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Preface to the Second Edition

When the first edition of The Shape ofSpace appeared
in 1985, the idea of measuring the shape of the real
universe was only a pleasant dream that I hoped
might be realized in the distant future. That future
has arrived, and it came sooner than expected. As of
2002, two independent research projects are under­
way that attempt to measure the shape of space in
different ways. The method of Cosmic Crystallography
(Chapter 21) looks for patterns in the arrangement of
the galaxies, while the Circles in the Sky method
(Chapter 22) uses microwave radiation remaining
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vi PREFACE TO THE SECOND EDITION

from the big bang. It's too soon to say whether either
method will succeed, but there is no doubt that the
first decade of the 21st century marks humanity's first
viable attempt to measure the shape of space.

In contrast to our rapidly evolving knowledge of
the physical universe, our understanding of the basic
geometry of surfaces and three-dimensional manifolds
was already mature in 1985 and has changed little
since then. Therefore, the first 18 chapters of this book
follow the same line of development as in the first edi­
tion. The biggest improvement is to fill a logical gap.
When writing the first edition of this book I couldn't
find a sufficiently simple proof of the classification of
surfaces. During the intervening years John Conway
devised his ingenious ZIP proof. Appendix C repro­
duces an elementary exposition of the ZIP proof fea­
turing George Francis's superbly clear illustrations.

Finally, the bibliography in Appendix B has been
brought up to date.

I wish you well in your exploration of strange
spaces, and I hope you have as much fun with them
as I have.

Jeffrey R. Weeks



Preface to the First Edition

Mobius strips and Klein bottles first caught my inter­
est when I was in high school. I knew they were part
of something called "topology" and I was eager to learn
more. Sadly, neither the school library nor the public
one had much on the subject. Perhaps, I thought, I
will learn more about topology in college. In college I
couldn't even sign up for topology until my senior year,
and even then all I got was one course in extreme
generalization (point-set topology) and another that
developed a collection of technical tools (algebraic to-

vii



viii PREFACE TO THE FIRST EDITION

pology). Topology's most beautiful examples got by­
passed completely.

The Shape of Space fills the gap between the sim­
plest examples, such as the Mobius strip and the
Klein bottle, and the sophisticated mathematics found
in upper-level college courses. It is intended for a wide
audience: I wrote it mainly for the interested non­
mathematician (perhaps a high school student who
has heard of Mobius strips and wants to learn more),
but it also provides the intuitive examples that are
currently missing from the college and graduate
school curriculum.

I still haven't told you what the book is about, or
even explained the title. For that I refer you to Chap­
ter 1.

Jeffrey R. Weeks
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1

Flatland

In 1884 an extraordinary individual named A Square
succeeded in publishing his memoirs. Actually an in­
termediary by the name of Abbott published them for
him-A Square himself was in prison for heresy at the
time. A Square was extraordinary not because he had
such an odd name, but rather because he had such a
descriptive and accurate name. For you see, A Square
was a square.

Now you might be wondering just where A Square
lived. After all, you wouldn't expect to find a two-di­
mensional square living in a three-dimensional uni-

3
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verse such as ours. You might allow for a slightly
thickened square, say a creature with the dimensions
of a sheet of paper, but certainly not a completely flat
individual like A Square. Anyhow, A Square didn't live
in our three-dimensional universe. He lived in Flat­
land, a two-dimensional universe resembling a giant
plane.

Flatland also happens to be the title under which
A Square's memoirs were published. It's now available
in paperback, and I recommend it highly. In 1907, C.
H. Hinton published a similar book, An Episode of
Flatland. The chief difference between these books is
that the residents of Flatland proper can move freely
about their two-dimensional universe, whereas the in­
habitants of Hinton's world are constrained by gravity
to living on the circular edge of their disk-shaped
planet Astria (Figure 1.1). For the full story on the
lore of Astria, see A. K. Dewdney's The Planiverse.

Getting back to the subject at hand, the Flatland­
ers all thought that Flatland was a giant plane, what
we Spacelanders would call a Euclidean plane. To be
accurate, I should say that they assumed that Flat­
land was a plane, since nobody ever gave the issue
any thought. Well, almost nobody. Once a physicist by
the name of A Stone had proposed an alternative the­
ory, something about Flatland having a finite area, yet
having no boundary. He compared Flatland to a circle.
For the most part people didn't understand him. It
was obvious that a circle had a finite circumference
and no endpoints, but what did that have to do with
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Flatlanders

Astrians

Figure 1.1 Flatlanders move freely in a "plane," while
Astrians are confined to the edge of their disk-shaped

planet Astria.

Flatland, which obviously had an infinite area? At
least part of the problem was linguistic: The only word
for "plane" was the word for "Flatland" itself, so to
express the idea that Flatland was not a plane, one
was trapped into stating that "Flatland is not Flat­
land." Needless to say, this theory attracted few dis­
ciples.

A Square, though, was among the few. He was
particularly intrigued by the idea that a person could
set out in one direction and come back from the op­
posite direction, without ever having turned around.
He was so intrigued that he wanted to try it out. The
Flatlanders were for the most part a timid lot, and
few had ever traveled more than a day or two's jour-
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ney beyond the outlying farms of Flatsburgh. A
Square reasoned that if he were willing to spend a
month tromping eastward through the woods, he
might just have a shot at coming back from the west.

He was delighted when two friends volunteered to
go with him. The friends, A Pentagon and A Hexagon,
didn't believe any of A Square's theories-they just
wanted to keep him out of trouble. To this end they
insisted that A Square buy up all the red thread he
could find in Flatsburgh. The idea was that they
would layout a trail of red thread behind them, so
that after they had traveled for a month and given up,
they could then find their way back to Flatsburgh.

As it turned out, the thread was unnecessary.
Much to A Square's delight-and A Pentagon's and A
Hexagon's relief-they returned from the west after
three weeks of travel. Not that this convinced anyone
of anything. Even A Pentagon and A Hexagon thought
that they must have veered slightly to one side or the
other, bending their route into a giant circle in the
plane of Flatland (Figure 1.2). A Square had no reply
to their theory, but this did little to dampen his en­
thusiasm. He was ready to try it again!

By now red thread was in short supply in Flat­
land, so this time A Square laid out a trail of blue
thread to mark his route. He set out to the north, and,
sure enough, returned two weeks later from the south.
Again everyone assumed that he had simply veered
in a circle, and counted him lucky for getting back at
all.
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the assumed route
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~ Flatsburgh

~ Flatland

Figure 1.2 Even A Square's companions thought they had
veered in a circle.

7

A Square was mystified that his journey was so
much shorter this time, but something else bothered
him even more: he had never come across the red
thread they laid out on the first journey. The physi­
cists of Flatland were equally intrigued. They con­
firmed that even if Flatland were a so-called "hyper­
circle" as A Stone had suggested, the two threads
would still cross (Figure 1.3). There was, of course, the
possibility that the red thread had broken for one rea­
son or another. To investigate this possibility, the sci­
entists formed two expeditions: one party retraced the
red thread, the other retraced the blue. Both threads
were found to be intact.

The Mystery of the Nonintersecting Threads re­
mained a mystery for quite a few years. Some of the
bolder Flatlanders even took to retracing the threads
periodically as a sort of pilgrimage. The first hint of a
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Figure 1.3 The two threads ought to cross, even if Flatland
were a "hypercircle" (i.e., a sphere).

resolution came when a physicist proposed that Flat­
land should be regarded neither as a "Flatland" (i.e.,
a plane) nor as a hypercircle, but as something he
called a "torus." At first no one had any idea what he
was talking about. Gradually though, people agreed
that this theory resolved the Mystery of the Nonin­
tersecting Threads, and everyone was happy about
that. So for many years Flatland was thought to be a
torus (Figure 1.4).
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the first the second
journey journey

Figure 1.4 Spacelanders sometimes visualize a torus as the
surface of a doughnut.

Until one day somebody came up with yet another
theory on the "shape" of Flatland. This theory ex­
plained the Mystery of the Nonintersecting Threads
just as well as the torus theory did, but it gave a dif­
ferent overall view of Flatland.

And this new theory was just the first of many.
For the next few months people were constantly com­
ing up with new possibilities for the shape of Flatland
(Figure 1.5). Soon a vast Universal Survey was un­
dertaken to map all of Flatland and thereby deter­
mine its true shape once and for all ...

(STORY TO BE CONTINUED IN CHAPTER 4)
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Figure 1.5 Some possible shapes for Flatland.

As Spacelanders we have three dimensions avail­
able for drawing pictures like Figure 1.5, so it's easy
for us to understand how a two-dimensional universe
can close back on itself. The Flatlanders inhabiting
such a universe would have a much tougher time. To
sympathize with their feelings, try imagining yourself
in each of the following situations.!

1. You are on an expedition to a distant galaxy
in search of intelligent life. When you reach
the galaxy you head for the most hospitable­
looking planet you can find, only to discovery
that you're back on Earth.

'Warning: These situations are designed to stimulate the imagination.
Don't worry about technical complications!
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2. You are an astronomer. You seem to be ob­
serving the exact same object in two different
locations in the sky.

3. You are a radio astronomer searching for sig­
nals from extraterrestrials. You have detected
a faint signal coming from a distant galaxy.
Once you tune it in you recognize it as a
broadcast of the old TV show "Father Knows
Best."

Each of the above situations leads you to suspect
that space is built differently than you thought it was.
That is, space seems to have a different shape than
the obvious one you assumed it had. Not that you have
any idea what this actual shape is!

In fact, no one knows what the shape of the real
universe is. But people do know a fair amount about
what the possible shapes are. These possible shapes
are the topic of this book. Such a possible shape is
called a three-dimensional manifold, or three-mani­
fold for short. (Similarly, a two-dimensional shape for
Flatland is called a two-dimensional manifold, or,
more commonly, a surface.) At this point your concep­
tion of a three-manifold is probably pretty vague.
Don't worry: we'll start seeing some examples in
Chapter 2. The main thing now is to realize that our
universe might conceivably close back on itself, just
as the various surfaces representing Flatland close
back on themselves.
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This book centers on a series of examples of three­
manifolds. Rather than developing an extensive the­
ory of these manifolds, you'll come to know each of
them in a visual and intuitive way. Obviously this is
not an easy task. Imagine the difficulties A Square
would have in communicating to A Hexagon the true
nature of a torus. A Square cannot draw a definitive
picture of a torus, being confined to two dimensions
as he is. Similarly, we cannot draw a definitive picture
of any three-manifold.

There is some hope, though. You can use tricks to
define various three-manifolds, and as you work with
them over a period of time you'll find your intuition
for them growing steadily. The human mind is re­
markably flexible in this regard. Just be sure to read
slowly and give things plenty of time to digest. At most
a chapter, and often as little as a single exercise, will
be plenty for one sitting.

This book provides not a series of answers, but
rather a series of questions designed to lead you to
your own intuitive understanding of three-manifolds.
Prepare your imagination for a workout!



2

Gluing

A popular video game pits two players in biplanes in
aerial combat on a TV screen. An interesting feature
of the game is that when a biplane flies off one edge
of the screen it doesn't crash, but rather it comes back
from the opposite edge of the screen (Figure 2.1).
Mathematically speaking, the screen's edges have
been "glued" together. (The gluing is purely abstract:
there is no need to physically connect the edges.) A
square or rectangle whose opposite edges are ab­
stractly glued in this fashion is called a torus or, more
precisely, a flat two-dimensional torus. There is a con-

13
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nection between this flat two-dimensional torus and
the doughnut-surface torus of Chapter 1, but for the
time being you should forget the doughnut surface en­
tirely.

You can play interactive torus games online
at www.northnet.org/weeks/SoS.

Exercise 2.1 Playa few games of torus tic-tac-toe
with a willing friend. The rules are the same as in
traditional tic-tac-toe, except here the opposite sides
of the board are glued to form a torus, just as the

\

Figure 2.1 The biplanes can fly across the edges of the
TV screen.
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opposite sides of the TV screen are glued in the bi­
plane game. So, for example, the three Xs in Figure
2.2 constitute a winning three-in-a-row. 0

Exercise 2.2 Figure 2.3 shows a torus tie-tae-toe
game in progress. It's X's turn. Where should he
move? If it were O's tum instead, where would his
best move be? (Answers to exercises are found in Ap­
pendix A in the back of the book.) 0

The positions shown in Figure 2.4 are all equiv­
alent in torus tic-tae-toe. The second position is ob­
tained from the first by movmg everything 'up" one
notch (when the top row moves "up" it naturally reap-

Figure 2.2 These Xs are three-in-a-row if the board is
imagined to represent a tonlS.
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Figure 2.3 What is X's best move? What is O's best move?

pears at the bottom). Similarly, the third position is
the result of moving everything in the second position
one notch to the right. The fourth position is obtained
a little differently: it results from rotating the third
position one quarter turn clockwise.

~
x

o X
o 1

8
11

X

IXX I
X

l811XX
Figure 2.4 These four positions are equivalent in torus

tic-tac-toe.
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Exercise 2.3 Which of the positions in Figure 2.5 are
equivalent in torus tic-tac-toe? 0

Exercise 2.4 In torus tic-tac-toe, how many essen­
tially different opening moves does the first player
have? How many different responses does her oppo­
nent have? Is either player guaranteed to win, assum­
ing optimal play? (In traditional tic-tac-toe, either
player can guarantee a draw.) 0

Exercise 2.5 Chess on a torus is more challenging
than tic-tac-toe. Consider the position shown in Figure
2.6. Which black pieces does the white knight
threaten? Which black pieces threaten it? 0

Exercise 2.6 Figure 2.7 shows some pieces on a torus
chessboard. Which black pieces are threatened by
both the white knight and the white queen? 0

H:§I 1~lolxl Ixl~lol Ixlxl8i
(a) (b) ( c) (d)

lol:H 181
x
n I:Hxl n8n

(e) (f) (9) (h)

Figure 2.5 Which of these positions are equivalent in torus
tic-tac-toe?
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Figure 2.6 A chessboard becomes a torus when opposite sides
are connected.

Exercise 2.7 Find a friend and playa few games of
torus chess. The usual starting position just won't do
for torus chess (try it and you'll see why). Instead
either use the starting position of Figure 2.8, or
make up a starting position of your own. All the
pieces move normally except the pawns: a pawn
moves one space forward, backward, to the left or to
the right, and captures by moving one space on any
diagonal. [J

Exercise 2.8 When a bishop goes out the upper right­
hand corner of a torus chessboard, where does he
return? 0
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Figure 2.7 Which black pieces are threatened by both the
white knight and the white queen?

Exercise 2.9 In torus chess, can a knight and a
bishop simultaneously threaten each other? 0

The flat torus we've been using for tic-tac-toe and
chess is a two-dimensional manifold, just like the two­
dimensional manifolds in Figure 1.5. Like the two­
manifolds of Figure 1.5, the flat torus has a finite area
and no edges. Unlike those two-manifolds, the flat to­
rus is defined abstractly-via gluing-instead of be­
ing drawn in three-dimensional space. The same trick
works to define three-dimensional manifolds without
resorting to pictures in four-dimensional space.



Figure 2.8 Here's one possible starting position for
torus chess.

Our first three-dimensional manifold is analogous
to the flat two-dimensional torus. It's called a three­
dimensional torus, or three-torus for short. To con­
struct it, start with a solid block of space-the room
you're in will do fine just so it's rectangular. Imagine
the left wall glued to the right wall, not in the sense
that you'd physically carry out the gluing, but in the
sense that if you walked through the left wall you'd
find yourself emerging from the right wall. Imagine
the front wall glued to the back wall, and the floor
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glued to the ceiling, in the same manner. You are now
sitting in a three-dimensional torus! This three-torus
has no edges, and its total volume is just the volume
of the room you started with.

Exercise 2.10 What do you see when you look
through the "wall" of the three-torus described above?
For that matter, what do you see when you look
through the "floor" or the "ceiling"? 0

Imagine a three-torus made from a cube ten me­
ters on a side. The cube contains a jungle gym con­
sisting of a rectangular lattice of pipes (Figure 2.9);
each segment of pipe is one meter long. When the
cube's faces are glued to form a three-torus, the jungle
gym continues uniformly across each face.

It would be fairly boring playing in this jungle
gym by yourself. Sure, you could climb up a few me­
ters or over a few meters, but your new location would
be just like your old one. The visual effects would be
interesting, though. You could look up ten meters, or
over ten meters, and see yourself. You couldn't go meet
yourself, though, since as soon as you started climbing
towards your "other self," she would start climbing
away from you in a (futile) effort to go meet her other
self ten meters further away!

All in all, playing in this jungle gym would be a
lot more fun with a friend. For example, your friend
could wait for you while you climbed up ten meters to
meet him. Of course, while you were climbing up, he
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Figure 2.9 A section of jungle gym.

could crawl ten meters over, so that when you got to
the rendezvous point he would be coming in from the
side rather than just waiting there. Tag wold be es­
pecially fun in a three-torus.

Exercise 2.11 One's imagination can go wild in a
three-torus. For example, you could imagine flying
around in real, three-dimensional biplanes. Or you
could imagine a completely urbanized three-torus in
which all north-south streets are one way north-
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bound, and all east-west streets are one way east­
bound, and all elevators go only up (you could still get
wherever you wanted to go). Imagine other things you
could do in a three-torus. 0

Exercise 2.12 How could you play catch by yourself
in a three-torus? t!I

In theory, if the universe is a three-torus we
should be able to look out into space and see ourselves.
Does the fact that astronomers have not done so mean
that the real universe cannot be a three-dimensional
torus? Not at all! The universe is only 10 or 20 billion
years old, so if it were a very large three-dimensional
torus-say 60 billion light-years across at its present
stage of evolution-then no light would yet have had
enough time to make a complete trip across. Another
possibility is that we are in fact seeing all the way
across the universe, but we just don't know it: when
we look off into distant space we see things as they
were billions of years ago, and billions of years ago
our galaxy looked different than it does now. (This ef­
fect occurs because the light that enters a telescope
today left its source billions of years ago, and has
spent the intervening time traveling through inter­
gallactic space.) In any case, we don't even know ex­
actly what our galaxy looks like now, because we are
inside it!

We conclude this chapter with a little visual no­
tation (Figure 2.10). Henceforth a flat two-dimen-
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Figure 2.10 Representation of a flat two-dimensional torus
(left) and a three-dimensional torus (right).

sional torus will be drawn as a square with arrows
marked on its edges; you imagine the square's edges
to be glued so that corresponding arrows match up.
While it's possible to devise an analogous scheme for
marking the faces of a cube, it isn't very practical. So
we'll represent a three-torus simply by drawing a cube
and stating that opposite faces are considered glued.
By the way, a two-manifold like the two-dimensional
torus is called a surface even though it isn't the sur­
face of anything.
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Vocabulary

This chapter explains five concepts basic to the study
of manifolds:

1. Topology vs. geometry
2. Intrinsic vs. extrinsic properties
3. Local vs. global properties
4. Homogeneous vs. nonhomogeneous geometries
5. Closed vs. open manifolds

Don't worry about mastering these concepts right
away! If you get the general idea now you can always
refer back to this chapter later should the need arise.

25
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Besides, later chapters will reinforce the ideas intro­
duced here.

Most of the examples in this chapter will be sur­
faces, but the concepts apply to three-manifolds as
well.

TOPOLOGY VS. GEOMETRY

Imagine a surface made of thin, easily stretchable
rubber. Bend, stretch, twist, and deform this surface
any way you like (just don't tear it). As you deform
the surface, it will change in many ways, but some
aspects of its nature will stay the same. For example,
the surface at the far left in Figure 3.1, deformed as
it is, is still recognizable as a sort of sphere,2 whereas
the surface to the far right is recognizable as a de­
formed two-holed doughnut. The aspect of a surface's
nature that is unaffected by deformation is called the
topology of the surface. Thus the two surfaces on the
left in Figure 3.1 have the same topology, as do the
two on the right. But the sphere and the two-holed
doughnut surface have different topologies: no matter
how you try you can never deform one to look like the
other (remember-violence such as ripping one sur­
face open and regluing it to resemble the other is not
allowed).

A surface's geometry consists of those properties
that do change when the surface is deformed. Cur-

2By a sphere we always mean just the surface, as opposed to a solid
ball. Note that a sphere is intrinsically two-dimensional, while a solid
ball is intrinsically three-dimensional.
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Figure 3.1 The two surfaces on the left are topologically indistinguishable, as are the two on
the right.

N.....
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(b)
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" .'

(d)(e)

Figure 3.2 Which surfaces have the same topology?
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Figure 3.2 Continued.

vature is the most important geometrical property.
Other geometrical properties include areas, distances
and angles. An eggshell and a ping-pong ball have the
same topology, but they have different geometries. (In
this and subsequent examples the reader should ide­
alize objects like eggshells and ping-pong balls as be­
ing truly two-dimensional, thus ignoring any thick­
ness the real objects may possess.)

Exercise 3.1 Which of the surfaces In Figure 3.2
have the same topology? 0

Exercise 3.2 In the story in Chapter 1, A Square dis­
covered that in Flatland one can layout two loops of
thread that cross at only one point (namely downtown
Flatsburgh). Did he discover a topological or a geo­
metrical property of Flatland? 0
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If we physically glue the top edge of a square to
its bottom edge, and its left edge to its right edge, then
we will get a doughnut surface (Figure 3.3). The flat
torus and the doughnut-surface torus have the same

Figure 3.3 The flat torus and the doughnut surface have the
same topology.
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topology. They do not, however, have the same geom­
etry. The doughnut surface is curved while the flat
torus is obviously flat. In Figure 3.3 we had to deform
the flat torus to get it to look like the doughnut sur­
face.

The fact that the flat torus and the doughnut sur­
face have the same topology explains why both are
called tori ("tori," pronounced "tor-eye," is the plural
of "torus"). It's only when we're interested in geometry
that we distinguish the flat torus from the doughnut
surface. In geometry the flat torus is vastly more im­
portant than the doughnut surface, so in this book,
unless specified otherwise,

"torus" will mean "flat torus"

INTRINSIC VS. EXTRINSIC PROPERTIES

Figure 3.4 shows how to put a twist in a rubber band.
The twisted band is topologically different from the
original untwisted one.

At least from our viewpoint the bands are topo­
logically different. In contrast, imagine how a Flat­
lander living in the band itself would see the cut­
twist-and-reglue procedure. His whole world is the
band; he has no idea that three-dimensional space ex­
ists at all. Thus he has no way to detect the twist. He
sees the band get cut, and then-after a pause-get
restored exactly to its original condition!
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Figure 3.4 How to put a twist in a rubber band.
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The intrinsic topology of the band has not
changed, although its extrinsic topology-the way it's
embedded in three-dimensional space-has changed.

In general, two surfaces have the same intrinsic
topology if Flatlanders living in the surfaces cannot
(topologically) tell one from the other. Two surfaces
have the same extrinsic topology if one can be de­
formed within three-dimensional space to look like the
other.

Exercise 3.3 All the surfaces in Figure 3.5 have the
same intrinsic topology. Which have the same extrin­
sic topology as well? D

Exercise 3.4 Modify the cut-twist-and-reglue proce­
dure of Figure 3.4 so that the intrinsic and extrinsic
topology of the band both change. D

The intrinsic/extrinsic distinction also applies to
the geometry of a surface. As an example, take a sheet
of paper and bend it into a half-cylinder as shown in
Figure 3.6. The extrinsic geometry of the paper has
obviously changed. But the paper itself has not been
deformed-its intrinsic geometry has not changed. In
other words, a Flatlander living in a sheet of paper
could not detect whether the paper was bent or not.

Here's an experiment to illustrate the above idea:
Mark two points on a (flat) sheet of paper, and draw
a straight line connecting them. The line represents
the shortest path between the points on the flat paper.
Now roll the paper into a cylinder (tape or glue it in
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(a)

(e)

(e) (f)

Figure 3.5 Which surfaces have the same extrinsic topology?
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Figure 3.6 Bending a sheet of paper changes its extrinsic­
but not its intrinsic-geometry.

position if necessary). Get a piece of thread, and wrap
it around the cylinder from one point to the other. The
thread will lie directly over the line you drew, indi­
cating that the shortest path on the cylinder is the
same as the shortest path on the flat paper. This is
not surprising, because the "flat" paper and the
"curved" cylinder both have the same intrinsic geom­
etry.

Exercise 3.5 You can roll a piece of paper into a cyl­
inder without deforming the paper. Can you also roll
it into a cone without deformation? Can you wrap it
onto a basketball without deformation? What does
this tell you about the intrinsic geometries of the pa­
per, the cylinder, the cone, and the basketball? 0

Figure 3.7 shows three surfaces with different in­
trinsic geometries. A Flatlander could compare these
surfaces by studying the properties of triangles drawn
on them. (The sides of a triangle are required to be
intrinsically straight in the sense that they bend nei­
ther to the left nor to the right. A Flatlander finds an
(intrinsically) straight line in a surface the same way
we Spacelanders do in our universe, e.g. by pulling
taut a piece of thread, or by seeing how a beam oflight
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Figure 3.7 The hemisphere, the plane, and the saddle surface
all have different intrinsic geometries.
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travels. An intrinsically straight line is called a geo­
desic.) On the hemisphere, the sum of the angles of
any triangle is greater than 180°. For example, the
triangle shown in the figure has all its angles equal
to 90°, so its angle-sum is 90° + 90° + 90° = 270°. In
the plane, on the other hand, every triangle has angle­
sum exactly equal to 180°. And in the saddle surface,
all triangles have angle-sum less than 180°. Thus a
Flatlander could experimentally determine which sur­
face he lived in: he need only layout a triangle and
measure its angles! These properties of triangles are
treated in detail in Chapters 9 and 10.

The mathematician Gauss carried out precisely
this experiment in our own three-dimensional uni­
verse. (Later chapters will explain how a three-dimen­
sional manifold can be curved. Gauss, though, was in­
terested in the curvature of Earth's surface, and didn't
expect to discover the curvature of space.) Gauss mea­
sured the angles in the triangle formed by the three
mountain peaks Hohenhagen, Brocken, and Insels­
berg. To within the accuracy of his measurements he
found space to be intrinsically flat, i.e. the angles
added to 180°. However, the universe is so vast and
the Earth is so small that it would be impossible to
detect any cosmic curvature on a terrestrial scale.
Chapter 19 will treat the curvature of the universe in
detail.

We Spacelanders can contemplate both the intrin­
sic and extrinsic properties of a surface. A Flatlander
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does not have this option. His two-dimensional uni­
verse is all that's real and perceptible to him, so he
naturally adopts an intrinsic viewpoint. For example,
a Flatlander raised on a torus would have a very good
intuitive understanding of what a torus is like, assum­
ing of course that a trip across the torus was short
enough to be an everyday sort of thing. He'd know
intuitively that if he were going into the city, and then
out to visit his aunt, and then home again, that it
would be quicker to keep going in the same direction
than to retrace his route.

Exercise 3.6 Imagine living in a three-torus universe
where, after visiting friends in one galaxy, and doing
a little exploration in another, it's quickest to keep on
going to get home rather than turning back. [J

We humans perceive our universe intrinsically, so
when we study three-manifolds, such as the three­
torus, we naturally visualize them intrinsically too. Be­
cause surfaces will guide us in our study of three-man­
ifolds, it will also be useful to think of surfaces
intrinsically. To this end we make the convention that
all surfaces will be studied intrinsically, unless explic­
itly stated otherwise. Any extrinsic properties a surface
may have will be ignored. (For example, we'll ignore
the twist in the rubber band of Figure 3.4, and we'll
ignore the bend in the sheet of paper of Figure 3.6.)

I'd like to insert a philosophical comment here.
Even if the universe connects up with itself in funny
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ways (if it's a three-torus, for example), this doesn't
mean that it curves around in some four-dimensional
space. The essence of the intrinsic point ofview is that

a manifold exists in and of itself, and needn't
lie in any higher-dimensional space

LOCAL VS. GLOBAL PROPERTIES

A surface or three-manifold has both local and global
properties. Local properties are those observable
within a small region of the manifold, whereas global
properties require consideration of the manifold as a
whole. Try out this definition on the following exer­
cise. Note that a sphere and a plane differ both locally
and globally, and both topologically and geometrically.

Exercise 3.7 A society of Flatlanders lives on a
sphere. They had always assumed they lived in a
plane though, until one day somebody made one of the
following discoveries. Which discoveries are local and
which are global?

1. The angles of a triangle were carefully mea­
sured and found to be 61.2°, 31.7°, and 89.3°.

2. An explorer set out to the east and returned
from the west, never deviating from a straight
route.

3. As their civilization spread, the Flatlanders
discovered the area of Flatland to be finite. tIl
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The terms "local" and "global" are used most often
in the phrases "local geometry" and "global topology."
For example, a flat torus and a doughnut surface have
the same global topology, but different local geome­
tries. A flat torus and a plane, on the other hand, have
the same local geometry but different global topolo­
gies. A three-torus has the same local geometry as "or­
dinary" three-dimensional space, but its global topol­
ogy is different. The Flatlanders in Chapter 1 were
discovering various global topologies for Flatland, but
when Gauss surveyed the mountain peaks he was in­
vestigating the local geometry of our universe in the
region of the Earth.

We can use the 10caVglobal terminology to restate
the definition of a manifold. A two-dimensional man­
ifold (i.e. a surface) is a space with the local topology
of a plane, and a three-dimensional manifold is a
space with the local topology of "ordinary" three-di­
mensional space. All two-manifolds have the same lo­
cal topology, and all three-manifolds have the same
local topology, but the local topology of a two-manifold
differs from that of a three-manifold. I should mention
that three-manifolds serve as possible shapes for the
universe precisely because their local topology
matches that of ordinary space: we know almost noth­
ing about the universe's global topology or its local
geometry, but it's fair to assume that throughout the
universe the local topology is just like the local topol­
ogy of the "ordinary" space we occupy in the solar sys­
tem.



VOCABULARY 41

Exercise 3.8 Define the concept of a one-dimensional
manifold and give an example of one. D

Exercise 3.9 Compare an infinitely long cylinder to
a plane. Do they have the same local geometry? (As
usual we mean intrinsic local geometry, although you
could also compare their extrinsic local geometries.)
Do they have the same global topology? The same lo­
cal topology? Which of the three types of discoveries
listed in Exercise 3.7 could Flatlanders use to distin­
guish a cylinder from a plane? D

Exercise 3.10 Compare a three-torus made from a
cubical room to one made from an oblong rectangular
room. Do they have the same local topology? The same
local geometry? The same global topology? The same
global geometry? OJ

HOMOGENEOUS VS. NONHOMOGENEOUS GEOMETRIES

A homogeneous manifold is one whose local geometry
is the same at all points. The local geometry of a non­
homogeneous manifold varies from point to point. A
sphere is a homogeneous surface. The surface of an
irregular blob is nonhomogeneous. A doughnut sur­
face, while fairly symmetrical, is nonhomogeneous: it
is convex around the outside but saddle-shaped near
the hole. A flat torus, however, is homogeneous be­
cause it's flat at all points. The flat torus is more im­
portant in geometry than the doughnut surface pre­
cisely because it's homogeneous while the doughnut
surface is not. Spheres are more important than sur-
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faces of irregular blobs for the same reason. The
sphere and the flat torus are the only homogeneous
surfaces we have seen so far, but there will be plenty
more. A major theme of this book is finding homoge­
neous geometries for manifolds that do not already
have one.

Exercise 3.11 Is the three-torus a homogeneous
three-manifold? [JJ

CLOSED VS. OPEN MANIFOLDS

Intuitively, closed means finite and open means infi­
nite. Try out your intuition on the following exercise.
You can check your answers in the back of the book.

Exercise 3.12 Which of the following manifolds are
closed and which are open?

1. A circle
2. A line (the whole thing, not just a segment)
3. A two-holed doughnut surface
4. A sphere
5. A plane
6. An infinitely long cylinder
7. A flat torus
8. Ordinary three-dimensional space
9. A three-torus D

Unfortunately there are two complications to the
simple idea of closed and open. One is that anything
with an edge, such as a disk, is technically not even a
manifold (it's a so-called manifold-with-boundary) and
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therefore does not count as either closed or open. Thus
the terms "closed" and "open" imply that the manifold
has no edges. This stipulation will not be an issue in
this book, but in other books you may find that when
an author makes a statement such as "the flat torus
is a closed surface," he is emphasizing not that the flat
torus is finite, but that it has no edges (unlike the
square from which it was made, which does have
edges).

The second complication is more interesting. It
turns out that there are surfaces that are infinitely
long, yet have only a finite area. A typical example is
a doughnut surface with a so-called "cusp" (Figure
3.8). The cusp is an infinitely long tube that gets nar­
rower as it goes. The first centimeter of cusp has a
surface area of 1 square centimeter (cm2

), the next
centimeter of cusp has an area of % cm2

, the next an
area of V4 cm2

, and so on. Thus, the total surface area
of the cusp is 1 + V2 + V4 + ... = 2 cm2. What's im­
portant is not that the area of the cusp is precisely

1 em' i em' -t em' ~ em' ete.

~

Figure 3.8 A doughnut surface with a "cusp" has a finite
surface area even though the cusp is infinitely long.
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2 cm2
, but that it's finite. For once you add in the (fi­

nite) area of the rest of the surface, you find that the
surface as a whole has a finite area even though it's
infinitely long. By convention a surface is classified as
closed or open according to its distance across rather
than its area, so the doughnut surface with a cusp is
called open in spite of its finite area. Mter the follow­
ing exercise we won't encounter any more cusps in
this book.

Exercise 3.13 What would happen to A Square if he
tried to take a trip down a cusp? D

This book deals mainly with closed manifolds, so
from now on

"manifold" will mean "closed manifold"

unless explicitly stated otherwise.
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Orientability

When our story left off in Chapter 1, our hero A
Square and his fellow Flatlanders had just embarked
on a Universal Survey of all of Flatland. The excite­
ment was immense as the first survey party set out.
But this excitement was nothing compared to the
chaos that followed its return!

