm b _ _
c= m = 1.98g—:}, which almost equal to the concentration
ga

of the inflow. So in a real sense, we are near steady state with
respect to operation of the salinization process.

Finally, suppose we wanted to stop the process when the salt
concentration level reached 1%. To find when this would be, set

dgz_jﬁl_zz__Z&%ET_
100 +2¢ (100 +2¢)

Solving for ¢, one obtains

- 20000 1o (100+21)* =20,000 = £ = 20.7 min.
(100+21)

Thus, at £ =20.7 min , there is 141.4lbm of salt in the tank and
an equivalent number of gallons.
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8.2.3) Growth and Decay Laws

We end this section with a very short discussion of growth
and decay laws. If the time-rate-of-change for a quantity yis

proportional to the amount of y present, then one can easily
formulate this verbal statement by the differential equation

dy _
dt_ky'

The constantkis called the growth constant of proportionality.

Ifk > 0, then the above is a growth law, and if kK <0, a decay
law. The solution in either case is given by

Solution to Growth/Decay Differential Equation

If%=ky:y(0)=y0,then y=y,e".

Notice that the above differential equation is yet another
example—a very simple one—of a Bernoulli equation.

d
Though simple, the differential equation 7)/ = ky can be
t

used to describe a variety of phenomena such as: growth of
money, inflation (decay of money), planned decay of money (i.e.
the paying off of an installment loan over time), half-life of
radioactive substances, and population growth of living organisms.
In the remainder of this section, we shall now look at half life and
population growth, ‘saving our money’ for the final section in this,
the last major chapter of the book.

Ex 8.10: Radium decays exponentially according to y = yoek’and
has a half-life of 1600 years. This means that if y, is the initial
amount of radioactive substance, then 0.5y,remains at

t =1600. Armed with this information, find the time # when the
amount of remaining radioactive substance is 0.1y, .
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1
—:(0.5)y, =y, " =
0.5=¢""%=

— —In2
k=500 =

(—an ¢

0 (ﬁ)
y(@) =y '™ =y,(2)

2 iy
=1 (0.1)y, = y,(2)™ =
)@ = (0.1) =

2) =10=
= Log(2)=Log(10)=1=

1600

t =5315years

In the real world, biological populations do not experience
unbounded growth as suggested by the simple exponential

function y = yoekt :k>0. Hence, the corresponding differential

d
equation ?y = ky needs to be modified in order to reflect the fact
t
that the environment hosting the population has a finite carrying
capacity L >y, > 0. This is easily done by turning the growth

constant k£ into a variable that collapses to zero as the

independent variable approaches the carrying capacity L. The
easiest way to express this relationship is by

The Law of Logistic Growth

d
?J;:k(L—y)y:y(O)zyo:k>O:L>y0 >0

Ex 8.11: Solve the differential equation governing the Law of
Logistic Growth and plot the general solution on an appropriate
x — y coordinate system.
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First, we will rewrite the differential equation governing the Law of
Logistic Growth as follows

dy

—=kLy—ky®,

oy ky
which is Bernoulli-in-form for the case n=2.

1

> : Divide both sides by »>

LN VY () N
“a Ty

AREIWEN I
Ly~ | dt y

<

[

:Form the integrating factor et

1=

dz

—+klz=k=
dt

5
=

etz = IkekL’dt+ C=>

1
z=z(t)=—+Ce™
(1) 7
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6 1
> : Replace z(¢) with Tand solve for y(%).
y(t

z(t)=L=l+Ce_kL' =
y@) L

=——"—

) 1+CLe™

7
> Apply ¥(0) =y, in order to solve for C .

11
z(t):—=z+Ce_kL’ =

(1)
HO= =
L
Y var T
coL-n
Ly,

8
> : Substitute for C and simplify to complete the solution.

Ly,
)=
o yo+(L_y0)eikLt

To summarize, we have just completed the most intensive (in
terms of the number of steps) solution process in this book by
solving a Bernoulli differential equation for the case n =2 utilizing
Bernoulli’'s change-of-variable technique. The particular equation
we solved was very practical in the sense that it modeled the Law
of Logistic Growth. This law governs the overall growth
phenomena for biological populations residing in an environment

having an underlying carrying capacity L .

Moving on to the finishing touch, Figure 8.10 is a graph of ()
where L >y, >0 and #=0.
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YA
y=L
»(2)
Y=Y
>t

Figure 8.10: Graph of Logistic Growth Equation

Figure 8.10 shows () exhibiting exponential-like behavior early

in the growth process. This behavior rapidly slows down and the
curve starts bending back once the ceiling imposed by the carrying
capacity kicks in—so to speak.

b (1)
Iudx

a

Section Exercises

1. The sun has a mean radius of 431,852miles and

V =2,027,624.05% at the sun’s surface. Calculate the

Escape

escape velocity V. needed to break free of the solar system

scape
where the starting point is planet Earth. Earth’s mean distance
from the sun is 93,000,000 miles.

2. A 240 grain slug (1grain = 60mg ) impacts a ballistic jell at a
velocity v =529 and comes to rest at = 0.01s . The governing

. . dv .
equation of the motion |sm?:—k\/;. Find the value of the
t

constant &, the force of impact, and the penetration depth.
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3. Solve the following Bernoulli-in-form differential equations

Y Z2pr10=1 P =2y p0) =1
dx dx

d 4 @
02 =2y+y :y(0)=1 &) L =rpce™: p0)=p,
dx dt

4. Fifty deer are released in an isolated state park having a total
carrying capacity of 800 individuals. Five years later the deer
population is 300 individuals. Assuming that the Law of Logistic
Growth applies, find the time needed to achieve a deer population
that is 75% of the stated carrying capacity.

5. The work required to stretch a spring from a resting length of
Sin to a length of 10in is 120in-Ibf" . How much work is required

to stretch the spring from 10in to 15in ? Assume Hook's Law
applies.

6. If a radioactive substance has a half-life of 10 years, find the
time needed to reduce original radioactivity level by 95%. How
long should this substance remain buried in underground crypts if
a radiological safe level is considered to be 0.1%.

7. Determine the vertical drop needed for a roller coaster to
achieve a speed of 110mph at the low point of the curve. Assume

that the roller coaster rounds the apex at a speed of 2mph .

8. Let a retarding force be defined by F(x)=x>—10xon the
interval[0,10]. Find the total work done against the force in

moving from x =1tox =10. Find the point in the interval where
the rate-of-change of applied force with respect to change in
forward distance is a maximum.
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8.3) Applications in Finance

In this, our final section, we are going to explore three
typical financial concerns common to the modern American family:
inflation, investments, and installments (as in payments).
Surprisingly, we shall find that Jacob Bernoulli holds the key to
easy formulation of the key parameters governing all three
economic phenomena.

8.3.1) Inflation

Inflation is decay of money or, alternately, the purchasing
power provided by money. Inflation is characterized by a yearly
inflation rate i of so-many-percent per year and is assumed to act
continuously throughout the year as prices go up weekly, monthly,
etc. If P(t)is our present purchasing power, then the time-rate-of-

dP
change of this purchasing power jis proportional to the amount
t

of purchasing power currently present. The constant of
proportionality is the inflation rate i, which, when actually applied,
is negative since inflation nibbles away at current purchasing
power when current purchasing power is moved forward in time.
Translating the italicized statement, continuous inflation is easily
modeled by the following Bernoulli-in-form differential equation.

Differential Equation for Continuous Inflation

dP
—=—iP: P(0)=P, =
dt =5k

P: Poefit

The constant i is the inflation rate.

When projecting the purchasing power P forward in time, an
economist will call P the future value F'V . The starting or current

value F, is then referred to as the present value PV .
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With this change in nomenclature, the inflation equation becomes

Present-Value-to-Future-Value
Continuous Inflation Equation

FV =PVe™

Ex 8.12: Find the future value of $100.00 ten years from now if
the annual inflation rate is 2.5-2

year *

As written the inflation number is clearly seen as a proportionality
constant for rate equivalency. Rates are all about differential
change ratios and rate equivalencies are all about the
corresponding differential equations.

FV =$100.00e %1 =$77.80

So, rephrasing, $100.00 today will be worth (or have a buying
power of) $77.80 ten years from now. The underlying assumption

is an annual inflation rate equal to a steady2.5% throughout the
ten-year time period. As most baby-boomers well know, this
inflation rate can be significantly higher at times, in which case the

$77.80 figure will need to be readjusted downward.

