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When we wrote our 1988 book, Cooper 
Oxide Superconductors, our aim was to 
present an early survey of the experimen­
tal aspects of the field of high temperature 
superconductivity as an aid to researchers 
who were then involved in the worldwide 
effort to (a) understand the phenomenon of 
cuprate superconductivity and (b) search for 
ways to raise the critical temperature and 
produce materials suitable for the fabrication 
of magnets and other devices. A great deal of 
experimental data are now available on the 
cuprates, and their superconducting proper­
ties have been well characterized using high 
quality untwinned monocrystals and epitax­
ial thin films. Despite this enormous research 
effort, the underlying mechanisms respon­
sible for the superconducting properties of 
the cuprates are still open to question. Nev­
ertheless, we believe that the overall pic­
ture is now clear enough to warrant the 
writing of a text-book that presents our 
present-day understanding of the nature of 

Preface to

the First

Edition


the phenomenon of superconductivity, sur­
veys the properties of various known super­
conductors, and shows how these properties 
fit into various theoretical frameworks. The 
aim is to present this material in a format 
suitable for use in a graduate-level course. 

An introduction to superconductivity 
must be based on a background of funda­
mental principles found in standard solid 
state physics texts, and a brief introductory 
chapter provides this background. This initial 
chapter on the properties of normal conduc­
tors is limited to topics that are often referred 
to throughout the remainder of the text: elec­
trical conductivity, magnetism, specific heat, 
etc. Other background material specific to 
particular topics is provided in the appro­
priate chapters. The presence of the initial 
normal state chapter makes the remainder of 
the book more coherent. 

The second chapter presents the essen­
tial features of the superconducting state— 
the phenomena of zero resistance and 

xvii 



Elsevier AMS Job code: SUP Prelims-P088761 23-6-2007 10:28a.m. Page:xviii Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

xviii 

perfect diamagnetism. Super current flow, 
the accompanying magnetic fields, and the 
transition to this ordered state that occurs at 
the transition temperature Tc are described. 
The third chapter surveys the properties 
of the various classes of superconductors, 
including the organics, the buckminister­
fullerenes, and the precursors to the cuprates, 
but not the high temperature superconduc­
tors themselves. Numerous tables and figures 
summarize the properties of these materials. 

Having acquired a qualitative under­
standing of the nature of superconductivity, 
we now proceed, in five subsequent chapters, 
to describe various theoretical frameworks 
which aid in understanding the facts about 
superconductors. Chapter 4 discusses super­
conductivity from the view-point of ther­
modynamics and provides expressions for 
the free energy—the thermodynamic func­
tion that constitutes the starting point for the 
formulations of both the Ginzburg–Landau 
(GL) and the BCS theories. The GL the­
ory is developed in Chapter 5 and the BCS 
theory in Chapter 6. GL is a readily under­
standable phenomenological theory that pro­
vides results that are widely used in the 
interpretation of experimental data, and BCS 
in a more fundamental, and mathematically 
challenging, theory that makes predictions 
that are often checked against experimen­
tal results. Most of Chapter 5 is essential 
reading, whereas much of the formalism of 
Chapter 6 can be skimmed during a first 
reading. 

The theoretical treatment is interrupted 
by Chapter 7, which presents the details of 
the structures of the high temperature super­
conductors. This constitutes important back­
ground material for the band theory sections 
of Chapter 8, which also presents the Hub­
bard and related models, such as RVB and 
t–J. In addition, Chapter 8 covers other 
theoretical approaches involving, for exam­
ple, spinons, holons, slave bosons, anyons, 
semions, Fermi liquids, charge and spin den­
sity waves, spin bags, and the Anderson 

PREFACE TO THE FIRST EDITION 

interlayer tunneling scheme. This completes 
the theoretical aspects of the field, except 
for the additional description of critical state 
models such as the Bean model in Chapter 
12. The Bean model is widely used for the 
interpretation of experimental results. 

The remainder of the text covers the 
magnetic, transport, and other properties of 
superconductors. Most of the examples in 
these chapters are from the literature on 
the cuprates. Chapter 9 introduces Type II 
superconductivity and describes magnetic 
properties, Chapter 10 continues the dis­
cussion of magnetic properties, Chapter 11 
covers the intermediate and mixed states, 
and Chapter 12, on critical state models, 
completes the treatment of magnetic proper­
ties. The next two chapters are devoted to 
transport properties. Chapter 13 covers var­
ious types of tunneling and the Josephson 
effect, and Chapter 14 presents the remain­
ing transport properties involving the Peltier, 
Seebeck, Hall, and other effects. 

When the literature was surveyed in 
preparation for writing this text, it became 
apparent that a very significant percentage 
of current research on superconductivity is 
being carried out by spectroscopists, and 
to accommodate this, Chapter 15 on spec­
troscopy was added. This chapter lets the 
reader know what the individual branches of 
spectroscopy can reveal about the properties 
of superconductors, and in addition, it pro­
vides an entrée to the vast literature on the 
subject. 

This book contains extensive tabulations 
of experimental data on various supercon­
ductors, classical as well as high Tc types. 
Figures from research articles were gener­
ally chosen because they exemplify princi­
ples described in the text. Some other figures, 
particularly those in Chapter 3, provide cor­
relations of extensive data on many samples. 
There are many cross-references between the 
chapters to show how the different topics fit 
together as on unified subject. 

Most chapters end with sets of problems 
that exemplify the material presented and 
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xix PREFACE TO THE FIRST EDITION 

sets of references for additional reading on 
the subject. Other literature citations are scat­
tered throughout the body of each chapter. 
Occasional reference is made to our earlier 
work, Copper Oxide Superconductors, for 
supplementary material. 

One of us (C.P.P.) taught a graduate-level 
superconductivity course three times using 
lecture notes which eventually evolved into 
the present text. It was exciting to learn with 
the students while teaching the course and 
simultaneously doing research on the subject. 

We thank the following individuals 
for their helpful discussions and comments 
on the manuscript: C. Almasan, S. Aktas, 
D. Castellanos, T. Datta, N. Fazyleev, 
J. B. Goodenough, K. E. Gray, D. U. Gubser, 
D. R. Harshman, A. M. Herman, Z. Iqbal, 
E. R. Jones, A. B. Kaiser, D. Kirvin, 

O. Lopez, M. B. Maple, A. P. Mills, 
Jr., S. Misra, F. J. Owens, M. Pencarinha, 
A. Petrile, W. E. Pickett, S. J. Poon, 
A. W. Sleight, O. F. Schuette, C. Sisson, 
David B. Tanner, H. Testardi, C. Uher, 
T. Usher, and S. A. Wolf. We also thank 
the graduate students of the superconductiv­
ity classes for their input, which improved 
the book’s presentation. We appreciate the 
assistance given by the University of South 
Carolina (USC) Physics Department; our 
chairman, F. T. Avignone; the secretaries, 
Lynn Waters and Cheryl Stocker; and espe­
cially by Gloria Phillips, who is thanked 
for her typing and multiple emendations of 
the BCS chapter and the long list of refer­
ences. Eddie Josie of the USC Instructional 
Services Department ably prepared many 
of the figures. 
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It has been an exciting two decades 
spending most of my time playing a rela­
tively minor role in the exciting world-wide 
Superconductivity Endeavor. My involve­
ment began on March 18th, 1987, when I 
attended what became known later as the 
“Woodstock of Physics”, the “Special Panel 
Discussion on Novel High Temperature 
Superconductivity” held at the New York 
meeting of the American Physical Society. 
I came a half hour early and found the main 
meeting room already full, so several hun­
dred physicists and I watched the proceed­
ings at one of the many TV monitors set up in 
the corridors of the hotel. That evening in the 
hotel room my colleague Timir Datta said to 
me “Why don’t we try to write the first book 
on high temperature superconductivity?” 
When we arrived back in Columbia I enlisted 
the aid of Horacio, my main collaborator 
for two prior decades, and the work began. 
Timir and I spent many nights working 
until two or three in the morning gathering 

Preface to

the Second 

Edition 

together material, collating, and writing. We 
had help from two of our USC students 
M. M. Rigney and C. R. Sanders. In this work 
Copper Oxide Superconductors we managed 
to comment on, summarize, and collate the 
data by July of 1988, and the book appeared 
in print toward the end of that year. 

By the mid 1990’s the properties of 
the cuprates had become well delineated by 
measurements carried out with high quality 
untwinned single crystals and epitaxial thin 
films. There seemed to be a need to assem­
ble and characterize the enormous amount of 
accumulated experimental data on a multi­
tude of superconducting types. To undertake 
this task and acquire an understanding of the 
then current status of the field, during 1993 
and 1994 I mailed postcards to researchers 
all over the world requesting copies of their 
work on the subject. This was supplemented 
by xerox copies of additional articles made 
in our library, and provided a collection 
of over 2000 articles on superconductivity. 

xxi 
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These reprints and xeroxes were sorted into 
categories which became chapters and sec­
tions of the first edition of this present book. 
For several months the floor of my study at 
home remained covered with piles of reprints 
as I proceeded to sort, peruse, and transpose 
data and information from them. This was a 
tedious, but nonetheless very exciting task. 

There were some surprises, such as the 
relatively large number of articles on spec­
troscopy, most of which were very informa­
tive, and they became Chap. 15. This chapter 
contained material that most closely matched 
my pre-superconductivity era research 
endeavors, and I was pleased to learn how 
much spectroscopy had contributed to an 
understanding of the nature of superconduc­
tors. There were also many articles on mag­
netic properties, critical states, tunneling, and 
transport properties, which became Chapters 
10, 12, 13, and 14, respectively. Most of 
the relatively large number of articles on the 
Hubbard Model did not, in my opinion, add 
very much to our understanding of super­
conductivity. Some of them were combined 
with more informative articles on band struc­
ture to form Chap. 8. There was a plethora 
of articles on the crystallographic structures 
of various cuprates, with a great deal of 
redundancy, and the information culled from 
them constituted Chap. 7. Chapter 9, Type II 
Superconductivity, summarized information 
from a large number of reprints. 

The Intermediate and Mixed States 
Chapter 11 depended much less on informa­
tion garnered from the reprints, and much 
more on classical sources. The same was 
true of Chap. 3 Classical Superconductors, 
Chap. 4 Thermodynamic Properties, Chap. 5 
Ginzburg-Landau Theory, and Chap. 6 BCS 
Theory written by Rick. Finally the begin­
ning of the First Edition text, namely Chap. 1 
Properties of the Normal State, and Chap. 2 
The Phenomenon of Superconductivity, were 
introductory in nature, and relied very little 
on material garnered from the reprint col­
lection. Thus our first edition provided an 

PREFACE TO SECOND EDITION 

overall coverage of the field as it existed at 
the end of 1994. 

In 1996 and 1999, respectively, the 
books The New Superconductors and Elec­
tromagnetic Absorption in Superconductors 
were written in collaboration with Frank 
J. Owens as the principal author. 

The next project was the Handbook of 
Superconductivity, published during the mil­
lennial year 2000. It assembled the experi­
mental data that had accumulated up to that 
time. Chapters in this volume were written 
by various researchers in the field. Of partic­
ular importance in this work were Chapters 
6 and 8 by Roman Gladyshevski and his two 
coworkers which tabulated and explicated 
extensive data on, respectively, the Classical 
and the Cuprate Superconductors. His classi­
fication of the cuprate materials is especially 
incisive. 

Seven years have now passed since the 
appearance of the Handbook, and our under­
standing of the phenomenon of Supercon­
ductivity is now more complete. Much of the 
research advances during this period have 
been in the area of magnetism so I enlisted 
Ruslan Prozorov, who was then a member 
of our Physics Department at USC, and an 
expert on the magnetic properties of super­
conductors, to join Horacio, Rick, and myself 
in preparing a second edition of our 1995 
book. In the preparation of this edition some 
of the chapters have remained close to the 
original, some have been shortened, some 
have been extensively updated, and some are 
entirely new. The former Chap. 10, Mag­
netic Properties, has been moved earlier and 
becomes Chap. 5. Aside from this change, 
the first six chapters are close to what they 
were in the original edition. Chapter 7, 
BCS Theory, has been rewritten to take into 
account advances in some topics of recent 
interest such as d-wave and multiband super­
conductivity. Chapter 8, on the Structures of 
the Cuprates, has material added to it on the 
superconductor Sr2RuO4, layerng schemes, 
and infinite layer phases. 
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Chapter 9 on Nonclassical Supercon­
ductors describes superconducting materi­
als which do not fit the categories of 
Chap. 3. It discusses the properties of the 
relatively recently discovered superconduc­
tor magnesium diboride, MgB2, as well as 
borocarbides, boronitrides, perovskites such 
as MgCNi3, charge transfer organics, heavy 
electron systems, and Buckminsterfullerenes. 
The chapter ends with a discussion of the 
symmetry of the order parameter, and a 
section that treats magnetic superconductors 
and the coexistence of superconductivity and 
magnetism. The coverage of the Hubbard 
Model and Band Structure in Chap. 10 is sig­
nificantly shorter than it was in the first edi­
tion. Chapter 11, Type I Superconductors and 
the Intermediate State, includes some recent 
developments in addition to what was cov­
ered in the first edition. Chapter 12 describes 
the nature and properties of Type II Super­
conductors, and is similar to its counterpart 
in the first edition. Chapter 13, Irreversible 
Properties, discusses critical states and the 
Bean model, the treatment of the latter 
being much shorter than it was in the first 
edition. In addition there are sections on 
current-magnetic moment conversion formu­
lae, and susceptibility measurements of a 
perfect superconductor. 

Chapter 14, Magnetic Penetration 
Depth, written by Ruslau is entirely new. 
It covers the topics of isotropic London 
electrodynamics, the superconductivity gap 
and Fermi surfaces, the semiclassical model 
for superfluid density, mixed gaps, s- and 
d-wave pairing, the effect of disorder on 
the penetration depth, surface Andreev 
bound states, nonlocal electrodynamics of 

nodal superconductors, the nonlinear Meiss­
ner Effect, the Campbell penetration depth, 
and proximity effect identification. Chapter 
15, Energy Gap and Tunneling, includes a 
new section on tunneling in unconventional 
superconductors. Finally Chapters 16 and 
17 discuss, respectively, transport properties 
and spectroscopic properties of superconduc­
tors, and are similar in content to their coun­
terparts in the first edition. Recent data on 
superconducting materials have been added 
to the tables that appeared in various chapters 
of the first edition, and there are some new 
tables of data. References to the literature 
have been somewhat updated. 

Two of us (Horacio and I) are now octo­
genarians, but we continue to work. Over the 
decades Horacio has been a great friend and 
collaborator. It is no longer “publish or per­
ish” but “stay active or perish.” We intend 
to remain active, deo volente. 

Professor Prozorov would like to 
acknowledge partial support of NSF grants 
numbered DMR-06-03841 and DMR­
05-53285, and also the Alfred P. Sloan 
Foundation. He wishes to thank his wife 
Tanya for her support, and for pushing him 
to finish his chapters. He also affirms that: 
“In my short time with the USC Department 
of Physics, one of the best things that 
happened was to get to know Charles Poole 
Jr., Horacio Farach, Rick Creswick, and 
Frank Avignone III whose enthusiasm was 
contagious, and I will always cherish the 
memory of our discussions.” 

Charles P. Poole, Jr. 
June 2007 
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1 
Properties of 

the Normal State 

I. INTRODUCTION 

This text is concerned with the 
phenomenon of superconductivity, a phe­
nomenon characterized by certain electri­
cal, magnetic, and other properties, many 
of which will be introduced in the follow­
ing chapter. A material becomes supercon­
ducting below a characteristic temperature, 
called the superconducting transition tem­
perature Tc, which varies from very small 
values (millidegrees or microdegrees) to val­
ues above 100 K. The material is called nor­
mal above Tc, which merely means that it 
is not superconducting. Elements and com­
pounds that become superconductors are 
conductors—but not good conductors—in 
their normal state. The good conductors, 
such as copper, silver, and gold, do not 
superconduct. 

It will be helpful to survey some proper­
ties of normal conductors before discussing 
the superconductors. This will permit us to 
review some background material and to 
define some of the terms that will be used 
throughout the text. Many of the normal state 
properties that will be discussed here are 
modified in the superconducting state. Much 
of the material in this introductory chapter 
will be referred to later in the text. 

II. CONDUCTING ELECTRON 
TRANSPORT 

The electrical conductivity of a metal 
may be described most simply in terms of the 
constituent atoms of the metal. The atoms, 
in this representation, lose their valence 
electrons, causing a background lattice of 

1 
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2 1 PROPERTIES OF THE NORMAL STATE 

Table 1.1 Characteristics of Selected Metallic Elementsa 

Radius Xtal ( ) �� 77 K �� 273 K �� 77 K �� 273 K Kth 
1022	 WZ Element Valence �ÅÅÅ� type a�ÅÅÅ� ne cm3 rs�ÅÅÅ� ��� cm� ��� cm� �fs� �fs� cm K 

11 Na 1 0.97 bcc 4.23 2.65 2.08 0.8 4.2 170 32 1.38 
19 K 1 1.33 bcc 5.23 1.40 2.57 1.38 6.1 180 41 1.0 
29 Cu 1 0.96 fcc 3.61 8.47 1.41 0.2 1.56 210 27 4.01 
47 Ag 1 1.26 fcc 4.09 5.86 1.60 0.3 1.51 200 40 4.28 
41 Nb 1 1.0 bcc 3.30 5.56 1.63 3.0 15.2 21 4.2 0.52 
20 Ca 2 0.99 fcc 5.58 4.61 1.73 3.43 22 2.06 
38 Sr 2 1.12 fcc 6.08 3.55 1.89 7 23 14 4.4 ≈ 0.36 
56 Ba 2 1.34 bcc 5.02 3.51 1.96 17 60 6.6 1.9 ≈ 0.19 
13 Al 3 0.51 fcc 4.05 18.1 1.10 0.3 2.45 65 8.0 2.36 
81 Tl 3 0.95 bcc 3.88 10.5 1.31 3.7 15 9.1 2.2 0.5 
50 Sn(W) 4 0.71 tetrg a = 5�82 14.8 1.17 2.1 10.6 11 2.3 0.64 

c = 3�17 
82 Pb 4 0.84 fcc 4.95 13.2 1.22 4.7 19.0 5.7 1.4 0.38 
51 Sb 5 0.62 rhomb 4.51 16.5 1.19 8 39 2.7 0.55 0.18 
83 Bi 5 0.74 rhomb 4.75 14.1 1.13 35 107 0.72 0.23 0.09 

a Notation: a, lattice constant; ne, conduction electron density; rs = �3/4�ne �
1/3; �, resistivity; �, Drude relaxation 

time; Kth, thermal conductivity; L = �Kth /T is the Lorentz number; 	, electronic specific heat parameter; m ∗ , 
effective mass; RH, Hall constant; 
D, Debye temperature; �p, plasma frequency in radians per femtosecond 
�10−15 s�; IP, first ionization potential; WF, work function; EF, Fermi energy; TF, Fermi temperature in kilokelvins; 
kF, Fermi wavenumber in mega reciprocal centimeters; and �F, Fermi velocity in centimeters per microsecond. 

positive ions, called cations, to form, and the 
now delocalized conduction electrons move 
between these ions. The number density n 
(electrons/cm3) of conduction electrons in 
a metallic element of density �m �g/cm3�, 
atomic mass number A (g/mole), and valence 
Z is given by 

NAZ�m n = � (1.1)
A 

where NA is Avogadro’s number. The typi­
cal values listed in Table 1.1 are a thousand 
times greater than those of a gas at room 
temperature and atmospheric pressure. 

The simplest approximation that we can 
adopt as a way of explaining conductivity is 
the Drude model. In this model it is assumed 
that the conduction electrons 

1. do not interact with the cations (“free­
electron approximation”) except when 
one of them collides elastically with 
a cation which happens, on average, 
1/� times per second, with the result 

that the velocity � of the electron 
abruptly and randomly changes its direc­
tion (“relaxation-time approximation”); 

2. maintain thermal equilibrium through col­
lisions, in accordance with Maxwell– 
Boltzmann statistics (“classical-statistics 
approximation”); 

3. do	 not interact with each other 
(“independent-electron approximation”). 

This model predicts many of the general fea­
tures of electrical conduction phenomena, as 
we shall see later in the chapter, but it fails 
to account for many others, such as tunnel­
ing, band gaps, and the Bloch T 5 law. More 
satisfactory explanations of electron trans­
port relax or discard one or more of these 
approximations. 

Ordinarily, one abandons the free-
electron approximation by having the elec­
trons move in a periodic potential arising 
from the background lattice of positive ions. 
Figure 1.1 gives an example of a simple 
potential that is negative near the positive 
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II CONDUCTING ELECTRON TRANSPORT 3 

L ( 
�� W 

K2 

) � ( 
mJ 

mole K2 

) 
m ∗ 

me 

1 

RH ne 

�D 

�K� 

�p ( 
rad 

fs 

) IP 
�eV� 

WF 
�eV� 

EF 

�eV� 

TF 

�kK� 

kF 

�M cm−1 � 

�F ( 
cm 

� s 

) 

0.021 1.5 1.3 −1.1 150 8.98 5.14 2.75 3.24 37.7 92 107 
0.022 2.0 1.2 −1.1 100 5.98 4.34 2.3 2.12 24.6 75 86 
0.023 0.67 1.3 −1.4 310 3.85 7.72 4.6 7.0 81.6 136 157 
0.023 0.67 1.1 −1.2 220 7.57 4.3 5.49 63.8 120 139 
0.029 8.4 12 265 6.87 4.3 5.32 61.8 118 137 
0.026 2.7 1.8 −0.76 230 6.11 2.9 4.69 54.4 111 128 
0.030 3.6 2.0 150 5.69 2.6 3.93 45.7 102 118 
0.042 2.7 1.4 110 5.21 2.7 3.64 42.3 98 113 
0.021 1.26 1.4 +1.0 394 14.5 5.99 4.3 11.7 136 175 203 
0.028 1.5 1.1 96 6.11 3.8 8.15 94.6 146 169 
0.025 1.8 1.3 170 7.34 4.4 10.2 118 164 190 
0.026 2.9 1.9 88 7.41 4.3 9.47 110 158 183 
0.026 0.63 0.38 200 8.64 4.6 10.9 127 170 196 
0.035 0.084 0.047 120 7.29 4.2 9.90 115 161 187 

Figure 1.1 Muffin tin potential has a constant nega­
tive value −V0 near each positive ion and is zero in the 
region between the ions. 

ions and zero between them. An electron 
moving through the lattice interacts with the 
surrounding positive ions, which are oscillat­
ing about their equilibrium positions, and the 
charge distortions resulting from this inter­
action propagate along the lattice, causing 
distortions in the periodic potential. These 
distortions can influence the motion of yet 
another electron some distance away that 
is also interacting with the oscillating lat­
tice. Propagating lattice vibrations are called 
phonons, so that this interaction is called 
the electron-phonon interaction. We will 
see later that two electrons interacting with 
each other through the intermediary phonon 
can form bound states and that the result­
ing bound electrons, called Cooper pairs, 
become the carriers of the super current. 

The classical statistics assumption is 
generally replaced by the Sommerfeld 
approach. In this approach the electrons are 
assumed to obey Fermi-Dirac statistics with 

the distribution function 

1 
f0�v� = � (1.2) 

exp
�m�2/2 −��/kBT�+1 

(see the discussion in Section IX), where kB 

is Boltzmann’s constant, and the constant � 
is called the chemical potential. In Fermi– 
Dirac statistics, noninteracting conduction 
electrons are said to constitute a Fermi gas. 
The chemical potential is the energy required 
to remove one electron from this gas under 
conditions of constant volume and constant 
entropy. 

The relaxation time approximation 
assumes that the distribution function f�v� t�  
is time dependent and that when f�v� t�  is 
disturbed to a nonequilibration configuration 
f col, collisions return it back to its equilib­
rium state f 0 with time constant � in accor­
dance with the expression 

df f col −f 0 

= −  � (1.3)
dt � 

Ordinarily, the relaxation time � is assumed 
to be independent of the velocity, resulting in 
a simple exponential return to equilibrium: 

f�v� t� = f 0�v�+ 
f col�v�−f 0�v��e−t/� � 
(1.4) 
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In systems of interest f�v� t�  always remains 
close to its equilibrium configuration (1.2). 
A more sophisticated approach to collision 
dynamics makes use of the Boltzmann equa­
tion, and this is discussed in texts in solid 
state physics (e.g., Ashcroft and Mermin, 
1976; Burns, 1985; Kittel, 1976) and statis­
tical mechanics (e.g., Reif, 1965). 

It is more realistic to waive the 
independent-electron approximation by rec­
ognizing that there is Coulomb repulsion 
between the electrons. In the following 
section, we will show that electron screen­
ing makes electron–electron interaction neg­
ligibly small in good conductors. The use 
of the Hartree–Fock method to calculate the 
effects of this interaction is too complex to 
describe here; it will be briefly discussed in 
Chapter 10, Section VII. 

When a method developed by Landau 
(1957a, b) is employed to take into account 
electron–electron interactions so as to ensure 
a one-to-one correspondence between the 
states of the free electron gas and those of the 
interacting electron system, the conduction 
electrons are said to form a Fermi liquid. Due 
to the Pauli exclusion principle, momentum-
changing collisions occur only in the case of 
electrons at the Fermi surface. In what are 
called marginal Fermi liquids the one-to-one 
correspondence condition breaks down at the 
Fermi surface. Chapter 10, Section VII pro­
vides a brief discussion of the Fermi liquid 
and the marginal Fermi liquid approaches to 
superconductivity. 

III. CHEMICAL POTENTIAL 
AND SCREENING 

Ordinarily, the chemical potential � is 
close to the Fermi energy EF and the con­
duction electrons move at speeds �F corre­
sponding to kinetic energies 2

1 m�F
2 close to 

EF = kBTF. Typically, �F ≈ 106 m/s for good 
conductors, which is 1/300 the speed of light; 

1 PROPERTIES OF THE NORMAL STATE 

perhaps one-tenth as great in the case of high-
temperature superconductors and A15 com­
pounds in their normal state. If we take � as 
the time between collisions, the mean free 
path l, or average distance traveled between 
collisions, is 

l = �F�� (1.5) 

For aluminum the mean free path is 1�5 × 
10−8 m at 300 K, 1�3 × 10−7 m  at 77 K, and  
6�7 ×10−4 m at 4.2 K. 

To see that the interactions between con­
duction electrons can be negligible in a good 
conductor, consider the situation of a point 
charge Q embedded in a free electron gas 
with unperturbed density n0. This negative 
charge is compensated for by a rigid back­
ground of positive charge, and the delocal­
ized electrons rearrange themselves until a 
static situation is reached in which the total 
force density vanishes everywhere. In the 
presence of this weak electrostatic interac­
tion the electrons constitute a Fermi liquid. 

The free energy F in the presence of an 
external potential is a function of the local 
density n�r� of the form 

F 
n� = F0
n�− e n�r���r�d3r� (1.6) 

where ��r� is the electric potential due to 
both the charge Q and the induced screening 
charge and F0
n� is the free energy of a non-
interacting electron gas with local density n. 
Taking the functional derivative of F
n� we 
have 

�F
n� 

�n�r� 
= �0�r�− e��r� (1.7) 

= �� (1.8) 

where �0�r� is the local chemical potential of 
the free electron gas in the absence of charge 
Q and � is a constant. At zero temperature, 
which is a good approximation because T � 
TF, the local chemical potential is 

�
2 

�0 = �3�2n�2/3� (1.9)
2m 
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5 IV ELECTRICAL CONDUCTIVITY 

Solving this for the density of the electron 
gas, we have 

1 
{ 

2m 
}3/2 

n�r� = 
�+ e��r�� � (1.10) 
3�2 �2 

Typically the Fermi energy is much greater 
than the electrostatic energy so Eq. (1.10) 
can be expanded about � = 0 to give 

3 e� 
n�r� = n0 1 + · � (1.11)

2 � 

where n0 = 
2m�/�2�3/2/3�2. The total 
induced charge density is then 

�i�r� = e
n0 −n�r�� 

3 n0e
2��r� = −  · � (1.12)

2 � 

Poisson’s equation for the electric potential 
can be written as 

�2��r�−�−2��r� = −4�Q��r�� (1.13)sc 

where the characteristic distance �sc, called 
the screening length, is given by 

�2 = 1 · �
� (1.14)sc 26� n0e

Equation (1.13) has the well-known Yukawa 
solution 

�i�r� = −Q
e −r/�sc � (1.15) 

r 

Note that at large distances the poten­
tial of the charge falls off exponentially, 
and that the characteristic distance �sc over 
which the potential is appreciable decreases 
with the electron density. In good conductors 
the screening length can be quite short, and 
this helps to explain why electron–electron 
interaction is negligible. Screening causes 
the Fermi liquid of conduction electrons to 
act like a Fermi gas. 

IV. ELECTRICAL CONDUCTIVITY 

When a potential difference exists 
between two points along a conducting wire, 
a uniform electric field E is established along 
the axis of the wire. This field exerts a force 
F = −eE that accelerates the electrons: 

d� −eE = m � (1.16)
dt 

and during a time t that is on the order of the 
collision time � the electrons attain a velocity 

eE 
� = −  �� (1.17) 

m 

The electron motion consists of successive 
periods of acceleration interrupted by colli­
sions, and, on average, each collision reduces 
the electron velocity to zero before the start 
of the next acceleration. 

To obtain an expression for the current 
density J, 

J = nevav� (1.18) 

we assume that the average velocity vav of 
the electrons is given by Eq. (1.17), so we 
obtain 

ne2�
J = E� (1.19) 

m 

The dc electrical conductivity �0 is defined 
by Ohm’s law, 

J = �0E (1.20) 

E = � (1.21)
�0 

where �0 = 1/�0 is the resistivity, so from 
Eq. (1.19) we have 

ne2� 
�0 = � (1.22) 

m 

We infer from the data in Table 1.1 that 
metals typically have room temperature 
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Figure 1.2 Typical temperature dependence of the 
conduction electron relaxation time �. 

resistivities between 1 and 100 �� cm. 
Semiconductor resistivities have values from 
104 to 1015 �� cm, and for insulators the 
resistivities are in the range from 1020 to 
1028 �� cm. 

Collisions can arise in a number of ways, 
for example, from the motion of atoms away 
from their regular lattice positions due to 
thermal vibrational motion—the dominant 
process in pure metals at high temperatures 
(e.g., 300 K), or from the presence of impu­
rities or lattice imperfections, which is the 
dominant scattering process at low tempera­
tures (e.g., 4 K). We see from a comparison 
of the data in columns 11 and 12 of Table1.1 
that for metallic elements the collision time 
decreases with temperature so that the elec­
trical conductivity also decreases with tem­
perature, the latter in an approximately linear 
fashion. The relaxation time � has the limit­
ing temperature dependences 

T−3 T � 
D� ≈ 
T−1 T � 
D 

� (1.23) 

as shown in Figure 1.2; here 
D is the Debye 
temperature. We will see in Section VI that, 
for T � 
D, an additional phonon scattering 
correction factor must be taken into account 
in the temperature dependence of �0. 

V. FREQUENCY DEPENDENT 
ELECTRICAL CONDUCTIVITY 

When a harmonically varying electric 
field E = E0e

−i�t acts on the conduction 

1 PROPERTIES OF THE NORMAL STATE 

electrons, they are periodically accelerated 
in the forward and backward directions as 
E reverses sign every cycle. The conduc­
tion electrons also undergo random collisions 
with an average time � between the col­
lisions. The collisions, which interrupt the 
regular oscillations of the electrons, may be 
taken into account by adding a frictional 
damping term p/� to Eq. (1.16), 

dp p+ = −eE� (1.24)
dt � 

where p = mv is the momentum. The 
momentum has the same harmonic time vari­
ation, p = mv0e

−i�t. If we substitute this into 
Eq. (1.24) and solve for the velocity v0, we  
obtain 

−eE0 � 
v0 = · � (1.25) 

m 1 − i�� 

Comparing this with Eqs. (1.18) and (1.22) 
with v0 playing the role of vav gives us the 
ac frequency dependent conductivity: 

�0� = � (1.26)
1 − i�� 

This reduces to the dc case of Eq. (1.22) 
when the frequency is zero. 

When �� � 1, many collisions occur 
during each cycle of the E field, and the aver­
age electron motion follows the oscillations. 
When �� � 1, E oscillates more rapidly 
than the collision frequency, Eq. (1.24) no 
longer applies, and the electrical conductiv­
ity becomes predominately imaginary, corre­
sponding to a reactive impedance. For very 
high frequencies, the collision rate becomes 
unimportant and the electron gas behaves 
like a plasma, an electrically neutral ionized 
gas in which the negative charges are mobile 
electrons and the positive charges are fixed in 
position. Electromagnetic wave phenomena 
can be described in terms of the frequency-
dependent dielectric constant ����, 

�2 

���� = �0 1 − p 
� (1.27)

�2 
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7 VII RESISTIVITY 

where � is the plasma frequency, p 

( 2 )1/2 
ne

�p = � (1.28)
�0m 

Thus � is the characteristic frequency of p 

the conduction electron plasma below which 
the dielectric constant is negative—so elec­
tromagnetic waves cannot propagate—and 
above which � is positive and propagation is 
possible. As a result metals are opaque when 
� < �p and transparent when � > �p. Some 
typical plasma frequencies �p/2� are listed 
in Table1.1. The plasma wavelength can also 
be defined by setting �p = 2�c/�p. 

VI. ELECTRON–PHONON 
INTERACTION 

We will see later in the text that 
for most superconductors the mechanism 
responsible for the formation of Cooper pairs 
of electrons, which carry the supercurrent, 
is electron–phonon interaction. In the case 
of normal metals, thermal vibrations dis­
turb the periodicity of the lattice and pro­
duce phonons, and the interactions of these 
phonons with the conduction electrons cause 
the latter to scatter. In the high-temperature 
region �T � 
D�, the number of phonons 
in the normal mode is proportional to the 
temperature (cf. Problem 6). Because of the 
disturbance of the conduction electron flow 
caused by the phonons being scattered, the 
electrical conductivity is inversely propor­
tional to the temperature, as was mentioned 
in Section IV. 

At absolute zero the electrical conduc­
tivity of metals is due to the presence of 
impurities, defects, and deviations of the 
background lattice of positive ions from the 
condition of perfect periodicity. At finite but 
low temperatures, T � 
D, we know from 
Eq. (1.23) that the scattering rate 1/� is pro­
portional to T 3. The lower the temperature, 

the more scattering in the forward direc­
tion tends to dominate, and this introduces 
another T 2 factor, giving the Bloch T 5 law, 

� ≈ T−5 T � 
D� (1.29) 

which has been observed experimentally for 
many metals. 

Standard solid-state physics texts dis­
cuss Umklapp processes, phonon drag, and 
other factors that cause deviations from the 
Bloch T 5 law, but these will not concern 
us here. The texts mentioned at the end of 
the chapter should be consulted for further 
details. 

VII. RESISTIVITY 

Electrons moving through a metallic 
conductor are scattered not only by phonons 
but also by lattice defects, impurity atoms, 
and other imperfections in an otherwise 
perfect lattice. These impurities produce 
a temperature-independent contribution that 
places an upper limit on the overall electrical 
conductivity of the metal. 

According to Matthiessen’s rule, the 
conductivities arising from the impurity and 
phonon contributions add as reciprocals; that 
is, their respective individual resistivities, �0 

and �ph, add to give the total resistivity 

��T� = �0 +�ph�T�� (1.30) 

We noted earlier that the phonon term �ph�T� 
is proportional to the temperature T at high 
temperatures and to T 5 via the Bloch law 
(1.29) at low temperatures. This means that, 
above room temperature, the impurity con­
tribution is negligible, so that the resistivity 
of metallic elements is roughly proportional 
to the temperature: 

T 
��T� ≈ ��300 K� 300 K < T�  

300 
(1.31) 
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Figure 1.3 Temperature dependence of the resistiv­
ity � of a pure ��0 � and a less pure conductor. Impurities 
limit the zero temperature resistivity ��′ 

0� in the latter 
case. 

At low temperatures far below the Debye 
temperature, the Bloch T 5 law applies to give 

��T� = �0 +AT 5 T � 
D� (1.32) 

Figure 1.3 shows the temperature depen­
dence of the resistivity of a high-purity (low 
�0) and a lower-purity (larger �′ 

0) good con­
ductor. 

Typical resistivities at room temperature 
are 1.5 to 2 �� cm for very good conductors 
(e.g., Cu), 10 to 100 for poor conductors, 
300 to 10,000 for high-temperature super­
conducting materials, 104 to 1015 for semi­
conductors, and 1020 to 1028 for insulators. 
We see from Eqs. (1.31) and (1.32) that met­
als have a positive temperature coefficient 
of resistivity, which is why metals become 
better conductors at low temperature. In con­
trast, the resistivity of a semiconductor has 
a negative temperature coefficient, so that it 
increases with decreasing temperature. This 
occurs because of the decrease in the number 
of mobile charge carriers that results from the 
return of thermally excited conduction elec­
trons to their ground states on donor atoms 
or in the valence band. 

VIII. THERMAL CONDUCTIVITY 

When a temperature gradient exists in a 
metal, the motion of the conduction electrons 

1 PROPERTIES OF THE NORMAL STATE 

provides the transport of heat (in the form 
of kinetic energy) from hotter to cooler 
regions. In good conductors such as copper 
and silver this transport involves the same 
phonon collision processes that are responsi­
ble for the transport of electric charge. Hence 
these metals tend to have the same thermal 
and electrical relaxation times at room tem­
perature. The ratio Kth/�T , in which both 
thermal �Kth� J cm−1 s−1 K−1� and electri­
cal ����−1 cm−1) conductivities occur (see 
Table1.1 for various metallic elements), has 
a value which is about twice that predicted 
by the law of Wiedermann and Franz, 

Kth 

� T  
= 3 

2 

( 
kB 

e 

)2 

(1.33) 

= 1�11 ×10−8 W�/K2� (1.34) 

where the universal constant 3
2 �kB/e�2 is 

called the Lorenz number. 

IX. FERMI SURFACE 

Conduction electrons obey Fermi–Dirac 
statistics. The corresponding F–D distribu­
tion function (1.2), written in terms of the 
energy E, 

1 
f�E� = � (1.35) 

exp
�E −��/kBT�+1 

is plotted in Fig 1.4a for T = 0 and in 
Fig 1.4b for T > 0. The chemical potential � 
corresponds, by virtue of the expression 

� ≈ EF = kBTF� (1.36) 

to the Fermi temperature TF, which is typ­
ically in the neighborhood of 105 K. This 
means that the distribution function f�E� is 1 
for energies below EF and zero above EF, and 
assumes intermediate values only in a region 
kBT wide near EF, as shown in Fig. 1.4b. 
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9 IX FERMI SURFACE 

Figure 1.4 Fermi-Dirac distribution function f�E� 

for electrons (a) at T = 0 K, and (b) above 0 K. 

The electron kinetic energy can be writ­
ten in several ways, for example, 

Ek = 1 
m�2 = p2 

= �
2k2 

2 2m 2m 

�
2 

= �k2 
x +ky 

2 +kz 
2�� (1.37)

2m 

where p = �k, and the quantization in k-
space, sometimes called reciprocal space, 
means that each Cartesian component of k 
can assume discrete values, namely 2�nx/Lx 

in the x direction of length Lx, and likewise 
for the y and z directions of length Ly and Lz, 
respectively. Here nx is an integer between 
1 and Lx/a, where a is the lattice constant; 
ny and nz are defined analogously. The one-
dimensional case is sketched in Fig. 1.5. At 
absolute zero these k-space levels are doubly 
occupied by electrons of opposite spin up to 
the Fermi energy EF, 

�
2k2 

EF = F � (1.38)
2m 

as indicated in the figure. Partial occupancy 
occurs in a narrow region of width kBT 
at EF, as shown in Fig. 1.4b. For simplic­
ity we will assume a cubic shape, so that 

Figure 1.5 One-dimensional free electron energy 
band shown occupied out to the first Brillouin zone 
boundaries at k = ±�/a. 

L = L = L = L. Hence the total number x y z 

of electrons N is given as 

occupied k-space volume 
N = 2 

k-space volume per electron 

4�k3
F/3 = 2 � (1.39)

�2�/L�3 

The electron density n = N/V = N/L3 at the 
energy E = EF is 

k3
F 1 

( 
2mEF 

)3/2 

n = = � (1.40) 
3�2 3�2 �2 

and the density of states D�E� per unit vol­
ume, which is obtained from evaluating the 
derivative dn/dE of this expression (with EF 

replaced by E), is 

d 1 
( 

2m 
)3/2 

D�E� = n�E� = E1/2 

dE 2�2 �2 

= D�EF��E/EF�1/2� (1.41) 

and this is shown sketched in Fig. 1.6. Using 
Eqs. (1.36) and (1.38), respectively, the den­
sity of states at the Fermi level can be written 
in two equivalent ways, 
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10 1 PROPERTIES OF THE NORMAL STATE 

states above Tc, this is not the case, and D�E� 
has a more complicated expression. 

It is convenient to express the electron 
density n and the total electron energy ET in 
terms of integrals over the density of states: 

n = D�E�f�E�dE� (1.43) 

=Figure 1.6 Density of states D�E� of a free electron 
ET D�E�f�E�EdE� (1.44)

energy band E = h2 k2 /2m. 

Figure 1.7 Energy dependence of occupation of a 
free electron energy band by electrons (a) at 0 K and 
(b) for T >  0 K. The products D�E�f�E� are calculated 
from Figs. 1.4 and 1.6. 

⎧ 
3n ⎪ ⎪ ⎨ 

D�EF � = 2kBTF 
� (1.42) ⎪ mkF⎪ ⎩ 

�2�2 

for this isotropic case in which energy 
is independent of direction in k-space (so 
that the Fermi surface is spherical). In 
many actual conductors, including the high-
temperature superconductors in their normal 

The product D�E�f�E� that appears in these 
integrands is shown plotted versus energy in 
Fig. 1.7a for T = 0 and in Fig. 1.7b for T > 0. 

X. ENERGY GAP AND EFFECTIVE MASS 

The free electron kinetic energy of 
Equation (1.37) is obtained from the plane 
wave solution � = e−i k·r of the Schrödinger 
equation, 

�
2 

− �2��r�+V�r���r� = E��r�� 
2m 

(1.45) 

with the potential V�r� set equal to zero. 
When a potential, such as that shown in 
Fig. 1.1, is included in the Schrödinger equa­
tion, the free-electron energy parabola of 
Fig. 1.5 develops energy gaps, as shown in 
Fig 1.8. These gaps appear at boundaries 
k = ±n�/a of the unit cell in k-space, called 
the first Brillouin zone, and of successively 
higher Brillouin zones, as shown. The ener­
gies levels are closer near the gap, which 
means that the density of states D�E� is 
larger there (see Figs. 1.9 and 1.10). For 
weak potentials, �V � � EF, the density of 
states is close to its free-electron form away 
from the gap, as indicated in the figures. 
The number of points in k-space remains 
the same, that is, it is conserved, when 
the gap forms; it is the density D(E) that 
changes. 
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Figure 1.8 A one-dimensional free electron energy 
band shown perturbed by the presence of a weak peri­
odic potential V�x� � h2�2 /2ma2. The gaps open up at 

Figure 1.10 Energy dependence of the density of 
states D�E� corresponding to the case of Fig. 1.9 in the 
presence of a gap. 

function of k, which takes into account bend­
ing of the free-electron parabola near the gap. 

the zone boundaries k = ±n�/a, where n = 1� 2� 3� � � �  . 

Figure 1.9 Spacing of free electron energy levels in 
the absence of a gap (left) and in the presence of a small 
gap (right) of the type shown in Fig. 1.8. The increase 
of D(E) near the gap is indicated. 

If the kinetic energy near an energy gap 
is written in the form, 

�
2k2 

Ek = � (1.46)
2m ∗

the effective mass m ∗�k�, which is different 
from the free-electron value m, becomes a 

It can be evaluated from the second deriva­
tive of Ek with respect to k: 

1 1 d2Ek = � (1.47) 
m ∗ �2 dk2 

EF 

This differentiation can be carried out if the 
shapes of the energy bands near the Fermi 
level are known. The density of states D�EF� 
also deviates from the free-electron value 
near the gap, being proportional to the effec­
tive mass m ∗ , 

m ∗ kFD�EF� = � (1.48)
�2�2 

as may be inferred from Eq. (1.42). 
There is a class of materials called heavy 

fermion compounds whose effective conduc­
tion electron mass can exceed 100 free elec­
tron masses. Superconductors of this type are 
discussed in Sect. 9.II. 

XI. ELECTRONIC SPECIFIC HEAT 

The specific heat C of a material is 
defined as the change in internal energy U 
brought about by a change in temperature 

dU 
C = � (1.49)

dT v 
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We will not make a distinction between the 
specific heat at constant volume and the spe­
cific heat at constant pressure because for 
solids these two properties are virtually indis­
tinguishable. Ordinarily, the specific heat is 
measured by determining the heat input dQ 
needed to raise the temperature of the mate­
rial by an amount dT , 

dQ = CdT� (1.50) 

In this section, we will deduce the contribu­
tion of the conduction electrons to the spe­
cific heat, and in the next section we will 
provide the lattice vibration or phonon par­
ticipation. The former is only appreciable at 
low temperatures while the latter dominates 
at room temperature. 

The conduction electron contribution Ce 

to the specific heat is given by the deriva­
tive dE�/dT . The integrand of Eq. (1.44) 
is somewhat complicated, so differentiation 
is not easily done. Solid-state physics texts 
carry out an approximate evaluation of this 
integral, to give 

Ce = 	T� (1.51) 

where the normal-state electron specific 
heat constant 	, sometimes called the 
Sommerfeld constant, is given as 

�2 

	 = D�EF�k2
B� (1.52)

3 

This provides a way to experimentally evalu­
ate the density of states at the Fermi level. To 
estimate the electronic specific heat per mole 
we set n = NA and make use of Eq. (1.42) to 
obtain the free-electron expression 

�2R 
	̇0 = � (1.53)

2TF 

where R = NAkB is the gas constant. This 
result agrees (within a factor of 2) with 
experiment for many metallic elements. 

A more general expression for 	 is 
obtained by applying D�EF� from Eq. (1.48) 

1 PROPERTIES OF THE NORMAL STATE 

instead of the free-electron value of (1.42). 
This gives 

( ∗ ) 
m 

	 = 	0� (1.54) 
m 

where 	0 is the Sommerfeld factor (1.53) for 
a free electron mass. This expression will be 
discussed further in Chapter 9, Section II, 
which treats heavy fermion compounds that 
have very large effective masses. 

XII. PHONON SPECIFIC HEAT 

The atoms in a solid are in a state of con­
tinuous vibration. These vibrations, called 
phonon modes, constitute the main contri­
bution to the specific heat. In models of a 
vibrating solid nearby atoms are depicted as 
being bonded together by springs. For the 
one-dimensional diatomic case of alternating 
small and large atoms, of masses ms and m1, 
respectively, there are low-frequency modes 
called acoustic (A) modes, in which the two 
types of atoms vibrate in phase, and high-
frequency modes, called optical (O) modes, 
in which they vibrate out of phase. The vibra­
tions can also be longitudinal, i.e., along the 
line of atoms, or transverse, i.e., perpendicu­
lar to this line, as explained in typical solid-
state physics texts. In practice, crystals are 
three-dimensional and the situation is more 
complicated, but these four types of modes 
are observed. Figure 1.11 presents a typical 
wave vector dependence of their frequencies. 

It is convenient to describe these vibra­
tions in k-space, with each vibrational mode 
having energy E = ��. The Planck distribu­
tion function applies, 

1 
f�E� = � (1.55) 

exp�E/kBT�−1 

where the minus one in the denominator indi­
cates that only the ground vibrational level is 
occupied at absolute zero. There is no chem­
ical potential because the number of phonons 
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XII PHONON SPECIFIC HEAT 

Figure 1.11 Typical dependence of energy E on the 
wave vector k for transverse (T), longitudinal (L), opti­
cal (O), and acoustic (A) vibrational modes of a crystal. 

is not conserved. The total number of acous­
tic vibrational modes per unit volume N is 
calculated as in Eq. (1.39) with the factor 2 
omitted since there is no spin, 

occupied k-space volume 
N = 

k-space volume per atom 

4�k3 
D/3 = � (1.56)

�2�/L�3 

where L3 is the volume of the crystal and 
kD is the maximum permissible value of k. 
In the Debye model, the sound velocity � is 
assumed to be isotropic ��x = �y = �z� and 

The vibration density of states per unit 
volume Dph��� = dn/d� is 

�2 

Dph��� = 
2�2�3 

� (1.59) 

and the total vibrational energy Eph is 
obtained by integrating the phonon mode 
energy �� times the density of states (1.59) 
over the distribution function (1.55) (cf. de 
Wette et al., 1990) 

∫ �D �2 
� �d � 

Eph = 
2�2�3 e��/kBT −1 

� (1.60) 
0 

The vibrational or phonon specific heat 
Cph = dEph/dT is found by differentiating 
Eq. (1.60) with respect to the temperature, 

( )3 ∫ 4T 
D x exdx 
Cph = 9R � (1.61)


D 0 �ex −1�2 

and Fig. 1.12 compares this temperature 
dependence with experimental data for Cu 
and Pb. The molar specific heat has the 
respective low- and high-temperature limits 

Cph = 
( 

12�4 

5 

) 

R 

( 
T 


D 

)3 

T � 
D 

(1.62a) 

Cph = 3R T  � 
D (1.62b) 

far below and far above the Debye tempera­
ture 

independent of frequency, h�D � (1.63)
D = 
� = � (1.57)

k 

Writing �D = �kD and substituting this 
expression in Eq. (1.56) gives, for the density 
of modes n = N/L3, 

�3 

n = D � (1.58)
6�2�3 

where the maximum permissible frequency 
�D is called the Debye frequency. 

kB 

and the former limiting behavior is shown by 
the dashed curve in Fig. 1.12. We also see 
from the figure that at their superconduct­
ing transition temperatures Tc the element 
Pb and the compound LaSrCuO are in the 
T 3 region, while the compound YBaCuO is 
significantly above it. 

Since at low temperatures a metal has an 
electronic specific heat term (1.51) that is lin­
ear in temperature and a phonon term (1.62a) 
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14 1 PROPERTIES OF THE NORMAL STATE 

Figure 1.12 Temperature dependence of the phonon-specific heat 
in the Debye model compared with experimental data for Cu and Pb. 
The low-temperature T 3 approximation is indicated by a dashed curve. 
The locations of the three superconductors Pb, �La0�925Sr0�075�2CuO4, 
and YBa2Cu3O7−� at their transition temperature Tc on the Debye 
curve are indicated (it is assumed that they satisfy Eq. (1.61)). 

that is cubic in T , the two can be experimen­
tally distinguished by plotting Cexp/T versus 
T 2, where 

Cexp = 	 +AT 2� (1.64)
T 

as shown in Fig. 1.13. The slope gives the 
phonon part A and the intercept at T = 0 
gives the electronic coefficient 	 

Materials with a two-level system in 
which both the ground state and the excited 

Figure 1.13 Typical plot of Cexp/T versus T 2 for 
a conductor. The phonon contribution is given by the 
slope of the line, and the free electron contribution 	 

is given by the intercept obtained by the extrapolation 
T → 0. 

state are degenerate can exhibit an extra 
contribution to the specific heat, called the 
Schottky term. This contribution depends on 
the energy spacing ESch between the ground 
and excited states. When ESch � kBT , the 
Schottky term has the form aT−2 (Crow 
and Ong, 1990). The resulting upturn in the 
observed specific heat at low temperatures, 
sometimes called the Schottky anomaly, has 
been observed in some superconductors. 

XIII. ELECTROMAGNETIC FIELDS 

Before discussing the magnetic proper­
ties of conductors it will be helpful to say a 
few words about electromagnetic fields, and 
to write down for later reference several of 
the basic equations of electromagnetism. 

These equations include the two homo­
geneous Maxwell’s equations 

� ·B = 0� (1.65) 
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15 XIV BOUNDARY CONDITIONS 

�B 
� ×E + = 0� (1.66)

�t 

and the two inhomogeneous equations 

� ·D = �� (1.67) 

�D 
� ×H = J + � (1.68)

�t 

where � and J are referred to as the free 
charge density and the free current density, 
respectively. The two densities are said to 
be ‘free’ because neither of them arises from 
the reaction of the medium to the presence 
of externally applied fields, charges, or cur­
rents. The B and H fields and the E and D 
fields, respectively, are related through the 
expressions 

B = �H = �0�H +M�� (1.69) 

D = �E = �0E +P� (1.70) 

where the medium is characterized by its per­
meability � and its permittivity �, and �0 and 
�0 are the corresponding free space values. 
These, of course, are SI formulae. When cgs 
units are used, �0 = �0 = 1 and the factor 4� 
must be inserted in front of M and P. 

The fundamental electric (E) and mag­
netic (B) fields are the fields that enter into 
the Lorentz force law 

F = q�E +v ×B� (1.71) 

for the force F acting on a charge q moving 
at velocity v in a region containing the fields 
E and B. Thus B and E are the macroscopi­
cally measured magnetic and electric fields, 
respectively. Sometimes B is called the mag­
netic induction or the magnetic flux density. 

It is convenient to write Eq. (1.68) 
in terms of the fundamental field B using 
Eq. (1.69) 

�D 
� ×B = �0�J +� ×M�+�0 � (1.72)

�t 

where the displacement current term �D/�t 
is ordinarily negligible for conductors and 
superconductors and so is often omitted. The 
reaction of the medium to an applied mag­
netic field produces the magnetization cur­
rent density � ×M which can be quite large 
in superconductors. 

XIV. BOUNDARY CONDITIONS 

We have been discussing the relation­
ship between the B and H fields within a 
medium or sample of permeability �. If the 
medium is homogeneous, both � and M can 
be constant throughout, and Eq. (1.69), with 
B = �H, applies. But what happens to the 
fields when two media of respective perme­
abilities �′ and �′′ are in contact? At the 
interface between the media the B′ and H′ 

fields in one medium will be related to the B′′ 

and H′′ fields in the other medium through 
the two boundary conditions illustrated in 
Fig. 1.14, namely: 

1. The components of B normal to the inter­
face are continuous across the boundary: 

B′
⊥ = B⊥

′′ � (1.73) 

2. The	 components of H tangential to 
the interface are continuous across the 
boundary: 

H

′ = H


′′� (1.74) 

Figure 1.14 Boundary conditions for the compo­
nents of the B and H magnetic field vectors perpendicu­
lar to and parallel to the interface between regions with 
different permeabilities. The figure is drawn for the case 
�′′ = 2�′ . 
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16 1 PROPERTIES OF THE NORMAL STATE 

If there is a surface current density Jsurf 

present at the interface, the second condition 
must be modified to take this into account, 

n̂ × �H′ −H′′� = Jsurf � (1.75) 

where n is a unit vector pointing from the 
double primed (′′) to the primed region, as 
indicated in Fig. 1.14, and the surface current 
density Jsurf , which has the units ampere per 
meter, is perpendicular to the field direction. 
When H′ and H′′ are measured along the 
surface parallel to each other, Eq. (1.75) can 
be written in scalar form: 

H

′ −H


′′ = Jsurf � (1.76) 

In like manner, for the electric field case the 
normal components of D and the tangential 
components of E are continuous across an 
interface, and the condition on D must be 
modified when surface charges are present. 

XV. MAGNETIC SUSCEPTIBILITY 

It is convenient to express Eq. (1.69) in 
terms of the dimensionless magnetic suscep­
tibility �, 

M 
� = � (1.77)

H 

to give 

B = �0H�1 +�SI� SI units (1.78a) 

B = H�1 +4��cgs� cgs units� (1.78b) 

The susceptibility � is slightly nega­
tive for diamagnets, slightly positive for 
paramagnets, and strongly positive for 
ferromagnets. Elements that are good 
conductors have small susceptibilities, some­
times slightly negative (e.g., Cu) and some­
times slightly positive (e.g., Na), as may be 
seen from Table 1.2. Nonmagnetic inorganic 
compounds are weakly diamagnetic (e.g., 
NaCl), while magnetic compounds con­
taining transition ions can be much more 
strongly paramagnetic (e.g., CuCl2). 