An old farmer living in an outlying agricultural
district was the first one to run into the returning sur­
veyors. He was going around a bend in the road and
the surveyors were coming from the opposite direc­
tion. Fortunately no one was hurt in the collision. The

45
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farmer was a little annoyed that the surveyors didn't
have the courtesy to keep to the proper side of the
road, but his anger was quickly overcome by his joy
at seeing them back safely, and by his interest in hear­
ing their tales of adventure. He accompanied them
into town.

As they approached the Flatsburgh City Limits,
one of the surveyors noticed that the "Welcome
to Flatsburgh" sign, the one that announced the Ro­
tary Club meetings and all, had been replaced by
a backwards verSIOn of the same thing. A
"rfg1:udatsR oj 9mo~I9W' sign, as it were.

"Those kids, always up to mischief," he chuckled.
"What's that you say?" asked the farmer, not sure

he had heard properly.
"Oh, nothing. I was just amused at what some

kids had done to that sign."
The farmer had no idea why the surveyor was so

amused by the sign, but he decided not to make an
issue of it.

The further the surveyors got into Flatsburgh, the
more bewildered they became. All the signs were writ­
ten backwards, and everyone, not just the old farmer,
had taken to walking on the wrong side of the road.
It was as if all of Flatsburgh had been mysteriously
transformed into its mirror image while they were
gone. Flatlanders in general tend to be superstitious,
and for the surveyors this mirror reversal of Flats­
burgh did not bode well.

Not that the citizens of Flatsburgh were any hap-
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pier with the situation! They insisted that nothing the
least bit unusual had happened in Flatsburgh while
the surveyors were gone. It was the surveyors they
found to be unusual, with their backwards writing
and strange ideas about how Flatsburgh had been
somehow transformed. In fact, they found the survey­
ors to be downright creepy, and, except for relatives
and close friends, no one even wanted to go near them.

As you might suspect, the Universal Survey was
called off, and for the next three years no one went
more than shouting distance from the civilized parts
of Flatland ...

(STORY TO BE CONCLUDED IN CHAPTER 5)

Exercise 4.1 Write a story in which you travel across
the universe to an apparently distant galaxy, only to
discover that you've made a complete trip around the
universe and returned to our own galaxy. When you
find Earth, you're startled to see that it looks like
Figure 4.1. What do you see when you land? Describe
a walk through your hometown. What do people think
of you? 0

In the Flatland story, each surveyor came back to
Flatland as his own mirror image. To see just how this
occurred, study Figure 4.2, which shows a swath of
territory similar to the one the surveyors traversed.
This swath of territory is a Mobius strip. [A true Mo­
bius strip has zero thickness. If you mistakenly imag­
ine it to have a slight thickness-like a Mobius strip
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Figure 4.1 A mirror reversed Earth.

made from real paper-then you'll run into problems
with A Square returning from his journey on the op­
posite side of the paper from which he started. As long
as the Mobius strip is truly two-dimensional (i.e. no
thickness) this problem does not arise.]

The question is, in what sort of surface could a
Flatlander traverse a Mobius strip? A Klein bottle is
one example. You can make a Klein bottle from a
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Departure Return

Figure 4.2 When A Square travels around a Mobius strip he
comes back as his mirror image.

square in almost the same way we made a flat torus
from a square. Only now the edges are to be glued so
that the arrows shown in Figure 4.3 match up. As
with the flat torus, I don't mean that these gluings
should actually be carried out in three-dimensional
space; I mean only that a Flatlander heading out
across one edge comes back from the opposite one. The
top and bottom edges are glued exactly as in the flat
torus: when a Flatlander crosses the top edge he
comes back from the bottom edge and that's all there
is to it. The left and right edges, though, are glued
with a "flip." When a Flatlander crosses the left edge
he comes back from the right edge, but he comes back
mirror reversed. A Klein bottle contains many Mobius
strips (see Figure 4.4).
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Figure 4.3 Glue the edges of this square so that the arrows
match up and you'll get a Klein bottle. A Flatlander traveling
off to the left comes back from the right as his mirror image.

Exercise 4.2 Which of the positions in Figure 4.5
constitute a winning three-in-a-row in Klein bottle tic­
tac-toe? CJ

Exercise 4.3 Imagine the chessboard in Figure 2.6 to
be glued to form a Klein bottle rather than a torus.
Which black pieces does the white knight threaten
now? Which black pieces threaten it? 0
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Figure 4.4 A Klein bottle contains many Mobius strips.

There's a nice way to analyze positions in Klein
bottle tic-tac-toe and chess. For example, say there's
a Klein bottle tic-tac-toe game in progress. The posi­
tion is as shown on the left side of Figure 4.6 and it's
X's turn to move. Rather than hastily taking the upper
right hand square, X pauses to carefully analyze the
situation. He notes that the board's top edge is glued
to its bottom edge; therefore he draws a copy of the
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Figure 4.5 Which of these are winning positions in Klein
bottle tic-tac-toe?

board above the original so that he can see more
clearly how the top and bottom edges connect. He
draws another copy below the original board for the
same reason. He does the same on the left and the
right, being careful to flip these copies top to bottom
to account for the fact that he's playing tic-tac-toe on
a Klein bottle and not on a torus. He continues this
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Figure 4.6 Analyzing a Klein bottle tic-tac-toe game.

process, attaching new copies of the board to the old
ones. In principle he could continue forever, but he
knows that nine copies are always enough to see
clearly what is going on. Mter examining the final pic­
ture, X gleefully takes the lower left hand corner and
wins immediately.

Exercise 4.4 Use the above technique to find X's best
move in each situation shown in Figure 4.7. 0

Exercise 4.5 Find a friend and playa few games of
Klein bottle tic-tac-toe. 0

Exercise 4.6 Find a friend and playa few games of
Klein bottle chess. 0

Exercise 4.7 When a bishop goes out the upper right
hand corner of a Klein bottle chessboard, where does
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Figure 4.7 Find X's best move in each game.

he return? Hint: Label the corners of the board and
draw a picture like Figure 4.6. 0

Exercise 4.8 In Exercise 4.3 you found that the
knight and one of the bishops threatened each other
simultaneously on the Klein bottle chessboard. How
can this be? Shouldn't a knight threaten only pieces
on an oppositely colored square, while a bishop threat-



ORIENTABILITY 55

ens only pieces on the same color square? Can a
knight and a bishop ever threaten each other simul­
taneously if the chessboard is constructed as in Figure
4.8? Can a knight and a rook simultaneously threaten
each other on this new board? 0

The global topology of most manifolds must be un­
derstood intrinsically. But we can assemble a Klein
bottle in three-dimensional space in order to appre­
hend its global topology more directly. Imagine mak-

Figure 4.8 A new way to make a Klein bottle chessboard.
The half-width row at the top gets glued to the half-width

row at the bottom to become a normal row in the Klein
bottle itself.
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ing a Klein bottle from a square of rubber. Roll the
square into a cylinder and glue the top edge to the
bottom edge. That was the easy part. Now pass the
cylinder through itself (as shown in Figure 4.9), and
glue its ends together. The self-intersection is unplea­
sant, but there's no way to embed a Klein bottle in
three-dimensional space without it. (As we'll see in
Chapter 9, one can embed a Klein bottle in four-di­
mensional space with no self-intersection.) Note: Fig-

Figure 4.9 Gluing up a rubber Klein bottle.
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ure 4.9 was included to make the Klein bottle's global
topology a little more real, but for most purposes it's
better to picture the Klein bottle as a square with op­
posite edges glued appropriately.

The local geometry of the Klein bottle is every­
where flat. Thus, a Flatlander doing local experiments
could not distinguish a Klein bottle from either a torus
or a plane. It's important to note that the Klein bottle
is flat not only in the region corresponding to the mid­
dle of the square, but also in the regions where the
edges and corners meet. Figure 4.10 shows how the
four corners fit together. (By the way, the "seams" cre­
ated by the gluing should all be erased. They are not
part of the Klein bottle itself.) The Klein bottle is our

~
~

Figure 4.10

~
~

How the square's corners fit together in the
Klein bottle.
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third example of a homogeneous surface, the other
two being the (flat) torus and the sphere.

A path in a surface or three-manifold which
brings a traveler back to his starting point mirror­
reversed is called an orientation-reversing path. Man­
ifolds that don't contain orientation-reversing paths
are called orientable; manifolds that do are called non­
orientable. Thus, a sphere and a torus are orientable
surfaces. A Klein bottle is a nonorientable surface. The
three-torus is an orientable three-manifold. But what
about a nonorientable three-manifold?

We can make a nonorientable three-manifold in
much the same way that we made the Klein bottle.
Start with the block of space inside a room. Imagine
the left wall glued to the right wall, and the floor glued
to the ceiling, just like in the three-torus. Only now
imagine the front wall glued to the back wall with a
side-to-side flip. If you walk through the front wall
you'll return from the back wall mirror-reversed! Walk
through it again and you'll come back in your usual
condition.

Exercise 4.9 What do you see when you look through
the back wall of this three-manifold? What about the
other walls? 0

Imagine this new three-manifold to contain a jun­
gle gym like the one we built in the three-torus. This
would be great fun to play in with a friend. Sometimes
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when you ran into your friend he would be right­
handed, and other times you'd find him to be left­
handed. You could playa special form of tag in which
catching someone doesn't count unless you can guess
which hand is his left hand. Obviously there's a big
advantage for people who part their hair in the mid­
dle, and T-shirts with writing on them would be out
of the question.

Exercise 4.10 Think up other fun things to do in a
nonorientable three-manifold. You could, for example,
steal one shoe from your friend during the night, take
it around an orientation-reversing path, and quietly
replace it before dawn. 0

The projective plane is a surface that is locally like
a sphere, but has different global topology. It's made
by gluing together the opposite points on the rim of a
hemisphere (Figure 4.11). Figure 4.12 shows what this
gluing looks like locally, along a short section of the
rim. We can show the gluing along any section of the
rim we like, but we can't show the entire gluing at
once because of its peculiar global properties. Thus
you should concentrate on understanding how oppo­
site sections of rim fit together, rather than trying to
visualize the whole thing at once the way you'd visu­
alize a sphere. The most important thing is that the
hemisphere's geometry matches up perfectly when op­
posite sections of rim are glued, so the projective plane
has the same local geometry as a sphere, even along
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Figure 4.11 The projective plane is made by gluing together
opposite points on the rim of a hemisphere.

the "seams" where the gluing took place. The projec­
tive plane is our fourth homogeneous surface.

Exercise 4.11 Is the projective plane orientable?
That is, if a Flatlander crosses the "rim," does he come
back normal or mirror-reversed? 0

Exercise 4.12 A Flatlander lives on a projective
plane, which we visualize as a hemisphere with op­
posite rim points glued. The Flatlander's house is at
the "south pole." One day he leaves his house and
travels in a straight line (i.e., a geodesic) until he gets
back home again. At what point along the route is he
furthest from home? rrn
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Figure 4.12 How to glue opposite sections of rim.
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Exercise 4.13 A society of Flatlanders lives on a pro­
jective plane. They plan to build two fire stations. For
maximal effectiveness the fire stations should be as
far apart as possible. Where might the Flatlanders
build them? (Be careful: opposite points on the rim of
a hemisphere represent the same point in the projec­
tive plane.) How should three fire stations be posi­
tioned for maximal effectiveness? 0

Exercise 4.14 A Flatlander knows he lives on either
a sphere or a projective plane. How can he tell which
it is? A second Flatlander knows he lives on either a
projective plane or a Klein bottle; how can he de­
cide? I:J

Exercise 4.15 So far we have seen four homogeneous
surfaces: the sphere, the torus, the Klein bottle, and
the projective plane. Use them to fill in the table in
Figure 4.13 0

If we are interested in only the topological prop­
erties of the projective plane, we can flatten the hemi­
sphere into a disk, still remembering to glue opposite
boundary points (Figure 4.14). The main advantage of
doing this is that a disk is easier to draw than a hemi­
sphere.

Still working topologically we can construct pro­
jective three-space by gluing opposite boundary points
of a solid three-dimensional ball. We'll study its ge-
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local geometry

flat
local geometry

orientable nonorientable
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Figure 4.13 The sphere, torus, Klein bottle and projective
plane can fill this table. Which goes where?

Figure 4.14 Topologically, a projective plane is a disk with
opposite boundary points glued.
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ometry in Chapter 14 when we study the geometry of
the hypersphere.

Exercise 4.16 Is projective three-space orientable? If
you cross the boundary, how do you come back? D

Exercise 4.17 Is orientability a local or a global prop­
erty? Is it topological or geometrical? D
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Connected Sums

Conclusion of the Flatland story:

The mirror-reversed surveyors adapted to their new
condition more quickly than most had expected. The
hardest part was learning to write properly, but even
this became routine after a while. And with their in­
creased competence came a greater acceptance on the
part of the community. Things returned to normal.

In fact, as the years went by people even got a
little adventurous. Almost every week somebody or
another was heading out on an expedition. There
were, of course, occasional incidents of explorers com-

65
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ing back mirror-reversed, but this was no longer a dis­
aster. The reversed explorers were quickly rehabili­
tated. Besides, the reversal incidents were limited to
those who passed through a certain "Reversing Re­
gion." The rest of Flatland seemed harmless enough,
and trips there became quite common.

To protect travelers from accidental reversal, the
Reversing Region was marked with clumps of stones
spaced ten paces apart along its boundary. Once this
was done, even the most timid Flatlanders enjoyed
traveling about in the safe regions.

It wasn't long before an official survey of the safe
regions was undertaken. The surveyors found that the
safe regions resembled a doughnut surface (Figure
5.1), in accordance with one of the earliest proposed
theories on the shape of Flatland.

Others were quick to point out, however, that this
didn't mean that Flatland as a whole was a doughnut
surface. For example, if the Reversing Region also re-

The Safe Regions

~
Flatsburgh

Figure 5.1 The safe regions of Flatland were charted first.
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sembled a doughnut surface, then Flatland would be
a two-holed doughnut surface (Figure 5.2).

Curiosity overcame fear, and a survey of the Re­
versing Region was begun. Only the boldest of the sur­
veyors volunteered for the job. It wasn't that they
were afraid of getting reversed-that was common
enough by now. They were afraid of getting reversed­
twice! The popular consensus was that a second re­
versal would result in certain death. (There was a mi­
nority opinion that a second reversal would simply
restore the victim to his original state, but this opin­
ion didn't sell as well in the newspapers.)

The survey was divided into two stages. The pur­
pose of the first stage was to get a rough idea of just
how big the Reversing Region was, and to divide it

The Reversing Region
(hypothetical shape)

the
boundaryFlatsburgh

<>

Figure 5.2 People were quick to point out that if the safe
region and the Reversing Region each resembled a doughnut

surface, then Flatland as a whole would be a two-holed
doughnut surface.
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into sectors to be mapped in detail during the second
stage.

The first stage went smoothly, even though three
of the surveyors came back mirror-reversed. But these
reversed surveyors were brave enough to go back into
the Reversing Region to help with the detailed sur­
veying of the second stage. In fact, they even drew lots
to see who was the bravest and would go back in first!

Mter the completion of the first stage the Revers­
ing Region was divided into eight sectors. During the
second stage a separate team was sent to each sector
to map it in detail. The whole operation had an air of
Russian roulette, with each team wondering whether
they were the ones mapping the dangerous sector that
did the reversing. To everyone's surprise-and relief
-all eight teams reported their respective sectors to
be perfectly normal!

It was only when they compiled, consolidated, and
compared the data from the different sectors that
things got mysterious. They found the sectors con­
nected up as shown in Figure 5.3. The mysterious
thing was that Sector 1 connected to Sector 8, not Sec­
tor 7; it was Sector 2 that connected to Sector 7! They
connected in such a confusing way!

Eventually confusion gave way to enlightenment.
The Flatlanders realized that the mirror-reversal phe­
nomenon wasn't so mysterious after all. It was simply
that the space of Flatland connected up with itself in
such a way that anyone taking a trip around the Re­
versing Region would come back with his left side
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Figure 5.3 How the eight sectors pieced together.

where his right side was, and his right side where his
left side was. The Flatlanders had discovered the Mo­
bius strip!

This was an immense intellectual achievement.
But it was a very practical achievement as well. The
reversed surveyors were all sent on a trip around the
Reversing Region to restore them to their original con­
dition. Thereafter the Reversing Region was used
mainly for pranks and other amusements.

Thus, the Universal Survey was complete: the
surveyors had established beyond a doubt that Flat­
land consists of two regions, one a Mobius strip, and
the other resembling a torus. The Flatlanders lived
happily and peacefully forever after.

THE END
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NOTE: All surfaces in this chapter will be con­
sidered topologically, so you may bend and
twist them however you like!

As the Flatlanders pointed out in Figure 5.2, a
two-holed doughnut surface bears a strong resem­
blance to two one-holed doughnut surfaces stuck to­
gether. In fact, we can make a two-holed doughnut
surface from two one-holed ones by cutting a disk out
of each and gluing together the exposed edges (see
Figure 5.4). This operation is called a connected sum.

Exercise 5.1 What do you get when you form the con­
nected sum of a two-holed doughnut surface and a
one-holed doughnut surface? What is the connected
sum of a six-holed doughnut surface and an eleven­
holed one? 0

Exercise 5.2 What do you get when you form the con­
nected sum of a two-holed doughnut surface and a
sphere? How about a Klein bottle and a sphere? A pro­
jective plane and a sphere? 0

Exercise 5.3 The purpose of this exercise is to find
out what you get when you cut a disk out of a projec­
tive plane; in Exercise 5.4 you will use this informa­
tion to deduce what the connected sum of two projec­
tive planes is. Get some scratch paper, and work your
way through the following steps, drawing a picture for
each one.



Remove a disk
from each torus

Glue together
the exposed edges

Erase
the seam

Figure 5.4 How to convert two one-holed doughnut surfaces into a single two-holed one.

...,...
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1. Draw a (topological) projective plane as a disk
with opposite edge points glued.

2. Remove a small disk from the center of the
projective plane.

3. Cut what remains into two curved pieces as
shown in Figure 5.5. Label the edges with ar­
rows as shown.

4. Straighten each curved piece into a rectangle.
We're studying the topological properties of
the projective plane, so it's OK to bend the
pieces as if they were made of rubber. Just
don't lose track of which arrows are on which
edges.

5. Physically glue together the two long edges
labeled with single arrows. You'll have to flip
one piece over to do this.

Figure 5.5 Remove a disk from a projective plane. Then cut
what remains into two pieces as shown.
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6. Physically glue together the edges with the
double and triple arrows. You'll have to do this
in three-dimensional space-it can't be done
in the plane.

The thing you end up with is topologically identical to
the projective plane with the disk removed. What is
its usual name? ICJ

Exercise 5.4 What is the connected sum of two pro­
jective planes? Hint: You start with two projective
planes, cut a disk out of each, and get two of the
things you discovered in the previous exercise. Now
refer to Figure 5.6 and the following limerick to help
decide what you get when you glue the two things to­
gether.

A mathematician named Klein
Thought the Mobius strip was divine.
Said he, "If you glue
The edges of two
You'll get a weird bottle like mine." 0

Exercise 5.5 In the story at the beginning of this
chapter, Flatland was the connected sum of what two
surfaces? 0

Most simple manifolds have shorthand names,
usually written with a superscript to indicate their
dimension. For example, the surfaces we've studied
are
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Figure 5.6 Cutting a Klein bottle in two.

E 2 The (Euclidean) plane
8 2 The sphere
T2 The torus
K2 The Klein bottle
p2 The projective plane
D2 The disk

The abbreviations are pronounced "E-two," "S-two,"
"T-two," etc. By the way, there is no topological differ­
ence between a doughnut surface and a fiat torus, so
the abbreviation "T2

" may refer to either or both of
them depending on the context. The three-manifolds
we've seen are
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E 3 "Ordinary" three-dimensional (Euclidean) space
T3 The three-torus
D3 A solid ball (i.e. a three-dimensional "disk")
p 3 Projective three-space

75

The nonorientable three-manifold we studied has a
name, too; its name describes its structure as a so­
called "product" and will be revealed in the next chap­
ter. Even one-dimensional manifolds have abbrevia­
tions, namely

E 1 The line
8 1 The circle
I The interval, i.e. a line segment with both end­

points included

The connected sum operation is abbreviated by a
"#" symbol. For example, a two-holed doughnut sur­
face is T2 # T2 because it's topologically the connected
sum of two tori. (T2 # T2 is read "the connected sum
of two tori" or simply "T-two connect-sum T-two".)
Similarly, a three-holed doughnut surface is T2 # T2 #
T2

• The topology of Flatland is succinctly written as
T2 # p2. One can even write equations with this no­
tation. For example, in Exercise 5.4 you found that
p2 # p2 = K2.

Exercise 5.6 State the results of Exercise 5.2 in the
above notation. 0

Sometime in the 1860s, mathematicians discov­
ered that every conceivable surface is a connected sum
of tori and/or projective planes! (The sphere counts as
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a connected sum of zero tori and zero projective
planes. I know this sounds hokey, but it is convenient.
And it's not that unreasonable in light of Exercise 5.2.)
In other words, the table below provides a complete
list of all possible surfaces. Any surface you might
come up with is topologically equivalent to a surface
in the table. The Klein bottle, for example, is equiva­
lent to p2 # p2, which occurs as the third entry in the
first row.

o
Number of Projective Planes

1 2 3

'1:: 0
F 1
~ 2
~ 3

..0
S •
::l •
Z

82

T2
T2 # T2

T2 # T2 # T2

p2
T2 # p2

T2 # T2 # p2
T2 # T2 # T2 # p2

p2 # p2 p2 # p2 # p2 . • •
T2 # p2 # p2 T2 # p2 # p2 # p2 •.•

T2 # T2 # p2 # p2

Exercise 5.7 Find a surface In the table that is
topologically equivalent to (a) K 2 # p2, (b) K 2 # T2,
(c) K 2 # K 2

• 0

Does this list contain duplications? For example,
might T2 # p2 really be the same surface as, say, p2 #
p2 # p2? Surprisingly enough, the list does contain du­
plications, and its true that T2 # p2 = p2 # p2 # p2!

Exercise 5.8 In this exercise you discover that T2 #
p2 = K2 # p2, and in Exercise 5.9 you'll use this infor­
mation to deduce that T2 # p2 = p2 # p2 # p2. Convince
yourself that each picture in Figure 5.7 is what its
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with a disk removed
(T2 - D2 )
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---...=--- ---------

The connected sum of a torus
and a Mobius strip

(P # Mobius)

Figure 5.7 Check that each picture is what its caption says
it is.
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A Klein bottle with a
disk removed (K% - 0%)

CHAPTER 5

The connected sum of a Klein
bottle and a Mobius strip

(K% # Mobius)

Figure 5.7 Continued.
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caption says it is. From Exercise 5.3 you can deduce
that gluing a disk to the edge of a Mobius strip con­
verts the Mobius strip into a projective plane. There­
fore T2 # Mobius will become T2 # p2 if you glue a disk
to its edge, and K2 # Mobius will become K2 # p2 if you
glue a disk to its edge. Since T2 # Mobius and K2 #
Mobius are topologically the same (study Figure 5.8

Figure 5.8 T2 # Mobius and K2 # Mobius can be deformed one
into the other. Therefore they are topologically the same.
Real rubber would of course break if you tried this sort of

deformation, but in topology you needn't worry about
such complications.
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to see why), T2 # p2 and K2 # p2 must also be the same.
(Oddly enough, this does not mean that ~ and K2 are
the same! Unlike for addition and multiplication of
numbers, there is no "cancelation law" for connected
sums.) 0

Exercise 5.9 Verify that T2 # p2 = p2 # p2 # p2 as
claimed a couple paragraphs back. (Hint: This is easy!
8imply combine Exercises 5.4 and 5.8.) 0

Exercise 5.10 Assuming every surface is a connected
sum of tori and/or projective planes, deduce that every
surface is a connected sum of either tori only or pro­
jective planes only. That is, every surface is topologi­
cally equivalent to some surface on the following two
column list:

T2

T2 # T2

T2 #T2 #T2

T2 # T2 # T2 # T2

etc.

p2
p2 # p2

p2#p2#p2
p2#P2#p2#p2

etc.

Where does T2 # p2 (the surface in the Flatland story)
appear on this list? Where is T2 # K2? p2 # 8 2? 8 2 # 8 2?
Which surfaces on the list are orientable?

In Chapter 12 we'll see that all the surfaces on
this new list really are different. 0
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Exercise 5.11 Match each surface in Column A to a
topologically equivalent surface in Column B.

Column A

T 2 # 8 2

K2

8 2 # 8 2 # 8 2

p2 # T2
K2 #T2 #p2

Column B

p2 # p2
K2 # p2

8 2 # 8 2

p2#p2#p2#K2

T2 D

One can also talk about a connected sum of two
three-manifolds (you remove a solid ball from each
and glue the remaining three-manifolds together
along the exposed spherical boundary).
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Products

A cylinder is the product of a circle and an inter­
val. It qualifies as such because (see Figure 6.1) it is
both

1. A bunch of intervals arranged in a circle, and
2. A bunch of circles arranged (in this case

stacked) in an interval

More concisely, a cylinder is the product of a circle and
an interval because it is both (1) a circle of intervals
and (2) an interval of circles. It is abbreviated as

83
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Figure 6.1 A cylinder is the product of a circle and an
interval. (Recall that an "interval" is a line segment with both

endpoints included.)

8 1 X I (pronounced "a circle cross an interval" or sim­
ply "8-one cross eye").

A torus is a second example of a product. It's the
product of one circle (drawn dark in Figure 6.2) with
another (drawn light). This is because the torus is a
circle of circles in two different ways: both as a dark
circle of light circles and as a light circle of dark cir­
cles. This fact is abbreviated by the equation T2 =
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Figure 6.2 A torus is a circle cross a circle.
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8 1 X 8 1 (read "a torus is a circle cross a circle" or sim­
ply "T-two equals 8-one cross 8-one"). The torus in
Figure 6.2 is drawn as a doughnut surface, which is
OK since we are interested only in its topology.

[By the way, the torus is the only closed surface
(with no edges) that is a product. The reason is that
a two-dimensional product must be the product of two
one-dimensional things, and the circle is the only one­
dimensional thing available that has neither end­
points (like an interval) nor infinite length (like a
line); thus 8 1

X 8 1 is the only two-dimensional product
having neither an edge nor an infinite area.]

Exercise 6.1 What are the usual names for each of
the following products:



1. I x I
2. E 1 X E 1

3. 81 X E 1

4. E 1 X 1. 0

Exercise 6.2 Is the Mobius strip a product?

Exercise 6.3 What's D 2 X 8 1? Work topologically. 0

There is a connection between products of mani­
folds and products of numbers in the sense of multi­
plication. For example, 15 is the product of 3 and 5,
and the 15 sheep in Figure 6.3 form both 3 rows of 5
and 5 columns of 3.

Our first example-the cylinder-is a product not
only in the topological sense but in the geometrical
sense as well. To be precise, it qualifies as a geomet­
rical product because it satisfies the following three
conditions:

~Q9111a9

~Q~Q9
Figure 6.3 Fifteen is the product of three and five.
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1. All the circles are the same size.
2. All the intervals are the same size.
3. Each circle is perpendicular to each interval.

Exercise 6.4 Figure 6.4 shows three renditions of
8 1 X I that are topological-but not geometrical­
products. Which of the above three conditions is vio­
lated in each case? 0

Exercise 6.5 Draw one version of I X I that is a
geometrical product and another version that is only
a topological product. 0

The doughnut surface in Figure 6.2 is not a geo­
metrical product because the light circles are not all
the same size. In fact, we can't draw a geometrical
8 1

X 8 1 in three-dimensional space at all. The best we
can do is to draw a cylinder as in Figure 6.1 and imag­
ine that the top is glued to the bottom. The gluing
converts each vertical interval into a circle, thereby
converting 8 1 X I into 8 1 X 8 1

• We know this new
product is a geometrical one because

1. All the original circles are the same size.
2. All the intervals that get converted into cir­

cles are the same size.
3. Each circle is perpendicular to each interval.

But we also know that this cylinder with its ends
glued together is a flat torus. Therefore a geometrical
8 1

X 8 1 is a flat torus!
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Figure 6.4 Three versions of 8 1 X I that are topological-but
not geometrical-products.
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Our main reason for studying products is to better
understand three-manifolds. It's true that the vast
majority of three-manifolds aren't products, but many
of the simplest and most interesting ones are. For ex­
ample, the three-torus is the product of a two-torus
and a circle (in symbols T3 = T2

X 8 1
). Here's how to

see it. Recall that a three-torus is a cube with opposite
faces glued. Imagine this cube to consist of a stack of
horizontal layers as shown in Figure 6.5. When the
cube's sides get glued, each horizontal layer gets con-

Figure 6.5 A three-torus is the product of a two-torus
and a circle.
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verted into a torus-a flat torus in fact. At this stage
we have a stack of flat tori. When the cube's top is
glued to its bottom, this stack of tori is converted into
a circle of tori. We still have to check that T3 is a torus
of circles as well. To do this, imagine the cube to be
filled not with horizontal layers, but with vertical in­
tervals, like lots of spaghetti standing on end (Figure
6.6). When the cube's sides get glued this square of
intervals becomes a torus of intervals, and when the
top and bottom are glued it becomes a torus of circles

..t··:::..
•• ~."".~:'::~::'.~\ :':1.'" •... , ;: ! -. ..." : ..•..., y :..., : \ : :: :..: .

. :J~::: :.~. =••::.; :.:.,:.: :.: :.:.~:. : : .. ~\:':":t: ,'.~ .~-c.~.: ':...
.'-:;:~: ~:.':;:':: ~ .:....... ,: ,: ,'.: . ~::-.';.:.:...!{::.:: :....:....1.'-

• -"i< :'-. \';"::.: ;.··.:.:. ·.:r ;.,.:,'.:::..
"'~\,;~.,,'..:...::.:.:,,: : :::.:.:~:.. "" ..- '.:~,.:." =:1"',: i'" •..., ......;.. . .

Figure 6.6 To see that T:J is a torus of circles, first imagine
the cube to be filled with spaghetti standing on end.
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as required. Thus the three-torus is both a circle of
tori and a torus of circles, so it is the product of a torus

and a circle.
The three-torus is, in fact, a geometrical product

because

1. All the horizontal tori are the same size (Fig­
ure 6.5).

2. All the vertical circles are the same size (Fig­
ure 6.6).

3. Each torus is perpendicular to each circle.

Exercise 6.6 In Chapter 4 we made a nonorientable
three-manifold by gluing a room's front wall to its
back wall with a side-to-side flip, while gluing the floor
to the ceiling, and the left wall to the right wall, in
the usual way. This nonorientable three-manifold is a
product. What's it the product of? (Hint: The relevant
pictures look just like Figures 6.5 and 6.6, only the
gluings are different.) Is this a geometrical prod­
uct? D

It's time for a brand new three-manifold with a
brand new local geometry! The manifold is 8 2 X 8 1

(read "a sphere cross a circle" or "8-two cross 8-one"),
but before investigating it, let's pause for a moment
to see how a Flatlander might deal with 8 1 X 8 1

•

A Flatlander can't visualize 8 1 X 8 1 directly, so he
uses a mental trick. He first imagines 8 1 X I as in
Figure 6.7, and then he imagines the inner (circular)
edge to be glued to the outer (circular) edge. If he
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Figure 6.7 8 1
X I as imagined by a Flatlander.

wants a geometrical product, he must in addition pre­
tend that all the circles are the same size! At first it's
hard for him to pretend that these circles are the same
size when in his mental image they clearly are not;
but doing so does help him understand 8 1

X 8\ so he
puts up with the contradiction until he eventually gets
an intuitive feeling for what 8 1 X 8 1 is really like.

Actually, the hardest thing for a Flatlander to ac­
cept is that a thread pulled taut between the points
shown in Figure 6.8 would follow the apparently
curved arc of one of the circles. In the more refined
drawing of a 8pacelander (shown on the right in Fig-
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Figure 6.8 A thread pulled taut between P and Q follows the
path shown.

ure 6.8) it's obvious that the thread would follow the
circle, but to the Flatlander it seems that the thread
would want to "cut across the middle" somehow.

We 8pacelanders picture 8 2 x 8 1 the same way
Flatlanders picture 8 1 x 8 1

. First we visualize 8 2 x I
as a thickened spherical shell (Figure 6.9). To convert
this shell to 8 2

X 8 1 we imagine the inner spherical
boundary to be glued to the outer spherical boundary.
If we want a geometrical product things get tougher:
we must pretend that the various spherical layers in
the spherical shell are all the same size! (A four-di­
mensional being would have no trouble drawing a pic­
ture in which the layers really are the same size, but
for us 8pacelanders it isn't so easy.)
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Figure 6.9 Visualize 8 2 X I as a ball with a hollow center.

Figure 6.10 shows two interesting surfaces con­
tained in a geometrical 8 2 X 8 1

• The grey one is a
spherical "cross-section" of 8 2 X 8 1

• A thread pulled
taut between any two points on this sphere will follow
the sphere's curved surface! This would be perfectly
obvious to a four-dimensional being: in her drawing
there'd be no reason for the thread to bend to one side
of the sphere or the other (compare Figure 6.8(b». But
to us naive 8pacelanders it seems (incorrectly!) that
the thread ought to "cut across the middle" somehow.
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Figure 6.10 A sphere cross a circle is what you get by
imagining the inner surface of 8 2 x I to be glued to the outer
surface. The gluing converts the horizontal ring-like surface

into a torus. The grey sphere, of course, remains unaffected by
the gluing.

If Gauss lived in 8 2 X 8 1 and surveyed a triangle
formed by three points on this sphere, he'd find the
sum of the angles of the triangle to be greater than
180°-just like the sum of the angles of any spherical
triangle (recall Figure 3.7).