Note: Calculus-based economic applications exploded after 1900, over
200 years after calculus was first invented.

Ex 8.13: Investment counselors say that if one wants to retire
today, they need to have at least $1,000,000.00 in retirement

savings. Translate this advice into future terms for our sons and

daughters who will be retiring 40 years from now. Assume an
average annual inflation rate of 3—2- .

year

In short, one wants to have the same buying power 40 years from
now as $1,000,000.00 provides today. Or, looking at it in

reverse, what is the present value associated with $1,000,000.00
40 years from now?
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The last statement leads to

FV =$1,000,000.00 = PVe "% =
PV =$1,000,000.00"%“” =$3,320,000.00

Thus, our son and daughters will need to plan on having about 3.3
million dollars in investments at the time of their retirement.

Next, we shall look at staged inflation problem where the inflation
rate actually changes during the time-period examined. The
technique utilized to accommodate this inflation change is easily
adapted to all three types of finance problems in this section.

Ex 8.13: Find the future value of $100.00 ten years from now if
the annual inflation rate is2.5 :/;r for the first seven years and

e
4.1-2- for the last three years.

year
1
> : Calculate the decline in value for the first seven years.

FV =$100.00e %7 =$83.95

2
> :Use the $83.95 as input into the second three-year stage.
FV =$83.95¢ " =§74.23

8.3.2] Investments

Principle grows by two mechanisms: 1) the application of
an interest rate to the current principle and 2) additional deposits.
Principle growth can be marvelously summarized via the following
italicized statement: the time-rate-of-change of principle is
proportional to the principle currently present plus the rate at which
additional principle is added, which can be mathematically
rendered as

ar _ r(t)P+c(t): P(0)=F,.
dt

The above differential equation is Bernoulli-in-form with a non-
constant interest rate 7(¢) and principle addition rate c() .
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In principle-growth  problems, time is traditionally
measured in years. Hence rates are expressed as so much per
year. To start our exploration of principle growth, we will assume a
constant annual interest rater and a constant annual principle
addition ratec. Under these restrictions, the differential equation
governing continuous principle growth is easily solvable (Ex 8.6).
We have

Differential Equation for Continuous
Principle Growth

C;—P:rP+co :P0O)=F =
t

P(t)=Pe" +<2(e" -1)
r

The parameters 7, ¢, are assumed to be constant.

One might say, what about compounding? New interest is
only added to my savings account quarterly or semi-annually and
not continuously as suggested by the above model. To answer, it
turns out that the continuous interest model provides a very
accurate estimate of a final balance whenever the number of
compounding periods N is such that N >4 in any one year.
Also, don’t forget that principle growth is achieved by two
mechanisms: 1) periodic application of the annual interest rate
(compounding) and 2) direct addition to the principle through an
annual contribution. For most of us, this annual contribution is
made through steady metered installments via payroll deduction.
The installments may be weekly, biweekly or monthly (e.g.
members of the U.S. Armed Forces). In all three cases, the
compounding action due to direct principle addition far exceeds
the minimum of 4 compounding periods per year.

Note: Refer to Appendix D for equivalent formulas (to those presented in
this section) based on a discrete number of annual compounding periods.
Additionally, you might want to compare results based on continuous
compounding with more traditional results based on a discrete number of
compounding periods.
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c
Returning to P(t) = Pje” +—>(e" —1), notice that the
r

expression consists of two distinct terms. The term Pye”
corresponds to the principle accrued in an interest-bearing
account given an initial lump-sum investment F, over a time
period ¢ at a constant interest rate 7 . We first saw this formula in
Chapter 4 when we explored the origin of the number called e . We

now see it again, naturally arising from a simple—but most
elegant—differential equation. Likewise, the term

Co ) . o . ,
—(e" —1)results from direct principle addition via annual
r

metered contributions into the same interest-bearing account. If
either of the constants F, or c,is zero, then the corresponding
term drops away from the overall expression.

Our first example in this subsection is a two-stage
investment problem.

Ex 8.14: You inherit $12,000.00 at age 25 and immediately invest

%
year

$10,000.00in a corporate-bond fund paying 6 . Five years

later, you roll this account over into a solid stock fund (whose fifty-
year average is8-2-) and start contributing $3000.00 annually.

year
A) Assuming continuous and steady interest, how much is this
investment worth at age 68?7 B) What percent of the final total was

generated by the initial $10,000.00? C) What is the present
value PV of this final total at age 25 assuming an annual inflation
rate of 3% ?
1

A) = :In the first five years, the only growth mechanism in play

is that made possible by the initial investment of $10,000.00:

P(5) = $10,000.00"°® =$13,498.58.

2

> : The output from Stage 1 is now input to Stage 2 where both
growth mechanisms are acting for an additional 38 years.

n



P(38) =13,498.58¢"%CY +—36 08;) ("% _1) =

P(38)=$148,797.22+$375,869.11 =
P(38) =$528,666.34

B) The % of the final total accrued by the initial $10,000.00is

$148,792.22 _ 561 _28.1%
$528,666.34

Note: The initial investment of $10,000.00 is generating 28.1% of the
5 g g

final value even though it represents only 8% of the overall investment of
$124,000.00 . The earlier a large sum of money is inherited or received

by an individual, the wiser it needs to be invested; and the more it counts
later in life.

C) And now, we have the bad news.

PV =$528,666.34¢ %" =$145,526.40 , which is nowhere
near the suggested figure of $1,000,000.00 .

Holding the annual contributions at a steady rate over a period of
38 years is not a reasonable thing to do. As income grows, the
corresponding retirement contribution should also grow. A great
model for this is

le—P:rP+cOem :P(0)=P,
t

where the annual contribution rate ¢, (constant in our previous

model) has been modified to c,e”. This now allows the annual

contribution rate to be continuously compounded over a time
period ¢ and at an average annual growth rate of & . The above
equation is yet another very nice example of a solvable Bernoulli-
in-form differential equation. As a review, we shall do so in the
next example.
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dP
Ex 8.15: Solve T rP+c,e” : P(0)=P,.

L dpP
> i—=rP+ce” =
dt

P
d——rP =c,e”

dt

rt

2
> : Form the integrating factor ¢~

3
P i—=rP+ce” =
dt
P
e (d—— rPJ =ce"e” =
dt
d

E(Pe‘”) =c, e =

Pe™" = J.coe(“_”)’dt +C=>

_ c -
Pe"' =2 .+ C=
od—r
CO ot rt
P=P(t)= e +Ce
o—r

4
> Apply P(0)=F,

PO)=F =
P =50 e 4 0o
" a-r
P, = % +C=>C=P, - N
oa-r o-r
P(t)=Pe" + < [e” —e“’].‘.
r—o
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Ex 8.16: Repeat Ex 8.14 letting the annual contribution rate
continuously compound with & =3% .

1
A) — :No change P(5) = $10,000.00¢"° =$13,498.58..
2
> : The output from Stage 1 is still input to Stage 2 . But now,
we have an additional growth mechanism acting for 38 years.

P(38) — 13,498.586008(38) + 3000 (60A08(38) _ 60.03(38)) =
0.08-.03
P(38)=1%$148,797.22+$1,066,708.49 =

P(38)=%1,215,500.71
B) The % of the final total accrued by the initial $10,000.00is

$148,792.22

———=.122=12.2%
$1,215,500.71

C) PV =$1,215,500.71e """ =$334,591.83.

The final annual contribution is $3000.00¢*%¢® =$9380.31.

You should note that the total contribution throughout the 38 years
is given by

38
j$3000.00e°-°3’dt =$100,000.00e"" |;°=$212,676.83.
0

Most of us don’t receive a large amount of money early in
our lives. That is the reason we are a nation primarily made up of
middle-class individuals. So with this in mind, we will forgo the
early inheritance in our next example.

Ex 8.17: Assume we start our investment program at age 25 with
an annual contribution of $3000.00 grown at a rate of & =5%
per year. Also assume an aggressive annual interest rate of
r =10% (experts tell us that this is still doable in the long term
through smart investing). How much is our nest egg worth at age
68 in today’s terms assuming a 3% annual inflation rate?
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é . P(43) = 3000 (eo.10(43) _60.05(43)) —
0.10—0.05

P(43) =$3,906,896.11
2
: PV =$3,906,896.11e ""* =$1,075,454.35

Note: With work and perseverance, we have finally achieved our million
dollars.