The magnetization in Eq. (1.77) is the 
magnetic moment per unit volume, and 
the susceptibility defined by this expres­
sion is dimensionless. The susceptibility of a 
material doped with magnetic ions is propor­
tional to the concentration of the ions in the 
material. In general, researchers who study 
the properties of these materials are more 
interested in the properties of the ions them­
selves than in the properties of the material 
containing the ions. To take this into account 
it is customary to use molar susceptibilities 
�M, which in the SI system have the units 
m3 per mole. 

Table 1.2 cgs Molar Susceptibility ��cgs� and Dimensionless SI 
Volume Susceptibility ��� of Several Materials 

MW Density �cgs � 
Material g/mole g/cm3 cm3 /mole — 

Free space — 0.0 0 0 
Na 22.99 0.97 1�6 ×10−5 8�48 ×10−6 

NaCl 58.52 2.165 −3�03 ×10−5 −1�41 ×10−5 

Cu 63.54 8.92 −5�46 ×10−6 −9�63 ×10−6 

CuCl2 134.6 3.386 1�08 ×10−3 3�41 ×10−4 

Fe alloy ≈ 60 7–8 103–104 103–104 

Perfect SC — — — −1 
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It is shown in solid-state physics texts 
(e.g., Ashcroft and Mermin, 1976; Burns, 
1985; Kittel, 1976) that a material containing 
paramagnetic ions with magnetic moments 
� that become magnetically ordered at low 
temperatures has a high-temperature mag­
netic susceptibility that obeys the Curie– 
Weiss Law: 

n�2 

�M = � (1.79a) 
3kB�T −
� 

C = � (1.79b)
�T −
� 

where n is the concentration of paramag­
netic ions and C is the Curie constant. 
The Curie–Weiss temperature 
 has a pos­
itive sign when the low-temperature align­
ment is ferromagnetic and a negative sign 
when it is antiferromagnetic. Figure 1.15 
shows the temperature dependence of �M 

for the latter case, in which the denom­
inator becomes T + �
�. The temperature 
TN at which antiferromagnetic alignment 
occurs is referred to as the Néel tempera­
ture, and typically TN � When 
= 
. = 0, 
Eq. (1.79) is called the Curie law. 

Figure 1.15 Magnetic susceptibility of a material 
that is paramagnetic above the Néel transition temper­
ature TN and antiferromagnetic with axial symmetry 
below the transition. The extrapolation of the param­
agnetic curve below T = 0 provides the Curie-Weiss 
temperature 
. 

For a rare earth ion with angular momen­
tum J� we can write 

�2 = g 2�B
2 J�J +1�� (1.80) 

where J = L + S is the sum of the orbital 
�L� and spin �S� contributions, �B = e�/2m 
is the Bohr magneton, and the dimensionless 
Landé g factor is 

3 S�S +1�−L�L+1� 
g = + � (1.81)

2 2J�J +1� 

For a first transition series ion, the orbital 
angular momentum L� is quenched, which 
means that it is uncoupled from the spin 
angular momentum and becomes quantized 
along the crystalline electric field direction. 
Only the spin part of the angular momentum 
contributes appreciably to the susceptibility, 
to give the so-called spin-only result 

�2 = g 2�2
BS�S +1�� (1.82) 

where for most of these ions g ≈ 2. 
For conduction electrons the only con­

tribution to the susceptibility comes from 
the electrons at the Fermi surface. Using an 
argument similar to that which we employed 
for the electronic specific heat in Section XI 
we can obtain the temperature-independent 
expression for the susceptibility in terms of 
the electronic density of states, 

� = �2
BD�EF �� (1.83) 

which is known as the Pauli susceptibility. 
For a free electron gas of density n we sub­
stitute the first expression for D�EF� from 
Eq. (1.42) in Eq. (1.83) to obtain, for a mole, 

�M = 3n�2
B � (1.84)

2kBTF 

For alkali metals the measured Pauli sus­
ceptibility decreases with increasing atomic 
number from Li to Cs with a typical value 
≈ 1× 10−6. The corresponding free-electron 
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values from Eq. (1.84) are about twice 
as high as their experimental counterparts, 
and come much closer to experiment when 
electron–electron interactions are taken into 
account. For very low temperatures, high 
magnetic fields, and very pure materials 
there is an additional dia-magnetic correction 
term �Landau, called Landau diamagnetism, 
which arise from the orbital electronic inter­
action with the magnetic field. For the free-
electron this correction has the value 

�Landau = − 1
3 �Pauli� (1.85) 

In preparing Table 1.2 the dimensionless 
SI values of � listed in column 5 were cal­
culated from known values of the molar cgs 
susceptibility �M , which has the units cm3 

cgs

per mole, using the expression 

� = 4� 
( �m 

) 
�M � (1.86)

MW cgs

where � is the density in g per cm3 and MW m 

is the molecular mass in g per mole. Some 
authors report per unit mass susceptibility 
data in emu/g, which we are calling �g .cgs

The latter is related to the dimension-less � 
through the expression 

� = 4�� �g � (1.87)m cgs

The ratio of Eq. (1.52) to Eq. (1.83) gives 
the free-electron expression 

	 1 
( 

�kB 

)2 

= � (1.88)
�M 3 �B 

where �M is the susceptibility arising from 
the conduction electrons. An experimen­
tal determination of this ratio provides a 
test of the applicability of the free-electron 
approximation. 

This section has been concerned with 
dc susceptibility. Important information can 
also be obtained by using an ac applied field 
B0 cos �t to determine �ac = � ′ + i� ′′, which 
has real part � ′, called dispersion, in phase 

1 PROPERTIES OF THE NORMAL STATE 

with the applied field, and an imaginary lossy 
part � ′′, called absorption, which is out of 
phase with the field (Khode and Couach, 
1992). D. C. Johnston (1991) reviewed nor­
mal state magnetization of the cuprates. 

XVI. HALL EFFECT 

The Hall effect employs crossed electric 
and magnetic fields to obtain information on 
the sign and mobility of the charge carriers. 
The experimental arrangement illustrated in 
Fig. 1.16 shows a magnetic field B0 applied 
in the z direction perpendicular to a slab and 
a battery that establishes an electric field Ey 

in the y direction that causes a current I = JA 
to flow, where J = ne� is the current density. 
The Lorentz force 

F = qv ×B0 (1.89) 

of the magnetic field on each moving charge 
q is in the positive x direction for both posi­
tive and negative charge carriers, as shown 
in Figs. 1.17a and 1.17b, respectively. This 
causes a charge separation to build up on the 
sides of the plate, which produces an elec­
tric field E perpendicular to the directions x 

of the current �y� and magnetic �z� fields. 
The induced electric field is in the negative 
x direction for positive q, and in the posi­
tive x direction for negative q, as shown 
in Figs. 1.17c and 1.17d, respectively. After 
the charge separation has built up, the elec­
tric force qEx balances the magnetic force 
qv ×B0, 

qEx = qv ×B0� (1.90) 

and the charge carriers q proceed along the 
wire undeflected. 

The Hall coefficient RH is defined as a 
ratio, 

E
RH = x � (1.91)

J By z 
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19 XVI HALL EFFECT 

Figure 1.16 Experimental arrangement for Hall effect measurements showing an 
electrical current I passing through a flat plate of width d and thickness a in a uniform 
transverse magnetic field Bz. The voltage drop V2 − V1 along the plate, the voltage 
difference �Vx across the plate, and the electric field Ex across the plate are indicated. 
The figure is drawn for negative charge carriers (electrons). 

Figure 1.17 Charge carrier motion and transverse electric field direction for 
the Hall effect experimental arrangement of Fig. 1.16. Positive charge carriers 
deflect as indicated in (a) and produce the transverse electric field Ex shown in 
(c). The corresponding deflection and resulting electric field for negative charge 
carriers are sketched in (b) and (d), respectively. 
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Substituting the expressions for J and Ex 

from Eqs. (1.18) and (1.90) in Eq. (1.91) we 
obtain for holes �q = e� and electrons �q = 
−e�, respectively, 

RH = 1 
�holes� (1.92a) 

ne 

RH = −  1 
�electrons�� (1.92b) 

ne 

where the sign of RH is determined by the 
sign of the charges. The Hall angle 
H is 
defined by 

E
tan 
H = x � (1.93)

Ey 

Sometimes the dimensionless Hall number is 
reported, 

V0Hall # = � (1.94)
RHe 

where V0 is the volume per chemical formula 
unit. Thus the Hall effect distinguishes elec­
trons from holes, and when all of the charge 
carriers are the same this experiment pro­
vides the charge density n. When both posi­
tive and negative charge carriers are present, 
partial (or total) cancellation of their Hall 
effects occurs. 

The mobility � is the charge carrier drift 
velocity per unit electric field, 

��av� � = � (1.95)
E 

and with the aid of Eqs. (1.18), (1.21), and 
(1.92) we can write 

RH�H = � (1.96) 

where the Hall mobility �H is the mobility 
determined by a Hall effect measurement. It 
is a valid measure of the mobility (1.95) if 
only one type of charge carrier is present. 

By Ohm’s law (1.21) the resistivity is 
the ratio of the applied electric field in 

1	 PROPERTIES OF THE NORMAL STATE 

the direction of current flow to the current 
density, 

E
� = y

� (1.97)
J 

In the presence of a magnetic field, this 
expression is written 

E
�m = y

� (1.98)
J 

where �m is called the transverse magneto-
resistivity. There is also a longitudinal mag­
netoresistivity defined when E and B0 are 
parallel. For the present case the resistiv­
ity does not depend on the applied field, 
so �m = �. For very high magnetic fields 
�m and � can be different. In the supercon­
ducting state �m arises from the movement 
of quantized magnetic flux lines, called vor­
tices, so that it can be called the flux flow 
resistivity �ff . Finally, the Hall effect resis­
tivity �xy (Ong, 1991) is defined by 

E
�xy = x � (1.99)

J 

FURTHER READING 

Most of the material in this chapter may be 
found in standard textbooks on solid state physics (e.g., 
Ashcroft and Mermin, 1976; Burns, 1985; Kittel, 1996). 

PROBLEMS 

1. Show	 that Eq. (1.61) for the phonon 
specific heat has the low- and high-
temperature limits (1.62a) and (1.62b), 
respectively. 

2. Aluminum has	 a magnetic susceptibil­
ity +16�5 ×10−6 cgs, and niobium, 195 × 
10−6 cgs. Express these in dimensionless 
SI units. From these values estimate the 
density of states and the electronic spe­
cific heat constant 	 for each element. 
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21 PROBLEMS 

3. Copper at room temperature has 8�47 × 
1022 conduction electrons/cm3, a Fermi 
energy of 7.0 eV, and � = 2�7 × 10−14 s. 
Calculate its Hall coefficient, average 
conduction electron velocity in an electric 
field of 200 V/cm, electrical resistivity, 
and mean free path. 

4. Calculate the London penetration depth, 
resistivity, plasma frequency, and density 
of states of copper at room temperature. 

5. It	 was mentioned in Section 1. II that 
the chemical potential � is the energy 
required to remove one electron from a 
Fermi gas under the conditions of con­
stant volume and constant entropy. Use 
a thermodynamic argument to prove this 
assertion, and also show that � equals the 
change in the Gibbs free energy when one 

electron is removed from the Fermi gas 
under the conditions of constant tempera­
ture and constant pressure. 

6. Show that well above the Debye temper­
ature the number of phonons in a normal 
mode of vibration is proportional to the 
temperature. 

7. For the two-dimensional	 square lattice 
draw the third Brillouin zone in (a) the 
extended zone scheme and (b) the reduced 
zone scheme in which the third zone is 
mapped into the first zone. Show where 
each segment in the extended scheme 
goes in the first zone. Draw constant 
energy lines for � = 2�0, 3�0, 4�0, 5�0. 
Sketch the Fermi surface for �F = 4�5�0. 
Indicate the electron-like and hole-like 
regions. 
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2 
Phenomenon of 

Superconductivity 

I. INTRODUCTION 

A perfect superconductor is a material 
that exhibits two characteristic properties, 
namely zero electrical resistance and perfect 
diamagnetism, when it is cooled below a 
particular temperature Tc, called the critical 
temperature. At higher temperatures it is a 
normal metal, and ordinarily is not a very 
good conductor. For example, lead, tantalum, 
and tin become superconductors, while cop­
per, silver, and gold, which are much better 
conductors, do not super-conduct. In the nor­
mal state some super-conducting metals are 
weakly diamagnetic and some are paramag­
netic. Below Tc they exhibit perfect electrical 
conductivity and also perfect or quite pro­
nounced diamagnetism. 

Perfect diamagnetism, the second charac­
teristic property, means that a superconduct­
ing material does not permit an externally 
applied magnetic field to penetrate into its 
interior. Those superconductors that totally 
exclude an applied magnetic flux are known 
as Type I superconductors, and they constitute 
the subject matter of this chapter. Other super­
conductors, called Type II superconductors, 
are also perfect conductors of electricity, but 
their magnetic properties are more complex. 
They totally exclude magnetic flux when 
the applied magnetic field is low, but only 
partially exclude it when the applied field 
is higher. In the region of higher magnetic 
fields their diamagnetism is not perfect, but 
rather of a mixed type. The basic properties 
of these mixed magnetism superconductors 
are described in Chapters 5 and 12. 

23 
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II. BRIEF HISTORY 

In 1908, H. Kamerlingh Onnes initi­
ated the field of low-temperature physics by 
liquifying helium in his laboratory at Leiden. 
Three years later he found that below 4.15 K 
of the dc resistance of mercury dropped to 
zero (Onnes, 1911). With that finding the 
field of superconductivity was born. The next 
year Onnes discovered that the application 
of a sufficiently strong axial magnetic field 
restored the resistance to its normal value. 
One year later, in 1913, the element lead 
was found to be superconducting at 7.2 K 
(Onnes, 1913). Another 17 years were to pass 
before this record was surpassed, by the ele­
ment niobium �Tc = 9�2 K� (vide Ginzburg 
and Kitzhnits, 1977, p. 2). 

A considerable amount of time went 
by before physicists became aware of the 
second distinguishing characteristic of a 
superconductor—namely, its perfect diamag­
netism. In 1933, Meissner and Ochsen­
feld found that when a sphere is cooled 
below its transition temperature in a 
magnetic field, it excludes the magnetic 
flux. 

The report of the Meissner effect led 
the London brothers, Fritz and Heinz, to 
propose equations that explain this effect 
and predict how far a static external 
magnetic field can penetrate into a super­
conductor. The next theoretical advance 
came in 1950 with the theory of Ginzburg 
and Landau, which described superconduc­
tity in terms of an order parameter and 
provided a derivation for the London equa­
tions. Both of these theories are macro­
scopic in character and will be described in 
Chapter 6. 

In the same year it was predicted 
theoretically by H. Fröhlich (1950) that 
the transition temperature would decrease 
as the average isotopic mass increased. 
This effect, called the isotope effect, was 
observed experimentally the same year 
(Maxwell, 1950; Reynolds et al., 1950). 

2 PHENOMENON OF SUPERCONDUCTIVITY 

The isotope effect provided support for the 
electron–phonon interaction mechanism of 
superconductivity. 

Our present theoretical understanding of 
the nature of superconductivity is based on 
the BCS microscopic theory proposed by 
J. Bardeen, L. Cooper, and J. R. Schrieffer 
in 1957 (we will describe it in Chapter 7). 
In this theory it is assumed that bound elec­
tron pairs that carry the super current are 
formed and that an energy gap between the 
normal and superconductive states is cre­
ated. The Ginzburg–Landau (1950) and Lon­
don (1950) results fit well into the BCS 
formalism. Much of the present theoretical 
debate centers around how well the BCS the­
ory explains the properties of the new high-
temperature superconductors. 

Alloys and compounds have been exten­
sively studied, especially the so-called 
A15 compounds, such as Nb3Sn, Nb3Ga, 
and Nb3Ge, which held the record for 
the highest transition temperatures from 
1954 to 1986, as shown in Table 2.1. 

Table 2.1 Superconducting Transition 
Temperature Records through the Yearsa 

Material Tc �K� Year 

Hg 4�1 1911 
Pb 7�2 1913 
Nb 9�2 1930 
NbN0�96 15�2 1950 
Nb3 Sn 18�1 1954 
Nb3�Al 3 Ge 1 � 20–21 1966 

4 4 

Nb3Ga 20�3 1971 
Nb3Ge 23�2 1973 
BaxLa5−xCu5Oy 30–35 1986 
�La0�9Ba0�1�2CuO4−� at 1 GPa 52 1986 
YBa2Cu3O7−� 95 1987 
Bi2Sr2Ca2Cu3O10 110 1988 
Tl2Ba2Ca2Cu3O10 125 1988 
Tl2Ba2Ca2Cu3O10 at 7 GPa 131 1993 
HgBa2Ca2Cu3O8+� 133 1993 
HgBa2Ca2Cu3O8+� at 25 GPa 155 1993 
Hg0�8Pb0�2Ba2Ca2Cu3Ox 133 1994 
HgBa2Ca2Cu3O8+� at 30 GPa 164 1994 

a cf. Ginzburg and Kirzhnits, 1977. 
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25 II BRIEF HISTORY 

Many other types of compounds have been 
studied in recent years, particularly the so-
called heavy fermion systems in which the 
superconducting electrons have high effec­
tive masses of 100me or more. Organic 
superconductors have shown a dramatic rise 
in transition temperatures during the past 
decade. 

On April 17, 1986, a brief article, enti­
tled “Possible High Tc Superconductivity in 
the Ba–La–Cu–O System,” written by J. G. 
Bednorz and K. A. Müller was received 
by the Zeitschrift für Physik, initiating the 
era of high-temperature superconductivity. 
When the article appeared in print later that 
year, it met with initial skepticism. Sharp 
drops in resistance attributed to “high-Tc” 
superconductivity had appeared from time 
to time over the years, but when exam­
ined they had always failed to show the 
required diamagnetic response or were oth­
erwise unsubstantiated. It was only when 
a Japanese group (Uchida et al., 1987) 
and Chu’s group in the United States (Chu 
et al., 1987b) reproduced the original results 
that the results found by Bednorz and 
Müller began to be taken seriously. Soon 
many other researchers became active, and 
the recorded transition temperature began a 
rapid rise. 

By the beginning of 1987, scientists had 
fabricated the lanthanum compound, which 
went superconducting at close to 40 K at 
atmospheric pressure (Cava et al., 1987; 
Tarascon et al., 1987c) and at up to 52 K 
under high pressure (Chu et al., 1987a). Soon 
thereafter, the yttrium–barium system, which 
went superconducting in the low 90s (Chu 
et al., 1988a; Zhao et al., 1987), was dis­
covered. Early in 1988, superconductivity 
reached 110 K with the discovery of BiSr-
CaCuO (Chu et al., 1988b; Maeda et al., 
1988; Michel et al., 1987), and then the 
120–125 K range with TIBaCaCuO (Hazen 
et al., 1988; Sheng and Herman, 1988; Sheng 
et al., 1988). More recently, Berkley et al. 
(1993) reported 

Tc = 131�8 K for Tl2Ba2Ca2Cu3O10−x 

at a pressure of 7 GPa. Several researchers 
have reported Tc above 130 K for the Hg 
series of compounds HgBa2CanCun+1O2n+4 

with n = 1� 2, sometimes with Pb doping for 
Hg (Chu et al., 1993a; Iqbal et al., 1994; 
Schilling et al., 1993, 1994a). The transition 
temperature of the Hg compounds increases 
with pressure (Chu, 1994; Klehe et al., 1992, 
1994; Rabinowitz and McMullen, 1994) 
in the manner shown in Fig. 2.1a (Gao et al., 
1994) and onset Tc values in the 150 K 
range are found for pressures above 10 GPa 
(Chu et al., 1993b, Ihara et al., 1993). 
We see from Fig. 2.1b that the transitions 
are broad, with midpoint Tc located 7 or 
8 K below the onset, and the zero 
resistivity point comes much lower still 
(Gao et al., 1994). 

This rapid pace of change and improve­
ment in superconductors exceeds that of ear­
lier decades, as the data listed in Table 2.1 
and plotted in Fig. 2.2 demonstrate. For 
56 years the element niobium and its com­
pounds had dominated the field of supercon­
ductivity. In addition to providing the highest 
Tc values, niobium compounds such as NbTi 
and Nb3Sn are also optimal magnet mate­
rials: for NbTi, Bc2 = 10 T and for Nb3Sn, 
Bc2 = 22 T at 4.2 K, where Bc2 is the upper-
critical field of a Type II superconductor, in 
the sense that it sets a limit on the magnetic 
field attainable by a magnet; thus applica­
tion of an applied magnetic field in excess 
of Bc2 drives a superconductor normal. The 
period from 1930 to 1986 can be called the 
Niobium Era of superconductivity. The new 
period that began in 1986 might become the 
Copper Oxide Era because, thus far, the pres­
ence of copper and oxygen has, with rare 
exceptions, been found essential for Tc above 
40 K. It is also interesting to observe that 
Hg was the first known superconductor, and 
now a century later mercury compounds have 
become the best! 
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26 2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.1 Effect of pressure on the transition temperature of the 
superconductor HgBa2Ca2Cu3O8+� showing (a) pressure dependence 
of the onset (upper curve), midpoint (middle curve), and final off-set 
(lower curve) values of Tc, and (b) temperature dependence of the 
resistivity derivative dp/dT at 1.5 (1), 4 (2), 7 (3), and 18.5 GPa (6). 
Definitions of Tco onset, Tcm midpoint, and Tcf final offset that are 
plotted in (a) are given in (b) (Gao et al., 1993). 



Elsevier AMS Job code: SUP CH02-P088761 22-6-2007 9:28a.m. Page:27 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

27 III RESISTIVITY 

Figure 2.2 Increase in the superconducting transition 
temperature with time. A linear extrapolation of the data 
before 1986 predicts that room temperature would be 
reached in about 1000 years. From left to right X = 
Sn� Al0�75Ge0�25, Ga, and Ge for the data points of the 
A15 compound Nb3X (Adapted from Fig. I-1, Poole 
et al., 1988). 

III. RESISTIVITY 

Before beginning the discussion of super 
currents, we will examine the resistivity of 
superconducting materials in their normal 
state above the transition temperature Tc; 
we will then make some comments on the 
drop to zero resistance at Tc; finally, we 
will describe the measurements that have set 
upper limits on resistivity below Tc. 

A. Resistivity above Tc 

In Chapter 1, Section VII, we explained, 
and now we illustrate in Figs. 2.3–2.6, how 
the resistivity of a typical conductor depends 
linearly on temperature at high temperatures 
and obeys the T 5 Bloch law at low temper­
atures. Classical or low-temperature super­
conductors are in the Bloch law region if 
the transition temperature is low enough, 
as illustrated in Fig. 2.3a. High-temperature 
superconductors have transition temperatures 
that are in the linear region, corresponding 
to the resistivity plot of Fig. 2.3b. However, 
the situation is actually more complicated 
because the resistivity of single crystals of 
high-temperature superconductors is strongly 
anisotropic, as we will show later. Several 
theoretical treatments of the resistivity of 
cuprates have appeared (e.g., Griessen, 1990; 
Micnas et al., 1987; Song and Gaines, 1991; 
Wu et al., 1989; Zeyhe, 1991). 

Good conductors such as copper and 
silver have room temperature resistivities 
of about 1�5 �� cm, whereas at liquid 
nitrogen temperatures the resistivity typ­
ically decreases by a factor in the range 
3–8, as shown by the data in Table 1.1. 
The elemental superconductors, such as 
Nd, Pb, and Sn, have room temperature 
resistivities a factor of 10 greater than good 
conductors. The metallic elements Ba, Bi, 

Figure 2.3 Abrupt drop of the resistivity to zero at the superconducting transition 
temperature Tc (a) for a low-temperature superconductor in the Bloch T 5 region and 
(b) for a high-temperature superconductor in the linear region. 
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La, Sr, Tl, and Y, which are also present in 
oxide superconductors, have room temper­
ature resistivities 10 to 70 times that of Cu. 

The copper-oxide superconductors have 
even higher room temperature resistivities, 
more than three orders of magnitude greater 
than that of metallic copper, which puts them 
within a factor of 3 or 4 of the semiconduc­
tor range, as shown by the data in Table 2.2. 
The resistivity of these materials above Tc 

decreases more or less linearly with decreas­
ing temperature down to the neighborhood 
of Tc, with a drop by a factor of 2 or 3 from 
room temperature to this point, as shown 
in Fig. B. and by the data in Table 2.2. 
Figure 2.5 shows that the linearity extends far 
above room temperature, especially for the 
lanthanum compound (Gurvitch and Fiory, 
1987a, b, c; Gurvitch et al., 1988). It has 
been linked to the two-dimensional character 
of electron transport (Micnas et al., 1990). 

We see from the figure that 

YBa2Cu3O7−� 

begins to deviate from linearity at about 600– 
700 K, near the orthorhombic-to-tetragonal 
phase transformation (cf. Chapter 8, 
Section IV.D) where it changes from a metal­
lic material below the transition to a semi­
conductor above. Heating causes a loss of 
oxygen, as shown in Fig. 2.6 which presents 
the dependence of resistivity on the oxy­
gen partial pressure (Grader et al., 1987). 
The temperature dependence of resistivity 
has been related to the loss of oxygen [cf. 
Eq. (X-1) from Poole et al., 1988; cf. Chaki 
and Rubinstein, 1987; Fiory et al., 1987]. 

The resistivity of poor metals at 
high temperatures tends to saturate to a 
temperature-independent value when the 
mean free path l approaches the wavelength 
	F = 2
/kF associated with the Fermi level, 
where kF is the Fermi wave vector. The 
Ioffe–Regel criterion for the onset of this 
saturation is kFl ≈ 1. The quantity kFl for 
YBa2Cu3O7−� has been estimated to have a 

2 PHENOMENON OF SUPERCONDUCTIVITY 

value of 30 for T = 100 K (Hagen et al., 
1988) and 3 for T = 1000 K (Crow and 
Ong, 1990). These considerations, together 
with the curves in Fig. 2.5, indicate that, 
in practice, the Ioffe–Regel criterion does 
not cause the resistivity to saturate in high-
temperature superconductors. The A15 com­
pound V3Si, whose crystal structure is stable 
up to 1950�C, does exhibit saturation in its 
resistivity-versus-temperature plot. 

B. Resistivity Anisotropy 

The resistivity of YBa2Cu3O7−� is 
around two orders of magnitude greater 
along the c-axis than parallel to the a, 
b-plane; thus �c/�ab ≈ 100 and for 

Bi2+xSr2−yCuO6+�� 

�c/�ab ≈ 105 (Fiory et al., 1989). The tem­
perature dependence of these resistivities, 
measured by the method described in the fol­
lowing section, exhibits a peak near Tc in 
the case of �c, and this is shown in Fig. 2.7. 
When the data are fitted to the expressions 

T 

(Anderson and Zou, 1988) 

�ab = +BabT� 
Aab 

T 
(2.1) 

� = c +B T�c c

A
(2.2) 

by plotting �abT and �cT from the data of 
Fig. 2.7 versus T 2, a good fit is obtained, as 
shown in Fig. 2.8. The angular dependence of 
the resistivity is found to obey the expression 
(Wu et al., 1991b) 

���� = �ab sin2 �+�c cos2 � (2.3) 

where � is the angle of the current direction 
relative to the c axis. 

Typical measured resistivities of poly­
crystalline samples are much closer to the in-
plane values. The anisotropy ratio �c/�ab ≈ 
100 is so large that the current encounters 
less resistance when it follows a longer path 
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Table 2.2 Resistivity Data on Superconducting Single Crystals Slightly above T c and near Room Temperature. The Slopes ��/�T
Are Averages for the Typical Range from 150 K to 290 K. (Earlier data on mostly polycrystalline samples are given in Table X-1 of
Poole et al. �1988�a ) 

T � ab � c ��ab /�T ��c /�T 
Material K �� cm m� cm � c /� ab �� cm/K m� cm/K Reference 

Re 50 0�8 0�0005 0�6 0�075 0�055 Volkenshteyn et al. (1978) 

Re 275 17�5 0�013 0�7 Volkenshteyn et al. (1978) 

TaS2 450 Wattamaniuk et al. (1975) 

2H–TaSe2 4 1200 Martin et al. (1990)

Pfalzgraf and Spreckels (1987)

K3C60 thin filme 290 
2�5 m� cm� Palstra et al. (1992) 

19 

�La0�925Sr0�075� 2CuO4 50 2500 13 Preyer et al. (1991) 

�La0�925Sr0�075� 2CuO4 290 5000 Preyer et al. (1991) 

�Nd0�925Ce0�075� 2CuO4 30 1700 500 300 19 3�7 Crusellas et al. (1991) 

�Nd0�925Ce0�075� 2CuO4 273 4800 1300 270 2�0 Crusellas et al. (1991) 

YBa2Cu3O7−� 290 ∼ 380 ∼ 15 ∼ 45 averages 

YBa2Cu3O7−� 100 ∼ 180 ∼ 15 ∼ 90 ∼ 08 ∼ 02 averages 

Bi2Sr2CuO6±� 25 90 14�000 1�6 ×105 0�9 −6 Martin et al. (1990) 

Bi2Sr2CuO6±� 290 275 6000 2�2 ×104 Martin et al. (1990) 

Bi2Sr2�2CaCu2O8 100 55 b 5200 9�5 ×104 0�46 15 Martin et al. (1998) 

Bi2Sr2�2CaCu2O8 300 150c 8880 5�9 ×104 Martin et al. (1998) 

T12Ba2CuO6 110 900 Mukaida et al. (1990) 

T12Ba2CaCu2O8 110 3500 Mukaida et al. (1990) 

a Typical semiconductors range from 104 to 1015 �� cm and insulators from 1020 to 1028 �� cm. 
b Averages of �a = 60� �b = 50 �� cm at 100 K, and �a = 180� �b = 120 �� cm at 300 K. 29 
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30 2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.4 Temperature dependence of resistivity for various rare 
earth substituted RBa2Cu3O7 compounds. For these compounds Tc is in 
the linear region (Tarascon et al., 1987b). 

Figure 2.5 Comparison of the resistivities of 
�La0�9125Sr0�0825�2CuO4 and YBa2Cu3O7−� with those 
of the A15 compound V3Si�Tc = 17�1 K�, and 
with nonsuperconducting copper (Gurvitch and Fiory, 
1987a, b, c). 

in the planes than when it takes the shorter 
path perpendicular to the planes, so it tends 
to flow mainly along the crystallite planes. 
Each individual current zigzags from one 

Figure 2.6 Temperature dependence of the resistiv­
ity of YBa2Cu3O7−� for various oxygen partial pres­
sures (Grader et al., 1987). 

crystallite to the next, so that its total path is 
longer than it would be if all of the crystal­
lites were aligned with their planes parallel 
to the direction of the current. The increase 
in the resistivity of a polycrystalline sample 
beyond �ab can be a measure of how much 
the average path length increases. 
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31 III RESISTIVITY 

Figure 2.7 Resistivity for current flow parallel 
��ab� and perpendicular ��c� to the CuO planes of 
YBa2 Cu3O7. Data are given for three samples A, B, and 
C. Note from the change in scale that �ab � �c (Hagen 
et al., 1988). 

Figure 2.8 Plot of �cT versus T 2 to test the validity 
of Eq. (2.2) for five single crystals of YBa2Cu3O7−� 

(Hagen et al., 1988). 

Polycrystalline samples should be com­
pacted or pressed into pellets before resis­
tivity measurements are made, in order to 
reduce the number of voids in the sample 
and minimize intergrain contact problems. 

Such compacted samples require appropri­
ate heat treatments to maintain the proper 
oxygen content. Uniaxial compression tends 
to align the grains with their c-axes parallel 
so that the resulting compressed pellets have 
different resistivities when measured paral­
lel to the compression direction compared to 
when they are measured perpendicular to this 
direction. 

Hysteresis effects have been seen in 
the resistance-versus-temperature curves, as 
illustrated in Fig. X-1 of the monograph by 
Poole et al. (1988), for 

�Y0�875Ba0�125�2CuO4−� 

(Tarascon et al., 1987a). These hysteresis 
effects occur in the presence of both mag­
netic fields and transport currents, with the 
latter illustrated in Figure X-1. 

C. Anisotropy Determination 

The most common way of measuring 
the resistivity of a sample is the four-probe 
method sketched in Fig. 2.9. Two leads or 
probes carry a known current into and out of 
the ends of the sample, and two other leads 
separated by a distance L measure the volt­
age drop at points nearer the center where the 
current approximates uniform, steady-state 
flow. The resistance R between measurement 
points 3 and 4 is given by the ratio V/I of 
the measured voltage to the input current, 

Figure 2.9 Experimental arrangement for the four-probe resistivity determination. 
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and the resistivity � is calculated from the 
expression 

�L 
R = � (2.4)

A 

where A is the cross-sectional area. This 
four-probe technique is superior to a two-
probe method in which uniform, steady-state 
current flow is not assured, and errors from 
lead and contact resistance are greater. 

The four-probe method is satisfactory 
for use with an anisotropic sample if the 
sample is cut with one of its principal direc­
tions along the direction of current flow√ 
and if the condition L � A is satisfied. 
For a high-temperature superconductor, this 
requires two samples for the resistivity deter­
mination, one with the c-axis along the cur­
rent flow direction and one with the c-axis 
perpendicular to this direction. 

Transverse and longitudinal resistance 
determinations, Rt and R1 respectively, can 
both be made on a sample cut in the shape 
of a rectangular solid with a = b, with the 
shorter c-axis along the current direction, as 
shown in Fig. 2.10 (Hagen et al., 1988). 
These resistances Rt and R1 are used to cal­
culate the resistivity �ab in the a, b-plane 
and the resistivity and �c perpendicular to 
this plane, i.e., along c. The expressions 

Figure 2.10 Experimental arrangement for measur­
ing anisotropic resistivities (see explanation in text) 
(Hagen et al., 1988). 

2 PHENOMENON OF SUPERCONDUCTIVITY 

that relate the resistances depend on the 
parameter x, 

x = c 

a 

� 
�c 

�ab 

�1/2 

� (2.5) 

where �c/�ab ≈ 100 for YBa2Cu3O7−�. For 
the limiting case x � 1, the measured resis­
tances are given by (Montgomery, 1971): 

a 4 ln  2  
Rt = �ab 1 − x � 1� (2.6)

bc 
 

c 16 exp�−
/x�
R1 = �c x � 1� 

ab 
x 
(2.7) 

and for the opposite limit x � 1 we have 

a 16x exp�−
x� 
Rt = �ab x � 1� 

bc 
 
(2.8) 

c 4 ln  2  
R1 = �c 1 − x � 1� (2.9)

ab 
x 

Both the resistance with the exponential fac­
tor and the correction term containing the 
factor 4 ln 2/
 are small. 

Contributions to the electrical conduc­
tivity in the normal state near Tc arising 
from fluctuations of regions of the sample 
into the superconducting state, sometimes 
called paraconductivity, have been observed 
and discussed theoretically (X. F. Chem 
et al., 1993; Friedman et al., 1989; Lawrence 
and Doniach, 1971; Shier and Ginsberg, 
1966). Several more theoretical articles treat­
ing resistivity have appeared (e.g., Gijs et al., 
1990a; Hopfengärtner et al., 1991; Kumar 
and Jayannavar, 1992; Sanborn et al., 1989; 
Yel et al., 1991). 

D. Sheet Resistance of Films: 
Resistance Quantum 

When a current flows along a film of 
thickness d through a region of surface with 
dimensions a × a, as shown in Fig. 2.11, 
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33 III RESISTIVITY 

Figure 2.11 Geometrical arrangement and current 
flow direction for sheet resistance determination. 

it encounters the resistance Rs which, from 
Eq. (2.4), is given by 

�a � 
Rs = = � (2.10) 

ad d 

The resistance �/d is called the sheet resis­
tance, or the resistance per square, because it 
applies to a square section of film, as shown 
in Fig. 2.11, and is independent of the length 
of the side a. It is analogous to the sur­
face resistance Rs = �/� of a metallic surface 
interacting with an incident high-frequency 
electromagnetic wave, where � is the skin 
depth of the material at the frequency of the 
wave. 

There is a quantum of resistance h/4e2 

with the value 

h = 6�45 k�� (2.11)
4e2 

where the charge is 2e per pair. When 
the films are thin enough so that their 
sheet resistance in the normal state just 
above Tc exceeds this value, they no 
longer become superconducting (Hebard and 
Paalanen, 1990; Jaeger et al., 1989; Lee 
and Ketterson, 1990; Li et al., 1990; Pyun 
and Lemberger, 1991; Seidler et al., 1992; 
Tanda et al., 1991; Valles et al., 1989; 
T. Wang et al., 1991). It has been found 
experimentally (Haviland et al., 1989) that 
bismuth and lead films deposited on ger­
manium substrates become superconducting 
only when they have thicknesses greater than 
0.673 nm and 0.328 nm, respectively. The 
variation in Tc with the sheet resistance for 
these two thin films is shown in Fig. 2.12. 
Figure 2.13 shows the sharp drop in resis­
tivity at Tc for bismuth films with a range 

Figure 2.12 Dependence of the transition temper­
ature Tc of Bi and Pb films on the sheet resistance 
(Haviland et al., 1989). 

of thickness greater than 0.673 nm. Thinner 
films exhibit resistivity increases down to 
the lowest measured temperatures, as shown 
in the figure. The ordinary transition tem­
peratures, which occur for the limit �/d � 
h/4e2, are 6.1 K for Bi films and 7.2 K 
for Pb. 

Copper-oxide planes in high-
temperature superconductors can be 
considered thin conducting layers, with 
thickness c for YBa2Cu3O7−� corresponding 
to a sheet resistance �ab/ 2

1 c. Using this layer 
approximation, the Ioffe–Regel parameter 
kFl mentioned in Section A can be estimated 
from the expression 

conductance per square 
kFl = (2.12)

conductance quantum 

h/4e2 

= � (2.13)
2�ab/

1
2 c 

where the conductances are the reciprocals 
of the resistances. Note that the two reported 
kFl values for YBa2Cu3O7−� calculated by 
this method and referred to earlier assumed 
kF = 4�6 ×107 cm−1. 

It is of interest that metallic con­
tacts of atomic size exhibit conduction 
jumps at integral multiples of 2e2/h (Agraït 
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34 2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.13 Temperature dependence of the sheet 
resistance of films of Bi deposited on Ge as a function 
of film thickness in the range from 4.36 Å to 74.27 Å 
(Haviland et al., 1989). 

et al., 1993), and that the Hall effect resis­
tance in one-dimensional objects, so-called 
quantum wires, is quantized to h/2Ne2, 
where N = 1� 2� 3� � � �  (Akera and Andu, 
1989). 

IV. ZERO RESISTANCE 

In 1911, when Onnes was measuring the 
electrical resistance of mercury, he expected 
to find a temperature dependence of the type 

Figure 2.14 Resistivity-versus-temperature plot 
obtained by Kamerlingh Onnes when he discovered 
superconductivity in Leiden in 1911. 

given by Eq. (1.30). Instead, to his sur­
prise, he found that below 4.2 K the electri­
cal resistance dropped to zero, as shown in 
Fig. 2.14. He had discovered superconductiv­
ity! At this temperature mercury transforms 
from the normal metallic state to that of a 
superconductor. Figure 2.3a shows the abrupt 
change to zero resistance for the case of an 
old superconductor, where Tc is in the low-
temperature Bloch T 5 region, while Fig. 2.3b 
shows what happens in the case of a high-
temperature superconductor where Tc is in 
the linear region. 

A. Resistivity Drop at Tc 

Figures 2.3a, 2.3b, 2.7, and 2.8 show the 
sharp drop in resistance that occurs at Tc. We  
will see later in the chapter that there is an 
analogous drop in susceptibility at Tc. 
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35 IV ZERO RESISTANCE 

A susceptibility measurement is a more B. Persistent Currents below Tc 
typical thermodynamic indicator of the 
superconducting state because magnetization 
is a thermodynamic state variable. Resistiv­
ity, on the other hand, is easier to mea­
sure, and can be a better guide for appli­
cations. Generally, the Tc value determined 
from the resisitivity drop to zero occurs 
at a somewhat higher temperature than its 
susceptibility counterpart. This is because 
any tiny part of the material going super­
conductive loses its resistance, and R = 0 
when one or more continuous superconduct­
ing paths are in place between the mea­
suring electrodes. In contrast, diamagnetism 
measurements depend on macroscopic cur­
rent loops to shield the B field from an 
appreciable fraction of the sample material, 
and this happens when full superconduct­
ing current paths become available. There­
fore, filamentary paths can produce sharp 
drops in resistivity at temperatures higher 
than the temperatures at which there are 
pronounced drops in diamagnetism, which 
also require extensive regions of supercon­
ductivity. Such filamentary behavior can be 
described in terms of percolation thresholds 
(Gingold and Lobb 1990; Lin, 1991; Phillips, 
1989b; Tolédano et al., 1990; Zeng et al., 
1991). 

To establish a transport current in a loop 
of superconducting wire, the ends of the wire 
may be connected to a battery in series with a 
resistor, thus limiting the current, as shown in 
Fig. 2.15. When switch S2 is closed, current 
commences to flow in the loop. When switch 
S1 is closed in order to bypass the battery 
and S2 opened in order to disconnect the 
battery, the loop resistance drops to zero and 
the current flow enters the persistent mode. 
The zero resistance property implies that the 
current will continue flowing indefinitely. 

Many investigators have established cur­
rents in loops of superconducting wire and 
have monitored the strength of the associated 
magnetic field through the loop over pro­
longed periods of time using, for example, a 
magnetometer with a pickup coil, as shown 
in Fig. 2.15. In experiments it was found that 
there is no detectable decay of the current for 
periods of time on the order of several years. 
The experiments established lower limits on 
the life-time of the current and upper limits 
on the possible resistivity of superconducting 
materials. Currents in copper oxide super­
conductors persist for many months or in 
excess of a year, and resistivity limits have 
been reported as low as 10−18 (Yeh et al., 

Figure 2.15 Experimental arrangement for establishing and measuring a persistent current. Switch S2 is closed 
to send current through the loop and S1 is closed to confine the current flow to the loop. The magnetometer 
measures the magnetic field through the loop and thereby determines the current. 
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1987) and 10−22 � cm (Kedve et al., 1987). 
Super current lifetimes of low-temperature 
superconductors are also greater than a 
year for � <  10−23 � cm (Chandrasekhar, 
1969). Persistent current flow has also been 
treated theoretically (e.g., Ambegaokar and 
Eckern, 1991; Cheun et al., 1988; Kopietz, 
1993; Riedel et al., 1989; von Oppen and 
Riedel, 1991). 

It will be instructive to estimate the min­
imum resistivity of a simple loop of super­
conducting wire of loop radius r and wire 
radius a. The inductance L of the loop is 
given by 

L ≈ �0r
ln�8r/a�−2�� (2.14) 

The loop has ‘length’ 2
r and cross-
sectional area 
a2, so that its resistance R 
is 

2r� 
R = � (2.15)

2a

This gives it a time constant � = L/R. Com­
bining Eqs. (2.14) and (2.15) gives the prod­
uct 

�� ≈ 1
2 �0a 2
0�0794 + ln�r/a��� (2.16) 

Using �0 = 4
 ×10−7 H/m and typical loop 
dimensions of a = 1�5 mm and r = 15 cm 
gives 

�� ≈ 6�6 ×10−10 � cm s (2.17) 

for the product ��. 
A super current Is can be made to flow 

in the loop by subjecting it to a changing 
magnetic field below Tc, in accordance with 
Faraday’s and Lenz’ laws. The magnitude of 
the current that is flowing can be determined 
by measuring the induced magnetic field. At 
a point P along the axis a distance z above 
the loop, as shown in Fig. 2.16, this magnetic 
field has the following value, as given in 
standard general physics texts: 

r�0Is
2 

B�z� = � (2.18)
2�r2 + z2�3/2 

2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.16 Magnetic field Bz along the axis of a 
circular loop of wire of radius r carrying the current I. 
The wire itself has radius a. 

and once B�z� is measured, Is can be 
calculated. 

If the super current persists unchanged 
for over a year �� > 3�16×107 s� without any 
appreciable decrease (we are assuming that a 
1% decrease is easily detectable), Eq. (2.17) 
can be used to place an upper limit on the 
resistivity: 

� < 2�1 ×10−17 � cm� (2.19) 

which is in the range mentioned earlier, and 
is 11 orders of magnitude less than the resis­
tivity of copper �� = 1�56 �� cm�. A similar 
loop of copper wire at room temperature has 
� ≈ 0�42 ms, so that the current will be gone 
after several milli-seconds. 

We will see in Section XIV that the drop 
to zero resistance can be explained in terms 
of a two–fluid model in which some of the 
normal electrons turn into super electrons 
which move through the material without 
resistance. The current carried by the flow 
of super electrons is then assumed to short 
circuit the current arising from the flow of 
normal electrons, causing the measured resis­
tance to vanish. 

V. TRANSITION TEMPERATURE 

Before proceeding to the discussion of 
magnetic and transport properties of super­
conductors, it will be helpful to say a few 
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V TRANSITION TEMPERATURE 

words about the transition temperature. We 
will discuss it from the viewpoint of the resis­
tivity change even though the onset of the 
energy gap and pronounced diamagnetism 
are more fundamental indices of Tc. Pechan 
and Horvath (1990) described a fast and 
inexpensive method for accurate determina­
tion of transition temperatures above 77 K. 

Although the theoretical transition from 
the normal to the superconducting state 
is very sharp, experimentally it sometimes 
occurs gradually and sometimes abruptly. 
Figure 2.17 shows the gradual decrease in 
resistivity near Tc that was reported by 
Bednorz and Müller (1986) in the first pub­
lished article on the new superconductors. 
We see from this figure that the range 

37 

of temperatures over which the resistivity 
changes from its normal-state value to zero 
is comparable with the transition tempera­
ture itself. An example of a narrow transition 
centered at 90 K with width of ≈ 0�3 K  is  
shown in Fig. 2.18. These two cases corre­
spond to �T/Tc ≈ 1/2 and �T/Tc ≈ 0�003, 
respectively. 

The sharpness of the drop to zero resis­
tance is a measure of the goodness or purity 
of the sample. Figure 2.19 shows how the 
drop to zero in pure tin becomes broader and 
shifts to a higher temperature in an impure 
specimen. In a sense impure tin is a better 
superconductor because it has a higher Tc 

but worse because it has a broader transition. 
When high-temperature superconductors are 

Figure 2.17 First reported drop to zero resistance for a high-temperature 
superconductor (Bednorz and Müller, 1986). 
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38 2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.18 Sharp drop to zero resistance of a YBa2Cu3O7 epi­
taxial film (Hopfengärtner et al., 1991). 

Figure 2.19 Narrow and broad superconducting 
resistivity drop in pure and impure tin, respectively. 
Reprinted from Rose Innes and Rhoderick (1978), p. 7, 
with kind permission of Pergamon Press, Headington 
Hill Hall, Oxford OX3 0BW, UK. 

doped with paramagnetic ions at copper sites, 
the transition temperature both shifts to lower 
values and broadens, whereas doping at the 
yttrium sites of YBaCuO has very little effect 
on Tc, as may be seen by comparing the data 
plotted in Figs. 2.20 and 2.4, respectively. 
This can be explained in terms of delocal­
ization of the super electrons on the copper 
oxide planes. 

There are various ways of defining the 
position and sharpness, or width, of the 
superconducting transition temperature, and 
the literature is far from consistent on this 
point. Authors talk in terms of the onset, 5%, 
10%, midpoint, 90%, 95%, and zero resis­
tance points, and Fig. 2.21 shows some of 
these on an experimental resistivity curve. 
The onset, or 0% point, is where the exper­
imental curve begins to drop below the 
extrapolated high-temperature linear behav­
ior of Eq. (1.30), indicated by the dashed line 
in the figure. The Tc values that we cite or list 
in the tables are ordinarily midpoint values 
at which ��T� has decreased by 50% below 
the onset. Many of the published reports of 
unusually high transition temperatures actu­
ally cited onset values, which can make them 
suspect. The current density can influence 
the resistive transition (Goldschmidt, 1989). 

The point at which the first derivative 
of the resistivity curve, shown in Fig. 2.22b, 
reaches its maximum value could be selected 
as defining Tc, since it is the inflection point 
on the original curve (Azoulay, 1991; Datta 
et al., 1988; Nkum and Datars, 1992; Poole 
and Farach, 1988). The width �T between 
the half-amplitude points of the first deriva­
tive curve, or the peak-to-peak width �Tpp 
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39 V TRANSITION TEMPERATURE 

Figure 2.20 Influence of doping YBa2�Cu0�9M0�1�3O6+y with the first 
transition series ions M = Ti, Cr, Fe, Co, Ni, and Zn on the resistivity 
transition near Tc (Xiao et al., 1987a). 

Figure 2.21 Temperature dependence of the 
resistivity and zero-field-cooled magnetization of 
HoBa2Cu3O7. The 10%-drop, midpoint, and 90%-drop 
points are indicated on the resistivity curve (Ku et al., 
1987). 

of the second derivative curve sketched in 
Fig. 2.22c, are both good quantitative mea­
sures of the width of the transition. An asym­
metry parameter, equal to 
�A−B�/�A+B��, 
may also be evaluated from Fig. 2.22c. 

There appear to be enough data points 
near the midpoint of Fig. 2.22a to accurately 
define the transition, but the first and second 
derivative curves of Figs. 2.22b and 2.22c, 
respectively, show that this is not the case. 
This need for additional data points demon­
strates the greater precision of the derivative 
method. 

Phase transitions in general have finite 
widths, and a typical approach is to define 
Tc in terms of the point of most rapid change 
from the old to the new phase. Critical expo­
nents are evaluated in this region near Tc. 
Ordinarily, less account is taken of the more 
gradual changes that take place at the onset 
or during the final approach to the new 
equilibrium state. The onset of supercon­
ductivity is important from a physics view­
point because it suggests that superconduct­
ing regions are being formed, whereas the 
zero point is important from an engineering 
viewpoint because it is where the material 
can finally carry a super current. 
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40	 2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.22 Zero-field-susceptibility of YBa2Cu3O7 as a function of temperature in a magnetic field 
of 0.1 mT: (a) usual susceptibility plot �; (b) first derivative plot d�/dT ; and (c) second derivative plot 
d2 �/d2 T (Almasan et al., 1988). 

VI. PERFECT DIAMAGNETISM	 B =�0H�1 +��� (2.20) 

=�0�H +M�� (2.21)
The property of perfect diamagnetism, 

which means that the susceptibility � = −1 is equivalent to the assertion that there can be 
in Eq. (1.78a), no B field inside a perfect diamagnet because 
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41 VI PERFECT DIAMAGNETISM 

the magnetization M is directed opposite to 
the H field and thereby cancels it: 

M = −H� (2.22) 

When a superconductor is placed between 
the pole pieces of a magnet, the B field 
lines from the magnet go around it instead of 
entering, and its own internal field remains 
zero, as shown in Fig. 2.23. This field dis­
tribution is the result of the super-position 
of the uniform applied field and a dipole 
field from the reversely magnetized super­
conducting sphere, as illustrated in Fig. 2.24 
(Jackson, 1975; cf. Section 5–10). 

There are two aspects to perfect diamag­
netism in superconductors. The first is flux 
exclusion: If a material in the normal state 
is zero field cooled (ZFC), that is, cooled 

below Tc to the superconducting state with­
out any magnetic field present, and is then 
placed in an external magnetic field, the field 
will be excluded from the superconductor. 
The second aspect is flux expulsion: If the 
same material in its normal state is placed in 
a magnetic field, the field will penetrate and 
have almost the same value inside and out­
side because the permeability � is so close 
to the free-space value �0. If this material is 
then field cooled (FC), that is, cooled below 
Tc in the presence of this field, the field 
will be expelled from the material, a phe­
nomenon called the Meissner effect. These 
two processes are sketched on the left side of 
Fig. 2.25. Although ZFC and FC lead to the 
same result (absence of magnetic flux inside 
the sample below Tc), nevertheless the two 

Figure 2.23 Curvature of magnetic field lines around a superconducting sphere in 
a constant applied field. 

Figure 2.24 Sketch of constant applied magnetic field (a) and dipole field 
(b) that superimpose to provide the magnetic field lines shown in Fig. 2.23 
(Jackson, 1975). 
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42 2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.25 Effect of zero field cooling (ZFC) and field cooling (FC) of a solid 
superconducting cylinder (left), a superconducting cylinder with an axial hole (center), and 
a perfect conductor (right). 

processes are not equivalent, as we will see 
in Section IX. 

Thompson et al. (1991) found that for 
a “defect-free” high-purity niobium sphere 
the ZFC and FC susceptibilities are almost 
identical. A second high-purity sphere of 
similar composition that exhibited strong 
pinning was also examined and the same 

ZFC results were obtained, except that no 
Meissner flux expulsion following field cool­
ing was observed. The pinning was so strong 
that the vortices could not move out of the 
sample. Figure 2.25 is drawn for the case of 
very weak pinning, in which virtually all of 
the flux is expelled from the superconducting 
material following field cooling. 
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43 VII MAGNETIC FIELDS INSIDE A SUPERCONDUCTOR 

VII. MAGNETIC FIELDS INSIDE A 
SUPERCONDUCTOR 

To further clarify the magnetic field 
configurations inside a superconductor, con­
sider a long cylindrical sample placed in 
a uniform applied magnetic field with its 
axis in the field direction, as indicated in 
Fig. 2.26. Since there are no applied currents, 
the boundary condition at the surface given 
in Chapter 1, Section XIV, 

H	
′ = H	

′′� (2.23) 

shows that the H field is uniform inside with 
the same value as the applied field: 

Happ = Hin (2.24) 

The B field has only a z component with 
value Bapp = �0Happ outside and zero inside, 
Bin = 0. There is, however, a transition layer 
of thickness 	, called the penetration depth, 

Figure 2.26 Boundary region and internal fields for 
a superconducting cylinder in an axial external magnetic 
field Bapp. 

at the surface of the superconductor where 
the B field drops exponentially from its value 
Bapp on the outside to zero inside, in accor­
dance with the expression 

B�r� ≈ Bapp exp
−�R− r�/	�� (2.25) 

as shown in Fig. 2.27. Thus the B field exists 
only in the surface layer, and not in the bulk. 
Since 

Bin�r� = �
Hin +M�r�� (2.26) 

with Hin = Happ, we have for M�r� 

�R− r� 
M�r� = −Happ 1 − exp − � 

(2.27) 

again subject to the assumption that 	 � R, 
and this is also sketched in Fig. 2.27. 

We will show later in Chapter 6, 
Sections VII and VIII, that this expo­
nential decay process arises naturally in 
the Ginzburg–Landau and London theories, 
and that these theories provide an explicit 

Figure 2.27 Plot of the fields B and �0 H and of the 
magnetization �0 M outside �r > R�  and inside �r < R�  a 
superconducting cylinder of radius R in an axial applied 
field Bapp. At the center of the sphere r = 0. 
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formula for what is called the London pene­
tration depth 	L, namely 

� �1/2 
m 

	L = � (2.28)
�0nse

2 

where ns is the density of superconducting 
electrons. 

VIII. SHIELDING CURRENT 

In the absence of any applied transport 
current we set J = 0 (also �D/�t = 0) in 
Maxwell’s equation, Eq. (1.72), to obtain 

� ×Bin =�0� ×M (2.29a) 

=�0Jsh (2.29b) 

where Jsh is called the shielding or demag­
netization current density: 

Jsh = � ×M� (2.30) 

Since Bin has only a z or axial component, the 
curl, expressed in terms of cylindrical coor­
dinates, gives the following shielding current 
density flowing around the cylinder in the 
negative � direction: 

1 dB
Jsh�r� =− · (2.31)

�0 dr 

Bapp �R− r� ≈− exp − (2.32)
�0	 	 

�R− r� ≈−J0 exp − � (2.33) 

where 

Bapp = �0	J0� (2.34) 

again with 	 � R, and this circular current 
flow is sketched in Fig. 2.28 and graphed in 
Fig. 2.29. In other words, the vectors B and 
Jsh do not exist in the bulk of the supercon­
ductor but only in the surface layer where 

2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.28 Shielding current flow Jsh in a surface 
layer of thickness 	 around a superconducting cylinder 
in an axial applied magnetic field Bapp. 

they are perpendicular to each other, with 
B oriented vertically and Jsh flowing around 
the cylinder in horizontal circles. It may be 
looked upon as a circulating demagnetizing 
current that shields or screens the interior 
of the superconductor by producing a nega­
tive B field that cancels Bapp so that Bin = 0 
inside. 