The white surface shown in Figure 6.10 is a flat
torus. It looks just like a Flatlander's conception of a
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flat torus as based on Figure 6.7. If Gauss were to
measure a triangle in this surface, he'd find its angles
to add up to 1800

•

We've seen that in S2 X S1, different triangles may
have different angle sums depending on how they're
situated. Thus, S2 X S1 is an example of a three-man­
ifold which is homogeneous but not isotropic. A ho­
mogeneous manifold is one whose local geometry is
everywhere the same. An isotropic manifold is one in
which the geometry is the same in all directions. S2 X

S1 is not isotropic because some two-dimensional
slices have the local geometry of a sphere, while other
slices have the local geometry of a plane, as we have
discovered in the preceding two paragraphs. (The dis­
tinction between homogeneous and isotropic mani­
folds is not readily apparent to most Spacelanders be­
cause of the peculiar fact that there are no surfaces
that are homogeneous but not isotropic.)

Exercise 6.7 Find a nonorientable three-manifold
that is a product and has the same local geometry as
S2 X S1. Hint: What might such a manifold be the
product of? 0

We now have an infinite number of three-mani­
folds at our disposal! Specifically, we can take each
surface on the list in Exercise 5.10 and construct the
product of that surface and a circle. For example, we
could construct a five-holed doughnut surface cross a
circle. Topologically we picture this manifold as a
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thickened five-holed doughnut surface with its inside
glued to its outside, just as we pictured a sphere cross
a circle (82 X 8 1

) as a thickened sphere with its inside
glued to its outside. We won't be able to understand
the geometries of these product three-manifolds until
after we've investigated the geometries of surfaces
(Chapters 10, 11, and 18).
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Flat Manifolds

What would you see if you lived in a closed three-man­
ifold? This chapter answers that question for three­
manifolds, such as the three-torus, that have the local
geometry of "ordinary" three-dimensional space (i.e.
flat three-manifolds).

First let's consider what a two-dimensional bi­
plane pilot sees as she flies about in the flat torus sky
of Chapter 3. If she looks towards an "edge of the
screen," she'll find she's looking at herself from be­
hind! (See Figure 7.1.) She can also see herself by
looking along a diagonal, as illustrated in Figure 7.2.

99
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The pilot can
see herself.

CHAPTER 7

How the situation
appears to her.

Figure 7.1 A biplane pilot in a flat torus.

In fact she can see herself in infinitely many di­
rections! The flat torus sky looks to her like a
plane with infinitely many copies of her in it! (Figure
7.3.) Of course if an enemy biplane is chasing her
she'll see infinitely many copies of it as well. These
pictures are analogous to the pictures we used in
Chapter 4 to analyze Klein bottle tic-tac-toe games
(Figure 4.6).
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She sees herself by
looking along a diagonal.
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How it appears to her.

Figure 7.2 The biplane pilot sees herself in a
different direction.
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Figure 7.3 The biplane pilot's view of her world.
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Exercise 7.1 Draw a picture (analogous to Figure
7.3) showing how the sky would appear to a biplane
pilot flying in a Klein bottle. 0

Exercise 7.2 Analyze the torus tic-tac-toe game of
Exercise 2.2 using the method of Figure 4.6. 0

Now let's make some analogous drawings of three­
manifolds. Figure 7.4 shows the view inside the three­
torus described in Chapter 2. This three-torus consists
of a living room with its left wall glued to its right
wall, its front wall glued to its back wall, and its floor
glued to its ceiling.

Figure 7.5 shows the view inside a different three­
torus: this one is made from a cube containing a
smaller cube with colored faces (Figure 7.6).

DO-IT-YOURSELF COLORING

Get ahold of some colored pens or pencils
and use them to color the faces of the little
cubes in Figures 7.5 and 7.6 according to the
code R = Red, 0 = Orange, Y = Yellow, G =
Green, B = Blue, V = Violet. You'll eventually
need to color Figures 7.7, 7.10, 7.11, and
7.12, and the figures for Exercise 7.3, accord­
ing to the same code.

It's fun to imagine the view inside other three­
manifolds made from the (big) cube of Figure 7.6. For
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Figure 7.4 When opposite walls of a room are "glued" to
make a three-torus, the view looks like this_

example, consider making ~ X 8 1 from this cube.
(K2 X 8 1 is the nonorientable three-manifold described
in Chapter 4-it's made by gluing a cube's top and
bottom, and left and right sides, in the usual way, but
gluing the front to the back with a side-to-side flip.)
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Figure 7.5 The view inside a three-torus containing a single
small cube.

Color Figure 7.7 as indicated by the code to see the
view inside K2

X S1. IMPORTANT NOTE: On the little
cube opposite faces have complementary colors: red is
opposite green, blue is opposite orange, and yellow is
opposite violet. Imagine yourself to be sitting on one
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Figure 7.6 If you glue opposite faces of this (big) cube, the
view inside the resulting three-torus will be as shown in

Figure 7.5.

of the cubes in Figure 7.7. When you look up, down,
to the left or to the right you see other colored cubes
positioned just as the cubes in Figure 7.5 are. But the
cubes immediately in front of you and immediately
behind you appear to have undergone a side-to-side
mirror reversal (thus interchanging the red and green
faces); this is because the front and back faces of the
big cube were glued with a side-to-side flip. The view
in K2

X 8 1 is analogous to the drawing of a Klein bottle
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Figure 7.7 The view inside K2 x 8 1
•

sky you made in Exercise 7.1. You might want to
pause for a moment to think this through.

Exercise 7.3 Here's a new three-manifold, the "quar­
ter turn manifold." Start with a cube like the one in
Figure 7.6, glue its front, back, left and right sides as
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if you were making a three-torus, but then glue its top
to its bottom with a quarter turn (Figure 7.8 shows
how). Make a copy-by hand or by photocopy machine
-of Figure 7.9 and color it to show the view inside
this manifold.

You might also want to illustrate the views in a
"half turn manifold" and a "three quarters turn man­
ifold." Compare the view in the three quarters turn
manifold to the view in the original quarter turn man­
ifold; can you intrinsically tell one from the other? 0

In the preceding exercise you colored the view in­
side the quarter turn manifold based on a knowledge
of how the cube's faces were glued. You can also re­
verse this process: given a colored illustration of the
view inside a manifold, you can deduce what the
gluings are that produce it. For example, in Figure
7.7,

1. Each little cube is the mirror image-via a
left-to-right reversal-of the cube immedi­
ately behind it. This tells you that the big
cube's front and back faces are glued with a
side-to-side flip.

2. Each little cube is identical to the cube above
it. This tells you that the big cube's top and
bottom faces are glued normally.

3. Similarly, each little cube is identical to the
cube to its left. This tells you that the left and
right faces are glued normally.



FRONT

FRONT
Take the cube's
top and bottom,

rotate one of them
a quarter turn,

FRONT
and glue.

Figure 7.8 How to glue the top of a cube to the bottom with a quarter turn
(local intrinsic picture).
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Figure 7.9 Make several copies of this figure and color them
to illustrate the view inside each manifold of Exercise 7.3.

Ifyou apply similar reasoning to your colored illustra­
tion of the view inside the quarter turn manifold, you
can "rediscover" that the cube's top and bottom are
glued with a quarter turn.
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Exercise 7.4 Color Figure 7.10 as indicated by the
code. How should the (big) cube of Figure 7.6 be glued
to produce this view? For more practice, color Figures
7.11 and 7.12, and decide what gluings will produce
these views. 0

Exercise 7.5 Which of the manifolds from Exercises
7.3 and 7.4 are orientable and which are nonorient­
able? (Recall that to determine orientability you have
to check whether crossing a face of the cube can bring
you back from the opposite face mirror reversed.) 0

Two comments are in order concerning these
three-manifolds made from cubes. First, each has the
local geometry of ordinary three-dimensional Euclid­
ean space. In other words, each is flat. Second, if you
suddenly found yourself in one of these manifolds­
but you didn't know which one it was-you could eas­
ily check for orientability by raising your right hand.
If all the other copies of yourself raised their right
hands you'd know the manifold was orientable; if any
of them raised their left hands you'd know it was non­
orientable. With more detailed observations you could
determine the nature of the manifold exactly (as in
Exercise 7.4, only now you yourself take the place of
the colored cube).

Not all three-manifolds are made from cubes, and
not all surfaces are made from squares. For example,
consider a regular hexagon whose opposite edges are
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Figure 7.10 What gluing of the big cube produces this view?

abstractly glued. If you are willing to deform the hex­
agon you can physically carry out the gluings in three­
dimensional space (Figure 7.13). You will find that the
surface has the same global topology as a torus. Be­
cause the surface is made from a hexagon and has the
topology of a torus, it is called a hexagonal torus. Its



FLAT MANIFOLDS 113

Figure 7.11 What gluing of the big cube produces this view?

local geometry is flat because the hexagon is flat (ge­
ometrically you should think of the hexagonal torus
as a hexagon with abstractly glued edges, rather than
as a doughnut surface).

Exercise 7.6 Imagine a biplane pilot flying about in
a hexagonal torus. Draw a picture analogous to Figure
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Figure 7.12 What gluing of the big cube produces this view?

7.3 showing how the hexagonal torus appears to the
pilot. What if a second biplane is flying around with
her? 0

For the most part the hexagonal torus is very sim­
ilar to the usual flat torus. One way that it's different,
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Figure 7.13 To physically glue together opposite edges of a
hexagon, you must deform the hexagon into the shape of a
doughnut surface. A hexagon with abstractly glued edges

therefore has the same global topology as a torus.
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however, is that all six corners of the hexagon do not
get glued to a single point. Compare Figure 7.13 to
Figure 3.3. In Figure 3.3 all four corners of the square
meet at a single point in the surface, whereas in Fig­
ure 7.13 the hexagon's six corners meet in two groups
of three corners each.

Later on it will be important to know how a poly­
gon's corners fit together, and in many cases we won't
be able to physically carry out the gluings in three­
dimensional space. Fortunately we can always tell
how the corners fit simply by studying the polygon
itself. For example, imagine a Flatlander in the ordi­
nary flat torus who decides to go for a walk around
the point at which the square's four corners meet. (In­
trinsically he could never locate such a point, but for
the sake of argument pretend he is taking a walk
around just that point.) Ignore the lower picture in
Figure 7.14, and follow his progress in the upper pic­
ture. He begins in the lower right hand corner of the
square. He passes through the right edge of the
square into the lower left hand corner. From there he
moves through the bottom edge into the upper left
hand corner, then through the left edge into the upper
right hand corner, and finally through the top edge to
get home. By following his progress in the square we
have deduced that all four corners meet at a single
point. In contrast, a Flatlander going for a walk in a
hexagonal torus would visit only three corners before
returning home, either corners 1, 2, and 3 or corners
a, b, and c, depending on where he started (see Figure
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Figure 7.14 A Flatlander walking in a small circle can visit
all four corners.
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7.15). Now let's use this "walking around corners"
technique to study a new surface. Consider a square
whose edges are glued as indicated by the arrows in
Figure 7.16 (note: both pairs of edges are glued with
a flip). A Flatlander starting in the lower right hand
corner passes through the right edge into the upper

left hand corner; from there he passes through the top
edge to get home. Similarly, a Flatlander starting in
the lower left hand corner goes to the upper right
hand corner and then home. This tells us that the
square's corners meet in two groups of two corners
each. But something funny is going on here: two cor­
ners won't fit together properly! Figure 7.17 shows
that when two 90° corners come together you get a
"cone point." In general you will get a cone point
whenever the sum of the angles at a point is less than
360°.

Exercise 7.7 Figure 7.18 shows three surfaces, each
a hexagon with edges glued as indicated by the ar­
rows. Use the "walking around corners" technique de­
scribed above to decide how each hexagon's corners fit
together. Which of these surfaces have cone points? 0

Exercise 7.8 Which of the surfaces in the preceding
exercise are orientable? 0

Exercise 7.9 Draw a picture analogous to Figure 7.3
showing a biplane pilot's impression of the second sur­
face in Figure 7.18. 0
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Figure 7.15 A Flatlander walking in a small circle visits a
group of three corners.
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Figure 7.16 Glue each pair of opposite sides with a flip. A
Flatlander walking in a small circle can visit only two corners.

Exercise 7.10 Do a hexagonal torus and an ordinary
flat torus have the same local topology? The same lo­
cal geometry? The same global topology? The same
global geometry? 0

At this point I'd like to clear up a definitional mat­
ter. When we say a surface has a flat geometry we
mean that its local geometry is flat (Le. Euclidean) at
all points. Cone points are not allowed. For example,
the surface defined in Figure 7.16 is not considered
flat, even though it has a flat local geometry at all
points except two. In contrast, a hexagonal torus is



FLAT MANIFOLDS

When fou r 90° corners
come together:

When three 120° corners
come together:

When two 90° corners
come together:
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Figure 7.17 If the corners add up to less than 3600 you'll get
a "cone point."

Figure 7.18 Which of these surfaces have cone points?
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considered fiat because it has a fiat local geometry at
all points, without exception.

Exercise 7.11 Which of the surfaces of Exercise 7.7
are flat? 0

The remaining three-manifolds in this chapter
will be made from a hexagonal prism like the one
shown in Figure 7.19(a). When you glue the opposite
side faces of this prism each horizontal layer (see Fig­
ure 7.19(b)) becomes a hexagonal torus and you get a
hexagonal torus cross an interval. If you then glue the
bottom of the prism to the top you'll wind up with a
hexagonal torus cross a circle, which is new form of

I
1
I
I
, I
I 1'_----------'"

~

~ ... -
~

~

(a) The basic prism (b) The prism thought of as
a hexagon cross an interval

Figure 7.19 A hexagonal prism is useful for making
three-manifolds_
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three-dimensional torus. It's called a hexagonal three­
torus.

Exercise 7.12 Do the hexagonal three-torus and the
usual three-torus have the same local geometry? The
same global topology? The same global geometry?

Imagine yourself inside a hexagonal three-torus.
You see other copies of yourself. How are they ar­
ranged? 0

Exercise 7.13 Use a hexagonal prism to construct a
"1/3 turn manifold" and a "1/6 turn manifold" analo­
gous to the quarter turn manifold of Exercise 7.3. If
you lived in one of these manifolds, how would the
other copies of yourself be arranged? 0

At first glance it's not at all obvious that the hex­
agonal three-torus and the usual three-torus are to­
pologically the same (i.e. have the same global topol­
ogy). Similarly, in Chapter 5 it was a challenge to
understand that p2 # p2 # p2 and T2 # p2 were the
same. This leaves one in doubt as to whether other
seemingly different manifolds might also be topologi­
cally the same. Around the turn of the century math­
ematicians invented various tools to deal with this
problem. For example, the Euler number (Chapter 12)
can conclusively decide whether or not two surfaces
are the same topologically. More complicated tools are
required for three-manifolds, such as the "homology
groups" and the "fundamental group" (see Chapters 5
and 8 of Armstrong's Basic Topology, or any algebraic
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topology book). Fortunately in practice manifolds that
look different usually are.

You can explore the 3-manifolds of this
chapter using interactive 3-D graphics

software available for free at
www.northnet.org/weeks/SoS.
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Orientability vs. Two-Sidedness

A Mobius strip is nonorientable. In addition, the Mo­
bius strip in Figure 8.1 has only one side, as Escher's
ants are demonstrating. In general a surface lying in
a three-manifold is called one-sided if a (three-dimen­
sional!) ant can go for a walk along it and come back
on the opposite side of the surface from which she
started. It's often thought that nonorientability and
one-sidedness are just two aspects of the same prop-

This chapter is dedicated to Bob Messer, who showed me a two-sided
Mobius strip at a time when I hadn't the slightest idea that such a
thing could possibly exist.

125
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Figure 8.1 Escher's ants demonstrate that this Mobius strip
has only one side. (Mobius Strip II by M. C. Escher, copyright
Cl Beeldrecht, AmsterdamIVAGA, New York. Collection Haags

Gemeentemuseum-The Hague, 1985.)
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erty, but this is not the case, as you can see from the
examples in Exercise 8.l.

A surface (lying in a three-manifold) that is not
one-sided is called two-sided, because in this case the
surface has two separate sides, and a (three-dimen­
sional) ant walking on the surface can never get from
one side to the other.

Exercise 8.1 Figure 8.2 shows four ways to construct
a three-manifold by gluing opposite faces of a cube. In
each case the cube contains a square which gets glued
to form a surface in the three-manifold. For each ex­
ample identify the surface and say whether it's or­
ientable or nonorientable, and whether it's one-sided
or two-sided. To determine orientability you have to
check whether a (two-dimensional) Flatlander can go
for a walk in the surface and return to his starting
point mirror reversed. To determine "sidedness" you
have to check whether a (three-dimensional) ant can
go for a walk on the surface and return to her starting
point on the opposite side of the surface.

Dse the four examples to fill in the following table:

one-sided

two-sided

orientable nonorientable

o
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(1) Glue opposite faces in
the usual way to form a
3-torus.

(3) Glue the top to the
bottom, and the left side to
the right side, in the usual
way, but glue the fr'ont to
the back with a top-to­
bottom flip. This 3-mani­
fold IS also K2 x S '.

CHAPTER 8

(2) Glue the top to the
bottom, and the left side to
the right side, in the usual
way, but glue the front to
the back with a side-to- side
flip. This 3-manifold IS

K2 xS'.

(4) Glue the top to the
bottom, and the left side to
the right side, in the usual
way, but glue the front to
the back with both a slde­
to-side flip and a top-to­
bottom flip. The two flips
combined are the same as a
1800 rotation, and the
manifold is the half-turn
manifold of Exercise 7.3.

Figure 8.2 Four three-manifolds, each containing a surface.
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Exercise 8.2 Is sidedness an intrinsic or an extrinsic
property of a surface? What about orientability? Are
all Klein bottles nonorientable? Are they all one­
sided? D

Exercise 8.3 Construct a three-manifold containing
a two-sided Mobius strip. Just for fun, draw some red
ants on one side of the Mobius strip and some black
ants on the other. Note that the red ants and black
ants can never meet (at least not without crawling
around the edge of the Mobius strip!). 0

One's initial impression that nonorientability and
one-sidedness are just different aspects of a single
property is not entirely groundless. In an orientable
three-manifold, every two-sided surface is orientable
and everyone-sided surface is nonorientable. To see
why, pretend that you are standing with a friend on a
surface in an orientable three-manifold. Your friend
decides to go for a walk. Because you're in an orient­
able three-manifold you know he can't possibly come
back mirror reversed. Assume for the moment that the
surface you're standing on is one-sided, and that your
friend comes back from his walk on the side opposite
from where you're standing. Also assume that the sur­
face is transparent so you can look through and see
the bottoms of his feet. (In this manifold, gravity is
directed towards the surface, so neither of you falls
off!) Because your friend is on the other side of the
surface, his footprints appear mirror reversed (Figure
8.3). If you study just his footprints (ignore his three-



START

(Friend is walking on
top side of surface.)

FINISH
(Friend is now walking on

underside of surface.)

...
CAl
o

Figure 8.3 Going for a walk on a one-sided surface in an orientable three-manifold. At the end
of the walk your friend isn't mirror-reversed; but because he's now standing on the other side of

the surface, his footprints appear mirror-reversed to you.
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dimensional body) you'll see that they trace out an
orientation reversing path in the surface. Therefore
this one-sided surface is nonorientable.

If, on the other hand, the surface were two-sided,
then your friend would come back from his walk on
the same side of the surface he started on. Because
the three-manifold is orientable, he'd be his normal
self rather than his mirror image. In particular, his
footprints would not be mirror reversed. This shows
that no matter where he walks, his footprints will
never trace out an orientation reversing path in the
surface. In other words, this two-sided surface is or­
ientable.
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The Sphere

In a sequel to Flatland, an octagon by the name of Mr.
Puncto surveys some rather large triangles and finds
that each has angles that add up to slightly more than
180°! This discovery excites Mr. Puncto, and, after
double checking his data, he makes the discovery pub­
lic. Unfortunately neither the civil authorities nor the
scientific establishment shares his excitement. They
suspect he is merely inventing excuses to explain
some errors in his measurements, and they dismiss
him from his job. The true explanation is that the
Flatlanders are living not in a plane but on a sphere,

135
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and on a sphere the angles of a triangle really do add
up to more than 180°, as we shall soon see. This in­
cident and much more is described in the book Sphere­
land by Dionys Burger. I heartily recommend Sphere­
land to all readers of the present book (just don't be
put off by the rather dull summary of Flatland at the
beginning).

A triangle drawn on a sphere is called a spherical
triangle. Each side of a spherical triangle is required
to be a geodesic; that is, it is required to be intrinsi­
cally straight in the sense that a Flatlander on the
sphere would perceive it as bending neither to the left
nor to the right. A side of a spherical triangle is thus
an arc of a so-called great circle (see Figure 9.1).

From now on we will measure all angles in radi­
ans, to facilitate easier comparison of angles and ar­
eas (in a minute you'll see how and why we want to
do this). Recall that 71" radians = 180°, 71"/2 radians =

90°, etc. Except when specified otherwise, we will
henceforth assume that all spheres are unit spheres,
i.e. they all have radius one.

Exercise 9.1 For each spherical triangle in Figure
9.2 compute (1) the sum of its angles in radians, and
(2) its area. To compute the areas, use the fact that
the unit sphere has area 471". For example, the first
triangle shown occupies Vs of the sphere, so its area is
(471")/8 = 71"/2.

Find a formula relating a spherical triangle's an­
gle-sum to its area. This formula appeared in 1629 in
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great
circles

a spherical
triangle

137

lesser
circles

Figure 9.1 On any sphere, the great circles are those circles
that are as big as possible. A great circle appears straight to a

Flatlander on the sphere. By contrast, any lesser circle
appears to bend to one side or the other.

the section "De la mesure de la superfice des triangles
et polygones sphericques, nouvellement inventee Par
Albert Girard" of the book Invention nouvelle en
L'Algebre by Albert Girard.

You should try to find the formula before reading
on, because the following paragraphs give it away. 0

Exercise 9.2 What is the area of a spherical triangle
whose angles in radians are 1T/2, 1T/3, and 1T/4? What
is the area of a spherical triangle with angles of 61°,
62°, and 63°? 0
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11

Figure 9.2 Some assorted spherical triangles. Three of the
triangles are "degenerate" in the sense that each has one or
more angles equal to 7T. The last triangle occupies an entire

hemisphere, and its three sides all lie on the same great circle.
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Even though there is no overwhelming need for a
proof of the formula you just discovered, I would like
to include one anyhow because it is so simple and el­
egant. (It is not, however, the sort of thing you're
likely to stumble onto on your own. I struggled for
hours without being able to prove the formula at all.)

First we have to know how to compute the area
of a "double lune." A double lune is a region on a
sphere bounded by two great circles, as shown in Fig­
ure 9.3. The largest the angle a can ever be is 1T", at
which point the double lune fills up the entire sphere.
So if a is, say, 1T"/3, then we reason that since 1T"/3 is
% the greatest possible angle 1T", the double lune must

Figure 9.3 A double lune with angle Q!.
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fill Up 1/3 the area of the entire sphere, namely (%)(47T)

= 47T/3. Using the same reasoning, we get that the
area of a double lune with angle a is (al7T)(47T) = 4a.

You can check this formula for some special cases, e.g.
a = 7T/2 or a = 7T.

Now we'll find a formula for the area of a spher­
ical triangle with angles a, p, and y. First extend the
sides of the triangle all the way around the sphere to
form three great circles, as shown in Figure 9.4. An
"antipodal triangle," identical to the original, is
formed on the back side of the sphere. Figure 9.5

Figure 9.4 Extend the edges of the spherical triangle, and
the resulting great circles will form an "antipodal triangle" on

the back side of the sphere.
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Il

Figure 9.5 Three ways to shade in double lines.

shows three possible ways to shade in double lunes.
These double lunes have respective angles a, {3, and
y, and therefore their areas are 4a, 4{3, and 4y.

Now look what happens if we shade in all three
double lunes simultaneously (Figure 9.6). All parts of
the sphere get shaded in at least once, and the origi­
nal and antipodal triangles each get shaded in three
times (once for each double lune). So ...
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(

area Of)
first +

double
lune

(
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second +
double
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area Of)
third

double
lune

CHAPTER 9

4a + 4~ + 41' = + 2A + 2A

4(a + (3 + y) =4( 7T + A)

a+{3+Y=7T+A
(a + (3 + y) - 7T =A

which is just what we wanted to prove! In words, this
formula says that the sum of the angles of a spherical
triangle exceeds 7T by an amount equal to the trian­
gle's area.

Exercise 9.3 The formula (a + (3 + y) - 7T = A ap­
plies only to triangles on a sphere of radius one. How
must you modify the formula to apply to triangles on
a sphere of radius two? What about radius three?
Write down a general formula for triangles on a
sphere of radius r. 0

Exercise 9.4 A society of Flatlanders lives on a
sphere whose radius is exactly 1000 meters. A farmer
has a triangular field with perfectly straight (i.e. ge­
odesic) sides and angles which have been carefully
measured as 43.624°, 85.123°, and 51.270°. What is
the area of the field? Don't forget to convert the angles
to radians. (Bonus Question: How accurately do you
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Figure 9.6 Look what happens when we shade in all three
double lunes at once.

know the field's area? That is, by plus or minus what
percent?) 0

Exercise 9.5 A society of Flatlanders lives on a
sphere. They carefully survey a triangle and find its
angles to be 60.0013°, 60.0007° and 60.0011°, while its
area is 5410.52 square meters. What is the area of the
entire sphere? 0

Exercise 9.6 Estimate the angle-sum of each of the
following spherical triangles. Hint: First make a
rough estimate of the area enclosed by each triangle,
and then apply the formula from Exercise 9.3. Be­
cause you have to guess the areas of the triangles, you
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will get only approximate, not exact, answers. The ra­
dius of the Earth is roughly 6400 km.

1. The triangle formed by Providence, Newport,
and Westerly, Rhode Island. These cities are
roughly 50 km apart.

2. The triangle formed by Houston, EI Paso, and
Amarillo, Texas. These cities are roughly 1000
km apart.

3. The triangle formed by Madras, India; Tokyo,
Japan; and St. Petersburg, Russia. These cit­
ies are roughly 7000 km apart. 0

We've now seen the first major way in which the
geometry of a sphere differs from the geometry of a
plane. Namely, the sum of the angles of a spherical
triangle exceeds 1T" by an amount proportional to the
triangle's area, whereas the sum of the angles of a
Euclidean (= flat) triangle equals 1T" exactly (study Fig­
ure 9.7 for a proof of this last fact).

A piece of a sphere rips open when flattened onto
a plane (Figure 9.8). This shows that a circle on a

Figure 9.7 A quick proof that the sum of the angles in a
Euclidean triangle is 7T: (1) a' + (3 + y' = 7T, (2) a = a' and (3)

l' = y', therefore (4) a + {3 + l' = 7T.
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Figure 9.8 A piece of a sphere splits open when flattened.



146 CHAPTER 9

Figure 9.9 The circle's circumference first increases, but then
decreases once the circle is past the equator.

sphere has a smaller circumference and encloses less
area than a circle of the same radius in a plane. I
should stress that the radius of a circle on a sphere is
measured along the sphere itself-the way a Flat­
lander would measure it. Figure 9.9 shows that on a
sphere a circle's circumference can actually shrink,
even though the circle's (intrinsically measured) ra­
dius is still increasing.
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Exercise 9.7 (Review exercise) What other surface
has the local geometry of a sphere? Could Flatlanders
living on this other surface tell that they weren't on a
sphere? 0
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The Hyperbolic Plane

There are three types of homogeneous two-dimen­
sional geometries, as illustrated in Figure 10.1. Two
of these are already familiar. The first geometry
shown is the familiar geometry of a sphere. This ge­
ometry is often called elliptic geometry, and is said to
have positive curvature. The second geometry is the
familiar geometry of the Euclidean plane. It is called
Euclidean geometry and is said to have zero curvature.
The third geometry shown is, loosely speaking, a sad­
dle shaped geometry. It is less familiar than elliptic or
Euclidean geometry, but certainly no less important.

149
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/
(a) elliptic geometry

(b) Euclidean geometry

(c) hyperbolic geometry

\

Figure 10.1 The three homogeneous two-dimensional
geometries.
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It is called hyperbolic geometry and is said to have
negative curvature. The hyperbolic plane (abbreviated
H 2

) is an infinite plane that has hyperbolic geometry
(= constant negative curvature) everywhere, just as
the Euclidean plane is an infinite plane that has Eu­
clidean geometry (= zero curvature) everywhere. It is
a fact of nature, though, that there can be no infinite
plane with elliptic geometry (= constant positive cur­
vature) everywhere-it will, without fail, close back
onto itself to form either a sphere or a projective
plane.

While the saddle shape provides a good local pic­
ture of the hyperbolic plane, it fails to convey what
the hyperbolic plane is like on a larger scale. To get a
feel for the larger scale nature of the hyperbolic plane,
make yourself some hyperbolic paper as described in
Exercise 10.1. Handling the hyperbolic paper will do
for your understanding what words and pictures can­
not.

Exercise 10.1 How to make hyperbolic paper.
(Thanks to Bill Thurston for this idea.) You'll need a
large number of equilateral triangles, at least a hun­
dred or so. The most efficient way to make them is to
make several photocopies of Figure 10.2. Tape seven
triangles together like the seven shaded triangles in
Figure 10.3. Then add more triangles to the pattern
in such a way that each vertex of the original figure
is itself surrounded by seven triangles. Continue in
this fashion as long as you want. The surface you get
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Inset:

insert a triangle
into the slit

Figure 10.3 (See Exercise 10.1) Tape equilateral triangles
together so that seven meet at each vertex. The inset shows a

good way to get started.
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will be very floppy, but this is how it should be. The
larger the surface, the floppier and more accurate it
will be. You can't go wrong so long as every vertex is
surrounded by exactly seven triangles. A construction
hint: Don't cut triangles apart only to tape them back
together again! For example, rather than starting
with seven separate triangles, you can start by in­
serting a single triangle into a block that has been slit
and creased as shown in the inset to Figure 10.2. ICJ

Exercise 10.2 What happens when you tape equilat­
eral triangles together five per vertex instead of seven
per vertex? Try it! ICJ

Note that regions near the edge of your hyperbolic
paper are indistinguishable from regions near the cen­
ter. This demonstrates that the hyperbolic plane is ho­
mogeneous.

Elliptic and hyperbolic geometry tend to have con­
trasting properties; Euclidean geometry tends to serve
as the borderline between them. Recall that a piece of
a sphere rips open when flattened (Figure 9.8). In con­
trast, a piece of a hyperbolic plane wrinkles and over­
laps when flattened (Figure 10.4).

More important for us will be the question of an­
gles. In elliptic geometry the angles of a triangle add
up to more than 7Tradians (180°); on a sphere of radius
one the angles exceed 7T by an amount exactly equal
to the triangle's area [(0' + f3 + y) - 7T == AJ. In hy­
perbolic geometry the angles of a triangle add up to
less than 7T radians; on the standard hyperbolic plane
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Figure 10.4 A piece of a hyperbolic plane wrinkles and
overlaps when flattened.



156 CHAPTER 10

the angles are less than 7T by an amount exactly equal
to the triangle's area [7T - (0' + f3 + y) = A]. [But just
as there can be smaller or larger spheres on which
(0' + f3 + y) - 7T is proportional but not equal to the
given triangle's area, so too can there be "larger" or
"smaller" hyperbolic planes in which 7T - (0' + f3 + y)

is proportional but not equal to the triangle's area. In
this book, unless specified otherwise, "sphere" will re­
fer to the sphere of radius one, for which (0' + f3 + y)

- 7T = A, and "hyperbolic plane" will refer to the stan­
dard hyperbolic plane for which 7T - (0' + f3 + y) =A.]
In the next chapter you will see why we are so inter­
ested in angles.

Exercise 10.3 In the hyperbolic plane, what is the
area of a triangle whose angles are 7T/3, 7T/4, and
7T/6? 0

It is a curious fact that no triangle in the hyper­
bolic plane can have an area greater than 7T. As the
sides of a triangle get longer its angles get pointier,
but even as the sides get infinitely long and the angles
go to zero, the area never exceeds 7T. This is consistent
with the formula 7T - (0' + f3 + y) = A. I'll say more
about this phenomenon in Chapter 15.
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Geometries on Surfaces

The left side of Figure 11.1 shows the three surfaces
you studied in Exercise 7.7. The first has cone points
because the hexagon's corners are glued together in
groups of only two. The second has a flat geometry
with no cone points because the hexagon's corners are
glued in groups of three. The third has the opposite of
a cone point because all six corners of the hexagon are
glued together. (You may want to review the material
preceding Exercise 7.7. See in particular Figure 7.17.)

Both cone points and their opposites can be elim­
inated by utilizing the peculiar properties of the

157
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/<'-------'>~

Figure 11.1 Every surface can be given a
homogeneous geometry.

sphere and the hyperbolic plane. On a sphere, for ex­
ample, larger hexagons have larger angles (just as
larger triangles have larger angles). So to get rid of
the cone points in the first example we need only put
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the hexagon on a sphere and let it grow until its an­
gles are big enough that the cone points disappear.
This occurs when each angle is 180° and the hexagon
fills an entire hemisphere. In the course of eliminating
the cone points we have given the surface a homoge­
neous elliptic geometry. (By the way, do you recognize
this surface?)

To get rid of the opposite of a cone point in the
last example we have to put the hexagon on a hyper­
bolic plane, where larger polygons have smaller an­
gles. If we let the hexagon grow until each angle
shrinks to 60°, then the opposite-of-a-cone-point will
disappear. In the process the surface will acquire a
homogeneous hyperbolic geometry.