To close our discussion, there is no end to the investment
models that one can make. For example, we can further alter

ci—ljer+coem :P(0)=P,

by writing

6;—1;er+00(1+&)€“ :P(0)=F,.

This last expression reflects both planned growth of our annual
contribution according to the new parameter fand the

“automatic” continuous growth due to salary increases (cost-of-
living, promotions, etc.). Uncontrollable Interest rates are usually
left fixed and averages used throughout the projection period.
Finally, projection periods can be broken up into sub-periods (or
stages) when major changes occur. In such cases, the analysis
also proceeds in the same way: the output from the current stage
becomes the input for the next stage.

Note: An economic change in my lifetime is that a person’s retirement is becoming
more a matter of individual responsibility and less a matter of government or
corporate responsibility.

The Way to Economic Security
You must first plan smart. Then, you must do smart!

Calculus can only be of help in the former!
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8.3.3] Instaliments—Loans and Annuities

Loans and annuities are in actuality investment plans in
reverse. In either case, one starts with a given amount of money
and chips away at the principle over time until the principle is
depleted. The governing differential equation for either case is

Differential Equation for Continuous
Principle Reduction

dP
EZFP_CO :P0O)=P, =

P(t)=Pe" =<2 (e -1)
r

Instead of being an annual contribution rate, the parameter ¢, is

now an annual payout or payment rate. Of particular concern is
the annual payment/payout needed to amortize the loan/annuity

over a period of 7' years. To determine this, set P(7))=0and
solve for the corresponding ¢,

P(T)=Pe™ -0 (e" ~1)=0=
r

rPe’”"
nnual ~—
e’ -1
T
rPye’

M - ' @
onthly 12(8 T 1)

The parameter ¢, is the annual payment (or payout) needed to

amortize the initial principle P, over a period of I'years at a fixed

interest rate 7. It is easily converted to monthly payments by
dividing by 12. The above formula is based on continuous
reduction of principle whereas in practice, principle reduction
typically occurs twelve times a year.

282




But as with the case for the continuous principle growth model, the
continuous principle reduction model works extremely well when
the number of compounding or principle recalculation periods
exceeds four per year. Below are four payment/payout formulas
based on this model that we will leave to the reader to verify.

Continuous Interest Mortgage/Annuity Formulas

, rP,
1) First Month’s Interest: 7, =E
rPe’”
2) Monthly Payment: M =—————
12(e"” 1)
T rT
3) Total Interest ( / ) Repayment: [ = P{ rrTe _1}
e —
rTPe’”
4) Total Repayment (A=F, + 1) A=——— "
e p—

Ex 8.18: You borrow $250,000.00 for 30 years at an interest rate

of 5.75%. Calculate the monthly payment, total repayment , and
total interest repayment assuming no early payout.

_0.0575($250,000.00)¢ "7 C0

2 ], =$1457.62

1
> M

_0.0575(3 0)($250,000.00)¢" 575G

(2057560 _7) =$524,745.50

2
A

3
11 =A-P, =$524,745.50 - $250,000.00 = $274,745.51

You have probably heard people say, | am paying my
mortgage off in cheaper dollars.
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This statement refers to the effects of inflation on future mortgage
payments. Future mortgage payments are simply not worth as
much in today’s terms as current mortgage payments. In fact, if we
project f years into the loan and the annual inflation rate has been
i throughout that time period, then the present value of our future
payment is

T
rPye’

=—c¢
12(e’" 1)

—it
PV

To illustrate, in Ex 8.18 the present value of a payment made 21
years from now (assuming a 3% annual inflation rate) is

M,, =$1457.62e """ =$776.31.

Thus, under stable economic conditions, our ability to comfortably
afford the mortgage should increase over time. This is a case
where inflation works in our favor.

Continuing with this discussion, if we are paying off our
mortgage with cheaper dollars, then what is the present value of
the total repayment? A simple definite integral—interpreted as
continuous summing—provides the answer

Present Value of Total Mortgage Repayment

In Ex 8.18, the present value of the total 30-year repayment
stream is A4,, =$345,999.90.
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Ex 8.19: Compare M, A, and A,, for a mortgage with
P, =$300,000.00if the 7y = 6%,

Ty =5.75%, andr,; =5.0% . Assume a steady annual inflation

interest rates are:

rate of i =3% and no early payout.

In this example, we dispense with the calculations (the reader
should check) and present the results in Table 8.2.

Fixed Rate Mortgage with P, = $300,000.00
Terms r M A Apy
T =30 | 6.00% | $1797.05 | $646,938.00 | $426,569.60
T=20 |575% | $2103.57 | $504,856.80 | $379.642.52
T =15 |5.00% | $2369.09 | $426,436.20 | $343,396.61

Table 8.2: Fixed Rate Mortgage Comparison

Table 8.2 definitely shows the mixed advantages/disadvantages of
choosing a short-term or long-term mortgage. For a fixed principle,
long-term mortgages have lower monthly payments. They also
have a much higher overall repayment, although the total
repayment is dramatically reduced by the inflation factor. The
mortgage decision is very much an individual one and should be
done considering all the facts within the scope of the broader
economic picture.

Our last example in the book is a simple annuity problem.

Ex 8.20: You finally retire at age 68 and invest the hard-earned
money via Ex 8.17 in an annuity paying 4.5% to be amortized by
age 90. What is the monthly payment to you in today’s terms?
Annuities are simply mortgages in reverse. Payouts are made

instead of payins until the principle is reduced to zero.
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Continuing, the phrase, in today’s terms, means we let Py = PV .

1
: PV =P, =$1,075,454.35

2 ) _ (0045)($ 1’075’454.35)6(0045)24
M = (0.045)24 =
12(e -1)

M =3$6,106.79

The monthly income provided by the annuity looks very
reasonable referencing to the year 2003. But, unfortunately, it is a
fixed-income annuity that will continue as fixed for 24 years. And,
what happens during that time? Inflation! To calculate the value of
that monthly payment (in today’s terms) at age 84, our now well-
known inflation factor is used to obtain

M =$6,106.79¢ "9 =$3778.80.

To close, the power provided by the techniques in this
short section on finance is nothing short of miraculous. We have
used Bernoulli-in-form differential equations to model and solve
problems in inflation, investment planning, and installment
payment determination (whether loans or annuities). We have also
revised the interpretation of the definite integral as a continuous
sum in order to obtain the present value of a total repayment
stream many years into the future. These economic and personal
issues are very much today’s issues, and calculus still very much
remains a worthwhile tool-of-choice (even for mundane
earthbound problems) some 300 years after its inception.

b ee b ee
Iudx Judx

Chapter/Section Exercises

1) Fill in the following table assuming an average annual inflation
rate of i =3%
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Fixed Rate Mortgage with P, = $230,000.00
Terms r M A Apy
T =30 | 6.50%
T =20 |6.25%
T =15 | 550%

2) A) Assuming continuous 8% interest, how long will it take to
quadruple an initial investment of $10,000.00 B) What continuous

interest rate would one need to triple this same investment in ten
years? C) Increase it twenty times in 40 years?

3) You start an Individual Retirement Account (IRA) at age 25 by
investing $7000.00 per year in a very aggressive growth fund
having an annual rate of return that averages 13% . Five years

later, you roll over the proceeds from this fund into a blue-chip
growth fund whose average long-term-rate-of-return is

9% annually. During the first year, you continue with the
$7000.00 annual contribution. After that, you increment your

annual contribution by 5% via the model $7000.00e""' ceasing
contributions at age 69.

A) Assuming continuous and steady interest rates, project the face
value of your total investment when you reach age 69.

B) What is the present value of total projected in part A) if inflation
holds at a steady rate of i = 3% throughout the 44-year period?

C) What is the present value of the monthly payment associated
with an annuity bought at age 69 with the total in B). Assume the

annuity pays a fixed 4% and is amortized at age 100.
D) If you actually lived to be age 100, what would be the present

value of the final annuity payment if the inflation rate remains
relatively constant at 3% throughout this 75-year period?
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“Let us now praise the worthy
Whose minds begat us.”
The Apocrypha (paraphrase)

When | was a small child, my father and mother took me
on a summer driving trip to California. During the roundabout
return, they stopped to see Mount Rushmore in South Dakota. |
have no real memories of Mount Rushmore, just a few old black-
and-white photographs that remind me that | was once there, there
as a five-old old in the summer of 1953. Four great images stared
down from that granite mountain fifty years ago as they still do
today. The only difference is that | can feel today what it means.
Then, | was clueless.

