Residue Calculus Evaluation of Infinite
Integrals

Integrals of Certain Rational Functions = We consider rational func-

tions of a complex variable z taking the form

where p(z) and ¢(z) are polynomials in z with real coefficients:
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p(z) = poz™ + p12" 4 o+ P12 + P, mo = 0,

q(z) = g 2" + G2 e 12+ g, n > M2,

In addition, we suppose that ¢(z) has no zeros on the real axis. We want to

evaluate integrals of the form
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Since ¢(z) has real coefficients and has no zeros on the real axis, all of its
zeros occur in complex conjugate pairs and we conclude n = 2v. We may

suppose that ¢(z) has zeros
21, Z_la 22, 2_27 Cty 2, Z_Ila
and we will suppose that 2z, 2o, - - 2z, are the zeros in the upper half plane.

We construct a positively oriented “path, or “contour”, C, consisting of

the interval [—r, r] on the real axis together with the semicircle

S ={z| |zl =7, Rez > 0}.



Further, we restrict consideration to values of r such that r > |z|, k& =

1,2, ...,v. Applying the Residue Theorem, we have
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The idea now is to show that lim, _, o /. S, %dz = 0. To this end we observe
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from which it is clear that there are positive numbers p and 7y such that
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Then we can use the estimate, valid for » > rg,
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to see that it is, indeed, true that lim, o [s %é%dz = 0. That being the

case, we now have
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the px, E = 1,2,---, v being the residues of % lying in the upper half plane.

We choose as our first example an integral which can be evaluated using

the standard methods of calculus.



Example 1  We evaluate the integral [°0 -9

o T1o7- From the standard calcu-
lus we have
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Using the residue calculus we note that ; jZQ = (Zﬂ.)l(z 0 has a single isolated
singularity in the upper half plane at z =

= 4. That singularity is a pole of
order 1, so the residue there is
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The next example is one for which the use of the standard calculus would
be substantially more difficult.

Example 2  We compute [ Zdz
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The zeros of q(z) = 1 + 2* are the fourth roots of —1. Of these only
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lie in the upper half plane. Writing
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A similar computation gives the residue at zo = _\1/"5”' as ﬁ(ii, N = 2/_51

The value of the integral is thus
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Evaluation of Integrals of the Form fEOOOM { C.OS ar } dx
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Here we make the same assumptions on p(x) and ¢(z) as in the forego-
ing discussion, but now it is enough to assume n > m + 1; the alternating
character of the trigonometric component of the integrand assures the ex-
istence of the integral as long as % is ultimately monotone decreasing, or
monotone increasing, to 0— and that is the case under these circumstances.
Assuming o > 0, we use the same contour C, as previously (if a« < 0 we
use a comparable contour in the lower half plane; if @« = 0 we return to the

earlier discussion with n > m + 2). We remind ourselves that
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In this situation, rather than considering just the semicircle S, as earlier,

we decompose the contour C, into the interval [—r | along the real axis, the



set 7T, consisting of two sub-arcs of S, defined by

To={z=otiye§l0<y< /)
and

U ={z=z+iy € 5] 0 < y/|z] < y}.
In the upper half plane y > 0 we have
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which, in particular, is less than 1. Using much the same estimate as in the
earlier discussion we can then see that for r > ry and ¢ chosen so that the
length of one of the arcs of 7, is less than or equal to (14 §)+/r for r > ry,
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It is clear then that )
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On U,., on the other hand, we have
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Combining the two results we see that
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so that, taking the limit as r — oo just as before and defining the residues

pr as before,
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That being the case, we then have
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Example 3 We compute [°0 %
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Zi +Z2dz. The only singularity of the integrand in the interior of

C,, for r > 1, occurs at z = 7 where the residue is

. The corresponding contour in-
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Correspondingly
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which is clear in any case because the integrand is an odd function of .