Exercise 11.1 The surface in Figure 7.16 has two
cone points. How can they be eliminated? What ho­
mogeneous geometry does this surface acquire? By the
way, what surface is this? 0

Exercise 11.2 For each surface in Figure 11.2 use the
"walking around corners" technique of Chapter 7 to
determine how the polygon's corners fit together and
whether the surface has cone points. Which of the sur­
faces can be given elliptic geometry, which can be
given Euclidean geometry, and which can be given hy­
perbolic geometry? 0

It turns out that every surface can be given some
homogeneous geometry. You can modify the above
technique to find homogeneous geometries for sur-
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Figure 11.2 Find a homogeneous geometry for each of
these surfaces.

faces that are drawn in three dimensions rather
than as glued polygons. For example, say you want to
find a homogeneous geometry for a three-holed dough­
nut surface. First cut the surface into hexagons whose
corners meet in groups of four (Figure 11.3). Deform
each hexagon to be regular (like the hexagons on the
left in Figure 11.1). Regular hexagons have 120° cor­
ner angles-which are too big to fit together in groups
of four-so put each hexagon in the hyperbolic plane
and let it expand until its angles decrease to 90°. Each
hexagon now has both (1) a homogeneous hyperbolic
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Figure 11.3 A three-holed doughnut surface can be divided
into eight hexagons whose corners meet in groups of four.

geometry, and (2) corner angles of 900
, Now reglue the

hexagons to reassemble the surface. Don't imagine
physically regluing them in three-dimensional space
-this can't be done without deforming them and ru­
ining their hyperbolic geometry. Instead imagine each
to be reglued to its previous neighbors in the abstract
sense that a Flatlander leaving one hexagon reap­
pears in a neighboring one. This abstractly reassem­
bled surface has the same global topology as the orig­
inal three-holed doughnut. But unlike the original
three-holed doughnut, whose local geometry varied ir­
regularly from point to point, this new surface has the
homogeneous local geometry of the hyperbolic plane.
The hexagons' 900 corners fit perfectly in groups of
four, so there are no cone points.
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Exercise 11.3 Draw a picture showing how to cut a
four-holed doughnut surface (T2 # T2 # T2 # T2) into
hexagons whose corners meet in groups of four. Do the
same for a two-holed doughnut surface (T2 # T2

). How
many hexagons do you get when you cut up an n-holed
doughnut surface? 0

Any doughnut surface with at least two holes can
be cut into hexagons whose corners meet in groups of
four. Any such surface can, therefore, be given a hy­
perbolic geometry by the above technique. A one-holed
doughnut surface cannot be given a hyperbolic geom­
etry, but it can be given a Euclidean geometry (flat
torus). A zero-holed doughnut surface, i.e. a sphere,
also cannot be given a hyperbolic geometry, but its
usual elliptic geometry is homogeneous. As stated
above, every surface can be given some type of ho­
mogeneous geometry. In Chapter 12 we'll see that no
surface can be given more than one type.

Exercise 11.4 The connected sum of two projective
planes can be cut into two squares (Figure 11.4). Sim­
ilarly, p2 # p2 # p2 can be cut into two hexagons, p2 #
p2 # p2 # p2 can be cut into two octagons, etc. In each
case the polygon's corners meet in groups of four (two
corners on one side of a rim are glued to the two cor­
ners on the opposite side). Which of these surfaces can
be given which homogeneous geometry? 0

Exercise 11.5 Recall that every surface is topologi­
cally equivalent to a surface on the following list:
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Figure 11.4 The connected sum of n projective planes can be
divided into two 2n-gons whose comers meet in groups of four.

Place each surface on the list into an appropriate
box in the table of Figure 11.5 according to its orient­
ability and to which homogeneous geometry it can be
given. 0
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elliptic

Euclidean

hyperbolic

orientable nonorientable

CHAPTER 11

Figure 11.5 Surfaces may be grouped according to
their geometry and orientability.

Except for the sphere and the projective plane,
which have elliptic geometry, and the torus and the
Klein bottle, which have Euclidean (flat) geometry, all
surfaces can be given hyperbolic geometry. When a
surface can be given a certain homogeneous geometry,
one says that the surface "admits" that geometry.
Thus the sphere and the projective plane admit ellip­
tic geometry, the torus and the Klein bottle admit Eu­
clidean geometry, and all other surfaces admit hyper­
bolic geometry.
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The Gauss-Bonnet Formula and
the Euler Number

Every surface has an Euler number, an integer that
contains essential information about the surface's
global topology. ("Euler" is pronounced "oiler.") The
Euler number is easy to compute, and it immediately
predicts which homogeneous geometry the surface
will admit: surfaces with positive Euler number admit
elliptic geometry, surfaces with zero Euler number ad­
mit Euclidean geometry, and surfaces with negative
Euler number admit hyperbolic geometry. In fact, the
Euler number is so powerful that if you know a sur­
face's Euler number and you know whether it's or-
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ientable or not, then you can immediately say what
global topology the surface has! The Gauss-Bonnet
formula relates a surface's Euler number to its area
and curvature. ("Bonnet" is a French name, so the "t"
is silent and the stress is on the second syllable, "buh­
NAY.")

The Euler number is defined in terms of some­
thing called a cell-division, so we'll start by saying just
what cells and cell-divisions are. A zero-dimensional
cell is a point (usually called a vertex). A one-dimen­
sional cell is topologically a line segment (usually
called an edge). And a two-dimensional cell is topolog­
ically a polygon (usually called a face, even if it isn't
the face of anything). A cell-division is what you get
when you divide a surface into cells. It's similar to the
decomposition of a surface into polygons used in Chap­
ter 11 (see Figure 11.3), only now we're interested in
the vertices and edges as well as the faces.

Figure 12.1 shows some typical cell-divisions. The
first is a cell-division of S2 consisting of six vertices,
twelve edges, and eight triangular faces. The second
is a cell-division of T2 # T2 consisting of eight vertices,
sixteen edges, and six faces (the two faces in the mid­
dle-one on top and one on bottom-are topologically
octagons, while the two on each end are topologically
squares). The third is a cell-division of T2. It contains
one vertex-not four-because the four corners of the
square meet at a single point (see inset, and recall
Figure 3.3). Similarly, it contains only two edges, be­
cause the square's four edges are glued together in
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pairs. Finally, this cell-division obviously contains
only one face. The last drawing in Figure 12.1 shows
a cell-division of p2.

Exercise 12.1 Count the number of vertices, edges
and faces in the cell-division of p2 given in Figure
12.l(d). Be careful: vertices and edges on the disk's
circumference are glued together in pairs. IJ

(a) a cell-division of 52

(b) a cell-division of T 2 #T 2

Figure 12.1 Some typical cell-divisions.
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(c) a cell-division of T~

CHAPTER 12

inset:

(d) a cell-division of p~

Figure 12.1 Continued.
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From now on

v = the number of vertices in a cell-division
e = the number of edges in a cell-division
f = the number of faces in a cell-division

169

So, for example, the above cell-division of S2 has v =
6, e = 12 and f = 8, while the cell-division for T2 # T2

has v = 8, e = 16 and f = 6.
By the way, we will usually assume that the edges

in a cell-division are geodesics.
To "discover" the Gauss-Bonnet formula and the

Euler number we'll need a couple facts about poly­
gons. A polygon with n sides is called an n-gon.

Exercise 12.2 In the Euclidean plane the angles of
any triangle add up to exactly 7T radians. Use Figure
12.2 (ignore the formulas) to deduce that the angles
of a Euclidean n-gon add up to (n - 2)7T radians. Thus
the angles of a quadrilateral add up to 27T, the angles
of a pentagon add up to 37T, etc. D

Exercise 12.3 The area of a triangle on a unit sphere
is the sum of its angles minus 7T [in symbols A = (a +
f3 + y) - 7T]. Deduce that the area of an n-gon on a
unit sphere is A = (sum of all angles) - (n - 2)7T.

(Hint: The area of an n-gon is the sum of the areas of
n - 2 triangles, as per Figure 12.2.) By referring to
the previous exercise you can interpret this formula
as saying that the area of a spherical n-gon equals the
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Figure 12.2 An n-gon can be divided into n - 2 triangles.

difference between what the angles actually are and
what they would have been if the n-gon were flat. 0

Exercise 12.4 Find a formula for the area of an n­

gon in the hyperbolic plane. 0

It is now fairly easy to "discover" the Gauss-Bonnet
formula and the Euler number. We'll do it for a sphere
first. Give the sphere a cell-division-any cell-division
will do. The plan is to express the area of the sphere
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as the sum of the areas of the faces of the cell-division,
and then use the formula A = (sum of angles) - (n ­

2)7T to get a new expression for the area of each face.
Then we'll follow our noses and see what happens.

I'll first write out the computation in its entirety,
then I'll go back and explain each of the steps. (For
an extra challenge, you might want to see how much
of the computation you can figure out on your own
before you read the explanations.)

(l) Total _[ area of ] + [ area of ] + 00. + [ area of ]
Area - first face second face last face

(2)

(3)

(4)

(5)

(6)

=[(sum ofangles) -(n -2)1T] +... + [(sum ofangles) -(n -2)1T]
offirstface' oflastface r

[(
sum ofangles) (sum ofangles)]= +00.+ -(n,+n +oo·+n)1T+(2+2+ oo ·+2)1T

offirstface oflast face 2 r

[
sum ofall angles in ]

= th t' II d' .. -(n,+n2 + OO ·+nr)1T+(2+2+ oo ·+2)1Te en Ire ce - IViSlOn

21TV 21Te + 21Tf

= 21T(v-e+f)

Step-by-Step Explanation

Step 1

Step 2

Step 3
Step 4

Write the area of the surface as the sum of
the areas of the faces of the cell-division.
Use the formula A = (sum of angles) - (n ­

2)7T (from Exercise 12.3) to get a new expres­
sion for the area of each face.
Regroup terms.
Note that adding up all the angles of all the
faces is the same as adding up all the angles
in the entire cell-division.
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Step 5 There are three things going on at this step.
Substep A The sum of all the angles in a
cell-division is 21TV. This is because there are
v vertices, and the sum of the angles sur­
rounding each vertex is 27T. For a specific ex­
ample, consider the cell-division of 8 2 shown
in Figure 12.l(a). We could have computed
the sum of all its angles as

(sum of angles in each face) x (number of faces)
= (7T/2 + 7T/2 + 7T/2) x 8 = (37T/2) x 8 = 127T

but instead we compute it as

(sum of angles surrounding each vertex)
x (number of vertices) = 27T X V = 27T X 6 = 127T

Substep B Note that nl + n2 + ... + nf =
2e, where e is the total number of edges in
the cell-division. Each n represents the num­
ber of edges of a certain face. By adding up
all the n's we are adding up all the edges in
the entire cell-division. However, each edge
is the boundary of two faces, so each edge
gets counted twice. This is why nl + n2 +
... + nl equals 2e rather than just e. A spe­
cific example might clarify things. The cell­
division of 8 2 shown in Figure 12.l(a) has 8
faces, each of which has 3 edges. Therefore
it might seem that the cell-division has 8 X

3 = 24 edges. But each edge was counted
twice-really there are only 12 edges.
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Substep C The last part of Step 5 is the
substitution 2 + 2 + ... + 2 = 2f, where f is
the number of faces in the cell-division. This
is easy to understand: back in line (1) there
was one term for each face in the cell-divi­
sion, so now the sum 2 + 2 + .. , + 2 must
contain one 2 for each face.

Step 6 Factor out 27T.

The formula Area = 27T(v - e + f) is a stunning
conclusion! We know that a unit sphere has area 47T,
so the formula says that v - e + f must be two, no
matter what cell-division we choose!

Exercise 12.5 Check that v - e + f = 2 for the cell­
division of Figure 12.l(a). Then draw any other cell­
division of S2 (regular or irregular) and check that
v - e + f = 2 for it as well. 0

The derivation of the formula A = 27T(V - e + f)
did not rely on the fact that the surface in question
was a sphere. It required only that the surface have
the local geometry of a unit sphere. Therefore the
computations apply equally well to a projective plane
of radius one. The projective plane is made from a
hemisphere, which has only half the area of a sphere,
so in this case the formula A = 27T(V - e + f) becomes
27T = 27T(V - e + f) and we conclude that v - e + f
must equal one for every cell-division of p2!
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Exercise 12.6 Check that v - e + f = 1 for the cell­
division of p2 shown in Figure 12.1Cd) and referred to
in Exercise 12.1. Then draw some other cell-division
of p2 and check that v - e + f = 1 for it too. 0

The formula A = 27T(v - e + f) is the Gauss-Bon­
net formula for surfaces with elliptic geometry. The
quantity v - e + f is the Euler number; it is invariably
denoted by the Greek letter X (spelled "chi" and pro­
nounced "kai"). Thus X = v - e + f, and the Gauss­
Bonnet formula for elliptic geometry can be written A
=27TX. Because X = v - e + f =2 for every cell-division
of S2, we say that "the Euler number of a sphere is
two," and write X(S2) = 2. Similarly, a projective plane
has Euler number one and we write X(P2) = 1.

Exercise 12.7 Modify the derivation of A = 27TX to
discover an analogous Gauss-Bonnet formula for sur­
faces with hyperbolic geometry. 0

Exercise 12.8 Use the cell-division of Figure 12.1Cb)
to compute X(T2 # T2). To check your answer, recom­
pute X(T2 # T2) using a different cell-division (for in­
stance, you could divide T2 # T2 into four hexagons as
in Exercise 11.3). 0

Exercise 12.9 What is the area of a two-holed dough­
nut with (standard) hyperbolic geometry? Hint: Com­
bine your answers from the preceding two exer­
CIses. [J
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Exercise 12.10 Compute the Euler number of a
three-holed doughnut. What is the area of a three­
holed doughnut with hyperbolic geometry? 0

There is also a Gauss-Bonnet formula for sur­
faces with Euclidean geometry. In Euclidean geometry
the angles of an n-gon add up to exactly (n - 2)7T (re­
call Exercise 12.2), so for any cell division

(
sum of angles) + ... + (sum of angles) = (n _ 2)7T + ... + (n - 2)7T

of first face of last face 1 k

( sum or all angl.e~ i.n ) =(n + n +... + n )7T - (2 + 2 + '" + 2)7T
the entire cell dIVIsIOn 12k

2~ 2~ 2~

27T(V - e + f) =0

where the steps follow as in the earlier derivation of
the elliptic Gauss-Bonnet formula. Since 0 = 27T(V ­

e + f) = 27TX, it follows that a surface with Euclidean
geometry must have Euler number zero!

Exercise 12.11 Compute the Euler number of a torus
using the cell-division of Figure 12.l(c). Then recom­
pute it using a different cell-division of your own de­
sign. Compute X(K2

) using two different cell-divi­
SIOns. 0

The three Gauss-Bonnet formulas can be sum­
marized as kA =27TX, where k = -1,0, or +1 according
to whether the surface has hyperbolic geometry (neg­

ative curvature), Euclidean geometry (zero curvature)
or elliptic geometry (positive curvature). Later in the
chapter we'll see more general forms of the Gauss-
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Bonnet formula, but even now we can deduce that no
surface admits more than one homogeneous geometry:
the "curvature" of the geometry (k = -1, 0, +1) must
have the same sign as the Euler number. Intuitively,
the surface's global topology determines which homo­
geneous local geometry "fits" it.

Exercise 12.12 In previous exercises you have com­
puted X(S2), X(T2), X(T2 # T2

) and X(T2 # T2 # T2
). What

is the pattern? What do you think X(T2 # T2 # T 2 # T2
)

is? 0

It's easy to derive a general formula for the Euler
number of the connected sum of n tori. In Exercise
11.3 you found that an n-holed doughnut can be di­
vided into 4n - 4 hexagons whose corners meet in
groups of four. Once we figure out how many edges
and vertices such a cell-division has it will be easy to
compute the Euler number.

1. There are 6 X (4n - 4) -:- 2 = 12n - 12 edges.
Reason: Each of the 4n - 4 hexagons contributes six
edges, for a total of 24n - 24, but we have to divide
by two to compensate for the fact that each edge has
been counted twice because it's the border of two hex­
agons.

2. There are 6 X (4n - 4) -:- 4 = 6n - 6 vertices.
Reason: Each of the 4n - 4 hexagons contributes six
vertices, for a total of 24n - 24, but we have to divide
by four to compensate for the fact that each vertex has
been counted four times because it's the corner of four
hexagons.
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The Euler number of the connected sum of n tori
is X = v - e + f = (6n - 6) - (12n - 12) + (4n - 4)
= 2 - 2n in agreement with the pattern established
in Exercise 12.12.

Exercise 12.13 The connected sum of n projective
planes can be divided into two 2n-gons whose corners
meet in groups of four (Figure 11.4). Compute the Eu­
ler number. Complete the table in Figure 12.3. 0

orientabil ity

orientable nonorientable

2

0

-1

-2
\..,
Ql

-3"3
;:,
~ -4
\..,
Ql -5.....,
;:,

I<l
-6

-7

-8

52

p2

T 2

T 2#T 2

T 2#T 2UT 2

T 2#T 2#T 2 #T 2

T2#T2#T2UT2#T2

etc.

Figure 12.3 Euler number and orientability completely
determine a surface's topology.
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A priori it could be very difficult to decide whether
two manifolds are topologically the same. In fact, the
problem of deciding whether two three-dimensional
manifolds are topologically the same is so difficult that
in spite of decades of work by many people, no one has
yet found a foolproof procedure to do it. (There are
many practical procedures to tell two three-manifolds
apart, but each of these procedures can be "fooled" by
some appropriate pair of similar-looking manifolds.)
In this light it is amazing that, according to the table
in Figure 12.3, we can conclusively identify a surface
just by computing its Euler number and deciding
whether it's orientable or not! For example, say a cer­
tain surface has Euler number -4 and is orientable,
then by consulting the table we can conclude that the
surface must be topologically equivalent to T2 # T2 #
T2

• Similarly, a nonorientable surface with Euler num­
ber -2 must be p2 # p2 # p2 # p2.

Exercise 12.14 For each surface in Figure 11.1, com­
pute its Euler number (be careful counting those
edges and vertices!), determine its orientability, and
use the table in Figure 12.3 to identify the surface. Do
the same for the surfaces in Figure 11.2. 0

We'd like to apply the Gauss-Bonnet formula kA
= 27TX to all homogeneous surfaces, not just those with
"standard" elliptic geometry (the geometry of a sphere
of radius one), "standard" hyperbolic geometry, or Eu­
clidean geometry. Consider, for example, how we
might apply the formula to a sphere of radius three.
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A sphere of radius three has the same Euler number
as a sphere of radius one, but its area is nine times
as great. Therefore its "curvature" k must be only one­
ninth as great if the formula kA = 27TX is still to hold.
This is not unreasonable: larger spheres certainly look

less curved than smaller spheres (Figure 12.4). In gen­
eral, we define the curvature of a sphere of radius r

to be k == l/r 2
• A projective plane with the local ge­

ometry of a sphere of radius r also has curvature k =
l/r 2

•

Exercise 12.15 If distance is measured in meters, in
what units is curvature measured? Do the units of kA
match the units of 27TX? 0

Exercise 12.16 Compute the curvature, area, and
Euler number of a projective plane of radius two me­
ters, and check that the Gauss-Bonnet formula holds.
(The area of a sphere of radius r is 4-nr 2

.) 0

We can rephrase the above definition of curvature
by saying that if we start with a sphere of radius one

Figure 12.4 A piece of a small sphere is more curved than a
piece of a large sphere.
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and expand all distances by a factor of r (r > 1 means
the sphere actually expands, r < 1 means it shrinks)
then the resulting sphere will have curvature k =
1/r2

• This rephrased definition is awkward, but, unlike
the first definition, it avoids the concept of "radius"
and can be adapted to the hyperbolic plane. The stan­
dard hyperbolic plane has curvature k = -1. If we
expand all distances in the standard hyperbolic plane
by a factor of r, then the curvature of the resulting
hyperbolic plane is defined to be k = -1/r2

• Any sur­
face with the local geometry of such a hyperbolic plane
also has curvature k = -1/r2

• For example, if T2 # T2

is given a standard hyperbolic geometry, its curvature
is -1, its area is 47T, and the Gauss-Bonnet formula
reads (-1)(47T) = 2m -2). But when the surface is en­
larged by a factor of five, then the curvature becomes
-1/25, the area becomes 25 X 47T = 1007T, and the
Gauss-Bonnet formula reads (-1/25)(1007T) = 27T( -2)
(correct again!).

Exercise 12.17 A society of Flatlanders lives in a uni­
verse with the global topology of T2 # T2 # T2 and a
homogeneous local geometry of constant curvature
-0.00001 (meters)-2. What is the area of their uni­
verse? [J

We can refer to any surface with a homogeneous
geometry as a "surface of constant curvature k," where
the exact value of k depends on the geometry of the
surface in question. We're talking about a surface with
elliptic geometry when k is positive, with Euclidean
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geometry when k is zero, and with hyperbolic geome­
try when k is negative. The closer k is to zero, the
flatter the surface is, and the further k is from zero
(in either direction), the more curved (either positively
or negatively) the surface is. The curvature k is usu­
ally called the Gaussian curvature. We can use this
terminology to summarize our results as

The Unified Gauss-Bonnet Formula
for Surfaces of Constant Curvature

If a surface has area A, Euler number X'
and constant Gaussian curvature k, then

kA = 27Tx

Exercise 12.18 A society of Flatlanders lives on a
surface of area 1,984,707 square meters and constant
Gaussian curvature -3.1658 X 10-6 meters- 2

• What
is the global topology of their surface? tIl

Exercise 12.19 Which is more curved, a p2 # p2 # p2
with area 6 square meters, or a T2 # T2 with area 9
square meters? 0

You might wonder how Flatlanders measure cur­
vature. They can do it by measuring the area and an­
gles of a triangle. Recall that A", = (a + f3 + y) - 7r

for a triangle on a sphere of radius one, A", = 7T - (a
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+ f3 + y) for a triangle on the standard hyperbolic
plane, and a + f3 + Y = 7T for a triangle on a flat
surface. These three formulas can be summarized as
kAI':, = (a + f3 + y) - 7T, where k = -1,0, or +1 ac­
cording to the geometry. Not surprisingly, this formula
is valid for triangles on a surface of any constant
Gaussian curvature k. In fact for k > 0 the formula is
equivalent to the formula AI':, = r 2 [(a + f3 + y) - 7T]

you derived in Exercise 9.3. (By the way, throughout
this chapter AI':, denotes the area of a triangle while A
denotes the area of a whole surface.)

Exercise 12.20 A Flatlander survey team has mea­
sured the angles of a triangle as 34.3017°, 62.5633°,
and 83.1186°, and they have measured its area as 2.81
km2

• Assuming their universe is homogeneous, what
is its Gaussian curvature? (Don't forget to convert the
angles to radians.)

The Flatlanders later discover that their universe
is orientable and has an area of roughly 250,000 km2

•

Deduce the global topology. 0

The Gauss-Bonnet formula can be generalized to
apply to non-homogeneous surfaces whose Gaussian
curvature varies irregularly from point to point. The
idea is that positive and negative curvature cancel,
and the net total curvature equals 27TX. On a dough­
nut surface, for example, the positive curvature can­
cels the negative curvature exactly. (The outer, convex
portion of a doughnut surface has positive curvature,
while the portion around the hole is negatively
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curved.) No matter how you deform a surface, you can
never change its total curvature! When you create
positive curvature in one place, you invariably create
an equal amount of negative curvature someplace
else.

Exercise 12.21 When you make a blip on a surface
you create a small region of positive curvature (Figure
12.5). Where is the compensating region of negative
curvature? OJ

One can use the language of calculus to state this
latest Gauss-Bonnet formula precisely. The total cur­
vature is represented as the integral of the curvature

Figure 12.5 When you make a blip in a surface you create a
small region of positive curvature. Where is the compensating

negative curvature?
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over the surface, and the Gauss-Bonnet formula
reads

I k dA = 27TX

[Mathematically experienced readers can easily jus­
tify the steps in the following proof. The basic idea is
to (1) use a sufficiently fine cell-division to approxi­
mate the integral as a sum, (2) generalize the formula
kA/', = (a + f3 + y) - 7T to apply to n-gons (see Figure
12.2) and substitute it in, and (3) proceed exactly as
in the derivation of the elliptic Gauss-Bonnet for­
mula.

f k dA = L kiA,

= L [(O'j + f3i + ... + gJ - (n, - 2)7T]

= L(all angles) - 7T (L n,) + 7T (L 2)

=27TV - 27Te + 27Tf

= 27TX

Note that when k is constant this formula reduces to
kA = 27TX.]
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Four-Dimensional Space

In Edwin Abbott's book Flatland, A Square's two-di­
mensional world happens to be embedded in a three­
dimensional space. The climax of the book occurs
when a sphere from this three-dimensional space
comes to visit A Square and tell him about the world
of three dimensions. Not surprisingly, A Square finds
the sphere's explanations completely unenlightening.
So "the sphere, having in vain tried words, resorts to
deeds" (Flatland, p. 77). He goes over to A Square's
locked cupboard, picks up a tablet, moves it over a

187
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little ways, and plunks it back down into the plane of
Flatland (Figure 13.1).

Naturally enough, A Square is horrified. As far as
he can tell the tablet somehow dematerialized, passed
through the wall of his locked cupboard in this con­
dition, and then rematerialized on the other side of
the room. This was very, very disconcerting.

Not that we can blame poor A Square. Throughout
his whole life he's experienced only forward/backward
and left/right motions, so it's not surprising that he
has trouble dealing with what we Spacelanders would
call up/down motions. When the tablet moves away
from the cupboard without moving forwards, back­
wards, to the right, or to the left, it's only natural for
him to assume that it stayed put but somehow became
ethereal enough to subsequently pass through the
wall (Figure 13.2).

Imagine how you would feel if some strange crea­
ture, after rambling on for a while about four-dimen­
sional space, were to remove a pitcher of juice from
your fridge and place it on your table-without open­
ing the refrigerator door! The explanation, of course,
is that the creature lifts the pitcher "up" into the
fourth dimension passes it "over" the refrigerator wall,
and lowers it back "down" into our three-dimensional
space. Compare Figure 13.3 to Figure 13.2.

In the next chapter we'll use four-dimensional
space to define the hypersphere. The hypersphere re­
quires four dimensions for its definition just as an or­
dinary sphere requires three dimensions. First,



The sphere picks
up the tablet,

moves it over, and lowers it
back down.

Figure 13.1 How the sphere removed the tablet from the cupboard.

The tablet
dematerializes,

passes through the wall
of the cupboard in its
dematerialized state,

D

and rematerializes
on the opposite side

of the room.

•

Figure 13.2 A Square's erroneous impression of the incident.
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The spirit lifts
the pitcher "up"

into the fourth
dimension,

)

CHAPTER 13

and "lowers" it
back "down".

)
(~

Figure 13.3 How the four-dimensional creature removes the
juice pitcher from the refrigerator without opening the door.

though, we'll take a look at some other four-dimen­
sional phenomena, and also deal with a few philo­
sophical questions.

OTHER FOUR-DIMENSIONAL PHENOMENA

On p. 11 of Geometry, Relativity and the Fourth Di­
mension, R. Rucker tells of a mystic name Zollner who
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thought that spirits were four-dimensional beings ca­
pable of snatching up three-dimensional objects in
much the same way that the sphere snatched up A
Square's tablet:

... Prof. Zollner was also concerned with getting the
spirits to do something that would provide a lasting
and incontrovertible proof of their four-dimensionality.
His idea was a good one. He had two rings carved out
of solid wood, so that a microscopic examination would
confirm that they had never been cut open. The idea
was that spirits, being free to move in the fourth di­
mension, could link the two rings without breaking or
cutting either one. In order to ensure that the rings
had not been carved out in a linked position, they were
made of different kinds of wood, one alder, one oak.
Zollner took them to a seance and asked the spirits to
link them, but unfortunately, they didn't.

Figure 13.4 shows how the spirits were supposed to
link the two rings.

Exercise 13.1 How could four-dimensional spirits
untie a knotted loop of rope such as the one in Figure
13.5? 0

Exercise 13.2 In Chapter 4 we could embed a Klein
bottle in E 3 only by allowing it to intersect itself (recall
Figure 4.9). Explain how to embed a Klein bottle in
E 4 with no self-intersection. ("Ordinary" four-dimen­
sional space is abbreviated E 4

, just as ordinary three­
dimensional space is E 3

, a plane is E 2
, and a line is

E 1
.) 0
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The spirit pulls one
ring "up" into the
fourth dimension,

places it directly
"above" its desired

position,

and "lowers" it back
"down" into our

three-dimensional world.
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Figure 13.4 A four-dimensional spirit could link two
rings together.
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Figure 13.5 How could a four-dimensional spirit untie this
"figure-eight" knot?

Before moving on I would like to mention one
more four-dimensional curiosity: a sphere can be knot­
ted in four-dimensional space just like a circle can be
knotted in three-dimensional space. Give some
thought to how A Square imagines a knotted circle
(Figure 13.6) and then try to understand the knotted
sphere by analogy (Figure 13.7).

PHILOSOPHICAL COMMENTS

(1) Many authors claim that you cannot visualize four­
dimensional space. This simply isn't true. (It is true
that you must visualize E 4 differently than E 3

.) My
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Figure 13.6 To imagine a knotted circle in E 3
, A Square first

draws a (topological) circle that crosses itself. At each
crossing point he then imagines one piece of the circle to pass
over the other piece in the third dimension. We Spacelanders

can easily visualize the resulting knotted circle.

personal oplmon is that your mind is as capable of
visualizing four dimensions as three. The reason three
dimensions is so much easier in practice is that the
real universe is three-dimensional: from the day you
were born you've been getting practice in understand­
ing three dimensions. At first visualizing four dimen­
sions is difficult and tiring-just as newborn babies
no doubt find three dimensions confusing at first. With
practice it becomes easier.
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Figure 13.7 To imagine a knotted sphere in E\ we
Spacelanders first draw a (topological) sphere that intersects
itself. Along each circle of intersection we then imagine one

sheet to pass over the other in the fourth dimension.

(2) Physicists often combine three-dimensional
space and one-dimensional time into a four-dimen­
sional entity called spacetime. I originally intended to
describe this idea in detail here, but I don't think I
can improve on the discussion given in Chapter 4,
"Time as a Higher Dimension," of R. Rucker's Geom­
etry, Relativity and the Fourth Dimension. To give you
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Figure 13.8 Figure 78 from R. Rucker's Geometry, Relativity
and the Fourth Dimension.
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the general idea right here and now, I've reproduced
Figure 78 from that chapter (it appears here as Figure
13.8), along with the following explanation:

To get a good mental image of space-time, let us return
to Flatland. Suppose that A. Square is sitting alone in
a field. At noon he sees his father, A. Triangle, ap­
proaching from the west. A. Triangle reaches A.
Square's side at 12:05, talks to him briefly, and then
slides back to where he came from. Now, if we think
of time as being a direction perpendicular to space,
then we can represent the Flatlanders'time as a di­
rection perpendicular to the plane of Flatland. Assum­
ing that "later in time" and "higher in the third di­
mension" are the same thing, we can represent a
motionless Flatlander by a vertical worm or trail and
a moving Flatlander by a curving worm or trail, as we
have done in Figure 78.

We can think of these 3-D space-time worms as ex­
isting timelessly.

Rucker goes on to explain the implications this idea
has for consciousness, the perception of time, and the
nature of reality. This is thought-provoking stuff-I
recommend it highly. (If you're in a hurry, you can
easily read that one chapter independently of the rest
of the book.)

In Chapter 14 we'll stick to imagining four dimen­
sions in a purely spatial way-time won't enter the
picture at all.

(3) A final metaphysical comment: The four-di­
mensional space we imagine is purely a mathematical
abstraction. I make no claim that it exists physically
like the three-dimensional universe does.
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The Hypersphere

Roughly speaking, a sphere is like a circle, only one
dimension bigger. A hypersphere, or three-sphere, is
the analogous three-manifold one dimension bigger
than a sphere. Compare the formal definitions of the
circle, the sphere, and the hypersphere:

1. The unit circle (= one-sphere = 8 1
) is the set

of points in E 2 that are one unit away from
the origin. Anything topologically equivalent
to it is called a topological circle and anything

199
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geometrically equivalent is called a geometri­
cal circle.

2. The unit sphere (= two-sphere = S2) is the set
of points in E 3 that are one unit away from
the origin. Anything topologically equivalent
to it is called a topological two-sphere and
anything geometrically equivalent is called a
geometrical two-sphere.

3. The unit hypersphere (= three-sphere = S3) is
the set of points in E 4 that are one unit away
from the origin. Anything topologically equiv­
alent to it is called a topological three-sphere
and anything geometrically equivalent IS

called a geometrical three-sphere.

A Warning on Terminology: Our two-sphere is de­
fined in three-dimensional space, where it is the
boundary of a three-dimensional ball. This terminol­
ogy is standard among mathematicians, but not
among physicists. So don't be surprised if you find peo­
ple calling the two-sphere a three-sphere. They're in­
terested in the dimension of the space that the two­
sphere happens to be in, while we're interested in the
intrinsic dimension of the two-sphere itself. (A two­
sphere is still intrinsically two-dimensional even if it's
sitting in E 4

, like the knotted two-sphere of Figure
13.7.) Similar comments apply to the three-sphere.
Also note carefully the distinction between "sphere"
and "ball" as used above. Some people use "sphere" to
mean "ball," not us. We do, however, use "disk" and
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"ball" interchangeably ("disk" sounds better in two di­
mensions and "ball" sounds better in three, but the
concept is essentially the same).

How can one visualize a three-sphere? To answer
this question, let's take a look at how A Square might
visualize a two-sphere. Assume for the moment that
he's interested only in its topology and not its geom­
etry. He can make things easy for himself by flatten­
ing the sphere into the plane of Flatland, as shown in
Figure 14.1. The northern and southern hemispheres
each become a disk in Flatland. The two disks are
superimposed and joined together along their circular
boundary (the equator). Thus, the task of visualizing
the two-sphere has been reduced to the task of visu­
alizing two superimposed disks. A Square has to re­
member, though, that the "crease" at the equator
doesn't exist in the real two-sphere-it's merely an
artifact of the flattening process. This method of vi­
sualizing the two-sphere is called the double disk
method, as is the analogous method of visualizing the
three-sphere (see Exercise 14.1).

Exercise 14.1 Imagine a three-sphere topologically
as two superimposed solid balls in E3. These balls are
joined together along their spherical boundary. (The
equator of S3 is a two-sphere!) 0

Exercise 14.2 To recover the geometry of the two­
sphere, A Square imagines one disk bending upward
into the third dimension and the other disk bending
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The Original Two-Sphere

Push the northern
hemisphere down.

