Residue Calculus Evaluation of Infinite Integrals

Integrals of Certain Rational Functions We consider rational functions of a complex variable z taking the form

$$f(z) = \frac{p(z)}{q(z)},$$

where p(z) and q(z) are polynomials in z with real coefficients:

$$p(z) = p_0 z^m + p_1 z^{m-1} + \cdots + p_{m-1} z + p_m, \ m \ge 0,$$

$$q(z) = q_0 z^n + q_1 z^{n-1} + \cdots + q_{n-1} z + q_n, \ n \ge m+2.$$

In addition, we suppose that q(z) has no zeros on the real axis. We want to evaluate integrals of the form

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} dx.$$

Since q(z) has real coefficients and has no zeros on the real axis, all of its zeros occur in complex conjugate pairs and we conclude $n = 2\nu$. We may suppose that q(z) has zeros

$$z_1, \overline{z_1}, z_2, \overline{z_2}, \cdots, z_{\nu}, \overline{z_{\nu}},$$

and we will suppose that $z_1, z_2, \dots z_{\nu}$ are the zeros in the upper half plane.

We construct a positively oriented "path, or "contour", C_r consisting of the interval [-r, r] on the real axis together with the semicircle

$$S_r = \{ z \mid |z| = r, \operatorname{Re} z > 0 \}.$$

Further, we restrict consideration to values of r such that $r > |z_k|$, $k = 1, 2, ..., \nu$. Applying the Residue Theorem, we have

$$\int_{\mathcal{C}_r} \frac{p(z)}{q(z)} dz = 2\pi i \left(\sum_{k=1}^{\nu} \left. \operatorname{Res} \frac{p(z)}{q(z)} \right|_{z=z_k} \right) \equiv 2\pi i \sum_{k=1}^{\nu} \rho_k.$$

Then

$$\int_{-r}^{r} \frac{p(x)}{q(x)} dx = 2\pi i \sum_{k=1}^{\nu} \rho_k - \int_{\mathcal{S}_r} \frac{p(z)}{q(z)} dz.$$

The idea now is to show that $\lim_{r\to\infty} \int_{\mathcal{S}_r} \frac{p(z)}{q(z)} dz = 0$. To this end we observe that

$$\left|\frac{p(z)}{q(z)}\right| = \frac{1}{|z|^{n-m}} \left|\frac{p_0 + p_1 z^{-1} + \dots + p_{m-1} z^{-(m-1)} + p_m z^{-m}}{q_0 + q_1 z^{-1} + \dots + q_{n-1} z^{-(n-1)} + q_n z^{-n}}\right|.$$

from which it is clear that there are positive numbers p and r_0 such that

$$\max_{z \in \mathcal{S}_r} \left| \frac{p(z)}{q(z)} \right| \le \frac{p}{r^2}, \ r \ge r_0.$$

Then we can use the estimate, valid for $r \geq r_0$,

$$\left| \int_{\mathcal{S}_r} \frac{p(z)}{q(z)} dz \right| \leq \max_{z \in \mathcal{S}_r} \left| \frac{p(z)}{q(z)} \right| \text{ length } (\mathcal{S}_r) \leq \frac{p}{r^2} \pi r = \frac{p \pi}{r}$$

to see that it is, indeed, true that $\lim_{r\to\infty} \int_{\mathcal{S}_r} \frac{p(z)}{q(z)} dz = 0$. That being the case, we now have

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} dx = \lim_{r \to \infty} \int_{\mathcal{C}_r} \frac{p(z)}{q(z)} dz = 2\pi i \sum_{k=1}^{\nu} \rho_k,$$

the ρ_k , $k=1,2,\cdots,\nu$ being the residues of $\frac{p(z)}{q(z)}$ lying in the upper half plane.

We choose as our first example an integral which can be evaluated using the standard methods of calculus. **Example 1** We evaluate the integral $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$. From the standard calculus we have

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \lim_{r \to \infty} \tan^{-1}(x) \Big|_{-r}^{r} = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi.$$

Using the residue calculus we note that $\frac{1}{1+z^2} = \frac{1}{(z-i)(z+i)}$ has a single isolated singularity in the upper half plane at z = i. That singularity is a pole of order 1, so the residue there is

$$\lim_{z \to i} (z - i) \frac{1}{(z - i)(z + i)} = \lim_{z \to i} \frac{1}{z + i} = \frac{1}{2i}.$$

Then

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = 2\pi i \, \frac{1}{2i} = \pi.$$

The next example is one for which the use of the standard calculus would be substantially more difficult.