In similar fashion, the science of calculus has five great
personages associated with its development. Their names are
carved on the mountain in Figure 9.1.

Cauchy Gauss

k

Figure 9.1: The Mount Rushmore of Calculus—
Higher Names are More Recent

Three of these personages happen to be the three greatest

mathematicians of all history. It seems that the subject of calculus
has a way of attracting the brightest and the best.
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However, we must not forget the hundreds of others who helped
build the Mount Rushmore of Calculus—not only a great
achievement in its own right but also an enabler of many other
great achievements in Western Science. | have introduced just a
few of the calculus builders, such as Bernoulli, within these pages.

And, calculus is still developing. More importantly, it still
has a significant role to play, even in a computer age, as this
discipline is utilized on a daily basis to formulate equations
governing all sorts of physical phenomena. And, what type of
equations? By now we should have no trouble citing the answer:
differential equations. The wee x —as | first amusingly referred to
it in Chapter 4—is here to stay.

Turning to how calculus is still developing, we will end our
collective adventure with a single example. But first, we need to
provide about fifty words of background. In this book, we have
restricted our study to functions of a single independent variable
and their associated derivatives called ordinary derivatives. We
have also learned that the associated differential equations are
called ordinary differential equations. Not studied in this book are
functions of two or more independent variables which also have
derivatives, called partial derivatives. The associated differential
equations that are formulated using partial derivatives are called
partial differential equations. Using a slight process change, partial
derivatives can be faken using the same differentiation rules
presented in Chapter 5.

One of the Millennial Problems (seven problems where
each carries a cash prize of one-million dollars if solved) is to find
a general solution for the complete set of Navier-Stokes (NS)
Equations. The NS equations are an interlaced (or coupled) set of
partial differential equations governing mass, motion, and energy
transfer. The NS equations can be formulated for either a
differential fluid element moving through ordinary three-
dimensional (3D) space or a fixed differential element of 3D space
through which fluid particles move. See Figure 9.2. Any physical
quantity—mass, pressure, temperature, velocity, etc.—being
mathematically described within the NS equations is a function of
the three independent variables x, y,z of ordinary 3D space and

the one independent variable ¢ of time.
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dt

Fluid Flow

Figure 9.2: A Fixed Differential Element in Space

In short, the NS equations govern anything that flies, or
swims, or sinks below the waves! Restrictive special cases of the
NS equations govern both the airflow over the wing of our latest
flying machine and the airflow through the core of the modern gas-
turbine marvel that powers the same. Even the circulatory systems
of the live flesh-and-blood human beings who ride in these flying
machines can be described by the same NS equations, even the
global weather system through which the flying machines pass on
an hourly basis. And, unfortunately, the NS equations have their
blind and unchanging way when not adhered to such as in the
Columbia disaster in February 2003. Today, fairly complex cases
of the general NS equations can be solved using solved powerful
computer methodologies. But, they have not been solved to date
in their entirety using classical mathematical methods (including
those methods employing limits). Einstein gave up finding a
general solution—said it was too difficult. Hence, the quest
continues as a new scientific generation seeks to find an all-
encompassing million-dollar solution to the NS equations.

The irony is that the NS equations are easily formulated
with Leibniz and Newton’s 17" Century dx, a ‘bonny wee thing’
as Robert Burns might have said—our bonny end to this primer.

Continue to be challenged!

b.. b.. b..
J.udx Iudx Iudx
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| ride high...

With a whoosh to my back
And no wind to my face,
Folded hands

In quiet rest—
Watching...O Icarus...

The clouds glide by,

Their fields far below

Of gold-illumed snow,
Pale yellow, tranquil moon
To my right—evening sky.

And Wright...O Icarus...

Made it so—

Silvered chariot streaking
On tongues of fire leaping—
And | will soon be sleeping
Above your dreams...

August 2001

100" Anniversary of Powered Flight

1903—2003

~a—
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Appendix A: Algebra, the Language of “X”

X is a pronoun like ‘me’,

But more of an ‘It’ than a ‘he’.

So why sit afraid

When that letter is made,

For a number is all it can be! July 2000

In the Fall of 1961, I first encountered the monster called
X in my freshman algebra class. X is still a monster to many,
whose true identity has been confused by such words as variable
and unknown. In my view, the word unknown must be the most
horrifying description of X ever invented!

Actually, X is very easily understood in terms of a
language metaphor. In English, we have both proper nouns and
pronouns where both are distinct and different parts of speech.
Proper nouns are very specific persons, places, or things such as
John, Ohio, and Cadillac. Pronouns are nonspecific persons or
entities denoted by such words as he, or she, or it.

Arithmetic can be thought of as a precise language of
quantification complete with action verbs (+, -, etc), a verb of being
(is or equals, denoted by =), and proper nouns (12, -9.5, %, 0.6,
22, etc.) You guessed it. In arithmetic, actual numbers serve as
the language equivalent to proper nouns in English.

So, what is X? X is a nonspecific number, or the
equivalent to a pronoun in English. English pronouns greatly
expand our capability to describe and inform in a general fashion.
Hence, pronouns add increased flexibility to the English language.
Likewise, mathematical pronouns—such as X, Y, Z, etc.—greatly
expand our capability to quantify in a general fashion by adding
flexibility to our system of arithmetic. Arithmetic, with the addition
of X, Y, Z and other mathematical pronouns as a new part of
speech, is called algebra.

In Summary: Algebra can be defined as a generalized arithmetic
that is much more powerful and flexible than standard arithmetic.
The increased capability of algebra over arithmetic is due to the
inclusion of the mathematical pronoun X and its associates.
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Appendix B: Formulas from Geometry
B.1) Planar Areas and Perimeters

A is the planar area, P is the perimeter

1. Square:

A=s’and P =4s; sis the length of a side.

2. Rectangle:

b
A=bhand P=2b+2h; b & hare the base and height.

th&

A=%bh; b&h are the base and altitude.

3. Triangle:

4. Trapezoid:
P b

/N

B

(B+b)h; B&b are the two parallel bases,
and / is the altitude.

A=

L
2
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5. Circle: @

A=m?and P =2 ris the radius.

6. Ellipse:

sl L2
N

A= mab; a & b are the half lengths of the
major & minor axes.

B.2] Solid Volumes and Surface Areas
A is total surface area, V is the volume

1. Cube:

A=6s>and VV =s>;s is the length of a side.

2. Sphere:

A=4m*andV = %717’3 : ris the radius.
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3. Cylinder:

A=2m"+2mlandV = m’l;
r & [ are the radius and length.

4. Cone:

S
A=m? +2mtandV =Lm’h;
r &t & h are radius, slant height, and altitude.

5. Pyramid (square base):

iV

s
A=s’+2standV =1s°h;
s &t & h are side, slant height, and altitude.
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B.3] Pythagorean Theorem

Theorem Statement: Given a right triangle with one side of
length x , a second side of length y, and hypotenuse of length z.

z

X
Then: z* = x* +y2

Proof: Construct a big square by merging four congruent right
triangles where each is a replicate of the triangle shown above.

x
A=(x+y)’ A=zz+4(7y]

X

y
The area of the big square is given by A=(x+y)> , or

equivalently by A=z + 4(%)

(x+y) =2 +4(%j =
Equating: X +2xp+y =22+ 2xy =

¥+y ==

2 =x"+y .

Pythagorean Triples: Positive integers L,M,N such that

I’ =M?+N?. Formulas: For m>n>0 integers, then
M=m>-n>, N=2mn,and L=m> +n".
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B.4) Heron's Formula for Triangular Area

Let p =1 (x + y + z) be the semi-perimeter of a general
triangle

X Y

z

Then: A=/p(p—x)(p—y)(p-2)

B.9) Distance and Line Formulas

Let (x,,y,) and (x,,y,) be two points where x, > Xx, .