Thus we see that the superconducting 
medium reacts to the presence of the applied 
field by generating shielding currents that 
cancel the interior B field. The reaction of the 
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45 IX HOLE IN SUPERCONDUCTOR 

Figure 2.29 Dependence of the shielding current density Jsh on 
the position inside a superconducting cylinder of radius R in an 
applied axial field Bapp. Note that Jsh has the value Happ/	 at the 
surface. 

medium may also be looked upon as generat­
ing a magnetization M that cancels the inte­
rior B field, as was explained above. These 
are two views of the same phenomenon, 
since the shielding current density Jsh and the 
compensating magnetization M are directly 
related through Eq. (2.30). The negative B 
field that cancels Bapp is really a magnetiza­
tion in the negative z direction. 

It is instructive to see how Eq. (2.34) is 
equivalent to the well-known formula 

�0NI 
B0 = (2.35)

L 

for the magnetic field B0 of an N -turn 
solenoid of length L. Since each turn carries 
the current I , the total current is NI . This 
total current also equals the current density 
J0 times the area 	L, corresponding to 

NI = 	LJ0� (2.36) 

Substituting NI from this expression in 
Eq. (2.35) gives Eq. (2.34). Thus the circu­
lating shielding current is equivalent to the 
effect of a solenoid that cancels the applied 
B field inside the superconductor. 

The dipole field of the superconducting 
sphere sketched in Fig. 2.24 may be consid­
ered as arising from demagnetizing currents 
circulating in its surface layers, as shown in 
Fig. 2.30. These demagnetizing currents pro­
vide the reverse magnetization that cancels 

Figure 2.30 Shielding current flow around the sur­
face of a superconducting sphere in an applied magnetic 
field Bapp. 

the applied field to make B = 0 inside, just 
as in the case of a cylinder. 

IX. HOLE IN SUPERCONDUCTOR 

As an example of how ZFC and FC can 
lead to two different final states of mag­
netism let us examine the case of a hole 
inside a superconductor. 

Consider a cylindrical superconducting 
sample of length L and radius R with a con­
centric axial hole through it of radius r, as  
shown in Fig. 2.31. This will be referred to as 
an “open hole” because it is open to the out­
side at both ends. If this sample is zero-field­
cooled in the manner described in Section VI, 
an axial magnetic field applied after cooling 
below Tc will be excluded from the super­
conductor and also from the open axial hole. 
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Figure 2.31 Superconducting tube of radius R with 
an axial hole of radius r . 

Surface currents shield the superconducting 
regions from the external field and bring 
about the flux exclusion shown in Fig. 2.25. 
These same surface currents also shield the 
hole from the applied field. This means that 
the superconductor plus the hole act like a 
perfect diamagnet under zero-field cooling. 
The entire volume 
R2L, including the open 
hole volume 
r2L, has an effective suscep­
tibility of −1, 

�eff = −1� (2.37) 

If this same sample, still with an open 
hole, is field cooled, once it attains the super­
conducting state the magnetic flux will be 
expelled from the superconducting material, 
but will remain in the hole. The same outer 
surface currents flow to shield the supercon­
ductor from the applied field, but the sur­
face currents flowing in the reverse direction 
around the inside surface of the cylinder, 
i.e., around the hole periphery as indicated 
in Fig. 2.32, cancel the effect of the out­
side surface currents and sustain the original 
magnetic flux in the hole. The volume of 
the superconducting material, �
R2 −
r2�L, 
has a susceptibility of −1, but the space in 

Figure 2.32 Magnetic field lines, shielding current 
flow Jsh on the outside surface, and reverse-direction 
shielding current flow JR on the inside surface of a 
superconducting tube in an applied axial magnetic field. 
The magnetic field lines pass through the hole because 
the cylinder has been field cooled. 

the open hole, 
r2L, does not exhibit dia­
magnetism, so that for the hole � = 0. The 
effective susceptibility of the cylinder with 
the hole is the average of −1 for the super­
conducting material and 0 for the hole, cor­
responding to 

� r �2 
�eff = −  1 − � (2.38)

R 

which reduces to −1 for no hole �r = 0� and 
to 0 for r = R. This experimentally measur­
able result is different from the ZFC open 
hole case (2.37). Experimentally, it is found 
that the magnetic susceptibility is less nega­
tive for field-cooled samples than for zero-
field-cooled samples, as shown by the data 
in Fig. 2.33. Mohamed et al. (1990) give 
plots of the ZFC and FC magnetic field dis­
tributions of a 16-mm diameter, 2-mm thick 
superconducting disk with a 3-mm diameter 
axial hole. 
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47 IX HOLE IN SUPERCONDUCTOR 

Figure 2.33 Zero-field-cooled (closed symbols) and field-cooled (open symbols) mag­
netic susceptibility of YBa2Cu3O7 nonaligned powder (circles) and grain-aligned samples 
with the applied field parallel to the c-axis (triangles) and perpendicular to the c-axis 
(squares). Results are shown in an applied field of (a) 5 mT and (b) 0.3 T. Note the change 
in abscissa and ordinate scales between the two figures (Lee and Johnston, 1990). 

Another important case to consider is hole, that is, flux is excluded from it, with 
that of a totally enclosed hole of the type �eff = −1, as shown in the fifth column of 
shown in Fig. 2.34, which we call a closed Fig. 2.25. Flux is also excluded for field 
hole or cavity. It is clear that for ZFC the cooling. To see this, we recall that the B 
closed hole behaves the same as the open field lines must be continuous and can only 
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Figure 2.34 Superconducting cylinder with a totally 
enclosed hole. 

begin or end at the poles of a magnet. In 
the open hole case, the B field lines in the 
hole either join to the externally applied field 
lines or form loops that close outside the 
sample, as shown at the bottom of column 4 
of Fig. 2.25. The B field lines have no way 
of leaving a closed hole to connect with the 
external field or to form closed loops out­
side, so such lines cannot exist inside a cavity 
completely surrounded by a superconducting 
material. Therefore, flux is expelled during 
field cooling, so again �eff = −1. Thus a 
superconductor with a cavity behaves like a 
solid superconductor with the difference that 
magnetization can exist only in the super­
conductor, not in the cavity. 

In this section we have discussed 
the cases of open and closed holes in 
superconductors. We showed in Table 1.2 
that the susceptibility of typical diamagnetic 
and paramagnetic samples is quite close to 
zero, so that the empty hole results also apply 
to holes filled with typical nonsuper con­
ducting materials. Experimentally, we deal 
with samples with a known overall or exter­
nal volume, but with an unknown fraction of 
this volume taken up by holes, intergranular 

2 PHENOMENON OF SUPERCONDUCTIVITY 

spaces, and nonsuperconducting material that 
could respond to ZFC and FC precondition­
ing the same way as a hole. 

If a sample is a mixture of a supercon­
ducting material and a non-superconducting 
material with the nonsuperconducting part 
on the outside so that the applied magnetic 
field can penetrate it under both ZFC and 
FC conditions, the average sample suscepti­
bility will be the average of � = 0 for the 
normal material and � = −1 for the super­
conducting part. Thus both the ZFC and the 
FC measurement will give values of �eff 

that are less negative than −1. A granular 
superconducting sample can have an admix­
ture of normal material on the outside or 
inside and space between the grains that pro­
duce ZFC and FC susceptibilities of the type 
shown in Fig. 2.33, where, typically, the 
measured susceptibilities are �zfc ≈ −0�7 and 
�fc ≈ −0�3. 

X. PERFECT CONDUCTIVITY 

We started this chapter by describ­
ing the perfect conductivity property of 
a superconductor—namely, the fact that it 
has zero resistance. Then we proceeded to 
explain the property of perfect diamagnetism 
exhibited by a superconductor. In this section 
we will treat the case of a perfect conduc­
tor, i.e., a conductor that has zero resistivity 
but the susceptibility of a normal conduc­
tor, i.e., � ≈ 0. We will examine its response 
to an applied magnetic field and see that it 
excludes magnetic flux, but does not expel 
flux, as does a superconductor. We will start 
with a good conductor and then take the 
limit, i.e., letting its resistance fall to zero 
so that it becomes a hypothetical perfect 
conductor. 

A static magnetic field penetrates a good 
conductor undisturbed because its magnetic 
permeability � is quite close to the magnetic 
permeability of free space �0, as the suscep­
tibility data of Table 1.2 indicate. Therefore, 
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a good conductor placed in a magnetic field 
leaves the field unchanged, except perhaps for 
current transients that arise while the field is 
turned on and die out rapidly. In Section IV we 
estimated the decay time constant for a loop of 
copper wire 15 cm in diameter to be 0.42 ms. 

Consider a closed current path within 
the conductor. When the magnetic field Bapp 

is applied, the magnetic flux through this 
circuit � = A ·Bapp changes, so that by Lenz’ 
law a voltage −A ·dBapp/dt is induced in the 
circuit and a current I flows, as indicated in 
Fig. 2.35, in accordance with the expression 

dB dI −A · app = RI +L � (2.39)
dt dt 

The current rapidly dies out with time con­
stant L/R. For a perfect conductor the resis­
tance term in Eq. (2.39) vanishes. Solving 
the resultant equation, 

−A · dBapp 

dt 
= L 

dI 

dt 
� (2.40) 

gives 

LI +A ·Bapp = �Total� (2.41) 

which means that the total flux LI +A ·Bapp 

remains constant when the field is applied. If 
no fields or currents are present and the field 
Bapp is applied, the flux LI will be induced to 
cancel that from the applied field and main­
tain the B = 0 state inside the perfect conduc­
tor. In real conductors the induced currents 

Figure 2.35 Magnetic field B rapidly established 
through a loop of wire and induced current I . which, by 
Lenz’ law, flows in a direction to oppose the establish­
ment of this field. 

die out so rapidly that the internal B field 
builds up immediately to the applied field 
value. Hence a perfect conductor exhibits 
flux exclusion since a magnetic field turned 
on in its presence does not penetrate it. It 
will, however, not expel flux already present 
because flux that is already there will remain 
forever. In other words, an FC-perfect con­
ductor retains magnetic flux. 

Thus we find that a ZFC-perfect conduc­
tor excludes magnetic flux just like a ZFC 
superconductor. The two, however, differ in 
their field-cooled properties, the perfect con­
ductor retaining flux and a superconductor 
excluding flux after FC. A perfect conductor 
acts like an open hole in a superconductor! 

We do not know of any examples of per­
fect conductors in nature. The phenomenon 
has been discussed because it provides some 
insight into the nature of superconductivity. 

XI. TRANSPORT CURRENT 

In the previous section we discussed the 
shielding currents induced by the presence 
of applied magnetic fields. We saw how a 
field applied along the cylinder axis gives 
rise to currents circulating around this axis. 
When a current is applied from the outside 
and made to flow through a superconduc­
tor, it induces magnetic fields near it. An 
applied current is called transport current, 
and the applied current density constitutes 
the so-called “free” current density term on 
the right side of Maxwell’s inhomogeneous 
equation (1.68). 

Suppose that an external current source 
causes current I to flow in the direction of the 
axis of a superconducting cylinder of radius 
R, in the manner sketched in Fig. 2.36. We 
know from general physics that the wire has 
a circular B field around it, as indicated in 
the figure, and that this field decreases with 
distance r from the wire in accordance with 
the expression 

�0I B = r ≥ R� (2.42)
2
r 
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50 2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.36 Magnetic field lines B around a wire 
carrying a current I . 

as shown sketched in Fig. 2.37, with the fol­
lowing value on the surface: 

�0I Bsurf = � (2.43)
2
R 

We also know that if the current density were 
uniform across the cross section of the wire, 
the B field inside would be proportional to 
the distance from the axis, B = Bsurf �r/R�, as  
shown in Fig. 2.37. 

Since magnetic flux is excluded from 
inside a superconducting wire, the current 
density cannot be uniform, and instead the 
transport current must flow in a surface layer 
of thickness 	, as shown in Fig. 2.38, to 
maintain the B field equal to zero inside. 
This current density J�r� must have the same 

Figure 2.37 Dependence of the internal �r < R�  and 
external �r > R�  magnetic field on distance from the 
center of a normal conductor wire carrying a current of 
uniform density. 

Figure 2.38 Transport current flow in a surface layer 
of thickness 	 of a Type I superconducting wire of 
radius R. 

exponential dependence on distance as given 
by Eq. (2.31) for the case of the shielding 
current: 

Bsurf �R− r� 
J�r� = exp − (2.44)

�0	 	 

I �R− r� = exp − � (2.45)
2
R	 	 

Figure 2.39 shows how the current distribu­
tion changes at the junction between a nor­
mal wire and a superconducting wire from 
uniform density flow in the normal conduc­
tor to surface flow in the superconductor. 
The total current I is the integral of the cur­
rent density J�r� from Eq. (2.45) over the 
cross section of the superconducting wire, 
with value 

I = 2
R	J� (2.46) 

where J = J�R� is the maximum value of 
J�r�, which is attained at the surface, and 
the quantity 2
R	 is the effective cross-
sectional area of the surface layer. Substitut­
ing the expression for I from Eq. (2.46) in 
Eq. (2.43) gives 

Bsurf = �0	J� (2.47) 

which is the same form as Eq. (2.34) for the 
shielding current. 

Comparing Eqs. (2.32) and (2.44) we 
obtain for the magnetic field inside the wire 

�R− r� 
B�r� = Bsurf exp − r ≤ R� 

(2.48) 
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51 XI TRANSPORT CURRENT 

Figure 2.39 Current flow through a wire that is normal on the left 
and Type I superconducting on the right. Note that the penetration 
depth 	 determines the thickness of both the transition region at the 
interface and that of the surface layer. 

as shown sketched in Fig 2.40. In Chapter 5, 
Sections VII and IX, we show how to derive 
these various exponential decay expressions 
from the Ginzburg–Landau and London the­
ories. Outside the wire the magnetic field 
exhibits the same decline with distance in 
both the normal and superconducting cases, 
as can be seen by comparing Figs. 2.37 
and 2.40. 

There is really no fundamental differ­
ence between the demagnetizing current and 

the transport current, except that in the 
present case of a wire their directions are 
orthogonal to each other. When a current is 
impressed into a superconductor it is called 
a transport current, and it induces a magnetic 
field. When a superconductor is placed in an 
external magnetic field, the current induced 
by this field is called demagnetization cur­
rent or shielding current. The current–field 
relationship is the same in both cases. This 
is why Eqs. (2.25) and (2.48) are the same. 

Figure 2.40 Dependence of the internal �r < R� and external �r > R�  

magnetic field on distance from the center of a superconducting wire carrying 
a current that is confined to the surface layer. This figure should be compared 
with Fig. 2.37. 
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XII. CRITICAL FIELD AND CURRENT 

We noted in Section II that application 
of a sufficiently strong magnetic field to a 
superconductor causes its resistance to return 
to the normal state value, and each supercon­
ductor has a critical magnetic field Bc above 
which it returns to normal. There is also a 
critical transport current density Jc that will 
induce this critical field at the surface and 
drive the superconductor normal. Compar­
ing Eqs. (2.34) and (2.47), respectively, we 
have for both the demagnetizing and trans­
port cases 

Bc�T� = �0	�T�Jc�T�� (2.49) 

where all three quantities are temperature 
dependent in a way that will be described in 
the following section. Either an applied field 
or an applied current can destroy the super­
conductivity if either exceeds its respective 
critical value. At absolute zero, we have 

Bc�0� = �0	�0�Jc�0�� (2.50) 

and this is often written 

Bc = �0	Jc� (2.51) 

where T = 0 is understood. 
A particular superconducting wire of 

radius R has a maximum current, called the 
critical current Ic, which, by Eq. (2.46), has 
the value 

Ic = 2
R	Jc� (2.52) 

Using Eq. (2.51), the value of the critical 
current may be written as 

2
RBcIc = (2.53a) 
�0 

=5 ×106 RHc� (2.53b) 

The transformation of a superconducting wire 
to the normal state when the current passing 

2 PHENOMENON OF SUPERCONDUCTIVITY 

through it exceeds the critical value is called 
the Silsbee effect. 

In Type I superconductors with thick­
nesses much greater than the penetration 
depth 	, internal magnetic fields, shielding 
currents, and transport currents are able to 
exist only in a surface layer of thickness 	. 
The average current carried by a supercon­
ducting wire is not very high when most 
of the wire carries zero current. To achieve 
high average super current densities, the wire 
must have a diameter less than the penetra­
tion depth, which is typically about 50 nm 
for Type I superconductors. The fabrication 
of such filamentary wires is not practical, 
and Type II superconductors are used for this 
application. 

XIII. TEMPERATURE DEPENDENCES 

In the normal region above the tran­
sition temperature there is no critical field 
�Bc = 0� and there is total magnetic field 
penetration �	 = ��. As a superconductor is 
cooled down through the transition tempera­
ture Tc, the critical field gradually increases 
to its maximum value Bc�0� at absolute 
zero �T = 0�, while the penetration depth 
decreases from infinity to its minimum value 
	�0� at absolute zero. The explicit temper­
ature dependences of Bc�T� and 	�T� are 
given by the Ginzburg–Landau theory that 
will be presented in Chapter 6, where 	�0� = 
	L as given by Eq. (2.28), 

� �1/2 
m 

	�0� = � (2.54)
�0nse

2 

which assumes that all of the conduction 
electrons are super electrons at T = 0. The 
critical current density may be written as the 
ratio 

Bc�T� 
Jc�T� = (2.55)

�0	�T� 
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given in Eq. (2.49) in order to obtain the 
temperature dependence of Jc�T�. These tem­
perature dependences have the form 

� �2
T 

Bc = Bc�0� 1 − � (2.56)
Tc 

� � �4 
�−1/2 

T 
	 = 	�0� 1 − � (2.57)

Tc 

� ��  �1/2 

Jc = Jc�0� 1 − 
� 

T 

Tc 

�2 

1 − 
� 

T 

Tc 

�4 

� 

(2.58) 

and are sketched in Figs. 2.41, 2.42, and 
2.43. Also shown by dashed lines in the 
figures are the asymptotic behaviors near 
the transition temperature T ≈ Tc (Nicol and 
Carbotte, 1991): 

Figure 2.41 Temperature dependence of the critical 
field Bc�T� corresponding to the behavior expressed by 
Eq. (2.56). The asymptotic behaviors near T = 0 and 
T = Tc are indicated by dashed lines. 

Figure 2.42 Temperature dependence of the pen­
etration depth 	�T� corresponding to Eq. (2.57). The 
asymptotic behaviors near T = 0 and T = Tc are indi­
cated by dashed lines. 

Figure 2.43 Temperature dependence of the critical 
current density Jc�T� in accordance with Eq. (2.58). The 
asymptotic behavior near T = 0 and T = Tc is indicated 
by dashed lines. 

T 
Bc ≈ 2Bc�0� 1 − � (2.59)

Tc � �−1/2 

	 ≈ 1
2 	�0� 1 − T � (2.60) 

Tc 
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� �3/2
T 

Jc ≈ 4Jc�0� 1 − � (2.61)
Tc 

Jiang and Carbotte (1992) give plots of 
	�0�/	�T� for various theoretical models 
and anisotropies. The asymptotic behav­
iors near absolute zero, T → 0, are as 
follows: 

� �2
T 

Bc = Bc�0� 1 − � (2.62)
Tc 

1 T 
�4 

	 ≈ 	�0� 1 + � (2.63)
2 Tc 

� �2
T 

Jc ≈ Jc�0� 1 − � (2.64)
Tc 

which are proven in Problems 5 and 6, 
respectively. Note that Eq. (2.62) is iden­
tical to Eq. (2.56). Some authors report 
other values of the exponents or expressions 
related to Eqs. (2.56)–(2.64) for Bc (Miu, 
1992; Miu et al., 1990), 	 (Däumling and 
Chandrashekhar, 1992; Hebard et al., 1989; 
Kanoda et al., 1990; Kogan et al., 1988), 
and Jc (Askew et al., 1991; Freltoft et al., 
1991). 

For later reference we give here the tem­
perature dependence of the superconducting 
energy gap Eg in the neighborhood of Tc: 

T 
�1/2 

Eg ≈ 3�52 kBTc 1 − (2.65)
Tc 

(cf. Section VI, Chapter 7 for an explana­
tion of the energy gap and a plot (Fig. 7.7) 
of this expression). Another length param­
eter that is characteristic of the supercon­
ducting state is the coherence length �; this 
parameter will be introduced in Chapter 6 
and referred to frequently throughout the 
remainder of the text. It is reported to have 
a 
1 − T/Tc�

−n dependence, with n = 1/2 
expected; the penetration depth also depends 
on 
1 − �T/Tc��

−n near Tc (Chakravarty 
et al., 1990; Duran et al., 1991; Schneider, 
1992). 

XIV. TWO FLUID MODEL 

Many properties of superconductors can 
be described in terms of a two-fluid model 
that postulates a fluid of normal electrons 
mixed with a fluid of superconducting elec­
trons. The two fluids interpenetrate but do 
not interact. A similar model of interpene­
trating fluids consisting of normal and super­
fluid atoms is used to explain the properties 
of He4 below its lambda point. When a 
superconductor is cooled below Tc, normal 
electrons begin to transform to the super 
electron state. The densities of the normal 
and the super electrons, nn and ns, respec­
tively, are temperature dependent, and sum 
to the total density n of the conduction 
electrons, 

nn�T�+ns�T� = n� (2.66) 

where at T = 0 we have nn�0� = 0 and 
n �0� = n.s

If we assume that Eq. (2.54) is valid for 
any temperature below Tc, 

� �1/2 
m 

	�T� = � (2.67)
�0ns�T�e2 

then 	�0� = �m/�0ne2�1/2, and we can write 

ns 

� 
	�0� 

�2 

= � (2.68) 
n 	�T� 

which becomes, with the aid of Eq. (2.57), 

� �4
T 

ns ≈ n 1 − � (2.69)
Tc 

Figure 2.44 shows a sketch of ns versus tem­
perature. Substituting the latter in Eq. (2.66) 
gives for the normal electron density 

� �4
T 

nn ≈ n � (2.70) 
Tc 

Equation (2.68) is useful for estimating super 
electron densities. 
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XVI CRITICAL SURFACE 

Figure 2.44 Temperature dependence of the density 
of superconducting electrons ns as given by Eq. (2.69). 
The dashed lines show the slope dns/dT = 0 at  T = 0 
and −4 at  Tc. 

XV. CRITICAL MAGNETIC 
FIELD SLOPE 

We showed in the previous section 
that the critical magnetic field has the 
parabolic dependence on temperature given 
by Eq. (2.56), and this is plotted in Fig. 2.41. 
The slope of the curve near Tc is given by 
Eq. (2.59) and may also be written 

dBc�T� 2Bc�0� = −  � (2.71)
dT Tc 

For most Type I superconductors this ratio 
varies between −15 and −50 mT/K; for 
example, it has a value of −22�3 mT/K 
for lead. 

A Type II superconductor has two crit­
ical fields, a lower-critical field Bc1 and an 
upper-critical field Bc2, where Bc1 < Bc2, as  
we will see in Chapter 12. These critical 
fields have temperature dependences similar 
to that of Eq. (2.71). Typical values of these 
two slopes for a high-temperature supercon­
ductor are (see Fig. 12.8, Table 12.5) 

dBc1 2Bc1�0� = −  ≈ −1 mT/K� (2.72)
dT Tc 
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dBc2 = −  2Bc2�0� ≈ −1�83 T/K� (2.73)
dT Tc 

For high-temperature superconductors the 
slopes of Eqs. (2.72) and (2.73) near Tc can 
be quite anisotropic. 

XVI. CRITICAL SURFACE 

The critical behavior of a superconduc­
tor may be described in terms of a critical 
surface in three-dimensional space formed 
by the applied magnetic field Bapp, applied 
transport current Jtr , and temperature T , and 
this is shown in Fig. 2.45. The surface is 
bounded on the left by the Bc�T� versus 
T curve (d–c–b–a) drawn for Jtr = 0; this 
curve also appears in Figs. 2.41 and 2.46. 
The surface is bounded on the right by the 
Jc�T� versus T curve (g–h–i–a) drawn for 
B = 0, which also appears in Figs. 2.43 app 

and 2.47. Figure 2.46 shows three Bc�T� 
versus T curves projected onto the Jtr = 0 
plane, while Fig. 2.47 presents three Jc�T� 
versus T curves projected onto the Bapp = 0 
plane. Finally, Fig. 2.48 gives projections of 

Figure 2.45 Critical surface of a superconductor. 
Values of applied field Bapp, transport current Jtr , and 
temperature T corresponding to points below the critical 
surface, which are in the superconducting region, and 
points above the critical surface, which are in the normal 
region. The points on the surface labeled A, B , � � �  , L  
also appear in Figs. 2.46–2.49. 

http:2.46�2.49
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56 2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.46 Projection of constant current curves of 
the critical surface of Fig. 2.45 on the Bapp, T -plane. 
Projections are shown for Jtr = 0� Jtr � Jc, and Jtr ≈ Jc. 
The Jtr = 0 curve is calculated from Eq. (2.56). The 
other two curves are drawn so as to have the same shape 
as the curve for Jtr = 0. 

Figure 2.47 Projection of constant applied field 
curves of the critical surface of Fig. 2.45 onto the Jtr , 
T plane. Projections are shown for Bapp = 0, Bapp � Bc, 
and Bapp ≈ Bc. The Bapp = 0 curve is calculated from 
Eq. (2.58). The other two curves are drawn to have the 
same shape as the curve for Bapp = 0. 

three Jc�T� versus Bc�T� curves onto the T = 
0 plane. The points a, b , � � � , 1 in the various 
figures are meant to clarify how the projec­
tions are made. The notation Bc�0� = Bc and 
Jc�0� = Jc is used in these figures. 

Figure 2.48 Projection of constant-temperature 
curves of the critical surface of Fig. 2.45 onto the 
Jtr � Bapp plane. Projection isotherms are shown for T = 
0� T  � Tc, and T ≈ Tc. The shapes given for these 
curves are guesses. 

The x- and y-coordinates of this surface 
are, respectively, the applied magnetic field 
Bapp and the applied transport current Jtr . The 
former does not include the magnetic fields 
that are induced by the presence of transport 
currents, while the latter does not include 
shielding currents arising from the applied 
fields. What the critical surface means is 
that at a particular temperature T there is 
a characteristic critical field Bc�T� that will 
drive the superconductor normal if applied 
in the absence of a transport current. Simi­
larly there is a critical current density Jc�T� 
that will drive the superconductor normal if 
it is applied in zero field. In the presence of 
an applied field a smaller transport current 
will drive the superconductor normal, and if 
a transport current is already passing through 
a superconductor, a smaller applied magnetic 
field will drive it normal. This is evident 
from the three constant temperature Bc�T� 
versus Jc�T� curves shown in Fig. 2.48. One 
of these (h–l–k–c) is redrawn in Fig. 2.49. 

It will be instructive to illustrate the 
significance of Figs. 2.48 and 2.49 by an 
example. Consider the case of a long, cylin­
drical superconductor of radius R � L with 
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57 XVI CRITICAL SURFACE 

Figure 2.49 Projection of the h-l-k-c curve of 
Fig. 2.45 onto the Jc�T� versus Bapp plane showing the 
critical fields and current densities at the points k and l. 

Figure 2.50 Type I superconducting cylinder (a) car­
rying a transport current Itr of density Jtr in an applied 
magnetic field Bapp, and (b) flow of this transport current 
in a surface layer of thickness 	. 

an applied transport current Itr flowing along 
its axis and located in a magnetic field Bapp 

along its axis, as indicated in Fig. 2.50. 
This situation is analyzed by taking into 
account the magnetic field produced at the 
surface by the transport current, assum­
ing that Jc�T�/Jc�0� = Bc�T�/Bc�0� and that 
the normalized Jc�T�-versus-Bc�T� curve of 
Fig. 2.49 is an arc of a circle. 

We can see from Eq. (2.43) that the 
transport current produces the magnetic 

Figure 2.51 Net magnetic field Bnet on the surface of 
a superconducting cylinder resulting from vector addi­
tion of the applied field Bapp and the field Btr produced 
by the transport current. 

field Btr , 

�0ItrBtr = (2.74)
2
R 

at the surface of the cylinder. This magnetic 
field is at right angles to Bapp at the surface, 
as shown in Fig. 2.51, so that the net field 
Bnet at the surface is the square root of the 
sum of the squares of Bapp and Btr: 

= �B2 +B2 �1/2� (2.75)Bnet app tr 

Using Eq. (2.74) this equation can be written 
explicitly in terms of the transport current: 

� � �2 
�1/2 

= B2 + �0Itr � (2.76)Bnet app 2
R 

The superconductor will go normal when the 
combination of Bapp and Itr is high enough to 
make Bnet equal Bc�T�, the critical field for 
this temperature in the absence of transport 
currents: 

� � �2 
�1/2 

B �T� = B2 + �0Itr � (2.77)c app 2
R 

If we consider the case of the superconductor 
going normal at the point k of Fig. 2.49 then, 
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58 2 PHENOMENON OF SUPERCONDUCTIVITY 

Figure 2.52 Net current density Jnet flowing on the 
surface of a superconducting cylinder resulting from 
vector addition of the transport current density Jtr and 
the shielding current density Jsh. 

in the notation of that figure, we have at this 
point, 

Bapp = Bk � (2.78) 

Itr = 2
R	Jk � (2.79) 

where in a typical experimental situation 
the applied quantities Bapp and Itr are often 
known. 

This analysis was carried out by equat­
ing the vector sum of the applied field and 
the field arising from the transport current to 
the critical field Bc�T�. An alternate way of 
analyzing this situation is to equate the vector 
sum of the transport current density and the 
shielding current density to the critical cur­
rent density Jc�T� at the same temperature. 
This can be done with the aid of Fig. 2.52 to 
give the expression 

�� �2 � �2 
�1/2 

Jc�T� = Bapp + Itr � 
�0	 2
R	 

(2.80) 
which is the counterpart of Eq. (2.77). 

In this section we assumed axially 
applied fields and currents and neglected 
demagnetizing effects that depend on the 
shape of the sample. More general cases are 
far more difficult to analyze. 

FURTHER READING 

Several superconductivity texts cover the material 
found in this chapter. Five of them may be cited: Kresin 
and Wolf, 1990; Orlando and Delin, 1991; Rose-Innes 
and Rhoderick, 1994; Tilley and Tilley, 1986; Tinkham, 
1985. Ott (1993) surveyed the progress in superconduc­
tivity from 1980 to 1990 and provided a collection of 
reprinted articles. Other sources of introductory material 
are Hettinger and Steel (1994), Sheahan (1994), and Shi 
(1994). There are Landolt–Börnstein data tabulations 
on the classic superconductors by Flükiger and Klose 
(1993) and on the cuprates and related compounds by 
Kazei and Krynetskii (1993). The book by Hermann 
and Yakhmi (1993) is devoted to the thallium com­
pounds. The Handbook of superconductivity edited by 
Poole (2000) contains much pertinent information. 

PROBLEMS 

1. A wire with a radius of 1 cm is produced 
from a superconductor with a transition 
temperature of 120 K. It is in a longitudi­
nal magnetic field of 40 T at 60 K, and it 
is found that increasing the applied cur­
rent to 103 A drives it normal. What are 
the values of the upper critical field, the 
critical current, and the critical current 
density for the wire at 60 K and in the 
limit T → 0 K? Assume that Bc and Bc2 

exhibit the same temperature behavior. 
2. A cylindrical superconductor of radius 

200 cm with an axial hole in the cen­
ter of radius 100 cm is located in a par­
allel magnetic field of 2 T at 300 K. It 
has a penetration depth of 2000 Å. What 
amount of flux is stored in the super­
conducting material and in the hole if 
the sample is cooled to 40 K, well below 
Tc = 90 K. If the applied field is reduced 
to 0.5 T, how will these stored fluxes 
change? What is the value of the current 
density on the outside surface and on the 
inside surface for these two cases? 

3. What is the resistance of a 50-cm length 
of niobium wire of diameter 3 mm at 
300 K? How much longer would a wire 
made of copper have to be in order to 
have the same resistance? 
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PROBLEMS 

4. A superconducting wire 4 mm in diame­
ter is formed into a loop of radius 7 cm. If 
a super current persists unchanged in this 
wire for 12 years, what is the approxi­
mate upper limit on the resistivity? 

5. Show that Eqs. (2.59)–(2.61) provide the 
limiting behaviors of Eqs. (2.56)–(2.58), 
respectively, in the limit T → Tc. 

6. Show that Eqs. (2.62)–(2.64) provide 
the limiting behaviors of Eqs. (2.56)– 
(2.58), respectively, as the temperature 
approaches absolute zero. 

7. Explain how the analysis of Fig. 2.49 
that is given in Section XVI is based 
on the assumptions that were made con­
cerning Jc�T��Bc�T�, and the shape of 
the curve in the figure. 

8. Derive Eq. (2.80). 
9. Give the location of point � in Fig. 2.46, 

of point k in Fig. 2.47, and of point j in 
Fig. 2.48. 

10. What is the concentration of super elec­
trons at T = 0 K�T = 4

1 Tc, T = 2
1 Tc, and 

T = 1�1Tc in a superconductor with a 
penetration depth of 150 nm? What is 
the concentration of normal conduction 
electrons at these temperatures? 

11. A Type I superconductor has a critical 
field Bc = 0�3 T and a critical current 

59 

density Jc = 2 ×104 A/cm2 at 0 K. Find 
Bc� Jc�	, and ns at T = 1

2 Tc. 
12. If	 a transport current density of 

9000 A/cm2 is flowing through the 
super-conductor of Problem 11 at 0 K, 
what magnetic field will drive it 
normal? 

13. A Type I superconducting wire 3 mm in 
diameter has a critical field Bc = 0�4 T  
and a critical current density Jc = 3 × 
104 A/cm2 at 0 K. What is the max­
imum transport current that can flow 
through it at 0 K in an applied field 
of 0.35 T? 

14. A Type I superconductor with Tc = 7 K  
has slope dBc/dT = 25 mT/K at  Tc. 
Estimate its critical field at T = 6 K.  

15. Show that for a particular temperature T 
a plot of the critical surface Bapp versus 
�0	Jtr is an arc of a circle a distance 
Bc�T� from the origin. 

16. If it is assumed that the	 a direction 
electrical conductivity arises from the 
planes and that the b direction con­
ductivity is the sum of the contribu­
tions from the planes and chains (as 
explained in Section 7.VI), find �plane 

and �chain for YBa2Cu3O7 at 100 K 
and 275 K. 
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3 
Classical 

Superconductors 

I. INTRODUCTION 

In this chapter we will survey the prop­
erties of various classes of elements and 
compounds that are superconductors below 
about 25 K. We will begin with the sim­
plest group, namely the elements, and will 
proceed to discuss the binary, ternary, and 
larger compounds. Then we will treat the 
A15 compounds such as Nb3Sn that, until 
the discovery of the high Tc types, produced 
the highest transition temperatures of all. 
Following this discussion we will review the 
Laves phases, the Chevrel phases, the chalco­
genides, and the oxides. 

II. ELEMENTS 

Superconductivity was first observed in 
1911 in the element mercury with Tc = 4�1 K,  

as shown in Fig. 2.2. Two years later lead 
surpassed mercury with Tc = 7�2 K. Niobium 
with Tc = 9�25 K held the record for high­
est Tc for the longest period of time, from 
1930 to 1954 when the A15 compounds came 
to prominence. Other relatively high-Tc ele­
ments are Tl (2.4 K), In (3.4 K), Sn (3.7 K), 
Ta (4.5 K), V (5.4 K), La (6.3 K), and Tc 
(7.8 K), as shown in Table 3.1. Figure 3.1 
shows how the super-conducting elements 
are clustered in two regions of the peri­
odic table, with the transition metals on 
the left and the nontransition metals on the 
right. Some elements become superconduct­
ing only as thin films, only under pressure, 
or only after irradiation, as indicated in the 
figure. 

We see from Table 3.1 that the great 
majority of the superconducting elements 

61 
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62 3 CLASSICAL SUPERCONDUCTORS 

Table 3.1 Properties of the Superconducting Elementsa 

Z Elementb Ne 

Crystal 
Structurec 

Tc 

(K) 
�D 

(K) 
Bc 

(mT) 
2Bc /Tc 

(mT/K) 
� 

mJ 

mole K2 

� � ×106 

�cm3/mole� � �∗ 
c 

4 Be 2 hcp 0�026 940 0�21 
13 Al 3 fcc 1�18 420 10�5  18  1�4 
21 Sc 3 hcp 0�01 470 10�9 
22 Ti 4 hcp 0�40 415 5�6  28  3�3 155 0�38 0�17 
23 V 5 bcc 5�40 383 141�0  52  9�82 300 0�60 0�17 
30 Zn 12 hcp 0�85 316 5�4  12  0�66 
31 Ga 3 orthr 1�08 325 5�83 11 0�60 
40 Zr 4 hcp 0�61 290 4�7  15  2�77 129 0�41 0�15 
41 Nb 5 bcc 9�25 276 206�0  45  7�80 212 0�82 0�15 
42 Mo 6 bcc 0�92 460 9�6  21  1�83 89 0�41 0�10 
43 Tc 7 hcp 7�8 411 141�0  36  6�28 270 
44 Ru 8 hcp 0�49 580 6�9  28  2�8  39  0�38 0�14 
48 Cd 12 hcp 0�517 210 2�8  11  0�69 
49 In 3 tetrg 3�41 108 28�2  17  1�67 
50 Sn(w) 4 tetrg 3�72 195 30�5  16  1�78 
57 La��� 3 hcp 4�88 152 80�0  33  9�8 
57 La��� 3 fcc 6�3 140 110�0  37  11�3 
71 Lu 3 hcp 0�1 <35�0 
72 Hf 4 hcp 0�13 252 1�27 20 2�2  70  0�14 
73 Ta 5 bcc 4�47 258 82�9  37  6�15 162 0�75 
74 W 6 bcc 0�015 383 0�12 16 0�90 53 0�25 
75 Re 7 hcp 1�70 415 20�0  24  2�35 68 0�37 0�10 
76 Os 8 hcp 0�66 500 7�0  21  2�35 13 0�44 0�12 
77 Ir 9 fcc 0�11 425 1�6  29  3�2  24  0�35 
80 Hg��� 12 trig 4�15 88 41�1  20  1�81 
80 Hg��� 12 tetrg 3�9  93  33�9  17  1�37 
81 Tl 3 hcp 2�38 79 17�8  15  1�47 0�80 
82 Pb 4 fcc 7�20 96 80�3  22  3�1 1�55 
90 Th 4 fcc 1�38 165 16�0  23  4�32 
91 Pa 5 1�4 
95 Am 9 fcc 1�0 

a Nc is as defined in Fig. 3.1; �D, Debye temperature; Bc, critical field; �, electronic specific heat parameter; 
	, susceptibility; 
, electron–phonon coupling constant; �∗ 

c , Coulomb pseudopotential; P, pressure; WF, work 
function Eq, energy gap; and D�EF �, density of states at the Fermi level. 
Most of the data in the table come from Roberts (1976), Vonsovsky et al. (1982), and Handbook of Chemistry as 
Physics, 70th edition (1989–1990). 

b Sn is the gray diamond structure � form below 13�2 �C, and the white tetragonal � form above; La is the fcc � 

form above 310 �C, and the hcp � form at lower temperatures. 

have crystallographic structures of very high rounded by 12 equidistant nearest neighbors. 
symmetry, either face-centered cubic (10, Other cases include trigonal Hg, tetragonal 
fcc), hexagonal close-packed (15, hcp), or In, tetragonal (white) Sn, and orthorhom­
body-centered cubic (11, bcc), with the unit bic Ga. 
cells sketched in Fig. 3.2. The fcc and hcp Slightly more than half of the ele­
structures provide the densest possible crys- ments that are superconducting are mem­
tallographic packing, with each atom sur- bers of different transition series, for exam­
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II ELEMENTS 63 

dTc /dP Eg = 2� D�EF � 

(K/GPa) P (GPa) � WF (eV) (meV) Eg /kTc (states, atom eV) Z 

5�0 4

4�3 0�35 3�4  13 

5�9  21 


0�6 0–1.4 4�33 ≈1�4  22 

6�3 0–2.5 4�3 1�6 3�4 ≈2�1  23 


0�45 4�3 0�23 3�2  30 

0�33 3�5  31 


15�0 0–2.0 0 4�05 ≈0�8  40 

−2�0 0–2.5 4�3 3�0 3�8 ≈2�1  41 

−1�4 0–2.5 0�37 4�6 0�26 3�4 0�65 42


−12�5 0–1.5 5�0 2�4 3�6  43 

−2�3 0–1.8 0 4�7 0�15 3�5 0�91 44


0�5 4�2 0�14 3�2  48 

3�8 1�05 3�6  49 


0�47 4�38 1�4 4�4  50 

190 0–2.3 1�5 3�5  57 

110 57


0�028 3�3  71 

−2�6 0–1.0 0�044 3�9 0�83 72

−2�6 ≈1�7 ≈3�5 ≈1�7  73 


4�5 ≈0�006 ≈4�5 ≈0�5  74 

−2�3 0–1.8 0�23 0�78 3�4 0�76 75

−1�8 0�20 0�29 4�8 0�70 76


0�048 5�6  77 

0�50 4�52 1�7 4�6  80 


80

0�50 3�7 0�79 3�8  81 

0�48 4�3 2�7 4�3  82 


0�41 3�4  90 

91

95


ple, the first transition series from scandium 
to zinc (5), which has an incomplete 3dn 

electron shell; the second transition series 
from yttrium to cadmium (8), with 4dn 

electrons; the third such series from lute­
cium to mercury (8), with 5dn electrons; the 
rare earths from lanthanum to ytterbium (3), 
which have an incomplete 4fn electron shell; 
and the actinides from actinium to lawren­
cium (4), with 5fn electrons (the number 
of superconductors in each class is given in 
parenthesis). per is not known to super conduct. Studies of 

Among the elements niobium has the 
highest transition temperature, and perhaps 
not coincidentally it is also a constituent of 

higher Tc compounds such as Nb3Ge. Nio­
bium has not appeared prominently in the 
newer copper oxide superconductors. 

Of the transition elements most com­
monly found in the newer ceramic-type 
superconductors, lanthanum is superconduct­
ing with a moderately high Tc (4.88 K for 
the � or hcp form and 6.3 K for the � or 
fcc form), yttrium becomes superconducting 
only under pressure (Tc ≈ 2 K for pressure P 
in the range 110 ≤ P ≤ 160 kbar), and cop-

the transition temperature of copper alloys as 
a function of copper content have provided 
an extrapolated value of Tc = 6×10−10 K for 
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64 3 CLASSICAL SUPERCONDUCTORS 

Figure 3.1 Periodic table showing the superconducting elements together with their transition temperatures Tc 

and some of their properties (Poole et al., 1988). 

Figure 3.2 Body-centered cubic, face-centered cubic, and hexagonal close-packed unit cells. 

Cu which, while nonzero, cannot be achieved 
experimentally. The nontransition elements 
oxygen and strontium present in these com­
pounds do not superconduct, barium does 
so only under pressure (Tc = 1 K to 5.4 K 
under pressures from 55 to 190 kbar), bis­
muth likewise superconducts under pressure, 
and thallium is a superconductor with Tc = 
2�4 K. Lead, added in low concentrations to 
stabilize the bismuth and thallium high-Tc 

compounds, is also a well-known elemen­
tal superconductor. Thus the superconduct­
ing properties of the elements are not always 
indicative of the properties of their com­

pounds, although niobium seems to be an 
exception. 

III. PHYSICAL PROPERTIES OF 
SUPERCONDUCTING ELEMENTS 

Figure 3.1 gives the transition tempera­
ture Tc, Debye temperature �D, Sommerfeld 
constant, or normal-state electronic spe­
cific heat constant � from Eq. (1.51), 
Ce = �T , dimensionless electron–phonon 
coupling constant 
 (cf. Chapter 6), and den­
sity of states D�EF � at the Fermi level (1.42) 
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for different elemental superconductors. 
The columns of the periodic table are 
labeled with the number of (valence) elec­
trons Ne outside the closed shells. Table 3.1 
lists various properties of some of these 
elements. 

When an element has more than one 
isotope, the transition temperature often 
decreases with increasing isotopic mass M 
in accordance with the relation 

M�Tc = constant� (3.1) 

where � = 1/2 for the simplified BCS model 
described in Chapter 7. This is to be expected 
for a simple metal because the phonon fre­
quency is proportional to the square root 
of the atom’s mass. However electron– 
phonon coupling can also be mass depen­
dent, and deviations from Eq. (3.1) are not 
unusual. 

Some elemental superconductors have 
isotope effect coefficients � close to 1/2, 
such as Hg (0.50), Pb (0.48), Sn (0.47), 
and Zn (0.45). Most values of � listed in 
Table 3.1 for the transition metal supercon­
ductors are less than this BCS-theory esti­
mate. For the two metals zirconium and 
ruthenium, both with Tc < 0�1 K� �  is zero 
to within experimental error. 

The BCS theory predicts that twice 
the energy gap 2
 of a superconductor is 
3.52 times kBTc (cf. Chapter 7, Section VI) 
and from the data in Table 3.1 it is clear 
that this prediction is fairly well satisfied 
for the elements. In rhenium the energy 
gap is anisotropic, varying between 2.9 
and 3�9 kBTc, depending upon the direction. 
The anisotropies found for molybdenum and 
vanadium are half as large and almost within 
the experimental accuracy. 

It has been found that some of the 
properties of an element correlate with the 
number N of its valence electrons in the e 

same manner as the transition temperature 
(Vonsovsky et al., 1982). Here Ne is the 
number of electrons outside the filled shells 

corresponding to the configuration of the 
next lower noble gas. Figure 3.3 shows that 
Tc is a maximum for transition metals with 
five and seven valence electrons; Figs. 3.4, 
3.5, 3.6, and 3.7 show that the Sommer­
feld factor � of the conduction-electron 
heat capacity Ce = �T , the magnetic sus­
ceptibility 	 = M/�0H , the square of the 

Figure 3.3 Dependence of transition temperature 
on the number of valence electrons Ne in the super­
conducting transition elements (Vonsovsky et al., 1982, 
p. 184). 

Figure 3.4 Dependence of electronic specific heat � 

on Ne, as in Fig. 3.3 (Vonsovsky et al., 1982, p. 184). 
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Figure 3.5 Dependence of magnetic susceptibility 	 

on Ne, as in Fig. 3.3 (Vonsovsky et al., 1982, p. 185). 

inverse of the Debye temperature �D, and 
the electron–phonon coupling constant 
 
defined by Eq. (7.96) all exhibit similar 
behavior. These quantities, together with the 
dimensionless screened Coulomb interaction 

Figure 3.6 Dependence of inverse Debye tempera­
ture squared 1/�2 

D on Ne, as in Fig. 3.3 (Vonsovsky 
et al., 1982, p. 185). 

Figure 3.7 Dependence of electron–phonon coupling 
constant 
 on Ne, as in Fig. 3.3 (Vonsovsky et al., 1982, 
p. 211). 

parameter �∗ 
C (cf. Chapter 6), are tabulated in 

Table 3.1 for the superconducting elements. 
The correlation of the melting points of the 
transition metals, as plotted in Fig. 3.8, with 
the number of valence electrons Ne tends to 
be opposite to the correlation of Tc with Ne— 
thus the highest melting points occur for six 
valence electrons for which Tc is the lowest 
in each series. 

The chemical bonding of the transition 
metals is mainly ionic, but there can also 
be contributions of a covalent type. The 

Figure 3.8 Dependence of melting temperature on 
Ne, as in Fig. 3.3 (Vonsovsky et al., 1982, p. 186). 
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amount of covalency is particularly strong 
in the two metals molybdenum and tung­
sten, each of which has five valence elec­
trons. This fact has been used to account for 
the low- transition temperatures of these tw 
elements. 

Another important electronic parameter 
of a metal is its density of states D�EF� at 
the Fermi level, and Table 3.1 lists values 
of D�EF� for different elements. In several 
cases the value in the table is an average of 
several determinations with a large amount 
of scatter. For example, four reported values 
for niobium of 1.6, 1.8, 2.1, and 2.7 are given 
by Vonsovsky et al. (1982, p. 202) along 
with a rounded-off average of 2.1 states/atom 
eV. These large scatters lead one to sus­
pect the accuracy of cases in which only one 
determination is available. The d electrons 
dominate this density of states, with small 
contributions from the remaining valence 
electrons. For example, in vanadium the per­
centage contributions to D�EF � from the s, 
p, d, and f electrons are 1%, 14%, 84%, and 
1%, respectively, while for niobium the cor­
responding percentages are 3%, 14%, 81%, 
and 2%. 

When a metal is subjected to high pres­
sure, the density of states at the Fermi level 
changes. This change may be detected by 
the change in the conduction-electron heat 
capacity factor �, since from Eq. (1.52) 
� is proportional to D�EF �. Sometimes the 
derivative dTc/dP is positive, as in the case 
of vanadium (see curve for vanadium plot­
ted in Fig. 3.9), so that here Tc increases 
with increasing pressure, and sometimes it 
is negative, as with tantalum (cf. Fig. 3.9), 
where high pressures lead to lower val­
ues of Tc. With some elements the situa­
tion is more complicated. For example, when 
niobium is subjected to high pressure Tc 

decreases until about 40 kbar is reached, then 
it begins to increase with increasing pressure 
and, eventually, above 150 kbar, surpasses its 
atmospheric value, as indicated in Fig. 3.9. 
Finally some elements, such as P, As, Se, Y, 

Figure 3.9 Dependence of transition temperature Tc 

on pressure for the elements Nb, Ta, and V (Vonsovsky 
et al., 1982, p. 188). 

Sb, Te, Ba, Ce, and U, become superconduct­
ing only when subjected to high pressure. 

Tc of some transition metals rises dra­
matically when the metal is in the form of 
thin films made by ion sputtering on var­
ious substrates. For example, the transition 
temperature of tungsten (bulk value 0.015 K) 
rises to 5.5 K in a film, that for molybde­
num (bulk value 0.915 K) rises to 7.2 K, and 
that for titanium (bulk value 0.40 K) rises to 
2.52 K. Chromium and lithium only super­
conduct in the thin-film state, while other 
nonsuperconductors such as Bi, Cs, Ge, and 
Si can be made to superconduct either by 
applying pressure or by preparing them as 
thin films. Figure 3.1 summarizes this infor­
mation. 

IV. COMPOUNDS 

Superconductivity workers sometimes 
use the old Strukturbericht notation which 
uses the letter A to denote elements, B 
for AB compounds, C for AB2 com­
pounds, and D for AmBn binary compounds, 
with additional letters assigned to com­
pounds containing three or more dissimilar 
atoms. Superconductors of the class Nb3Sn 
were originally assigned to the �-W struc­
ture (Wyckoff, 1963, p. 42), which has 
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two types of tungsten atoms, one type in the 
center and the other six on the faces of the 
cubic unit cell; these A3B compounds came 
to be called the A15 compounds. The nota­
tion has endured despite the fact that other 
compounds such as UH3 and Cr3Si had been 
assigned to this structure (Wyckoff, 1964, 
p. 119) before Pearson described the nota­
tion in the 1958 Handbook. This notation is 
no longer widely used outside the supercon­
ducting community. 

Several structures contain a large num­
ber of superconductors. Table 3.2 presents 

3 CLASSICAL SUPERCONDUCTORS 

data on the principal superconductors, 
together with the transition temperature of a 
representative compound from each group. 
The table provides the Strukturbericht sym­
bol, Tc of a prototype compound, and the 
number of superconducting compounds that 
are found in the listings of Phillips (1989a) 
and Vonsovsky et al. (1982) for each group. 

All of the known nonradioactive elements 
are constituents of at least one superconduct­
ing compound, as Table 3.3 shows. The table 
catalogs the structure types with binary super­
conducting compounds, and gives the value of 

Table 3.2 Structure Types and Transition Temperatures of Representative 
Compounds of each Typea 

Structure and Type Example Tc (K) Nbr Type Referencec 

B1, NaCl, fc cubic MoC 14�3 26 a Ph, 336, 369; Vo, 393 
B2, CsCl, bc cubic VRu 5�0 10 b Ph, 362; Vo, 385 
B13, MnP, ortho GeIr 4�7 10 c Ph, 341 
A12� �-Mn, bc cubic Nb0�18Re0�82 10 15 d Ph, 368; Vo, 388 
B81, NiAs, hex Pd1�1Te 4�1 18 e Ph, 354 
D102 � Fe3Th7, hex, 3–7 

compound B3 Ru7 2�6 12 f Ph, 359 
D8b, CrFe, tetrag, �-phase Mo0�3Tc0�7 12�0 27 g Ph, 347, Vo, 388 
C15� MgCu2 , fc cubic, 

Laves HfV2 9�4 40 h Ph, 370; Vo, 375 
C14� MgZn2 , hex, Laves ZrRe2 6�8 19 i Ph, 357; Vo, 375 
C16� Al2 Cu, bc tetrag RhZr2 11�3 16 j Ph, 350 
A15� UH3 

b , cubic Nb3Sn 18 60 k Ph, 336, 363; Vo, 259 
LI2� AuCu3, cubic La3Tl 8�9 24 l Ph, 362 
Binary heavy fermions UBe13 0�9 9 m Table 3.10 
Miscellaneous binary 

compounds MoN 14�8 170 n Ph, Appendix C 
C22� Fe2P, Trig HfPRu 9�9 11 o Ph, 357 
E21� CaTiO3, cubic, 

perovskite SrTiO3 0�3 p 
HI1 � MgAl2 O4 , cubic, 

spinel LiTi2 O4 13�7 3 q Ph, 339; Vo, 431 
B4CeCo4, tetrag, ternary 

boride YRh4B4 11�9 10 r Ph, 347; Vo, 415 
PbMo6S8, trig, Chevrel LaMo6 Se8 11�4 88 s Ph, 361; Vo, 418 
Co4 Sc5Si10 , tetrag Ge10 As4 Y5 9�1 11 t Ph, 348 
fcc, buckminsterfullerene C60 Rb2Cs 31 12 u 

a The at one time important but now antiquated Pearson (1958) symbols (e.g., A15) are given for most of the 
structures. The numbers of compounds listed in column 4 were deduced from data given in the references of 
column 6. 

b A15 is sometimes called the �-Mn or the Cr3Si structure. 
c Ph and Vo followed by page numbers denote the references Phillips (1989a) and Vonsovsky et al. (1982), 

respectively. Additional data may be found in Roberts (1976). 
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69 IV COMPOUNDS 

Table 3.3 Number of Superconducting Binary Compounds AmBn of the Elements 
Discussed in the Literature, and Tc of a Representative Compound of each Element 
among the Classical Superconductors (see column 5 of Table 3.2 for key to the 
compound types) 

Element Binary Compounds Representative Compound 

Z Symbol Tc �K�a Number Types Compound Tc �K� Type 

1 H — 1 n HNb2 7�3 n 
2 Li — 2 n LiTi2 O4 13�7 q 

11 Na — 3 n u Na2Mo6S8 8�6 s 
19 K — 2 h u Bi2K 3�58 h 
37 Rb — 2 h u C60 Rb2K  24  u  
55 Cs 1�5P 2  h  u  Bi2Cs 4�8 h 

4  Be  8�6F 1 n BeTc 5�2 n 
12 Mg — 7 b n HgMg 1�4 b 
20 Ca 0.52 6 h l n Au5 Ca 0�38 n 
38 Sr — 2 h Rh2Sr 6�2 h 
56 Ba 5�0P 3 n BaBi0�2 O3Pb0�8 4�5 p 

5  B  —  12  a f j r n  B4 LuRh4 11�7 r 
13 Al 1.18 17 d g h j k l m n  Nb3 Al 19 k 
31 Ga 1.08 13 c j k l n  Nb3 Ga 21 k 
49 In 3.41 9 a c k l n  V3In 13�9 k 
81 Tl 2.38 6 l n TlMo6 Se8 12�2 s 

6  C  —  14  a n u  C60 Rb2Cs 32 u 
14  Si  6.7  14  c h k n  Nb3 Si 19 k 
32  Ge  5.3  18  a c k m n  Nb3 Ge 23�2 k 
50  Sn  3.7  16  a c k l m n  Nb3 Sn 18 k 
82 Pb 7.20 13 h j k l n  Ta3Pb 17 k 

7 N — 11 a n NbN 17�3 a 
5 P 5�8P 6 n PbP 7�8 n 

33 As 0�5P 9  c k n  Ge10 As4Y5 9�1 t 
51 Sb 2�7P 8  k  n  Ti3Sb 5�8 k 
83 Bi 6�1F 25  c e h l n  BaBi0�2 O3Pb0�8 4�5 p 

8 O — 4 a n LiTi2 O4 13�7 q 
16 S — 7 a n Sn0�6Mo6S4 14�2 s 
34 Se 6�9P 7 a n TlMo6 Se8 12�2 s 
52 Te 3�9P 12  a e i n  Mo6 S4�8Te3�2 2�5 s 

9 F — 0 — F0�12K0�1 Li0�02O2�88W 1�1 n 
17 Cl — 0 — Cl3Mo6Se8 9�1 s 
35 Br — 0 — Br2Mo6S6 13�8 s 
53 I — 0 — I2 Mo6S6 14�0 s 

21 Sc 0.01 10 b d h i n  ScMo6S8 3�6 s 
22 Ti 0.40 10 a b d k n  LiTi2 O4 13�7 q 
23 V 5.40 21 a b g h k  V3Si 17�2 k 
24 Cr — 7 g h k Cr3Os 4�68 k 
25  Mn  —  9  b c j k m n  Mn3 Si 12�5 k 
26 Fe — 5 f g n Fe3Re2 6�6 g 
27  Co  —  12  d f g j n  CoZr2 6�3 j 
28  Ni  —  5  f j k n  Ni3Th7 1�98 f 
29  Cu  —  8  b j m n  Cu1�8Mo6S8 10�8 s 
30 Zn 0.85 5 n Mo6�6S8Zn11 3�6 s 

39 Y 2�5P 20  a b f h i l n  B4 YRh4 11�3 r 

(Continued) 
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Table 3.3 (Continued) 

Element Binary Compounds Representative Compound 

Z Symbol Tc �K�a Number Types Compound Tc �K� Type 

40 Zr 0.61 25 a d g h i j k l n  ZrN  10�7 a 
41 Nb 9.25 41 a c d g h j k n  Nb3Ge 23�2 k 
42 Mo 0.92 24 a d g h k m n  Tc3 Mo 15�8 g 
43  Tc  7.8  6  d g k n  Tc3 Mo 15�8 g 
44 Ru 0.49 18 b f g h i k n  HfPRu 9�9 o 
45  Rh  —  32  c f g h j k n  B4LuRh4 11�7 r 
46  Pd  —  28  c d e g j k n  Bi2 Pd3 4�0 e 
47 Ag — 6 n Ag1�6Mo6�4S8 9�1 s 
48 Cd 0.517 1 n CdHg 1�77 n 

71  Lu  1.0  6  b h i l n  B4LuRh4 11�7 r 
72 Hf 0.13 10 a d h i n  HfV2 9�4 h 
73 Ta 4.47 18 a c d g j k n  Ta3Pb 17 k 
74 W 0.015 12 a d g k n  W3Re 11�4 k 
75  Re  1.7  24  a d f g h i k n  Mo3Re 15 k 
76 Os 0.66 20 b d f g h i j k  LaOs2 6�5 i 
77 Ir 0.11 30 d f g h i k m n  Ir0�4 Nb0�6 10 d 
78  Pt  —  23  b c e f g h k m n  Nb3Au 11�5 k 
79  Au  —  17  b c h j k n  Ta3Au 16 k 
80 Hg 4.15 10 n Hg2Mg 4�0 n 

57 La 4.9 21 a h n LaMo6S8 7�1 s 
58 Ce 1.7P 4  h m n  B4LuRh4 11�7 r 
59 Pr — 0 PrMo6S8 4�0 s 
60 Nd — 0 NdMo6Se8 8�2 s 
61 Pm — 0 
62 Sm — 0 B4SmRh4 2�7 r 
63 Eu — 1 n Eu0�012La0�988 0�2 n 
64 Gd — 0 GdMo6Se8 5�6 s 
65 Tb — 0 TbMo6 Se8 5�7 s 
66 Dy — 0 Dy1�2 Mo6Se8 8�2 s 
67 Ho — 0 Ho1�2Mo6 Se8 6�1 s 
68 Er — 0 B4ErRh4 8�7 r 
69 Tm — 0 B4TmRh4 9�8 r 
70 Yb — 0 Yb1�2Mo6 Se8 6�2 s 

90 Th 1.38 27 a f h i j l n  Pb3Th 5�55 l 
91 Pa 1.4 0 
92 U 1.0 9 l m n UPt3 0�43 m 

a P denotes Tc measured under pressure, and F indicates measurement on thin film. 