1\ Push the southernV hemisphere up.

CHAPTER 14

The Flattened Version

Figure 14.1 A Square visualizes the two-sphere topologically
as two superimposed disks.

downward. Modify your mental image from Exercise
14.1 to let one solid ball bend "upward" into the fourth
dimension, and the other ball bend "downward." 0

Note: Some readers may understand the three­
sphere's global topology more easily by imagining it as
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two nonsuperimposed solid balls whose surfaces are
abstractly glued together (Figure 14.2).

Exercise 14.3 Pretend you live in a fairly small
three-sphere. What will eventually happen to you if
you keep blowing air into an easily stretchable bal­
loon? (Hint: What will eventually happen to A Square
in Figure 14.3?) 0

Figure 14.4 shows three great circles on a two­
sphere (they happen to be the intersection of the two­
sphere with each of the coordinate planes). We Space­
landers visualize these great circles quite easily
because we can draw the two-sphere in three-dimen­
sional space. Flatlanders, on the other hand, draw the
two-sphere flattened into their plane. The equator is
still a circle, but the meridians look like line seg­
ments. The Flatlanders must remember that each ap­
parent line segment is really two line segments, one
arching upward into the third dimension and the
other arching downward. Two line segments together
form a perfect geometrical circle.

Figure 14.5 shows four "great two-spheres" on a
three-sphere (they happen to be the intersection of the
three-sphere with each of the coordinate hyper­
planes). It's hard for us Spacelanders to visualize the
great two-spheres because the three-sphere they lie in
has been flattened down into our three-dimensional
space. Only the "equatorial" two-sphere still looks like
a sphere. Each of the others now looks like a disk.
Each is really two disks, of course, one arching up-
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Figure 14.2 A two-sphere may be represented topologically as
two disks with edges glued together. Similarly, a three-sphere

may be represented topologically as two solid balls with
surfaces glued together.
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Figure 14.3 A Square inflates a balloon on a two-sphere.

ward into the fourth dimension and the other arching
downward. Two disks together form a perfect geomet­
rical sphere.

The preceding two paragraphs show how every
slice of a three-sphere is a two-sphere, just as every
slice of a two-sphere is a circle.

If we do not allow it to stretch, a piece of a three­
sphere will split open in Euclidean space (Figure 14.6)
just as a piece of a two-sphere splits open in the plane
(Figure 9.8).
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meridians

equator

Figure 14.4 The first drawing is a Spacelander's view of
three great circles on a two-sphere. The second drawing is a
top view of the two-sphere after it has been flattened into a

horizontal plane. Only the equator is still a circle. Each
meridian has been flattened into a line segment.
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Figure 14.5 This drawing represents four "great two-spheres"
in a hypersphere. It is completely analogous to the second

drawing in Figure 14.4. The surface of the ball is the three­
sphere's "equator." Each disk is the flattened remains of a two­

sphere, so imagine each disk as two disks, one bending
"upward" and the other "downward" into the fourth dimension.

Polyhedra in a three-sphere have larger angles
than do polyhedra in Euclidean space (Figure 14.7). It
turns out that polyhedra in "hyperbolic space" (Chap­
ter 15) have smaller angles than do polyhedra in Eu­
clidean space. We'll utilize these facts to find homo­
geneous geometries for certain three-manifolds
(Chapter 16), just as we found homogeneous geome­
tries for surfaces (Chapter 11).



208 CHAPTER 14

Figure 14.6 If we do not allow it to stretch, a piece of a
three-sphere will split open in Euclidean space. Note that

every cross-section of this split open ball is a split open disk
like the one in Figure 9.8.

Say our universe is a three-sphere. We can mea­
sure its curvature by measuring the curvature of a
great two-sphere. And we can measure the curvature
of a great two-sphere by measuring the angles and
area of a triangle lying on it. If we don't care which
great two-sphere we are measuring-and we don't be­
cause they are all the same-then we can measure
any triangle we want.

Exercise 14.4
angle roughly

Gauss measured the angles of a tri­
100 Ian on a side, probably using in-
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Figure 14.7 Polyhedra in a three-sphere have larger angles
than do polyhedra in ordinary Euclidean space, just as

polygons on a two-sphere have larger angles than do polygons
in the Euclidean plane. Note: When representing a spherical
polygon in the Euclidean plane it is customary to make the

sides bulge so that the angles come out right. On the sphere
itself, of course, the polygon's sides do not bulge-they are

perfect geodesics. Similarly, when representing a polyhedron
from the three-sphere it is customary to make the sides bulge

so that the edge and corner angles come out right, even
though the sides do not bulge in the three-sphere itself.

struments accurate to, say, 10 minutes of arc. What is
the smallest curvature he could detect? What is the
radius of a two-sphere with this curvature? The radius
of any great two-sphere is the same as the radius of
the three-sphere it lies in, so the answer to the pre­
vious question represents the radius of the largest 8 3

_

universe whose curvature Gauss could detect. Note
that small three-spheres have large curvature and
large three-spheres have small curvature, so it's eas­
ier to detect the curvature of a small 8 3-universe than
a large one. Do you think it's likely that the universe
is this small?
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I'm sure Gauss was well aware of the above con­
siderations. He surely wasn't trYing to measure the
curvature of the universe, but was instead interested
in measuring the curvature of Earth's ellipsoidal (not
spherical!) surface. By the way, modern cosmologists
attempt to measure the curvature of the universe by
very different means (Part IV). 0

PROJECTIVE THREE-SPACE

Back in Chapter 4 you constructed the projective
plane (P2) by gluing together opposite points on the
circular rim of a hemisphere of S2 (recall Figure 4.11).
The hemisphere's local geometry matched up nicely
across the "seam" (Figure 4.12), so you got a surface
with the same local geometry as S2, but a different
global topology.

You can make projective three-space (P3) in the
same way. Start with a hemisphere of S3 and glue to­
gether opposite points on its (spherical) boundary. It
should be clear (at least from analogy) that the hemi­
sphere's local geometry matches up nicely across the
spherical "seam." Thus p 3 is a three-manifold with the
same local geometry as S3, but a different global to­
pology.

In Chapter 4 we noted that for topological pur­
poses we can think of p 2 as a disk with opposite
boundary points glued, and we can think of p3 as a
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Figure 14.8 When you cross the "seam" of p3 you come back
with your head where your feet were and your left side where

your right side was. In effect you rotate a half-turn.

solid ball with opposite boundary points glued. The
projective plane is nonorientable: when a Flatlander
crosses the "seam" he comes back left-right reversed.
Projective three-space, on the other hand, is orient­
able. When you cross the "seam" you come back both
left-right reversed and top-bottom reversed. In effect,
you get mirror-reversed two ways, so you come back
as your old self! The only difference is that you've been
rotated 180°. (See Figure 14.8.)
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Figure 14.9 Does the cylinder become a torus or a Klein
bottle in projective three-space?

Exercise 14.5 See Figure 14.9. Does the cylinder
form a torus or a Klein bottle in projective three­
space? Is it orientable? Is it two-sided? 0

Exercise 14.6 Find a copy ofP2 embedded in p 3
• Is it

orientable? Is it two-sided? 0
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Hyperbolic Space

Hyperbolic space is just like the hyperbolic plane, only
one dimension bigger. In fact, every two-dimensional
slice of hyperbolic space is a hyperbolic plane (Figure
15.1) in the same way that every two-dimensional
slice of Euclidean space is a Euclidean plane and
every two-dimensional slice of a hyperspace is a two­
sphere. Hyperbolic space is homogeneous. It is often
abbreviated as H 3

•

A polyhedron in H 3 has smaller angles than a
polyhedron in Euclidean space (Figure 15.2). This fact

213
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Figure 15.1 Every slice of hyperbolic space is a
hyperbolic plane.

will be crucial in the next chapter when we find ho­
mogeneous geometries for certain three-manifolds.

Figure 15.3 shows a series of successively larger
hyperbolic triangles. Note that larger triangles have
smaller angles. The figure sheds some light on why no
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Figure 15.2 Polyhedra in hyperbolic space have smaller
angles than do polyhedra in Euclidean space, just as polygons
in the hyperbolic plane have smaller angles than do polygons

in the Euclidean plane. Note: When representing a "hyperbolic
polygon" in the Euclidean plane it is customary to make the
sides bend inward so that the angles come out right. In the
hyperbolic plane itself, of course, the polygon's sides do not
bend inward-they are perfect geodesics. Similarly, when

representing a polyhedron from hyperbolic space it is
customary to make the sides bend inward so that the edge and

corner angles come out right, even though the sides do not
bend inward in hyperbolic space itself.

triangle in the (standard) hyperbolic plane can have
area greater than '"fr. When you try to draw a triangle
with more area you find that the triangle's sides don't
meet. In other words, you end up with three nice
straight geodesics, no two of which intersect! The hy­
perbolic plane has some strange properties.

Imagine that you have encountered a party of ex­
tracosmic aliens. The aliens come from a highly
curved hyperbolic universe, and are in our universe
only for a visit. They have obviously mastered the se­
crets of interuniversal travel. You have heard that hy-
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Figure 15.3 A series of successively larger hyperbolic
triangles represented in the Euclidean plane. As explained in

the caption to Figure 15.2, the triangles' sides don't really
bend inward in the hyperbolic plane itself, but the angles

shown here are correct.

perbolic universes are somehow more spacious than
Euclidean ones, so you ask the aliens to take you
home with them. They oblige. When you get to their
universe you look out into the sky at a distant galaxy.
The light reaching your eyes naturally travels along
nice straight geodesics, but in hyperbolic space geo-
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desics do weird things. The light reaches your left eye
at a slightly different angle than it reaches your right
eye: you have to look somewhat cross-eyed to focus on
the galaxy! (See Figure 15.4.) Your brain, used to in­
terpreting visual data in an approximately Euclidean
universe, decides that since you have to look cross­
eyed the galaxy must be very close. In fact everything
in the hyperbolic universe seems to be within a few
meters of you. Even though it's really very spacious,
a hyperbolic universe can appear very cramped.

The object.
IS very
close.

Figure 15.4 According to your binocular vision, very distant
objects look close.
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Exercise 15.1 Since the effects described in the pre­
ceding paragraphs have not been observed in the real
universe, does this mean that it cannot have the ge­
ometry of H 3? D

Exercise 15.2 How would an H 3-universe appear to
its own inhabitants? (Hint: It needn't appear the same
to them as it would to an outsider!) 0

If you have a pair of red-blue glasses, you
can explore hyperbolic space in

stereoscopic 3-D using interactive 3-D
graphics software available for free at

www.northnet.org/weeks/SoS.
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Geometries on Three-Manifolds I

The Seifert-Weber space consists of a dodecahedron
whose opposite faces are glued with three-tenths
turns (Figure 16.1). This three-manifold fails to have
a Euclidean geometry for essentially the same reason
that the third surface in Figure 11.1 failed to have
one: the dodecahedron's twenty corners all come to­
gether at a single point, and they are much too fat to
fit together properly. The solution is the same as in
Chapter 11. Put the dodecahedron in hyperbolic space
and let it expand until its corners are skinny enough
that they do fit together (Figure 16.2). A Seifert-We-
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Figure 16.1 In the Seifert-Weber space every face of the
dodecahedron is glued to the opposite face with a three-tenths
clockwise turn. [A technical point: You might think that gluing
the top to the bottom with a clockwise turn would be the same
as gluing the bottom to the top with a counterclockwise turn,
but this is not the case. Study the figure and you will see that
gluing the top to the bottom with a clockwise turn (as viewed
from above) works out the same as gluing the bottom to the
top with a clockwise turn (as viewed from below), Thus the
description of the Seifert-Weber space is self-consistent.]

ber space made from the appropriate dodecahedron
has a homogeneous hyperbolic geometry.

The Poincare dodecahedral space consists of a do­
decahedron whose opposite faces are glued with one­
tenth turns (Figure 16.3). This three-manifold fails to
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Figure 16.2 Let a dodecahedron expand in hyperbolic space
until its corners are the right size to all fit together at a single

point. The angles shown here are accurate, but in hyperbolic
space itself the dodecahedron's faces do not bend inward.
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Figure 16.3 In the Poincare dodecahedral space every face of
a dodecahedron is glued to the opposite face with a one-tenth

clockwise turn.

have a Euclidean geometry for essentially the same
reason that the first surface in Figure 11.1 failed to
have one: the dodecahedron's twenty corners come to­
gether in five groups of four corners each, and they
are a little too skinny to fit together properly. The so­
lution is the same as in Chapter 11. Put the dodeca­
hedron in a hypersphere and let it expand until its
corners are fat enough that they do fit together (Fig­
ure 16.4). A Poincare dodecahedral space made from
the appropriate dodecahedron has the homogeneous
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Figure 16.4 Let a dodecahedron expand in a three-sphere
until its corners are the right size to fit together in groups of

four. The angles shown here are accurate, but in the
three-sphere itself the dodecahedron's faces do not

bulge outward.
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geometry of the hypersphere (i.e. three-dimensional
elliptic geometry).

Both the Seifert-Weber space and the Poincare
dodecahedral space appeared in 1933 in C. Weber and
H. Seifert's article "The two dodecahedral spaces" (Die
beiden Dodekaederraume, Mathematische Zeitschrift,
Vol. 37, no. 2, p. 237). The Poincare dodecahedral
space is named in honor of Henri Poincare (pro­
nounced "pwan-ka-RAY") because it is topologically
the same as a three-manifold Poincare discovered in
the 1890s. Poincare, though, didn't know that his
manifold could be made from a dodecahedron! He was
interested in it because it had certain properties in
common with the hypersphere, namely the same
"homology." (He had previously thought that the only
three-manifold with the homology of the three-sphere
was the three-sphere itself.)

At this point it's appropriate to note that in the
three-torus a cube's eight corners all come together at
a single point, and they fit perfectly (Figure 16.5). This
is why the three-torus has Euclidean geometry. By the
way, all the other three-manifolds in Chapter 7 have
Euclidean geometry for the same reason.

We have seen that the Seifert-Weber space ad­
mits three-dimensional hyperbolic geometry, the Poin­
care dodecahedral space admits three-dimensional
elliptic geometry, and the three-torus admits three­
dimensional Euclidean geometry. It would be nice if
every three-manifold admitted one of these three ge­
ometries, but the actual situation is not that simple.



GEOMETRIES ON THREE-MANIFOLDS I 225

Figure 16.5 Eight corners of a cube fit together perfectly just
as they are.
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For example, 8 2 X 8 1 has a homogeneous geometry
different from the three just mentioned. It was only
in the 1970s that people have come to understand the
situation more fully. Chapter 18 explains what is
known and/or conjectured. Chapter 17 provides the
examples necessary for Chapter 18. Chapters 19-22
discuss the nature of the universe, drawing on what
you now know about three-manifolds. Chapters 19­
22 do not depend on Chapters 17 or 18, so you can
read them immediately if you want.

Exercise 16.1 The tetrahedral space is a tetrahedron
with faces glued as indicated in Figure 16.6(a). How
do the tetrahedron's corners fit together, i.e. how
many groups of how many corners each? (Hint: 8tart
in one corner and see which of the other three corners
you can reach by passing through a face.) Do the cor­
ners have to expand or shrink to fit properly? What
homogeneous geometry does this manifold admit? 0

Exercise 16.2 The quaternionic manifold is a cube
with each face glued to the opposite face with a one­
quarter clockwise turn (Figure 16.6(b)). How do the
cube's corners fit together? What homogeneous ge­
ometry does this manifold admit? By the way, the
manifold's funny name arises from the fact that its
symmetries can be modelled in the quaternions, a
number system like the complex numbers but with
three imaginary quantities instead of just one. 0
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You can explore the 3-manifolds of this
chapter using interactive 3-D graphics

software available for free at
www.northnet.org/weeks/SoS .
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Figure 16.6 The manifolds for Exercises 16.1, 16.2, and 16.3.

Exercise 16.3 The octahedral space is an octahedron
with each face glued to the opposite face with a one­
sixth clockwise turn (Figure 16.6(c». Find a homoge­
neous geometry for the octahedral space. (This exer­
cise is a little harder than the preceding two. Even
after you figure out how the corners fit, it's still not
obvious whether they are too fat, too skinny, or just
right. You can work it out by elementary means, but
you have to get your hands dirty.) 0
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Bundles

A cylinder is the product of an interval and a circle
because it is both an interval of circles and a circle of
intervals (Figure 17.1). (For a review of products, see
Chapter 6.)

A Mobius band is also a circle of intervals (Figure
17.2), but it fails to be an interval of circles. It is al­
most a product, but not quite. It therefore qualifies as
an interval bundle over a circle. In general a bundle
over a circle is a bunch of things smoothly arranged
in a circle, whether or not they form a product. For
example, the quarter turn manifold from Exercise 7.3
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Figure 17.1 A cylinder is both an interval of circles and a
circle of intervals.

is a torus bundle over a circle. Figure 17.3 reviews the
construction of the quarter turn manifold: the front
and back, and left and right, faces of a cube are glued
in the straightforward way, but the top is glued to the
bottom with a quarter turn. Figure 17.4 will help you
understand the manifold's global topology. Every flat
three-manifold in Chapter 7 was either a torus bundle
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Figure 17.2 A Mobius band is almost the product of an
interval and a circle.

231

over a circle (T2-bundle over 8 1
) or a Klein bottle bun­

dle over a circle (K2-bundle over 8 1
).

Exercise 17.1 The lf3 turn manifold, introduced in
Exercise 7.13, is a (hexagonal) torus bundle over a cir­
cle. Draw a picture of it analogous to the picture of
the lf4 turn manifold in Figure 17.4. Do the same for
the lf6 turn manifold. 0

The lf4 turn manifold, the lf3turn manifold and the
1/6 turn manifold can each be represented as a circle
of tori in three-dimensional space, as in Figure 17.4.
On the other hand, when the top of a cube or prism
is glued to the bottom with a side-to-side flip, then you
cannot physically carry out the gluing in three-dimen­
sional space to get a picture like Figure 17.4 and you
must fall back to a picture like Figure 17.3 to under­
stand the bundle more abstractly.
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Figure 17.3 Opposite sides of the cube are glued in the
straightforward way, but the top is glued to the bottom with a

quarter turn. Each horizontal layer forms a torus.

Exercise 17.2 K 2 x 8 1 is both a T 2-bundle over 8 1 and
a K2-bundle over 8 1

• Draw one picture representing it
as a circle of tori, and another representing it as a
circle of Klein bottles. Your pictures should be analo­
gous to Figure 17.3 rather than 17.4. (You can draw a
picture analogous to Figure 17.4 for the K2-bundle but
not for the T2-bundle.) Figure 17.5 reviews the con­
struction of K2 X 8 1

• 0
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Figure 17.4 If you physically glue a cube's top to its bottom
with a quarter turn you'll get a solid like this. Technically the

solid has only one side which wraps around four times. But
locally it has four sides. If you glue each side to its opposite

you convert each square cross-section into a torus.
Topologically you get the quarter-turn manifold, a circle of tori

with a quarter turn in it. Note that the quarter turn is a
global property of the manifold, and has nothing to do with
any particular cross-section. Compare this example to the

Mobius strip. Technically the Mobius strip has one edge which
wraps around twice, but locally it has two edges. What surface

do you get when you glue together opposite edges of the
Mobius strip?

Exercise 17.3 An octagon with opposite edges glued
is topologically a two-holed doughnut surface (Figure
17.6). Therefore gluing opposite side faces of an octag­
onal prism (Figure 17.7) produces a two-holed dough­
nut surface cross an interval, i.e. (T2 # T2

) X I. De­
scribe several ways in which you can glue the prism's
top to its bottom to make a two-holed torus bundle
over a circle. D
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Figure 17.5 To construct K2 X 8 1 you glue the cube's top to
its bottom, and its left side to its right side, in the

straightforward way, but you glue its front to its back with a
side-to-side flip.

Each of the following exercises involves a bundle
that is difficult to draw in three-dimensional space,
but can be described fairly easily by gluings. If you
get stuck, look up the answers.

Exercise 17.4 Name two surfaces that are circle
bundles over circles. (One is a product and one
isn't.) IIdI
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Figure 17.6 If you physically glue together opposite edges of
an octagon, you'll get a two-holed doughnut surface.
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Figure 17.7 An octagonal prism with opposite sides glued is
a two-holed doughnut surface cross an interval.

Exercise 17.5 A solid doughnut is topologically a disk
cross a circle (D2 X 8 1

); its surface is topologically a
torus. Describe how you would construct a solid Klein
bottle, a disk bundle over a circle whose boundary is
a Klein bottle. 0

Exercise 17.6 Describe two ways in which 8 2 X I can
be glued up to make an 8 2-bundle over 8 1

• One of these
bundles is orientable (it's 8 2 X 8 1

). The other one is
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nonorientable-in fact, it's the three-dimensional an­
alog of a Klein bottle, so we'll denote it K3

•

What would a "solid" S2 X S1 and a "solid" K3 be
like? I put "solid" in quotes here because S2 X S1 and
K3 are already three-dimensional (= solid); the mani­
folds referred to are four-dimensional. Perhaps "hy­
persolid" would be more accurate? D

Exercise 17.7 Which of the flat manifolds of Chapter
7 are K2-bundles over S1? 0

So far we've concentrated on surface bundles over
circles. Now we'll switch things around and look at
circle bundles over surfaces. Here's how to construct
a simple example of one.

Start by packing together lots of spaghetti into
the shape of a cube-the spaghetti should all be
standing on end as in Figure 17.8. Thus, mathemati­
cally speaking we have a square of intervals. Glue the
top of the cube to the bottom. Intrinsically this
changes each piece of spaghetti from an interval into
a circle, so we now have a square of circles. Glue the
cube's sides together in the standard way, so that the
circles, rather than being arranged in a square, are
now arranged in a torus configuration. Voila-a circle
bundle over a torus! (The underlying three-manifold
is, of course, just our old friend T3

.)

Exercise 17.8 Construct a circle bundle over T2 # T2.
Start with spaghetti packed in the shape of an octag-
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Figure 17.8 A cube filled with spaghetti standing on end.

onal prism (Figure 17.7). The resulting three-manifold
will be (T2 # T2

) X 8 1
• 0

When we draw a picture of a circle bundle over a
surface we usually won't draw in the vertical pieces
of spaghetti-they tend to clutter the picture and ob­
scure whatever else is going on. But they're there. And
even if nothing is said explicitly, the top of the cube
or prism will always be glued to the bottom, so as to
convert each piece of spaghetti into a circle.
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Here's a different circle bundle over a torus. Start
with the cube of Figure 17.8 and glue the top to the
bottom, and the left side to the right side, in the
straightforward way, but glue the front to the back
with a top-to-bottom flip. You'll get a torus of circles,
but the circles will connect up in a strange way. (If

you pass through the right face of the cube and return
from the left you'll find that the circles connect up
normally, but if you pass through the back face and
return from the front face you'll find they connect up
with a flip.) The underlying three-manifold in this
case is nonorientable-it's K2 X S1.

Exercise 17.9 Can you find examples of orientable
and/or nonorientable circle bundles over the Klein bot­
tle? (Hint: The manifolds of Figure 8.2 will come in
handy.) 0

Now for a really weird example! The following cir­
cle bundle over a torus, which we'll call a twisted
(three-dimensional) torus, will playa crucial role in
the theory of geometries on three-manifolds (Chapter
18).

Start with a cube as before, and, of course, glue
the top to the bottom to convert the vertical intervals
into circles. The sides will be glued not in any of the
usual ways, but with a "shear" (Figure 17.9). By this
we mean that each vertical circle gets glued to the
corresponding vertical circle on the opposite side of
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Figure 17.9 A shear.

the cube, only they get slid up or down in such a way
that a horizontal line segment gets tilted. Note that
for this shearing to work, it's imperative that the top
of the cube be glued to the bottom. To make the
twisted torus, glue opposite sides of the cube with a
shear as prescribed in Figure 17.10.

This is a funny sort of gluing, and it's not at all
clear that what we get is even a manifold. The follow­
ing exercise deals with this (potential) problem.

Exercise 17.10 In an attempt to construct a circle
bundle over a torus, the opposite faces of the cube in
Figure 17.11 are glued so that the tilted lines match
up. Investigate how the four vertical edges fit to­
gether. You'll discover a problem. Now check that this
problem doesn't arise when the four edges come to­
gether to form the twisted torus. Conclude that the
twisted torus is a bona fide three-manifold and is, in
fact, a circle bundle over T2

. 0
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Figure 17.10 To make a twisted torus, glue the cube's
opposite sides with a shear so that the tilted line segments

match up. (Note: The apparently broken line segment on the
right side stops being broken when the cube's top is glued

to its bottom.)

So the twisted torus is a legitimate three-mani­
fold. But is it really something new, or is it merely a
distorted representation of good old T3? Ifyou try look­
ing for any sort of horizontal cross-section in the
twisted torus, you'll quickly become convinced that
this manifold definitely isn't T3

•
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Figure 17.11 Here opposite faces are glued with only half as
much shear as in the twisted torus.

Exercise 17.11 Construct a circle bundle over a torus
that's twice as twisted as the twisted torus described
above. 0

Exercise 17.12 Construct a twisted circle bundle
over T 2 # T 2

• 0

Exercise 17.13 We constructed the twisted torus as
a circle bundle over T2

• Is it also a T 2-bundle over a
circle? 0
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Geometries on Three-Manifolds II

In Chapter 11 we found that every surface admits one
of the three homogeneous two-dimensional geome­
tries. The sphere and the projective plane admit ellip­
tic geometry, the torus and the Klein bottle admit Eu­
clidean geometry, and all other surfaces admit
hyperbolic geometry. In Chapters 14, 15, and 16 we
discussed the analogous three-dimensional geome­
tries, and found some examples of three-manifolds
that admit them. It turns out that five more homo­
geneous geometries arise in the study of closed three­
manifolds. One of them is the local geometry of 8 2 x E.

243
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(82
X E, 8 2

X I, and 8 2 X 8 1 all have the same local
geometry. It's traditional to name the geometry after
8 2

X E because 8 2
X E is the "biggest" manifold having

it.) This geometry is homogeneous but not isotropic.
It's homogeneous because it's everywhere the same.
But it's not isotropic because at any given point we
can distinguish some directions from others. Recall
from Figure 6.10 that some cross-sections of 8 2 X 8 1

are spheres while others are flat tori. Locally one ob­
serves that some two-dimensional slices have positive
curvature while others have zero curvature (Figure
18.1). The term sectional curvature refers to the cur­
vature of a two-dimensional slice of a manifold. The
word "section" comes from the latin "sectio" which
means "slice" (more or less). Thus 8 2 X 8 1 has positive
sectional curvature in the horizontal direction, but
zero sectional curvature in any vertical slice. An iso­
tropic geometry has the same sectional curvature in
all directions; the sectional curvatures of three-dimen­
sional elliptic geometry are all positive, those of three­
dimensional Euclidean geometry are all zero, and
those of three-dimensional hyperbolic geometry are all
negative.

Exercise 18.1 Back in Exercise 6.7 you found that
p2 X 8 1 has 8 2 X E geometry. Name another non­
orientable manifold with this geometry. (Hint: It first
appeared in Chapter 17.) 0

The geometry of H 2 X E is also homogeneous but
not isotropic. Like 8 2 X E, it has different sectional
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Figure 18.1 A vertical cross-section of 8 2 X 8 1 has Euclidean geometry but a horizontal
cross-section has elliptic geometry. A piece of 8 2

X 8 1 splits vertically in Euclidean space if not
allowed to stretch, but it doesn't split horizontally.
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curvatures in different directions. Vertical slices have
zero curvature, while horizontal slices have negative
curvature. Figure 18.2 provides a rough illustration of
H 2 X E geometry.

Exercise 18.2 Name several manifolds with H 2 X E
geometry. 0

I should mention in passing that the only homo­
geneous two-dimensional geometries are elliptic, Eu­
clidean, and hyperbolic geometry, each of which hap­
pens to be isotropic. Geometries that are homogeneous
but not isotropic occur only in manifolds of three or
more dimensions.

The contemporary theory of three-manifolds deals
with homogeneous geometries, without regard to isot­
ropy. Isotropy becomes important only when one ap­
plies the mathematical theory to the study of the real
universe, which appears isotropic according to current
observational data. The present chapter explores ho­
mogeneous geometries in general. The cosmological
applications of isotropic geometries will be treated in
Chapter 19.

A couple technical points are in order before we
move on to a list of the eight homogeneous geometries.

Technical Point 1: When I say "geometry" in this
chapter I really mean "class of geometries." For ex­
ample, the geometry of a two-sphere of radius three
is, strictly speaking, different from the geometry of a
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Figure 18.2 A vertical cross-section of H 2 X 81 has Euclidean geometry but a horizontal
cross-section has hyperbolic geometry. By the way, the horizontal slices should really be stacked

up in a different dimension than the one they wrinkle into, but this picture is the best we can do
with only three dimensions available.
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two-sphere of radius seventeen; yet they are similar
enough that they're included in the same class of two­
dimensional geometries. Three-dimensional geome­
tries admit more variation within each class. We'll see
an example of this later in the chapter.

Technical Point 2: Really there are more than eight
classes of homogeneous geometries. In fact, there are
infinitely many. The catch is that only eight of them
occur as homogeneous geometries of closed three-man­
ifolds. (As you may have noticed, this book is heavily
biased towards closed manifolds!)

Here's a list of the eight homogeneous geometries,
along with some sample manifolds having each one.*

(1) Elliptic Geometry
The geometry of S3.

Sample Elliptic Manifolds: The three-sphere, projec­
tive three-space, the Poincare dodecahedral space.

(2) Euclidean Geometry
The geometry of childhood.

Complete List of Euclidean Manifolds: Altogether
there are only ten topologically different Euclidean
three-manifolds! Six are orientable and four are non­
orientable. The nonorientable ones are K2 x S1, the

*Explore the elliptic, Euclidean, and hyperbolic examples using inter­
active 3-D graphics software available for free from www.northnet.org/
weeks/SoS.
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manifold of Figure 7.11, and two other K2-bundles
over Sl. The orientable Euclidean manifolds are the
three-torus, the quarter turn manifold, the half turn
manifold, the one-sixth turn manifold, the one-third
turn manifold, and another manifold we haven't seen.
The hexagonal three-torus is not included because it's
topologically the same as the ordinary three-torus.

(3) Hyperbolic Geometry
See Chapter 15 for a description.

Sample Hyperbolic Manifold: Hyperbolic geometry
is somewhat enigmatic. So far we've seen only one
three-manifold that has it, namely the Seifert-Weber
dodecahedral space. Yet research by Bill Thurston
suggests that three-dimensional hyperbolic geometry
is by far the most common geometry for three-mani­
folds, just as two-dimensional hyperbolic geometry is
the most common geometry for surfaces. If hyperbolic
geometry is so common, why haven't we seen more
three-manifolds that have it? The reason is that the
easiest manifolds to study are not the typical ones,
but rather the ones with special symmetry. The first
surfaces for which we found geometries were the two
simplest ones, the sphere and the torus. Their homo­
geneous geometries (elliptic and Euclidean, respec­
tively) are atypical precisely because these surfaces
are so simple. Not until Chapter 11 did we discover
that most surfaces admit hyperbolic geometry. This
same phenomenon crops up in the study of three-man-



250 CHAPTER 18

ifolds. All the simple manifolds admit atypical geom­
etries by virtue of their simplicity. It's the typical­
but less simple-manifolds that admit hyperbolic
geometry.

(4) 52 X E Geometry

This geometry was described in Chapter 6 and at the
beginning of the present chapter.

Complete List of S2 X E Manifolds: There are only
four manifolds with this geometry. They are S2 x Sl,
K3, p2 X Sl, and one other manifold. This last manifold
is made from S2 X I, but in this case each end is glued
only to itself1 Specifically, every point on an end gets
glued to its antipodal point on the same end; the glu­
ing resembles the gluing used to turn a ball into p3.
Note that S2 x I's intrinsic geometry matches up
nicely at the resulting "seams"; if you are confused,
think about how the geometry matches up when you
glue antipodal points on each end of a cylinder.

Exercise 18.3 Which of the four S2 X E manifolds are
orientable? 0

(5) H2 x E Geometry
This geometry was discussed earlier in the chapter.

Sample H 2 X E Manifolds: Here we have a little
more variety than in the case of S2 x E. To begin with,
any surface cross a circle will admit H2 x E geometry,
just so long as the surface isn't S2, p2, T2, or K2. Many
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other surface bundles work too. For example, to make
a (T2 # T 2)-bundle with H 2 x E geometry, start with a
two-holed doughnut cross an interval as described in
Figure 17.7, and glue the top to the bottom with either
a VB turn, a V4 turn, a % turn, a half turn, or one of
two possible reflections.

(6) Twisted Euclidean Geometry
Figure 17.8 suggests visualizing Euclidean geometry
as a bundle of vertical lines; i.e. one thinks of Euclid­
ean space as E 2

X E. Twisted Euclidean geometry may
also be thought of as a bundle of vertical lines, only
now the lines are bundled together in a strange new
way. If you take a trip in a twisted Euclidean mani­
fold, always traveling "horizontally" ("horizontal"
means perpendicular to the vertical lines), you'll find
that when you return to the line you started on you're
some distance above or below your starting point! See
Figure 18.3. You'll be above your starting point if you
traversed a counterclockwise loop, but you'll be below
it if you went clockwise. Your exact distance above or
below your starting point will be proportional to the
area your route encloses.

Figure 18.4 shows a jungle gym in a twisted Eu­
clidean manifold. All the bars have the same length,
and they all meet at right angles. Some bars appear

tilted because the artist had to distort the twisted Eu­
clidean jungle gym to draw it in ordinary Euclidean
space.
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Figure 18.3 If you travel horizontally in a twisted Euclidean
manifold you'll come back to a point above or below where

you started.