1. Distance Formula: D = \/()c2 _x1)2 + (yz—y1)2

X +Xx +
2. Midpoint Formula: | ——=2, R
2 2
3. Slope of Line: m = REInndt
Xy =X

4. Point/Slope Form of Equation of Line: y —y,= m(x —x,)
5. General Form of Equation of Line: Ax+ By+C =0

6. Slope/Intercept Form of Equation of Line: y =mx +b

-b
7. Slope/Intercept Form; x and y Intercepts: — and b
m

8. Slope of Parallel Line: m

9. Slope of Line Perpendicular to a Given Line of Slope m : —
m

291



r is the radius
(h,k) are the coordinates for the center or vertex
p is the focal length

a & b are the half lengths of the major and minor axes

1. General: Ax> +Bxy+Cy’ +Dx+Ey+f =0
2. Circle: (x=h)Y+(y—k)’ =+

—h)? —k)®
(= =k

a b
If a>b, the two foci are on the line y =k and are given by
(h—c,k) & (h+c,k) where ¢> =a’—b>. If b>a, the two
foci are on the line x=hand are given by (h,k—c) &
(h,k+c) where ¢ =b” —a”.

3. Ellipse:

4. Parabola: (y—k)* =4p(x—h) or (x—h)> =4p(y—k)
For (y—k): focus is (h+ p,k) and the directrix is given by
the line x=h— p . For (x—h)?, the focus is and the directrix is
given by the line y =k —p.

—h)? —k)? —k)? —h)?
5. Hypb.:(x 2) _(ybz) =lor(yb2) _(x 2) =1
a a
(x—h)* . ) .
When —5— isto the left of the minus sign, the two foci are
a

on the line y=kand are given by (h—c,k) & (h+c,k)

2 2 2
where ¢ =a” +b".

b [
Iudx
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C.1] Field Axioms

The field axioms decree the fundamental operating
properties of the real number system and provide the basis for all
advanced operating properties in mathematics.

Let a,b & c be any three real numbers
Properties Addition Multiplication
Closure a + bis a unique real a-bis a unique
number real number
Commutative at+b=b+a a-b=b-a
(a+b)+c= (ab)c =
Associative
a+((b+c) a(be)
Identity 0=>a+0=a I=>a-1=a
L
a=>a+(-a)=0 a#l=a-g=1
Inverse L=
= (-a)+a=0 =,a=1
Distributive or . =g. .
Linking Property a(b+te)y=a-b+a-c
Note: ab = a(b) = (a)b are alternate
representations of a - b
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C.2) Order of Operations

Step 1: Perform all power raisings in the order they occur from left

to right

Step 2: Perform all multiplications and divisions in the order they

occur from left to right

Step 3: Perform all additions and subtractions in the order they

occur from left to right

Step 4: If parentheses are present, first perform steps 1 through 3

on an as-needed basis within the innermost set of
parentheses until a single number is achieved. Then
perform steps 1 through 3 (again, on an as-needed basis)
for the next level of parentheses until all parentheses have
been systematically removed.

Step 5: If a fraction bar is present, simultaneously perform steps 1

through 4 for the numerator and denominator, treating
each as totally separate problem until a single number is
achieved. Once single numbers have been achieved for
both the numerator and the denominator, then a final
division can be performed.

C.3) Three Meanings of Equals

1.

Equals is the mathematical equivalent of the English verb “is”,
the fundamental verb of being. A simple but subtle use of
equals in this fashionis 2=2.

Equals implies an equivalency of naming in that the same
underlying quantity is being named in two different ways. This
can be illustrated by the expression 2003 = MMIII . Here, the
two diverse symbols on both sides of the equals sign refer to
the same and exact underlying quantity.

Equals states the product (either intermediate or final) that
results from a process or action. For example, in the
expression2+2 =4, we are adding two numbers on the left-
hand side of the equals sign. Here, addition can be viewed as
a process or action between the numbers 2 and 2 . The result
or product from this process or action is the single number4 ,
which appears on the right-hand side of the equals sign.



C.4) Subtraction and Division

1. Definitions

Subtraction:  a—b=a+(-b)
1

Division: a+b=a-—

b

. a
2. Alternate representationof a+b: a+b = ;

3. Division Properties of Zero

Zeroin numerator: a 20 = —=0
a

. . a . .
Zero in denominator: 6/3 undefined.

0
Zero in both: 6 is undefined.

a c
Let Z and Ebe fractions with b # 0andd # 0.

1. Equality: N
b d

, a ac ca ac ca
2.Equivalency: c20=> —=—=—=—=—
b bc cb cb bc

- . . a ¢ a+c
3. Addition (like denominators): E+Z = b

» ) a ¢ ad c¢cb ad+ch

4. Addition (unlike “): —+—=—+—=———
b d bd bd bd

a ¢ a-—c

5. Subtraction (like denominators): — —— =

b b

_ . .a ¢ ad cb ad-cbh
6. Subtraction (unlike ©); -\ ——=——-—=———

b d bd bd  bd
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A a ¢ ac
7. Multiplication: —+— = —
b d bd
- a ¢ ad ad
8.Division: cZ20=> —+—=——=—
d b ¢ bc
a
. . b c
9. Reduction of Complex Fraction: = = _+E
c
d
a -—a a
10. Placement of Sign: —— = —=—
b -b

1. Addition: a"a” =a"™"

n

a
2. Subtraction: —=a

n—m

3. Multiplication: (a”)" =a™
4. Distributed over a Simple Product: (ab)" =a"b"

5. Distributed over a Complex Product: (a”b”)" =a™ b

a n an
6. Distributed over a Simple Quotient: [ZJ = I
. ] . am n amn
7. Distributed over a Complex Quotient: [—p] = b
- . 1 _,,
8. Definition of Negative Exponent: =a
a n

1
9. Definition of Radical Expression: % a’

10. When No Exponent is Present: a = a

11. Definition of Zero Exponent: a’ =1
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C.7) Factor Formulas

—_

. Simple Common Factor: ab+ac =a(b+c)=(b+c)a

. Grouped Common Factor:
ab+ac+db+dc=b+c)a+db+c)=

(b+ca+(b+c)d=((b+c)a+d)

N

3. Difference of Squares: a’ —b” = (a +b)(a —b)

4. Sum of Squares: a’ +b? is not factorable.

5. Perfect Square: a” +2ab+b* = (a+b)’

6. General Trinomial: x* + (a +b)x+ab = (x+a)(x +b)
7. Sum of Cubes: a’ +b° =(a+b)(a’ —ab+b*)

8

9

. Difference of Cubes: a’ —b°> =(a—b)(a’ +ab+b?)
. Power Reduction to an Integer:
a* +a’b* +b* =(a’ +ab+b*)a’ —ab+b?)
10. Power Reduction to a Radical: x> —a = (x — \/E)(x + \/Z)
11. Power Reduction to an Integer plus a Radical:

a* +ab+b* = (a++Jab +b)a—+Jab +b)

C.8] Laws of Equality

Let 4 = B be an algebraic equality and C be any quantity.
1. Addition: A+C=B+C
2. Subtraction: A—C=B-C
3. Multiplication: A-C=B-C
4

. Division: é = E providedC # 0
c C

(¢}

. Exponent: A" = B" provided nis an integer
1 1
6. Reciprocal: Z = Eprovided A#0,B#0
7. Zero-Product Property: 4-B=0< A=0o0or B=0

8. Means & Extremes:%z%: CB=AD it A#0,B#0



C.9) Rules for Radicals

A W DN

. Simple Quotient:

. Basic Definitions: % = a% and 2\/_ = \/; = a%
. Complex Radical: W = a'ﬂ'

. Associative: (%)m = W —ar

. Simple Product: ’{/ZK/E = ’{/E

a

= n|—

. Complex Product: %'\”/E ’"b"

. Complex Quotient: —— a 1/
m b bn
. Nesting: Y¥a ="V a

. Rationalization Rules for n > m

n m

a
Numerator: = \/
bn an—m
b}’l an—m
Denominator: =
n am a

C.10] Rules for Logarithms

o O A W DN =

. Logarithm Base b > 0: y =log, xif and only if 5" = x
. Logarithm of the Same Base: log, b =1

. Logarithm of One: log, 1 =0

. Logarithm of the Base to a Power: log, b” = p

. Base to the Logarithm: »"%"” = p

. Notation for Logarithm Base10: Logx = log,, x
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7. Notation for Logarithm Base e: Inx = log, x
8. Product: log, (MN) = log, N +log, M
9. Quotient: log, (%j =log, M —log, N
10. Power: log, N* = plog, N
log, N