Tc for a representative superconductor of each the solid solutions, such as Nb0�75Zr0�25 and 
element. It is clear that transition temperatures Nb0�75Ti0�25, have atom ratios that are easily 
above 10 K are widely distributed among the expressed in terms of integers (Nb3Zr and 
elements and compounds. Nb3Ti), though others, such as Mo0�38Re0�62, 

On the whole, there is a tendency for do not fit this format. Indeed, Tc is often 
the superconducting materials to be stoichio- sensitive to stoichiometry, and experiments 
metric, i.e., with ratios of the constituent in which Nb3Ge gradually approached stoi­
elements generally integral. Even some of chiometry raised its measured Tc from 6 K 
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V ALLOYS 

to 17 K and, finally, to the previous record 
value of 23.2 K. Other materials have under­
gone the same evolution with the approach 
to ideal stoichiometry, such as Nb3Ga (Tc 

going from 14.9 to 20.3 K), V3Sn (Tc from 
3.8 to 17.9 K), and V3Ge (Tc increasing 
from 6.0 to 11.2 K). In contrast, there are 
compounds, such as Cr3Os� Mo3Ir� Mo3Pt, 
and V3Ir, in which the highest Tc does not 
occur at the ideal stoichiometric composition 
and in which Tc is generally less dependent 
on composition. For example Tc = 0�16 K 
in stoichiometric Cr3Ir but Tc = 0�75 K in 
Cr0�82Ir0�18. Although less prevalent among 
the older superconducting types, this phe­
nomenon is not unusual among the newer 
superconductors (cf. Vonsovsky et al., 1982, 
for more details). 

V. ALLOYS 

An alloy is a solid solution or mixture 
in which the constituent atoms are randomly 
distributed on the lattice sites. An intermetal­
lic compound, on the other hand, contains 
definite ratios of atoms that are crystallo­
graphically ordered in the sense that there 
is a unit cell that replicates itself through­
out space to generate the lattice. Some 
alloys become ordered for particular ratios of 
atoms. Both random and ordered materials 
can become superconducting. 

First we will consider the random binary 
alloys. In these types of alloys two transi­
tion elements are mixed in all proportions. 
There are several possibilities for the transi­
tion temperature of such an alloy: it can be 
higher than that of both elements, between 
the Tc values of the constituents, or lower 
than either constituent taken by itself. The 
curve of Tc versus binary alloy concentration 
can be close to a straight line, concave down­
wards with a minimum, or concave upwards 
with an intermediate maximum value. These 
three alternatives are illustrated in Fig. 3.10. 
The figure shows how Tc varies with Nb con­
tent when niobium is alloyed with any one of 

71 

the transition elements V, Zr, Mo, Ta, or W, 
with the plots arranged in the order in which 
the five transition elements are distributed 
around niobium in the periodic table. We see 
from Fig. 3.10 that the transition temperature 
reaches a maximum with an alloy containing 
25 at-% zirconium. The figure also shows 
that it can be very small for alloys with Zr, 
Mo, or W. 

To gain some understanding of the 
shapes of these curves systematic studies 
involving sequences of transition metals that 
are adjacent to each other in the periodic 
table have been carried out. (See Vonsovsky 
et al., 1982.) The results indicate that Tc 

varies with the number of valence electrons 
Ne in the manner illustrated in Fig. 3.11. 
The curves have two maxima of Tc, one near 
Ne = 4�7 and one near Ne = 6�5. The peak 
in the Nb versus Zr plot of Fig. 3.10 occurs 
close to Ne = 4�7. Amorphous alloys exhibit 
only one maximum for each series, as indi­
cated in Fig. 3.12. Other properties, such as 
the electronic specific-heat factor � that was 
defined in Eq. (1.51), magnetic susceptibility 
	, and pressure derivative dTc/dP have the 
dependences on electron concentration that 
are illustrated in Figs. 3.13, 3.14, and 3.15, 
respectively. The specific heat and suscep­
tibility plots are similar to the Tc versus Ne 

graph of Fig. 3.11. 
In addition to the correlation of the tran­

sition temperature with the valence elec­
tron concentration, there is also a correlation 
with the lattice properties. The body-centered 
cubic structure is the stable one for Ne in the 
range from 4.5–6.5, with hcp the stable struc­
ture outside this range, as shown in Fig. 3.16. 
The peaks in the plot of Tc versus Ne occur 
at the boundaries of instability—i.e., where 
a lattice rearrangement transition can occur 
between the two structure types. The lowest 
Tc occurs (Fig. 3.11) for Ne ≈ 5�5–6, which 
is also where the bcc structure is most stable. 

The alloy types listed in Table 3.2 are 
binary; most of them having their compo­
nent elements in an atom ratio of 1 : 1, 1 : 2,  
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72 3 CLASSICAL SUPERCONDUCTORS 

Figure 3.10 Dependence of transition temperature Tc on concentration for binary alloys of Nb 
with adjacent transition elements in the periodic table. The abscissae are expressed in percentages 
(adapted from Vonsovsky et al., 1982, pp. 234, 235). 

or 1 : 3. In most cases at least one con­
stituent is an elemental superconductor, and 
sometimes (e.g., NbTc3, VRu) both elements 
superconduct. Occasionally, more than one 
intermetallic stoichiometry (e.g., RhZr2 and 
RhZr3� Nb3Ge and NbGe2) is superconduct­
ing. The binary superconductors in Table 3.2 
have Tc values higher than the highest Tc of 
their constituents, although even here VRu 
is an exception. The high-Tc semiconduct­
ing and layered compounds tend to be binary 
also. Some of the compounds in Table 3.2 

are ternary types and even Lu0�75Th0�25Rh4B4 

is really the ternary compound MRh4B4 with 
Lu occupying three-quarters and Th one-
quarter of the M sites. 

VI. MIEDEMA’S EMPIRICAL RULES 

Matthias (1953, 1955) interpreted the 
shape of the curve of Tc versus Ne as indi­
cating the presence of favorable and unfa­
vorable regions of Ne and suggested rules 
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Figure 3.11 Dependence of transition temperature Tc on the number of 
valence electrons Ne in solid solutions of adjacent 3d�©�� 4d�
�, and 5d��� 

elements in the periodic table. Dark symbols are for pure elements (Vonsovsky 
et al., 1982, p. 239). 

for explaining the Tc-versus-concentration 
curves. One rule, for example, explains the 
increase of Tc in terms of the shift of Ne toward 
more favorable values; thus Ne = 5�V� Tc = 
5�4 K� Nb� Tc = 9�3 K� Ta� Tc = 4�5 K� and 
Ne = 7 �Tc� Tc = 7�8 K� Re� Tc = 1�7 K�. 

Miedema (1973, 1974) proposed an 
empirical method of correlating the con­
centration dependence of the transition 
temperature and other physical characteris-

Figure 3.12 Dependence of transition temperature 
Tc on the number of valence electrons Ne in amorphous 
alloys of 3d� 4d, and 5d elements, using the notation 
of Fig. 3.11 (Vonsovsky et al., 1982, p. 241). 

tics of alloys. The method assumes that the 
density of states D�EF�AB = DAB at the Fermi 
level of an alloy AB is an additive function 
of its constituents, 

DAB = fADA�NA�+fBDB�NB�� (3.2) 

where fA and fB are the mole fractions of 
the components A and B, and the densities 
of states DA and DB depend on the num­
ber of valence electrons NA and NB of atoms 
A and B, respectively (cf. Vonsovsky et al. 
(1982, Section 5.4) for evaluation of the 

Figure 3.13 Dependence of electronic specific heat 
� on Ne , as in Fig. 3.11 (Vonsovsky et al., 1982, p. 237). 
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74 3 CLASSICAL SUPERCONDUCTORS 

Figure 3.14 Dependence of magnetic susceptibility 
	 on Ne, as in Fig. 3.11. Points are plotted for Mo– 
Ru instead of Tc–Ru, and for Ta–Re instead of Ta–W 
for the same Ne, since data were not available for the 
preferred adjacent elements (Vonsovsky et al., 1982, 
p. 242). 

Ni dependences of the functions Di and �i 

in Eq. (3.2)). Equation (1.52) permits us to 
write a similar expression for the electronic 
heat capacity factor �: 

�AB = fA�A�NA�+fB�B�NB�� (3.3) 

The density of states and � depend upon the 
number of valence electrons per atom Ni in a 
similar manner for the 3d� 4d, and 5d tran­
sition ion series. Some electron concentra­
tion is transferred between the atoms during 
alloying, so that the number of valence elec­
trons of the ith component Ni differs from 
its free atom value Nei by the factor 

Ni = Nei +K
��1 −fi�� (3.4) 

where 
� is the difference between the work 
functions (cf. Chapter 15, Section II, A) of 
the two pure metals involved in the alloy. 
Table 3.1 lists the work functions of the 
superconducting elements. Empirical expres­
sions similar to Eqs. (3.2) and (3.3) have 
been written for the electron–phonon cou­
pling constant 
AB, 


AB = fA
A�NA�+fB
B�NB�� (3.5) 

and for the quantity �ln�Tc/�D��−1 for the 

�ln�T /�D��B 

binary alloys, 
1 = fA 

�ln�Tc/�D��AB �ln�Tc/�D��A 

+ fB � (3.6) 
c

Figure 3.15 Dependence of pressure derivative dTc/dP on Ne in alloys of 
adjacent 4d and 5d elements, following Fig. 3.11 (Vonsovsky et al., 1982, 
p. 238). 
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75 VII COMPOUNDS WITH THE NaCl STRUCTURE 

Figure 3.16 Sketch of the structure dependence of 
the transition temperature for alloys of adjacent transi­
tion elements, showing how Tc peaks at the boundaries 
between structure types (Vonsovsky et al., 1982, p. 245). 

Figure 3.17 shows that the agreement of 
Eqs. (3.3) and (3.6) with experiment is good 
for four isoelectronic alloy systems over the 
entire solid solution range. We see from this 
figure that the linear approximation obtained 
by setting K = 0 in Eq. (3.4), hence replacing 
Ni by Nei in Eqs. (3.2)–(3.6), does not agree 
with experiment. 

VII. COMPOUNDS WITH THE NaCl 
STRUCTURE 

The B1 class of AB superconductors has 
the metallic atoms A and nonmetallic atoms 
B arranged on a sodium chloride-type lat­
tice that consists of two interpenetrating fcc 
lattices with each atom of one type in the 
center of an octahedron whose vertices are 
occupied by atoms of the other type, as indi­
cated in Fig. 3.18. As of 1981, 26 B1 com­
pounds (out of the 40 B1 compounds that 
had been tested) had been found to be super­
conducting. The carbides AC and nitrides 
AN, such as NbN with Tc = 17 K (Kim 
and Riseborough, 1990), had the 12 high­
est transition temperatures, while the metallic 
A atoms with Tc values above 10 K were Nb, 
Mo, Ta, W, and Zr. Niobium always seems 
to be the best! Three examples of supercon­
ducting NaCl-type compounds are given in 
Tables 3.2 and 3.3. 

The NaCl-type superconductors are 
compositionally stoichiometric but not struc­
turally so. In other words, these compounds 
have a small to moderate concentration of 
vacancies in the lattice, as indicated in 
Table 3.4. We see from the table that YS has 

Figure 3.17 Comparison of calculated (—) and experimental (symbols) values of 
the specific heat coefficient � and the transition temperature Tc for four isoelectronic 
binary alloys. The linear approximation (- - - -), which is obtained by setting Ni = Nei 

in Eqs. (3.3) and (3.6), does not fit the data very well (Vonsovsky et al., 1982, p. 250). 
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Table 3.5 Nonstoichiometric 
Compounds AxBy with NaCl Structure 
with Vacancy Ordering on One 
Sublattice and Stoichiometric 
Compounds AxBx with this Structure 
(shown in square brackets) with Vacancy 
Ordering on Two Sublatticesa 

Figure 3.18 Structure of NaCl in which each atom 
of one type (© or •) is in the center of an octahedron 
whose vertices are occupied by atoms of the other type 
(• or ©). 

10% vacancies, which means that its chem­
ical formulae should properly be written 
Y0�9S0�9. Nonstoichiometric NaCl-type com­
pounds, such as Ta1�0C0�76, also exist. 

Ordinarily the vacancies are random, 
but sometimes they are ordered on the met­
alloid (e.g., Nb1�0C0�75) or on the metal­
lic (e.g., V0�763O1�0) sublattice, and can also 
produce a larger unit cell in, for example, 
Ti1�0O0�7. The vacancies can also be ordered 
on both sublattices in stoichiometric com­
pounds, such as Nb0�75O0�75. Table 3.5 lists 
several NaCl-type compounds with ordering 

Table 3.4 Percentage of Vacancy 
Concentration 100�1 −x� in 
Stoichiometric Compounds AxBx with 
NaCl Structurea 

Ax

�
Bx C N O 

Ti Ti1�0 O0�7 

�Ti0�85O0�85� 

V V1�0C0�84 V1�0N0�75 V0�763O1�0 

Nb Nb1�0C0�75 �Nb0�75O0�75� 

Ta Ta1�0C0�76 

a After Vonsovsky et al., 1982, p. 394. 

of the vacancies. It has been found that the 
metallic and nonmetallic atoms can be absent 
over broad composition ranges. 

VIII. TYPE A15 COMPOUNDS 

The highest transition temperatures for 
the older superconductors were obtained with 
the A15 intermetallic compounds A3B, and 
extensive data are available on these com­
pounds. Nb3Sn can be considered the proto­
type of this class. These compounds have the 
(simple) cubic structure (Pm3n, O3

h) sketched 
in Fig. 3.19 with the two B atoms in the 
unit cell at the body center � 1

2 � 
1
2 � 

1
2 � 

and apical (0, 0, 0) positions, and the six 
A atoms paired on each face at the sites 
�0� 1 � 1 �� �0� 1 � 3 �� � 1 � 1 � 0�� � 1 �2 4 2 4 2 4 2 
3 � 0�� � 1 � 0� 1 �� � 3 � 0� 1 �, a configura­4 4 2 4 2 

Ax Bx 

tion that amounts to the presence of chains 
C  N O  S Se  of A atoms with spacing of one-half the lat­

tice constant a. The A atom is any one of Ti 2 4�0  15  
V 8.5 1�0 11–15 the transition elements (but not Hf) shown 
Y  10  in the center of Fig. 3.10. The B element is 
Zr 3.5 3�5  20  16  either a transition element or is in row III 
Nb 
Hf 
Ta 

0.5–3.0 
4 
0.5 

1�3 

2�0 

25  (Al, Ga, In, Tl), row IV (Si, Ge, Sn, Pb), 
row V (P, As, Sb, Bi), or row VI (Te) of the 
periodic table. High transition temperatures 

a After Vonsovsky et al., 1982. occur when B is either a metal (Al, Ga, Sn) 
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6 

VIII TYPE A15 COMPOUNDS 

Figure 3.19 The unit cell of the A15 compound A3B 

showing B atoms at the apical and body center positions 
and A atoms in pairs on the faces of the cube (Vonsovsky 
et al., 1982, p. 260; see also Wyckoff, 1964, p. 119). 

or a nonmetal (Si, Ge), but not a transition 
element. Table 3.6 shows seven A elements 
and 20 B elements for a total of 140 possibil­
ities, 60 of which superconduct. Two addi­
tional A15 superconductors are V3Ni with 
Tc = 0�3 K and W3Os with Tc = 11�4 K.  

Stoichiometry is important, and paying 
attention to it has produced higher transition 
temperatures, as was explained in Section IV. 
Typical A15 compounds A3 +xB1 −x have nar­
row ranges of homogeneity. They are homo­
geneous toward A, with deviations from 
stoichiometry, x >  0, that tend to main­
tain the chains intact. Some atypical com­
pounds, such as A3 −xB1 +x, are homoge­
neous toward B so that the chains are 
affected, and can have their highest Tc val­
ues when they deviate from ideal stoichiom­
etry. Figure 3.20 shows that there is a close 
correlation between the transition tempera­
ture and the valence electron concentration 
Ne. We see that high values of Tc occur 
for Ne = 4�5 �Nb3Ga� Tc = 20�3 K�� Ne = 
4�75 �Nb3Ge� Tc = 23�2 K�� Ne = 
6�25 �Nb3Pt� Tc = 10�9 K�, and Ne = 6�5 
(TaAu, Tc = 13 K). The specific-heat fac­
tor � plotted in Fig. 3.21 and the magnetic 
susceptibility 	 (Vonsovsky et al., 1982) 
show the same correlation (cf. Hellman 
and Geballe, 1987). The Villars–Phillips 
approach (1988, Phillips 1989a, p. 324) adds 

Table 3.6 Superconducting transition 
temperatures Tc of some A15 compounds 
A3B. The number of valence electrons is 
given for each element. Data are from 
Phillips (1989a) and Vonsovsky et al. 
(1982). 

A3 Ti Zr V Nb Ta Cr Mo
B 

4 4 5 65 5 

Al 3 11�8  18�8 0�6 
Ga 3 16�8  20�3 0�8 
In 3 13�9 9�2 
Tl 3 9 

Si 4 17�1  19  1�7 
Ge 4 11�2  23�2 8�0 1�2 1�8 
Sn 4 5�8 0�9 7�0  18�0 8�4 
Pb 4 0�8 8�0  17  

As 5 0�2 
Sb 5 5�8 0�8 2�2 0�7 
Bi 5 3�4 4�5 

Tc 7 15�0 
Re 7 15�0 

Ru 8 3�4 10�6 
Os 8 5�7 1�1 4�7 12�7 

Rh 9 1�0 2�6  10�0 0�3 
Ir 9 5�4 1�7 3�2 6�6 0�8 9�6 

Pd 10 0�08 
Pt 10 0�5 3�7  10�9 0�4 8�8 

Au 11 0�9 3�2  11�5  16�0 

two additional parameters for high-Tc values. 
For further details see Sect. XIII of Chap. 7 
of the first edition of this work. 

The superconducting energy gap data 
vary over a wide range, with 2
/kBTc in 
the range 0.2–4.8, low values probably rep­
resenting poor junctions. The A15 group 
has some weak-coupled, BCS-like com­
pounds, such as V3Si with 2
/kBTc ≈ 3�5, 
and some strong coupled compounds, such 
as Nb3Sn with 2
/kBTc ≈ 4�3 and Nb3Ge 
with 2
/kBTc ≈ 4�3. The electron–phonon 
coupling constant � has been reported to 
vary between the weak coupling value of 0.1 
and the strong coupling value of 2.0 (see 
Table 7.3). 
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78 3 CLASSICAL SUPERCONDUCTORS 

Figure 3.20 Dependence of transition temperature Tc on the number of 
valence electrons Ne in A0�75B0�25 compounds with the A15 structure. The A 

element is specified by the symbol at the top right, and the B element (see 
Fig. 3.19) is indicated at the experimental points (Vonsovsky et al., 1982, p. 269). 

Some A15 compounds undergo a 
reversible structural phase transformation 
above Tc from a high-temperature cubic 
phase to a low-temperature tetragonal phase 
that deviates very little from cubic ��c − 
a�/a ≈ 3×10−3�. At the transformation each 
atom remains close to its original site and 
the volume of the unit cell remains the same. 
Table 3.7 lists some transformation temper­
atures and �c−a�/a ratios. 

There is no isotope effect in this class of 
compounds, meaning that � = 0 in Eq. (3.1). 
In addition there is a large scatter in the data 

on the change of Tc with pressure, dTc/dP, 
as Fig. 3.22 indicates (cf. Ota, 1987). 

IX. LAVES PHASES 

There are several dozen metallic AB2 

compounds called Laves phases which are 
superconducting; the transition temperatures 
of some of these compounds are listed in 
Table 3.8. The C15 Laves phases have 
the cubic �Fd3m� O7 

h� structure sketched in 
Fig. 3.23, and the C14 phases are hexagonal, 
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79 IX LAVES PHASES 

Figure 3.21 Dependence of electronic specific heat � on Ne in A15 compounds, 
using the notation of Fig. 3.20 (Vonsovsky et al., 1982, p. 271). The dependence 
of the magnetic susceptibility 	 on Ne produces a similar plot (Vonsovsky et al., 
1982, p. 271). 

Table 3.7 Structural Transformation Temperature Tstr and Anisotropy �c −a�/a in the 
Low-Temperature Tetragonal Phase of Several A15 type Superconductorsa 

Tstr Tc Anisotropy 
Compound (K) (K) �c −a�/a Reference 

V3Si 21 17 0�0024 Batterman and Barrett (1964)

Nb3Sn 43 18 −0�0061 Mailfert et al. (1967)

V3Ga >50 14�5 — Nembach et al. (1970)

Nb3Al 80 17�9 — Kodess (1973, 1982)

Nb3�Al0�75Ge0�25� 105 18�5 −0�003 Kodess (1973, 1982)

Nb3�1 �Al0�7Ge0�3 � 130 17�4 — Kodess (1973, 1982)


a cf. Vonsovsky et al., 1982, p. 278. 
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80 3 CLASSICAL SUPERCONDUCTORS 

Figure 3.22 Dependence of pressure derivative dTc/dP on Ne in A15 compounds, following Fig. 3.20 
(Vonsovsky et al., 1982, p. 288). 

Table 3.8 Superconducting transition temperatures Tc of selected Laves phase �AB2� 
compounds. Those labeled with an asterisk �∗� are hexagonal, and the remaining ones 
are cubic. The data are from Phillips (1989a) and Vonsovsky et al. (1982). 

A B2 V Mo  Te  Re  Ru  Os  Rh  Ir  Pt  
6 6 6  7 8 8 9 9 16  

Ca 2 6�4 6�2 
Sr 2 6�2 5�7 

Sc 3 4�2∗ 2�3∗ 4�6∗ 6�2 2�5 0�7 
Y 3  1�8∗ 2�4∗ 4�7∗ 2�1 0�5 
La 3 4�4 8�9 0�5 

Zl 4 9�6 0�13 7�6∗ 6�8∗ 1�8∗ 3�0∗ 4�1 
Hf 4 9�4 0�07∗ 5�6∗ 5�6∗ 2�7∗ 

Th 4 5�0∗ 3�5 6�5 

Lu ­ 0�9∗ 3�5∗ 1�3 2�9 

as noted in Table 3.2. One additional 
Laves superconductor HfMo2 has the C36 
hexagonal structure with a larger unit 
cell. Some have critical temperatures above 
10 K and high critical fields. For example, 
Zr 1 Hf 1 V2 has Tc = 10�1 K� Bc2 = 24 T, and 

2 2 

a compound with a different Zr/Hf ratio has 
similar Tc and Bc2 values with Jc ≈ 4 × 
105 A/cm2. These materials also have the 
advantage of not being as hard and brittle 
as some other intermetallics and alloys with 
comparable transition temperatures. 

X. CHEVREL PHASES 

The Chevrel phases AxMo6X8 are 
mostly ternary transition metal chalco­
genides, where X is S, Se, or Te and A can be 
almost any element (Fischer, 1978). These 
compounds have relatively high transition 
temperatures and critical fields Bc2 of several 
teslas. However, the critical currents, typi­
cally 2 to 500 A/cm2, are rather low. Sub­
stituting oxygen for sulphur in Cu1�8Mo6S8 

raises Tc (Wright et al., 1987). Table 3.9 
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Figure 3.23 Crystal structure of the Laves phase 
(Vonsovsky et al., 1982, p. 376). 

lists several dozens of these superconductors 
and their transition temperatures. Figure 3.24 
compares the critical currents (see Fig. 5.26 
for a comparison of the critical fields for 
several superconductors). 

The trigonal structure sketched in 
Fig. 3.25, with space group R3, C2 

3i, is  
a simple cubic arrangement slightly dis­
torted along the (111) axis of the Mo6X8­
group building blocks, each consisting of a 
deformed cube with large X atoms at the 
vertices and small Mo atoms at the cen­
ters of the faces. The Mo6X8 group may be 
looked on as an Mo6 octahedron inscribed in 
an X8 cube. Mo6X12-group building blocks 

Figure 3.24 Comparison of the critical 
current densities on the applied field for a, 
SnGa0�25Mo6S8� b� V3Ga, and c, Nb3Sn (Alekseevskii 
et al., 1977). 

Figure 3.25 Structure of the Chevrel phase Ax Mo6X8 

(Vonsovsky et al., 1982, p. 431). 

Table 3.9 Superconducting Transition Temperatures of some Chevrel compoundsa 

AxMo6S8 Tc �K� AxMo6Se8 Tc�K� Misc. Compounds Tc �K� 

Mo6S8 1�85 Mo6Se8 6�5  Pb0�9Mo6S7�5 15�2 
Cu2 Mo6S8 10�7  Cu2Mo6 Se8 5�9 PbGd0�2Mo6 S8 14�3 
LaMo6S8 7�0  La2 Mo6Se8 11�7 PbMo6 S8 12�6 
PrMo6S8 2�6 PrMo6Se8 9�2  Sn1�2Mo6S8 14�2 
NdMo6S8 3�5 NdMo6Se8 8�4 SnMo6 S8 11�8 
Sm1�2Mo6S8 2�4  Sm1�2 Mo6Se8 6�8 LiMo6 S8 4�0 
Tb1�2Mo6S8 1�4  Tb1�2Mo6Se8 5�7 NaMo6S8 8�6 
Dy1�2 Mo6S8 1�7  Dy1�2Mo6 Se8 5�8 KMo6S8 2�9 
Ho1�2 Mo6S8 2�0  Ho1�2Mo6 Se8 6�1  Br2 Mo6S6 13�8 
Er1�2Mo6 S8 2�0  Er1�2 Mo6Se8 6�2 I2 Mo6Se7 14�0 
Tm1�2Mo6S8 2�0  Tm1�2Mo6 Se8 6�3 BrMo6Se7 7�1 
Yb1�2 Mo6S8 ≈ 8�7  Yb1�2Mo6 Se8 5�8 IMo6 Se7 7�6 
Lu1�2Mo6S8 2�0  Lu1�2Mo6Se8 6�2 I2 Mo6Te6 2�6 

a See Phillips (1989a, pp. 339, 361) and Vonsovsky et al. (1982, p. 419) for more complete listings. 
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are also found. The distortions are not shown 
in the figure. The parameter x in the for­
mula A Mo6X8 assumes various values such x

as x = 1 (e.g., YMo6S8� LaMo6S8), x = 1�2 
(e.g., V1�2 Mo6Se8), x = 1�6 (e.g., Pb1�6 

Mo6S8), and x = 2 (e.g., Cu2Mo6Se8). This 
parameter can vary because of the large num­
ber of available sites between the cubes for 
the A cations. Most of the space is occu­
pied by the large chalcogenide anions, which 
have radii of 0.184 nm (S), 0.191 nm (Se), 
and 0.211 nm (Te). 

The electronic and superconducting 
properties depend mainly on the Mo6X8 

group. No correlations are evident between 
the type of A ion and the superconducting 
properties. Magnetic order and superconduc­
tivity are known to coexist in Chevrel phase 
compounds. When A is a rare earth its mag­
netic state does not influence the supercon­
ducting properties, but when A is a transition 
metal ion the magnetic properties suppress 
the superconductivity. This may be explained 
on structural grounds by pointing out that the 
large rare earths occupy sites between the 
Mo6X8 groups, as shown in Fig. 3.25, where 
they are remote from the molybdenums with 
only X as nearest neighbors. The smaller 
transition ions, on the other hand, can fit into 
octahedral sites with six Mo as their nearest 
neighbors (Ø. Fischer, 1990). 

XI. CHALCOGENIDES AND OXIDES 

Many of the classical superconductors 
(for example, the Chevrel phases discussed 
in Section X) contain an element of row VI 
in the periodic table, namely O, S, Se, or 
Te, with oxygen by far the least represented 
among the group. The newer superconduc­
tors in contrast, are oxides. Since the pres­
ence of lighter atoms tends to raise the Debye 
temperature, oxides are expected to have 
higher Debye temperatures than the other 
chalcogenides (Gallo et al., 1987, 1988). 
Thus the presence of group VI elements is 

3 CLASSICAL SUPERCONDUCTORS 

a commonality that links the older and the 
newer superconductors. 

The two oxide compounds listed in 
Table 3.2 are cubic and ternary. One is the 
well-known ferroelectric perovskite SrTiO3, 
which has a very low transition temperature 
(0.03–0.35 K). Nb-doped SrTiO3, with its 
small carrier concentration Ne ≈ 2×1020 and 
high electron–phonon coupling, has Tc = 
0�7 K (Baratoff and Binnig, 1981; Binnig 
et al., 1980). The other cubic ternary oxide is 
the spinel LiTi2O4 with moderately high Tc = 
13�7 K (Johnston et al., 1973). The system 
LixTi3−xO4 is superconducting in the range 
0�8 ≤ x ≤ 1�33 with Tc in the range 7–13 K. 
It is interesting to note that the stoichiomet­
ric compound with x = 1 is near the com­
position where the metal-to-insulator transi­
tion occurs. A band structure calculation of 
this Li–Ti spinel (Satpathy and Martin, 1987) 
is consistent with resonance valence bond 
superconductivity (Chapter 10, Section III, 
F) and a large electron–phonon coupling 
constant �
≈1�8�. Only three more of the 
200 known spinels superconduct—namely, 
CuRh2Se4 with Tc = 3�5 K, CuV2S4 with 
Tc = 4�5, and CuRh2S4 with Tc = 4�8—so 
LiTi2O4 turns out to be the only spinel oxide 
superconductor. 

PROBLEMS 

1 Show why the alloys of Fig. 3.17 contain 
isoelectronic elements. 

2 Consider the following expression as an 
alternate to Eq. (3.3) for describing the 
electronic specific heat of alloys: 

�AB = fA�A�NeA�+fB�B�NeB�+�fAfB� 

Evaluate the constant � for the three cases 
of Fig. 3.17, and compare the goodness 
of fit to the data with the results obtained 
from Eq. (3.3), as plotted in Fig. 3.17. 
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4 
Thermodynamic 

Properties 

I. INTRODUCTION 

The first three chapters surveyed normal 
state conductivity, properties characteristic 
of superconductivity, and the principal types 
of superconducting materials. But none of 
the theoretical ideas that have been proposed 
to account for these phenomena were devel­
oped. In the present chapter we will refer 
to certain principles of thermodynamics as 
a way of providing some coherence to our 
understanding of the material that has been 
covered so far. In Chapters 6, 7 and 10 we 
will deepen our understanding by examin­
ing in succession the London approach, the 
Ginzburg–Landau phenomenological theory, 
the microscopic theory of Bardeen, Cooper, 
and Schrieffer (BCS), the Hubbard model, 
and the band structure. Then, after having 

acquired some understanding of the theory, 
we will proceed to examine other aspects of 
superconductivity from the perspective of the 
theoretical background, with an emphasis on 
the high-transition temperature cuprates. 

The overall behavior of the heat absorp­
tion process that will be examined in this 
chapter can be understood by deriving 
the thermodynamic functions of the nor­
mal state from the known specific heat– 
temperature dependence. The corresponding 
superconducting-state thermodynamic func­
tions can then be deduced from the critical 
field dependence of the Gibbs free energy. 
We will begin by presenting experimental 
results on specific heat, following that with 
a derivation of the different thermodynamic 
functions associated with specific heat in the 
normal and superconducting states. 

83 
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A specific heat determination is of inter­
est because it provides a good measure of the 
range of applicability of the phonon-mediated 
BCS theory (cf. Chapter 7, Section VI, E). 
This theory predicts characteristics of the 
discontinuity in specific heat at Tc. 

II. SPECIFIC HEAT ABOVE TC 

One of the most extensively studied 
properties of superconductors is the specific 
heat. It represents a “bulk” measurement that 
sees the entire sample since all of the sample 
responds. Many other measurements are sen­
sitive to only part of the sample, for exam­
ple, microscopy in which only the surface is 
observed. 

Above the transition temperature Tc the 
specific heat Cn of high-temperature super­
conductors tends to follow the Debye theory 
described in Chapter 1, Section XII (cf. 
Fig. 1.12, which shows the positions of the 
lanthanum and yttrium compounds on the 
Debye plot at their transition temperatures). 
We know from Eq. (1.64) that Cn of a nor­
mal metal far below the Debye temperature 

4 THERMODYNAMIC PROPERTIES 

�D is the sum of a linear term Ce = �T 
arising from the conduction electrons, a lat­
tice vibration or phonon term Cph = AT 3, 
and sometimes an additional Schottky con­
tribution aT−2 (Crow and Ong, 1990) (cf. 
Chapter 1, Section XII). 

Cn = aT−2 +�T +AT 3� (4.1) 

For the present we will ignore the Schottky 
term aT−2. The Cexp/T versus T 2 plot of 
Fig. 4.1 shows how the yttrium compound 
obeys Eq. (4.1) at low temperatures and then 
deviates from it at higher temperatures, as 
expected for the Debye approximation. The 
normalized specific heat plots of Fig. 4.2 
compare for the case of several metals the 
electronic and photon contributions to the 
specific heat at low temperatures. 

In the free-electron approximation the 
electronic contribution to the specific heat 
per mole of conduction electrons is given by 
Eqs. (1.51) and (1.53), which we combine as 
follows: 

C = �T = 1 �2R
T 

e 2 TF 

T = 4�93R � (4.2)
TF 

Figure 4.1 Plot of Cexp/T versus T 2 for YBa2Cu3O7−� showing how the devi­
ation from linearity begins far below the transition temperature Tc = 90 K (Zhaojia 
et al., 1987). 
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85 II SPECIFIC HEAT ABOVE TC 

Figure 4.2 Comparison of the electronic specific 
heat Ce = �T of several conductors and superconduc­
tors at low temperature. The low-temperature Debye 
approximation Cph ≈ AT 3, multiplied by 10, is shown 
for comparison. The specific heats are normalized rel­
ative to the gas constant R and are expressed in terms 
of gram atoms. The heavy fermions are off scale on the 
upper left. 

In the Debye approximation the phonon con­
tribution to the specific heat per gram atom 
is given by Eq. (1.62a), 

( ) ( )312�4 T 
Cph = AT 3 = 

5 
R

�D ( )3
T = 234R � (4.3)
�D 

where R = kBNA is the gas constant and TF 

the Fermi temperature. For a typical high-
temperature superconductor we see from 
Table 4.1 that � ≈ 10 mJ/mole Cu K2, and 
Eq. (4.2) gives TF ≈ 4�0 × 103 K. This is 
much smaller than typical good conductor 
values, such as 8�2×104 K for Cu, as listed in 
Table 1.1. This discrepancy can be accounted 

for in terms of effective masses, as will be 
explained subsequently. 

The vibrational and electronic contribu­
tions to the specific heat at T = Tc may 
be compared with the aid of Eqs. (4.2) 
and (4.3), 

Cph = ATc
2 

(4.4)
Ce �� 

= 47
�

�5 · 
�

TF

D
3 Tc

2� (4.5) 

where the factor �, which is the ratio 
of the number of conduction electrons to 
the number of atoms in the compound, is 
needed when Ce is expressed in terms of 
moles of conduction electrons and Cph in 
terms of moles of atoms. When both spe­
cific heats are in the same units, � is set 
equal to 1. Typical values of the Fermi and 
Debye temperatures are 105 K and 350 K, 
respectively. 

For most low-temperature superconduc­
tors the transition temperature Tc is suffi­
ciently below �D so that the electronic term 
in the specific heat is appreciable in magni­
tude, and sometimes dominates. This is not 
the case for high-temperature superconduc­
tors, however. Using measured values of � 
and A we have shown in our earlier work 
(Poole et al., 1988), that ATc

2 � � for 

�La0�9Sr0�1�2CuO4−� and YBa2Cu3O7−�� 

so for oxide superconductors the vibrational 
term dominates at T , in agreement with the c

data plotted in Figs. 4.1 and 4.3. 
If the conduction electrons have effec­

tive masses m ∗ that differ from the free-
electron mass m, the conduction-electron 
specific heat coefficient � is given by 
Eq. (1.54), 

( ∗ ) 
m 

� = �0� (4.6) 
m 
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Table 4.1 Debye temperature � D, Density of States D�EF �, and Specific Heat Dataa 

� n 

T c � D 

( 
mJ

) 
A D�E F � 

Material �K� �K� mole K2 �C s −C n �/�T c �mJ/mole K4 � �states/eV� Reference 

Cd 0�55 252 0�67 1�36 
Al 1�2 423 1�36 1�45 
Sn, white 3�72 196 1�78 1�60 
Pb 7�19 102 3�14 2�71 1�55 
Nb 9�26 277 7�66 1�93 2�0 
Zr0�7Ni0�3 2�3 203 4�04 ≈1�65 0�23 Sürgers el al. (1989) 
V3Ge�A15� 11�2 7 Vonsovsky et al. (1982, pp. 269ff.)
V3Si�A15� 17�1 17 Vonsovsky et al. (1982, pp. 269ff.)
Nb3Sn�A15� 18�0 13 Vonsovsky et al. (1982, pp. 269ff.)
HfV2 (laves) 9�2 187 21�7 2�30 Vonsovsky et al. (1982, p. 379)
�Hf0�5Zr0�5 �V2 

(laves) 10�1 197 28�3 2�97 Vonsovsky et al. (1982, p. 379)
ZrV2 (laves) 8�5 219 16�5 1�86 Vonsovsky et al. (1982, p. 379)
PbMo6S8 (chevrel) 12�6 79 Vonsovsky et al. (1982, p. 420)
PbMo6Se8 (chevrel) 3�8 28 Vonsovsky et al. (1982, p. 420)
SnMo6S8 (chevrel) 11�8 105 Vonsovsky et al. (1982, p. 420)
YMo6S7 (chevrel) 6�3 34 Vonsovsky et al. (1982, p. 420)
UPt3 (heavy fermion) 0�46 460 ≈ 0�9 1525 Ellman et al. (1990); Fisher et al. 

(1989); Schuberth et al. (1992) 
UCd11 (heavy fermion) 5 200 290 115 deAndrade et al. (1991) 
URu2Si2 (heavy fermion) 1�1  31  0�42 Ramirez et al. (1991) 
CeRu2Si2 (heavy fermion) ≈ 0�8 340 3�5 van de Meulen et al. (1991) 
�TMTSF� 2ClO4 

(organic) 1�2 213 10�5 1�67 11�4 Garohce et al. (1982) 
K-�ET� 2 Cu�NCS� 2 

(organic) 9�3 34 Graebner et al. (1990) 
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K3C60 (buckyball) 19 70 9�3 Ramir et al. (1992b); 
Novikov et al. (1992) 

Rb3C60 (buckyball) 30�5 10�9 Novikov et al. (1992) 
Cs3C60 (buckyball) 47�4 12�7 Novikov et al. (1992) 
BaPb1−x Bix O3

(perovskite) 10 0�6 8 0�24 Junod (1990)
�La0�925Sr0�075� 2CuO4 37 360 4�5 2�0 1�9 Junod (1990);

Sun et al. (1991) 
�La0�925Ba0�075� 2CuO4 27 370 1�1 Junod (1990)
YBa2Cu3O7

(orthorhombic) 92 410 4−10 3�6 0�035 2�0 Collocott et al. (1990a);
Junod (1990);
Stupp et al. (1991) 

YBa2Cu4O8�5 80 350 4�9 2�1 2�1 Junod (1990); Junod
et al. (1991) 

Bi2Sr2CaCu2O8 95 250 ≈8 Junod (1990); Fisher
and Huse (1988);
Urbach et al. (1989) 

Bi2Sr2Ca2Cu3O10 110 260 Junod (1990)
Tl2Ba2CaCu2O8 110 260 >2�8 Junod (1990)
Tl2Ba2Ca2Cu3O10 125 280 2�0 Junod (1990);

Urbach et al. (1989) 
HgBa2Ca2Cu3O8 133 Schilling et al. (1994a, b) 

a Some of the high-temperature superconductor values are averages from Junod (1990), in many cases with a wide scatter of the data. The density of states is expressed per
atom for the elements and per copper atom for the high-temperature superconductors. For the latter � n is the electronic specific heat factor determined from normal state
measurements, and � n

∗ is the value obtained from the limit T → 0, as explained by Junod. The BCS theory predicts �Cs −C n �/�n T c = 1�43. 
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88 4 THERMODYNAMIC PROPERTIES 

Figure 4.3 Discontinuity in the specific heat of �La0�9Sr0�1�2CuO4 

near 40 K. The inset shows the magnitude of the jump. The AT 3 behavior 
indicated by the dashed curve shows that the transition occurs beyond 
the region where the T 3 approximation is valid (Nieva et al., 1987). 

where �0 is the ordinary electron counterpart 
of � from Eq. (1.51). In the free-electron 
approximation we have from Eq. (4.2) 

1 �2R 
�0 = 2 � (4.7)

TF 

which gives for the effective mass ratio 
∗ m �TF = 1 � (4.8) 

m �2R2 

Table 1.1 lists effective mass ratios for the 
elemental superconductors calculated from 
this expression. The unusually low estimate 
of TF given following Eq. (4.3) for a high-
temperature superconductor can be explained 
in terms of a large effective mass. We see 
from Table 9.1 and Fig. 4.2 that large effec­
tive masses make the electronic term � very 
large for the heavy fermions. The plot of Tc 

versus � in Fig. 4.4 shows that the points for 

Figure 4.4 Comparison of the electronic specific-heat factor � 
for a selection of superconductors and superconducting types over 
a wide range of Tc values. The dashed lines delimit the region of 
phonon-mediated superconductivity (Crow and Ong, 1990, p. 239). 
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BCS phonon-mediated superconductors clus­
ter in a region delimited by the dashed lines. 
The heavy fermions lie far to the right, as 
expected, while the oxide and cuprate com­
pounds lie somewhat above those in the main 
group. A diagram similar to Fig. 4.4 may be 
found in Batlogg et al. (1987). 

We have seen that the specific heat is 
a measure of how effectively the introduc­
tion of heat into a material, and it raises its 
temperature. A related quantity is the ther­
mal conductivity which is a measure of how 
easily heat flows through a material from a 
region at a high temperature to a region at 
a low temperature. Thermal conduction and 
the flow of heat through materials will be 
discussed in Sect. VII of Chap. 16. 

III. DISCONTINUITY AT TC 

The transition from the normal to the 
superconducting state in the absence of 
an applied magnetic field is a second-
order phase transition, as we will show in 
Section XIV. This means that there is no 
latent heat, but nevertheless a discontinuity 
in the specific heat. The BCS theory, which 
will be explained in Chapter 7, predicts that 
the electronic specific heat jumps abruptly 
at Tc from the normal state value �Tc to 
the superconducting state value Cs with 
ratio 

Cs −�Tc = 1�43� (4.9)
�Tc 

Figure 4.5, as well as Fig. IX-12 of our ear­
lier work (Poole et al., 1988) show details 
of this jump for an element and for a high-
temperature superconductor, respectively. 
For the latter case the magnitude of the jump 
is small compared to the magnitude of the 
total specific heat because it is superim­
posed on the much larger AT 3 vibrational 
term, as indicated in Fig. 4.3. This is seen 

Figure 4.5 Specific heat jump in superconducting Al 
compared with the normal-state specific heat (Phillips, 
1959; see Crow and Ong, 1990, p. 225). 

if Eq. (4.9) is used to express Eq. (4.5) in 
the form 

ATc
3 

= 67�9 · TF Tc
2� (4.10) 

Ce −�Tc � �D
3 

Figure 4.6 illustrates how the small change 
at Tc is resolved by superimposing curves of 
C/T versus T 2 obtained in zero field and in 
a magnetic field large enough �Bapp > Bc2� 
to destroy the superconductivity. It is clear 
from the figure that the data in the supercon­
ducting state extrapolate to zero, and that the 
normal state data extrapolate to � at 0 K. 

Many researchers have observed the 
jump in the specific heat at Tc (cf. Table 4.1 
for results from a number of studies). 
Table 4.1 also lists experimental values of 
Tc, �D, and �, together with the ratios 
�Cs −Cn�/Tc and �Cs −Cn�/�Tc, for sev­
eral elements and a number of copper oxide 
superconductors. Some of the elements are 
close to the BCS value of 1.43, but the 
strongly coupled ones, Pb and Nb, which 
have large electron–phonon coupling con­
stants �, are higher. Several experimental 
results for YBaCuO are close to 1.43, as 
indicated in the table. Some researchers have 
failed to observe a specific heat discontinu­
ity, however. 
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90 4 THERMODYNAMIC PROPERTIES 

Figure 4.6 Plot of Cexp/T versus T 2 for monocrystals of the organic 
superconductor K–�ET�2Cu�NCS�2 in the superconducting state with no 
applied magnetic field, and also in the presence of applied fields that 
destroy the superconductivity. The superconducting state data extrapo­
late to a value � = 0, while the normal-state extrapolation indicates � ≈ 
25 mJ/mole K2 (Andraka et al., 1989). 

IV. SPECIFIC HEAT BELOW TC 

For T � Tc BCS theory predicts that the 
electronic contribution to the specific heat Ce 

will depend exponentially on temperature, 

Cs ≈ a exp − � (4.11)

kBT


where 2� is the energy gap in the super­
conducting density of states. We see from 
Fig. 4.5 that the fit of this equation to the 
data for aluminum is good, with the spe­
cific heat falling rapidly to zero far below Tc, 
as predicted. The vibrational term AT 3 also 
becomes negligible as 0 K is approached, 
and other mechanisms become important, 
for example, antiferromagnetic ordering and 
nuclear hyperfine effects, two mechanisms 
that are utilized in cryogenic experiments to 
obtain temperatures down to the microdegree 
region. 

V. DENSITY OF STATES AND 
DEBYE TEMPERATURE 

The density of states at the Fermi level 
D�EF� can be estimated from Eq. (1.52): 

3 � 1 
D�EF�= · · � (4.12)

�2 R kB 

For a typical high-temperature superconduc­
tor with � ≈ 0�01 J/mole Cu K we obtain 

4�5 states 
D�EF � ≈ � (4.13)

eV Cu atom 

The Debye temperature may be esti­
mated from the slope of the normal state 
Cn/T -versus-T 2 curve sketched in Fig. 1.13, 
since with the aid of Eq. (1.62a) we can write 

12�4R 
�3 = � (4.14)D �5�slope�� 

Typical values for �D are from 200 to 350 K. 
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We have been using formulae that 
involve the free-electron approximation. To 
estimate the validity of this approximation 
we can make use of Eq. (1.88), which gives 
the ratio of � to the magnetic susceptibility 
� arising from the conduction electrons, 

� 1 
( 
�kB 

)2 

= � (4.15)
� 3 �B 

in terms of well-known physical constants. 

VI. THERMODYNAMIC VARIABLES 

We have been discussing the specific 
heat of a superconductor in its normal and 
superconducting states in the absence of an 
applied magnetic field. When a magnetic 
field is present the situation is more com­
plicated, and we must be more careful in 
describing the specific heat as the result of 
a thermodynamic process. In this section we 
will develop some of the necessary back­
ground material required for such a descrip­
tion, and in the following sections we will 
apply the description to several cases. 

Later on, in Chapter 5, Section X, we 
will learn why the magnetic energy of a 
superconducting sample in a magnetic field 
depends on its shape and orientation. In the 
present chapter we will not be concerned 
with these demagnetization effects and will 
instead assume that the sample is in the shape 
of a cylinder and that the internal magnetiza­
tion M is directed along the axis of the cylin­
der, as illustrated in Fig. 2.26. If an external 
field Bapp is applied, it will also be directed 
along this axis. This means that the applied 
B field is related to the internal H field by 
means of the expression 

Bapp = �0Hin� (4.16) 

This geometry simplifies the mathematical 
expressions for the free energy, enthalpy, and 
other properties of a superconductor in the 

presence of a magnetic field. In the next 
few sections we will simplify the notation by 
using the symbol B instead of Bapp for the 
applied magnetic field, but throughout the 
remainder of the text the symbol Bapp will 
be used. 

In treating the superconducting state 
it is convenient to make use of the free 
energy because (1) the superconductivity 
state is always the state of lowest free 
energy at a particular temperature, and (2) 
the free energies of the normal and super­
conducting states are equal at the transi­
tion temperature. We will use the Gibbs free 
energy G�T�P�B�=G�T�B� rather than the 
Helmholtz free energy 

F�T�V�M�= F�T�M�� 

where the variables P and V are omit­
ted because pressure–volume effects are 
negligible for superconductors. The Gibbs 
free energy G�T�B� is selected because the 
experimenter has control over the applied 
magnetic field B, whereas the magnetization 
M�T�B� is produced by the presence of the 
field. The remaining thermodynamic func­
tions will be expressed in terms of the two 
independent variables T and B. 

In the treatment that follows we will be 
dealing with thermodynamic quantities on a 
per-unit-volume basis, so that G will denote 
the Gibbs free energy density and S the 
entropy density. For simplicity, we will gen­
erally omit the term density by, for example, 
calling G the Gibbs free energy. 

The first law of thermodynamics for a 
reversible process expresses the conservation 
of energy. For a magnetic material the dif­
ferential of the internal energy dU may be 
written in terms of the temperature T , the 
entropy S, the applied magnetic field B, and 
the magnetization M of the material as 

dU = TdS+B ·dM� (4.17) 

where the usual –PdV term for the mechan­
ical work is negligible and hence omitted, 
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while the +B · dM term for the magnetic 
work is included. (Work is done when an 
applied pressure P decreases the volume of 
a sample or an applied magnetic field B 
increases its magnetization.) So these two 
work terms are opposite in sign. The work 
term �0H ·dM that appears in Eq. (4.17) is 
positive. This equation does not include the 
term d�B2/2�0� = �−

0
1B · dB for the work 

involved in building up the energy density 
of the applied field itself since we are only 
interested in the work associated with the 
superconductor. 

We will be concerned with a constant 
applied field rather than a constant magne­
tization, so it is convenient to work with 
the enthalpy H � rather than the internal 
energy U , 

H � = U −B ·M� (4.18) 

with differential form 

dH � = TdS−M ·dB� (4.19) 

The second law of thermodynamics permits 
us to replace TdS by CdT for a reversible 
process, where C is specific heat, 

CdT = TdS� (4.20) 

which gives for the differential enthalpy 

dH � = CdT −M ·dB� (4.21) 

Finally we will be making use of the Gibbs 
free energy 

G =H � −TS� (4.22) 

and its differential form 

dG =−SdT −M ·dB� (4.23) 

Note the prime in the symbol H � for enthalpy 
to distinguish it from the symbol H for the 
magnetic field. For the balance of the chapter 
we will also be assuming that the vectors B, 

4 THERMODYNAMIC PROPERTIES 

H, and M are parallel and write, for example, 
MdB instead of M ·dB. 

The fundamental thermodynamic 
expressions (4.17)–(4.23) provide a starting 
point for discussing the thermodynamics of 
the superconducting state. Two procedures 
will be followed in applying these expres­
sions to superconductors. For the normal 
state we will assume a known specific 
heat (4.1) and then determine the enthalpy 
by integrating Eq. (4.21), determine the 
entropy by integrating Eq. (4.20), and 
finally find the Gibbs free energy from 
Eq. (4.22). For the superconducting case 
we will assume a known magnetization and 
critical field, and determine the Gibbs free 
energy by integrating Eq. (4.23), the entropy 
by differentiating Eq. (4.23), the enthalpy 
from Eq. (4.22), and finally the specific 
heat by differentiating Eq. (4.21). The first 
procedure, called the specific heat-to-free 
energy procedure, goes in the direction 
C → H� → S → G and the second, called the 
free energy-to-specific heat procedure, goes 
in the opposite direction G → S → H� → C. 
The former procedure will be presented 
in the following section and the latter in 
the succeeding three sections. We will 
assume specific expressions for C and 
M, respectively, to obtain closed-form 
expressions for the temperature dependences 
of the difference thermodynamic variables. 
This will give us considerable physical 
insight into the thermodynamics of the 
superconducting state. These assumptions 
also happen to approximate the behavior of 
many real superconductors. 