Example 2 We compute $\int_{-\infty}^{\infty} \frac{x^2 dx}{1+x^4}$.

The zeros of $q(z) = 1 + z^4$ are the fourth roots of -1. Of these only

$$z_1 = rac{1+i}{\sqrt{2}}, \ z_2 = rac{-1+i}{\sqrt{2}},$$

lie in the upper half plane. Writing

$$rac{z^2}{1+z^4} = rac{z^2}{\left(z-z_1
ight)\left(z-z_2
ight)\left(z^2+\sqrt{2}i\,z-1
ight)},$$

the residue at $z_1 = \frac{1+i}{\sqrt{2}}$ is

$$\lim_{z o z_1} \left(z - z_1
ight) rac{z^2}{\left(z - z_1
ight) \left(z - z_2
ight) \left(z^2 + \sqrt{2}i\,z - 1
ight)} \, = \, \lim_{z o z_1} rac{z^2}{\left(z - z_2
ight) \left(z^2 + \sqrt{2}i\,z - 1
ight)}$$

$$=\frac{i}{\left(\frac{1+i}{\sqrt{2}}-\frac{-1+i}{\sqrt{2}}\right)\left(i+\sqrt{2}i\frac{1+i}{\sqrt{2}}-1\right)}=\frac{i}{2\sqrt{2}(i-1)}=\frac{1-i}{4\sqrt{2}}.$$

A similar computation gives the residue at $z_2 = \frac{-1+i}{\sqrt{2}}$ as $\frac{i}{2\sqrt{2}(-i-1)} = \frac{-1-i}{4\sqrt{2}}$. The value of the integral is thus

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{1 + x^4} = 2\pi i \left(\frac{1 - i}{4\sqrt{2}} + \frac{-1 - i}{4\sqrt{2}} \right) = \frac{\pi}{\sqrt{2}}.$$

Evaluation of Integrals of the Form
$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \begin{Bmatrix} \cos \alpha x \\ \sin \alpha x \end{Bmatrix} dx$$

Here we make the same assumptions on p(x) and q(x) as in the foregoing discussion, but now it is enough to assume $n \geq m+1$; the alternating character of the trigonometric component of the integrand assures the existence of the integral as long as $\frac{p(x)}{q(x)}$ is ultimately monotone decreasing, or monotone increasing, to 0– and that is the case under these circumstances. Assuming $\alpha > 0$, we use the same contour C_r as previously (if $\alpha < 0$ we use a comparable contour in the lower half plane; if $\alpha = 0$ we return to the earlier discussion with $n \geq m+2$). We remind ourselves that

$$\int_{\mathcal{C}_r} rac{p(z)\,e^{ilpha z}\,dz}{q(z)} \,=\, \int_{\mathcal{C}_r} rac{p(z)\,\coslpha z\,dz}{q(z)} \,+\,i\,\int_{\mathcal{C}_r} rac{p(z)\,\sinlpha z\,dz}{q(z)}$$

and thus

$$\int_{\mathcal{C}_r} \frac{p(z) \cos \alpha z \, dz}{q(z)} = \operatorname{Re} \left(\int_{\mathcal{C}_r} \frac{p(z) \, e^{i\alpha z} \, dz}{q(z)} \right),$$

$$\int_{\mathcal{C}_r} \frac{p(z) \sin \alpha z \, dz}{q(z)} = \operatorname{Im} \left(\int_{\mathcal{C}_r} \frac{p(z) \, e^{i\alpha z} \, dz}{q(z)} \right).$$

In this situation, rather than considering just the semicircle S_r as earlier, we decompose the contour C_r into the interval [-r r] along the real axis, the

set \mathcal{T}_r , consisting of two sub-arcs of \mathcal{S}_r defined by

$$\mathcal{T}_r = \left\{ z = x + iy \in \mathcal{S}_r \mid 0 < y \le \sqrt{|x|} \right\}$$

and

$$\mathcal{U}_r = \left\{ z = x + iy \in \mathcal{S}_r \mid 0 < \sqrt{|x|} < y \right\}.$$