11: Change of Base Formula: log, N = —*—
log, b

C.11) Complex Numbers

1. Definition: a + bi where a,b are real numbers

. Properties of the imaginary unit i: i> = -1 =i =+/—1

. Definition of Complex Conjugate: a + bi = a — bi
. Definition of Modulus: |a +bi| =+a’ +b’
. Addition: (a+bi)+ (c+di)=(a+c)+(b+d)i
. Subtraction: (a +bi)—(c+di)=(a—c)+(b—d)i
. Multiplication:
(a+bi)(c +di) = ac + (ad + bc)i + bdi* =
ac—bd + (ad + be)i
8: Division:
a+bi  (a+bi)(c+di) (a+bi)c—di)
c+di  (c+di)(c+di) (c+di)(c—di)
(ac+bd)+(bc—ad)i ac+bd (bc—adj,
2 2 = 2 2 2 2 g
c—d c—d c—d

~No o0~ WDN

C.12) Variation Formulas

, k
1. Direct and Inverse: y =kx and y =—
X

. 0 k
2. Direct and Inverse to Power: y =kx" and y = —
x



C.13) Quadratic Equations and Functions

Let ax® +bx+c¢ =0,a # 0 be a quadratic equation

—b+Ab* —4ac

1. Quadratic Formula for Solutions x: x = >
a

2. Solution Discriminator: b* — 4ac

Two real solutions: b* —4ac >0
One real solution: b* —4ac =0
Two complex solutions: b —4ac < 0

3. Solutonwhen a=0& b #0: bx+c:0:>x=7C

4. Definition of Quadratic-in-Form Equation:
aw® +bw+c =0 where wis a algebraic expression

5. Definition of Quadratic Function: f(x) = ax” +bx +c

-b
6. Axis of Symmetry for Quadratic Function: x = 2—
a
) ) —b 4dac-b*
7. Vertex for Quadratic Function: | —,————
2a 4a
C.14) Determinants and Cramer’s Rule
1. Determinant Expansions
a b
Two by Two: ‘ =ad —bc
c d
a b c
e f d f d e
Three by Three: |[d e f|=a 1=b |+c
: ilg il |g h
g h i




2. Cramer’s Rule for a Two by Two Linear System

ax+by =e a b
Given with #0

ex+dy=f c

e b a e
d

Thenx=f—andy:c /
a b a b
c d c d

3. Cramer’s Rule for a Three by Three Linear System

ax+by+cz=j a b c
Given dx+ey+ fz=kwith D=|d e f|#0
gx+hy+iz=1 g h i
j b c a j c a
k e f d k f d
I h i [
Then x = : ,y:g ! ’Z:g
D D
C.15) Binomial Theorem

1. Definition of n!where 7 is a positive integer:
nl=n(n—1)(n-2)...1

2. Special Factorials: 0!=1and 1!=1

n n!
3. Combinatorial Symbol: =—
r) rli(n—r)!
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4. Summation Symbols:

n
Ya =a,+a+a,+a,+a,+..+a,
i=0

n

n
Zai =a,ta,,ta,,ta,,.+a
i=k
(N .
5. Binomial Theorem: (a +b)" = z Cla"b
i=0 \ !

" (n
6. Sum of Binomial Coefficients when a =b=1: Z[ J =2"

i=0 \ !

n -
7. Formula for (7 +1)* Term: ( ]a”"b’
r

C.16) Geometric Series

1. Definition of Geometric Series: Zar[ ; 7 is the common ratio
i=0

n ) a l_rn+1
2. Summation Formula: Zar’ = %
i=0 -7

3. Summation for Infinite Number of Terms Provided 0 < r <1

b [
Iudx



Appendix D: Formulas from Finance

P is the amount initially borrowed or deposited.

A is the total amount gained or owed.

r is the annual interest rate.

i is the annual inflation rate.

¢ is an annual growth rate of voluntary contributions to a fund.

1,z i1s the effective annual interest rate.

t is the time period in years for an investment.

T is the time period in years for a loan or annuity.
N is the number of compounding periods per year.
M is the monthly payment.

e is defined as e = lim[l + %]"

n—eo

D.1) Simple Interest

1. Interest alone: / =PrT
2. Total repaymentover T: R=P+Pr7T =P(1+rT)

P(1+:T)

3. Monthly payment over 7 : M =
ypey 127

D.2) Simple Principle Growth and Decline

1. Compounded Growth: 4 = P(1+£)"

2. Continuous Growth: 4 = Pe”
3. Continuous Annual Inflation Rate i: 4= Pe™

D.3] Effective Interest Rates

1. For N Compounding Periods per Year: r,; = (1 +ﬁ)N -1

2. For Continuous Interest; . = ¢ —1

eff

3. For Known P, A,&T : Y = T\/Z -1
P



D.41 Continuous Interest IRA, Mortgage/Annuity Formulas

D
1. IRA Annual Deposit D: 4 =—(e" —1)
r

2. IRA Annual Deposit D plus Initial Deposit P :

A= Pe" + B(e” -1)
r

3. IRA Annual Deposit D plus Initial Deposit P ;
Annual Deposit Continuously Growing via De :

A= Pe" +L(e” —e™)

e’ -1

r—o
_ rP
4. First Month’s Mortgage Interest: [, , = E
, Pre”
5. Monthly Mortgage/Annuity Payment: M = PR
12(e” 1)
Pr7e”
6. Total Mortgage Repayment (P +1): A=— 1
e —
rTe”
7. Total Mortgage Interest Repayment: [ = P -1

8. Continuous to Compound Interest Replacement Formula for
IRAs, Mortgages, and Annuities

e’ = (1+ﬁ)N’ ore” = (l+ﬁ)NT

Note: An annuity is a mortgage in reverse where the roles of the individual
and financial institution have been interchanged. All continuous-interest
mortgage formulas double as continuous-interest annuity formulas.

b (1)
Iudx
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Appendix E: Summary of Calculus Formulas

E.1) Derivative Rules

1. Limit Definition of: f"(x) = }ig(}{f(x"' hz - f(x)}

2. Constant: [k] =0
3. Power: [x”r =nx""
The exponent n can be any number.

4. Coefficient: [af(x)], =af'(x)
5. Sum/Difference: | /(x) £ g(x)], = f'(x)£g’(x)

/

6. Product: [ f (x)g(x)] = f(x)g'(x)+ g(x)f"(x)
f(x)} _ 8/ () - f(0)g'(x)

g(x) g(x)?

8. Chain:[/(g(x))] = f'(g(x))g'(x)

9. Inverse: [f_l (x)I = f'(fl_l o)

10. Generalized Power: [{f(x)}"] =n{f(0)}" f'(x)
Again, the exponent n can be any number.

7. Quotient: {

11. Exponential, base e : [e"] =e"
12. General Exponential, base e : [ef(x)I = f'(x)e’™

!
13. Logarithm, base e : [In(x)] =—
X

14. General Logarithm, base e: [ln{f(x)}], = M
S(x)

n



E.2] Lines and Approximations

1. Tangent Line at(a, f(a)): y— f(a) = f'(a)(x — a)

2. Normal Line at(a, f(a)):y— f(a) = fj(i) (x—a)

3. Linear Approximation: f(x) = f(a)+ f'(a)(x —a)

4. Second Order Approximation:
, f(a)
Sx)=fla)+f (a)(x—a)+T(x—a')2
5. Newton’s Iterative Root-Approximation Formula:
_ f(x,)
xn+l - xn Y
S(x,)

E.3] Linear Differential Equalities

1. y=f(x)=dy=f'(x)dx
2. S = f/(x) = fxt+dx)= f(x)+ [ (x)dx
3.[F(X)] = f(x) = F(x+dx)=F(x)+ f(x)dx

E.4) Antiderivative or Indefinite Integration Rules

1. Constant: J-kdx =kx+C
2. Coefficient: Iaf(x)dx = aJ. f(x)dx

n+l

X
3. Power: jx”dxz +C,n#-1

n+l1

Ix_ldx = I%dx = 1n|x| +C,n=-1

4. Sum/Difference:J.U(x) + g(x)}dx = J-f(x)dx + Ig(x)dx
5. Parts: [ /(x)g’(x)dx = f(x)g(x) — [ g(x) f"(x)dx
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6. Chain: If "(g(x)g'(x)dx = f(g(x))+C
7. Generalized Power:

[r@ =

+C,n#-1

L]
n+1
j—f}((;)) dx = In| f ()| + C,n = -1

8. Exponential, base e: J.exdx =e' +c
9. General Exponential, base e: J.ef(x)f'(x)dx =e/M 4 C

E.9) The Fundamental Theorem of Calculus

b
Consider the definite integral _[f(x)dx, which can be thought of

as a continuous summation process on the interval [a,b].