VII. THERMODYNAMICS OF 
A NORMAL CONDUCTOR 

In this section we will use the specific 
heat-to-free energy procedure. We deduce in 
succession the enthalpy, entropy, and Gibbs 
free energy of a normal conductor by assum­
ing that its low-temperature specific heat Cn 
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is given by Eq. (4.1) with the Schottky term 
omitted: 

Cn = �T +AT 3� (4.24) 

The enthalpy at zero magnetic field is 
obtained by setting MdB = 0, 

= �−1MdB 0 �nBdB ≈ 0� (4.25) 

where �n = �0M/B. Integrating Eq. (4.21), 
we find that 

∫ ∫ T 
dHn 

� = ��T +AT 3�dT� (4.26) 
0 

Hn
� �T� = 1

2 �T
2 + 1

4 AT
4� (4.27) 

where it is assumed that � and A are inde­
pendent of temperature, and that Hn

� �0� = 0. 

A similar calculation for the entropy involves 
integrating Eq. (4.20), 

∫ ∫ T 
dSn = ��T +AT 3�

dT
� (4.28) 

0 T 

Sn�T� = �T + 3
1 AT 3� (4.29) 

where Sn�0� = 0. The normal-state Gibbs 
free energy at zero field may be determined 
either from Eq. (4.22) or by integrating 
Eq. (4.23) with MdB set equal to zero. It has 
the following temperature dependence: 

Gn�T�=− 1
2 �T

2 − 12
1 AT 4� (4.30) 

The normal-state specific heat, entropy, 
enthalpy, and Gibbs free energy from 
Eqs. (4.24), (4.29), (4.27), and (4.30) are 
plotted in Figs. 4.7, 4.8, 4.9, and 4.10, respec­
tively, for the very-low-temperature region. 

Figure 4.7 Temperature dependence of the normal-state Cn (- - -) and superconducting-state 
Cs (—) specific heats. The figure shows the specific heat jump 1�43�Tc of Eq. (4.9) that is √ 
predicted by the BCS theory, the crossover point at T = Tc / 3, and the maximum negative 
jump 0�44��Tc at T = Tc/3. In this and the following 12 figures it is assumed that only the 
linear electronic term �T exists in the normal state (i.e, AT 3 = 0). 
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94 4 THERMODYNAMIC PROPERTIES 

Figure 4.8 Temperature dependence of the normal-state Sn (---) and 
superconducting-state Ss (—) entropies. The transition is second order so there 
is no discontinuity in entropy at Tc. 

Figure 4.9 Temperature dependence of the normal state Hn (---) and super­
conducting state Hs (—) enthalpies. The transition is second order so there is no 
discontinuity in enthalpy, and hence no latent heat at Tc. 

Here the AT 3 term is negligible, and only 
the �T term is appreciable in magnitude. 

In this section we have derived sev­
eral thermodynamic expressions for a normal 
conductor in the absence of a magnetic field. 
The permeability � of such a conductor is so 
close to that of free space �0 (cf. Chapter 1, 
Section XV, and Table 1.2), that the mag­
netic susceptibility �n is negligibly small and 

M ≈ 0. Therefore, the thermodynamic quan­
tities (4.24), (4.27), (4.29), and (4.30) are not 
appreciably influenced by a magnetic field, 
and we will assume that they are valid even 
when there is a magnetic field present. For 
example, we assume that 

Gn�T�B�≈Gn�T�0� (4.31) 
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95 VIII THERMODYNAMICS OF A SUPERCONDUCTOR 

Figure 4.10 Temperature dependence of the normal-state Gn (---) and 
superconducting-state Gs (—) Gibbs free energies. Since the transition is second 
order, both G and its first derivative are continuous at Tc. 

and it is convenient to simplify the notation 
by writing 

Gn�T�B�≈Gn�T�� (4.32) 

Thus all of the equations derived in this 
section are applicable when a magnetic field 
is also present. 

VIII. THERMODYNAMICS OF 
A SUPERCONDUCTOR 

If we had a well-established expression 
for the specific heat Cs of a superconduc­
tor below Tc it would be easy to follow 
the same C → H� → S → G procedure to 
obtain the quantities Hs 

�� Ss, and Gs, as in  
the case of a normal conductor. Unfortu­
nately, there is no such expression, although 
many experimental data far below Tc have 
been found to follow the BCS expression 
(4.11). Equation (4.11) does not cover the 
entire temperature range of the superconduct­
ing region, however, and, in addition it does 

not integrate in closed form. Another compli­
cation is that the thermodynamic properties 
of the superconducting state are intimately 
related to its magnetic properties, as we will 
demonstrate below, and the specific heat 
relation (4.11) does not take magnetism into 
account. 

Because of the close relationship 
between superconductivity and magnetism 
we will adopt the free energy-to-specific heat 
procedure and examine the Gibbs free energy 
of a superconductor in the presence of an 
applied magnetic field B. We will not resort 
to any model for the temperature dependence 
of the specific heat or that of the critical 
field, so the results that will be obtained will 
be general. Then in the following two sec­
tions we will return to the specific model 
based on Eq. (4.24) to obtain more practical 
results. 

We begin by seeking an expression 
for the free-energy difference Gs�T�B�− 
Gn�T�B� between the superconducting and 
normal states to allow us to deduce Ss and 
H � by differentiation. To accomplish this we s 
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write down the differential of the Gibbs free 
energy from Eq. (4.23) assuming isothermal 
conditions �dT = 0�, 

dG=−MdB� (4.33) 

and examine its magnetic field dependence 
in the superconducting and normal states. 

We treat the case of a Type I supercon­
ductor that has the magnetization given by 
Eq. (2.22), M =−H =−B/�0, and assume 
that surface effects involving the penetra­
tion depth are negligible. Demagnetization 
effects are also inconsequential, as explained 
in Section VI, so Eq. (4.33) becomes 

dGs = �−
0

1BdB� (4.34) 

If this expression is integrated from B= 0 to  
a field B we obtain 

�−1Gs�T�B�=Gs�T�0�+ 1
2 0 B

2� (4.35) 

where, of course, the magnetic energy den­
sity B2/2�0 is independent of temperature. 
When the applied field B equals the criti­
cal field Bc�T� for a particular temperature 
T < Tc, the free energy becomes 

�−1Gs�T�Bc�T��=Gs�T�0�+ 1
2 0 Bc�T�

2 

T = Tc�B�� (4.36) 

and recalling that this is a phase transition 
for which Gs =Gn, we have 

Gn�T�=Gs�T�0�+ 1
2 �

−
0

1Bc�T�
2 

T = Tc�B�� (4.37) 

where 1
2 �

−
0

1Bc�T�
2 is the magnetic-energy 

density associated with the critical field, and, 
from Eq. (4.32), Gn�T� does not depend 
on the field. Subtracting Eq. (4.35) from 
Eq. (4.37) gives 

Gs�T�B� =Gn�T�− 1
2 �

−
0

1�Bc�T�
2 −B2�� 

(4.38) 

4 THERMODYNAMIC PROPERTIES 

where, of course, B < Bc�T�. In the absence 
of an applied field Eq. (4.38) becomes 

�−1Gs�T�0�=Gn�T�− 1
2 0 Bc�T�

2 �B = 0�� 
(4.39) 

so the Gibbs free energy in the super­
conducting state depends on the value of 
the critical field at that temperature. This 
confirms that there is indeed a close relation­
ship between superconductivity and mag­
netism. Figure 4.11 shows that the curves 
for Gs�T�0� and Gn�T� intersect at the tem­
perature Tc, while those for Gs�T�B� and 
Gn�T� intersect at the temperature Tc�B�. 

1 �−1B2The figure also shows that 2 0 c is the 
spacing between the curves of Gs�T�0� 
and Gn�T�, and that 2

1 �−
0

1B2 is the spac­
ing between the curves of Gs�T�B� and 
Gs�T�0�. The figure is drawn for a particu­
lar value of the applied field corresponding 
to Tc�B� = 1

2 Tc. 
Since we know that the Gibbs free 

energy of the superconducting state depends 
only on the applied magnetic field and the 
temperature, we can proceed to write down 
general expressions for the other thermody­
namic functions that can be obtained through 
differentiation of Gs�T� with respect to the 
temperature when the applied field B is kept 
constant. The value of B, of course, does not 
depend on T . 

For the entropy we have, using 
Eq. (4.23), 

d 
Ss −Sn =−  �Gs −Gn�� (4.40) 

dT 

and for the free energy, from Eq. (4.38), 

B �T� d 
Ss�T�= Sn�T�+ c Bc�T�� (4.41)

�0 dT 

The entropy Ss�T�B� does not depend explic­
itly on the applied field, so it is denoted 
Ss�T�. From this expression, together with 
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97 IX SUPERCONDUCTOR IN ZERO FIELD 

Figure 4.11 Effect of an applied magnetic field Bapp = 0�75Bc on the Gibbs free 
energy Gs�T�B� in the superconducting state. In this and the succeeding figures 
dashed curves are used to indicate both the normal-state extrapolation below Tc 

� 

and the zero-field superconducting state behavior, where Tc 
� denotes the transition 

temperature when there is a field present. 

Eqs. (4.22) and (4.39), we can write down 
the enthalpy at constant field, 

Hs 
��T�B� =Hn

� �T�− 12 �
−
0

1�Bc�T�
2 −B2� 

TBc�T� d + B �T�� (4.42)
�0 dT c

which shows that the enthalpy does depend 
on the magnetic energy B2/2�0. We see from 
Eq. (4.21) that the enthalpy can be differen­
tiated to provide the specific heat at constant 
field: 

d2 

C �T� = C �T�+�−1TB �T� B �T� s n 0 c dT 2 c

+ T 
�0 

∣ ∣ ∣ ∣ 
d 

dT 
Bc�T� 

∣ ∣ ∣ ∣ 
2 

� (4.43) 

The specific heat does not depend explic­
itly on the applied field, so we write Cs�T� 
instead of Cs�T�B�. We will see below that 
the terms in this expression that depend on 
Bc�T� become negative at the lowest tem­
peratures, making Cs�T� less than Cn�T�. 

At zero field �B = 0� the transition temper­
ature is Tc itself, and we know (e.g., from 
Eq. (4.45) in Section IX) that Bc�Tc�= 0, so 
that only the second term on the right exists 
under this condition: 

∣ ∣2
T ∣ d ∣ 

Cs�T�= Cn�T�+ Bc�T� �0 
∣ dT 

T = Tc� (4.44) 

This is known as Rutger’s formula. It pro­
vides the jump in the specific heat at Tc 

that is observed experimentally, as shown 
in Figs. 4.3, 4.5, and 4.6. We will show 
in Section XIII how this expression can be 
used to evaluate the electronic specific-heat 
factor �. 

IX. SUPERCONDUCTOR IN 
ZERO FIELD 

We will develop the thermodynamics of 
a Type I superconductor in the absence of 



Elsevier AMS Job code: SUP CH04-P088761 22-6-2007 9:29a.m. Page:98 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

[ ] 

( )[  ] 

[ ][  ] 

( ) 

( )[  ] 

[ ] 

98 

a magnetic field using the free energy-to­
specific heat procedure G → S → H� → C. 
We apply the general expression (4.39) to 
the particular case in which the free energy 
of the normal state is given by Eq. (4.30) 
and the critical magnetic field Bc�T� has a 
parabolic dependence on temperature, 

( )2
T 

Bc�T�= Bc�0� 1 − � (4.45)
Tc 

given by Eq. (2.56). Substituting these 
expressions in Eq. (4.39) gives 

G �T�0�=− 1 �T 2 − 1 AT 4 − 1 �−1B �0�2 
s 2 12 2 0 c

[ ]2( )2
T × 1 − � (4.46)
Tc 

which is plotted in Fig. 4.10 with A set equal 
to zero. 

The difference between the entropies 
in the normal and superconducting states is 
obtained by substituting the expressions from 
Eqs. (4.29) and (4.45) in Eq. (4.41) and car­
rying out the differentiation: 

Ss�T� = �T + 1
3 AT

3 −2�−
0

1Bc�0�
2 

T T 2 

× 1 − � (4.47)
T 2 T 2 

c c 

The last term on the right is zero for both 
T = 0 and T = Tc, so  Ss = Sn for both lim­
its. The former result is expected from the 
third law of thermodynamics. Differentiation 
shows that the last term on the right is a √ 
maximum when T = Tc/ 3, so that the dif­
ference Ss −Sn is a maximum for this tem­
perature. The entropy Ss with A= 0 is plotted 
in Fig. 4.8. 

The enthalpy Hs 
��T�0� of the super­

conducting state in zero field is obtained 
from Eq. (4.22), 

1 �−1Hs 
��T�0�= 2 �T

2 + 1
4 AT

4 − 1
2 0 Bc�0�

2 

T 2 T 2 

× 1 − 1 +3 � (4.48)
T 2 T 2 

c c 

4 THERMODYNAMIC PROPERTIES 

and the specific heat of the superconducting 
state from Eq. (4.20), 

dS
Cs = T s � (4.49)

dT H 

by differentiating Eq. (4.47) at constant field, 
to give 

Cs�T�= �T +AT 3 +2�0 
−1Bc�0�

2 

T T 2 

× 3 −1 � (4.50) 
T 2 T 2 

c c 

The last term on the right changes sign at √ 
T = Tc/ 3. Expressions (4.48) and (4.50) 
are plotted in Figs. 4.9 and 4.7, respectively, 
with the AT 3 term set equal to zero. 

The results given in this section are for 
a Type I superconductor in zero field with 
electronic specific heat given by Eq. (4.24) 
and a critical field with the temperature 
dependence of Eq. (4.45). Figures 4.7, 4.8, 
4.9, and 4.10 show plots of the tempera­
ture dependence of the thermodynamic func­
tions Cs, Ss, Hs

�, and Gs under the additional 
assumption A = 0. 

X. SUPERCONDUCTOR IN 
A MAGNETIC FIELD 

In the previous section we derived 
Eq. (4.38) for the Gibbs free energy Gs�T�B� 
of the superconducting state in the absence 
of an applied magnetic field B. With the aid 
of Eqs. (4.30), (4.38), and (4.45) this can be 
written in the following form for the case of 
an applied field: 

G �T�B� =− 1 �T 2 − 1 AT 4 − 1 �−1 
s 2 12 2 0 

( )2
T 2 

× Bc�0�
2 1 − −B2 � 

T 2 
c 

(4.51) 

Since the applied field B does not depend on 
the temperature, the entropy obtained from 
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Eq. (4.40) by differentiating the Gibbs free 
energy (4.51) assuming the presence of a 
field is the same as in the case where there 
is no magnetic field present, 

Ss�T�= �T + 13 AT
3 −2�−

0
1Bc�0�

2 

T T 2 

× 1 − � (4.52)
T 2 T 2 

c c 

The enthalpy obtained from Eq. (4.22) does 
depend explicitly on this field, 

H ��T�B� = 1 �T 2 + 1 AT 4 
s 2 4 

T 2 

− 1 �−1B �0�2 1 −2 0 c T 2 
c 

T 2 
1 �−1× 1 +4 

T 2 
+ 2 0 B

2� 
c 

(4.53) 

but the specific heat from Eq. (4.20) does 
not, 

Cs�T�= �T +AT 3 +2�−
0

1Bc�0�
2 

T T 2 

× 3 −1 � (4.54)
T 2 T 2 

c c 

where Eqs. (4.52) and (4.54) are the same 
as their zero-field counterparts (4.47) and 
(4.50), respectively. The field-dependent Gs 

and Hs 
� terms of Eqs. (4.51) and (4.53), on 

the other hand, differ from their zero-field 
counterparts (4.46) and (4.48) by the addition 
of the magnetic-energy density B2/2�0. 

In a magnetic field the sample goes nor­
mal at a lower temperature than in zero 
field. We denote this magnetic-field transi­
tion temperature by Tc�B� = Tc 

�, where, of 
course, Tc�0� = Tc and Tc 

� < Tc. This transi­
tion from the superconducting to the normal 
state occurs when the applied field H equals 
the critical field Bc�T� given by Eq. (4.45) 
at that temperature. Equation (4.45) may be 
rewritten in the form 

Tc 
� = Tc 

[ 

1 − B 
]1/2 

(4.55)
Bc�0� 

99 

to provide an explicit expression for the tran­
sition temperature Tc 

� in an applied field B. 
We show in Problem 7 that this same expres­
sion is obtained by equating the Gibbs free 
energies Gs�T�B� and Gn�T� for the super­
conducting and normal states at the transition 
point, 

Gs�T�B�=Gn�T� T = Tc 
�� (4.56) 

At the transition temperature Tc 
� = 

Tc�B� the superconducting and normal state 
entropies (4.52) and (4.29), respectively, dif­
fer. Their difference gives the latent heat L 
of the transition by means of the standard 
thermodynamic expression 

L = �Sn −Ss�Tc�B� (4.57) 
[ ]2 

2�−1B2 T �B�c= 0 c Tc 

[ ]2
T �B� × 1 −	 c � (4.58)
Tc 

We show in Problem 9 that this same result 
can be obtained from the enthalpy differ­
ence L=H � −H �. The latent heat is a maxi­n s

mum at the particular transition temperature √ 
Tc�B�= Tc/ 2, as may be shown by setting 
the derivative of Eq. (4.58) with respect to 
temperature equal to zero. We see from this 
equation that there is no latent heat when 
the transition occurs in zero field, i.e., when 
T = Tc, or at absolute zero, T = 0. In addi­
tion to the latent heat, there is also a jump 
in the specific heat at Tc�B� which will be 
discussed in the following section. 

Figures 4.12, 4.13, 4.14, and 4.15 show 
the temperature dependences of the thermo­
dynamic functions C, S, H �, and G, respec­
tively, for high applied fields in which Tc�B� 
is far below Tc. Figures 4.16, 4.17, 4.18, and 
4.19 show these same plots for low applied 
fields in which Tc�B� is slightly below Tc. All 
of these plots are for the case A= 0. We see 
from Figs. 4.12, 4.16, 4.13, and 4.17, respec­
tively, that the specific heat Cs and entropy Ss 
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100 4 THERMODYNAMIC PROPERTIES 

Figure 4.12 Temoerature dependence of the specific heat in the normal and 
superconducting states in the presence of a strong applied magnetic field. The 
downward jump in specific heat �C at T is indicated. c 

Figure 4.13 Temperature dependence of the entropy in the normal and super­
conducting states in the presence of a strong applied magnetic field. The latent 
heat factor L/Tc of the jump in entropy at T is indicated. c 

curves (assuming the presence of a magnetic 
field) coincide with their zero-field counter­
parts below Tc�B� and with their normal-state 
counterparts above Tc�B�. In contrast, from 
Figs. 4.14, 4.18, 4.15, and 4.19 it is clear that 

normal-state and zero-field superconducting 
state counterparts below the transition point 
Tc�B�, and coincide with the normal-state 
curves above the transition. These plots also 
show the jumps associated with the specific 

the enthalpy Hs and Gibbs free energy Gs heat and the latent heat as well as the continu­
curves in a magnetic field lie between their ity of the Gibbs free energy at the transition. 



Elsevier AMS Job code: SUP CH04-P088761 22-6-2007 9:29a.m. Page:101 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

101 X SUPERCONDUCTOR IN A MAGNETIC FIELD 

Figure 4.14 Temperature dependence of the enthalpy in the normal and super­
conducting states in the presence of a strong applied magnetic field. The jump in 
entropy at the transition temperature Tc 

� is equal to the latent heat L, as indicated. 

Figure 4.15 Temperature dependence of Gibbs free energy in the normal and 
superconducting states in the presence of a strong applied magnetic field. The 
transition is first order so that there is no discontinuity in free energy at the transition 
temperature Tc 

�, but there is a discontinuity in the derivative. The normal �Gn � and 
superconducting �Gs� branches of the upper curve are indicated. The lower dashed 
(- - -) curve shows the Gibbs free energy in the superconducting state at zero field 
�Bapp = 0� for comparison. 

Figure 4.20 shows the experimentally integrating Eq. (4.33) using measured mag-
determined Gibbs free-energy surface of netization data for M�T�B�: 
YBa2Cu3O7 obtained by plotting G�T�B�− 
G�T�0� versus temperature and the applied G�T�0�−G�T�B�=MdB�� (4.59) 
field close to the superconducting transi­
tion temperature (Athreya et al., 1988). This procedure is possible because close 
The free-energy differences are obtained by to the transition temperature magnetic flux 
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Figure 4.16 Temperature dependence of specific heat in the normal and super­
conducting states in the presence of a weak applied magnetic field. The jump in 
specific heat �C at Tc 

� is upward, in contrast to the downward jump shown in 
Fig. 4.12 for the high-field case. 

Figure 4.17 Temperature dependence of entropy in the normal and supercon­
ducting states in the presence of a weak applied magnetic field showing the jump 
in entropy L/Tc 

� at Tc
�, as expected for a first-order transition. 

moves easily and reversibly into and out free-energy surface varies with the magnetic 
of the material, which makes the magneti- field all the way up to 92 K. Fang et al. 
zation a thermodynamic variable. Magneti- (1989) determined free-energy surfaces for 
zation is linear in �Tc − T�2 near Tc. The thallium-based superconductors. 
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Figure 4.18 Temperature dependence of enthalpy in the normal and super­
conducting states in the presence of a weak applied magnetic field, showing the 
presence of a latent heat jump L at the transition temperature Tc 

�, indicating a 
first-order transition. 

Figure 4.19 Temperature dependence of Gibbs free energy in the normal and 
superconducting states in the presence of a weak applied magnetic field using the 
notation of Fig. 4.15. The transition is first order so that the change in G at Tc 

� is 
continuous, but the change in its derivative is discontinuous (cf. Athreya et al., 1988). 

XI. NORMALIZED 
THERMODYNAMIC EQUATIONS T B 

t = b = (4.60) 
The equations for Gs�T�B�, Ss�T�, and Tc Bc 

Cs�T� given in the previous section, together and two dimensionless parameters, 
with Hs 

��T�B� of Problem 9, can be written 
in normalized form by defining two dimen- ATc

2 Bc
2 

sionless independent variables, 
a = 

�
�= 

�0�T
2 
� (4.61) 

c 
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in the table are the normalized specific heat 
jump �C/�Tc and the normalized latent heat 
L/�Tc

2. These expressions are valid under 
the condition 

t2 +b < 1� (4.62) 

The sample becomes normal when either t 
or b are increased to the point where t2 + 
b = 1, and the value of t that satisfies this 
expression is called t�: 

t�2 +b = 1� (4.63) 

This is thenormalizedequivalentofEq. (4.55), 
where t� = Tc 

�/Tc is the normalized transition 
temperature in a magnetic field. 

The normalized specific heat jump has 
the following special values: 

�C = 2�t��3t�2 −1� 
�Tc 

Table 4.2 Normalized Equations for the Thermodynamic Functions

of a Superconductor in an Applied Magnetic Field Ba


Figure 4.20 Free-energy surface for YBa2Cu3 O7 

close to the transition temperature (Athreya et al., 1988). 

The resulting normalized expressions for gs, 
ss, and h� 

s are given in Table 4.2. Also given 

Gs 2 − 1 4 − 1Gibbs Free Energy gs = =− 1
2 t 12 at 2 ���1 − t2�2 −b2 � 

�T 2 
c 

Entropy ss = Ss = t+ 3
1 at3 −2�t�1 − t2� 

�Tc 

Specific Heat cs = Cs = t+at3 +2�t�3t2 −1� 
�Tc 

H � 
Enthalpy h� 

s = s = 2
1 t2 + 4

1 at4 − 1 ���1 − t2 ��1 +3t3 −b2�� 
�T 2 2 

c 

�C 
Specific Heat Jump = 2�t��3t�2 −1� 

�Tc 

L 
Latent Heat = 2�t�2�1 − t�2� 

�T 2 
c 

Definitions of normalized variables �t� b� and parameters: 

T B AT 2 

t = b = a = c 

Tc Bc �0� � 

T � Bc�T
�� �Bc�0��

2 

t� = b� = �= 
Tc Bc�0� �0 �Tc

2 

a The first four expressions are valid under the condition t2 +b <  1 of Eq. (4.62), and the last two 
are valid at the transition point given by t�2 +b = 1 from Eq. (4.63). 



Elsevier AMS Job code: SUP CH04-P088761 22-6-2007 9:29a.m. Page:105 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

� 

�� 

105 XII SPECIFIC HEAT IN A MAGNETIC FIELD 

⎧ 
⎪ 0 t� = 0 ⎪ ⎪ ⎪ 4�⎨− t� = 1 = 9 3 �max�� (4.64) ⎪ 1⎪0 t� = √ ⎪ 3⎪ ⎩ �4� t = 1 

where 4�/9 is its maximum magnitude of 
�C/�Tc √for reduced temperatures in the range 
0 < t� < 1/ 3, as indicated in Fig. 4.12. The 
normalized latent heat has the special values 

L = 2�t�2�1 − t�2� 
�T 2 

c ⎧ 
⎪ 0 t� = 0 ⎨ 

= 1 � t� = √1 �max�� (4.65)2 2 ⎪ ⎩0 t� = 1 

√ 
where its maximum 2

1 � is at t� = 1/ 2. 

XII. SPECIFIC HEAT IN A 
MAGNETIC FIELD 

A number of authors have measured 
or calculated the specific heat of high-
temperature superconductors in a magnetic 
field (Hikami and Fujita, 1990a,b; Riecke 
et al., 1989; Quade and Abrahams, 1988; 
Watson et al., 1989). Reeves et al., (1989) 
found that the quantity C/ T of YBa2Cu3O7−� 

in an applied magnetic field is linear in T 2 in 
the range 4 K < T <  6 K in accordance with 
the expression 

C = ��+���B��T + �A−A��B��T 3� (4.66) 

which is compared in Fig. 4.21 with exper­
imental data for applied fields up to 3 T. 
It was also found that � = 4�38 mJ/mole K2 

and A = 0�478 mJ/mole K4, with the coef­
ficients ���B� and A��B� increasing as the 
applied magnetic field was increased. 

At the highest measured field of 3 T, it 
turned out that 

= 0�54� 

(4.67)
A = 0�11� 
A� 

Figure 4.21 Low-temperature specific heat of 
YBa2Cu3O7−� in a magnetic field. The straight lines are 
fits of Eq. (4.66) to the data for each field value (Reeves 
et al., 1989). 

Reeves et al., also mention that other workers 
have obtained results that differ from those 
described by Eq. (4.66). 

Bonjour et al. (1991), Inderhees et al. 
(1991), and Ota et al. (1991) mea­
sured the magnetic-field dependence of the 
anisotropies in the specific heat near Tc. 
The results obtained by Inderhees et al. 
for untwinned YBa2Cu3O7−�, which are pre­
sented in Fig. 4.22, turned out to be similar 
to those obtained by the other two groups. 
We see that increasing the magnetic field 
shifts the specific-heat jump to lower tem­
peratures and broadens it, especially for an 
applied field parallel to the c-axis. Ebner and 
Stroud (1989) obtained a good approxima­
tion to the specific heat curves of Fig. 4.22 
with B � c by including fluctuations in the 
Ginzburg–Landau free energy (cf. Chapter 6, 
Section III) and carrying out Monte–Carlo 
simulations. Figure 4.23 shows how the dif­
ference between the specific heat measured 
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106 4 THERMODYNAMIC PROPERTIES 

Figure 4.22 Specific heat jump of untwinned YBa2Cu3O7−� 

near Tc for different applied magnetic fields aligned parallel (top) 
and perpendicular (bottom) to the c-axis (Inderhees et al., 1991). 

at zero field C0 and that measured in the field 
CH depends on the value of the applied field 
at a temperature of 88 K, which is close to 
Tc. The difference is about five times larger 
in the parallel field orientation than in the 
perpendicular field orientation. 

Bonjour et al. (1991) used their own 
specific heat data to determine the depen­
dence of the entropy difference S0 − SH on 
the applied field, where S0�T� is the entropy 
in the absence of the field and SH�T�B� the 
entropy assuming the presence of a field; 
their results are given in Fig. 4.24. They 
were aided by recent magnetic data of Welp 
et al. (1989; cf. Hake, 1968) in deducing the 
experimental entropy. Bonjour et al. com­
pared their measured entropies with the fol­
lowing generalization of Eq. (4.41) to the 
mixed state of a Type II superconductor: 

SH�T�B�= Sn�T�+� ��T�


Bc2�T�−B d
× · Bc2�T�� �0 dT 
(4.68) 

where � � = �0dM/dB is called the ‘differ­
ential susceptibility.’ This gives 

S0�Ti�−SH�Ti�B�= � ��Ti�


B d
× · Bc2�Ti�� �0 dT 
(4.69) 

where Ti = 80 K is the temperature at 
which all the specific heat curves are still 
superimposed. The values for B= 5 T calcu­
lated from Eq. (4.68) using the data of Welp 
et al. are reasonably close to the measured 
values, as indicated in the figure. 
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XIII FURTHER DISCUSSION OF THE SPECIFIC HEAT 

Figure 4.23 Magnetic field dependence of the spe­
cific heat difference for parallel and perpendicular fields 
(Athreya et al., 1988). 

Figure 4.24 Magnetic field dependence of the 
entropy difference of parallel and perpendicular fields 
showing measured (�) and calculated (•) values for 
YBa2Cu3 O7 (Bonjour et al., 1991). 

107 

XIII. FURTHER DISCUSSION OF THE 
SPECIFIC HEAT 

Earlier in the chapter we mentioned the 
jump in the specific heat in zero field (4.44), 
in a magnetic field (4.43), and as predicted by 
the BCS theory (4.9). We also gave expres­
sions for the temperature dependence of the 
specific heat in the superconducting state, 
one of which (Eq. (4.11)) appeared to be 
incompatible with the other two expressions 
(Eqs. (4.50) and (4.54)). In this section we 
compare these results and use them to evalu­
ate the electronic specific-heat coefficient � 
for zero field, after which we will write down 
an expression for the jump in the specific 
heat in a magnetic field. 

At the transition temperature T = Tc in 
zero field, Eq. (4.50), with A = 0, simpli­
fies to 

4�B �0��2 

Cs�Tc�−Cn�Tc�= c � (4.70) 
�0Tc 

where Cn�Tc� = �Tc. If the BCS prediction 
(4.9) is substituted in Eq. (4.70), we obtain 
for the normalized specific heat factor � of 
Eq. (4.61) 

�= 0�357� (4.71) 

The curves of Figs. 4.7–4.9 were drawn for 
this value. Since Bc

2/2�0 is an energy den­
sity expressed in units J/m3 and � is given 
in units mJ/mole K, it is necessary to multi­
ply � by the density � and divide it by the 
molecular weight (MW) in Eq. (4.71), giving 
us the BCS dimensionless ratio 

�Bc�0��
2�MW� 

RBCS = = 449� (4.72)
�0Tc

2�� 

where Bc is expressed in units mT, � in 
mJ/mole K2, � in g/cm3, and Tc in degrees 
Kelvin. It is reasonable to assume that this 
expression will be a good approximation for 
Type I superconductors, and we see from the 
last column of Table 4.3 that this is indeed 
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Table 4.3 Variation of the 
Dimensionless 
Ratio R = Bc

2 �MW�/�0Tc
2�� of Several 

Elemental Superconductorsa 

B2 �MW�c 

�0Tc
2 

Tc mT2 cm3 

Element K mJ R/RBCS 

W 0.015 676 1.51 
Ir 0.11 569 1.27 
Ru 0.49 577 1.29 
Zr 0.61 300 0.67 
Os 0.66 403 0.90 
Re 1.7 522 1.16 
Sn 3.72 615 1.37 
V 5.4 571 1.27 
Pb 7.20 733 1.63 
Tc 7.80 443 0.99 
Nb 9.25 697 1.55 
BCS theory — 449 1.00 

a Bc = Bc�0�, MW is molecular weight, � density, and 
� electronic specific heat. 

the case for the elemental superconductors. 
Equation (4.72) was derived for materials in 
which the number density of the conduction 
electrons is the same as the number density 
of the atoms. For materials in which this is 
not the case, the effective electron density �� 
can be used, where � is the factor introduced 
in Eq. (4.4), to give 

�Bc�0��
2�MW� = 449� (4.73)

�0Tc
2��� 

Equations (4.54) and (4.11) constitute 
entirely different dependences of Cs�T� on 
temperature, and it is of interest to compare 
them. In normalized form, with A set equal 
to zero, they are 

( )2
Cs�T� T T = 0�285 +2�145 � 
�Tc Tc Tc 

(4.74) 

Cs�T� Tc = 14 exp −1�76 � (4.75)
�T Tc 

4 THERMODYNAMIC PROPERTIES 

where � has the BCS value 0.357 and the 
coefficient 1.76 in the exponential expression 
is chosen because the BCS theory predicts 
� = 1�76 kTc in Eq. (4.11). The coefficient 
14 is selected to normalize Eq. (4.75) to the 
BCS value (4.11); i.e., Cs�Tc� = 2�43�Tc at 
the transition point. Figure 4.25 compares 
the temperature dependence of (4.74) and 
(4.75), and shows that they are close at all 
but the lowest temperatures. Equation (4.74) 
is slightly lower for T near Tc and Eq. (4.75) 
is significantly lower for T � Tc. 

The first of these expressions for Cs�T�, 
i.e., Eq. (4.74), is based on Eq. (4.45), which 
is a good approximation to the tempera-

Figure 4.25 Comparison of the thermodynamic and 
BCS expressions (4.74) and (4.75), respectively, for the 
specific heat ratio Cs/�Tc normalized to the same value 
at T = Tc. 
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109 XV THERMODYNAMIC CONVENTIONS 

ture dependence of the critical field Bc�T� 
near the critical temperature. However, the 
temperature derivatives of Eq. (4.45) that 
enter into the Cs�T� expression (4.43) are not 
expected to be valid quantitatively far below 
Tc. The second expression, Eq. (4.75), on the 
other hand, is based on excitation of quasi­
particles to energies above the superconduct­
ing ground state, and is valid at temperatures 
far below Tc where most of the electrons that 
contribute to the superconductivity are con­
densed as Cooper pairs in the ground-energy 
state. Therefore, we might expect an experi­
mental Cs�T�-versus-T curve to approximate 
Eq. (4.75) far below Tc, as in the case of the 
superconducting Al data shown in Fig. 4.5. 

Now that we have found explicit expres­
sions for the specific heat in the supercon­
ducting state in the absence of a magnetic 
field, let us examine the case when there is 
a field present. We will continue to assume 
that �T =Cn�T� and A= 0, and that the BCS 
expression (4.10) is valid in zero field at Tc. 
Thus, in a magnetic field Eq. (4.74) can be 
written 

( )2
T 

Cs�T�−Cn�T�= 0�715�T 3 −1 � 
Tc 

(4.76) 

and the jump in specific heat at the transition 
temperature Tc 

� in a magnetic field is given by 

( )2
T � 

cC �T ��−C �T �� = 0�175�T 3 −1 �s c n c
 Tc


(4.77) 

This change in specific heat C −C is neg­√ s n 

ative for Tc 
� < Tc/ 3 and positive for Tc 

� >√ 
Tc/ 3. This means that with increasing tem­
perature there is an upward jump in the spe­√ 
cific heat for T � < T / 3 and a downward c √ c

jump for Tc 
� >Tc/ 3, as shown in Figs. 4.12, 

and 4.16, respectively. We also see that no 
jump at all occurs at the crossover point of 
the normal-state and superconducting curves, 

√ 
where Tc 

� = Tc/ 3. In addition to the jump in 
specific heat, there is also latent heat present, 
Eq. (4.57), in the presence of a magnetic 
field. 

XIV. ORDER OF THE TRANSITION 

We mentioned in Section III that the 
transition from the normal to the super­
conducting state in the absence of a mag­
netic field is a second-order phase transition, 
which means that the Gibbs free energy and 
its temperature derivative are continuous at 
the transition: 

Gs�Tc� =Gn�Tc�� (4.78) 

dGs dGn = � (4.79)
dT dT 

This can be seen from Eq. (4.39), using the 
condition Bc�Tc�= 0 from Eq. (4.45). There­
fore, there is no latent heat, but there is a 
discontinuity in the specific heat given, for 
example, by Eqs. (4.44) and (4.70). 

We showed in Section X that the transi­
tion from the superconducting to the normal 
state in the presence of a magnetic field does 
have a latent heat given by Eq. (4.58) and, 
therefore, is a first-order phase transition. 

XV. THERMODYNAMIC 
CONVENTIONS 

There are several conventions in vogue 
for formulating the thermodynamic approach 
to superconductivity. Some of these conven­
tions make use of the total internal energy 
Utot, which includes the energy of the mag­
netic field B2/2�0 = 2

1 �0H
2 that would be 

present in the absence of the superconductor, 
whereas others, including the one adopted 
in the present work, use the internal energy 
U , which excludes this field energy. The 
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total internal energy and internal energy are 
related through the expressions 

B2 

Utot = U + � (4.80) 
2�0 

dUtot = TdS+H ·dB� (4.81) 

B2 

= dU +d � (4.82)
2�0 

Some authors, including ourselves, deduce 
the properties of superconductors with the 
aid of the Gibbs free energy G defined in 
Eq. (4.22), while others resort to Gtot, where 

G =H � −TS� (4.83)tot tot 

Still other authors instead employ the 
Helmholtz free energy F or Ftot, where 

F = U −TS� (4.84) 

Ftot = Utot −TS (4.85) 

B2 

= F + � (4.86)
2�0 

An added complication in making compar­
ison between results arrived at by different 
authors arises because some authors use the 
cgs system instead of SI units. 

XVI. CONCLUDING REMARKS 

In the beginning of this chapter we 
discussed the experimental results of spe­
cific heat measurements, and then proceeded 
to develop the thermodynamic approach to 
superconductivity, an approach in which the 
specific heat plays a major role. Some of 
the expressions that were derived are fairly 
general. Others, however, are for the partic­
ular model in which the specific heat (4.24) 
in the normal state obeys the linear low-
temperature relation �T and the critical field 
(4.45) has a simple parabolic dependence 
�1 − �T/Tc�

2� on temperature. Some expres­
sions make use of the additional assumption 

4	 THERMODYNAMIC PROPERTIES 

that the BCS expression Cs�Tc� = 2�43�Tc 

of Eq. (4.9) is also valid. It is believed that 
these models provide a good physical picture 
of the thermodynamics of the superconduct­
ing state. A more appropriate description for 
the high-temperature superconductors would 
include the AT 3 term in the specific heat. It 
is, of course, also true that real superconduc­
tors have more complex temperature depen­
dences than is implied by these simple mod­
els. The theoretical approaches presented in 
the following two chapters are needed to 
achieve a more basic understanding of the 
nature of superconductivity. 

PROBLEMS 

1. Consider a metallic element such as cop­
per that contributes one electron per 
atom to the conduction band. Show that 
in the free-electron approximation the 
electronic and phonon contributions to 
the specific heat will be equal at the 
temperature 

( )1/2 

T = �D�5/24�2�1/2 �D 

TF 

2. Show that the factor � in Eq. (4.5) has 
the value 1 for an element, 1/7 for the 
LaSrCuO compound, and 3/13 for the 
YBaCuO compound. 

3. A superconductor has a Fermi energy of 
3 eV. What is the density of states at the 
Fermi level and the electronic specific-
heat factor �. If this superconductor has 
an effective mass m ∗ of 81, what will 
be the value of these quantities? What 
other measurable quantities depend on 
the effective mass? 

4. Consider	 a BCS-type superconductor 
with transition temperature Tc = 20 K 
and a critical field Bc�0� = 0�2 T. What 
is its electronic specific-heat factor �? 
What are the values of its specific heat, 
entropy, Gibbs free energy, and enthalpy 
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PROBLEMS 

in the superconducting state at 10 K, both 
in zero field and in an applied magnetic 
field of 0.1 T? (Ignore the vibrational 
contribution to the specific heat.) 

5. With the initial conditions of the pre­
vious problem, what applied magnetic 
field will drive the superconductor nor­
mal at 10 K? What will be the latent 
heat? What will be the change in the spe­
cific heat at the transition? (Ignore the 
vibrational contribution to the specific 
heat.) 

6. Show that the following expressions for 
the enthalpy are valid: 

H � 
tot = Utot −H ·B 
=H � − 12 �0H

2 

dH � = TdS−B ·dHtot 

= dH � −d 1
2 �0H

2 � 

7. Show that equating the superconducting-
and normal-state Gibbs free energies 
Gs�T�H�=Gn�T� at the critical temper­
ature leads to Eq. (4.55): 

T � = T

[ 

1 − B 
]1/2 

�c c Bc�0� 

8. Calculate the transition temperature Tc 
� , 

jump in specific heat, jump in entropy, 
jump in enthalpy, and the values of the 
Gibbs and Helmholtz free energies at the 
temperature T = Tc 

� of a Type I super­
conductor in an applied magnetic field 
Bapp = 2

1 Bc. Express your answers in 

111 

terms of � and Tc, assuming that �= 4�0 
and A= �/3Tc

2. 
9. We know from thermodynamics that at 

the transition temperature T = Tc�B� in 
an applied magnetic field B, the latent 
heat equals the difference in enthalpy, 
L = H � −H �. Show that this difference n s

gives Eq. (4.57). 
10. Derive the expression for the enthalpy 

of a superconductor in a magnetic field, 
and show that in its normalized form it 
agrees with the expression Hs

�/�Tc
2 in 

Table 4.2. 
11. Show	 that the specific heat jump in 

a magnetic field has the maximum√ 
4��Tc/9 in the range 0 < Tc < 1/ 3, 
and that the latent heat has the maximum 
1 ��T 2.2 c 

12. Show that the following normalized ther­
modynamic expressions are valid, 

du= tds+b ·dm� 

cdt = tds� 
h� = u−b ·m� 

g = h� − ts� 

and write down expressions for the nor­
malized internal energy u and magneti­
zation m. 

13. Derive Eq. (4.70) from Rutger’s for­
mula. 

14. Sketch	 a three-dimensional Gibbs free 
energy surface analogous to the surface 
presented in Fig. 4.20 using the equa­
tions in Section X. 
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5 
Magnetic Properties


I. INTRODUCTION 

Superconductivity can be defined as 
the state of perfect diamagnetism, and con­
sequently researchers have always been 
interested in the magnetic properties of 
superconductors. In the second chapter we 
explained how magnetic fields are excluded 
from and expelled from superconductors. 
Then in the previous chapter we examined 
the thermodynamics of the interactions of a 
superconductor with a magnetic field. The 
present chapter will extend the discourse to 
a number of additional magnetic properties. 

We begin with a discussion of magne­
tization, zero field cooling, and field cool­
ing, with comments on the granularity and 
porosity of high-temperature superconduc­
tors. Next we will explain how magnetiza­

tion depends on the shape of the material 
and how this shape dependence affects the 
measured susceptibility. Both ac and dc sus­
ceptibilities will be treated. Finally, we will 
show how samples can be categorized in 
terms of traditional magnetic behavior, such 
as diamagnetism, paramagnetism, and anti­
ferromagnetism. The chapter will conclude 
with remarks on ideal Type II superconduc­
tors and on magnets. 

In the present chapter we do not always 
distinguish between Type I and Type II 
superconductors since many of the results 
that will be obtained here apply to both types 
of superconductors. 

In later chapters we will discuss addi­
tional magnetic properties of superconduc­
tors, such as, in Chapter 11, the intermediate 
and mixed states of Type I and Type II 

113 
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superconductors, respectively. In Chapter 13 
we will present the Bean model which pro­
vides a good description of some magnetic 
properties, especially hysteresis loops. 

II. SUSCEPTIBILITY 

A material in the mixed state of a Type 
II superconductor contains magnetic flux 
in vortices that are embedded in a super­
conducting matrix with � = −1. From a 
macroscopic perspective we average over 
this structure and consider the material to 
be homogeneous with a uniform susceptibil­
ity having a value that is constant through­
out the volume. The internal fields Bin� Hin, 
and M are also averages that are uniform at 
this level of observation. In this chapter we 
will be working with these average quantities 
and ignore the underlying mesoscopic vortex 
structure. 

We saw in Chapter 1 how the B and 
H fields within a homogeneous medium are 
related to the magnetization M and the sus­
ceptibility � through Eqs. (1.69), (1.77), and 
(1.78a), 

Bin = �0�Hin +M� (5.1) 

= �0Hin�1 +�� (5.2) 

M 
� = (5.3)

Hin 

where �0 is the permeability of free space 
and � is an intrinsic property of the medium. 

In the general case the susceptibility 
is a symmetric tensor with components 
�ij because of the off-diagonal components 
�i � j� the fields Bin� Hin, and M= vector 
are in different directions. In the principal 
coordinate system the susceptibility tensor 
is diagonal with components �x� �y, and �z 

along the three orthogonal principle direc­
tions. High-temperature superconductors are 
planar with values �a ≈ �b in the plane of 
the CuO2 layers different from �c, which is 

5 MAGNETIC PROPERTIES 

measured along the c direction perpendicular 
to the layers. This axial anisotropy manifests 
itself in the large difference in the critical 
fields of single crystals when measured par­
allel to and perpendicular to the CuO2 layers, 
as shown in Table 12.5. Several figures in the 
present chapter will illustrate this anisotropy. 
However, for the present we will restrict our 
attention to the isotropic case, for which � = 

x y z

III. MAGNETIZATION AND 
MAGNETIC MOMENT 

The magnetization M is the magnetic 
moment per unit volume. This means that 
the overall magnetic moment � of a sample 
is the volume integral of M throughout it, 

� = M dV� (5.4) 

Many magnetic studies of superconductors 
are carried out using samples with shapes 
that can be approximated by ellipsoids. 
When the magnetic field Bapp = �0Happ is 
applied along or perpendicular to the symme­
try axis of such a sample, the internal fields 
Bin and Hin, and the magnetization M as well, 
are uniform and parallel to the applied field, 
with M given by 

M = � (5.5)
V 

where V is the sample volume. Long thin 
cylinders and thin films are limiting cases of 
this general ellipsoidal geometry. 

We begin by analyzing the parallel 
geometry case of a superconductor in the 
shape of a long cylinder located in an applied 
field directed along its axis, as shown in 
Fig. 12.1. For this case the fields can be 
written as scalars. We wish to express the 
internal fields in terms of the known applied 
field B :app

Bapp = �0Happ� (5.6) 
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For this particular geometry the boundary 
condition (1.74) shows that the internal field 
Hin equals Happ. From Eqs. (5.2) and (5.3) 
the internal fields are given by 

Bin = Bapp�1 +��� (5.7) 

B
Hin = app 

� (5.8)
�0 

�B
M = app 

� (5.9)
�0 

Experimentally, it is the magnetic moment 
�, given by 

�VB
� = app 

� (5.10) 
�0 

which is measured, for example, by a Super­
conducting Quantum Interference Device 
(SQUID) magnetometer. Since V and Bapp 

are known, Eqs. (5.10) and (5.9) can be used 
to determine the susceptibility and magneti­
zation, respectively. In these expressions � 
is the volume susceptibility corresponding to 
the magnetic moment per unit field per unit 
volume. We assume that � is independent of 

the applied field Bapp, and that M is propor­
tional to Bapp through Eq. (5.9). 

For an ideal superconductor the property 
of perfect diamagnetism means that � = −1, 
so that Eqs. (5.7)–(5.10) become, respec­
tively, 

Bin = 0� (5.11) 

Hin = Bapp 

�0 

� (5.12) 

M = −  Bapp 

�0 

� (5.13) 

� = −  VBapp 

�0 

� (5.14) 

and we see that the internal field Bin vanishes. 
This is the case illustrated in Fig. 12.1. The 
fact that Bin vanishes can also be explained in 
terms of the shielding currents (see Fig. 6.19) 
which flow on the surface and act like a 
solenoid to produce a field Bin which can­
cels Bapp. This was discussed at length in 
Chapter 2, Section VIII. 

Figure 5.1 shows the experimentally 
measured magnetization curve for 

�La0�9Sr0�1�2CuO4 

Figure 5.1 Zero-field magnetization of annealed �La0�9Sr0�1�2CuO4 

in applied magnetic fields up to 100 mT at a temperature of 5 K. The 
maximum of the curve occurs near the lower-critical field Bcl ≈ 30 mT. 
The dashed line is the low-field asymptote for perfect diamagnetic 
shielding (Maletta et al., 1987). The inset shows the magnetization in 
applied fields up to 4.5 T. 
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Figure 5.2 Typical magnetization curve for T = 0�1Tc (cf. Fig. 5.3, which is drawn 
to the same scale). 

Figure 5.3 Typical magnetization curve for T = 0�7 Tc drawn to the same scale as 
Fig. 5.2. 

plotted against the applied field. The applied 
field reaches a maximum at 30 mT, which 
is approximately the lower critical field Bc1 

(Maletta et al., 1987; see Müller et al., 1987). 
The upper critical field is well beyond the 
highest field used, 4.5 T, as shown in the 
inset to the figure. Note that the abscissa 
scale is in terms of milliteslas for the main 
figure, and in terms of teslas for the inset. 

We see in Fig. 12.36 that the critical 
fields Bc1 and Bc2 are highest at 0 K and 
that they decrease continuously with increas­
ing temperature until they become zero at 
the transition temperature Tc. Thus, a mag­
netization curve, such as that presented in 
Fig. 10.1, contracts as temperature increases. 
This situation is illustrated graphically by 
Figs. 10.2 and 10.3, which show sketches 
of magnetization curves at two temperatures 
T = 0�1Tc and T = 0�7Tc. 

IV. MAGNETIZATION HYSTERESIS 

Many authors have reported hystere­
sis in the magnetization of superconduc­
tors, meaning that the magnetization depends 

on the previous history of how magnetic 
fields were applied. Hysteresis is observed 
when the magnetic field is increased from 
zero to a particular field, then scanned back 
through zero to the negative of this field, and 
finally brought back to zero again. Figure 5.4 
sketches a low-field hysteresis loop show­
ing the coercive field Bcoer, or value of the 
applied field that reduces the magnetiza­
tion to zero, and the remanent magnetiza­
tion Mrem, or magnitude of the magnetization 
when the applied field passes through zero. 

Figures 5.5 and 5.6, respectively, show 
how low-field hysteresis loops vary with 
changes in the scanning-field range and tem­
perature. It is clear from these figures that 
the hysteresis loop is thin and close to linear 
when the scan range is much less than the 
lower-critical field and when the temperature 
is close to Tc. Decreasing the temperature 
broadens the loop. The larger the magnetic 
field excursion, the more the loop becomes 
elongated horizontally, which increases the 
ratio Bcoer /�0Mrem between the coercive field 
and the remanent magnetization. 

Figure 5.7 shows how hysteresis loops 
traversed over a broad field range vary with 
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Figure 5.4 Typical low-field hysteresis loop showing the coercive field Bcoer , 
where magnetization is zero, and the remanent magnetization Mrem which remains 
when the applied field is reduced to zero. 

Figure 5.5 Low-field hysteresis loops of 
�La0�9Sr0�1�2CuO4 at 4.5 K cycled over different ranges 
of field up to 2 mT (Marcus et al., 1987). 

the temperature. Each loop has a peak near 
the lower-critical field Bc1. Beyond this point 
flux penetrates and the magnetization begins 
to decrease gradually. Ideally, no flux pene­
trates below Bc1, but in practice some of it 
does, as Fig. 5.1 suggests. The large hystere­
sis is indicative of flux pinning. It is observed 
that as the temperatures is lowered, the loop 
increases in area, as shown in the figures. 
Paranthaman et al. (1993) obtained similar 
results with the superconductor 

HgBaCuO4+�� 

Chapter 13 will present a model, called 
the critical-state model, which provides an 
explanation for the shapes of many hysteresis 
loops. 

V. ZERO FIELD COOLING AND 
FIELD COOLING 

In Chapter 2 we discussed the magnetic 
properties of a perfectly diamagnetic material 
with a hole that is either open or closed to the 
outside. We examined these two cases for the 
conditions of (a) zero field cooling (ZFC), 
a condition characterized by flux exclusion 
from both the open hole and the enclosed 
cavity, a phenomenon called diamagnetic 
shielding, and (b) field cooling (FC), a condi­
tion characterized by flux expulsion from the 
cavity but not from the hole, a phenomenon 
called the Meissner effect. For both cases, 
the flux is absent from the superconduct­
ing portion. Hence, the overall sample can 
exclude more flux when it is zero field cooled 
than it expels when it is is field cooled. The 
difference between the amount of excluded 
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Figure 5.6 Low-field hysteresis loops of YBa2Cu3O7 cycled over 
the same field scan, −3 mT  ≤ Bapp ≤ 3 mT, over a range of tempera­
tures. The loops gradually collapse as the temperature increases. The 
virgin curve for the initial rise in magnetization is given for each loop 
(Senoussi et al., 1988). 

flux and the amount of expelled flux is the 
trapped flux. 

To clarify some of the principles 
involved in ZFC and FC experiments, we 
will examine the rather idealized case of a 
cylindrical sample of total volume VT that 
contains a volume Vs of perfectly supercon­
ducting material �� = −1�, a cylindrical hole 
of volume Vh open at the top and bottom, 
and a totally enclosed cylindrical cavity of 
volume Vc, 

VT = Vs +Vh +Vc� (5.15) 

as shown in Fig. 5.8. The hole and cav­
ity could either be empty or contain normal 

material; since the effect in the two cases 
is the same, we will consider them empty. 
The magnetic field Bapp is applied parallel 
to the cylinder axis, as indicated in Fig. 5.9; 
demagnetizing effects arising from the lack 
of cylindrical symmetry will not be taken 
into account. 

For this composite sample the mea­
sured or effective magnetic moment �eff can 
receive contributions from three individual 
components, 

�eff = �s +�h +�c� (5.16) 

with �s due to the superconducting mate­
rial itself, �h resulting from the presence of 
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Figure 5.7 High-field hysteresis loops of 
YBa2Cu3O7 cycled over the same field scan, 
−3 T  ≤ Bapp ≤ 3 T, over a range of temperatures. The 
loops gradually collapse as the temperature increases. 
The deviation of the virgin curve from linearity occurs 
near the lower-critical field Bc1, which increases as the 
temperature is lowered (Senoussi et al., 1988). 

Figure 5.8 Cylindrical superconducting sample with 
hole of volume Vh open at the top and bottom, and a 
totally enclosed cavity of volume Vc. 

Figure 5.9 The superconducting cylinder sketched 
in Fig. 5.10 after field cooling in an axial applied field, 
showing the shielding currents flowing around the out­
side, the reverse-direction current flow around the walls 
of the open hole, and the absence of currents in the 
enclosed cavity. 

the open hole, and �c due to the enclosed 
cavity. In the case of zero field cooling, the 
circulating surface currents shield the super­
conductor, hole, and cavity, so Eq. (5.10), 
with � = −1, becomes 

B
�zfc = −�Vs +Vh +Vc� 

app 
� (5.17)

�0 

For field cooling, the magnetic field is 
trapped in the open hole, while surface cur­
rents shield the superconductor itself and the 
enclosed cavity from this field, which gives 
for the magnetic moment 

B
�fc = −�Vs +Vc� 

app 
� (5.18)

�0 

Associated with the effective magnetic 
moment (5.16) there is an effective magneti­
zation Meff defined by Eq. (5.5) in terms of 
the total volume (5.15) 

�eff Bapp
Meff = = �eff � (5.19)

VT �0 

which can be employed to write down the 
ZFC and FC magnetization, respectively. 
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The corresponding susceptibilities �zfc and 
�fc are determined in Problem 1. We know 
from Eqs. (5.9) and (5.10) and the above 
expressions that the ratios between the FC 
and ZFC moments, magnetizations, and sus­
ceptibilities all have the same value, 

�fc Mfc �fc = = 
�zfc Mzfc �zfc 

Vs +Vc = � (5.20) 
Vs +Vh +Vc 

and that this value is independent of the units 
used. 

If field cooling is carried out in an 
applied field Bfc = �0Hfc that differs from 
the field Bapp which is applied to measure 
the magnetic moment, we obtain, neglecting 
hysteresis (see Problem 3), 

�0�fc = −�Vs +Vc�Bapp + �Bfc −Bapp�Vh� 
(5.21) 

which reduces to Eq. (5.18) when Bapp = Bfc. 
Thus, the field trapped in the hole acts like a 
magnetization with the same magnitude and 
direction as the quantity (Bfc − Bapp). Ordi­
narily, field cooling is carried out in the same 
field as the susceptibility measurements, so 
that Bapp = Bfc and Eq. (5.18) applies. 