Sample Twisted Euclidean Manifolds: You can give
the twisted torus of Chapter 17 a twisted Euclidean
geometry. First put a twisted Euclidean geometry on
the cube of Figure 17.10. With this new geometry the
previously tilted lines on the sides of the cube become
intrinsically horizontal. When you glue opposite sides
of the cube with a shear, you glue the vertical lines on
one side to the vertical lines on the other, and the
horizontal lines on one side to the horizontal lines on
the other. Thus, in terms of the twisted Euclidean ge­
ometry you're gluing one side rigidly to the other, with
no "shearing" or other abnormalities. The corners and
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Figure 18.4 Ajungle gym in a twisted Euclidean manifold.
(Drawing by Bill Thurston.)

edges still fit fine, so you've given the twisted torus a
twisted Euclidean geometry.

The doubly twisted torus of Exercise 17.11 also
admits twisted Euclidean geometry. In fact every
circle bundle over a torus or Klein bottle admits ei­
ther Euclidean geometry or twisted Euclidean ge­
ometry.

Exercise 18.4 Can a nonorientable three-manifold
have a twisted Euclidean geometry? 0
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(7) Twisted H2 x E Geometry
This geometry bears the same relation to standard
H2 x E geometry as twisted Euclidean geometry does
to standard Euclidean geometry. Specifically, one
thinks of both the twisted and standard H 2 x E ge­
ometries as vertical line bundles over H 2. In the
twisted case the lines connect up as in Figure 18.3.

Sample Twisted H 2 x E Manifolds: Any circle bun­
dle over any surface except S2, p2, T2, or K2 admits
either standard or twisted H 2 x E geometry.

Exercise 18.5 Give explicit instructions for con­
structing a sample twisted H 2 x E manifold. 0

(Twisted S2 X E Geometry): Amazingly enough, if
you put the right amount of twist into 8 2 X E you'll
get elliptic geometry! The amount of twist is right
when a traveler traveling horizontally around a region
of area ex returns to a point ex units below where she
started (here I assume that S2 x E is a bundle over a
unit two-sphere). Even when the amount of twist is
wrong this geometry is still classified as elliptic ge­
ometry, as per Technical Note 1, because its group of
symmetries is contained in the group of symmetries
of the three-sphere. Note, though, that you can always
adjust the twist to the right value by stretching or
compressing the vertical lines.

(8) Solve Geometry
This is the real weirdo. Unlike the previous geome­
tries, solve geometry isn't even rotationally symmet-
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ric. I don't know any good intrinsic way to understand
it. (The name "solve" geometry has to do with "solv­
able Lie groups.")

Sample Solve Manifolds: Most torus bundles over 8 1

admit solve geometry. (None of the ones we've seen in
this book do, though, because none of them distort the
geometry of the two-dimensional cross-section.)

It would be nice if every three-manifold admitted
one of the above homogeneous geometries. Alas, this
is not the case. For example, a connected sum of two
three-manifolds never admits a homogeneous geome­
try (unless either one of the original manifolds is 8 3

,

or both original manifolds are P3). Fortunately the sit­
uation isn't quite as bad as it sounds. Thurston's work
suggests that most three-manifolds admit hyperbolic
geometry, and those that don't either admit one of the
other seven homogeneous geometries, or can be cut
into pieces that admit homogeneous geometries. (In
this context one "cuts a manifold into pieces" by cut­
ting it along spheres, projective planes, tori, and/or
Klein bottles.) This view of three-manifolds has not
yet been proven correct, but there is a good deal of
evidence in its favor. For a summary of the evidence,
see Thurston's article Three dimensional manifolds,
Kleinian groups and hyperbolic geometry (Bulletin of
the AM8 6(1982), pp. 357-381). An interesting corol­
lary of Thurston's ideas is that a "randomly chosen"
three-manifold is unlikely to be a connected sum.
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The Universe

The universe has existed for only 10 or 15 billion
years. This chapter discusses the beginning of the uni­
verse (the big bang), the ensuing expansion, and the
relationship between the shape of the universe and
the matter it contains. The chapter is organized
around the following questions:

1. What do we know about the universe?
2. In what sense is the universe expanding?
3. How is the density of matter related to the

curvature of space?

259
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4. Is the universe closed or open? In other words,
is space finite or infinite?

5. What came before the big bang?

Question 1. What do we know about the universe?

We live on Earth, which is one of approximately nine
planets orbiting our sun.* The sun is grouped together
with about 100 billion other stars in our galaxy the
Milky Way. The Milky Way is shaped like a giant disk
50 to 100 thousand light-years across,t with us about
25 thousand light-years from the center. If you go out
on a clear, moonless night the stars of our galaxy will
appear as a splotchy white band running across the
sky, hence the name Milky Way. The other stars you
normally see are all in our galaxy too.

There are lots of other galaxies in the universe­
billions of them at least. Some are off by themselves,
but most lie in clusters of anywhere from a few to a
few thousand galaxies each. On average, galaxies are
distributed in space roughly like dimes spaced a meter
apart.

A striking feature of these other galaxies is that
they are moving away from us! This is not because the
other galaxies are moving through space. Rather, the

*By modern standards Pluto wouldn't qualify as a planet, but tradition
is strong so Pluto is likely to retain its planet status for the foreseeable
future.
tA light-year is the distance light can travel in one year. By way of
comparison, the sun's light takes about 8 minutes to reach us, so the
sun is 8 light-minutes away. Similarly, the moon is about 1 light-second
away, and San Diego is about 0.02 light-seconds from Boston.
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galaxies are more-or-Iess still relative to space, and
it's space itself that is expanding, carrying the galax­
ies along with it. Observations show that space is cur­
rently expanding at a rate of about 7% per billion
years. In other words, if the universe were to continue
expanding at its present rate, after a billion years all
cosmic distances would be stretched by 7%.

Exercise 19.1 Galaxy A and galaxy B presently lie 15
billion light years away from each other. If the uni­
verse expands at a constant rate of 7% per billion
years, how far apart will galaxies A and B be a billion
years from now? How fast is galaxy B moving away
from galaxy A? Is this slower or faster than the speed
of light? 01

The concept of an expanding universe has an in­
teresting history. When Einstein in 1917 first applied
his geometric theory of gravity (his famous theory of
general relativity) to the universe as a whole, he found
his equations inconsistent with a universe of constant
size. Surprised and perplexed, he introduced a "cos­
mological constant" A into his equation as a fudge fac­
tor to make his constant-size universe work. A few
years later, in 1922, Alexander Friedmann conceived
the idea of an expanding universe. To his delight, he
found that Einstein's original equations worked fine
in an expanding universe, with no need for a fudge
factor. Nevertheless the idea of an unchanging uni­
verse was so ingrained in western thinking that not
even Einstein could accept Friedmann's work: Ein-
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stein regarded Friedmann's model of an expanding
universe as a mere mathematical curiosity without
physical significance.

Fortunately experimental support was quick in
coming. During the 1920s the work of many astrono­
mers contributed to the discovery that other galaxies
are receding from us. The exciting conclusion, that a
galaxy's rate of recession is roughly proportional to
the distance from us to the galaxy, was exactly what
one would expect in an expanding universe. History
has assigned the credit for this conclusion to Edwin
Hubble and recorded the date as 1929. In reality Geor­
ges Lemaitre had come to the same conclusion two
years earlier, in 1927, using essentially the same data
and computing the same value for the rate of expan­
sion. Indeed there is a bit of a scandal here. Lemaitre's
original paper was in French and not widely read.
When Eddington translated Lemaitre's paper into En­
glish in 1931, he completely omitted the paragraph in
which Lemaitre computed the expansion rate, and
even took care to excise the expansion rate from a
subsequent equation in which it appeared! Neverthe­
less, to this day we call the expansion rate the Hubble
constant and denote it by the letter H, that is, H =7%
per billion years.

The fact that space is expanding means that in
the past it must have been smaller. If we look far
enough back in time, space had zero size. This was
the big bang, the birth of the universe. How long ago
was the big bang? To get a rough idea, assume space
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has been expanding at a constant rate of 7% per bil­
lion years.* To get back to zero size would require
(100%)/(7%/billion years) := 15 billion years. We'll take
a more careful look at the big bang later in this chap­
ter, and see direct physical evidence of it in Chap­
ter 22.

Observation shows that at least the visible por­
tion of the universe is both homogeneous and isotro­
pic.

Homogeneity
This means that any two regions of the universe are
basically alike. Of course, we have to look on a suffi­
ciently large scale, so that "local" fluctuations in the
number of galaxies get averaged out. The situation is
analogous to saying that a roomful of air is homoge­
neous, even though one cubic microcentimeter might
contain 17 molecules of nitrogen and 4 of oxygen,
while a different cubic microcentimeter might contain
8 of nitrogen and 11 of oxygen.

Isotropy
This means that no matter where you are in the uni­
verse, things look basically the same in all directions.
An isotropic universe is of necessity homogeneous­
to see that conditions must be the same at any two
locations A and B, note that the universe is isotropic

*By this we mean that during each billion year period the universe
grew by 7% of today's size, not 7% of the size it was during that period.
In other words, assume the universe grew at a constant linear rate, not
a constant exponential rate.
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about the point lying halfway between A and B. The
visible portion of the real universe is known to be iso­
tropic because the number of galaxies is roughly the
same in all directions, the expansion rate (the Hubble
constant) is the same in all directions, and, best of all,
the cosmic microwave background radiation (Chapter
22) is the same in all directions to the precision of a
few parts in 105

•

Even though the visible portion of the universe is
approximately homogeneous and isotropic, the uni­
verse as a whole could well be inhomogeneous, with
curvature that varies gradually from one part of space
to another. In other words, the visible universe, as
vast as it is, might be only a tiny portion of the whole
universe, too small to reveal large-scale variations in
curvature. Even though this hypothesis is completely
plausible, it holds little interest for topologists be­
cause in such a huge universe we would not be able
to directly observe the topology of space. It would be
as if the biplane pilot in Figure 7.1 could see no
further than one plane length in any direction­
she wouldn't be able to see that her universe is a
torus.

If we make the (still unconfirmed!) assumption
that the universe is small enough that we may ob­
serve its topology directly (for example by observing
multiple images of the same galaxy, just as the bi­
plane pilot in Figure 7.1 observes multiple images of
the same biplane), then the observable universe is the
whole universe, and so the well-tested homogeneity
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and isotropy of the visible universe imply that space
as a whole is homogeneous and isotropic. For this rea­
son all studies of the possible topologies of space, and
all efforts to detect the topology experimentally, have
focused on homogeneous, isotropic three-manifolds.
Fortunately there are only three homogeneous, isotro­
pic local geometries for us to consider, namely elliptic
geometry (Chapter 9), Euclidean geometry, and hy­
perbolic geometry (Chapter 10). Of course there are
many different three-manifolds having each geometry,
and thus many possible global topologies for the uni­
verse. For example, the Poincare dodecahedral space
has locally elliptic geometry, the three-torus has lo­
cally Euclidean geometry, and the Seifert-Weber
space has locally hyperbolic geometry.

Question 2. In what sense is the universe expanding?

Figure 19.1 illustrates an incorrect answer to this
question. The big bang was not like a giant firecracker
exploding into an already existing space. The big bang
had no center.

Figure 19.2 illustrates the correct answer to the
question. Space itself was very small right after the
big bang, and didn't even exist before it! Note that
each galaxy sees neighboring galaxies receding from
it, just as Lemaitre, Hubble, and their colleagues ob­
served in the real universe in the 1920s.

The expansion of a three-dimensional torus uni­
verse is shown in Figure 19.3. Naturally this idea ap­
plies to a universe based on any three-manifold.
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An Incorrect Picture of the Big Bang

(1) At the moment of the big bang, all matter starts out at
a single point in space .

•
(2) It goes flying off into space in all directions,

(3) and eventually forms galaxies which continue to move
further out into space.

'\• ,
•

,
•

t•

•I

J"
J

•
\

Figure 19.1
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A Correct Picture of the Big Bang
(illustrated via a two-dimensional universe)

267

(1) Space itself sta rts off bei ng
very small. All the matter of the
universe is crammed into it.

(2) Space expands very rapidly
at first.

(3) Eventually the matter is cool
enough to begin forming galaxies.

(4) The galaxies continue to move
away from each other. The size of
each galaxy stays the same.

I

•

/

•

Figure 19.2

•

•
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For comp;rison, here's a Flatlander's drawing
o an expanding T 2 -universe:

• •
Now here's a Homo Sapien's drawing of an

expanding T'-universe:

Figure 19.3

-
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One question that often comes up is that if every­
thing is expanding-houses, people, atoms, meter­
sticks, everything-then how can we tell that things
have changed at all? The answer is that not every­
thing is expanding. Houses, people, atoms, and met­
ersticks are not expanding. Planets, stars, and even
galaxies are not expanding. Space is expanding, and
so is the distance between galaxies, but that's about
it.

Another question that comes up is that if the uni­
verse has infinite volume (i.e., if it's an open three­
manifold), then how can it expand and get any bigger?
The answer is that its total volume doesn't increase,
but space does still stretch out, and the distances be­
tween galaxies do still increase, just as they would in
a closed universe. The expansion of an infinite uni­
verse is locally identical to the expansion of a finite
one. You can, for example, reinterpret Figure 19.3 as
an expanding chunk of space in an infinite universe.
The difficulties that arise when contemplating the to­
tal volume of an infinite expanding universe are dif­
ficulties with the concept of infinity, not difficulties
with the behavior of the universe.

Question 3. How is the density of matter related to the
curvature of space?

When Friedmann applied Einstein's theory of general
relativity to the idea of an expanding universe, he
found a relationship between the density of matter,
the rate of expansion, and the curvature of space. Spe-
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cifically, he found that in a universe with elliptic ge­
ometry (such as the three-sphere or the Poincare do­
decahedral space) the average density p of matter and
energy must be greater than a certain minimum given
by the formula

p > 8~ JI2 (elliptic universe)

where H is the Hubble constant and G is the constant
from Newton's law of gravitation F = GmM/r 2

• In a
hyperbolic universe (such as the Seifert-Weber space)
the density p of matter and energy must be less than
that same critical amount

p < 8~ JI2 (hyperbolic universe)

and in a flat universe (such as the three-torus or quar­
ter turn space) the density p must exactly equal the
critical amount

p = 8~ JI2 (flat universe)

This is an exciting discovery, because both the density
p and the Hubble constant H can be measured exper­
imentally> thus allowing us to deduce the curvature of
space. Many such measurements have been made, in­
cluding familiar matter such as stars as well as the
poorly understood "dark matter" contained in galax­
ies. Such studies consistently find that the total mass
density p is only about 30% of the critical amount,
implying that the universe is hyperbolic.
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On that basis, researchers studying the topology
of space considered mainly hyperbolic models. But in
1998 the situation began to change dramatically. New
data (coming from studies of distant supernovas and
the cosmic microwave background radiation) made a
strong case that the visible universe is not hyperbolic,
but flat. At first glance this seems to contradict the
earlier studies that found the density p to be only 30%
of the critical amount, not 100%. Happily there is no
contradiction. The resolution lies in the fine print. The
earlier studies (the 30% result) measured the density
of matter in the universe. The newer studies (the
100% result) indirectly measure the density of matter
and energy. The conclusion, then, is that while matter
contributes 30% of the critical density, some sort of
mysterious vacuum energy contributes the remaining
70%. As ofAutumn 2001 little is known about the vac­
uum energy. Indeed at this point it's fair to say that
the term "vacuum energy" is just a hollow label used
to refer to a concept about which we know nothing.
Nevertheless, the vacuum energy will surely play a
key role as our understanding of the universe develops
over the 21st century.

Question 4. Is the universe closed or open? In other
words, is space finite or infinite?

Put briefly, we don't know.
We do know, however, that if the universe has an

elliptic geometry then it must be closed. If, on the
other hand, the universe has a flat or hyperbolic ge-
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ometry, then it can be either closed or open. Table 19.1
gives some sample topologies for the different types of
unIverses.

When the first edition of this book appeared in
1985, many cosmologists were completely unaware of
closed manifolds with flat or hyperbolic geometry. The
situation has improved greatly since then, but you
might still find textbooks stating incorrectly that a flat
or hyperbolic universe must be infinite. The terminol­
ogy that grew up around this misconception is partic­
ularly unfortunate: in the cosmological literature
"closed" is used to mean "elliptic" (= positively curved),
while "open" is used to mean "hyperbolic" (= nega­
tively curved) and "critical" is used to mean "flat"
(= zero curvature). This terminology precludes the
very mention of a closed flat universe or a closed hy­
perbolic one.

Question 5. What came before the big bang?
Sagredo: What came before the big bang?
Salviati: Nothing did.
Sagredo: You mean space was entirely empty then?
Salviati: No, space didn't even exist!
Sagredo: Oh, I see: at times before the big bang there

simply was no space. What a curious
thought.

Salviati: It's worse than that: "before" the big bang
there wasn't any time either!

Sagredo: What? No time?! Even if there was no mat­
ter and no space, surely there would have
been time.

Salviati: Allow me to draw you some pictures. They'll
be spacetime diagrams somewhat like the
one in Figure 13.8, only these will be pic-
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Table 19.1 Possible Global Topologies for the Universe

Closed

Open

Elliptic
geometry

S3, p3, Poincare
dodecahedral
space

None

Euclidean
geometry

T3
, V4 turn
manifold,
V6 turn
manifold

E3
, T2 X E,
E2 X Sl

Hyperbolic geometry

Seifert-Weber space,
"most" closed
3-manifolds (see
Chapter 18)

H3 (there are other
possibilities as
well)

tures of a one-dimensional circular universe
rather than a two-dimensional planar one.
If this circular universe always stays the
same size, then its spacetime diagram will
be a cylinder, as in Figure 19.4 (left). On the
other hand, ifit's an expanding circular uni­
verse, then its spacetime diagram will be a
cone, as in Figure 19.4 (right).

The import of these pictures is that space
and time have been wrapped into a unified
spacetime. So where there's no space there's
no time, and vice versa. I might add that
Einstein's relativity not only permits us,
but actually forces us to think of space and
time in this way.

Sagredo: I see. Spacetime includes all matter, all
space, and all time-in short, all of physi­
cal reality.

Salviati: Right.
Sagredo: And all of physical reality comes after the

big bang.
Salviati: Exactly.
Sagredo: So what caused the big bang?
Salviati: Nothing did.
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This circular universe
stays the same size.
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,

Big Bang
~

This circular universe
expands.

Figure 19.4 Spacetime diagrams for static and expanding
circular universes.

Sagredo:
Salviati:

Sagredo:

Salviati:

What?! Something must have caused it!
Physical events are caused by other physi­
cal events, but the big bang wasn't an or­
dinary physical event, and doesn't demand
a cause.
But the big bang appears in the spacetime
diagram of Figure 19.4 (right), so doesn't
that make it a physical event?
I'm sorry, I should have explained that ear­
lier. The spacetime diagram you refer to is
meant to be a cone with no vertex. Thus,
strictly speaking, there is no big bang in
that diagram, there are only events follow­
ing it. Every event is caused by earlier
events, yet there is no earliest event in the
spacetime diagram in the same way that
there is no smallest positive number. Of
course we may hope that future generations
will achieve a deeper understanding of the



THE UNIVERSE 275

Sagredo:
Salviati:

Sagredo:

Salviati:

Sagredo:

Salviati:
Sagredo:

Salviati:

big bang and fill in the missing part of the
picture. For example, quantum cosmolo­
gists are already exploring theories in
which the cone is capped off with a tiny
hemisphere.
So what caused spacetime?
Now that's a difficult question! I myself
have no idea. In fact, I'm not even sure that
the question is a meaningful one, at least
not in the ordinary sense of the word, that
one event in spacetime causes another
event in spacetime. But if you want to pos­
tulate a god as the cause of the universe,
then according to relativity theory you
should imagine Him to have caused space­
time as a whole, rather than just the big
bang.
You mean He created the past and the fu­
ture at the same time?
That's the idea, although "at the same time"
is a misleading choice of words. Just as God
doesn't have a location in space, neither
does He experience time. A god would have
to be outside spacetime, and being outside
spacetime means being outside both space
and time.
That's certainly a switch from the tradi­
tional view, in which God is the creator of
space, but nevertheless lives in time just as
we do.

If you don't mind, Salviati, I'd like to leave
these theological issues aside and ask you
one more question.
Please do.
How do you know your description of the
big bang is correct?
I don't! The nature of the big bang is very
much a matter of speculation, even though
its existence is supported by overwhelming
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evidence, such as the cosmic microwave
background radiation described in Chapter
22.

Sagredo: Could you tell me about some alternative
descriptions of the big bang?

Salviati: Certainly. In Figure 19.5 I've sketched a
number of spacetime diagrams, each of
which gives a different picture of the uni­
verse. The first diagram depicts a circular
universe that expands to some maximum
size and then recollapses to a big crunch,
while the second depicts a circular universe
that expands forever. Diagrams #3 and #4
depict oscillating universes-in one case
the universe collapses to a point at the end
of each cycle, and in the other it "bounces"
before it gets that far. Finally, diagrams #5
and #6 depict cyclic universes in which the
big crunch is the cause of the big bang.

Sagredo: Don't the laws of physics tell us which of
these models is correct?

Salviati: Unfortunately not. Strange things hap­
pened in the first zillionth of a second
after the big bang.* Temperatures, pres­
sures, and densities were enormous, per­
haps unboundedly so. Under these condi­
tions gravity takes on a quantum nature,
but we have as yet no quantum theory of
gravity. Thus we can't say with any cer­
tainty what the universe was like at times
close to the Big Bang, and so we must con­
tent outselves with idle speculation.

Sagredo: So tell me, which picture do you advocate?
Salviati: I prefer diagrams #1 and #2 because they

are the simplest. Current observational ev­
idence suggests that the expansion of the
universe is accelerating, which would imply

*In this case a zillionth is approximately 10-43
•
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Figure 19.5 Alternative interpretations of the big bang.
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Figure 19.5 Continued.

that diagram #2 is more accurate than di­
agram #1.

The chief appeal of the remaining diagrams
is that one needn't part with the cherished
notion that time has neither a beginning
nor an end. But these other pictures intro­
duce other complications-namely one
must either interpret the point represent­
ing the big bang (diagrams #3 and #5) or
explain why the universe bounces (dia­
grams #4 and #6). I myself would rather ac­
cept the fact that our past may be finite.
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The History of Space

The ancient Greeks had varying opinions on the na­
ture of space. Leucippus (ca. 480 B.C.-ca. 420 B.C.)
and Democritus (ca. 460 B.C.-ca. 370 B.C.) imagined
an infinite universe, but Aristotle (ca. 384 B.C.-ca.
322 B.C.) envisioned the universe as a finite ball with
the Earth at its center and a spherical boundary. Ar­
istotle's views prevailed, and went largely unques­
tioned in Western society for 2000 years, although in
China and perhaps elsewhere there was a belief in an
infinite universe.

279
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The invention of the telescope in 1608 led to new
observations undermining the geocentric picture, and
rekindling interest in an infinite universe. Some peo­
ple were uncomfortable with an infinite universe, but
didn't like Aristotle's boundary either. What would lie
beyond the boundary? In his 1854 Habilitationschrift,
Riemann proposed the three-sphere as a model of the
universe. Recall from Chapter 14 that the three­
sphere is the three-dimensional surface of a four-di­
mensional ball. It's a finite universe, yet has no trou­
blesome boundary.

In 1890 Klein found a much more general solu­
tion, namely the idea of a multiconnected universe.
The simplest multiconnected three-manifold is the
three-torus. Roughly speaking, a three-manifold is
called multiconnected if you see multiple images of
yourself, as explained in Figures 7.1 and 7.2, and fur­
ther illustrated in Figures 7.3 through 7.12. All closed
three-manifolds in this book, except the three-sphere,
are multiconnected. The famous Poincare conjecture
claims that no other exceptions are possible, but this
conjecture remains unproved.

Astronomers initially took an interest in the idea
of a multiconnected space. As early as 1900 Karl
Schwarzschild presented the three-torus in a post­
script to an article in the Vierteljahrschrift der As­
tronomischen Gesellschaft, challenging his readers to

... imagine that as a result of enormously extended
astronomical experience, the entire Universe consists
of countless identical copies of our Milky Way, that the
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infinite space can be partitioned into cubes each con­
taining an exactly identical copy of our Milky Way.
Would we really cling on to the assumption of infi­
nitely many identical repetitions of the same world?
In order to see how absurd this is consider the impli­
cation that we ourselves as observing subjects would
have to be present in infinitely many copies. We would
be much happier with the view that these repetitions
are illusory, that in reality space has peculiar connec­
tion properties so that if we leave anyone cube
through a side, then we immediately reenter it
through the opposite side. The space that we have pos­
ited here is nothing other than the simplest Clifford­
Klein space [the three-torus], a finite space with Eu­
clidean geometry. One recognizes immediately the sole
condition that astronomical experience imposes on this
Clifford-Klein space: because visible repetitions of the
Milky Way have not yet been observed, the volume of
the space must be much greater than the volume we
ascribe to the Milky Way on the basis of Euclidean
Geometry. The other simple Clifford-Klein spaces can
be dealt with briefly because their mathematical study
is incomplete.* They all arise in the same way through
apparent identical copies of the same world, be it now
in a Euclidean, elliptic or hyperbolic space, and our
experience imposes the condition that their volume
must be bigger than that of the visible star system.t

281

When Einstein applied his newly conceived geomet­
rical explanation of gravity (his famous theory of gen­
eral relativity) to the questions of cosmology in 1917,

*W. Threlfall and H. Seifert classified spherical manifolds by 1930 and
W. Hantzsche and H. Wendt classified flat manifolds by 1935, but hy­
perbolic manifolds remain unclassified to this day.
tK. Schwarzschild, "On the permissible curvature of space," Viertel­
jahrschrift d. Astronom. Gesellschaft 35 (1900) 337-347; translated
into English by John and Mary Stewart, Class. Quantum Grav. 15
(1998) 2539-2544. Used with permission.
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he chose Riemann's three-sphere as his model of
space. Einstein's colleague de Sitter, however, was
quick to point out, still in 1917, that Einstein's equa­
tions for a spherical universe applied equally well to
the multiconnected projective three-space (see the last
section of Chapter 14). Alexander Friedmann took the
even more remarkable step, in his 1924 paper on the
possibility of a hyperbolic universe, of pointing out
that his equations applied in principle not only to in­
finite hyperbolic space but also to all closed (multicon­
nected) hyperbolic three-manifolds, even though not a
single example was known at the time! Nevertheless,
Einstein continued to prefer the three-sphere because
of its simplicity. Indeed, Einstein's primary motivation
for modeling the universe as a spherical manifold in­
stead of a flat or hyperbolic one was that the three­
sphere alone offered the possibility of a universe both
finite and simply connected.

During the middle years of the twentieth century,
cosmologists lost interest in the question of the topol­
ogy of the universe. Their lack of interest was perhaps
partly the result of Einstein's enormous influence and
his strong preference for a simply connected space.
Equally important, though, was the lack of any prac­
tical means to detect the topology of the universe ex­
perimentally. Cosmologists are most interested in
questions that can be put to the test observationally.
No practical tests were in sight, so cosmologists
turned their attention elsewhere. Within a generation
their ignorance of topological questions was so great
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that most textbooks stated (incorrectly!) that a posi­
tively curved space must be a three-sphere, a flat
space must be infinite Euclidean space, and a nega­
tively curved space must be infinite hyperbolic space.
All multiconnected manifolds had been forgotten.

Cosmologists rediscovered multiconnected mani­
folds during the last decade of the twentieth century,
perhaps partly as a result of contact with mathema­
ticians studying them intensely, but more likely be­
cause experimental tests were finally becoming prac­
tical. At the beginning of the twenty-first century, two
distinct research programs are underway to test for a
multiconnected universe: the method of Cosmic Crys­
tallography (Chapter 21) looks for patterns in the ar­
rangement of the galaxies, while the Circles in the
Sky method (Chapter 22) examines microwave radia­
tion remaining from the big bang in hopes of detecting
the shape of our universe.
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Cosmic Crystallography

In a multiconnected space we see multiple images of
ourselves (Figures 7.1 and 7.2). So testing whether the
real universe is multiconnected or not is easy, right?
We just point our telescopes out into the night sky. If
we see images of our Milky Way galaxy out there, then
the universe is multiconnected. If we don't see images
of the Milky Way, then either space is simply con­
nected, or it's multiconnected but on too large a scale
for us to observe it.

If only testing the topology of space were that
easy! In reality there's one huge complicating factor:

285
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the speed of light. The light we receive from distant
galaxies is very, very old. If a distant galaxy is, say, a
billion light years away from us, then the light we
receive from it has taken roughly a billion years to
reach us. We see the galaxy as it was roughly a billion
years ago, not as it is today. Galaxies, like children,
change a lot over the years, so even if we are seeing
another image of our own Milky Way galaxy out there,
we're seeing it as it was a billion years ago, so it's
likely to look very different than it does now. Fur­
thermore, if we're seeing different images of it in dif­
ferent parts of the sky, most likely we're seeing it from
different angles. That is, we might see an image of it
edge-on in one part of the sky, another image of it face­
on in a different part of the sky, and so on.

The challenge of recognizing these diverse images
as images of the same galaxy is comparable to the
challenge of looking out into a crowd of a hundred
billion people and trying to recognize a few dozen im­
ages of your mother. If her images were all identical
the task would be straightforward. But think how dif­
ficult the task becomes if in one part of the crowd you
see an image of your mother viewed face-on as a 20­
year-old, while in another part of the crowd you see
her as a 3-year-old viewed from the bottoms of her
feet, while in yet another part of the crowd you see
her as a 57-year-old viewed from the top of her head.
It would be a challenge to recognize those three im­
ages as images of the same person. And keep in mind
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that you have to distinguish her from the other hun­
dred billion people in the crowd!

Exercise 21.1 Has the light from a galaxy a billion
light years away from us taken exactly a billion years
to reach us? Why or why not? 0

Trying to recognize repeating images of the Milky
Way is every bit as difficult as trying to recognize
those images of your mother in the crowd. Fortunately
Marc Lachieze-Rey, Roland Lehoucq, and Jean-Pierre
Luminet have devised a way to test for repeating pat­
terns without having to recognize individual galaxies.
Their idea is quite simple: start with a catalog of gal­
axies (or other sources of light) and compute the dis­
tance between every pair of galaxies.

Exercise 21.2 In a catalog with only three galaxies
(say A, B, and C) there would be only three distances
to compute (AB, BC, and CA). In a catalog with four
galaxies (A, B, C, and D) there would be six distances
(AB, AC, AD, BC, BD, and CD). In a catalog with n
galaxies, how many distances must be computed? 0

In a simply connected universe (Figure 21.1) the
computed distances aren't especially interesting. They
obey a known statistical distribution (a so-called Pois­
son distribution) but are otherwise unremarkable. In
a multiconnected universe, however, certain distances
may occur more than once (Figure 21.2). Specifically,
the distance between the two images of galaxy A is
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Figure 21.1 In a simply connected universe the arrangement
of the galaxies is random.

exactly the same as the distance between the two im­
ages of galaxy B, which is in turn exactly the same as
the distance between the two images of galaxy C. Ex­
perimentally, then, we may compute all possible dis­
tances between the galaxies in a galaxy catalog, and
if we find that certain distances occur much more fre-

A

C
<it

A

Figure 21.2 In a multiply connected universe images of
galaxies repeat in a regular pattern.
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quently than random chance would suggest, that is
our clue that the universe is multiconnected. This
method for detecting a multiconnected universe is
called Cosmic Crystallography.

Problem Cosmic Crystallography doesn't work
with galaxies. Galaxies are constantly in
motion. For example, the Milky Way is
moving through space at about 600 km!
sec, and the other galaxies move at com­
parable speeds. So if we observe differ­
ent images of the same galaxy in
different parts of the sky, we see it not
only at different points in its history, but
also at slightly different points in space.
Furthermore, because of observational
uncertainties we don't know exactly
where the observed images are in any
case.

Resolution Don't work with individual galaxies.
Work with superclusters of galaxies in­
stead. Galaxies occur in clusters, and a
supercluster is a cluster of clusters. We
don't know the position of a supercluster
any more accurately than we know the
position of an individual galaxy. The
point is that the same uncertainty in po­
sition, which is large compared to the
size of an individual galaxy, is small
compared to the size of a supercluster.
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Working with superclusters has another practical
advantage. There are roughly a hundred billion indi­
vidual galaxies visible in the sky, but only a few hun­
dred superclusters. Figure 21.3 shows a histogram of
the expected separation distances between superclus­
ters in a simply connected space. Figure 21.4 shows
the same histogram for a three-torus. The second his­
togram is similar to the first, except for the spikes
corresponding to the distances between two images of
the same galaxy. The spikes reveal the multiconnect­
edness of the space. A more careful analysis of the
data reveals the directions of the fundamental trans­
lations.

The downside of cosmic crystallography is that it
doesn't work for all manifolds. For example, in a Klein
bottle (Figure 21.5) the distance between two images
of supercluster A needn't equal the distance between
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Figure 21.3 This histogram plots the frequency with which a
given separation between superclusters occurs within the

observable universe. Here we assume the universe is simply
connected and all superclusters are distinct, like the galaxies

in Figure 21.1.
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separation distance
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Figure 21.4 This histogram plots the frequency with which a
given separation between superclusters occurs within the

observable universe. Here we assume the universe is multiply
connected and multiple images of the superclusters form a

regular pattern, like the bi'planes in Figure 7.3 and the
galaxies in Figure 21.2.

two images of supercluster B. Because the crystallo­
graphic method fails to detect the reflected images, it
cannot possibly recognize the Klein bottle. Instead it
would detect only the pure translations (Figure 21.6)
and falsely report the space to be a torus.

The situation in three dimensions is similar. For
example, if the universe were a quarter turn manifold
(Exercise 7.3), the crystallographic method would fail
to detect the rotated images. It would detect only the
pure translations and report the universe to be a
three-torus with volume four times that of the original
quarter turn space.