Note: A continuous summation (or addition) process sums millions upon
millions of consecutive, tiny quantities from x = a to x = b where each
individual quantity has the general form f (x)dx .

Now, let F'(x) be any antiderivative for f'(x) where, by definition,
we have that F'(x) = f(x).

b
Then, the continuous summation process J.f(x)dx can be

evaluated by the alternative process

[ f()dx=F(x)|,=F(b)-F(a).
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E.6) Integral Formulas for Geometric or Physical Quantities
d
1. Area Between two Curves: 4 = I[f(x) —g(x)]dx
b
2. Volume of Revolution using Disks: V' = I%[f(x)]zdx

b
3. Volume of Revolution using Shells: V' = J. 27x | f(x)|dx

b
4. Arc Length: s = J'w/1+[f'(x)]2dx

b
5. Revolved Surface Area: SA4 = IZI[ | £ AL+ (0)] dx

b
6. Total Work with Variable Force: ¥ = [ F(x)dx

E.7 Select Differential Equations
. o dy "
1. Bernoulli Equation: — = f(x)y+ g(x)y
dx
, _ dv 0
2. Falling Body with Drag: —m— = —mg + kv
dt
dy
3. Growth or Decay: — = ky : y(0) = y,
dt
- dy
4. Logistic Growth: 7 =k(L-y)y:y(0)=y,
t
, . dP
5. Continuous Principle Growth: Tz =rP+c,:P(0)=F,
t

b (1)
Iudx
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There was once a teacher of math

Who wrote limericks for a laugh.

With head in his rhyme,

He solved for a time

And reversed the rocket’s path. July 2000

Page 22: The two large figures, where each is constructed from an
identical set of four playing pieces, are not triangles. To the naked
eye they appear congruent; but, in actuality, they are not.

Section 4.1 starting on page 32

A&B)
(f +2)(x)=x* —dx+/x : D(f +g) =[0,)

(f —g)(x)=x> —4x—+/x : D(f +g) =[0, )
(gf)(x) =x(x* —4x): D(f — g) =[0, )

[f ](x) ="—‘4’“:DH - (0,%)

g Vx g

&)y Vx g -
[f)(x)_xs_“.p(fJ (0.2)U (2, 0)
c)

(f o @)@ =Vx* =x: D(f o g)=[0,)
(g0 £)(x) =Vx* —4x : D(go f) =[-2,0]U(2,%)

D) Next page

E) 3a* +3ah+h’> -4
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D)

Input Value Output Value
0

192

0

315

15

a’—4a
h a’>+3a*h+3ah® +h’ —4a—4h

+ [ QR w(N|o|lo|N

a

Section 4.2 starting on page 36
A) Df =(—o0,00): Dg = (—00,8) U (8,00): Dh = (—o0,00)
B) Df = (—oo’oo) : Dg = (—0038)\_)(8’ oo) :Dh = [ano)

C) f_l(x)=11xT_5:g_l(x)=%ix):h‘l(x):«/5x+7

Section 4.3 starting on page 43

1A) 6 1B) L1 1C) 93 1D) 2 2) e 3) 6x

4)
pe” = $5034.38
n=2=$4974.47
n=4=$5003.99
n=6= $5014.02
n=12=>$5024.15

Section 4.4 starting on page 48

1) Df =[0,1) U[2,)
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2) The actual graph is left to the reader.

xe (0,30]= f(x)=$3.00

xe (30,601 = f(x) = $4.00

xe (60,901 = f(x)=$5.00

xe (90,120] = £(x)=$6.00
xe (120,150] = f(x)=$7.00
xe (150,180] = f(x) = $8.00
xe (180,210] = f(x) = $9.00
xe (210,720] = £ (x)=$10.00

The function f(x) is discontinuous for all xvalues in the set
{30,60,90,120,150,180,210} . For each xin the set, f abruptly
changes its functional value by $1.00, creating a gap in the
graph.

Section 4.5 starting on page 53

39

—__1lo. — _39. —_ 39
1)m_ 7axim_ 10?yint_ 7

2) m=3;X, =33V =5

nt

3)D(t)=200+60¢:t€[0,5]
Section 4.6 starting on page 61

1) The graph is left to the reader
g(x)=—14x+3;,g'(-2)=3Lg'(x)=0=>x=2

Section 4.7 starting on page 67

1) dy=13dx:g(x)=m=13 2A)dy =—(14x+3)dx
2dx

3/(2x-5)°

2B) dy =

31



Chapter 4 Review Exercise starting on page 69

dy = (4x° —4x)dx; f'(x) =4x> —4x

The equation of the tangent line at x =—2is y =-24x-40.
Those points where the tangent line is horizontal ( f'(x)=0)
arex=0,x=1x=-1.

Section 5.1 starting on page 77
d 2

Both > = f(x) =——.
dx X

Section 5.2 starting on page 80
dy dy

=x=>—=Ly=x"=>—=2x;
Y dx Y dx
d d
y=x :—y=3xz;y=x4 :>—y=4x3;
dx dx

y=x’ :>Q=5x4;y=x143 :>ﬂ:143x142
dx dx

Section 5.3 starting on page 97

, 2x(4x° +3x% +x+1)

N2x7 +1(2x+1)°

2
3) y':x{31n(x2+1)+ 22’“ }
x +1

1)y =14x—4+2e" 2) y

4) y'=12x" -12
5) /(x)=4(x* +12x° +)(x* +1)''e™

, l—xlnx
6)y =—"_—

xXe
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Section 5.4 starting on page 129

1a) Tangent line is y =—5x+13

1b) Normal lineis y = +x +2

1c) f(3) =% is both a local max and global max

1d) On the interval [-2,2] the absolute minis f(-2)=-9 and
the absolute maxis f(3)=%.

1e) On the interval [1,3] the absolute maxis f(1) =6 and
the absolute minis f(3)=—4.

1f) Hint: start with the distance formula to obtain
[D(xX)]" =(x=2)" +(5+3x=2x" —1)*.

Set D’(x) =0 = 4x’-9x> —3x+5=0and solve the
resulting polynomial equation using Newton’s method.

2) The common point of tangency is (1,3) and
the equation of the common tangent line is y =2x+1

3a) The local max is f(—=1) =1. The local minis f(—)=2.

3b) On the interval [—1,1], the absolute minis f(—1) =33 and
the absolute maxis f(1)=5.

3c) The function f has a zero in the interval [-2,—1].

Letx, =—1. The seventh iteration gives x; =—1.754,

which is stable to the third decimal place
with f(xg) = f(-=1.754)=.003.

4) Start with ¥ (x) = hx* = dV = 2hxdx . For our particular set

of numbers, the additional concrete needed is 66.67 yd" .

S 8.722:

5
V76 =81-5=+/81-——=9—
a) 24/81 18

(8.722)* =76.077

5
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329 =3/27+2 z{/ﬁ+#:3+i:3.074:

5b) 33/(27)* 27
(3.074)* =29.050

6) f(2)=5 is asaddle point. f(—1)=—-2% is a local min.
33
s

7b) Hint. Use the distance formula to evaluate the distance
between each pair of points in {(0,0),(1 .5,0),(1 .5,@)}.

7a) The maximum area is A =

8) For the interval [0,10]:
£(0)=0is an absolute min.

f(%) =.429is an absolute max.
2(.5) =—-.288 is an absolute min.
g(10)=4.511 is an absolute max.

Section 5.5 starting on page 138

, —(2x+3 , 3xP=7y°
ta) /= TEEL gy e T
3x+2y T(By” +2xp)
, 1
o) y =
x+y-1
, 2xy , ,
2) y'=— -, and at the point(l,1) y"=—1.
I+x

The equation of the tangent line is y = —x+ 2 and the
equation of the normal lineis y = x.

3) -1.49L
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4) The distance between the two ships at time ¢ is
D(t)=+/(40-150)> +(51)> . D'(t)=0=>1=2.4hr.
At 15:24 CST, the ships are 12.65knots apart.

Section 5.6 starting on page 147

To solve a grueling equation,

Rely not on the imagination.