As long as the sample is kept below Tc 

the field Bfc remains in the open hole irre­
spective of whether the outside field is turned 
off or another applied field is turned on. Bfc 

is maintained in the hole by surface currents 
circulating in opposite directions around the 
inside of the superconducting tube, as shown 
in Fig. 5.9 and explained in Chapter 2, Sec­
tions VIII and IX. This trapped flux sub­
tracts from the diamagnetic response to make 
the measured susceptibility and magnetiza­
tion less negative for the Meissner effect 
(FC) than for diamagnetic shielding (ZFC). 
This is shown in Fig. 5.10 for the rubidium 
fullerene compound (C.-C. Chen et al., 1991; 
Politis et al., 1992), where the ZFC data 
points are far below the corresponding FC 
data, as expected from Eq. (5.20). The ear­
liest HgBaCaCuO compound samples pro­
duced FC susceptibilities that were far above 

5 MAGNETIC PROPERTIES 

Figure 5.10 Rb3C60 powder sample showing that the 
zero-field-cooled magnetic susceptibility is more nega­
tive than its field-cooled counterpart (C.-C. Chen et al., 
1991). 

ZFC ones (Adachi et al., 1993; Gao et al., 
1993; Meng et al., 1993b, Schilling et al., 
1993). 

Clem and Hao (1993) examined the four 
cases of ZFC, FC with data collected on cool­
ing (FCC), FC with data collected on warm­
ing (FCW), and remanence. In the fourth 
case the applied field is turned off after the 
specimen has been FC, and the remanent 
magnetization is measured as a function of 
increasing temperature. 

VI. GRANULAR SAMPLES 
AND POROSITY 

The analysis of the previous section can 
help us understand experimental suscepti­
bility data on granular samples. The grains 
sometimes consist of a mixture of super­
conducting and normal material of about 
the same density, with empty space between 
and perhaps within the material. The two 
densities can be comparable when the sam­
ple preparation procedure does not com­
pletely transform the starting materials into 
the superconducting phase. A well-made 
granular superconductor does not contain any 
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normal material, but it does have intergran­
ular and perhaps intragranular spaces, either 
of which can trap flux. The field-cooled 
moment can be significantly less than the 
zero-field-cooled moment, as shown by the 
data in Table VIII.1 of previous work (Poole 
et al., 1988). 

A quantitative measure of the degree of 
granularity of a sample is its porosity P, 
which is defined by 

P = �1 −	/	x-ray�� (5.22) 

where the density 	 of the sample is 

m 
	 = (5.23)

VT 

and the x-ray density is calculated from the 
expression 


MW� 
	x-ray = (5.24)

V0NA 

where NA is Avogadro’s number and V0 is 
the volume of the sample per formula unit, 
with the value 

V0 = abc �YBa2Cu3O7−��� (5.25) 

V0 = 2
1 abc 

�LaSrCuO� BiSrCaCuO� TlBaCaCuO�� 
(5.26) 

where a� b, and c are the lattice constants and 
the La, Bi, and Tl compounds have assigned 
to them two formula units per unit cell, as 
explained in Chapter 8. 

Porosity is a measure of the proportion 
of empty spaces or voids within and between 
the solid material or grains of a sample. Prob­
lem 4 shows how Vs�Vh, and Vc can be deter­
mined from measurements of 	��zfc and �fc. 
The x-ray density calculated from the unit 
cell dimensions of 

YBa2Cu3O7 

is 6�383 g/cm3. Typical densities of granu­
lar samples vary from 4.3 to 5�6 g/cm3, cor­
responding to porosities between 33% and 

121 

12%, respectively (Blendell et al., 1987; 
Mathias et al., 1987). 

Porosity can be reduced by applying 
pressure to the material. For example, a sam­
ple of YBa2Cu3O7 with a 5:1 ratio between 
flux exclusion and flux expulsion was com­
pressed at 20–30 kbar to a claimed 100% 
of theoretical density, 	 = 	x-ray, bringing 
the measure flux expulsion to within about 
11% of the theoretical value (Venturini et al., 
1987). Researchers have also found 100% 
flux shielding and 95% flux expulsion in 
YBa2Cu3O7 at 4.2 K (Larbalestier et al., 
1987a). Good single crystals, of course, have 
a porosity of zero. 

VII. MAGNETIZATION 
ANISOTROPY 

The magnetic properties of high-
temperature superconductors are highly 
anisotropic, with magnetization and suscep­
tibility depending on the angle which the 
applied field makes with the c-axis. We will 
see in Chapter 12, Section IV, that anisotropy 
here is a result of the difference in the values 
of the coherence length, penetration depth, 
and effective mass measured along the c 
direction as opposed to values obtained from 
measurements in the a�b-plane. Particles of 
anisotropic superconductors in a magnetic 
field experience a torque which tends to 
align them with the field (Kogan, 1988). 
Anisotropy effects can be determined by 
employing single crystals, epitaxial films, or 
grain-aligned powders. Epitaxial films are 
generally single-crystal films with the c-axis 
perpendicular to the plane. It is, of course, 
preferable to work with untwinned single 
crystals or epitaxial films. However, these 
are not always available, and much good 
research has been carried out with aligned 
granular samples. 

Grain alignment is a technique that con­
verts a collection of randomly oriented grains 
into a set of grains with their c-axes preferen­
tially pointing in a particular direction. This 
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alignment can be brought about by uniaxial 
compression, by application of a strong mag­
netic field to grains embedded in, for exam­
ple, epoxy, or by melting a random powder 
sample and reforming it in the presence of 
a temperature gradient (Farrell et al., 1987). 
It is much easier to fabricate grain-aligned 
samples than single crystals. Grain-aligned 
samples, however, cannot compete with sin­
gle crystals in terms of degree of alignment. 
Untwinned monocrystals are needed for per­
fect alignment. 

Another technique for preparing sam­
ples with monocrystal characteristics is melt-
textured growth (L. Gao et al., 1991; Jin 
et al., 1988; Murakami et al., 1991). In 
melt-textured growth a granular material is 
melted and then slowly cooled in a ther­
mal gradient to produce a high degree of 
texturing. The effect is to reduce weak-
link grain boundaries and increase critical 
currents. 

Figure 5.11a shows that both the ZFC 
and FC susceptibilities of YBa2Cu3O7 are 
greater in magnitude (i.e., more negative) for 
the applied field aligned parallel to the c-axis 
than they are for Bapp aligned perpendicular 
to c (i.e., along the copper-oxide planes); 
these measurements were made with grain-
aligned samples. The figure shows that the 
susceptibility data for a nonaligned power 
are between the results for Bapp�c and Bapp⊥c. 
Figure 5.11c shows that the susceptibility is 
much less for field cooling in the field Bfc = 
0�3 T, again with the data for Bapp�c lying 
below the data for Bapp⊥c. 

VIII. MEASUREMENT TECHNIQUES 

Experimentally, susceptibility, a dimen­
sionless quantity, is determined from the 
measured magnetic moment � of the sample 
with the aid of Eq. (5.10), 

�0 � 
� = � (5.27)

VTBapp 

5 MAGNETIC PROPERTIES 

For a small sample the overall vol­
ume VT can be estimated by viewing it 
under a microscope. This is sometimes 
called the volume susceptibility, although 
in actuality the parameter is dimension­
less. Many investigators determine sample 
size by weighting and report what is some­
times called the mass susceptibility � , 

	 �	VT�B

mass

defined by 

�mass = = � �0 � 
(5.28) 

app 

where 	VT is the mass of the sample. This 
quantity has the dimensions m3/kg in the SI 
system and cm3/g in the cgs system. 

Many susceptibility and magnetism 
measurements are carried out with a SQUID, 
a dc measuring instrument (see Section III). 
In this device, which is sketched in Fig. 5.12, 
a magnetized sample that has been moved 
into a sensor coil causes the flux through 
the coil to change. The current produced by 
this flux change is passed to the multiturn 
coil on the left side of the figure where it is 
amplified by the increase in the number of 
turns. The SQUID ring with its weak links 
detects this flux change in a manner that will 
be discussed in Chapter 15, Section VIII.1. 
The change in flux provides the magnetic 
moment by the expression 

�0 � = �
� (5.29) 

and from Eq. (5.27) we have for the suscep­
tibility, 

� = �
/VBapp� (5.30) 

The data presented in Figs. 5.10 and 5.11 
were obtained with a SQUID magnetome­
ter. More classical techniques, such as the 
vibrating sample magnetometer or perhaps 
the Gouy or Faraday balance, are less fre­
quently employed. One can make ac suscep­
tibility measurements using a low-frequency 
mutual inductance bridge operating at, for 
example, 200 Hz. 
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Figure 5.11 (a) Zero-field-cooled (closed symbols) and field-cooled (open symbols) susceptibility versus 
temperature for nonaligned powder (circles) and grain-aligned samples of YBa2Cu3O7 in a field of 5 mT with 
Bapp�c (triangles) and Bapp⊥c (squares), (b) normalized susceptibilities for the zero-field-cooled samples of (a), 
(c) field-cooled measurements in 0.3 T, plotted with the same symbol convention (Lee and Johnston, 1990). 

Figure 5.12 The change of magnetic flux in a sensor coil loop that has been 
produced by raising or lowering a sample induces a current which is transferred to 
a multiloop coil where it is measured by a Superconducting Quantum Interference 
Device (SQUID). 
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IX. COMPARISON OF 
SUSCEPTIBILITY AND 
RESISTIVITY RESULTS 

We saw in Section V that the suscep­
tibility of a composite sample is a linear 
combination of the contributions from its 
component parts. Thus, susceptibility mea­
surements determine the magnetic state of 
an entire sample, and also give a better 
indication of the degree to which the sam­
ple has transformed to the super-conducting 
state. Resistivity measurements, on the other 
hand, merely show whether or not continu­
ous superconducting paths are in place. In 
addition, while a dc susceptibility measure­
ment provides a better experimental indicator 
of the overall superconducting state, a resis­
tivity measurement is a better practical guide 
for application purposes. We should also 
note that magnetization is a thermodynamic 
state variable (cf. Chapter 4, Section VI), 
whereas resistivity is not. The properties of 
zero resistance and perfect diamagnetism are 
the two classic ways of defining supercon­
ductivity. In an ideal homogeneous material 
both measurements should provide the same 
transition temperature. 

The transition temperatures determined 
by magnetic susceptibility and resistivity 
measurements sometimes differ somewhat. 
When the transition is sharp, resistivity can 
drop sharply to zero at a temperature slightly 
above the onset of the susceptibility or mag­
netization transition, as shown in Fig. 2.21. 
When the transition is broad, the �-versus-T 
and 	-versus-T curves often overlap consid­
erably. Many articles provide susceptibility 
and resistivity curves for the same sample. 
Figure III-5 from our previous work (Poole 
et al., 1988) compares the resistivity, Meiss­
ner magnetization, ac susceptibility, and spe­
cific heat transitions for the same 

YBa2Cu3O7 

sample (Junod et al., 1988). 

X. ELLIPSOIDS IN MAGNETIC 
FIELDS 

In Section III we treated the case of 
a cylindrically shaped sample in a paral­
lel magnetic field, noting that this geom­
etry was chosen to avoid demagnetization 
effects that could complicate the calculation 
of the internal magnetic field and magnetiza­
tion. Some commonly used superconductor 
arrangements in magnetic fields, such as thin 
films in perpendicular fields, have very pro­
nounced demagnetization effects. In practice, 
these arrangements constitute limiting cases 
of ellipsoids, so that in the present section 
we will analyze the case of an ellipsoid in 
an applied field. Then we will show how 
some common geometries are good approxi­
mations to elongated and flattened ellipsoids. 
Many of the results of this and the following 
few sections are applicable to both Type I 
and Type II superconductors. 

When an ellipsoid with permeability � is 
placed in a uniform externally applied mag­
netic field Bapp oriented along one of its prin­
cipal directions, its internal fields Bin and Hin 

will be parallel to the applied field, and hence 
all of the fields can be treated as scalars. 
Their values will be determined by applying 
Eqs. (5.1) and (5.2) to the internal fields 

= =Bin �Hin �0�Hin +M� 

= �1 +���0 Hin (5.31) 

and the applied fields 

Bapp = �0 Happ� Mapp = 0 (5.32) 

and utilizing the demagnetization expression 

NBin �1 −N�Hin+ = 1� (5.33)
B Happ app 

where N is the demagnetization factor, to 
relate the internal and applied fields. The 
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demagnetization factors along the three prin­
cipal directions of the ellipsoid are geomet­
rical coefficients that obey the normalization 
condition 

Nx +Ny +Nz = 1� (5.34) 

with the largest value along the shortest prin­
cipal axis and the smallest value along the 
longest principal axis. We will confine our 
attention to situations in which the exter­
nal field is oriented along a principal direc­
tion since all the other orientations are much 
more complicated to analyze. In the follow­
ing section we will give explicit expressions 
for the demagnetization factors associated 
with a sphere, a disk, and a rod. 

Solving for Bin, Hin, and M in 
Eqs. (5.31) and (5.33) gives 

1 +� 
Bin = Bapp 1 +�N

� (5.35) 

Bapp/�0
Hin = � (5.36)

1 +�N 

Bapp � 
M = · (5.37)

�0 1 +�N 

for the internal fields and magnetization 
expressed in terms of the applied fields. We 
should bear in mind that the susceptibil­
ity � is negative for a superconductor, so 
that the denominators in these expressions 
become small when � approaches −1 and N 
approaches 1. 

For an ideal superconducting mate­
rial � = −1. Equations (5.35)–(5.37) now 
assume a simpler form: 

Bin = 0� (5.38) 

Bapp/�0
Hin = � (5.39)

1 −N 

Bapp/�0
M = −  � (5.40) 

1 −N 

These expressions are applicable to Type I 
superconductors subject to the condition 

Bapp < �1 − N�Bc, as will be explained 
in Chapter 11, Section IV. They apply 
to Type II superconductors when Bapp < 
�1 − N�Bc1, but for higher applied fields 
Eqs. (5.35)–(5.37) must be used since −1 < 
� <  0. Sometimes the transition from the 
Meissner to the vortex state is not sharply 
defined and a precise value of Bc1 cannot be 
determined. 

XI. DEMAGNETIZATION FACTORS 

It will be helpful to write down formulae 
for the demagnetization factors for sample 
shapes that are often encountered in practice. 
For a sphere all three factors are the same, 
a = b = c and N = N = N , so that from x y z

the normalization condition (5.34) we obtain 

1 
N = �sphere�� (5.41)

3 

For an ellipsoid of revolution with the z 
direction selected as the symmetry axis, the 
semi-major axes a = b =� c along the x-, y-, 
and z-axes, and the demagnetization factors 
are N� = Nz and N⊥ = Nx = Ny, subject to 
the normalization condition 

N� +2N⊥ = 1 (5.42) 

of Eq. (5.34). An oblate ellipsoid, i.e., one 
flattened in the x, y-plane, has c < a  with 
N� > N⊥, and von Hippel (1954) gives (cf. 
Osborn, 1945; Stone, 1945; Stratton, 1941), 

N� = 
�

1
2 
− 
1 −

�

�
3

2�1/2 

sin−1 �  c < a�  

(5.43) 
where the oblate eccentricity � is 

� = 
1 − �c2/a2��1/2 c < a�  (5.44) 

For a prolate ellipsoid, i.e., one elongated 
along its symmetry axis so that c > a  and 
N� < N⊥, we have again from von Hippel 
(1954) 

1 − �2 1 1 + � 
N� = ln −1 c > a�  

�2 2� 1 − � 
(5.45) 
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where the prolate eccentricity � is 

� = 
1 − �a2/c2��1/2 c > a�  (5.46) 

Of especial interest are samples in the shape 
of a disk, which may be considered the 
limiting case of a very flattened oblate 
ellipsoid, c � a, with the demagnetization 
factors 

N� ≈ 1� N⊥ ≈ 0� �flat disk�� (5.47) 

or in the shape of a rod, which is the limit of 
an elongated prolate ellipsoid, c � a, with 
the values 

1 
N� ≈ 0� N⊥ ≈ �long cylinder�� 

2 
(5.48) 

Correction factors �i to the limiting val­
ues of Ni given in Eqs. (5.47) and (5.48) 
are shown in Figs. 5.13 and 5.14, respec­
tively, and listed in Table 5.1. Problems 6 
and 7 give explicit expressions for these fac­
tors. Figure 5.15 shows how the parallel and 
perpendicular components of N depend on 

Figure 5.13 Demagnetization factors Nx = N = y
1 �1 � 1 and Nz = 1 − �1 of an oblate ellipsoid with 2 
semi-major axes a = b � c along the x, y, and z direc­
tions, respectively. 

5 MAGNETIC PROPERTIES 

Figure 5.14 Demagnetization factors Nx = N
1 
2 �1 −�4� and Nz 

= 
= �4 � 1 of a prolate ellipsoid with 

a = b � c, using the notation of Fig. 5.13. 

y 

Table 5.1 Demagnetization Factors 
for Ellipsoids of Revolution with 
Semi-axes a = b and c for the Case of 
a Disk (oblate, c < a), Sphere (c = a), 

aor Rod �prolate�  c > a�

Shape Condition N⊥ N� 

disk limit c → 0 0 1 
flat disk c � a 1

2 �1 1 −�1 

oblate c ≈ a 1
3 − 1

2 �2 
1
3 +�2 

sphere c = a 1
3 

1
3 

prolate c ≈ a 3
1 + 1

2 �3 3
1 −�3 

long rod c � a 1
2 − 1

2 �4 �4 

rod limit c → 
  2
1 0 

a Values of the correction factors �i are given in 
Problems 6 and 7. 

the length-to-diameter ratio of the ellipsoid. 
D.-X. Chen et al. (1991) reviewed demagne­
tization factors for cylinders; other pertinent 
articles are Bhagwat and Chaddah (1992), 
Kunchur and Poon (1991), and Trofimov 
et al. (1991). The electric case of depolar­
ization factors is mathematically equivalent 
(Stratton, 1941). 
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127 XII MEASURED SUSCEPTIBILITIES 

Figure 5.15 Dependence on the ratio c/a of the demagnetization factors N⊥ = Nx = Ny perpendicular to the 
axis of an ellipsoid with semi-major axes a = b � c and N� = Nz along the axis. The solid lines were calculated = 
using the exact expressions (5.42) to (5.46), and the dashed lines from the approximation formulae of Table 5.1 
and Problems 6 and 7. 

XII. MEASURED SUSCEPTIBILITIES 

From the theoretical viewpoint the mag­
netic susceptibility � is a fundamental prop­
erty of a material. It can be anisotropic, but 
for the present we will treat the isotropic 
case. It is defined by Eq. (5.3) as the ratio 
between the two quantities M and Hin in the 
interior of a superconductor, 

� = M/Hin� (5.49) 

In practice, research workers often report an 
experimentally determined susceptibility �exp 

that has been calculated from measured val­
ues of the magnetization and the applied field 
Bapp, as follows: 

�exp = �0M/Bapp� (5.50) 

This is the definition of susceptibility that 
often appears in solid state physics books. 
Equations (5.49) and (5.50) are only equiv­
alent for the case of “parallel geometry,” in 
which the applied field is along the axis of 
a cylinder and the demagnetization factor N 
is zero: Hin = Bapp/�0. 

When N is not zero, Eq. (5.49) is still 
valid because � is a property of the mate­
rial independent of its shape. Substituting 
Eq. (5.37) in Eq. (5.50) gives the expression 

� = �/�1 +N��� (5.51)exp 

which may be solved for the intrinsic suscep­
tibility in terms of the experimentally mea­
sured value 

� = �exp/�1 −N�exp�� (5.52) 
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The susceptibility must be in dimension­
less units (SI units) to apply this expression. 
Equation (10.52) shows that ��� ≤ ��exp�, 
where both � and �exp are negative. Some 
authors set N� = −N in Eq. (5.52) so as to 
write the approximate expression 

� ≈ � �1 −N�� (5.53)exp

which, however, underestimates the magni­
tude of �, especially when N is appreciable 
and ��� is small. 

XIII. SPHERE IN A MAGNETIC FIELD 

In this section we will examine a case 
that is commonly treated in electromagnetic 
theory and solid-state physics texts—that of 
a sphere in a magnetic field. This will pro­
vide us with closed-form expressions for the 
fields and the magnetization, both inside and 
outside the sphere as well as on its surface. 

We mentioned in the previous section 
that for a sphere N = 1/3, so that using 
Eqs. (5.35)–(5.37) and (5.52) we have, 
respectively, for the two internal fields, mag­
netization, and susceptibility, 

3�1 +�� 
Bin = Bapp � (5.54)

3 +� 

3Bapp/�0
Hin = � (5.55)

3 +� 

Bapp 3� 
M = · � (5.56)

�0 3 +� 

3�
� = exp 

� (5.57)
3 −�exp 

The B field immediately outside a super­
conducting sphere of radius a placed in a 
uniform external magnetic field Bapp may 
be calculated from the standard formula for 
the magnetic scalar potential 
out given in 

5 MAGNETIC PROPERTIES 

electrodynamics texts (e.g., Jackson, 1975, 
p. 150), 

� 3 � 
� a


out = −  r − 
� +3 

· 
r2 

Bapp cos �� 

(5.58) 
where � is the angle of the position vector 
r relative to the applied field direction. This 
is the solution to Laplace’s equation 

�2
 = 0� (5.59) 

which for the case of axial symmetry in 
spherical coordinates has the form 

1 d 2 d
 
r 

r2 dr dr 

1 d d
 + · sin � = 0� 
r2 sin � d� d� 

(5.60) 

where the potential 
out �r��� depends on the 
polar angle �, but not on the azimuthal angle 
�. This solution is subject to two boundary 
conditions, first, that Br and H� are contin­
uous across the surface at r = a, and sec­
ond, that B = Bapp far from the sphere where 
r � a. 

The first term of Eq. (10.58), 

rB cos � = zB �app app

corresponds to the potential of the uniform 
applied field. The second term is known to 
be the magnetic field produced by a magnetic 
dipole of moment � = a3Happ�/�� +3�. The 
radial component Br of the field outside, 

�
outBr = −  (5.61)
�r � 3 � 

2� a= 1 + · Bapp cos �� (5.62)
� +3 r3 

has a value at the surface r = a of 

3�� +1� 
Br = Bapp cos �� (5.63)

� +3 
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Setting � = −1 shows that this radial field 
vanishes at the surface for a perfect diamag­
net. The polar angle component B� outside, 

1 �
outB� = −  · (5.64) 
r �� � 3 � 

� a= 1 − · B sin �� (5.65)
� +3 r3 app 

has a value at the surface of 

3 
B� = Bapp sin �� (5.66)

� +3 

This field reaches a maximum along the 
equator, i.e., when � = �/2. The magnetic 
field lines around the sphere, which are 
sketched in Fig. 2.23, are closest together 
at this maximum field position along the 
equator. 

Equations (5.63) and (5.66) show that 
for the case � = −1 of perfect diamagnetism, 
the external field is parallel to the surface 
with no radial component. This field may be 
looked upon as inducing a current density 
in the surface of the sphere that circulates 
along circles of longitude that are oriented 
perpendicular to the z-axis, as illustrated in 
Fig. 2.30. These currents serve to cancel 
the B field that would otherwise be present 
inside the sphere. The presence of the factor 
sin � in Eq. (5.66) means that the current 
density along a particular longitude circle at 
the latitude � is proportional to the radius 
	 of the circle on which it flows, where 
	 = r sin �, as indicated in Fig. 5.16. This 
causes each such current element to produce 
the same magnitude of magnetic field within 
the sphere, as expected. 

We will see in Chapter 11, Section XI, 
that the results of this section apply directly 
to a sphere in the mixed state of a Type 
II superconductor for applied fields in the 
range 2

3 Bc1 < Bapp < Bc2. For applied fields 
below 2

3 Bc1 the Meissner state exists with 
� = −1. For a Type I superconductor in 
the applied field range 2

3 Bc <Bapp <Bc, the 
formalism applies with � chosen so that 

Figure 5.16 Coordinates for describing current flow 
along the surface of a sphere in a magnetic field applied 
along the z direction. 

Hin = Bc/�0. For the condition Bapp < 3
2 Bc 

we have � = −1, as will be clear from the 
discussion in Chapter 11, Section IV. 

XIV. CYLINDER IN A MAGNETIC 
FIELD 

On several occasions we have discussed 
the case of a long diamagnetic cylinder in 
an axially applied magnetic field, as shown 
in Fig. 12.1. In this “parallel geometry” the 
demagnetization factor N is zero. Inserting 
N = 0 in Eqs. (5.35)–(5.37) gives Eqs. (5.7)– 
(5.9), which we have already obtained for 
this case. These reduce to Eqs. (5.11)–(5.13), 
respectively, for the ideal Type I supercon­
ductor with � = −1. Since N = 0, the bound­
ary condition—i.e., that H is continuous 

Hin = Happ 

across the interface—leaves the H field 
undisturbed by the presence of the 
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Figure 5.17 Magnetization M (a) and shielding cur­
rent flow J (c) of a superconducting rod located in an 
applied magnetic field with the perpendicular geometry 
arrangement (b). 

superconductor. The fields outside the 
cylinder are then 

Bout = Bapp (5.67) 

Hout = Bapp/�0� (5.68) 

independent of position. 
An alternate arrangement that some­

times occurs in practice is the perpendicu­
lar geometry sketched in Fig. 5.17, whereby 
the cylinder axis remains in the z direction 
but the magnetic field is applied along x. 
For this case we see from Table 5.1 that 
N = 2

1 so that the fields inside are, from 
Eqs. (5.35)–(5.37), 

2�1 +�� 
Bin = Bapp 2 +� 

� (5.69) 

Hin = Bapp 

�0 

2 

2 +� 
� (5.70) 

M = Bapp 

�0 

2� 

2 +� 
� (5.71) 

� = 2�0�
0 
1 

2 −�exp 

� 

The calculation of the fields outside for 
this geometry is more complicated. There is 
no z dependence, so this is a two-dimensional 

5 MAGNETIC PROPERTIES 

problem in which Laplace’s equation is 
solved in cylindrical coordinates with the 
�2/�z2 term omitted, 

1 d �
 1 �2
 · 	 + · = 0� (5.72)
	 d	 �	 	2 ��2 

subject to two boundary conditions—first 
that H parallel to the surface and B per­
pendicular to the surface are both continu­
ous; second, that far from the sample B is 
in the x direction with the magnitude Bapp. 
The solution for the magnetic scalar potential 

�	��� is 

� a2 


out = −  	− · Bapp cos �� 
� +2 	 

(5.73) 

which is similar to the case of the sphere 
given in Eq. (5.58). The differences arise 
from the particular forms of the differential 
operators in Eqs. (5.60) and (5.72). The first 
term in this potential, 

	B cos � = xB �app app

corresponds to the potential of the uniform 
applied field, where x = 	 cos �. 

The radial component B	 of the field 
outside, 

�
outB	 = −  (5.74) 

� 2 � 
� a= 1 + · B cos �� (5.75)

� +2 	2 app 

has a value at the surface of 

2�� +1� 
B	 = Bapp cos �� (5.76)

� +2 

which vanishes for the perfect superconduc­
tor case of � = −1. The azimuthal compo­
nent B� outside, 

1 �
outB� = −  · (5.77) 

� a2 

= 1 − · B sin �� (5.78)
� +2 	2 app 
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becomes at the surface 

2 
B� = 

� +2 
Bapp sin �� (5.79) 

This surface field is zero along x and 
reaches a maximum value along the y direc­
tion, where � = �/2 and B�/�0 = Hin (cf. 
Eq. (5.70)). A sketch of the magnetic field 
lines around the cylinder would resemble that 
of Fig. 2.23. This case is equivalent to a 
two-dimensional problem with all of the field 
lines lying in the x� y-plane. 

For perfect diamagnetism, � = −1, we 
see from Eqs. (5.76) and (5.79) that immedi­
ately outside the cylinder the external mag­
netic field is parallel to the surface with no 
radial component. Longitudinal surface cur­
rents Jz flow along the surface in the +z 
direction on one side and in the −z direc­
tion on the other, forming closed loops at the 
ends that sustain the magnetization inside, as 
indicated in Fig. 5.17. These currents serve 
to cancel the B field that would otherwise be 
present inside the cylinder. The factor sin � 
in Eq. (5.78) causes the surface-current den­
sity to produce the uniform magnetic field of 
Eq. (5.69) inside the cylinder. 

XV. ac SUSCEPTIBILITY 

Earlier in the chapter we discussed sus­
ceptibilities determined in constant magnetic 
fields. Now let us consider what happens 
when the external field varies harmonically 
in time (D.-X. Chen et al., 1990c; vide 
Q. Y. Chen, 1992; Hein et al., 1992; Khode 
and Couach, 1992). An ac field B0 cos �t 
applied to the sample causes the magnetiza­
tion M�t� to trace out a magnetic hystere­
sis loop in the course of every cycle of the 
applied field. The initial loop for the first 
cycle will be different from all the other 
cycles, as suggested by the initial curves 
starting from the middle of the loops of 
Figs. 5.6 and 5.7, but after several cycles 
a state of dynamic equilibrium is attained 

in which the magnetization M�t� repeatedly 
traces out the same curve, perhaps of the 
types shown in Figs. 5.5 or 5.6, during every 
period of oscillation. 

If the magnetization were to change lin­
early with the applied field, the response 
would be M�t� = M0 cos �t in phase with the 
applied field, with M0 = �B0/�0. The shape 
of the loop causes M�t� to become distorted 
in shape and shift in phase relative to the 
applied field, causing it to acquire an out-of­
phase component that varies as sin �t. We  
can define the inphase dispersion � ′ and the 
out-of-phase (quadrature) absorption � ′′ sus­
ceptibilities (Matsumoto et al., 1991): 

� ′ = �0 M�t� cos �t d �t�  (5.80a) 
�B0 

� ′′ = �0 M�t� sin �t d �t�  (5.80b)
�B0 

Higher harmonic responses �n 
′ and �n 

′′ at 
the frequencies n�t have also been studied 
(Ghatak et al., 1992; Ishida and Gold­
farb, 1990; Ishida et al., 1991; Jeffries 
et al., 1989; Ji et al., 1989; Johnson et al., 
1991; Yamamoto et al., 1992). Note that 
the absorption susceptibility is proportional 
to the energy dissipation. Unfortunately, 
in practice it is not practical to measure 
M�t�, so that a different approach must be 
followed. 

The usual mutual inductance method for 
determining � ′ and � ′′ involves placing the 
sample in the coil of an LC tuned circuit 
to establish an alternating magnetic field 
B0 cos �t in the superconductor and to detect 
the voltage induced in a detector pickup coil 
coupled to the coil of the LC circuit. The 
presence of the sample changes the effec­
tive inductance and resistance of the LC 
circuit, and this change is reflected in the 
form of the current induced in the detec­
tor coil. The component of the induced sig­
nal which is in phase with the applied field 
is proportional to the dispersion � ′ , while 
the out-of-phase component is proportional 
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to the absorption � ′′ . These two responses 
can be separated instrumentally by a lock-in 
detector that compares the phase of the out­
put signal with that of the reference signal 
B0 cos �t. 

Figures 5.18 and 5.19 present the tem­
perature dependence of the dispersion � ′ and 
absorption � ′′ components of the ac suscep­
tibility determined for applied fields of the 
form 

Bapp = Bdc +B0 cos �t (5.81) 

at the frequency �/2� = 73 Hz. Figure 5.18 
shows the results for three alternating field 
amplitudes B0 with Bdc = 0, and Fig. 5.19 
illustrates the effect of simultaneously apply­
ing a dc field. We see from the figures that 
for a particular applied field, � ′ decreases 
continuously as the temperature is lowered, 
also that the drop in � ′ is sharper and 
occurs closer to Tc for lower values of 

5 MAGNETIC PROPERTIES 

B0 and Bdc. The peak in the � ′′-versus­
temperature curve is near the center of the 
sharp diamagnetic change in � ′, as expected, 
inasmuch as magnetic susceptibilities, like 
dielectric constants, obey Kramers–Kronig 
relations (cf. Chapter 15, Section II.E; Poole 
and Farach, 1971, Chapter 20). Recent 
data on HgBa2CuO4+� at high pressure 
exhibit this behavior (Klehe et al., 1992). 
These K–K relations permit � ′ to be cal­
culated from knowledge of the frequency 
dependence of � ′′���, and vice versa. 
Increasing the applied field shifts the � ′′ peak 
to lower temperatures and broadens it (D.-X. 
Chen et al., 1988; Goldfarb et al., 1987a, b; 
Ishida and Goldfarb, 1990; Puig et al., 1990; 
K. V. Rao et al., 1987). These �ac response 
curves depend only slightly on frequency 
below 1 kHz so that the magnetization is 
able to follow the variation in the applied 
field. 

Figure 5.18 Real (� ′) and imaginary (� ′′) components of the 
susceptibility of YBa2Cu3O7−� measured in the applied ac magnetic 
fields with �0Hac = 0�0424, 0.424, and 2.12 mT as a function of the 
temperature below Tc for a frequency of 73 Hz. For this experiment 
�0 Hdc = 0; the data were not corrected for the demagnetization 
factor (Ishida and Goldfarb, 1990). 
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Figure 5.19 Real (� ′) and imaginary (� ′′) components of the 
susceptibility of YBa2Cu3O7−� measured in superimposed ac and 
dc magnetic fields as a function of the temperature below Tc for 
a frequency of 73 Hz. The conditions were �0 Hac = 0�424 mT, 
�0 Hdc = 0, 0.424, 0.993, 2.98, and 8.48 mT; the data were not cor­
rected for the demagnetization factor (Ishida and Goldfarb, 1990). 

The ac susceptibility results can be 
thought of in terms of the temperature depen­
dence of the lower-critical field Bc1�T� (cf. 
Figs. 12.36 and 5.28). A low applied field 
at low temperature will be far below Bc1�T�, 
thus in Fig. 5.18 the � ′ curve for B0 = 0�0424 
approaches total dia-magnetic shielding. A 
high applied field near but still below Tc 

will exceed Bc1�T� so that � ′, will be smaller 
in magnitude and closer to its normal state 
value, as shown in Fig. 5.19. 

It is more customary to interpret ac 
susceptibility data in terms of one of the 
critical-state models that will be introduced 
in Chapter 13 (Chen and Sanchez, 1991) 
with a temperature-dependent critical current 
(Ishida and Goldfarb, 1990; Johnson et al., 
1991; LeBlanc and LeBlanc, 1992). Ji et al. 
(1989) assumed the two-fluid model temper­
ature dependence of Eq. (2.56). Here mag­
netic flux in the form of vortices alternately 
enters and leaves the sample as the mag­
netization cycles around the hysteresis loop. 

The maximum of � ′′ can be interpreted as 
occurring near the applied field Bapp = B∗ , 
where the critical current and internal field 
just reach the center of the sample. Sample 
geometry (Forsthuber and Hilscher, 1992) 
and size effects (Skumryev et al., 1991) have 
also been reported. 

Clem (1992) suggested that there are 
three main mechanisms responsible for ac 
susceptibility losses: (a) flux flow losses, 
which can also be called eddy current losses 
or viscous losses, arising in the absence of 
pinning centers, when time-varying currents 
arising from the oscillating applied magnetic 
field induce fluxons to move, (b) hystere­
sis losses occuring near pinning centers that 
impede the flux motion, as well as wherever 
vortices of opposite sense annihilate each 
other, and (c) surface pinning losses aris­
ing from a surface barrier to vortex entry 
and exit (Hocquet et al., 1992; Mathieu and 
Simon, 1988). An additional complication in 
granular superconductors is the presence of 
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both intergranular and intragranular shield­
ing currents. 

In a granular superconductor the ac sus­
ceptibility is expected to receive contribu­
tions from intergranular current flow in loops 
through Josephson junctions at the bound­
aries between grains as well as from intra-
granular shielding current flow within the 
individual grains (J. H. Chen, 1990a, b; Lam 
et al., 1990; Lera et al., 1992; Müller and 
Pauza, 1989). The � ′′-versus-T curves can 
exhibit both intergranular and intragranular 
peaks. Coreless Josephson vortices at the 
junctions and the more common Abrikosov 
vortices inside the grains alternately sweep 
in and out of the sample during each cycle 
around the hysteresis loop. 

XVI. TEMPERATURE-DEPENDENT 
MAGNETIZATION 

Diamagnetism is an intrinsic character­
istic of a superconductor. Superconductors 
exhibit other types of magnetic behavior as 
well, due to, for example, the presence of 
paramagnetic rare earth and transition ions 
in their structure. 

Susceptibility above Tc can have 
a temperature-independent contribution �0 

arising from the conduction electrons along 
with a temperature-dependent Curie–Weiss 
term due to the presence of para-magnetic 
ions, 

� = �0 + K�2 

3kB�T −�� 
(5.82) 

= �0 + C 

T −� 
� (5.83) 

where � is the magnetic moment of the para­
magnetic ions, K is a parameter that incor­
porates the concentration of para-magnetic 
ions and the conversion factor (1.86) for 
volume susceptibility, and C is the Curie 
constant. The Curie–Weiss temperature � is 
negative for ferromagnetic coupling between 

5 MAGNETIC PROPERTIES 

the magnetic ions and positive for antiferro­
magnetic coupling. Below Tc the large dia­
magnetism generally overwhelms the much 
smaller terms of Eq. (5.82), and they become 
difficult to detect. 

A. Pauli Paramagnetism 

The constant term �0 in Eq. (5.82) is 
often Pauli-like, arising from the conduc­
tion electrons (cf. Eq. (1.84)). We see from 
Eq. (1.83) that �Pauli provides an estimate 
of the density of states D�EF� at the Fermi 
level. 

B. Paramagnetism 

Most superconductors are paramagnetic 
above Tc. For example, it has been found 
(Tarascon et al., 1987b) that the susceptibil­
ity of YBa2Cu3O7−� above Tc has a tempera­
ture dependence that obeys the Curie–Weiss 
law 1.79, with � ≈ 0�3 �B/mole of Cu and 
� ≈ −20 to −30 K for oxygen contents � 
in the range 0–0.6. Removing more oxygen 
increases � and decreases �, but the sam­
ples no longer superconduct. These measured 
moments are less than the Cu2+ spin-only 
value of 1�9�B given by Eq. (1.82), 

� = g
S�S +1��1/2�B = 1�9�B� (5.84) 

where S = 2
1 and g ≈ 2�2. 

Oxide materials in which magnetic rare 
earths replace lanthanum or yttrium pro­
vide linear plots of 1/� versus T above 
Tc as shown by the solid curves in 
Fig. 5.20, indicating paramagnetic behav­
ior. For some compounds the temperature-
independent term �0 of Eq. (5.82) is zero. 
Vacuum annealing of the samples destroyed 
the superconductivity and gave linear Curie– 
Weiss plots below Tc, shown by the dashed 
curves in the figure, which provide � from 
the extrapolated intercept at T = 0. The mag­
netic moments � were very close to the val­
ues g�J�J + 1��1/2 expected from Eq. (1.80) 
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135 XVI TEMPERATURE-DEPENDENT MAGNETIZATION 

Figure 5.20 Temperature dependence of the reciprocal susceptibility �1/�� for a series 
of rare earth �R� substituted RBa2Cu3O7−� superconductors over the temperature range 
100–300 K in a field of 1 T (solid lines). Data for the corresponding nonsuperconducting vacuum-
annealed compounds (dashed lines) are shown for comparison. The linear behavior is indicative 
of paramagnetism (Tarascon et al., 1987b). 

for rare earth ions. The positive sign for � 
indicates that these ions interact antiferro­
magnetically, with the susceptibility behav­
ior above Tc corresponding to Fig. 1.15. The 
results suggest nearly complete decoupling 
of the Cu–O planes responsible for the super­
conducting properties from the planes con­
taining the rare earth ions responsible for 
the magnetic properties. Such decoupling of 
the magnetic and superconducting properties 
was observed in Chapter 3, Section X, for 
the Chevrel phases; it also occurs with the 
heavy fermions (Jee et al., 1990; Konno and 
Veda, 1989). 

The paramagnetic contribution to � aris­
ing from the Curie–Weiss law below Tc 

should appear as a rise in � or M near T = �. 
Such a rise is indeed noticeable at tem­
peratures low enough for the diamagnetic 
contribution to have already come close to 
the asymptotic value ��0� expected experi­
mentally at absolute zero. In practice, this 
paramagnetism is often too weak to observe. 
However, we see from that data shown in 

Fig. 5.21 that it is enhanced at high applied 
fields. In fact, the highest fields used, Bapp > 
1�5 T, are strong enough to overwhelm the 
diamagnetic contribution and drive the mag­
netization positive. This rise in M is also 
partly due to the decrease in the diamag­
netism as B is increased. The inset toapp 

this figure shows how the Meissner frac­
tion, which is the value of �fc expressed 
as a percentage of its value (−1) for per­
fect diamagnetism, depends on the applied 
field. 

The susceptibility above Tc of the series 
of compounds YBa2�Cu0�9A0�1�3O7−�, where 
A is a first transition series element, is an 
average of the contributions from the A and 
Cu ions. It has been found to obey Eq. (5.82) 
with an effective magnetic moment given by 
(Xiao et al., 1987a, b), 

�2 = 0�1�2 +0�9�2 (5.85)eff A Cu� 

where �A and �Cu are the moments of the 
A and Cu atoms, respectively. We see from 
Fig. 5.22 that the depression of Tc correlates 
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136	 5 MAGNETIC PROPERTIES 

Figure 5.21 Appearance of a paramagnetic contribution at the 
low-temperature end of a field-cooled magnetization determination. 
The contribution becomes dominant as the field Bfc was increased 
from 0.5 to 4 T (i.e., from 5 to 40 kG), as shown. The inset gives 
the Meissner fraction (MF) as a function of the applied field from 
0 to 0.5 T (Wolfus et al., 1989). 

moment, the lower the Tc value. Others have 
reported similar results (e.g., Maeno et al., 
1987; Oseroff et al., 1987). 

C. Antiferromagnetism 

Cuprate superconductors generally 
have a negative Curie–Weiss temperature 
� indicative of antiferromagnetic coupling 
(Chapter 1, Section XV). The undoped com­
pound La2CuO4 is an antiferromagnet below 
the Néel temperature TN ≈ 245 K, which 
is considerably lower than the tetragonal-
to-orthorhombic transition temperature 
Tt−o = 525 K. The copper spins are ordered 
in the CuO2 planes in the manner shown in 
Fig. VIII-18 of our earlier book (1988; cf. 
also Freltoft et al., 1988; Kaplan et al., 1989; 

Figure 5.22 Dependence of the transition tem- Thio et al., 1988; Yamada et al., 1989). 
perature Tc (—) and magnetic susceptibility at	 Antiferromagnetic spin fluctuations in these 
100 K (– – –) on the number of valence electrons for the	 CuO2 planes, called antiparamagnons, have 
series of compounds YBa2�Cu0�9 A0�1�3O7−�, where A is 
a 3d transition element, as shown (Xiao et al., 1987a).	 also been discussed (Statt and Griffin, 

1993). 
Compounds formed by replacing the 

with the size of the magnetic moment of yttrium in YBa2Cu3O7−� by a rare-earth ion 
the substituted transition ion—the larger the tend to align antiferromagnetically at low 
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temperature (Lynn, 1992). For example, the 
Er moments � = 4�8�B in ErBa2Cu3O7−� 

order in the a, b-plane with antiferromag­
netic coupling along a and ferromagnetic 
coupling along b and c, in the manner shown 
in Fig. 5.23. The neutron-magnetic reflection 
intensity plotted in Fig. 5.24 versus temper­
ature provided the Néel temperature TN ≈ 
0�5 K (Chattopadhyay et al., 1989; Lynn 
et al., 1989; Paul et al., 1989). Below TN ≈ 

Figure 5.23 Magnetic spin structure of ordered Er 
ions in antiferromagnetic ErBa2Cu3O7−� determined by 
neutron diffraction (Chattopadhyay et al., 1989) 

Figure 5.24 Temperature dependence of the inten­
sity of reflected neutrons from the ErBa2Cu3 O7−� sam­
ple of Fig. 5.23 showing the Néel temperature TN ≈ 
0�5 K far below Tc = 88 K (Chattopadhyay et al., 1989). 

137 

2�2 K, the Gd moments in GdBa2Cu3O7−� 

align along the c-axis with antiferromagnetic 
coupling to all Gd nearest neighbors, as illus­
trated in Fig. VIII-19 of our earlier work 
(1988; cf. also Dunlap et al., 1988; Mook 
et al., 1988; Niedermayer et al., 1993; Paul 
et al., 1988; Watson et al., 1989). Other mag­
netic ions, such as Dy, Ho, Nd, Pr, and Sm, 
when substituted for Y, also produce anti­
ferromagnetic ordering (Dy: Fischer et al., 
1988; Zhang et al., 1992; Ho: Fischer et al., 
1988; Nd: Yang et al., 1989; Pr: Kebede 
et al., 1989; Sm: Yang et al., 1989). For 
x < 6�4 the undoped compound YBa2Cu3Ox 

is an antiferromagnetic non-superconductor 
with aligned Cu ions, and TN ≈ 500 K for 
x ≈ 6 (Miceli et al., 1988; Rossat-Mignod 
et al., 1988; Tranquada, 1990; Tranquada 
et al., 1992). 

XVII. PAULI LIMIT AND UPPER 
CRITICAL FIELD 

An electron spin in a magnetic field has 
the Zeeman energy 

E = g�BBapp ·S� (5.86) 

1 
E± = ±  

2 
g �BBapp (5.87) 

shown in Fig. 5.25, where � = g�BS is the 
spin magnetic moment, g = 2�0023 for a free 
electron, and �B is the Bohr magneton. We 
will approximate the g-factor by 2, and, of 
course, S = 2

1 . If the Zeeman energy level 
splitting (Poole and Farach, 1987) indicated 
in the figure, 

E+ −E− = 2�BBapp� (5.88) 

becomes comparable with the energy gap 
Eg, the field will be strong enough to break 
up the Cooper pairs and destroy the super­
conductivity. The magnetic field BPauli that 
brings this about is called the Pauli limiting 
field. It has the value 

E
BPauli = √ g 

� (5.89)
2 2�B 
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Figure 5.25 Zeeman energy level splitting E+ −E− 
of electrons resulting in the breakup of Cooper pairs by 
becoming comparable to the energy gap 2� when Bapp 

reaches the value Bc2 . 

√ 
where the factor 2 comes from a more 
detailed calculation. Inserting the BCS gap 
ratio Eg = 3�53kBTc, this becomes 

BPauli = 1�83Tc� (5.90) 

The data in Table 5.2 demonstrate that this 
provides an approximation to experimentally 
determined upper-critical fields Bc2. This 
limiting field has also been called the param­
agnetic limit or the Clogston–Chandrasekhar 
limit (Chandrasekhar, 1962; Clogston, 1962; 
Pérez-González and Carbotte, 1992). 

For many Type II superconductors 
both the ratio Bc2�0�/Tc and the slope 

dBc2/dT at Tc are close to the Pauli value 
1.83 T/K, as shown by the data listed on 
Table 5.2 and plotted in Fig. 5.26. The zero-
temperature upper-critical fields Bc2�0� of 
high-temperature superconductors are gener­
ally too high to measure directly, but they can 
be estimated from the Pauli limit or from the 
empirical expression Bc2 ≈ �2Tc/3�dBc2/dT , 
which can be deduced from the data in 
Table 5.2. 

Upper critical fields Bc2�T� and their 
temperature derivatives dBc2/dT often 
depend on the orientation of the applied mag­
netic field. This is especially true for the 
high-temperature superconductors because 
of their planar structures. These types of 
critical fields and their temperature deriva­
tives at Tc are larger when the external field 
is applied perpendicular to the c-axis (i.e., 
parallel to the Cu–O planes) than when it 
is applied parallel to this axis, as shown in 
Fig. 5.27. This order is reversed for the lower 
critical field, as shown in Fig. 5.28; in other 
words, Bc1⊥c < Bc1�c � Bc2�c < Bc2⊥c. 

This reversal is associated with the 
reversal in the order of sizes of the penetra­
tion depths and coherence lengths given by 
Eq. (12.46), �c < �ab � �ab < �c. Therefore, 
we have, from Eqs. (12.51) and (12.52), the 
lower critical field ratio 

Bc1⊥c = �ab = ln �ab < 1 (5.91)
Bc1�c �c ln �c 

Table 5.2 Comparison of Upper-Crititcal Feild Bc2�0�, Slope dBc2/dT at Tc′ 
and Pauli Limiting Fields BPauli = 1�83Tc of Selected Type II Superconductors 

Tc Bc2 Bc2 /Tc −dBc2 /dT BPauli 2 
� 

dBc2 
� 

Material �K� �T� �T/K� �T/K� �T� 3 
Tc dT 

CeCu2Si2 (heavy fermion) 0.5 2.4 4.8 23 0.9 7.67 
UBe13 (heavy fermion) 0.9 6 6.7 44 1.7 26.4 
Nb(44%)–Ti (alloy) 9.3 15 1.6 2.4 17 14.9 
Gd0�2PbMo6S8 (Chevrel) 14 61 4.4 6.8 26 63.4 
Nb3Sn �A15� 18 28 1.6 2.5 33 30.0 
Nb3�Al0�75Ge0�25� �A15� 20.7 43.5 2.1 3.0 38 41.4 
Nb3Ge �A15� 23.1 38 1.7 2.3 42 35.4 
YBa2Cu3O7 (HTSC) 92 120–200 1.3–2.2 0.7–4.6 168 42.9–282 
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139 XVIII IDEAL TYPE II SUPERCONDUCTOR 

Figure 5.26 Relation between upper-critical field Bc2 and temperature for the best 
classical superconductors, some of which are used for fabricating commercial magnets. In 
the high-temperature limit �2/3Tc < T < Tc� many of the curves have a slope that is close 
to the value 1.83 T/K of the Pauli limit (dashed curve) (Wilson, 1983, p. 302). 

and its upper critical field counterpart 

Bc2⊥c = �ab > 1� (5.92)
Bc2�c �c 

where �ab and �c are given by Eqs. (12.48) 
and �ab > �c. These inequalities may be ver­
ified from the data in Tables 12.4 and 12.5. 

Tesanovic (1991), Tesanovic and Rasolt 
(1989), and Tesanovic et al. (1991) discussed 
the possibility of reentrant superconducting 
behavior in applied fields far exceeding Bc2. 

XVIII. IDEAL TYPE II 
SUPERCONDUCTOR 

A Type II superconductor has sev­
eral characteristic parameters, such as its 

Ginzburg–Landau parameter �, transition 
temperature Tc, energy gap Eg, coher­
ence length �, penetration depth �, upper-
critical field Bc2, lower critical field 
Bc1, thermodynamic critical field Bc, and 
critical current density Jc. We have seen 
how these various parameters are related 
by simple theoretical expressions, so that if 
any two of them are specified, the others 
can be estimated. This suggests defining an 
ideal isotropic Type II superconductor as one 
whose parameters have “ideal” relationships 
with each other. 

Consider such a Type II superconductor 
with � = 100 and Tc = 90 K. Its energy gap 
is obtained from the BCS relation (7.79) 

Eg = 3�528kBTc = 27�5 meV� (5.93) 
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Figure 5.27 Anisotropy in the upper-critical fields of YBa2Cu3O7. 
The initial slope dBc2�c/dT at Tc (– – –) is  −0�96 T/K, while its 
counterpart dBc2⊥c/dT at Tc is −4 T/K (Moodera et al., 1988). 

Figure 5.28 Anisotropy in the lower-critical fields of 
YBa2Cu3O7. The initial slope dBc1�c /dT at Tc is −1�4 mT/K, and 
that of dBc1⊥c/dT at Tc is −0�40 mT/K. The low-temperature 
extrapolations give 53 ± 5 mT for the applied field parallel to c 

and 18 ±2 mT for Bapp perpendicular to c. Yeshuran et al. (1988) 
obtained the 6 K values, Bc1�c = 90 ± 10 mT (not shown) and 
Bc1⊥c = 25±5 mT (shown as × with vertical error bar). The dashed 
curves are BCS fits to the data (Krusin-Elbaum et al., 1989). Recall 
that 10G = 1 mT.  
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The Pauli limit (5.90) provides an estimate 
of the upper-critical field, 

Bc2 = 1�83Tc = 165 T� (5.94) 

Equation (12.9) gives the coherence length �, 

� �1/2

0� = = 1�26 nm� (5.95)

2�Bc2 

and from the definition (12.6) of the 
Ginzburg–Landau parameter we obtain the 
penetration depth �, 

� = �� = 126 nm� (5.96) 

Equations (12.10) and (12.11), respectively, 
give the thermodynamic and lower critical 
fields, 

Bc = √ Bc2 = 1�16 T� (5.97)
2 � 

Bc ln � 
Bcl = √ = 37�9 mT� (5.98)

2 � 

The critical current density Jc at 0 K is given 
by Eq. (2.51): 

Jc = Bc/�0 � = 6�95 ×108A/cm2� (5.99) 

This approximates what has been called the 
depairing current density. 

Jdepair = 10Bc/4���0 (5.100) 

= 5�53 ×108A/cm2 (5.101) 

where for YBaCuO the thermodynamic field 
Bc ≈ 1 T, penetration depth � ≈ 0�2 �m, and 
Tc ≈ 92 K. These “ideal” values are good 
approximations to the experimentally deter­
mined values for typical high-temperature 
superconductors. 

XIX. MAGNETS 

Superconducting magnet design requires 
simultaneously achieving high critical fields, 

141 

high critical currents, and suitably mal­
leable wire. The slope dBc2/dT ≈ −2 T/K of  
YBaCuO is typical, and gives a critical field 
of 30 T at the temperature of liquid nitro­
gen, as shown in Fig. 12.8, and in Table I-2 
of our previous work (Poole et al., 1988). 
This high critical field is for the case of the 
externally applied field B aligned perpendi­
cular to the c-axis, i.e., parallel to the crys­
tallographic conducting planes. When Bapp 

is parallel to the c-axis, the critical field is 
four or five times lower, as already noted in 
Section XVII. 

The standard magnet materials Nb3Sn 
and Nb–Ti have critical fields of about 24 T 
and 10 T, respectively, at 4.2 K, which are 
not much lower than that of YBaCuO at 
77 K. Operating YBaCuO at temperatures 
much below 77 K will, of course, provide 
higher critical fields, and TlBaCaCuO, with 
its much higher Tc (125 K), is even better 
at 77 K. The problem is to obtain high-Tc 

superconductors that can carry large trans­
port currents and in addition, have the proper 
ductility and possess the appropriate mechan­
ical properties. This, however, has yet to be 
achieved. Vortex pinning must also be opti­
mized to control flux creep. 

A better approximation than Eq. (5.99) 
to the upper limit of the critical current 
density is given by the Ginzburg–Landau 
expression 

� � ��3/22 T 
Jcmax = 1 − Jdepair � (5.102)

3 Tc 

This gives Jc ≈ 3 × 108 A/cm2 at 0 K and 
Jc ≈ 1�2 × 107 at 77 K, respectively. Jiang 
et al. (1991) reported Jc ≈ 1�3 × 109 A/cm2 

for microbridges of 

YBa2Cu3O7−� 

films. Achievable critical currents are typi­
cally one-tenth the limiting values calculated 
from Eq. (5.102), as indicated by the data in 
Table I-2 of our earlier work (Poole et al., 
1988). 
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PROBLEMS 

1. Show that a superconductor containing a 
volume Vex of voids which cannot store 
any flux has the following ZFC and FC 
susceptibilities and porosity: 

Vs +Vh +Vc�zfc = −  � 
Vs +Vh +Vc +Vex 

Vs +Vc�fc = −  � 
Vs +Vh +Vc +Vex 

Vh +Vc +VexP = � 
Vs +Vh +Vc +Vex 

2. A	 granular, 10-mg sample of 
YBa2Cu3O7−� has a density of 
3�19 g/cm3 and the susceptibilities 
�zfc = −0�8 and �fc = −0�4. Find the 
porosity and the volumes of the purely 
superconducting, normal material, open 
hole-like, enclosed cavity-like and 
non-flux storing portions of the sample. 
Assume that there is no normal material 
present. 

3. Show	 that the measured magnetic 
moment is given by Eq. (5.21), 

�0 �fc =− �Vs +Vc�Bapp 

+ �Bfc −Bapp�Vh� 

when field cooling is carried out in a 
magnetic field Bfc that differs from the 
field Bapp applied for the measurement. 

4. Show that the sample of Problem 1 has 
the following superconducting, open-
hole, closed-cavity, and non-flux storing 
volumes given by, respectively, 

Vs = �1 −P�VT � 

Vh = −��zfc −�fc�VT � 

Vc = �P −1 −�fc�VT � 

Vex = �1 +�zfc�VT � 

5	 MAGNETIC PROPERTIES 

where, of course, �zfc and �fc are both 
negative. 