What about curved three-manifolds? In a hyper­
bolic three-manifold the distance between two images
of supercluster A never exactly equals the distance be­
tween two images of supercluster B, so the crystallo-
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Figure 21.5 In Exercise 7.1 you found that the images in a
Klein bottle form a repeating pattern in which every other

image is a reflection of the one preceding it. In other words,
neighboring images of the sathe object are related by glide
reflections, not pure translations. The present figure shows

part of the view in a Klein bottle containing galaxies A, B.
and C. The second image of each galaxy is congruent to its

first image under the action of a glide reflection. The distance
from one image of galaxy C to the next is short, because

galaxy C lies on or near the glide axis. The distance between
the two images of galaxy B is longer, because galaxy B lies

further from the glide axis. The distance between the images
of galaxy A is slightly longer still, because galaxy A lies still

farther from the glide axis.

graphic method fails entirely. In a spherical three-man­
ifold the method detects some images but not others.
Luckily the closest images are the ones most likely to
be detectable, so if the real universe is a spherical man­
ifold-and is small enough that we can see our nearest
images-then the crystallographic method has an ex­
cellent chance of detecting its topology.

As of Autumn 2001, the crystallographic method
has been applied only to very modest galaxy catalogs
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Figure 21.6 Ifyou study your answer to Exercise 7.1 you'll
notice that the view in a Klein bottle contains pure

translations as well as glide reflections. Image pairs related by
a pure translation are readily detectable by the

crystallographic method. For example, in the present figure
the heavy horizontal arrows mark six pairs of images sharing
the same separation distance. The light vertical arrows mark

nine different pairs of images that also share a common
distance. The crystallographic method would detect the pure
translations in a Klein bottle but miss the glide reflections,

and would therefore erroneously report the space to be a torus
with area twice that of the Klein bottle.

covering a limited volume of space, and no periodicity
has been observed. More extensive catalogs will be­
come available by about 2010, offering a better oppor­
tunity to detect the shape of space.
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22
Circles in the Sky

During the first 300,000 years after the big bang, the
universe was small and cramped, like the first two­
holed torus near the top of Figure 19.2. The galaxies
hadn't yet formed, and hydrogen and helium gas filled
the whole universe. This was no ordinary gas, though.
Because all the energy of the universe was packed into
such a small volume, the temperature was extremely
high, in excess of 3000 K. At such high temperatures,
electrons get knocked loose from their atoms, and the
gas takes the form of a so-called plasma, consisting of
ions, electrons, and radiation. In other words, the

295
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whole universe was filled with a hot glowing sub­
stance much like the outer layers of the modern sun.
If you could somehow take a (heat resistant!) time ma­
chine back to that era, you'd find yourself in a blazing
hot fog.

As the universe expanded, it cooled. About
300,000 years after the big bang, the universe had
cooled enough that the hot plasma could finally con­
dense to a gas. The universe became transparent,
filled with warm but clear hydrogen and helium. What
made the gas suddenly transparent? The technical
reason is that photons of radiation scatter readily off
charged particles in the plasma because they sense
the particles' electrical charge (Figure 22.1), but the
photons do not interact with the electrically neutral
atoms in the gas (Figure 22.2).

e
e

e

Figure 22.1 Photons in a plasma scatter off charged
particles, so the plasma is opaque, like a hot glowing fog.
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Figure 22.2 Photons do not interact with the atoms in a gas,
so the gas is transparent.

The liberated radiation has been traveling more
or less unimpeded across the universe ever since.
Originally it had a temperature of about 3000 K, the
same as the plasma at the time it began condensing
to a gas. But the universe has expanded by a factor of
about 1100 between then and now, and the 3000 K
photons of infrared light have been stretched out to
become microwaves at a chilly 2.7 K, or 2.7 degrees
above absolute zero (Figure 22.3). This is the Cosmic
Microwave Background (CMB) radiation. It presently
fills the whole universe with a density of about 400
photons per cubic centimeter.

The CMB was first observed by Arno Penzias and
Robert Wilson at Bell Labs in 1965. They weren't look­
ing for it (they were instead trying to measure radio
emissions from a supernova remnant), but when they
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Photons of visible light at 3000 K
remaining from the big bang

vv
got stretched out as the universe expanded.

They are observable today as microwave photons at 2.7 K.

Figure 22.3

announced "excess antenna noise" the cosmologists
immediately knew what it was, because the cosmolo­
gists were already constructing their own antenna.

The CMB has two striking properties. The first is
its so-called thermal or blackbody spectrum, which
was imprinted on it during the plasma era when ra­
diation and matter were in thermal equilibrium. The
curve in Figure 22.4 is a theoretical graph of a black­
body spectrum showing the intensity of the radiation
as a function of the wavelength. In 1991 the COsmic
Background Explorer (COBE) satellite measured the
CMB at 43 wavelengths. You can see the data plotted
in Figure 22.4, with nice tight error bars. These error
bars are at the 4000" level (400 standard deviations
from the mean). If you instead plotted the more tra­
ditional 20" error bars, they would be completely in­
visible because they would all be smaller than the pix­
els used to draw the curve! This astonishingly precise
blackbody spectrum-said to be the most precise
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Figure 22.4 In 1991 the COBE satellite found the cosmic
microwave background radiation to have a precise blackbody
spectrum, exactly as the hot big bang theory had predicted.

© Edward L. Wright, used with permission.

blackbody spectrum ever measured by humans-pro­
vides excellent confirmation that the hot big bang
model (illustrated in Figure 19.2) is correct.

The second striking fact about the CMB is its uni­
formity: its temperature is constant across the sky to
within a few parts in 105

• This uniformity implies that
the curvature of the observable universe is constant
to within one part in 104

• One must be careful, though,
when drawing conclusions about the whole universe
based on observations of the portion we see. It could
well be that the whole universe has constant curva­
ture-aesthetically this would be most satisfying.
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However, it's equally plausible that the whole uni­
verse has varying curvature, and the portion we ob­
serve looks flat only because it's such a small per­
centage of the total volume. It's like measuring the
surface of a frozen lake and determining that the
Earth's surface is approximately flat; the only reason
the lake appears flat is that it occupies such a tiny
portion of such a huge sphere.

The uniformity of the CMB is impressive, but it's
the small deviations from uniformity that may reveal
the topology of space. To see how this is possible, let's
take a closer look at the CMB fluctuations and what
they reveal.

The CMB is homogeneous (it's distributed uni­
formly in space) and isotropic (it's heading in all di­
rections), as illustrated in Figure 22.5. At first glance,

Figure 22.5 Cosmic microwave background photons fill space
uniformly, traveling in all directions.
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this doesn't seem like such a great source of infor­
mation. But keep in mind that the CMB photons we
observe with our detectors are the ones arriving here
and now. These photons have all been traveling at the
same speed (the speed of light) for the same length of
time (since the primordial plasma condensed to a neu­
tral gas). Therefore they have all traveled the same
distance. This means that the CMB photons arriving
on Earth today started their ten-billion-year voyage
on the surface of a huge sphere, the so-called Last
Scattering Surface (LSS) (Figure 22.6). This may seem
anti-Copernican, to have humanity sitting grandly at
the exact center of the LSS. Please keep in mind that
the citizens of an extraterrestrial civilization in a dif-
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Figure 22.6 The CMB photons we observe are the ones
arriving here and now. These particular photons began their

lO-billion-year journey through space on the surface of a huge
sphere called the Last Scattering Surface.
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ferent part of the universe will observe their own
CMB photons, which come to them from their own
LSS, with their own civilization sitting grandly at the
center. The LSS is defined relative to both the position
of the observer and the time of the observation.

Exercise 22.1 Will our LSS be larger in the future?
Smaller in the future? The same size for all time? 0

When we observe the CMB we are literally look­
ing back in time and seeing the primordial plasma. At
that time, roughly 300,000 years after the Big Bang,
the universe was a very homogeneous place, but it
wasn't perfectly homogeneous. There were small den­
sity fluctuations to the order of one part in 105

. Pho­
tons coming to us from denser regions in the plasma
do a little extra work against gravity, and so they cool
a little more than average during their ten-billion­
year trip. Conversely, photons coming to us from less
dense regions do less work against gravity, and they
arrive a little warmer than average. Thus tempera­
ture fluctuations in the CMB reveal density variations
in the primordial plasma.

How do the fluctuations tell us the shape of space?
Figure 22.7 shows the LSS in a three-torus universe.
There is only one LSS, but we see multiple images of
it, just as we saw multiple images of the biplanes in
Figures 7.1-7.3 and multiple images of Einstein in
Figure 7.4. In Figure 22.7 the universe is slightly
larger than the LSS, and so we learn nothing about
its topology.



Figure 22.7 If the universe is too big, then the last scattering surface does not e
intersect itself.
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The situation in Figure 22.8 is more fortunate.
Here the three-torus universe is slightly smaller than
the LSS. The LSS wraps around the universe and in­
tersects itself. Each self-intersection is a circle. We hu­
mans, sitting at the center of the LSS, can look, say,
to the west and see one of the circles of self-intersec­
tion. We can also look to the east and see the same
circle of self-intersection. That is, the same circle of
points in space appears once in the western sky and
once in the eastern sky.

Figure 22.9 shows the microwave sky as seen by
an observer at the center of the LSS in Figure 22.8.

Figure 22.8 [f the universe is smaller than the last
scattering surface, then the last scattering surface

overlaps itself.
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Figure 22.9 As you trace your finger around the circle in the
western sky (left) you11 pass the same temperatures as you

would at the corresponding points on the circle in the eastern
sky (right). The overall temperature patterns in the two

hemispheres are very different-the temperatures match only
along the circles.

The sky is a sphere and it's awkward to draw a sphere
on the flat page of a book, so Figure 22.9 splits the
sky into western and eastern hemispheres. The circles
of self-intersection are marked. Because the circle cen­
tered in the western sky represents the same points
in space as the circle centered in the eastern sky, we
expect corresponding points to have equal tempera­
tures.

Don't be misled by the fact that the circle in the
western sky runs counterclockwise while the circle in
the eastern sky runs clockwise. Ifyou imagine the two
hemispheres to be joined with a hinge, and you imag­
ine folding them closed to restore a spherical sky with
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you sitting at the center, then you will see that the
two circles are directly opposite each other in three­
dimensional space and run in the same direction.

Exercise 22.2 (a) Trace around the circle centered in
the western sky of Figure 22.8 using your left index
finger, starting at point A and going counterclockwise,
while simultaneously tracing around the circle in the
eastern sky with your right index finger, starting at
point A' and going clockwise. Do your fingers pass
over equal temperatures at corresponding points?
(b) Locate the circles centered in the northern and
southern skies. Do they also have equal temperatures
at corresponding points? 0

Exercise 22.3 (a) If the universe of Figure 22.8 were
a quarter turn manifold instead of a three-torus, how
would that affect the matching circles?
(b) If it were K2 X S\ how would that affect the match­
ing circles? 0

Exercise 22.4 How would the matching circles ap­
pear in the Poincare dodecahedral space? How about
in the Seifert-Weber space? By studying the match­
ing circles alone, could you decide whether you were
living in a Poincare universe or a Seifert-Weber uni­
verse? IJ

Neil Cornish, David Spergel, and Glenn Stark­
man were the first people to realize that in a suffi­
ciently small multiconnected universe the last scat-
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tering surface intersects itself, and the circles of
intersection reveal the shape of the space.

At 3:46 PM on June 30, 2001, a Delta II rocket
lifted NASA's Microwave Anisotropy Probe (MAP)
(Figure 22.10) into space. Its acronym "MAP" is most
appropriate, because MAP will spend two years mak­
ing a very accurate map of the CMB. A few years later
the European Space Agency will launch the Planck
satellite, with a similar purpose and even greater ac-

Figure 22.10 The Microwave Anisotropy Probe (MAP) will
make a full-sky map of the cosmic microwave background

radiation. Courtesy of NASA MAP Science Team.
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curacy. The main purpose of these sky maps is not to
determine the shape of space, but to deduce accurate
values for the rate of expansion, the curvature of
space, and the amount of vacuum energy, and to study
how the galaxies formed. Luckily MAP's map of the
microwave sky will serve equally well to search for
topology. Researchers will carry out a massive com­
puterized search, scanning the microwave sky for
pairs of circles with nearly identical temperature dis­
tributions. If the universe is larger than the LSS, then
of course no matching circles will be found. But if the
universe is small enough that the LSS overlaps itself,
and the noise in the MAP data or eventually the
Planck data isn't too severe, then we will find match­
ing circles, and from them deduce the shape of space.



Appendix A

Answers

Chapter 2
2.2 Player X can win by taking the middle square of
the bottom row. Player 0 wins by taking the bottom
left square.

2.3 Positions a, b, c, e, and g are all equivalent, as
are positions d, f, and h. Position c is obtained from a
by moving everything down one notch. Position g is
obtained from a by moving everything to the left one
notch. Position b is obtained from a by moving every­
thing down a notch and to the left a notch. Position
e comes from rotating a a quarter turn. Position f is

309
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obtained from d by rotating it a half turn (or by mov­
ing it down and to the right), and h is obtained from
f by moving everything one notch to the right.

2.4 The first player has, in effect, only one possible
move: any move she makes can be shifted upward
and/or to the right until it appears in the center of the
board. Her opponent has two possible responses: ei­
ther directly next to her or on a diagonal. With opti­
mal play the first player can always win.

2.5 The white knight threatens a bishop, a king, and
two knights, while a queen, a rook, a bishop, and the
knights threaten it.

2.6 Every black piece is threatened by both the white
knight and the white queen.

2.8 The lower left-hand corner. (Imagine him going
first up one square and then to the right one square.)

2.9 They cannot, for the same reason as in conven­
tional chess: a bishop threatens only pieces on the
same color square, while a knight threatens only
pieces on an oppositely-colored square.

2.10 When you look through a wall you see what ap­
pears to be another copy of the room. You see yourself
from behind. When you look through the floor you see
the top of your head, and when you look through the
ceiling you see the bottoms of your feet.
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2.12 Throw the ball and turn around quick. Ifyou're
fast enough you can even get in a little batting prac­
tice.

Chapter 3
3.1 Surfaces a and c have the same topology. So do
band d, and e, f, g, and h. Surface h may look like it
has four holes, but if you flatten it out you'll see that
it has only three. For g you need to deform the surface
to uncross the cross pieces.

3.2 He discovered a topological property. The prop­
erty remains even if Flatland is distorted.

3.3 Surfaces a, c, d, and f have the same extrinsic
topology, as do surfaces band e. The hardest part is
seeing that c and f are the same as a: shrink the con­
necting piece in f to make it look like c, and then pull
the inner loop out from the outer loop to make c look
like a. Good luck!

3.4 Reglue the band with a half-twist instead of a
full twist. (You get a "Mobius strip".)

3.5 You can roll the paper into a cone, but you can't
wrap it smoothly onto a basketball. Try it! Ifyou don't
have a basketball, use somebody's head. The paper,
the cylinder and the cone have the same intrinsic ge­
ometry, but the intrinsic geometry of the basketball is
different.

3.6 Imagine the universe as a room with opposite
walls glued. Home is next to one wall, your friends
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are in the middle, and you do your exploration over
by the opposite wall. Mter you're done exploring you
simply pass through the wall and you are home.

3.7 Discovery #1 is local, while discoveries #2 and #3
are global.

3.8 A one-dimensional manifold is a space with the
local topology of a line. A circle is an example of a one­
dimensional manifold. (In fact, a circle is the only
"closed" one-dimensional manifold.)

3.9 The cylinder and the plane have the same intrin­
sic local geometry (but different extrinsic local geom­
etries). They have different global topologies, but they
have the same local topology as do all surfaces. Only
discovery #2 might distinguish a cylinder from a
plane, and even then Flatlanders on a cylinder would
have to travel in exactly the right direction.

3.10 They have the same local topology (as do all
three-manifolds), the same local geometry (namely
that of ordinary Euclidean space), and the same global
topology (one can easily be deformed to the exact
shape and proportions of the other). However, the fact
that their overall dimensions are different means that
they have different global geometries.

3.11 Yes. At any point it has the local geometry of
ordinary Euclidean space.

3.12 1, 3, 4, 7 and 9 are closed; 2, 5, 6 and 8 are
open.

3.13 He bumps into himself.
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Chapter 4
4.2 They all do!

313

4.3 The white knight threatens a bishop, a knight
and a rook. The same bishop, knight and rook
threaten it.

4.4 On all boards X can win immediately. See page
314. (Incidentally, on each of the first four boards X
will lose if he tries to block 0, because °has two sep­
arate ways to win.)
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4.7 The bishop returns from the upper left hand cor­
ner.

4.8 Each square on the right side of the chessboard
is adjacent to a square of the same color on the left
side of the board. So when the bishop passes from one
side of the board to the other it returns on a different
color square. This phenomenon no longer occurs on
the Klein bottle chessboard of Figure 4.8, because
there every square is adjacent only to squares of the
opposite color. A knight and a rook can still simulta­
neously threaten each other on this new board: place
the rook in the row just above the center, and place
the knight one space over and two spaces down.

4.9 When you look through the back wall you see a
mirror-reversed copy of the room. When you look
through the other walls you see normal copies of the
room, just like in the three-torus.

4.11 The projective plane is nonorientable: A Flat­
lander crossing the rim comes back with his left and
right sides interchanged.

4.12 He's furthest from home when he's crossing the
rim. Mter that he's getting closer again.

4.13 Two fire stations should be positioned "900

apart." For example, they could be 900 apart on the
rim, or one could be on the rim with the other at the
south pole. Three fire stations should be positioned so
that any two are 900 apart. One way to do this is to
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have two of them 90° apart on the rim with the third
at the south pole.

4.14 To decide whether he is on a projective plane or
a sphere, a Flatlander can walk in a straight line until
he gets back to his starting point: on a projective plane
he comes back as his mirror image, but on a sphere
he doesn't. This trick won't work to tell a projective
plane from a Klein bottle; instead the second Flat­
lander can measure the angles of a triangle and see
whether they add up to 180° or not.

4.15 Sphere: curved and orientable. Torus: fiat and
orientable. Klein bottle: fiat and nonorientable. Pro­
jective plane: curved and nonorientable.

4.16 Projective three-space is orientable. Ifyou cross
the "seam" you come back rotated 180°, but not mir­
ror-reversed. For more explanation, see Figure 14.8
and the corresponding paragraph in the text of Chap­
ter 14.

4.17 Orientability is a global property because it
says something about a manifold as a whole. It is a
topological property because deforming a manifold
does not affect it.

Chapter 5
5.1 The connected sum of a two-holed doughnut sur­
face and a one-holed doughnut surface is a three-holed
doughnut surface (you can make a drawing just like
Figure 5.4). Similarly, a six-holed doughnut surface
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and an eleven-holed doughnut surface form a seven­
teen-holed doughnut surface.

5.2 The connected sum of any surface and a sphere
is just the same surface you started with. The reason
is that a sphere with a disk cut out is topologically a
disk, so when you form the connected sum you are
removing one disk from your surface and replacing it
with a different one.

5.3 A projective plane with a disk cut out is a Mobius
strip.

(continues on p. 318)
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5.4 The connected sum of two projective planes is a
Klein bottle. You start with two projective planes, cut
a disk out of each to get two Mobius strips (as per
Exercise 5.3), and then glue the Mobius strips' edges
together to get a Klein bottle (as per Figure 5.6).

5.5 Flatland was the connected sum of a torus
and a projective plane. The safe region was a torus
with a disk cut out, and the reversing region was a
Mobius strip, which is a projective plane with a disk
cut out.

5.6 (T2 # T 2
) # 8 2 = T 2 # T2

, K2 # 8 2 = K2 and p2 #
8 2 = p2. (In general for any surface X, X # 8 2 = X.)

5.7 (a) K2 # p2 = p2 # p2 # p2, (b) K2 # T2 = p2 # p2 #
T 2 = T 2 # p2 # p2, and (c) K2 # K2 = p2 # p2 # p2 # p2.

5.9 Exercise 5.8 says that T 2 # p2 = K2 # p2, and
Exercise 5.4 implies that K2 # p2 = p2 # p2 # p2.

5.10 A surface written as a connected sum of both
tori and projective planes can always be rewritten as
a connected sum of projective planes only. Without



ANSWERS 319

changing the surface's global topology you can convert
the tori to Klein bottles (by Exercise 5.8) and then
convert the Klein bottles to projective planes (by Ex­
ercise 5.4). Note, though, that you cannot convert a
surface consisting of tori only into a surface consisting
of projective planes only, because Exercise 5.8 does not
apply when no projective planes are present. (Besides,
you know a connected sum of tori cannot be the same
as a connected sum of projective planes because one
is orientable while the other is not.) T2 # p 2 = K2 #
p 2 = p2 # p2 # p2 T2 # K2 = T2 # p2 # p2 = K2 # p2 #,
p2 = p2 # p2 # p2 # p2, p2 # 8 2 = p2 and 82 # 82 = 82.

The sphere and the connected sums of tori are all or­
ientable, while the connected sums of projective
planes are all nonorientable.

5.11 T2 # 82 = T2, K2 = p2 # p2, 82 # 82 # 82 = 82 # 82,
p2 # T2 = K2 # p2 and K2 # T2 # p2 = p2 # p2 # p2 #
p2 # K2.

Chapter 6
6.1 1. 8quare, 2. Plane, 3. Infinite cylinder, 4. Infinite
strip.

6.2 No: it's a circle of intervals but it's not an interval
of circles. (Chapter 17 will address this issue in more
detail.)

6.3 D2 X 8 1 is topologically a solid doughnut. The
picture on p. 320 shows that it's a circle of disks; it's
also a disk of circles, but that's a little harder to draw.
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6.4 In the first example the circles are not all the
same size, in the last example the intervals are not
all the same size, and in the middle example the cir­
cles are not perpendicular to the intervals.

6.5 The geometrical product is a perfect square. Any
deformed square will be only a topological product.

6.6 It's a Klein bottle cross a circle (K2 X 8 1
). (Each

horizontal layer in Figure 6.5 becomes a Klein bottle
when the cubes sides are glued.) It's a geometrical
product because the horizontal Klein bottles are all
the same size, the vertical circles are all the same size,
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and the Klein bottles and the circles are perpendicular
to each other.

6.7 p2 X 8 1
. You can visualize p2 X 8 1 as a thickened

hemisphere, as shown below. The inside surface is
glued to the outside surface in the obvious way, and
points on the "rim surface" are glued so that each
hemispherical layer becomes a projective plane. This
manifold is locally identical to 8 2

X 8!, but its global
topology is different. Can you find an orientation re­
versing path?
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Chapter 7
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7.3 In the quarter turn manifold you see what ap­
pears to be an infinite lattice of cubes: all the cubes
on a given level are colored identically, all the cubes
on the next higher level appear to be rotated a quarter
turn, the cubes on the level after that are rotated an
additional quarter turn, etc. The views in the half
turn and three-quarters turn manifolds are analo­
gous. The one-quarter turn and three-quarters turn
manifolds are mirror images of each other. Surpris­
ingly, you can't tell one from the other intrinsically!
The reason is that you have no standard by which to
judge clockwise and counterclockwise; looking at the
hands on your watch will do no good because you don't
know whether you showed up in the manifold as your
"normal self" or your "mirror image." Philosophically
inclined readers may wish to ponder this matter some
more: the heart of the problem is that in everyday
speech we use terms like clockwise and counterclock­
wise, and right and left, in an absolute way, but really
they are relative terms and can be used only to com­
pare one object to another object at the same location.

7.4 Figure 7.10: The front is glued to the back with
a side-to-side flip, the top is glued to the bottom with
a side-to-side flip, but the left side is glued to the right
side normally. Figure 7.11: The front is glued to the
back with a side-to-side flip, the top is glued to the
bottom with a front-to-back flip, and the left side is
glued to the right side normally. Figure 7.12: The front
is glued to the back with a side-to-side flip, the top is
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glued to the bottom with a half turn, and the left side
is glued to the right side normally. (You are correct if
you said that the top is glued to the bottom in 7.12
with both a side-to-side and a front-to-back flip, be­
cause this is the same as a half turn.)

7.5 The manifolds in Exercise 7.3 are all orientable;
if you go on a trip in one of them you might come back
rotated but you won't come back mirror reversed. The
manifolds in Exercise 7.4 are all nonorientable; in
each one at least one pair of faces (e.g. the front and
back) are glued with a flip.

7.6

If a second biplane is flying around in the hexagonal
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torus, then of course it too will appear once in each
hexagonal cell.

7.7 In the first surface the hexagon's corners meet in
three groups of only two corners each, so the surface
has three cone points. In the second surface the hex­
agon's corners fit perfectly in two groups of three cor­
ners each; there are no cone points. In the third sur­
face the hexagon's six corners meet at a single point!
You get the opposite of a cone point: there is too much
angle surrounding the vertex instead of too little.

Opposite
of a cone

point:
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7.8 None of them.

7.9 The surface is a hexagonal Klein bottle.

ApPENDIX A

7.10 The hexagonal torus and the ordinary flat torus
have the same local topology (as do all surfaces), the
same local geometry (both are flat) and the same
global topology (both can be deformed to a doughnut
shape). On the other hand they have different global
geometrical properties, as evidenced by the pattern of
the images in Exercise 7.6.

7.11 Only the second surface counts as flat. The first
is disqualified by its cone points, and the third by its
opposite-of-a-cone-point.
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7.12 The hexagonal three-torus and the usual three­
torus have the same local geometry; both are flat, that
is, they have the same local geometry as ordinary Eu­
clidean space. They both have the same global topol­
ogy because each is a torus cross a circle (in one case
it's a hexagonal torus cross a circle and in the other
it's an ordinary flat torus cross a circle, but those are
geometrical differences, not topological ones). Their
global geometries are different for the reason just
mentioned. When you look around in a hexagonal
three-torus you see copies of yourself arranged in lay­
ers; each layer forms a hexagonal lattice.

7.13 You'd see copies of yourself arranged in layers,
and each layer would still be a hexagonal lattice just
like in the hexagonal three-torus. Only now the copies
of you in each layer are rotated a one-third (or a one­
sixth) turn relative to the copies in the layer below.

Chapter 8
8.1 (1) Torus, orientable and two-sided. (2) Klein bot­
tle, nonorientable and two-sided. (3) Torus, orientable
and one-sided. (4) Klein bottle, nonorientable and one­
sided.

8.2 Sideness is an extrinsic property of a surface be­
cause it has to do with how the surface is embedded
in a three-manifold (for a specific example, note that
the tori in the first and third drawings of Figure 8.2
are intrinsically identical, even though one is two­
sided and the other is one-sided). Orientability is an
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intrinsic property because Flatlanders living in a sur­
face can tell whether it's orientable or not. All Klein
bottles are nonorientable, but some are one-sided (e.g.
the one in the last drawing of Figure 8.2) while others
are two-sided (e.g. the one in the second drawing of
Figure 8.2).

8.3 Use the center strip (running front to back) of
the two-sided Klein bottle in the second drawing of
Figure 8.2.

Chapter 9
9.1 First triangle: area = 7r/2, angle-sum = 37r/2. Sec­
ond triangle: area = 7r/6, angle-sum = 77r/6. Third tri­
angle: area = 27r/3, angle-sum = 57r/3. Fourth triangle:
area = 7r, angle-sum = 27r. Fifth triangle: area = 7r/2,
angle-sum = 37r/2. Sixth triangle: area = 27r, angle­
sum = 37r. The formula relating the area to the angle­
sum appears later in the text.

9.2 The sum of the angles of the first triangle is 7r/2
+ 7r/3 + 7r/4 = 137r/12, so its area must be 137r/12 ­
7r = 7r/12. For the second triangle you must convert
each degree measurement to radians by multiplying
by 7r/180. The area works out to be A = (1.065 + 1.082
+ 1.100) - 7r = 3.247 - 3.142 =0.105. (Computational
note: when the angles are given in degrees, it is often
more efficient to subtract 180° from the angle sum be­
fore converting to radians. Thus in this problem you
would first compute (61° + 62° + 63°) - 180° = 6°, and
then convert 6° to radians to get the answer, 6° X

(7r/180) = 0.105.)
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9.3 Direct method: Modify the book's derivation of
the formula A = (a + {3 + y) - 1T to apply on a sphere
of radius two, radius three or radius r. Start by finding
the correct formula for the area of a double lune, and
work from there. Your final result, for a triangle on a
sphere of radius r, should be A = r 2[(a + {3 + y) - 1T].

Fancy method: Consider a triangle on a sphere or ra­
dius one. Now enlarge the sphere by a factor of two,
and let the triangle get enlarged along with it. The
angles of the triangle do not change, but its area in­
creases by a factor of four (because both its height and
its width have doubled). In general, when you increase
the radius of the sphere by a factor of r, the area of
the triangle, just like the area of the whole sphere,
increases by a factor of r 2

• In other words, a triangle
on a sphere of radius r has r 2 times the area of a sim­
ilar triangle on a sphere of radius one. The formula
for its area is therefore A = r 2 [(a + {3 + y) - 1T].

9.4 The field's area is A = r 2 [(a + {3 + y) - 1T] = (1000
m)2[(O.76138 + 1.48567 + 0.89483) - 3.14159] =

(1,000,000 m2)[0.00029] = 290 m 2. You start off with
five significant figures, but after the subtraction you
are left with only two! Thus you know the correct an­
swer only to within a few percent. What if the original
data had had only three digits of accuracy?

9.5 Plug into A = r 2 [(a + {3 + y) - 1T] to find the
sphere's radius, which works out to be r = 10,000 me­
ters. The sphere's area is therefore A = 47Tr2 = 1.2 X

109 square meters.
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9.6 (1) 7T + (2 x 10-5
) radians, (2) 7T + (.01) radians,

(3) 7T + V2 radians.

9.7 A projective plane has the same local geometry
as a sphere, and the formulas for spherical triangles
apply to it too. Flatlanders on a projective plane
couldn't tell locally that they weren't on a sphere, but
they could tell globally because a projective plane is
nonorientable, and long-distance travellers can come
back mirror-reversed.

Chapter 10
10.2 You get an icosahedron. (An icosahedron is a
regular polyhedron with twenty triangular faces.) The
icosahedron approximates the geometry of a sphere in
exactly the same way hyperbolic paper approximates
the geometry of the hyperbolic plane.

10.3 A = 7T - (7T/3 + 7T/4 + 7T/6) = 7T - 37T/4 = 7T/4.

Chapter 11
11.1 To eliminate the cone points, put the square on
a sphere and let it expand until its corners fit properly
(this occurs when the square fills an entire hemi­
sphere and each corner angle is 180°). The surface
now has a homogeneous elliptic geometry. You should
recognize it as a projective plane (it had the global
topology of a projective plane all along, but it just now
got the right geometry). The first surface in Figure
11.1 is a projective plane too.

11.2 First surface: All six corners come together, hy­
perbolic geometry eliminates the opposite-of-a-cone-
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point. Second surface: The corners meet in two groups
of three, there are no cone points so the surface has a
Euclidean (= flat) geometry. Third surface: All eight
corners come together, hyperbolic geometry eliminates
the opposite-of-a-cone-point. Fourth surface: All eight
corners come together, hyperbolic geometry eliminates
the opposite-of-a-cone-point.

11.3

When you cut an n-holed doughnut surface into hex­
agons whose corners meet in groups of four you in­
variably get 4n - 4 hexagons. (Even though there are
different ways to do the cutting, you always get the
same number of hexagons!)
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11.4 p2 has an elliptic geometry to begin with. p2 #
p2 can be given a Euclidean geometry, because the 900

corners of flat squares fit nicely in groups of four. (p2
# p2 is topologically the same as K2, so we knew all
along that this surface could be given a Euclidean ge­
ometry.) In all the other cases the polygons' corners
must be shrunk to fit together in groups of four, so all
the other connected sums of projective planes can be
given hyperbolic geometry.

11.5

orientable nonorientable

elliptic

Euclidean

hyperbolic

52 p2

T 2 p2¢tp2
(= K 2)

T 2#T 2 p2#p2#p2
T 2#T 2#T 2 p2#p2#p2#p2

etc. etc.

Chapter 12
12.1 The cell-division has nine vertices, fifteen edges
and seven faces.

12.2 An n-gon can be broken down into n - 2 tri­
angles. The sum of the angles of the n-gon is the sum
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of the angles of all the triangles put together, and the
angles of each triangle add up to 1T.

12.3 The area of the n-gon is the sum of the areas of
the n - 2 triangles. The area of each triangle is the
sum of its angles minus 1T. Therefore the area of the
n-gon is the sum of all the angles minus n - 2 times
1T.

12.4 The method is the same as for a polygon on a
sphere, only now the area of each triangle is 1T ­

(a + f3 + y) instead of (a + f3 + y) - 1T. The final
formula is A = (n - 2)1T - (sum of all angles).

12.7 The only change necessary is to use the formula
A = (n - 2)1T - (sum of all angles) instead ofA =(sum
of all angles) - (n - 2)1T in Step 2. This is just the
negative of what you had before, so the final formula
comes out as A = -21TX.

12.8 Using the cell-division of Figure 12.l(b), X(T2 #
T2

) = 8 - 16 + 6 = -2. The cell-division of Exercise
11.3 gets to the same answer via a different route:
X(T2 # T2

) = 6 - 12 + 4 = -2.

12.9 A = -21TX = -2m-2) = 41T.

12.10 If you use the cell-division from Figure 11.3
you get X = 12 - 24 + 8 = -4. (Other cell-divisions
will have different numbers of vertices, edges and
faces, but they all give the same answer for the Euler
number.) Area = -21TX = -21T( -4) = 81T.

12.11 X(T2
) = v - e + f = 1 - 2 + 1 = o. The Klein

bottle's Euler number also works out to be zero no
matter what cell-division you use.
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12.12 The Euler number decreases by two each time.
Presumably the Euler number of T2 # T2 # T2 # T2 is
-6.