Right answers take skill,

Much study and will,

Plus oodles of perspiration! July 2000

1a) y'=28x" —10x+17;y"=84x"> —10

, x> +18x  , 162-11x7
)y =——;y =

Ja2+9° T Jx? +9)°

1c) y' =(x+De* —Inx-1;y" =(x+2)e" 1
x

,_y2 +2x ., 4y3 —6xy4 +8x° 42

2 ;
)Y T Y [1—207
;o 9x r .
3) y :—4—:>y = —- at the point (2,3).
Y

The equation of the tangent line is y = —%x+ 6.

The equation of the normal line is y =2 x+3 .

4)D(t) =100t —10t> = D’(t) =V (t) =100 —20¢
The truck stops at £ =5sec and D(5) =250t .

Chapter 5 Exercises starting on page 156

1) The optimum dimensions in inches are 18x18x36.
The maximum volume is 11,664in" .

N



2) Startwith S =4m>;V =4
S=144=r=3.38in.V=100=r=2.88in.
d—V:47zr2£:>50:47r(2.88)2£:>£:

dt dt dt ~ dt

48

3a) f(0)=0is alocal max. f(3)=-.3257is alocal min.
3b) f(—1)=—.5 isalocal min. f(1)=.5is a local min.
3c) f(-2)=4e* isalocal max. £(0)=0 is a global min.

, 2x-35
2-3y°
The equation of the tangent lineis y=x-3.

4) y = y’ =1lat the point (2,—1).

The equation of the normal lineis y =—-x+1.

5) The optimum dimensions in feet are 3X3X3.
The maximum volume is 27ﬁ‘3 .

6) On the interval[0,3], f(0) = 0is the absolute max and
f(2) =-28 is the absolute min.

Chanter 6

Section 6.1 starting on page 160
a) (x+7)° b) (x+1)(x> +3)
c) 3(x+2)(x=2)(x> +4)  d)Prime
e) 2y2(3—4y+2y2) f) (6x—5)(6x+5)
g) Bx—-1)(2x-1) h) (x—4)(x+3)
i) 2x(4x—1)(x+3) B Bx+2)(x—4)
k)3(m—5n)(m+2n) ) (5x+2)°
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Section 6.3 starting on page 184

[(4 233
1)},(;):2_%
2) G(s)=(s’ =35> +6s—6)e’ +7

3
3) P(x)=x?+2x2 —5x+?

4) See the Stern Warning on page 180

Note: All checks are left to the reader in problem 5.

3/ 4 4 2
sa) X4 5b) *+x* X 4
4 4 2
x4 3 1 5x8 5 2
5¢c) —+x +—+C 5d) —+8x” +10x" +C
X
2 3 2
5e)x7+4\/3x—+x+C 5f)%+10x+€

2 3 4 5

X X X X

59) —+—+—+—+—+4C 5) tlnt—t+C
2 3 4 6
3 2 Sx 4x 3x
5j)x—+3i+2x+C 5k) 4+ 4% 4c
3 2 3
5 2 1002
g 20530 omy 2+
5 4008
- 3 13
5n) —S +C 50y 2D L
10 39

Chapter 6 Chapter Exercises starting on page 200

1a) y(x)=m 1b) y(x) = ln[x(x;l}l
- X — X
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2) Start with D” =—32to obtain D(f) =1450+50¢ —16¢. From
this equation, we can determine all subsequent quantities.
Time to impact: 11.21sec

Impact velocity: —308.71-% or—210.48mph

Time to apex: 1.5625sec
Maximum height or apex: 1489.06 ft above ground

3) Newton’s Law of Cooling for this particular set of conditions is
T,(t)=34+98.6e'*"'" The expression T,(t)is bulk body
temperature as a function of time. Setting
t =1hr gives T, (1) = 62.48° F . Unfortunately, this is below the

critical temperature of 65°F . However, Newton’s model is a
crude estimate that assumes temperature uniformity throughout
the body. This is definitely not the case with the human body,
which—in a condition of rapid cooling—shuts down blood flow to
the extremities in order to keep the vital organs in the interior as
warm as possible. Hence, our victim still has a chance—but not for
long. Our model adds urgency to the rescue attempt!

Chapter?

Some areas are hard to calculate

Inspiring some wits to speculate.

They fiddle and horse

And finally curse

Because they refuse to integrate!  July 2000

Section 7.1 starting on page 208

5 3
1a) A= x_+x_ |g:@
5 3 15

5 3
1b) A= x_+x_ |i4:2 @ :@
5 3 15 15
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2)
1 3 3
> A(z)=| 4 2x |[[= - +22-5
3 3
2
1 A(z)=10= 2> +62—75=0= z = 3.74495

3) Let x,=0be such that 0 <x, +b < B. Then the total area
of the trapezoid is given by the three definite integrals

A= J.{hx}dx+xrhdx+j[ B - }dx:

X +b

A="5 e BB ey = LB
2 2 2
Section 7.3 starting on page 217
13 2296
1a) — 1b) ——
3 3
3 p—
o ln4TD" =1y 106172 1938573

11
4
2) A=j(x+\/;)dx:7—63

Chapter 7 Chapter/Section Exercises starting on page 241
1)

h 2
S =’ + b’ +j[2;z{a+(b_h“)x} 1+{b;“} }dx:
0

a+b

; } W +(b—a)’

S:ﬂ(a2+b2)+27r[
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h _ 2 2 2
2 V=j7{a+(b ha)x} PG +a3b+a )1

0

3) Azj.[4—x—{x2 —5x+7}]dx:§
1

4)

3
é:s=j\/1+72dx=1o\/§
1

ri:D=\/(3—l)2 +(22-8)> =102

5)

2
1 " —
H:S=2_[2ﬂ\/r2—x2 \/14‘{%} dx =
0 r —Xx

S =4z’
2 r 2 4717"3
|—>:V=2.[7[\/r2 —xz] dx = 3
0
[ 65
6A) A=J.x3dx=—
) 4
3
2
6B) V. :jz[x3]2dx: 0597
) 7
3
6C) V, :jm[ﬁ]dxzﬂ
2
3
6D) V,_, = [z{2+x v = 25421
2
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3
6E) V _, = Iﬂ'(x+2)[x3 ldx = 74%
2

Section 8.1 Exercises starting on page 244

1a) Implicit: y(x) =
y(x) P
3 2

x X
1b) Explicit: y(x)=—+—+3
) Explicit: y(x) 375

2
1¢) Implicit: y(x) = ln{x;2} +1
1d) Explicit: y(x)=e**

5
:35x +3840:>A(6):3450

2) A(x
) AX) 2480 31

Section 8.2 Exercises starting on page 271

1) Apply Vsun—surface—escape = V zgsunRsun to Obtaln gSlt}’l = 901{_2 at

the sun’s surface. The escape velocity at the point of the earth’s
orbit is given by the expression

R .
I/earth—orhit—escape = \/2gsun (%]Rsun = 26 1 6%1&

earth—orbit

(46 —4600¢)>

2) v(t) = , k =66.24 | and the impact force is

—k+/v(0) =1523.52 Newtons .
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2) Continued

(46—4600¢)°

D(t)=1.76333— — D(.01)=1.76333m

2

3e* -1 2e™
3a xX)= 3b X)=
) ()= ) Y@=
4x
e
3c) y(x)=2 " 3d) See Ex 8.15, page 279
6—2e™"
4)
40,000
()= ;

50 + 750e70.4394451
75% = y(¢t) =600 = t =8.67 years

15
5) W :9.6J.(x—5)dx:360in-lbf
10

6)
L% (t) — e—OA0693151 —

L, (43.2years)=.05& L,,(99.66 years) =.001

7) 404.03 ft

10
8) W = J.(xz —10x)dx =166.67 units of work
0

F(5) =25 units of force
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Section 8.3 Exercises starting on page 286

1)

Fixed Rate Mortgage with P, = $230,000.00
Terms r M A Apy
T =30 | 6.50% | $1452.49 | $522,894.30 | $344,779.27
T=20 |6.25% | $1678.94 | $402,945.95 | $303,007.54
T=15 |550% | $1876.52 | $337,774.69 | $272,000.08
2A) 17.33 years 2B) 10.98% 2C) 7.49%

3A) $6,272,371.03 face value

3B) $1,675,571.72 present value

3C) $7,859.72 present value of first monthly annuity payment

3D) $3,101.08 present value of last monthly annuity payment
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