5. Show that Eqs. (5.43) and (5.45) both 
have the limiting behavior N� → 1/3 as  
� → 0. 

6. Show that	 �1 and �2 of Table 5.1 are 
given by 

1 c 
�1 = � � 

2 a 

4 c 
�2 = 1 − � 

15 a 

7. Show that	 �3 and �4 of Table 5.1 are 
equal to 

4 a 
�3 = 1 − � 

15 c 

1 c2 a2 

�4 = 
2

ln 2 
a2 

−1 
c2 

� 

8. Show	 that the expressions that were 
deduced in this chapter for the mag­
netic fields inside and outside a sphere 
obey the boundary conditions (1.73) and 
(1.74) at the surface r = a. 

9. Show	 that the expressions that were 
deduced in this chapter for the magnetic 
fields inside and outside a cylinder in 
a perpendicular magnetic field obey the 
boundary conditions (1.73) and (1.74) at 
the surface. 

10. Show	 that the Curie law, which 
is based on the assumption that 
g�BBapp/kBT � 1, is still applicable 
for the highest-field, lowest-temperature 
data of Fig. 5.26. What is the value of the 
ratio Bapp/T for which g�BBapp/kBT = 1 
for g = 2�0? 

11. Show that for the condition	 �
 = 0, a 
plot of � ′′ versus � ′ over the frequency 
range �0 ≤ � ≤ 
  is a semicircle of 
radius 1 �0. Identify the five points at 2 
which ��−�0�� is equal to 0, 1

2 , 1, 4,  
and 
 on the semicircle. How would the 
plot change for �
 = 4

1 �0? 
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6 
Ginzburg–Landau


I. INTRODUCTION 

In Chapter 4 we presented the thermo­
dynamic approach to the phenomenon of 
superconductivity. We used the Gibbs free 
energy since in the absence of a magnetic 
field the Gibbs free energy is continuous 
across the superconducting-to-normal-state 
transition. The situation below the transi­
tion temperature Tc was handled by assum­
ing a known magnetization and a known 
critical field, which were then used to cal­
culate the various thermodynamic functions. 
This approach cannot really be called a the­
ory because it simply incorporates known 
properties of superconductors into a standard 
treatment of thermodynamics in the presence 
of an applied magnetic field. 

Theory


To gain more understanding of the 
phenomenon of superconductivity let us 
examine some simple but powerful theories 
that have been developed in efforts to explain 
it. In the present chapter we will consider 
the phenomenological approach proposed by 
Ginzburg and Landau (GL) in 1950. This 
approach begins by adopting certain simple 
assumptions that are later justified by their 
successful prediction of many properties of 
superconducting materials. The assumptions 
describe superconductivity in terms of a 
complex order parameter � the physical sig­
nificance of which is that ���2 is proportional 
to the density of super electrons. The order 
parameter is minimally coupled to the elec­
tromagnetic field, and in the presence of a 
magnetic field B = � × A the momentum 
operator −i��� becomes �−i���+ e ∗A�, 
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where e ∗ is the charge associated with the 
“super electrons.” The free energy is a mini­
mum with respect to variations of both � and 
A. The London equations, dating from 1935, 
follow as a natural consequence of the GL 
theory, as we show in Section IX (London 
and London, 1935). 

In the next chapter we will exam­
ine the more fundamental Bardeen–Cooper– 
Schrieffer (BCS) microscopic theory that 
first appeared in 1957. Soon after this the­
ory was published, its correct prediction of 
many observable properties of superconduc­
tors was recognized. The earlier GL the­
ory, on the other hand, was not widely 
accepted outside the Soviet Union until 
Gor’kov showed in 1959 that it is derivable 
from the BCS theory. 

This chapter will concentrate on the 
case of isotropic superconductors. Formula­
tions of the GL theory and of the London 
Model are also available for the anisotropic 
case (e.g., Coffey, 1993; Doria et al., 1990; 
Du et al., 1992; Klemm, 1993, 1994; Wang 
and Hu, 1991), and more specifically for the 
cuprates (Horbach et al., 1994; Schneider, 
et al., 1991; Wilkin and Moore, 1993). Time 
dependent processes have also been treated 
(Malomed and Weber, 1991; Stoof, 1993). 

II. ORDER PARAMETER 

Many phenomena in nature, such as 
the boiling of liquids and ferromagnetism, 
involve a transition from an ordered to a 
disordered phase. Each of these transitions 
can be characterized by an appropriate order 
parameter that has one value in the high-
temperature disordered state and another in 
the low-temperature ordered state. The order 
parameter may be thought of as charac­
terizing the extent to which the system is 
“aligned.” 

In the case of boiling, the order param­
eter might be the density, which is high in 
the liquid state and low in the gaseous state. 

6 GINZBURG–LANDAU THEORY 

The magnetic order parameter is often taken 
as the magnetization; it is zero in the high-
temperature paramagnetic region, where the 
spins are randomly oriented, and nonzero at 
low temperatures, where the spins are ferro­
magnetically aligned. 

In the normal conduction state the elec­
tric current is carried by a Fermi gas of 
conduction electrons, as was explained in 
Chapter 1. The GL theory assumes that in 
the superconducting state the current is car­
ried by super electrons of mass m ∗, charge 
e ∗, and density n ∗ which are connected by 
the relationships 

m ∗ = 2m� (6.1a) 

e ∗ = ±2e� (6.1b) 

∗ 1 
ns = ns (6.1c)

2 

with their electron counterparts m, e, and ns, 
respectively. The actual “mass” here is the 
effective mass, and it need not be twice the 
mass of a free electron. The charge is neg­
ative for electron-type charge carriers, as is 
the case with many classical superconduc­
tors, and positive for hole conduction, as with 
most of the high-temperature superconduc­
tors. The super electrons begin to form at 
the transition temperature and become more 
numerous as the temperature falls. Therefore, 
their density ns 

∗ is a measure of the order 
that exists in the superconducting state. This 
order disappears above Tc, where n ∗ s = 0, 
although fluctuations in ns 

∗ can occur above 
Tc. More generally ns 

∗ ≤ 1
2 ns, and Eq. (6.1c) 

gives us the limiting value of n ∗ s for T = 0. 
The Ginzburg–Landau theory, to be 

described in the following section, is formu­
lated in terms of the complex order parameter 
��r�, which may be written in the form of 
a product involving a phase factor � and a 
modulus ���r��, 

��r� = ���r��ei� (6.2) 
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III GINZBURG–LANDAU EQUATIONS 

Figure 6.1 Temperature dependence of the order 
parameter ���2 showing its value ��0�2 at T = 0, and 
the linear behavior (---) near Tc, which extrapolates to 
the ordinate value a0 /b0. This figure is drawn under the 
assumption ��0�2 = 4

1 a0/b0 to agree with Fig. 2.44. 

whose square, ���2, is the super electron 
density, 

n ∗ s = ���2	 (6.3) 

The parameter � is zero above Tc and 
increases continuously as the temperature 
falls below Tc, as shown in Fig. 6.1. 

III. GINZBURG–LANDAU 
EQUATIONS 

We saw in the previous chapter that the 
thermodynamic properties of the supercon­
ducting state can be described in terms of the 
Gibbs free energy density G. Ginzburg and 
Landau assumed that, close to the transition 
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temperature below Tc, the Gibbs free energy 
per unit volume Gs��� may be expanded as 
a local functional of the order parameter, 

Gs��� =Gn + 1 
d3r 

1 

V 2m ∗ 

× �−i�� + e ∗A�� ∗ · �i�� + e ∗A�� 

1 + B2�r� 
2
0 

−
0H�r� ·M�r�+a�� ∗ 

+ 1 
b�� ∗ �� ∗ + · · ·  � (6.4)

2 

where Gn is the free-energy density of the 
normal state, A is the magnetic vector poten­
tial, and a and b are functions of the tem­
perature only. If the material is normal, B = 

0 H� M = 0, and the magnetic contribu­
tion is 2

1 
0 H
2. In regions of perfect super­

conductivity B = 0 and M = −H, and the 
magnetic contribution is 
0 H

2. In equilib­
rium the superconductor distributes currents 
in such a way as to minimize the total free 
energy. 

The assumption is made that over a 
small range of temperatures near Tc the 
parameters a and b have the approximate 
values 

[ ] 

a�T� ≈ a0 

T 

Tc 

−1 � (6.5a) 

b�T� ≈ b0� (6.5b) 

where a0 and b0 are both defined as positive, 
so that a�T� vanishes at Tc and is negative 
below Tc. 

To determine ��r� we require that the 
free energy be a minimum with respect 
to variations in the order parameter. Tak­
ing the variational derivative (Arfken, 1985, 
Chapter 17) of the integrand in (6.4) with 
respect to � ∗ with � held constant gives the 
first GL equation: 

1 
�i�� + e ∗A�2�+a�+b���2� = 0	 

2m ∗
(6.6) 
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In the London-Landau gauge (sometimes 
called the Coulomb or radiation gauge) 

� ·A = 0� (6.7) 

the first GL equation can be expanded into 
the form 

1 
��2�2�−2i�e ∗A ·��− e ∗2A2�� 

2m ∗

−a�−b���2� = 0	 (6.8) 

The free energy is also a minimum with 
respect to variations in the vector potential 
A, where 

B = � ×A	 (6.9) 

Taking the variational derivative of G with 
respect to A we obtain the second GL equa­
tion: 

∗ 
� × �� ×A�+ i�e 

�� ∗ ��−��� ∗ � 
2m ∗
∗2 

+ e 
∗ A���2 = 0	 (6.10) 

m 

In Cartesian coordinates this equation, 
expressed in terms of the London-Landau 
gauge (6.7), can be simplified by writing 
−�2A in place of � × �� ×A� (see Prob­
lem 7). If we substitute the expression for B 
from Eq. (6.9) into the Maxwell expression 
(Ampère’s law), 

� ×B = 
0J� (6.11) 

and compare the result with Eq. (6.10), we 
find the following proper gauge-invariant 
expression for the current density: 


0J =−  i�e ∗ 
�� ∗ ��−�� ∗ ��− e ∗2 

A���2	 
2m ∗ m ∗

(6.12) 

Thus the Ginzburg-Landau theory gives 
us two coupled differential equations, (6.8) 
and (6.10), involving the order parameter 

6 GINZBURG–LANDAU THEORY 

and vector potential, which can be solved to 
determine the properties of the superconduct­
ing state. For most applications the equations 
must be solved numerically. However, there 
are some simple cases in which exact closed-
form solutions can be found, and others in 
which useful approximate solutions can be 
obtained. We will examine some of these 
cases, and then transform the GL equations 
to a normalized form and discuss the solu­
tion for more complex cases. When these 
equations are written in a normalized form, 
the coherence length, penetration depth, and 
quantum of magnetic flux, called the fluxoid, 
appear as natural parameters in the theory. 

IV. ZERO-FIELD CASE DEEP INSIDE 
SUPERCONDUCTOR 

To get a feeling for the behavior of �, 
let us first consider the zero-field case �A = 
0� with homogeneous boundary conditions 
(zero gradients, �2� = 0). The absence of 
gradients corresponds to a region deep inside 
a superconductor where the super electron 
density does not vary with position. Integra­
tion of Eq. (6.4) can be carried out directly 
for this zero field–zero gradient case, to give 
for the Gibbs free energy density Gs of the 
superconductor 

Gs = Gn +a���2 + 1 
b���4� (6.13)

2 

where from Eqs. (6.5) b is positive and a 
negative below Tc. The GL equation (6.8) 
provides the minimum for this free energy, 

a�+b���2� = 0� (6.14) 

and all of the terms of the second GL 
equation (6.10) vanish. The phase of � is 
arbitrary, so we can take � to be real. Equa­
tion (6.14) has one solution, � = 0, corre­
sponding to the normal state and one solution 
for a < 0 at  T < Tc, with lower free energy: 

���2 =−  a = �a� 
	 (6.15)

b b 
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147 IV ZERO-FIELD CASE DEEP INSIDE SUPERCONDUCTOR 

Using the approximations (6.5a) and (6.5b) 
for a and b, respectively, we have 

���2 = a0 1 − T � (6.16)
b0 Tc 

and this linear temperature dependence is 
shown in Fig. 6.1 for the region near T ≈ Tc. 
For lower temperatures ���2 is expected to 
deviate from linearity on its approach to its 
0 K value, ��0�2 < a0/b0, as shown in the 
figure. From Eq. (6.3) we have for the super 
electron density 

∗ a0 T 
ns = 1 − � (6.17)

b0 Tc 

which agrees with Eq. (2.69) in the super­
conducting region near Tc. 

When the expressions for � from 
Eqs. (6.15) and (6.16) are substituted into 

Eq. (6.13), we obtain for the minimum Gibbs 
free energy density 

1 
( 

a2 ) 

Gs = Gn − 
2 b 

1 a2 T 
2 

= Gn − 0 1 − � (6.18)
2 b0 Tc 

where 1
2 �a

2/b�, called the condensation 
energy per unit volume of the super 
electrons, is the energy released by trans­
formation of normal electrons to the super 
electron state. The condensation energy can 
be expressed in terms of the thermodynamic 
critical field Bc as follows: 

1 a2 B2 

= c 	 (6.19)
2 b 2
0 

Figure 6.2 presents a plot of Gs −Gn 

from Eq. (6.13) versus � for the three 
ratios of temperatures T/Tc = 1, 0.9, and 0.8. 

Figure 6.2 Dependence of the difference Gs −Gn between the Gibbs free energy in the normal and super­
conducting states on the order parameter �. (a) Normalized plots for T/Tc = 1, 0.9, and 0.8, and (b) Plot for 
T/Tc = 0	85 showing the minimum free-energy difference Gs −Gn = a2 /2b, which occurs for � = ��a�/b�1/2, and 
the zero, Gs −Gn = 0, at � = �2�a�/b�1/2. 
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The minimum for each curve occurs at � = 
��a�/b�1/2 given by Eq. (6.15), and Gs −Gn = 
0 at  � = �2�a�/b�1/2. These coordinates for 
the minimum and crossover points of the 
T/Tc = 0	8 curve are indicated in the figure. 
The equilibrium superconducting state exists 
at the minimum of each curve. The minimum 
gets deeper, and the order parameter � for 
the minimum increases, as the temperature 
is lowered, as shown. The magnitude of the 
free-energy minimum at 0 K cannot be writ­
ten down because the temperature depen­
dence of Eq. (6.16) can only be a good 
approximation near Tc. 

V. ZERO-FIELD CASE NEAR 
SUPERCONDUCTOR BOUNDARY 

Next we consider the case of zero field 
with inhomogeneous boundary conditions, 
which means that gradients can exist. Setting 
A = 0 in the second GL equation (6.10) gives 

� ∗ �� = ��� ∗ � (6.20) 

which means, from Eq. (6.2), that the phase 
� of the order parameter is independent of 
position. The first GL equation, Eq. (6.8), 
with A set equal to zero, provides us with a 
differential equation for the order parameter: 

�
2 

− �2�+a�+b���2� = 0	 (6.21)
2m ∗ 

6 GINZBURG–LANDAU THEORY 

Since the phase of the order parameter is 
constant we select � to be real. 

We assume that the right half-space, 
x > 0, is filled with a superconductor and 
that the left half-space, x < 0, is a vacuum or 
normal material, as shown in Fig. 6.3. There­
fore, � is a function of x, the gradient oper­
ator � only has an x component, and we can 
write Eq. (6.21) in one-dimensional form: 

�
2 d2� − +a�+b���2� = 0	 (6.22)

2m ∗ dx2 

When we change variables by letting 
( )1/2�a� 

� = f� (6.23)
b 

the normalized order parameter f satisfies 
the “nonlinear Schrödinger equation” 

�
2 d2f · +f�1 −f 2� = 0	 (6.24)

2m ∗�a� dx2 

If we define the dimensionless variable � as 
x 

� = 
� 

� (6.25) 

where 

�2 = �
2 

2m ∗�a� � (6.26) 

Eq. (6.24) assumes the simplified dimension­
less form 

d2f +f�1 −f 2� = 0	 (6.27)
d�2 

Figure 6.3 Interface between a normal material on the left �x < 0� 

and a superconductor on the right �x > 0�. 
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149 VI FLUXOID QUANTIZATION 

It may be easily verified by direct substitu­
tion that Eq. (6.27) has the solution 

f = tanh √ 	 (6.28)
2 

This can be written in terms of the original 
variable �, 

x 
� = �� tanh √ � (6.29)

2� 

where 

�a� )1/2 

�� = � (6.30) 
b 

with �→ 0 as  x→ 0 and �→�� as x→�. 
Therefore, � is the characteristic length over 
which � can vary appreciably. The param­
eter �, called the coherence length, is one 
of the two fundamental length scales associ­
ated with superconductivity. Its significance 
is shown graphically in Fig. 6.4, in which we 
see that � is close to �� far inside the super­
conductor, is zero at the interface with the 
normal material, and has intermediate values 
in a transition layer near the interface with a 
width on the order of �. 

Substituting Eq. (6.20) in Eq. (6.12) 
shows that for A = 0 the current density J 

Figure 6.4 Dependence of the order parameter ��x� 

on distance x inside a superconductor. The order param­
eter is large for x > �, where � is the coherence length. 

vanishes. This is to be expected since from 
the Maxwell expression (6.11) we know that 
electric currents cannot exist if there are no 
associated magnetic fields present. 

The BCS theory presented in the next 
chapter gives an alternate expression 

�VF�P = 
0	1804�VF = 

kBTC 

For what is called the BCS or Pippard coher­
ence length, where 2� = Eg is the super­
conducting energy gap, and VF is the Fermi, 
velocity. The second equation comes from 
the BCS dimensionless ratio. 

2� = 3	528 
kBTC 

VI. FLUXOID QUANTIZATION 

Now that we have determined the order 
parameter � for the case B = 0, we will pro­
ceed to investigate the situation when there is 
an applied magnetic field. In the presence of 
such a field an interesting result follows from 
Eq. (6.12). If we write ��r� as the product of 
a modulus and a phase factor, as in Eq. (6.2), 
the gradient of � will have the form 

�� = i���+ ei�� ���r��� (6.31) 

and the total current from Eq. (6.12) will be 
given by 

�e ∗ e ∗2 


0J = ∗ ���2��− ∗ ���2A	 (6.32) 
m m 

Dividing Eq. (6.32) by �e ∗���2/m∗ and tak­
ing the line integral around a closed con­
tour gives 

∗ m 

e ∗2 

∮ 
0J 

���2 
·d1 

= � 
∗ 

∮ 
�� ·d1 − 

∮ 
A ·d1	 (6.33) 

e 
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For the order parameter to be single valued 
the line integral over the phase � around a 
closed path must be a multiple of 2
, 

�� ·d1 = 2
n� (6.34) 

where n is an integer. Equation (6.33) can 
now be written 

m ∗ ∮ 
0J ∮ 
·d1 + A ·d1 = n�0� (6.35) 

e ∗2 ���2 

where the quantum of flux �0 has the value 

h 
�0 = ∗ � (6.36) 

e 

in agreement with experiment (e.g., Cabrera 
et al., 1989; Gough et al., 1987; S. Hasegawa 
et al., 1992). 

It is convenient to express the line inte­
gral of A in Eq. (6.35) in terms of the mag­
netic flux � through the closed contour. 
Applying Stokes’ theorem we find 

A ·d1 = B ·dS (6.37) 

= �� (6.38) 

and Eq. (6.35) becomes 

m ∗ ∮ 
0J ·d1 +� = n�0	 (6.39) 
e ∗2 ���2 

This expression is valid for all superconduc­
tors, and can be applied to the intermediate 
and mixed states described in Chapter 11. 
Equation (6.39) expresses the condition 
whereby the sum of the enclosed flux � and 
the line integral involving the current density 
J is quantized. 

We will see later that for Type II super­
conductors quantized flux occurs in vortices, 
which have a core region of very high field, 
and a field outside which decreases with dis­
tance in an approximately exponential man­
ner far from the core. Figure 6.5 sketches 
two such vortices. When a contour is taken 

6 GINZBURG–LANDAU THEORY 

Figure 6.5 Integration paths for Eq. (6.35) encir­
cling no cores �n = 0�, encircling one core �n = 1�, and 
encircling two cores �n = 2�. 

in a region of space that contains vortices, 
the integer n in Eq. (6.39) corresponds to 
the number of cores included within the path 
of integration. Figure 6.5 shows contours 
enclosing n = 0� 1, and 2 core regions. Here 
we are assuming that all the vortices have 
the same polarity, i.e., the magnetic field 
points in the same direction in all the vor­
tices. Equation (6.39) is easily generalized to 
include the presence of positively and nega­
tively directed vortices. 

The Little–Parks (1962, 1964) experi­
ment demonstrated this flux quantization by 
measuring the magnetic field dependence of 
the shift in Tc of a thin-walled superconduct­
ing cylinder in an axial applied field. 

VII. PENETRATION DEPTH 

In Section V we found how the order 
parameter changes with distance in the 
neighborhood of the boundary of a super­
conductor, and this provided us with the 
first fundamental length scale—the coher­
ence length �. In this section we will inves­
tigate the behavior of the internal magnetic 
field in the neighborhood of a boundary 
when there is an applied field outside. This 
will give us the penetration depth �L, the 
second of the two fundamental length scales 
of superconductivity. 

We begin by returning to the semi-
infinite geometry of Fig. 6.3 with a uniform 
magnetic field oriented in the z direction. 
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In the London-Landau gauge (6.7) the vec­
tor potential for a constant magnetic field B0 

outside the superconductor �x < 0� is 

A = A �x�ĵ (6.40) y

with 

A �x� = xB0 +A0 x < 0� (6.41)y

where the constant A0 is selected for con­
tinuity with the solution Ay�x� inside the 
superconductor, as shown in Fig. 6.6. This 
constant does not affect the field B�x�. 

In order to determine how the phase of 
the order parameter varies throughout the 
interior of the superconductor, let us evalu­
ate the line integrals of Eq. (6.35) along a 
rectangular contour in the x,y- plane that is 
closed at x = x0 and x1 → �, as indicated 
in Fig. 6.7. This is done for a contour of 
arbitrary width L, as shown. Since A is a 

vector in the y direction, it is perpendicular 
to the upper and lower horizontal parts of 
the contour, which are along x, so that the 
integral of A ·dl vanishes along these paths. 
We also observe that no current flows into 
the superconductor, so that Jx = 0 and the 
line integrals of J ·dl along these same upper 
and lower horizontal paths vanish. When we 
take the limit x1 →� the two line integrals 
along this vertical x1 path vanish because 
A and J are zero far inside the supercon­
ductor. As a result only the line integrals 
along the x0 vertical path contribute, and they 
may be written down immediately because 
there is no y dependence for the fields and 
currents: 

m ∗J �x0� 
L · y +A �x0� = n�0	 (6.42) 

e ∗2���x0��2 y

Since the width L is arbitrary and n is quan­
tized, it follows that n = 0. Then, from the 

Figure 6.6 Dependence of the vector potential A(x) on distance x for the case of Fig. 6.3. 
A(x) depends linearly on x outside the superconductor (left), where there is a constant applied 
magnetic field, and decays exponentially inside the superconductor (right), becoming very 
small for x � �L, where �L is the London penetration depth. 
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Figure 6.7 Integration path inside a superconductor 
for determining the phase � of the order parameter �. 

quantizationcondition(6.34)andthe arbitrari­
ness of the path, we conclude that the phase 
� of the order parameter (6.2) is constant 
everywhere throughout the superconductor, 
and we set it equal to 0. Furthermore, since 
x0 in Eq. (6.42) is arbitrary, it follows that 

e ∗2���x��2 

Jy�x� = Ay�x�� (6.43)∗ m 

which tells us how J is related to A. 
To determine the x dependence of Ay, 

note that Eq. (6.20) is valid for a constant 
phase and that the second GL equation (6.10) 
reduces to the expression 

d2 
0e ∗2���x��2 

A �x� = A �x�	 (6.44)
dx2 y m ∗ y

We seek to solve this equation far enough 
inside the superconductor, x � �, so that the 
order parameter attains its asymptotic value, 
� → ��, independent of x. It is convenient 
to define the London penetration depth �L, 
the second of the two fundamental length 
scales of a superconductor: 

∗ 
�2 = 


0e ∗
m 
2����2 

	 (6.45)L 

This permits us to write Eq. (6.44) in the 
form 

d2 Ay�x� 

dx2 
Ay�x� = 

�L
2 � (6.46) 

6 GINZBURG–LANDAU THEORY 

which has a simple exponential solution 
inside the superconductor, 

A �x� = A0 exp�−x/�L� x > 0� (6.47)y

for the case � � �L which is plotted in 
Fig. 6.6. The preexponential factor A0 makes 
A �x� from Eqs. (6.41) and (6.47) match con­y

tinuously across the boundary at x = 0. 
In writing Eq. (6.46) we implicitly 

assumed that the London penetration depth 
�L is greater than the coherence length �. 
For distances from the surface x in the range 
0 < x  � � we know from Eq. (6.29) and the √ 
power series expansion of tanh�x/ 2�� for 
small values of the argument that 

x 
��x� ≈ ��√ 0 � x � �� (6.48)

2� 

so that ��x� is much less than ��. In this 
range the effective penetration depth exceeds 
the London value (6.45), so Ay�x� decays 
more gradually there, as indicated in Fig. 6.6. 

To obtain the fields from the potentials 
we apply the curl operation B =� ×A. Only 
the z component exists, as assumed initially, 

Bz�x� = B0 x < 0� (6.49) 

−A0Bz�x� = exp�−x/�L �  � < x < �� 
�L 

= B0 exp�−x/�L� (6.50) 

where A0 =−�LB0 from the boundary con­
dition at the surface �x = 0�. The dis­
tance dependences of Eqs. (6.48) and (6.49), 
together with the more gradual decay in the 
range 0 < x < �, are shown in Fig. 6.8. We 
conclude that for this case the applied field 
has the constant value B0 outside the super­
conductor, decays exponentially with dis­
tance inside, and becomes negligibly small 
beyond several penetration depths within, 
as shown. 

From Eq. (6.43) we find that far inside 
the superconductor 


0�
2
LJy�x� =−Ay�x� � � x < �� 

(6.51) 
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153 VII PENETRATION DEPTH 

Figure 6.8 Exponential decay of a constant applied magnetic field 
Bz�x� inside a superconductor for the case �L > �. Note the small devi­
ation from exponential behavior within a coherence length � of the 
surface. 

as ��x� → ��, and hence that Jy�x� which is the same as Ay�x� of Eq. (6.47). 
also satisfies Eq. (6.46) with the distance In the range 0 < x < �, which is near the 
dependence surface, we see from Eq. (6.43) that Jy�x� is 

Jy�x� = A0 exp�−x/�L� less than this value, as indicated in Fig. 6.9. 

0�

2
L Thus, we see that Bz�x� decays less and that 

= J0 exp�−x/�L�  � < x < �� the current density Jy�x� has a magnitude less 
(6.52) than its value beyond the coherence length. 

Figure 6.9 Dependence of the current density Jy�x� on distance x 

inside a superconductor for the case �L > �. 
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In the remainder of the chapter we will ignore 
these surface effects for x < �  and only take 
into account the exponential decay in terms 
of the penetration-depth distance parameter. 

VIII. CRITICAL CURRENT DENSITY 

An electric current is accompanied by 
a magnetic field. To obtain an expression 
for the current density independent of the 
magnetic field, the vector potential can be 
eliminated between the current density equa­
tion and the second GL equation. We will 
do this deep inside the superconductor where 
the order parameter ��r� depends on posi­
tion only through the phase ��r�. 

For this situation the order parameter, 
written in the form 

��r� = �0e
i��r�� (6.53) 

has the gradient 

���r� = i����r�� (6.54) 

and the current density (6.12) is 
∗ 

J = �
m

e 
∗ �

2
0 ��− 2

�


 

0 

A � (6.55) 

where �0 is given by Eq. (6.36). Substituting 
the expression for the order parameter from 
(6.53) in Eq. (6.8) and multiplying on the left 
by e−i� gives 

�
2 

�0e −i� 

( 

i� + 2

A 

)2 

ei� 

2m ∗�a� �0 

+�0 − b
�0

3 = 0	 �a� 
(6.56) 

If the Laplacian �2� is negligible, this 
becomes 

�
2 ( 

2
 
)2 

��− A 
2m ∗�a� �0 

�2 

+1 − 0 = 0	 (6.57)
��a�/b� 

6 GINZBURG–LANDAU THEORY 

The factor ���− �2
/�0�A� can be elimi­
nated between Eqs. (6.55) and (6.57) to give 
for the current density 

Js = 
2



�

0

0 

�2
L�

f 2�1 −f 2�1/2� (6.58) 

where f is given by Eq. (6.23) (we have 
used Eqs. (6.26) and (6.45) here). Figure 6.10 
shows how Js depends on f . The largest 
possible current density shown in the figure, 
called the critical current density Jc, is  
obtained by maximizing Eq. (6.58) through 
differentiation with respect to f 2. This gives 
f 2 = 2

3 , and we obtain what is sometimes 
called the Ginzburg–Landau critical current 
density, 

�0Jc = √ 	 (6.59)
3 3

0�

2
L� 

This can also be written in terms of the ther­
modynamic critical field (12.10). 

√ 
2 2BcJc = √ 	 (6.60) 

3 3
0�L 

Figure 6.10 Dependence of the super current density 
Js on the normalized order parameter f . Js �f� reaches 
a maximum at f = �2/3�1/2. 
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From Eq. (2.61) this has the following tem­
perature dependence near Tc: 

√ ( )3/28 2Bc�0� T 
Jc = √ 1 − 	 (6.61)

3 3
0 �L�0� Tc 

Thus Jc becomes zero at the critical temper­
ature, and we know from Eq. (2.58) that it is 
a maximum at T = 0. 

IX. LONDON EQUATIONS 

In 1935 the London brothers, Fritz and 
Heinz, proposed a simple theory to explain 
the Meissner effect, which had been discov­
ered two years earlier. They assumed that 
the penetration depth �L is a constant inde­
pendent of position. The equations which 
they derived, now called the first London 
equation, 

E = 
0�
2
L 

d 
J� (6.62)

dt 

and the second London equation, 

B =−
0�
2
L� ×J� (6.63) 

were used to explain the properties of super­
conductors. 

These two equations are easily obtained 
from the GL theory with the aid of Eq. (6.51) 
expressed in vector form: 


0�
2
LJ =−A	 (6.64) 

If the vector potential expression (6.9) is 
substituted in Maxwell’s equation (1.66), we 
obtain 

dA 
� × E + = 0� (6.65)

dt 

and with the aid of Eq. (6.51) we can then 
write down the first London equation (6.62). 
The second London equation (6.63) is 
obtained by substituting the expression for 

A from Eq. (6.64) in Eq. (6.9). It should 
be compared with Eq. (1.72), which, in the 
absence of magnetization and displacement 
currents, becomes Ampère’s law: 

� ×B = 
0J	 (6.66) 

Thus we see that Maxwell’s and London’s 
equations link the magnetic field B and the 
current density J in such a way that if one is 
present in the surface layer so is the other. 

If the expression for the current density 
J from Eq. (6.66) is substituted in Eq. (6.63) 
we obtain 

B 
�2B = 

�2 � (6.67) 
L 

and eliminating B between these same two 
expressions gives 

�2J = J 
	 (6.68)

�2 
L 

Thus, recalling (6.46), we see that A, B, and 
J all obey the same differential equation. In 
Cartesian coordinates, Eqs. (6.67) and (6.68) 
correspond to the Helmholtz equation well 
known from mathematical physics (Arfken, 
1985). In the following section we will pro­
vide applications of these equations to the 
phenomena of magnetic field penetration and 
surface current flow. 

X. EXPONENTIAL PENETRATION 

In Section VII we deduced the expo­
nential decay of the magnetic field B and 
the current density J, Eqs. (6.50) and (6.52), 
respectively, inside a superconductor in the 
presence of an external magnetic field B0, 
and in the previous section we wrote down 
the Helmholtz equations (6.67) and (6.68), 
respectively, for these same two cases. In 
the present section we will apply these equa­
tions to several practical situations involving 
magnetic field penetration and surface cur­
rent flow in superconductors with rectangular 
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Figure 6.11 Flat superconducting slab with thickness 2a much less than the two broad 
dimensions L. The applied magnetic field B0 and super current flow J0 have the indicated 
directions. The thickness parameter a should not be confused with the GL parameter a of 
Eq. 6.4. 

and cylindrical shapes. Both shielding and 
( 

x 
) 

transport currents will be discussed. B0 cosh 
�L

Consider a flat superconducting slab ori- Bz�x� = ( ) −a < x < a	  

ented in the y� z-plane in the presence of cosh 
�
a 

L 

an applied magnetic field B0 in the z direc- (6.69) 
tion, as illustrated in Fig. 6.11. The slab This is sketched in Fig. 6.12 for �L � a and 
is of length L, width L, and thickness 2a, in Fig. 6.13 for �L � a. For the former case 
as indicated in the figure; we assume that we have 
a � L. The solution to Helmholtz equa- −�a−�x�� 
tion (6.67) which satisfies the boundary con- B �x� ≈ B0 exp 

�L 

�L � a	z

ditions Bz�−a� = Bz�a� = B0 at the edges is (6.70) 

Figure 6.12 Exponential decay of a magnetic field inside a superconductor for the case 
�L � a. Both this figure and Fig. 6.13 are symmetric about the midpoint x = 0. 
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Figure 6.13 Decrease of the magnitude of a magnetic field inside a super­
conductor for the case �L � a. The field in the center is �1 − 1

2 �a/�L �
2� times 

the field B0 outside. 

We show in Problem 5 that in the latter case 
the penetration is linear near each boundary, 

a�a−x� 
Bz�x� ≈ B0 1 − 

�2

L


�L � a� 0 � x < a�  (6.71a) 

and 

a�a+x� 
Bz�x� ≈ B0 1 − 

�2

L


�L � a� −a < x  � 0� 
(6.71b) 

with the value in the center 
[ 2 ] 

a
Bz�0� ≈ B0 1 − x = 0� (6.72)

2�2
L 

as indicated in Fig. 6.13. 
To derive the corresponding expres­

sions for the current density we find from 
Eq. (6.11) that for this case J and B are 
related through the expression 

dB

0Jy = z � (6.73)

dx 

and differentiating Bz�x� in Eq. (6.69) gives 

x 
sinh 


0Jy�x� = 
�

B

L

0 · �
a 
L −a < x < a	  

cosh 
�L 

(6.74) 

Thus the magnetic field B and the cur­
rent density J are mutually perpendicular, as 
indicated in Fig. 6.11. The current density 
flows around the slab in the manner shown 
in Fig. 6.14, and is positive on one side 
and negative on the other. It has the maxi­
mum magnitude Jy�0� = J0 on the surface, 
x =±a, where 

B0 a 
J0 = tanh � (6.75)


0�L �L 

and this gives for Jy�x� 

x 
sinh 

Jy�x� = J0 ( 
�L ) −a < x < a	  
a 

sinh 
�L 

(6.76) 

This expression for the current density satis­
fies Helmholtz equation (6.68), as expected. 

Figure 6.14 Cross section in the x� y-plane of the 
slab of Fig. 6.11 showing the shielding super current 
flow for an applied magnetic field B0 in the z direction. 
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158 6 GINZBURG–LANDAU THEORY 

For a � �L the current density flows in that 
a surface layer of thickness �L, while for 
the opposite limit, a � �L, it flows through 
the entire cross section, in accordance with 

J�x� ≈ J0x 

a 
−a < x < a�  (6.77) 

Figs. 6.15 and 6.16, respectively. In the latter 
case the distance dependence is linear such as shown in Fig. 6.16. 

Figure 6.15 Current density Jy�x� inside the superconducting slab for the case a� �L. 
This figure and Fig. 6.16 are antisymmetric about the origin x = 0. 

Figure 6.16 Current density Jy�x� inside the superconducting slab for the case 
a � �L. Note that the magnitude of J�x� decreases linearly with distance x. 



Elsevier AMS Job code: SUP CH06-P088761 22-6-2007 9:33a.m. Page:159 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

[ ] 

159 X EXPONENTIAL PENETRATION 

Figure 6.17 Sketch of a Type I superconducting 
cylinder in an external magnetic field Bapp =B0 directed 
along its axis, an arrangement referred to as parallel 
geometry. The penetration of the magnetic field B into 
the superconductor and the current flow Jsh near the 
surface are shown. The London penetration depth �L is 
also indicated. 

The super current which flows in the sur­
face layer may be looked upon as generating 
a magnetic field in the interior that cancels 
the applied field there. Thus the encircling 

currents are called shielding currents in that 
they shield the interior from the applied field. 

The case of the long superconducting 
cylinder shown in Fig. 6.17 in an external 
axial magnetic field B0 is best treated in 
cylindrical coordinates, and, as we show in 
Chapter 12; Section III.B, the solutions are 
modified Bessel functions. In the limit �L � 
R, the surface layer approximates a planar 
layer, and the penetration is approximately 
exponential, 

−�R− r� 
B �r� ≈ B0 expz �L 

�L � R 0 < r < R�  (6.78) 

as illustrated in Fig. 6.18, and expected on 
intuitive grounds. Figure 6.17 presents three-
dimensional sketches of the fields and cur­
rents. 

Another example to consider is a flow 
of transport current moving in a surface layer 
in the axial direction, as shown in Fig. 6.19. 
Note the magnetic field lines encircling the 
wire outside and decaying into the surface 
layer. Figures 6.17 and 6.19 compare these 
shielding and transport current cases. The 
figures are drawn for the limit a � �L and 
apply to Type I superconductors that exclude 
the B field and current flow from the interior. 
They also apply to Type II superconductors 
in low applied fields below but near the tran­
sition temperature, T < Tc, since in this case 

Figure 6.18 Magnetic field B�r� inside the Type I superconducting cylinder of 
Fig. 6.17 for the case � � R. 
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Figure 6.19 Sketch of the current density Jtr and 
magnetic field B near the surface of a Type I supercon­
ducting cylinder carrying a transport current. 

the internal field Bin is small and the behav­
ior approximates Type I. 

XI. NORMALIZED GINZBURG– 
LANDAU EQUATIONS 

In Section IV we wrote down the one-
dimensional zero field GL equation normal­
ized in terms of a dimensionless coordinate 
(6.25) and a dimensionless order parame­
ter (6.23), and this simplified the process 
of finding a solution. Before proceeding to 
more complex cases it will be helpful to write 
down the general GL equations (Eqs. (6.6) 
and (6.10)) in fully normalized form in terms 
of the coherence length (6.26), London pene­
tration depth (6.45), and flux quantum (6.36). 

To accomplish this we express the coor­
dinates as dimensionless variables divided 

6 GINZBURG–LANDAU THEORY 

by the coherence length �. Thus we have, 
for example, �/�� �� z/� in cylindrical coor­
dinates, and use the differential operator 
symbols � and �2, 

� → ��� (6.79) 

�2 → �2�2� (6.80) 

to designate differentiation with respect to 
these normalized coordinates. The order 
parameter � is normalized as in Eq. (6.23), 

( )1/2�a� 
� = f� (6.81)

b 

the vector potential A is normalized in terms 
of the flux quantum �0, 

A = �0 �� (6.82)
2
� 

and we make use of the Ginzburg–Landau 
parameter �, which is defined as the ratio of 
the penetration depth to the coherence length, 

�L� = 	 (6.83) 

Using this notation the GL equations (6.6) 
and (6.10), respectively, expressed in the 
London–Landau gauge (6.7), � · � = 0, 
assume the normalized forms 

−�i� −��2f +f�1 −f 2� = 0� 
(6.84a) 

�2� × �� ×��+ 1 i�f ∗ �f −f�f ∗ �2 

+�f 2 = 0	 (6.84b) 

We can also define a dimensionless current 
density j from 

J = �0 j� (6.85)
2
�2

L�
0 

which gives us 

j = �2� × �� ×��	 (6.86) 
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XII TYPE I AND TYPE II SUPERCONDUCTIVITY 

Equation (6.84a) can be expanded and 
Eq. (6.84b) written as follows: 

�2f −2i� ·�f −�2f 

+f�1 −f 2� = 0� (6.87a) 

j =− 1
2 i�f ∗ �f −f�f ∗ �−�f 2	 (6.87b) 

Thus the coherence length, penetration depth, 
and flux quantum are the natural normal­
ization parameters for transforming the GL 
equations into dimensionless form. In the fol­
lowing section we will use these normalized 
equations to elucidate various properties of 
superconductors. 

XII. TYPE I AND TYPE II 
SUPERCONDUCTIVITY 

In Chapter 11 we will discuss how bulk 
normal and superconducting phases coex­
ist in equilibrium in an external magnetic 
field B . We now wish to investigate this app

“mixed state” by considering a plane inter­
face between a normal phase filling the left 
half-space z < 0 and a superconducting phase 
in the right half-space z >  0, as indicated in 
Fig. 6.3. 

We expect the superconducting order 
parameter to vanish at the interface and, 
as we have seen, begin approaching its 
bulk equilibrium value within a characteris­
tic length �. On the other hand, surface cur­
rents flow in a surface layer of width ≈ �L, 
and full exclusion of magnetic flux occurs 
only deep inside the superconductor. Here 
we are interested in calculating the effect of 
the interface on the free energy of the state. 
This, in turn, leads naturally to the idea of a 
“surface tension” between the superconduct­
ing and normal phases. 

Deep within either of the homogeneous 
phases the free-energy density at the critical 
field Bapp = 
0Hc is equal to Gn0 + 1

2 
0Hc
2. 

161 

The free-energy density of the associated 
mixed state, including the interface, is 

⎧ 
⎪ 
0H

2 z < 0 ⎪ Gn0 + 1
2 c ⎪ ⎨ 

1
G�z� = Gn0 − 1 b���4 + ⎪ 2 ⎪ 2
0 ⎪ ⎩ ×�B2 −2
2

0Hc ·M� z > 0 
(6.88) 

where we have used Eq. (6.4) subject to 
the minimization restriction (6.6) for the 
half-space z >  0. The surface tension �ns 

is defined as the difference in free energy 
per unit area between a homogeneous phase 
(either all normal or all superconducting) and 
a mixed phase. Therefore, we can write 

∫ 1 
� = dz − 1 b���4 +ns 2 2
0 

×�B2 −2
2
0Hc ·M�− 2

1 
0Hc
2 � 
(6.89) 

since the integrand vanishes for z <  0. With 
the aid of the expression B =
0�H+M� this 
becomes 

�ns = dz − 1
2 b���4 + 1

2 
0M
2 	 (6.90) 

Note that as z → �� M  → −Hc, and by 
Eq. (6.15), ���2 → �a�/b, so from Eq. (6.19) 
the integrand vanishes far inside the super­
conductor where z > �L, and the principal 
contribution to the surface tension comes 
from the region near the boundary. 

If �ns > 0, the homogeneous phase has 
a lower free energy than the mixed phase, 
and therefore the system will remain super­
conducting until the external field exceeds 
Bc, at which point it will turn completely 
normal. Superconductors of this variety are 
called Type I. However, if �ns < 0, the super­
conductor can lower its free energy by spon­
taneously developing normal regions that 
include some magnetic flux. Since the great­
est saving in free energy is achieved by max­
imizing the surface area: flux ratio, these 
normal regions will be as small as possible 
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consistent with the quantization of fluxoid. 
Thus the flux enters in discrete flux quanta. 

Returning to Eq. (6.90), the first term 
represents the free energy gained by conden­
sation into the superconducting state, while 
the second is the cost of excluding flux from 
the boundary layer. Roughly speaking, the 
order parameter attains its bulk value over a 
characteristic length �, while the super cur­
rents and magnetic flux are confined to a 
distance on the order of �L from the surface. 
If we define the dimensionless magnetization 
m by 

( 2 ) 
2M2 = a

m (6.91)

0b 

and make use of the dimensionless order 
parameter (6.81), Eq. (6.90) becomes 

2 ∫ 
�ns = a dz�−f 4 +m 2�� (6.92)

2b 

which can be written 

2 ∫ 
�ns = a dz��1 −f 4�− �1 −m 2��	 (6.93)

2b 

√ 
Equation (6.28) gives f = tanh�z/ 2 �� (see 
Problem 10 for an expression for the dis­
tance dependence of m). We can estimate �ns 

by observing that f 4 = m2 = 1 in the bulk, 
that f 4 is small only over a distance on the 
order of �, and that m2 is small only over a 
distance on the order of �L. This gives the 
approximate result 

B2 

�ns ≈ c ��−�L �� (6.94)
2
0 

where we have used Eq. (6.19). The value 
of the integral is the difference between the 
area under the two terms of the integrand, 
as shown plotted in Fig. 6.20. If � > �L, 
the surface tension is positive and we have 
Type I behavior. On the other hand, for � <  
�L� �ns is negative, and the superconduc­
tor is unstable with respect to the formation 

6 GINZBURG–LANDAU THEORY 

of a normal–superconducting interface, i.e., 
vortices form and Type II behavior appears. 

We could also argue that �L is basi­
cally the width of an included vortex, i.e., the 
radius within which most of the flux is con­
fined, and � is the distance over which the 
super electron density rises from ns = 0 at the 
center of the vortex to its full bulk value, i.e., 
the distance needed to “heal the wound.” A 
long coherence length � prevents the super­
conductor’s ns from rising quickly enough 
to provide the shielding current required to 
contain the flux, so no vortex can form. 

Ginzburg and Landau (1950) showed √ 
that �ns vanishes for � = �L/� = 1/ 2, 
so as a convention we adopt the following 
criterion: 

� <  
1 √ 
2 

Type I 

� >  
1 √ 
2 

Type II	 
(6.95) 

For Type II superconductors in very weak 
applied fields, Bapp �Bc, the Meissner effect 
will be complete, but as Bapp is increased 
above the lower critical field Bc1, where 
Bc1 < Bc, vortices will begin to penetrate 
the sample. The magnetization of the sample 
then increases until the upper critical field 
Bc2 is reached, at which point the vortex 
cores almost overlap and the bulk supercon­
ductivity is extinguished. Superconductivity 
may persist in a thin sheath up to an even 
higher critical field Bc3, where the sample 
goes completely normal. 

XIII. UPPER CRITICAL FIELD BC2 

To calculate the upper critical field Bc2 

of a Type II superconductor we will exam­
ine the behavior of the normalized GL equa­
tion (6.87a) in the neighborhood of this field. 
For this case the order parameter is small 
and we can assume Bin ≈ Bapp. This sug­
gests neglecting the nonlinear term f 3 in 
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163 XIII UPPER CRITICAL FIELD BC2 

Figure 6.20 Order parameter ��� and magnetization M inside a superconductor 
which is Type I �� < 1� a� and inside a superconductor which is Type II �� > 1� b�, 
where � = �L /�. The surface energy �ns is positive for the Type I case and negative 
for Type II. 

Eq. (6.87a) and following Eq. (6.41), taking 
for the normalized vector potential 

� = b0u� (6.96) 

where u is a dimensionless Cartesian coordi­
nate perpendicular to the directions of both 
the applied field and the vector potential. 
From Eq. (6.82) we have for the magnitude 
of b0, 

2
�2 

b0 = Bapp	 (6.97)
�0 

Deep inside the superconductor the normal­
ized order parameter f is independent of 
position so that the term � ·�f in the GL 
equation (6.87a) is zero. 

The linearized GL equation now has the 
form 

�2f −�2f +f = 0	 (6.98) 

This equation has bounded solutions only 
for special values of b0. By analogy with 
the harmonic-oscillator Schrödinger equation 
from quantum mechanics, we can take f ≈ 
e�u/2, which on substitution in (6.98) gives 
�= 2 = b0. Solutions can be found for larger 
values of b0, but these are not of physical 
interest. Identifying the upper critical field 
with the applied field of Eq. (6.97) for this 
solution, we have 

�0Bc2 = 

�2 

	 (6.99) 
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This expression has an appealing physical 
explanation. If we assume that in the upper 
critical field the cores of the vortices are 
nearly touching and that the flux contained 
in each core is ≈ �0, the average magnetic 
field is Bc2 ≈ �0/��2. 

Obviously, the existence of an upper 
critical field requires that Bc2 > Bc, the ther­
modynamic critical field. By Eq. (12.12) the 
ratio of Bc2 to Bc is 

Bc2 =√ 
2 �	 (6.100) 

Bc 

√ 
Therefore, for � <  1/ 2� Bc2 < Bc and no 
vortex state exists. In this way we can see 
that the condition for a superconductor to be √ 
Type II is � > 1/ 2. 

XIV. STRUCTURE OF A VORTEX 

For the case of a semi-infinite super­
conductor in a magnetic field it was found, 
by the arguments of Section VII, that the 
phase � of the order parameter remains fixed 
throughout the superconductor. Here we will 
consider a different geometry in which the 
phase of the order parameter is nontrivial. 

In Type II superconductors it is observed 
that magnetic flux is completely excluded 
only for external fields B < Bc1. Above the 
lower-critical field, Bc1, flux penetrates in 
discrete flux quanta in the form of flux 
tubes, or vortices. In this section we will 
obtain approximate expressions for the fields 
associated with such a vortex, both in the 
core region and far outside the core. We 
assume that the external magnetic field Bapp 

is applied along the z direction, parallel to the 
surface, and that currents flow at the surface, 
canceling the field inside. We are concerned 
with a vortex that is far enough inside the 
superconductor so that exponential decay of 
the external fields, as given by Eq. (6.50), 
drops essentially to zero. 

States with more than one quantum of 
flux are also possible (Sachdev, 1992), but 

6 GINZBURG–LANDAU THEORY 

the energy scales as n2, so single-flux quanta 
are energetically favored. This is because, 
according to Eq. (6.15), the parameter a 
scales as n, from Eq. (6.12) J scales as n, 
and from Eq. (6.11) B scales as n. Therefore 
n noninteracting vortices have n times the 
energy of a single vortex, but one multiquan­
tum vortex has a magnetic energy �nB�2, 
which scales as n2. 

A. Differential Equations 

To treat this case we assume that there 
is no flux far inside the superconductor. If 
the applied field Bapp ≈ Bc1 a single quantum 
of flux �0 enters in the form of a vortex 
with axis parallel to the applied field. The 
simplest assumption we could make about 
the shape of the vortex is to assume that it is 
cylindrically symmetric, so that in its vicinity 
the order parameter (6.81) has the form of 
Eq. (6.2), corresponding to 

f�x��� = f�x�ei�� (6.101) 

where �x��� = ��/���� are normalized 
polar coordinates. The vector potential has 
the form A = A�x��̂, so that we can write 
for its normalized counterpart (6.82) 

��x� = �	��x� ˆ (6.102) 

This is a two-dimensional problem since nei­
ther f�x� nor ��x� have a z dependence. It 
is easy to show that � ×� has only a z com­
ponent (this we do by working out the curl 
operation in cylindrical coordinates), which 
is to be expected, since the magnetic field 
B = � ×A is known to be parallel to z. 

If we substitute these functions in the 
two GL equations (6.84) and perform the 
Laplacian and double curl operations in 
cylindrical coordinates, we obtain 

[ ( ) ( ) 
1 d df f 2� 

x − + 
x dx dx x2 x 

f −�2f +f�1 −f 2� = 0� (6.103) 
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d 1 d · �x�� 
dx x dx 

1 1 + 
�2 

f 2 −� = 0� (6.104) 
x 

where x = �/� and the current density equa­
tion (6.87b) becomes 

1 
j = f 2 −� = 0	 (6.105) 

x 

In constructing a solution to Eqs. (6.103) 
and (6.104) we must be guided by two 
requirements, first that the magnetic field and 
current density must be finite everywhere 
and, second, that the solution must have a 
finite free energy per unit length along the 
z-axis. If the free energy per unit length were 
infinite, the total free energy would diverge 
and render the solution unphysical. Further, 
we anticipate from the Meissner effect and 
Eqs. (6.50) and (6.52), that the magnetic field 
and the current density will decay exponen­
tially far from the axis of the vortex. 

B. Solutions for Short Distances 

We seek to solve Eqs. (6.103) 
and (6.105) for the short-distance limit, 
namely in the core where x <  1. Since the 
first term in Eq. (6.105) has the factor 1/x, it  
is necessary for the order parameter f to van­
ish as x → 0 in order for the current density 
to remain finite in the core. By symmetry and 
continuity, the current density must vanish 
on the axis of the vortex, and it is expected to 
be small everywhere in the core. Maxwell’s 
equation, Eq. (6.11), tells us that in this sit­
uation the magnetic field B is approximately 
constant in the core and we can write 

A = 2
1 B0� ˆ (6.106) 

or, in dimensionless units, with x = �/� 

1 ˆ� = xb0�� (6.107)2 

recalling Eq. 6.82, and from Eq. (6.97), 

2
�2 

b0 = B0	 (6.108)
�0 

If we now use this approximate solu­
tion (6.107) for the vector potential in 
Eq. (6.103) and neglect the f 3 term because 
we expect f � 1 in the core, we will have 

1 d df 
x 

x dx dx 

1 + �b0 +1�− 41 b0
2 x 2 − 

2 
f = 0	 

x
(6.109) 

This equation has exactly the form 
of Schrödinger’s equation for the two-
dimensional harmonic oscillator. We know 
from quantum mechanics texts (e.g., Pauling 
and Wilson, 1935, p. 105) that the constant 
term in the square brackets �b0 + 1� is the 
eigenvalue, the coefficient of the x−2 term is 
the z component of the angular momentum, 
i.e., m = 1, and, for the lowest eigenvalue, 
the coefficient of the x2 term is related to the 
other two terms by the expression 

�b0 +1� = 2�m+1�� 1
4 b0

2�1/2	 (6.110) 

Solving this for b0 gives 

b0 = 1	 (6.111) 

Substituting Eq. (6.111) in Eq. (6.108) gives 
the magnetic field on the axis of the vortex: 

�0B0 = 	 (6.112)
2
�2 

The solution to the ‘Schrödinger’ equa­
tion, Eq. (6.109), is 

f = Cxe−x2 /4� (6.113) 

where C is a constant. This function reaches √ 
its maximum at x = 2, which is outside the 
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core, so, to a first approximation, f continu­
ously increases in magnitude with increasing 
radial distance throughout the core region. 
This behavior is shown by the dashed curve 
in and near the core region of Fig. 6.21. 

We can use the results of Problem 8 
to obtain a better approximation to the vec­
tor potential and magnetic field in the core 
region, 

�3 
1 ˆA��� = 2 B0 �−�

�2 
�� (6.114) 

( )2 

B��� = B0 1 −3�
� 

k̂� (6.115) 

where � � 1. These expressions are plot­
ted as dashed curves in the core regions of 
Figs. 6.22 and 6.23, respectively. 

C. Solution for Large Distances 

To obtain a solution far from the vor­
tex core, x � 1, it is convenient to simplify 

6 GINZBURG–LANDAU THEORY 

Eqs. (6.103) to (6.105) by means of a change 
of variable, 

�� = � − 1 
� (6.116) 

x 

which gives 

d2f 

dx2 
+ 1 

x 
· df 

dx 
−��2f 

+f�1 −f 2� = 0	 (6.117) 

d2�� 1 d�� 

dx2 
+ 

x 
· 

dx 

− �
� 

x2 
− f

2�� 

�2 
= 0� (6.118) 

j =−f 2��� (6.119) 

where the derivatives have been multiplied 
out. It should be pointed out that the curl of 
�1/x��̂ vanishes in the region under consid­
eration, so that � ×�� = � ×�, and hence 

Figure 6.21 Dependence of the order parameter ��� on distance � from the core of a vortex. The asymptotic 
behaviors near the core and far from the core are indicated by dashed lines. 
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Figure 6.22 Distance dependence of the vector potential A��� associated with 
a vortex in the notation of Fig. 6.21. 