12.13 The reasoning is the same as that used to com­
pute the Euler number of a connected sum of tori. In
the cell-division for a connected sum of projective
planes. v = 2n X 2 -7- 4 = n, e = 2 X 2n -7- 2 = 2n
and of course f = 2. So X = v - e + f = n - 2n + 2 =
2 - n.

orl."entab1."l1."ty

orientable nonorientable

2

0

-1

-2

""Ql
-3~

:::s
s::: -4

""Ql
""I -5
~

-6

-7

-8

52

p2

T 2 p2:¢p2

p2#p2#p2

T 2#T 2 p2;;p2#p2#p2

p2#p2#p2#p2#p2

T 2#T 2#T 2 etc.

T 2#T 2#T 2#T 2

T2#T2#T2#T2#T2

etc"
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12.14 Figure 11.1: The first surface has X = 3 - 3 +
1 = 1, is nonorientable, and is therefore p 2. The second

surface has X = 2 - 3 + 1 = 0, is nonorientable, and
is therefore p 2 # p2 (i.e. it's topologically a Klein bot­

tle). The third surface has X = 1 - 3 + 1 = -1, is
nonorientable, and is therefore p2 # p2 # p2. Figure
11.2: The first surface has X = 1 - 3 + 1 = -1, is
nonorientable, and is therefore p2 # p2 # p2. The sec­

ond surface has X = 2 - 3 + 1 = 0, is nonorientable,
and is therefore p2 # p2. The third surface has X =

1 - 4 + 1 = -2, is orientable, and is therefore T2 #
T2. The fourth surface has X = 1 - 4 + 1 = -2, IS

nonorientable, and is therefore p2 # p2 # p2 # P2.

12.15 Curvature is k = 1/r 2
, so it is measured in (me­

ters)-2. The surface's area A is measured in (metersf,
so kA is a dimensionless quantity, as is 21TX.

12.16 The curvature of a projective plane is the same
as the curvature of a sphere of the same radius; in
this case k = 1/r2 = 1/(2 metersf = lf4 m-2. The area of
a projective plane is half the area of a sphere of the

same radius; in this case A = 27Tr2 = 2m2 mf = 81T

m 2. A projective plane's Euler number is 1 no matter
what the radius is, so the Gauss-Bonnet formula
reads (lf4 m -2)(81T m 2) = 2m1).

12.17 Use the formula kA = 21TX as usual. Plug in
k = - .00001 m -2 and X = -4, and solve to get
2,500,000 m 2 = 2.5 km2

•
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12.18 Plug k = -3.1658 X 10-6
m~2 and A =

1,984,707 m2 into kA = 21TX and solve for X = -1. Con­
sult the table in Figure 12.3 to see that the only sur­
face with X = -1 is p 2 # p 2 # p 2. (It's amazing how far
you can get on so little initial information.)

12.19 The T2 # T2 is more curved. You can compute
the curvature of each surface directly, or if you want
to get fancy you can reason that the T2 # T2 has twice
the Euler number but less than twice the area so it
must have a greater curvature.

12.20 Plug into kAj. = (a + f3 + y) - 1T to solve for
k = -1.02 X 10-4 km ~2. Then use kA = 21TX to compute
X = -4.05. Presumably X is -4, and the Flatlanders'
(orientable!) universe has the global topology of T2 #

T2 # T2 (cf. the table in Figure 12.3). The error in the
computed value of X is most likely due to the uncer­
tainty in the total area.

12.21 The center of the blip has positive curvature
(it's convex), but the periphery has negative curvature
(it's locally saddle shaped).

Chapter 13
13.1 A spirit could pass one section of rope "over"
another section in the fourth dimension. See page 337.
The effect is the same as if the one section passed
through the other. The knotted loop becomes unknot­
ted.
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13.2 Push the "neck" of the Klein bottle into the
fourth dimension.

Chapter 14
14.3 You will find yourself trapped on what used to
be the outside of the balloon, but is now effectively its
inside! What do you have to do to escape? (Assume
you can't fit through the mouthpiece and don't want
to damage the balloon.)

14.4 First of all, 10 minutes of arc = Y6 of a degree
= 0.003 radians. The angles of Gauss' triangle must
exceed 7T by at least 0.003 radians if Gauss is to detect
the difference with his equipment. The area of the tri­
angle is about 4000 km2

, so Gauss can use the formula
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kAt!. = (a + (3 + y) - 1T to deduce that the curvature k
must be at least [(a + (3 + y) - 1T]/At!. = [0.003]/(4000
km2

) = 0.000001 km- 2 if he is to detect it. This corre­
sponds to a universe of radius at most 1000 km! (Use
the formula k = 1/r2

.) The real universe is obviously
not this small!

14.5 The ends of the cylinder are glued to each other
with a 1800 rotation (not a flip!) so the glued cylinder
is topologically a torus. It is orientable because a Flat­
lander never returns to his starting point mirror-re­
versed, and it is two-sided because a three-dimen­
sional ant can't get from one side of the surface to the
other.

14.6 A disk passing through the center of the ball
forms a projective plane in p3. Any such projective
plane is nonorientable and one-sided. (In an orient­
able three-manifold-like p3-every orientable sur­
face is two-sided and every nonorientable surface is
one-sided.)

Chapter 15
15.1 Our universe might have the local geometry of
H3, but its curvature would be so slight that we
haven't yet detected it. (By the way, what is the small­
est negative curvature that Gauss could have de­
tected? See Exercise 14.4.)

15.2 It would appear infinite to them. From experi­
ence their brains would accurately judge distances
based on how cross-eyed their eyes are. How would
our universe appear to them?
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Chapter 16
16.1 All four corners come together in one group. (The
way you can tell is that when the gluings are taken
into account each corner is "adjacent" to the other
three.) The corners are too pointy to fit together snugly,
so the tetrahedron must be expanded in a hypersphere.
This gives the manifold an elliptic geometry.

16.2 The cube's corners come together in two groups
of four corners each. (Each corner is adjacent to the
other three in its group, but to no others.) The corners
are too small to fit snugly in groups of four, and the
manifold ends up with an elliptic geometry.

16.3 The octahedron's six corners meet in a single
group. The exact pattern is shown in the first two
drawings on the next page. Each corner is adjacent to
four of the remaining five corners, and each of those
four is adjacent to the fifth. The question now is
whether the corners are too skinny, too fat, or just
right. The corners would be just right if each were
exactly as pointy as one of the six pyramids which
comprise the cube in the middle drawing below. One
way to tell (certainly not the only way) is to use the
Pythagorean theorem to discover that the top half of
an octahedron is a pyramid whose altitude is about
0.7 times the width of the base, while each of the six
pyramids in the middle drawing has an altitude that
is exactly 0.5 times the width of its base. This tells
you that the octahedron's corners are a little too
pointy, so the octahedral space ends up with an elliptic
geometry.
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Chapter 17
17.1
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17.3 You can glue the top to the bottom with a VB,
V4 , % or V2 turn. You can also glue them with one of
the two types of flips shown below, although for the
flips you can't make a nice picture in three-dimen­
sional space like Figure 17.4. (Interestingly enough,
the two flips give topologically different manifolds.)

,,

flip flip

17.4 A torus and a Klein bottle. By the way, a Mobius
strip with opposite edges glued is a Klein bottle:

t_t f------.;;:~t
Mobius strip Klein bottle

17.5 Start with a solid cylinder and imagine one end
to be glued to the other with a side-to-side flip. What
you get is a circle of disks, but it's not a product. (You
won't be able to physically carry out the gluing in
three-dimensional space, just as a Flatlander can't
physically assemble a Mobius strip in the plane.)

17.6 Imagine S2 X I as a thickened spherical shell.
You can glue the inner surface to the outer surface in
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the most straightforward way to get 8 2 X 8 1
, or you

can glue the inner surface to the outer surface with a
side-to-side flip to get a nonorientable sphere bundle
over a circle (K3

). Any other way of gluing the inner
surface to the outer surface-such as gluing each
point on the inner sphere to the diametrically opposite
point on the outer sphere-gives a manifold that is
topologically the same as one of the two already men­
tioned (it's like gluing the ends of a cylinder with a
fraction of a turn to get a surface that is geometrically
different from, but topologically the same as, the torus
obtained by gluing the cylinder's ends without the
turn; to get a topologically different surface you have
to do something more drastic, like glue the cylinder's
ends with a side-to-side flip).

You can make a "hypersolid" 8 2 X 8 1 by gluing
together the ends of a solid ball cross an interval in
the simplest way. To make a "hypersolid" K3 you'd
have to glue them together with a side-to-side flip. To
understand these four-dimensional manifolds, think
about how A 8quare might try to understand an or­
dinary solid torus or solid Klein bottle.

17.7 The manifolds of Exercise 7.4 plus K 2
X 8 1

• (It
turns out that the manifold of Figure 7.10 is topologi­
cally equivalent to I(2 X 8\ while the manifolds of Fig­
ures 7.11 and 7.12 are topologically equivalent to each
other, even though all four are geometrically distinct.)

17.8 Glue the top of the prism to the bottom to get
an octagon of circles, and then glue opposite sides to
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get a two-holed doughnut of circles. (An octagon with
opposite sides glued has the topology of T2 # T2

.)

17.9 Imagine each cube in Figure 8.2 to be filled with
vertical spaghetti. When a cube's top is glued to its
bottom the spaghetti become circles, so you will get
some sort of circle bundle in each case. The first is an
orientable circle bundle over a torus, the second is a
nonorientable circle bundle over a Klein bottle, the
third is a nonorientable circle bundle over a torus, and
the fourth is an orientable circle bundle over a Klein
bottle.

17.10 Any three vertical edges can be glued together
so that the horizontal lines match up, but you can
never glue in the fourth edge because it has to be at
two different "heights" at once. In the regular twisted
torus this problem does not arise.

,
\
'---~--'
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Chapter 18
18.1 K3 (see Exercise 17.6).

ApPENDIX A

18.2 Any surface cross a circle, just so the surface
isn't 8 2

, p2, T2 or K2
• Many surface bundles over circles

also have H 2
X E geometry; see Exercise 17.3 for some

specific examples.

18.3 K3 and p2 X 8 1 are nonorientable, while 8 2 X 8 1

and the new manifold are orientable. The new mani­
fold is in some ways similar to projective three-space:
when you leave either the inner or the outer surface
of 8 2

X I (thought of as a thickened spherical shell)
you come back rotated, but not mirror reversed, at the
diametrically opposite point on the same surface.

18.4 No. In a three-manifold with twisted Euclidean
geometry you can easily observe whether you have to
travel clockwise or counterclockwise to come back be­
low where you started. 8ay you are in such a manifold,
and say you observe that traveling horizontally in a
small clockwise circle brings you back below where
you started. A friend of yours sets off on a long journey
through distant regions of the manifold. All along the
way he continues to observe that motion in a small
clockwise circle brings one back below where one
starts. When he returns from the long journey he still
observes that clockwise motion brings one back below
where one starts. This means that he isn't mirror-re­
versed! For if he were mirror-reversed it would seem
to him that motion in a counterclockwise circle would
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be required to bring one back below where one
started. This proves that a traveler never comes home
mirror-reversed, so the manifold must be orientable.

18.5 The manifold from Exercise 17.12 will do nicely.

Chapter 19
19.1 The distance between galaxies A and B will in­
crease by (0.07)(15 billion light-years) = 1.05 billion
light-years, and so the total separation will be 15 bil­
lion light-years + 1.05 billion light-years = 16.05 bil­
lion light-years. Galaxy B is moving away from galaxy
A at a rate of (1.05 billion light-years)/(1 billion years)
= 1.05 light-years per year. This is 5% faster than the
speed of light. Fortunately this does not contradict
Einstein's theory of special relativity, which says only
that two nearby objects cannot pass each other at
speeds exceeding the speed of light (in technical
terms, the relative speed of two objects in the same
inertial reference frame cannot exceed the speed of
light). In the present example the total distance be­
tween the two distant galaxies is increasing at a rate
exceeding the speed oflight, but that's OK because the
two galaxies are very far apart and no direct compar­
ison is possible (in technical terms, the two galaxies
lie in different inertial reference frames).

Chapter 21
21.1 The light from a galaxy that is presently a bil­
lion light-years away from us has taken somewhat less
than a billion years to reach us. The reason is that the
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universe was smaller in the past than it was now.
Imagine a sequence of equally spaced mileposts: mile­
post 0 is at the source galaxy, milepost 1 floats in
space exactly 1110 of the way from the source galaxy to
us, milepost 2 floats in space exactly 2/10 of the way
from the source galaxy to us, and so on up to milepost
10 which sits on Earth. In the modern universe the
distance between successive mileposts is exactly 100
million light-years. But back when the photon of light
was traveling from, say, milepost 8 to milepost 9, the
universe was a bit smaller and so the distance be­
tween the mileposts was less than 100 million light­
years. Further back in the past, when the photon was
traveling from milepost 7 to milepost 8, the universe
-and the distance between mileposts-was smaller
still, and so on. In effect the photon made better prog­
ress during the early parts of its journey because
space was more compressed back then.

21.2 We may compute the distance from each of the
n galaxies to each of the n - 1 other galaxies, for a
total of n(n - 1) distances. However, the distance from
galaxy A to galaxy B is the same as the distance from
galaxy B to galaxy A, and so there is no need to com­
pute them separately. This halves the number of dis­
tances that must be computed, for a final total of
n(n - 1)/2 distances.

Chapter 22
22.1 Our last scattering surface will be larger in the
future, not only because the universe is expanding but
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also because light from more distant regions of space
will have had time to reach us. In other words, in the
future we will be able to see a larger percentage of the
universe than we see now. (So if present efforts to de­
tect the topology of space fail, we can wait a billion
years and try again!)

22.2 (a) Yes, your fingers pass over identical colors
at corresponding points. The temperature at A is the
same as the temperature at A'. the temperature at B
is the same as at B', and so on. (b) The temperatures
along the circles in the northern and southern skies
also match exactly. Note that these two circles, while
perfectly round in the sky itself, appear as horizontal
lines in the figure below.

22.3 (a) The circles in a quarter turn manifold match
like the circles in a three-torus, except that the three­
torus's circles match straight across, while one pair of
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the quarter turn manifold's circles match with a 90°
rotation. (b) In K,2 x 8· one pair of circles matches
with a flip, thus revealing the topology of the space.

Circles in a three-torus match straight across.

One of the pairs of circles in a quarter-turn manifold matches
with a 90" offset.
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One of the pairs of circles in }('l X 8 1 matches with a flip.
(You'll see the flip most clearly if you imagine bringing the two
hemispheres together to restore the spherical sky. Even though
the two circles both run counterclockwise on the printed page,

on the spherical sky they run in opposite directions.)

22.4 If we're sitting at the center of the dodeca­
hedron, then in both the Poincare dodecahedral space
and the Seifert-Weber space we see six pairs of
matching circles (twelve circles total) arranged in the
sky with dodecahedral symmetry. The circles never­
theless reveal the difference between the two spaces:
in the Poincare dodecahedral space the temperatures
on opposite circles match with a 1/10 twist, while in the
Seifert-Weber space the temperatures match with a
3/10 twist.
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Bibliography

FOUR-DIMENSIONAL SPACE

1. Abbott, E.A. Flatland: A Romance of Many Di­
mensions, Dover, 1992 (originally published
1884).
If you read only one book from this bibliography,
read Flatland. Abbott spins together engaging
Victorian social satire with a gentle introduction
to higher dimensions. The clear and powerful
writing is an inspiration in itself. Best of all, this
book costs only $1, so when you order your copy

355



356 ApPENDIX B

you can get a few for your friends at the same
time.

2. Banchoff, T.F. Beyond the Third Dimension: Ge­
ometry, Computer Graphics, and Higher Dimen­
sions, Scientific American Library, 1990.
This well illustrated book offers a fun, easy-to­
read introduction to four-dimensional space and
related ideas in geometry and topology.

3. Rucker, R. Geometry, Relativity, and the Fourth
Dimension, Dover, 1977.
An excellent popular exposition of higher dimen­
sions, physics, and philosophy, with a counter­
culture twist.
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4. Hilbert, D. and S. Cohn-Vossen. Geometry and

the Imagination, Chelsea, 1999 (translation of
Anschauliche Geometrie, 1932).

5. Coxeter, H.S.M. Introduction to Geometry, 2nd
edition, Wiley, 1989.
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geometry. You can read them cover-to-cover, but
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tions catch my interest.

6. Henderson, D.W. Experiencing Geometry, 2nd
edition, Prentice Hall, 200l.
An excellent undergraduate geometry textbook,
designed for an active learning approach. In-
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dudes a comprehensive 26-page bibliography on
all aspects of geometry, which the author keeps
up to date at www.math.comell.edu / ~dwh /
biblio.

TOPOLOGY

7. Seifert, H. and W. Threlfall. A Textbook of Topol­
ogy, Academic Press, 1980 (translation of Lehr­
buch der Topologie, 1934).
Don't be put off by the age of this book. The ideas
it contains (homology theory, fundamental group,
covering spaces, 3-manifolds, Poincare duality,
linking numbers) are as interesting and relevant
today as they were in 1934. An excellent choice
for graduate students or advanced undergradu­
ates wanting to get in touch with the origins of
3-manifold topology.

8. Thurston, W.P. Three-Dimensional Geometry
and Topology, Vol. 1, Princeton University Press,
1997.
Bill Thurston pioneered the geometrical theory
of 3-manifolds. This book lets you share his vi­
sion. The book is intended for graduate students,
and you'll need a solid grounding in mathematics
to understand all of it. In spite of the stiff pre­
requisites, Thurston put a lot of energy into mak­
ing the basic ideas dear, and providing helpful
illustrations wherever possible.

9. Weeks, J.R. Exploring the Shape of Space, Key
Curriculum Press, 2001.
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This 2-week classroom unit uses paper-and-scis­
sors activities, pencil-and-paper games, com­
puter games, and the Shape of Space video to
explore possible shapes for our 3-dimensional
universe. For students in grades 6-10. www.
keypress. com / space.

10. Adams, C.C. Knot Book: An Elementary Intro­
duction to the Mathematical Theory of Knots,
Freeman, 1994.
A fun survey of knot theory for a broad audience.

11. Rolfsen, D. Knots and Links, Publish or Perish,
1976.
If you're a graduate student in mathematics,
Knots and Links is an excellent sequel to The
Shape of Space. Pictures and hands-on exercises
take you on a comprehensive yet concrete tour of
3-manifold topology and knot theory. Prerequi­
sites: abstract algebra and some algebraic topol­
ogy.

12. Francis, G.K. A Topological Picturebook,
Springer-Verlag, 1987.
The master of mathematical illustration shows
you how to make beautiful and effective draw­
ings, while simultaneously teaching you some
classic topology.

13. Guilleman, V. and A. Pollack. Differential Topol­
ogy, Prentice-Hall, 1974.
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This excellent introduction to differential topol­
ogy explores many beautiful topics-my favor­
ites are vector fields and degrees of mappings­
yet it requires only a minimal background,
namely calculus and linear algebra (believe me,
compared to other books on the topic this is a
minimum).

14. Petit, J.-P. Here's Looking at Euclid. Kaufmann,
1985 (translation of Le Geometricon).
This comic book takes a playful romp through
some simple 3-manifolds. Novices and experi­
enced mathematicians will all have fun.

COSMIC TOPOLOGY

15. Osserman, R. Poetry of the Universe, Anchor
Books, 1996.
This inexpensive paperback tells the story ofhu­
manity's evolving understanding of the shape of
our universe. Osserman skillfully weaves geo­
metrical understanding into the historical tale.
This is truly a layperson's account-no science
or mathematics background is needed.

16. Luminet, J.-P. L'Univers Chiffonne, Fayard,
200l.
Clear writing and gorgeous figures make this the
best account of current experimental efforts to
detect the topology of the real universe. Written
for the educated public, the book requires no spe­
cialized knowledge of math or physics, and the
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style is simple enough that readers with only a
minimal command of French will have no trou­
ble. (I still don't understand the word chiffonne
in the title, but in the text itself the French is
easy.) Ifyou can't read French at all, wait for the
expected English translation.

17. Cornish, N. and J. Weeks. Measuring the shape
of the universe. Notices of the American Mathe­
matical Society 45: 1461-1469, 1998.
Explains the physics and mathematics of an ex­
panding universe, along with the Circles in the
Sky method of detecting topology. Written for a
broad audience of professional mathematicians,
most of the article is accessible to undergraduate
math and physics majors as well.
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Conway's ZIP Proof
George K. Francis and Jeffrey R. Weeks

Surfaces arise naturally in many different forms, in
branches of mathematics ranging from complex anal­
ysis to dynamical systems. The Classification Theo­
rem, known since the 1860s, asserts that all closed
surfaces, despite their diverse origins and seemingly
diverse forms, are topologically equivalent to spheres
with some number of handles or crosscaps (to be de­
fined below). The proofs found in most modern text-

This article was originally published in the May 1999 issue of the Amer­
ican Mathematical Monthly.
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books follow that of Seifert and Threlfall [5]. Seifert
and Threlfall's proof, while satisfyingly constructive,
requires that a given surface be brought into a some­
what artificial standard form. Here we present a com­
pletely new proof, discovered by John H. Conway in
about 1992, which retains the constructive nature of
[5] while eliminating the irrelevancies of the standard
form. Conway calls it his Zero Irrelevancy Proof, or
"ZIP proof," and asks that it always be called by this
name, remarking that "otherwise there's a real danger
that its origin would be lost, since everyone who hears
it immediately regards it as the obvious proof." We
trust that Conway's ingenious proof will replace the
customary textbook repetition of Seifert-Threlfall in
favor of a lighter, fat-free nouvelle cuisine approach
that retains all the classical flavor of elementary to­
pology.

We work in the realm of topology, where surfaces
may be freely stretched and deformed. For example,
a sphere and an ellipsoid are topologically equivalent,
because one may be smoothly deformed into the other.
But a sphere and a doughnut surface are topologically
different, because no such deformation is possible. All
of our figures depict deformations of surfaces. For ex­
ample, the square with two holes in Figure C.1A is
topologically equivalent to the square with two tubes
(C.1B), because one may be deformed to the other.
More generally, two surfaces are considered equiva­
lent, or homeomorphic, if and only if one may be
mapped onto the other in a continuous, one-to-one
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Figure C.I Handle.

fashion. That is, it's the final equivalence that counts,
whether or not it was obtained via a deformation.

Let us introduce the primitive topological features
in terms of zippers or "zip-pairs," a zip being half a
zipper. Figure C.IA shows a surface with two boundary
circles, each with a zip. Zip the zips, and the surface
acquires a handle (C.ID). Ifwe reverse the direction of
one of the zips (C.2A), then one of the tubes must "pass
through itself" (C.2B) to get the zip orientations
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Figure C.2 Crosshandle.

to match. Figure C.2B shows the self-intersecting tube
with a vertical slice temporarily removed, so the
reader may see its structure more easily. Zipping the
zips (C.2C) yields a crosshandle (C.2D). This picture
of a crosshandle contains a line of self-intersection.
The self-intersection is an interesting feature of the
surface's placement in 3-dimensional space, but has
no effect on the intrinsic topology of the surface itself.
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If the zips occupy two halves of a single boundary
circle (Figure C.3A), and their orientations are consis­
tent, then we get a cap (C.3C), which is topologically
trivial (C.3D) and won't be considered further. If the
zip orientations are inconsistent (CAA), the result is
more interesting. We deform the surface so that cor­
responding points on the two zips lie opposite one an­
other (CAB), and begin zipping. At first the zipper
head moves uneventfully upward (CAC), but upon
reaching the top it starts downward, zipping together
the "other two sheets" and creating a line of self-in­
tersection. As before, the self-intersection is merely an
artifact of the model, and has no effect on the intrinsic
topology of the surface. The result is a crosscap

Figure C.3 Cap.
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Figure C.4 Crosscap.

(CAD), shown here with a cutaway view to make the
self-intersections clearer.

The preceding constructions should make the con­
cept of a surface clear to non-specialists. Specialists
may note that our surfaces are compact, and may
have boundary.

Comment. A surface is not assumed to be connected.
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Comment. Figure C.5 shows an example of a trian­
gulated surface. All surfaces may be triangulated, but
the proof [4] is difficult. Instead we may consider the
Classification Theorem to be a statement about sur­
faces that have already been triangulated.

Definition. A perforation is what's left when you re­
move an open disk from a surface. For example, Fig­
ure C.lA shows a portion of a surface with two per­
forations.

Figure C.5 Install a zip-pair along each edge of the
triangulation, unzip them all, and then rezip them one

at a time.
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Definition. A surface is ordinary if it is homeo­
morphic to a finite collection of spheres, each with a
finite number of handles, crosshandles, crosscaps, and
perforations.

Classification Theorem (preliminary version)
Every surface is ordinary.

Proof Begin with an arbitrary triangulated surface.
Imagine it as a patchwork quilt, only instead of imag­
ining traditional square patches of material held to­
gether with stitching, imagine triangular patches held
together with zip-pairs (Figure C.5). Unzip all the zip­
pairs, and the surface falls into a collection of trian­
gles with zips along their edges. This collection of tri­
angles is an ordinary surface, because each triangle is
homeomorphic to a sphere with a single perforation.
Now rezip one zip to its original mate. It's not hard to
show that the resulting surface must again be ordi­
nary, but for clarity we postpone the details to Lemma
1. Continue rezipping the zips to their original mates,
one pair at a time, noting that at each step Lemma 1
ensures that the surface remains ordinary. When the
last zip-pair is zipped, the original surface is restored,
and is seen to be ordinary. 0

Lemma 1. Consider a surface with two zips attached
to portions of its boundary. If the surface is ordinary
before the zips are zipped together, it is ordinary after­
wards as well.
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Proof First consider the case that each of the two
zips completely occupies a boundary circle. If the two
boundary circles lie on the same connected component
of the surface, then the surface may be deformed so
that the boundary circles are adjacent to one another,
and zipping them together converts them into either
a handle (Figure C.l) or a crosshandle (Figure C.2),
according to their relative orientation. If the two
boundary circles lie on different connected compo­
nents, then zipping them together joins the two com­
ponents into one.

Next consider the case that the two zips share a
single boundary circle, which they occupy completely.
Zipping them together creates either a cap (Figure
C.3) or a crosscap (Figure C.4), according to their rel­
ative orientation.

Finally, consider the various cases in which the
zips needn't completely occupy their boundary cir­
cle(s), but may leave gaps. For example, zipping to­
gether the zips in Figure C.6A converts two perfora­
tions into a handle with a perforation on top (C.6B).
The perforation may then be slid free of the handle
(C.6C,6D). Returning to the general case of two zips
that needn't completely occupy their boundary cir­
cle(s), imagine that those two zips retain their normal
size, while all other zips shrink to a size so small that
we can't see them with our eyeglasses off. This re­
duces us (with our eyeglasses still off!) to the case of
two zips that do completely occupy their boundary cir­
cle(s), so we zip them and obtain a handle, crosshan-
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Figure C.6 These zips only partially occupy the boundary
circles, so zipping them yields a handle with

a puncture.

dIe, cap, or crosscap, as illustrated in Figures C.1-4.
When we put our eyeglasses back on, we notice that
the surface has small perforations as well, which we
now restore to their original size. 0

The following two lemmas express the relation­
ships among handles, crosshandles, and crosscaps.

Lemma 2. A crosshandle is homeomorphic to two
crosscaps.
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Proof Consider a surface with a "Klein perforation"
(Figure C.7A). If the parallel zips (shown with black
arrows in C. 7A) are zipped first, the perforation splits
in two (C.7B). Zipping the remaining zips yields a
crosshandle (C.7C).

If, on the other hand, the antiparallel zips (shown
with white arrows in Figure C.7A) are zipped first, we
get a perforation with a "Mobius bridge" (C.7D). Rais­
ing its boundary to a constant height, while letting the
surface droop below it, yields the bottom half of a
crosscap (C.7E). Temporarily fill in the top half of the
crosscap with an "invisible disk" (C.7F), slide the disk

Figure C.7 A crosshandle is homeomorphic to two crosscaps.
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free of the crosscap's line of self-intersection (C.7G),
and then remove the temporary disk. Slide the per­
foration off the crosscap (C.7H) and zip the remaining
zip-pair (shown with black arrows) to create a second
crosscap (C.7I).

The intrinsic topology of the surface does not de­
pend on which zip-pair is zipped first, so we conclude
that the crosshandle (C.7C) is homeomorphic to two
crosscaps (C.7I). 0

Lemma 3 (Dyck's Theorem [1]). Handles and cross­
handles are equivalent in the presence of a crosscap.

Proof Consider a pair of perforations with zips in­
stalled as in Figure C.8A. If, on the one hand, the
black arrows are zipped first (C.8B), we get a handle
along with instructions for a crosscap. If, on the other
hand, one tube crosses through itself(C.8C, recall also
Figure C.2B) and the white arrows are zipped first,
we get a crosshandle with instructions for a crosscap
(C.8D). In both cases, of course, the crosscap may be
slid free of the handle or crosshandle, just as the per­
foration was slid free of the handle in Figure C.6BCD.
Thus a handle-with-crosscap is homeomorphic to a
crosshandle-with-crosscap. 0

Classification Theorem
Every connected closed surface is homeomorphic to ei­
ther a sphere with crosscaps or a sphere with handles.

Proof By the preliminary version of the Classifica­
tion Theorem, a connected closed surface is homeo-
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Figure C.S The presence of a crosscap makes a handle cross.

morphic to a sphere with handles, crosshandles, and
crosscaps.

Case 1 At least one crosshandle or crosscap is pres­
ent. Each crosshandle is homeomorphic to two cross­
caps (Lemma 2), so the surface as a whole is homeo­
morphic to a sphere with crosscaps and handles
only. At least one crosscap is present, so each handle
is equivalent to a crosshandle (Lemma 3), which is in
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turn homeomorphic to two crosscaps (Lemma 2), re­
sulting in a sphere with crosscaps only.

Case 2
surface
only.

No crosshandle or crosscap is present. The
is homeomorphic to a sphere with handles

We have shown that every connected closed
surface is homeomorphic to either a sphere with
crosscaps or a sphere with handles. 0

Comment. The surfaces named in the Classification
Theorem are all topologically distinct, and may be rec­
ognized by their orientability and Euler number. A
sphere with n handles is orientable with Euler num­
ber 2 - 2n, while a sphere with n crosscaps is non­
orientable with Euler number 2 - n. Most topology
books provide details; elementary introductions ap­
pear in [6] and [2].

Nomenclature. A sphere with one handle is a torus,
a sphere with two handles is a double torus, with
three handles a triple torus, and so on. A sphere with
one crosscap has traditionally been called a real pro­
jective plane. That name is appropriate in the study
of projective geometry, when an affine structure is
present, but is inappropriate for a purely topological
object. Instead, Conway proposes that a sphere with
one crosscap be called a cross surface. The name cross
surface evokes not only the crosscap, but also the sur­
face's elegant alternative construction as a sphere
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with antipodal points identified. A sphere with two
crosscaps then becomes a double cross surface, with
three crosscaps a triple cross surface, and so on. As
special cases, the double cross surface is often called
a Klein bottle, and the triple cross surface Dyck's sur­
face [3].
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surfaces in, 128
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in four-dimensional space, 191
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solid, 236
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Lachieze-Rey, 287
Last scattering surface, 301-308
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Mobius strip, 47-49, 125-126
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Negative curvature, 151
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definition of, 125
Open manifold, 42-44
Ordinary surface, 368
Orientable manifold, 58
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210-212,248,282
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229-233,249

circles in the sky of, 306
cosmic crystallography in, 291

Quaternionic manifold, 226-227

Radians, 136
Riemann, 280
Rubber band, with twist, 31-33

S2 x E geometry, 243-245, 250
S2 x St, 91-97, 250
Schwarzschild, 280
Sectional curvature, 244-247
Seifert-Weber space, 219-221,

224, 249
circles in the sky of, 306

Sheep, 86
Solid doughnut, 236
Solid K 3

, 237
Solid Klein bottle, 236
Solid S2 X SI, 237
Solve geometry, 254-255
Spacetime, 195-197,272-278
Spergel, 306
Sphere, 135-147, 199-200

knotted, 193-195
vs. ball, 200-201

Sphereland, 135-136
Spherical 3-manifolds, 219-224,

273
cosmic crystallography in, 292
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Spherical n-gon, 169-170
Spherical triangle, 136

area and angles, 136-144
Spirits, 190-193
Starkman, 306
Superclusters, 289-293
Surfaces, 11

classification of, 361-375
Classification Theorem, 368
nonredundant list of, 80
ordinary, 368
redundant list of, 76
triangulated, 367

Telescope, 280
Tetrahedral space, 226-227
Three-manifold:

formal definition, 40
informal definition, 11

Three-sphere, 199-210, 248, 280,
282

Three-torus, 20-24, 249
circles in the sky of, 302-306
how corners fit, 224-225
introduced to astronomers,

280-281
oblong, 41
as a product, 89-91
view in, 103-105

Thurston, 249, 255
Tic-tac-toe:

on a Klein bottle, 50-54
on a torus, 14-17, 103

Topology, 26-31
Torus:

chess on, 17-20
double, 374
drawn as a doughnut surface,

9, 30
flat, 13-20, 23-24
flat torus vs. doughnut surface,

30-31,41
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[Torus:]
hexagonal, 111-120
8' x 8\ 84-85, 87
three-dimensional (see Three-

torus)
tic-tac-toe on, 14-17, 103
triple, 374
twisted, 239-241, 252-253

Triangle:
Euclidean, 144
hyperbolic, 154-156, 214-216
spherical, 136-144

Triangulated surface, 367
Triple cross surface, 375
Triple torus, 374
Twisted Euclidean geometry,

251-253
Twisted H2 x E geometry, 254
Twisted 8 2 X E geometry, 254

INDEX

Twisted torus, 239-241, 252-253
Two-manifold:

formal definition, 40
informal definition, 11

Two-sided surface, 125-131
definition of, 127

Universe, 259-308

Vacuum energy, 271
Video game, 13-14,99-103

Walking around corners, 116­
120, 159

Wilson, 297

Zero curvature, 149
Zero Irrelevancy Proof, 362
Zippers, 363
Zollner, 190-192