In the upper half plane y > 0 we have

$$\left|e^{i\alpha z}\right| = \left|e^{-\alpha y} e^{i\alpha x}\right| = e^{-\alpha y},$$

which, in particular, is less than 1. Using much the same estimate as in the earlier discussion we can then see that for $r \geq r_0$ and δ chosen so that the length of one of the arcs of \mathcal{T}_r is less than or equal to $(1 + \delta)\sqrt{r}$ for $r \geq r_0$,

$$\left| \int_{\mathcal{T}_r} \frac{p(z) \, e^{i\alpha z}}{q(z)} dz \right| \leq \max_{z \in \mathcal{T}_r} \left| \frac{p(z)}{q(z)} \right| \, \operatorname{length} \, (\mathcal{T}_r) \, \leq \, 2(1+\delta) \frac{p}{r} \, \sqrt{r} \, = \, 2(1+\delta) \frac{p}{\sqrt{r}}.$$

It is clear then that

$$\lim_{r \to \infty} \left| \int_{\mathcal{T}_r} \frac{p(z) e^{i\alpha z}}{q(z)} dz \right| = 0.$$

On \mathcal{U}_r , on the other hand, we have

$$\left|e^{i\alpha z}\right| = \left|e^{-\alpha y} e^{i\alpha x}\right| = e^{-\alpha y} \le e^{-\alpha\sqrt{r}},$$

and we see that

$$\left| \int_{\mathcal{U}_r} \frac{p(z) \, e^{i\alpha z}}{q(z)} dz \right| \leq \max_{z \in \mathcal{U}_r} \left| \frac{p(z) \, e^{i\alpha z}}{q(z)} \right| \text{ length } (\mathcal{U}_r) \leq \frac{p \, e^{-\alpha \sqrt{r}}}{r} \to 0, \ r \to \infty.$$

Combining the two results we see that

$$\lim_{r \to \infty} \int_{\mathcal{S}_r} \frac{p(z) e^{i\alpha z}}{q(z)} dz = 0$$

so that, taking the limit as $r \to \infty$ just as before and defining the residues ρ_k as before,

$$\int_{-\infty}^{\infty} \frac{p(x) e^{i\alpha x}}{q(x)} dx = 2\pi i \sum_{k=1}^{\nu} \rho_k.$$

That being the case, we then have

$$\int_{\mathcal{C}_r} \frac{p(z) \cos \alpha z \, dz}{q(z)} \, = \, \operatorname{Re} \left(2\pi i \, \sum_{k=1}^{\nu} \, \rho_k \right),\,$$

$$\int_{\mathcal{C}_r} \frac{p(z) \cos \alpha z \, dz}{q(z)} \, = \, \operatorname{Im} \left(2\pi i \, \sum_{k=1}^{\nu} \, \rho_k \right).$$

Example 3 We compute $\int_{-\infty}^{\infty} \frac{x \sin 2x \, dx}{1+x^2}$. The corresponding contour integral is $\int_{\mathcal{C}_r} \frac{z \, e^{i \, 2z} \, dz}{1+z^2}$. The only singularity of the integrand in the interior of \mathcal{C}_r , for r > 1, occurs at z = i where the residue is

$$\lim_{z \to i} (z - i) \frac{z e^{i2z}}{(z - i)(z + i)} = \lim_{z \to i} \frac{z e^{i2z}}{z + i} = \frac{i e^{-2}}{2i} = \frac{e^{-2}}{2}.$$

Thus

$$\int_{-\infty}^{\infty} \frac{x \sin 2x \, dx}{1 + x^2} = \operatorname{Im} \left(2\pi i \, \frac{e^{-2}}{2} \right) = \pi \, e^{-2}.$$

Correspondingly

$$\int_{-\infty}^{\infty} \frac{x \cos 2x \, dx}{1 + x^2} \, = \, \text{Re} \left(2\pi i \, \frac{e^{-2}}{2} \right) \, = \, 0,$$

which is clear in any case because the integrand is an odd function of x.