Figure 6.23 Distance dependence of the magnetic field B��� encircling a 
vortex in the notation of Fig. 6.21. 

the 1/x term of Eq. (6.116) does not con- The solution to this equation which satisfies 
tribute to the magnetic field (see, however, the boundary conditions ���y� → 0 as  y → 
Problem 9). � is 

For the approximation f ≈ 1, the change 
of variable x = �y puts Eq. (6.118) into the ���y� = A�

� K1�y�� (6.121) 
form of a first-order �n= 1� modified Bessel 
equation: where K1�y� is a modified first-order Bessel 

function. For large distances, x � �, it has 

2 d
2�� d�� the asymptotic form 

y +y
dy2 dy −x/� 

− �y2 +1��� = 0	 (6.120) ���x� = A� 
e√ � (6.122) 

x 
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168 6 GINZBURG–LANDAU THEORY 

Figure 6.24 Distance dependence of the function 2
�B��� in the notation 
of Fig. 5.21. This function is proportional to the amount of magnetic flux at a 
distance � from the origin, and the integrated area under the curve is one fluxoid, 
h/2e. 

where A� = �2/
��1/2A�. Figure 6.22 
shows the asymptotic long-distance behavior 
of A���. 

Taking the curl B = � ×A in cylindri­
cal coordinates (cf. Eq. (6.86)) provides the 
corresponding magnetic field for x � �, 

−�/�Le
Bz��� ≈ � � �L� (6.123)

��/��1/2 

where we have restored the original coordi­
nate � = x� = y�L. Figure 6.23 shows a plot 
of Bz��� versus � for large � and indicates 
the � = 0 value of Eq. (6.115). 

To find the radial dependence of the 
order parameter far from the core, where the 
material is in the superconducting state, we 
have f ≈ 1, so we can write 

f�x� = 1 −g�x�� (6.124) 

where g�x� � 1, and hence f�1 − f 2� ≈ 2g 
As a result Eq. (6.117) assumes the form 

d2 1 d 
g�x�+ · g�x�+�� 

dx2 x dx

−2g�x� = 0	 (6.125) 

Far from the core, x � �, the behavior of 
g�x� for �� 1 is determined by that of ���x�, 
and we have 

−2x/�e
g�x� ≈ g� � (6.126) 

x 

where g� is positive. 
Comparing Figs. 6.22 and 6.23 we see 

that A increases in the core region, reaches 
a maximum near the inflection point of the 
B curve, and decreases outside the core. 
The quantity 2
�B��� is proportional to the 
amount of magnetic flux at a particular dis­
tance from the vortex axis; it is shown plotted 
against � in Fig. 6.24. The integrated area 
under this curve equals one fluxoid, h/2e. 

FURTHER READING 

The GL theory was first proposed by Ginzburg 
and Landau in 1950. Its value became more apparent 
after Gor’kov (1959) showed that it is a limiting case of 
the BCS theory. The theory was extended to the limit 
of high � by Abrikosov (1957) in the same year that 
the BCS theory was proposed. The London and Lon­
don (1935), London (1950), and related Pippard (1953) 
equations follow from the GL theory. 



Elsevier AMS Job code: SUP CH06-P088761 22-6-2007 9:33a.m. Page:169 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

� [	 ] ∫ 

[	 ] 
� � 

� � 
( ) 

[	 ] 
� � 

� � 
( ) 

[ ] 
� 

� 

PROBLEMS 

The first edition of this book mentions some 
articles that apply GL theory to the cuprate super 
conductors. 

PROBLEMS 

1. Derive the first GL equation, Eq. (6.6), 
from the Gibbs free energy integral (6.4). 

2. Show that minimizing the term B2/2
0 

with respect to the vector potential A in 
Eq. (6.4) gives the expression �2A/
0 

that is found in Eq. (6.10). Hint: write 

�ijk�ilm �jAk�y��lAm�y�d2 y � 
�A �x�n

bring the partial differentiation inside the 
integral, and integrate by parts. √ 

3. Show that f��� = coth��/ 2� is also a 
solution to Eq. (6.27), and explain why 
it is not used. 

4. Show that Eq. (6.17) is consistent with 
Eq. (2.69) in the superconducting region 
near Tc, and express the ratio a0/b0 in 
terms of the density n of conduction 
electrons. 

5. Derive Eqs. (6.71a) and (6.71b). 
6. Justify Eq. (6.97): b0 = �2
�2/�0�Bapp. 
7. Show	 that � × �� × A� = −�2A in 

Cartesian coordinates, assuming the 
London-Landau gauge. Why is this not 
true when the coordinate system is non-
Cartesian? 

8. Assume the following power series solu­
tions to Eqs. (6.103) and (6.104) in the 
region of the core: 

f�x� ≈ �a xn x � 1�n

f�x� ≈ �f xn x � 1	n

(a) Show that the lowest-order terms 
that exist are f1 and a1, that the 
even order terms vanish, and that 

f 2 

a3 =−  1 � 
8�2 

f3 =− 1
4 �a1 + 1

2 �f1	 

169 

(b) Show	 that the distance depen­
dence of the order parame­
ter, vector potential, magnetic 
field, and current density in the 
neighborhood of the origin are 
given by 

( )1/2�a� ������ ≈  
b 

(	 ) ( )3 

×	 f1 −�f3� � � �� 

�0A���� ≈ 
2
� 

(	 ) ( )3 

×	 a1 −�a3� � � �� 

�0B ��� ≈z 
�2 

(	 )2 

×	 a1 −2�a3� � � �	 

(c) Show	 that the expression for 
������ agrees with Eq. (6.113). 

9. Show that	
∮ 
�� · dl = 0, whereas 

∮ 
� ·


dl = 2
 for contours at infinity. What

is the significance of the 1/x term in

Eq. (6.116)?


10. Show that the dimensionless magnetiza­
tion m defined by Eq. (6.125) can be 
written 

M 
m = � 

Hc 

and has the distance dependence 

m =−�1 − e −z/�L �	 

in Eq. (6.93) (assume zero demagnetiza­
tion factor). 

11. Derive Eq. (6.123) for the magnetic field 
far from a vortex. Find the first higher-
order term that is neglected in writing 
out this expression. 
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I. INTRODUCTION 

Chapter 6 presents the Ginzburg– 
Landau (GL) theory, which originated in 
1950. Despite the fact that it is a phenomeno­
logical theory, it has had surprising success 
in explaining many of the principal proper­
ties of superconductors. Nevertheless, it has 
limitations because it does not explain the 
microscopic origins of super-conductivity. In 
1957 Bardeen, Cooper, and Schrieffer (BCS) 
proposed a microscopic theory of supercon­
ductivity that predicts quantitatively many of 
the properties of elemental superconductors. 
In addition, the Landau–Ginzburg theory can 
be derived from the BCS theory, with the 
added bonus that the charge and mass of 
the “particle” involved in the superconduct­
ing state emerge naturally as 2e and 2me, 
respectively. 

BCS Theory


With the discovery of the heavy fermion 
and copper-oxide superconductors it is no 
longer clear whether the BCS theory is sat­
isfactory for all classes of superconductors. 
The question remains open, although there is 
no doubt that many of the properties of high-
temperature superconductors are consistent 
with the BCS formalism. 

To derive the BCS theory it is necessary 
to use mathematics that is more advanced 
than that which is employed elsewhere in this 
book, and the reader is referred to standard 
quantum mechanics texts for the details of 
the associated derivations. If the chapter is 
given a cursory initial reading without work­
ing out the intermediate steps in the devel­
opment, an overall picture of BCS can be 
obtained. For didactic purposes we will end 
the chapter by describing the simplified case 
of a square well electron–electron interaction 

171 
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potential, which is also the case treated in 
the original formulation of the theory. 

II. COOPER PAIRS 

One year before publication of the BCS 
theory, Cooper (1956) demonstrated that the 
normal ground state of an electron gas is 
unstable with respect to the formation of 
“bound” electron pairs. We have used quota­
tion marks here because these electron pairs 
are not bound in the ordinary sense, and the 
presence of the filled Fermi sea is essential 
for this state to exist. Therefore this is prop­
erly a many-electron state. 

In the normal ground state all one-
electron orbitals with momenta k < kF are 
occupied, and all the rest are empty. Now, 
following Cooper, let us suppose that a weak 
attractive interaction exists between the elec­
trons. The effect of the interaction will be 
to scatter electrons from states with initial 
momenta �k1� k2� to states with momenta 
�k1

� � k� 2�. Since all states below the Fermi sur­
face are occupied, the final momenta �k� 1� k

� 
2� 

must be above kF. Clearly, these scattering 
processes tend to increase the kinetic energy 
of the system. However, as we shall now 
see, the increase in kinetic energy is more 
than compensated by a decrease in the poten­
tial energy if we allow states above kF to be 
occupied in the many-electron ground state. 

We begin by considering the 
Schrödinger equation for two electrons 
interacting via the potential V , 

�
2 

− ��1
2 +�2

2� +V�r1 − r2� ��r1� r2� 2m 

= �E +2EF���r1� r2�� (7.1) 

In (7.1) the spin part of the wavefunction has 
been factored out and the energy. eigenvalue 
E is defined relative to the Fermi level �2EF�. 
Most superconductors are spin-singlet so the 
orbital part to the wavefunction, ��r1� r2�, 
must be symmetric. 

7 BCS THEORY 

As with any two-body problem, we 
begin by defining the center of mass 
coordinate, 

R = 1
2 �r1 + r2�� (7.2) 

and the relative coordinate, 

r = r1 − r2� (7.3) 

In terms of these coordinates (7.1) becomes 

�
2 

�
2


− �R 
2 −2 �r 

2 ��R� r�

4m 2m 

+V�r���R� r� = �E +2EF ���R� r�� (7.4) 

The center of mass and relative coordinates 
now separate and we can write 

��R� r� =��R���r�� (7.5) 

��R� is simply a plane wave, 

��R� = eiK·R� (7.6) 

while for the relative coordinate wavefunc­
tion ��r� we have 

�
2


−2 �2 +V�r� ��r�

2m r 

�
2K2 

= E +2EF − ��r�� (7.7)
4m 

Since we are interested in the ground state, 
we can set K = 0. There are solutions for 
K � 0 that lie close to the K == 0 states and 
are needed to describe states in which a per­
sistent current flows. 

We now express ��r� as a sum over 
states with momenta p > kF, 

1 ∑� 
��r� = √ a�p�eip·r � (7.8) 

V p 

In (7.8) 	� 
p denotes a summation over all 

�p� > kF. Substitution of the expression for 
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173 II COOPER PAIRS 

��r� from (7.8) in (7.7) then gives the 
Schrödinger equation in momentum space, 


2��p −EF� −E�a�p� 

+ V�p� p��a�p�� = 0� (7.9) 
p

where 

V�p� p�� = 1 
d3 re −i�p−p��·rV�r�� (7.10) 

V 

In order to simplify the solution of (7.9) we 
assume that 

V�p� p�� 
⎧ 
⎪−V0 0 ≤ � −EF ≤ � �D⎨ p 

= and 0 ≤ �p� −EF ≤ � �D ⎪ ⎩0 otherwise� 
(7.11) 

In (7.11), ��D is a typical phonon energy, 
which reflects the idea that attraction 
between electrons arises via exchange of vir­
tual phonons. 

With the potential (7.11) the interaction 
term in (7.9) becomes 

V�p� p��a�p�� 
p

=−V0K
���D −EF −�p�� (7.12) 

where 
�x� is the ordinary step function and 

K = a�p� (7.13) 
p 

is a constant. Solving (7.9) for a�p�, we have 

V0K 
a�p� = 

2��p −EF� −E 

×
���D −EF −�p�� (7.14) 

Note that our Cooper pair involves momenta 
only in the narrow region �p –EF ≤ � �D just 
above the Fermi surface. 

We can now self-consistently evaluate 
the constant K in (7.13), 

∑� 1 
K = V0K 

2�� −EF� −E p p 

×
�� �D −EF −�p�� (7.15) 

If we assume that K �= 0, this leads to an 
implicit equation for the eigenvalue E, 

∑� 1

1 = V0
 2�� −EF� −E p p 

×
���D −EF −�p�� (7.16) 

The sum over the momenta can be 
expressed as an integral over the energies in 
terms of the density of states D���. Since 
typically � �D � EF� D��� is well approx­
imated inside the integral by its value at the 
Fermi surface, D�EF�. Thus we have 

∫ EF +� �p 1 
1 = V0D�EF� d� 

EF 2�� −EF� −E 

E −2��D = 1
2 V0D�EF� ln � 

E 
(7.17) 

Solving for E we have 

2��DE =−  � (7.18) 
exp
2/V0D�EF�� −1 

In the weak-coupling limit V0D�EF� � 1 and 
the exponential dominates the denominator 
in (7.18) so that 

2 
E ≈−2��D exp − � (7.19)

V0D�EF� 

This result is remarkable in several ways. 
First, it tells us that the pair state we have 
constructed will always have a lower energy 
than the normal ground state no matter how 
small the interaction V0. This is why we 
say the normal ground state is unstable with 
respect to the formation of Cooper pairs. Sec­
ond, we see in (7.18) a hierarchy of very 
different energy scales, 

EF � ��D � �E�� (7.20) 
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which, if we assume that kBTc � �E�, explains 
why the superconducting transition temper­
ature is so small compared with the Debye 
temperature, 

��D�D = � 
kB 

If one Cooper pair lowers the ground 
state by −�E�, then, clearly many pairs will 
lower the energy even further, and one might 
be tempted to conclude that all the electrons 
should pair up in this fashion. Such a state 
would then resemble a Bose–Einstein con­
densate of Cooper pairs. However, we must 
keep in mind that if we do away entirely with 
the normal Fermi sea the state we have con­
structed collapses. We can use these intuitive 
ideas to guide our thinking, but to arrive at 
the true BCS ground state we must go beyond 
simple one- and even two-electron pictures 
and realize that the superconducting state is 
a highly correlated many-electron state. 

III. THE BCS ORDER PARAMETER 

In this section and those that follow we 
will present the formal details of the BCS 
theory. The most natural mathematical lan­
guage to use in this case is “second quanti­
zation”, where all observables are expressed 
in terms of the electron operators an��k�, 
and their Hermitian conjugates. The opera­
tor an��k� annihilates an electron with band 
index n, z-component of the spin � and 
Bloch wavevector k. The electron operators 
have the anticommutation relations, 

an��k�� a
† �k�� = � �����k� k

��m� nm

�an��k�� am��k
��� = 0 (7.21) 

In order to reduce the complexity of the equa­
tions we will encounter, the band index, n, 
and the spin index, �, will be combined into 
a single discrete index, ��� n� → � . 

7 BCS THEORY 

As in any theory of a phase transition 
the first task is to identify the “order parame­
ter”, which vanishes in the high temperature, 
disordered phase and is non-zero in the low 
temperature, ordered phase. We have seen 
that the normal ground state is unstable with 
respect to the formation of “Cooper pairs” 
if there is an attractive interaction between 
electrons at the Fermi surface. This leads us 
to consider the BCS order parameter 

����k1� k2� = �a��k1�a��k2�� (7.22a) 

The BCS order parameter is in general a 
two-by two complex matrix. We will find it 
useful to define the Hermitian conjugate of 
the order parameter, 

����k1� k2� 
∗ = �a†

��k2�a
†
��k1�� (7.22b) 

It is easy to see that the order parameter 
vanishes in the normal state. The average in 
(7.22a) is 

�a��k1�a��k2�� 
= Z−1Tr e −�Ha��k1����k2� 

(7.23) 

where � = 1/kBT� H is the Hamiltonian for 
the normal state, and Z is the partition func­
tion. This Hamiltonian is invariant under the 
(unitary) global gauge transformation, 

U †���a��k�U��� = e −i�a��k� (7.24a) 

U †���HU��� =H (7.24b) 

If we apply this transformation inside the 
trace in (7.23), we have 

�a��k1�a��k2�� 
= Z−1Tr
U���U †���e−�Ha��k1�a��k2�� 

= Z−1Tr
U †���e−�HU���U †���a��k1� 

×U���U †���a��k2�U���� 

= e −2i��a��k1�a��k2�� (7.25) 
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III THE BCS ORDER PARAMETER 

In the first and second lines of (7.25) 
we have used the fact that U���U †��� = 1, 
and in the second line we have also used 
the cyclic property of the trace, Tr 
ABC� = 
Tr 
BCA�. Since � is an arbitrary phase 
angle, the only possible solution to (7.25) is 
that a��k1�a��k2� = 0, as expected in the 
normal state. 

If the order parameter is to be differ­
ent from zero, it is clear from the above 
argument that the statistical operator can­
not be invariant under a global gauge trans­
formation. In the general theory of phase 
transitions this is called spontaneous sym­
metry breaking: the statistical operator has 
a lower symmetry in the ordered state than 
in the normal, or disordered, state. In the 
case of a ferromagnet, the normal state is 
rotationally invariant and the thermal aver­
age of the magnetization, which is a vec­
tor, vanishes. Below the Curie temperature, 
however, there is a spontaneous magnetiza­
tion that clearly breaks the rotational sym­
metry of the high temperature phase. The 
phenomenon of superconductivity is char­
acterized by the breaking of global gauge 
symmetry. 

The normal state may exhibit other sym­
metries that are characteristic of the crystal 
structure of the solid. If the superconduct­
ing state breaks one of the symmetries of 
the normal state in addition to global gauge 
symmetry then we say the superconductor is 
“unconventional”. For example, in “p-wave” 
superconductors, the order parameter has a 
vector character much like the magnetization 
in a ferromagnet. We will assume that the 
translational symmetry of the superconduct­
ing phase is the same as that of the normal 
state. Under a translation by a lattice vector 
R the electron operator transforms as 

T †�R�a��k�T�R� = eik·R a��k� (7.26) 

Assuming the statistical operator for the 
superconducting state is invariant under 
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translations, it follows, (by an argument very 
much like the preceding one) that 

����k1� k2� = ei�k1 +k2 ��R����k1� k2� (7.27) 

From this we conclude that the order param­
eter vanishes unless k1 = −k2. We can use 
this fact to simplify things somewhat and 
define an order parameter that is a function 
of only one wavevector, 

����k� ≡����k� −k� (7.28) 

Finally, the anticommutation relations, 
(7.21), imply that the order parameter is 
antisymmetric under exchange of all its 
arguments, 

����k1� k2� =−����k2� k1� (7.29a) 

or, in the case of translational invariance, 

����k� ≡−����−k� (7.29b) 

If the electron spin commutes with the nor­
mal state statistical operator (no spin-orbit 
interaction), then the order parameter must 
transform either as a spin singlet or a spin 
triplet. In the singlet case, which is the most 
common, we can write 

����k� = �����k� (7.30) 

where ��� = −��� and ��k� = ��−k�. In  
the triplet case we have 

����k� 
( √ ) 

= −
�1�k� + i�2�k��/ 2 �3�k� √ 
�3�k�  
�1�k� − i�2�k��/ 2 

(7.31) 

where the three spatial components of the 
order parameter, ��1�k�� �2�k�� �3�k�� are 
odd functions of the wavevector, 

�i�k� =−�i�−k� (7.32) 

The three components of the triplet order 
parameter defined by (7.31) transform under 
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rotations in spin-space as a vector, and 
clearly break the invariance of the normal 
state under such rotations. Therefore, the 
triplet order parameter is unconventional, 
and the singlet is conventional. 

IV. THE BCS HAMILTONIAN 

We have argued that in order for the 
order parameter to differ from zero the statis­
tical operator must break global gauge sym­
metry. The simplest way to construct such 
a statistical operator is to assume the order 
parameter is not zero and that the fluctua­
tions about the order parameter are small. 
Thus we write 

a��k1�a��k2� = �a��k1�a��k2�� 
+ 
a��k1�a��k2� 

−�a��k1�a��k2��� (7.33) 

in the Hamiltonian, and expand in powers of 
the fluctuation. 

We begin with a Hamiltonian that 
includes the one-electron band structure and 
a two-body interaction between electrons, 

H = E��k�a
†
��k�a��k� 

��k 

1 ∑ + a†
��k1�a�

† �k2� 2 
�k1�k2�k3�k4 � 

×V�����k1� k2� k3� k4����k3�a��k4� 
(7.34) 

Under translation by a lattice vector the inter­
action transforms as 

V�����k1� k2� k3� k4� = e −i�k1+k2−k3−k4�·R 

×V�����k1� k2� k3� k4� 
(7.35) 

which requires k1 +k2 −k3 −k4 = G, where 
G is a reciprocal lattice vector. 

If we now insert the expansion, (7.33), 
into the interaction term in (7.34) and keep 

7 BCS THEORY 

only terms first order in the fluctuations, 
we have 

a�
† �k1�a

†
��k2�V�����k1� k2� k3� k4�a��k3� 

�k1�k2�k3�k4� 

×a��k4� = ∑ {〈 
a�
† �k1�a

†
��k2� 

〉

�k1�k2�k3�k4�


+ [ a��k1�a��k2� − 〈 a�
† �k1�a

†
��k2� 

〉]}


×V�����k1� k2� k3� k4� a��k3�a��k4� [ 〈 〉]} + a��k3�a��k4� − a��k3�a��k4� 

≈−  ∑ 〈 
a�
† �k1�a

†
��k2� 

〉 
V�����k1� k2� k3� k4� 

�k1�k2 �k3�k4� 

× 〈 a��k3�a��k4� 
〉 + ∑ 〈 

a�
† �k1�a

†
��k2� 

〉

�k1�k2�k3�k4�


×V�����k1� k2� k3� k4�a��k3�a��k4� 

+ ∑ 
a�
† �k1�a

†
��k2�V�����k1� k2� k3� k4� 

�k1�k2�k3�k4 � 

× a��k3�a��k4� (7.36) 

We now use the definition of the order param­
eter, (7.25) and (7.35) to get 

= 1 ∑ 
� ∗ HBCS 2 ���k�V������k� k

������k
�� 

kk� 

+ E��k�a
†
��k�a��k� + 

��k 

1 ∑ − � ∗ ���k�V������k� k
��a��k

��a��−k�� 
2 

kk� 

+ 1 ∑ 
a�
† �k�a†

��−k�V������k� k
������k

�� 
2 

kk� 
(7.37) 

where we’ve introduced the shorthand 
V������k� k

�� ≡ V������k� −k� k�� −k��. 
The leading term in (7.37) is just a com­

plex number, the next term is the normal state 
one-electron band structure, and the final two 
terms are new. 

The BCS Hamiltonian can be simplified 
even further if we define the gap function, 

����k� = V�����k� k
������k

�� (7.38) 
k� 
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177 V THE BOGOLIUBOV TRANSFORMATION 

so that (7.37) now becomes 

1 ∑ = � ∗ �k��HBCS 2 ���k�V�����k� k
�����


kk�


+ E��k�a
†
��k�a��k� 

��k 

1 ∑[ + 
2 k 

a�
† �k�����k�a

†
��−k� 

−a��k�� ∗ �k�a��−k� (7.39) 

Note that the gap function has the same sym­
metries as the order parameter itself. In par­
ticular it is antisymmetric under exchange of 
labels, 

����−k� = V������−k� k������k
��


k���


= V������−k� −k������k
�� 

k��� 

= V������−k� −k������−k�� 
k��� 

=−����k� (7.40) 

V. THE BOGOLIUBOV 
TRANSFORMATION 

The BCS Hamiltonian, (7.39), is bilin­
ear in the electron operators, and so it can 
be diagonalized by a unitary transforma­
tion, called the Bogoliubov transformation, 
that mixes electron creation and annihilation 
operators. 

The generator for the Bogoliubov trans­
formation is the anti-hermitian operator 

1 ∑[ 
B = 
���k�a

†
��k�a

†
��−k� 

2 k 

+
 ∗ �k�a��k�a��−k� (7.41) 

Since the electron operators anticommute, 
the coefficients 
���k� must be antisymmet­
ric under exchange of spin and band indices 
and k →−k, 


���k� =−
���−k� (7.42) 

The action of the Bogoliubov transformation 
on the electron operators is 

eBa��k�e
−B = U���k�a��k� −V���k�a

†
��−k� 

≡ b��k� (7.43) 

which defines the quasiparticle operators 
b��k�. The coefficients U���k� and V���k� 
are given by 

1 
U� �k� = ��  + 

2! 
���k�
� �−k� ∗ 

+ 1 

���k�
���−k� ∗ 

4! 

���k�
� �−k� ∗ + · · ·  (7.44a) 

V� �k� =
� �k� 

+ 1 

���k�
 ∗ �−k�
� �k� +· · ·  

3! ��

(7.44b) 

The V� �k� have the same symmetry as 

� �k� itself, 

V� �k� = V ��−k� (7.45a) 

whereas for the U ’s we have 

U ∗  ��k� = U� �k� (7.45b) 

The Bogoliubov transformation preserves the 
canonical commutation relations for the elec­
tron operators, (7.21), which lead to the fol­
lowing relations: 

�k�V�� �k�U ∗ �−k� = 0U�� �k� −V�� ��

(7.46a) 

�k�U ∗ �k�V ∗ U�� ���k� −V�� ���−k� = ��� 

(7.46b) 

The coefficients 
���k�, or equivalently 
the Bogoliubov amplitudes, are chosen so 
that the “off-diagonal” terms, i.e. the terms 
that involve the product of two creation or 
two annihilation operators, vanish. In order 



Elsevier AMS Job code: SUP CH07-P088761 22-6-2007 9:35a.m. Page:178 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

( ) 

( ) 

∑ 

( ) 

�� ��( ) 

�  �  

( )(  ) 

( ) 

�  

( )(  ) 

( ) 

�  

( ) 

∑ 

178 

to facilitate the calculation of the Bogoli­
ubov amplitudes it is useful to define a two-
component operator 

A��k� = 
a
a
†
�

�

�−
�k

k
�
� 

(7.47) 

The BCS Hamiltonian can then be written in 
the compact form 

A†HBCS = 1 ∑ 
��k� ·H���k� ·A��k� +E0 

� 
2 k 

(7.48) 
where the 2 ×2 matrix H���k� is 

E���k� ����k�H���k� = −�∗ �−k� (7.49) 
���−k� −E��

The constant E0 
� arises from reordering the 

electron operators, 

E0 
� = 1

2 
E��k� (7.50) 

�k 

and E���k� is the diagonal matrix E���k� = 
E��k����. 

The action of the Bogoliubov trans­
formation, (7.43), on the BCS Hamiltonian 
(7.48) is 

eBA�
† �k� ·H���k� ·A��k�e

−B 

= A† �k� 
U���k� V���k� H���k�� V ∗ �−k� U ∗ �−k� 

U� �k� −V� �k� × −V ∗ �−k� U  ∗ �−k� A �k� (7.51) 

We see from this that the Bogoliubov trans­
formation acting on the electron opera­
tors induces a unitary transformation of the 
matrix H���k�. In the usual way, the unitary 
matrix that diagonalizes H���k� can be con­
structed from its eigenvectors. By inspection 
of (7.51) we see that the BCS Hamiltonian 
is diagonalized if the Bogoliubov amplitudes 
satisfy the eigenvalue equation 

E���k� −����k� U� �k� 
−� ∗ �−k� −V ∗ �−k����−k� −E�� �  

U� �k� = ! �k� −V ∗ �−k� (7.52a) 

7 BCS THEORY 

It should be noted that by introducing the 
two-component operator A��k� we have 
doubled the size of the vector space. As 
a consequence, for every eigenvector with 
eigenvalue ! �k� there is a second eigenvec­
tor with eigenvalue −! �k� given by 

E���k� ����k� −V� �k� 
−� ∗ �−k� U ∗ �−k����−k� −E�� �  

−V� �k�=−! �k� U ∗ �−k� (7.52b) 

If we use (7.52a,b), the Hamiltonian takes 
the diagonal form 

HBCS = A�
† �k� 

!��k
0 
���  

−!��
0 
k���  

A �k� 

(7.53) 

which can be expressed in terms of the elec­
tron operators as 

HBCS = !��k�b�
† �k�b��k� +E0 

� −E0 
�� 

�k 

(7.54) 
where 

E0 
�� = 1 ∑ 

!n�k� (7.55)
2 k�n 

is a constant that arises when the quasi­
particle operators are normal ordered. The 
eigenvalues ! �k� appearing in (7.52) are the 
quasiparticle energies. 

VI. THE SELF-CONSISTENT GAP 
EQUATION 

By treating order parameter in the mean-
field approximation the BCS Hamiltonian 
clearly breaks global gauge symmetry, but 
we must complete the theory by calculating 
the order parameter in the ordered state, 

����k� = Z−1Tr e−�HBCS
��a��k�a��−k� 
(7.56) 
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VI THE SELF-CONSISTENT GAP EQUATION 

Note that the order parameter appears both 
on the right and on the left-hand side of 
this equation, so it must be solved self-
consistently. 

If we apply the Bogoliubov transforma­
tion to (7.56), we have 

����k� = Z−1Tr e−�HBCS 


U���k�a��k� −V���k�a�
† �−k�� 

× 
U� �−k�a �−k� −V� �−k�a 
†�k�� 

(7.57) 

The Bogoliubov transformation diagonalizes 
the BCS Hamiltonian as in (7.54), so the ther­
mal averages in (7.57) can be done immedi­
ately, with the result 

����k� = U���k�V���k� 1 −n��!�� 

�k� U  ∗ �−k�n��!��−V�� ��

(7.58) 

where n�x� = �ex +1�−1 is the usual Fermi-
Dirac occupation function. 

A. Solution of the Gap Equation 
Near Tc 

In general this nonlinear equation is 
quite difficult to solve, but near the criti­
cal temperature, where the order parameter 
is small, we can treat the symmetry-breaking 
terms in HBCS as a perturbation and linearize 
the gap equation. The details of this calcula­
tion are somewhat involved, and so we rel­
egate them to Appendix A. The final result 
is (A.13) 

1 −n
�E��−k�� −n
�E��k�� 
����k� = 

E��k� +E��−k� 

×����k� (7.59) 

The energy dependent factor in (7.59) has a 
maximum near E� ≈ E� ≈ 0, that is for both 
energies near the Fermi surface. Therefore 

179 

bands that are far from the Fermi energy will 
contribute very little to the superconducting 
order parameter. 

If we use the definition of the gap func­
tion, (7.38), the gap equation (7.59) can 
be written entirely in terms of the order 
parameter, 

1 −n
�E��−k�� −n
�E��k�� 
����k� = 

E��k� +E��−k� 

× V���� �k� p��� �p� (7.60) 
p 

B. Solution At T = 0 

The gap equation also simplifies at zero 
temperature, where the number of quasi­
particles vanishes. In this case we have, 
by (7.46a) 

lim ����k� → U���k�V���k� 
T →0 

1 = V��
2
�k�� (7.61)
2 

which tells us that V���k� has the same sym­
metry as the order parameter. 

C. Nodes of the Order Parameter 

Most of the superconducting materials 
known before the discovery of the copper-
oxide high temperature superconductors by 
Bednorz and Müller (1986) are of the “s­
wave” type, meaning the order parameter 
is a spin-singlet and positive everywhere in 
the Brillouin zone. There is convincing evi­
dence that the quasi two-dimensional high-
temperature superconductors are “d-wave”, 
with nodal lines along the directions kx = 
±k in the plane perpendicular to the c­y 

axis. Heavy-fermion superconductors like 
UPt3 may be “p-wave”, or triplet, ����k� = 
−����−k�, requiring a node at k = 0. 

The order parameter must transform as 
an irreducible representation of the point 
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group of the crystal structure1 . If the order 
parameter has a single component, it must 
transform as a one-dimensional represen­
tation of the point group. Of these one-
dimensional representations, there is always 
the identity representation, which corre­
sponds to the case where the order parameter 
does not change sign under the operations 
of the point group. This is referred to as 
“extended s-wave”. It is possible that the 
order parameter can still have nodes in 
this case. For example, the order parameter 
��k� = �0 +�1�cos kxa + cos kya�, which is 
invariant under the point group D4h appropri­
ate to a copper-oxygen plane in the cuprate 
materials, may have nodal lines near the cor­
ners of the Brillouin zone if �0 < 2�1. 

On the other hand, if the order param­
eter transforms as one of the other one-
dimensional representations of the point 
group, it must change sign under at least one 
element of the point group, P� ����Pk� = 
−����k�. 

D. Single Band Singlet Pairing 

In the case of spin-singlet pairing in a 
single band, the order parameter is 

�� �p� = �� ��p� (7.62) 

where ��  = −� � and ��p� = ��−p� is a 
complex scalar function. The same is true of 
the gap function �� �p� = �� ��p� and the 
Bogoliubov parameter 
� �k� = �� ��k�. 
If we assume the band energies are spin-
independent and invariant under parity, the 
form of the Bogoliubov amplitudes simplify 
a great deal (note that ������ = −���) and 
we find 

U���k� = ��� cos ��k� 

V���k� = ��� sin ��k� (7.63) 

1An exception to this can occur if two order parame­
ters with different symmetry are degenerate. In this 
case the order parameter is said to be “mixed”. 

7 BCS THEORY 

The quasiparticle energies are given by 

!�k� = E2�k� +���k��2 (7.64) 

from which we see why ��k� is referred to 
as the gap function. 

The Bogoliubov amplitudes can be 
found, 

�u�k��2 = 1 

2 

( 

1 + E�k� 
!�k� 

) 

�v�k��2 = 1 

2 

( 

1 − E�k� 
!�k� 

) 

(7.65) 

and are shown in Fig. 7.1. The expression 
for the order parameter, (7.58) then takes the 
very simple form 

1 −2n
!�k�� 
��k� =−  ��k� (7.66)

2!�k� 

Close to the transition temperature the order 
parameter is given by 

1 −2n
�E�k�� ∑ 
��k� =−  V�k� p���p� 

2E�k� p 

(7.67) 

E. S-Wave Pairing 

To proceed further we need a model for 
the interaction potential. A simple choice (J. 
Bardeen, L.N. Cooper and J. R. Schrieffer 
1957) that leads to tractable expressions is 

V�k� p� =−V0"�E�k�/E0�"�E�p�/E0� 
(7.68) 

where 

1 for −1 ≤ x ≤ 1 
"�x� = (7.69)

0 otherwise 

Note that the choice of sign in (7.68) antic­
ipates that we will find a solution only if 
the effective interaction is attractive. In the 
case of phonon-mediated interactions, V0 is 
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0.75 [u(E/Δ)]2 
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[v(E/Δ)]2 

E/Δ 
–2 –1 1 2 

Figure 7.1 Bogoliubov amplitudes in the neighborhood of the Fermi surface. 

a measure of the strength of the electron-
phonon coupling and E0 = ��D is a typical 
phonon energy. We then have 

1 −2n
�E�k�� 
��k� = #V0 2E�k� 

"�E�k�/E0� 

(7.70) 
where 

∑ 
# = "�E�p�/E0���p� (7.71) 

p 

If we substitute (7.70) for the order parameter 
in (7.71) we get 

∑ 1 −2n
�E�p�� 
1 = V0 "�E�p�/E0� 2E�p�p 

(7.72) 

This equation determines the transition tem­
perature, which enters through the Fermi-
Dirac function on the right hand side. 

The summand in (7.72) is monotonically 
decreasing with temperature. Above the tran­
sition temperature the only solution to the 
gap equation is ��k� = 0. For T ≤ Tc a sec­
ond solution exists with ��k� � 0.=

We can solve (7.72) for the transition 
temperature if we replace the sum by an 

integral and assume the density of states in 
the neighborhood of the Fermi surface is 
constant, D�0�. With these approximations, 
(7.72) becomes 

E0 ( ) 

1 = V0D�0� 
2 

∫ 1 −2n�E�� 
E 

dE 
−E0 

E0 
tanh E/2kB

∫ T= V0D�0� c dE (7.73)
E 

0 

In most simple superconductors E0/kBTc >> 
1. The integral in (7.73) can then be done by 
parts, and in the remaining integral the upper 
limit set to infinity, with the result 

2e� 

kBTc = E0e −1/D�0�V0 (7.74) 

The remarkable thing about this result is that 
no matter how weak the interaction between 
electrons, there is always a superconducting 
state. It is also clear that any sort of series 
expansion in V0 will suffer from an essential 
singularity at V0 = 0. Figure 7.2 shows a scat­
ter plot of the density of states and transition 
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182 7 BCS THEORY 

Figure 7.2 Dependence of the superconducting transition temperature 
Tc on the density of states D�0� for various superconductors (Okazaki 
et al., 1990) 

temperatures for a variety of superconduct­
ing materials. 

F. Zero-Temperature Gap 

At zero temperature there are no quasi­
particles and the gap equation becomes 

V0��k� = 
2!�k� 

"�E�k�/E0� 

∑ × "�E�p�/E0���p� (7.75) 
p 

Once again we define 

∑ 
# = "�E�p�/E0���p� (7.76) 

p 

and, following the same steps that led to 
the expression for the transition temperature, 
we find 

1 = V0Dn�0�sinh−1�E0/�0� (7.77) 

In the weak-coupling limit, E0/�0 >> 1, the 
zero-temperature gap is 

n�0 = E0 e −1/V0D �0� (7.78)
2 

If we take the ratio of the zero-temperature 
gap to the critical temperature we find 

2�0 2$ = ≈ 3�53 (7.79)
kBTc e� 

The full temperature dependence of the gap 
is shown in Fig. 7.3 below. 

Table 7.1 lists the transition temper­
atures and zero-temperature gaps, and the 
dimensionless ratio 2�0/kBTc for several 
superconductors. Given the crude approxi­
mations made in order to calculate the ratio 
of the zero temperature gap to the transition 
temperature, it is remarkable that the value 
of this ratio for some real materials is not too 
far from the weak-coupling BCS value. 
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Figure 7.3 Temperature dependence of the BCS gap 
function �. 

Many of the physical properties of 
superconductors depend on the quasiparticle 
density of states. In particular the presence 
of the gap is especially important, leading 
for example, to an exponential behavior in 
the specific heat. If we assume the density of 
states in the normal phase is slowly varying 
in the neighborhood of the Fermi surface, 
then the density of states in the supercon­
ducting state, shown in Fig. 7.4 is 

⎧ 
⎪ ⎪ 

Dn�0�! √ ! > �  ⎪ ⎪ ⎨ !2 −�2 

DS = 0 �!� < �  (7.80) ⎪ ⎪ ⎪ ⎪ ⎩ 
Dn�0�! √ ! <  −� 
!2 −�2 

Table 7.1 Comparison of Energy Gaps for Various Superconductorsa 

Material Tc� K 2�0� meV 2�0/kBTc 

Hf 0�13 0.044 3.9 
Cd 0�52 0.14 3.2 
Zn 0�85 0.23 3.2 
Al 1�2 0.35 3.4 
In 3�4 1.05 3.6 
Hg 4�2 1.7 4.6 
Pb 7�2 2.7 4.3 
Nb 9�3 3.0 3.8 
V3Ge�A15� 11�2 3.1 3.2 
V3Si�A15� 17�1 5.4 3.7 
Nb3Sn�A15� 18�1 4.7 3.0 
K3C60 19 5.9 3.6 
Rb3C60 29 7.5 3.0 
Ba0�6K0�4BiO3 18�5 5.9 3.7 
�Nd0�925Ce0�075�2CuO4 21 7.4 4.4 
�La0�925Sr0�075�2CuO4 36 13 4.3 
YBa2Cu3O7−% 87 30 4.0 
Bi2Sr2Ca2Cu3O10 108 53 5.7 
Tl2Ba2CaCu2O8 112 44 4.5 
Tl2Ba2Ca2Cu3O10 105 28 3.1 
HgBa2Ca2Cu3O8 131 48 4.3 

a Data on elements from Meservey and Schwartz (1969); data on the A15 compounds from Vonsovsky 
et al. (1982); and data on high-temperature superconductors from T. Hasegawa et al. (1991). K3C60 

and Rb3C60 values are from Degiorgi et al. (1992), and HgBa2Ca2Cu3O8 data are from Schilling 
et al. (1994b). Many of the 2�0/kBTc ratios are averages of several determinations, sometimes with 
considerable scatter; the 2�0 values are calculated from columns 2 and 4. The BCS value of 2�0/kBTc 

is 3.52. Table 3.1 provides energy gap data for many additional elements. 
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G. D-Wave Order Parameter 

There is a growing consensus that the 
order parameter in the copper-oxide super­
conductors is “d-wave”. These materials 
are fairly anisotropic, and many treatments 
are quasi two-dimensional, focusing on the 
copper-oxygen planes that form a nearly 
square lattice. It is also true that many of 
the parent materials of the cuprates are anti­
ferromagnetic; doping tends to destroy the 
long-range AF order, but strong short range 
AF correlations survive in the normal state of 
superconducting samples. In this section we 
present a very simple “toy model” that leads 
to a d-wave order parameter. This model is 
not intended to be a realistic representation 
of any material, but merely to illustrate how 
such a solution to the gap equation can arise. 

The point group for the square, D4h, 
has the parity-even one dimensional repre­
sentations listed in the following table (D.L 
Scalapino, 1995), 

The order parameter must trans­
form as one of these one-dimensional 
representations. 

The gap equation, (7.66), can be cast in a 
more symmetric form by defining a rescaled 
order parameter 

��k� = f�k�&�k� (7.81) 

Table 7.2 Irreducible 
one-dimensional representations of the 
point group D4h. (D.L. Scalapino 
(1995)) 

Irreducible 
one-dimensional 
representation Basis Function 

'1 
+ 1� cos kxa + cos kya 

'2 
+ sin kxa sin kyax 

�cos k a − cos k a�x y 

'3 
+ cos kxa − cos kya 

'4 
+ sin kxa sin kya 

7 BCS THEORY 

and a rescaled two-body potential, 

W�k� p� ≡ f�k�V�k� p� f�p� 

where f�p� >  0 is the energy-dependent 
function 

1 −2n
�!�p�� 
f�p� = (7.82)

2�!�p� 

The gap equation now has the simple form 

&�k� =−� W�k� p�&�p� (7.83) 
p 

The simple form (7.68) for the inter­
action potential is insufficient to describe 
an order parameter that changes sign within 
the Brillouin zone, since, as one can see 
from (7.76), the parameter # vanishes in this 
case. Therefore let us consider an interaction 
W�k� p� that is strongly peaked for a momen­
tum transfer q = k −p in the neighborhood 
of q0 = �$ � $ �,

a a 

W�k� p� = V0��k −p� q0� (7.84) 

The gap equation then becomes 

&�k� =−�V0&�k −q0� (7.85) 

If we assume that V0 > 0, that is the effective 
potential is repulsive, it follows that the order 
parameter must change sign on translation 
by q0, 

��k� =−��k −q0� (7.86) 

This rules out the extended s-wave case, 
��k� = �0 + �1�cos kxa + cos kya�, unless 
�0 = 0, and an order parameter that trans­
forms as '4 

+, leaving the possibility of order 
parameters that transform according to the 
representations '2 

+ and '3 
+. Contour plots of 

these two cases are shown in figures 7.5a,b. 
Whether the order parameter is extended 

s-wave, d-wave, or the even more compli­
cated form shown in Fig. 7.5b, is ultimately 
decided by which one gives the lowest free 
energy. 
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Figure 7.4 Density of states in the superconducting 
state near the Fermi surface. 

H. Multi-Band Singlet Pairing 

The superconducting state in MgB2 is 
believed to involve more than one band. In 
order to investigate case where several bands 
may lie close to the Fermi surface, we return 
to (7.60) and again assume singlet pairing. 
We will also assume that the bands are parity 
invariant so Ei�k� = Ei�−k�. The gap equa­
tion (7.60) becomes 

1 −n
�Ei�k�� −n
�Ej�k�� 
�ij�k� = 

Ei�k� +Ej�k� 

× Vij�mn�k�p��mn�p� (7.87) 
p 

where the Latin indices label the bands 
and take the values i = 1� 2� ( ( ( n. We can 

π π 
–π – 0 

π 

π
2 2 

π

π 
2 

0 0 

π 
2 

ππ –– 
22 

–π –π 
π π 

–π – π0
2 2 

Figure 7.5a Contour plot of kx versus ky for the d-wave order parameter belonging to the 
representation '3 

+ of the point group D4h. 
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– – 
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–π–π 
–π π 0 π 

– 
2 

Figure 7.5b Contour plot of kx versus ky 

sentation '2 
+ of the point group D4h. 

simplify the structure of (7.87) by defining 
the function 

1 −n��Ei�p�� −n��Ei�p�� fij�p� = ( ) 
� Ei�p� +Ej�p� 

(7.88) 

Note that fij�p� >  0, which allows us to 
define a rescaled order parameter, &ij�p�, 

�ij�p� ≡ fij�p�&ij�p� (7.89) 

and a rescaled two-body potential 

Wij�mn�k� p� ≡ fij�k�Vij�mn�k� p� fmn�p� 

(7.90) 

2 

for the order parameter belonging to the repre-

The self-consistent gap equation then 
becomes 

&ij�k� = � Wij�mn�k� p�&mn�p� (7.91) 
p mn 

If we regard this as an eigenvector-
eigenvalue equation, we see that the scaled 
order parameter is an eigenvector of W with 
eigenvalue 1/�. If the largest eigenvalue of 
W is �0���, then the critical temperature is 
the solution of the equation 

�c�0��c� = 1 (7.92) 

Denoting the eigenvector corresponding to 
the maximum eigenvalue by )ij

�0�
�k�, the 
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order parameter is 

�ij�k� ≡ fij�k�)
�
ij 
0�
�k� (7.93) 

If we assume that the intra-band scat­
tering terms in W are large compared to the 
inter-band terms, the well-known methods 
of perturbation theory can be applied to the 
eigenvalue problem, (7.91). In the usual way 
W is separated into two parts, 

�0� �1�
Wij�mn�k� p� = Wij�mn�k� p� +Wij�mn�k� p� 

(7.94) 

�0�where Wij�mn�k� p� includes all intra-band 
interactions (and is therefore diagonal in the 

�1�band indices) and Wij�mn�k� p� contains all 
inter-band interactions. Following standard 
perturbation theory, (here the eigenvectors 
and eigenvalues are understood to be those 
of W�0�) we find the first- correction to the 
maximum eigenvector is2 

)�n��W  �1�)�0� 
�0� �n�

�)ij = )ij (7.95a) 
n� �0 −�n=0 

and the shift in the maximum eigenvalue 
is, to second order (the first order term 
vanishes), 

∣ )�n��W  �1�)�0� ∣ 2 

�
�
0
2� = > 0 (7.95b)

�0 −�n� n=0 

We see that only processes where the num­
ber of electrons in each band remains fixed 
contribute to the change in the order param­
eter and eigenvalue to lowest order. It is also 
interesting to note that quite generally the 
presence of other bands increases the eigen­
value, and therefore the critical temperature. 

In the beginning of our discussion 
we introduced an effective electron-electron 

2 The inner product notation used in (7.85) 
involves both sums over band indices and a sum 
over wavevectors. 

potential without saying anything about its 
origin, other than noting that in the BCS 
theory the exchange of virtual phonons 
gives rise to an attractive interaction. A 
detailed calculation of the electron-phonon 
coupling is beyond the scope of this book, 
so we simply refer to the central result of 
Eliashberg, who defines the dimensionless 
electron-phonon coupling constant 

∫ � 
�2���Dph��� 

! = 2 d� (7.96) 
0 

Superconductors are characterized 
according to the magnitude of !, 

! <<  1 weak coupling 

! ∼ 1 intermediate coupling (7.97) 

! >>  1 strong coupling 

In addition to the attractive electron-
phonon coupling there is a residual screened 
Coulomb repulsive interaction characterized 
by the dimensionless parameter �∗ 

c . The net 
electron-electron interaction is the sum of 
these two terms, and in the expressions (7.74) 
and (7.78) we make the substitution 

Dn�0�V0 → ! −� ∗ c (7.98) 

so the transition temperature is given by 

cTc = 1�13�De − 
!−

1 
� ∗ (7.99) 

A number of other expressions for the 
critical temperature have appeared in the lit­
erature. McMillan (1968) gives the following 
empirical formula 

�D 1�04�1 +*� 
Tc = exp − 

1�45 * −�∗�1 +062* c 

(7.100) 

Values of * and �∗ 
c reported in the litera­

ture for various superconductors are listed in 
Table 7.3. 
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Table 7.3 Electron–Phonon Coupling Constants � and Coulomb Interaction 
Parameters �∗a 

c 

Material Tc �K� � �∗ 
c References 

Ru 0�49 0�47 0�15 Table 3.1 
Zr 0�61 0�22 0�17 Table 3.1 
Os 0�66 0�44 0�12 Table 3.1 
Mo 0�92 0�35 0�09 Table 3.1 
Re 1�7 0�37 0�1 Table 3.1 
Pb 7�2 1�55 Ginzburg and Kirzhnits (1977, p. 171) 
Nb 9�3 0�85 Ginzburg and Kirzhnits (1977, p. 171) 
NbC 11�1 0�61 Ginzburg and Kirzhnits (1977, p. 171) 
TaC 11�4 0�62 Ginzburg and Kirzhnits (1977, p. 171) 
V3Ge 6�1 0�7 Vonsovsky et al. (1982, p. 303) 
V3Si 17�1 1�12 Vonsovsky et al. (1982, p. 303) 
Nb3 Sn 18�1 1�67 Ginzburg and Kirzhnits (1977, p. 171) 
Nb3 Ge 23�2 1�80 Vonsovsky et al. (1982, p. 303) 
K3C60 16�3 0�51 Novikov et al. (1992) 
Rb3C60 30�5 0�61 Novikov et al. (1992) 
Cs3 C60 47�4 0�72 Novikov et al. (1992) 
Ba�Pb� Bi�O3 12 1�3 Schlesinger et al. (1989) 
�La0�913Sr0�087�CuO4 0�1 Gurvitch and Fiory (1987a,b,c) 
�La0�913Sr0�087�CuO4 35 2�0 0�18 Rammer (1987) 
YBa2Cu3O7 0�2 Gurvitch and Fiory (1987a,b,c) 
YBa2Cu3O7 0�3 Tanner and Timusk (1992, p. 416) 
YBa2Cu3O7 90 2�5 0�1 Kirtley et al. (1987) 
Bi2Sr2 CuO6 0�2 Tanner and Timusk (1992, p. 416) 
Bi2Sr2 CaCu2O8 0�3 Tanner and Timusk (1992, p. 416) 
Tl2 Ba2 CaCu2O8 0�3 Foster et al. (1990) 

a High and low estimates are given for high-temperature superconductors, some of which are averages 
of several investigators. Skriver and Mertig (1990) give coupling constants from rare earths. 

VII. RESPONSE OF A 
SUPERCONDUCTOR TO A 
MAGNETIC FIELD 

In this section we consider the behavior 
of the order parameter in the presence of a 
weak, slowly varying magnetic field B which 
is given in terms of the vector potential, A 

B = � ×A (7.101) 

Our goal here is to calculate the current den­
sity J induced by the externally applied mag­
netic field, and in this way to demonstrate the 
Meissner effect. To simplify the discussion 
we will consider singlet pairing in a single 
free-electron like band characterized by an 

effective mass m. The BCS Hamiltonian in 
this model is 

�
2


HBCS = 
2m

d3 r


ie ie × � − A ��
†�r� · � + A 

×���r� −� d3r��
†�r����r� 

1 + d3 r d3 r � 
2 

× ��
†�r���

†����r� r
�� 

−����r� r
�� ∗ ���r����r

�� (7.102) 
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where �, the chemical potential, sets the In the absence of the magnetic field we 
zero-point of the energy scale. Note that the recover translational symmetry, and the 
order parameter (and the gap function) is Bogoliubov amplitudes are 
now a function of the coordinates, 

r 

����r� r
�� = ����r����r

��� (7.103) 
U���r� = U���k�e

ik·
(7.108)

rV���r� = V���k�e
ik·

Following our earlier treatment, the BCS 
Hamiltonian can be written up to a c-number Substitution into (7.107) with A = 0 gives 
(i.e. complex number) in the form 

1 ∫	 �
2k2


HBCS = d3 r	 −� U���k� 
2	 2m 

× d3 r ���
†�r��H���r

�� r����r� −����k�V���k� = !U���k� 

(7.104) �
2k2 

−� �k�V��2m 
where the two-component field operator is 

( ) −����k� 
∗ U���k� =−!V���k� (7.109) 

���r� = 
�
��

�
†

�
�
r
r
�
� 

(7.105) 
In the presence of a weak, slowly vary-

and H���r
�� r� is	 ing magnetic field we can apply the adi­

abatic approximation, and assume that the 
amplitudes in (7.108) are slowly varying 

H���r
��r�	 in space, 

⎛	 ⎞−����r
��r� 

⎜ 
�

2 ( 
ie 

)2 ⎟	 r ⎜	 ⎟ �k� r�eik·⎜ × �r + A +� ����r
��r� ⎟ U���r� = U��⎜ 2m �	 ⎟ ⎜	 ⎟ r= ⎜	 ⎟ �k� r�eik· (7.110) ⎜	 ⎟ V���r� = V��⎜ −����r

��r�∗ ����r
��r� ⎟ ⎜	 ( )2 ⎟ ⎝ �

2 ie ⎠ × 
2m

�r − 
� 

A +� and we can drop the term in the kinetic 
energy operator that is quadratic in A,

(7.106) 
( )2

As before, the Bogoliubov amplitudes 
�r + ie 

A ≈ �r 
2 + 2ie� ·A (7.111)

are the components of the eigenvectors of � � 
H���r

�� r�, and satisfy the coupled equations 
[ ( )2 

]	 Keeping only the largest terms, (7.109) 
�

2 ie	 becomes− �r + A +� U���r� 2m � 
∫ �

2k2 
�e


− d3 r �����r� r
��V���r

�� = !U���r� 2m 
+ 

m 
k ·A�r� −� U���k� r�


[ 
�

2 ( 
ie 

)2 
]	 −����k�V���k� r� = !U���k� r�


2m
�r − 

� 
A � V���r�	 �

2k2 

− �e 
k ·A�r� −� V���k� r� ∫ 2m m 

− d3 r �����r� r
�� ∗ U���r

�� =−!V���r� −����k� 
∗ U���k� r� =−!V���k� r� 

(7.107)	 (7.112a) 
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If we move the terms involving the vector 
potential to the right, we have 

�
2k2 

−� U���k� r� −����k�V���k� r� 2m 

�e = ! − k ·A�r� U���k� r� m 

�
2k2 

−� V���k� r� −����k� 
∗ U���k� r� 2m 

�e =−  ! − k ·A�r� V���k� r� (7.112b) 
m 

Comparing this with (7.109), we see that 
the Bogoliubov amplitudes follow the vector 
potential adiabatically through their depen­
dence on the eigenvalue 

�e 
!�k� r� = !�k� + k ·A�r� (7.113) 

m 

The current density is given by 

ie� [ 
J�r� = ��

†�r�����r� 2m 
2 ] e−���

†�r����r� − A�r���
†�r����r� m 

(7.114) 

and its thermal average is 

�J�r�� =  ie� 
�
U n�r ∗ �U n�r� 

2m � � 
n 

−�U�
n�r� ∗ U�

n�r�� n�!� 

+ 
V �
n�r� ∗ �U�

n�r� −�V�
n�r� ∗ U�

n�r�� 
2 

× 
1 −n�!�� − e A�r� 
U�
n�r� ∗ U�

n�r� 
m 

× n�!� +V�
n�r� ∗ V�

n�r��1 −n�!��� 
(7.115) 

Keeping only terms to first order in the vector 
potential, we have 

( )2 
e� 1 �Ji�r�� = −2 
m V 

∑ +n e2n× kikjAj − e A�r� 
+! mk 

(7.116) 

7 BCS THEORY 

where the total electron density is 

n = 2 ∑ �u�k��2 n�!�e V n 

−�v�k��2 �1 −n�!�� (7.117) 

The current density induced by the applied 
field is 

2e n�Ji�r�� = −  s A�r� (7.118) 
m 

where the “density of super-electrons” is 

2 
( 
e� 

)2 1 ∑ ( 
+n 

) 

n = n − k2 −s e 3 m V k +! 
(7.119) 

and we have used rotational symmetry to write 

∑ 
kikj 

+n = 1 
�ij 

∑ 
k2 +n 

(7.120) 
+! 3 +!k k 

Note that at zero temperature the second fac­
tor in Eq. (7.119) vanishes, and the density 
of super-electrons is equal to the total density 
of electrons. 

If we substitute our expression (7.118) 
into Ampere’s law, we have London’s 
equation 

� × �� ×A� = !−
L 

2A (7.121) 

where the London penetration depth, !L, is  
given by 

2
s!−

L 
2 = �0 

e n
(7.122) 

m 

Theperfectdiamagnetismthat ischaracteristic 
ofsuperconductors isembodied inEq. (7.121). 

APPENDIX A. DERIVATION OF THE 
GAP EQUATION NEAR TC 

The order parameter is given by 

����k� = Z−1Tr e−�Ha��k�a��−k� (A.1) 
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The BCS Hamiltonian, (7.39), is bilinear in 
the electron operators, which means thermal 
averages of the type (A.1) can be calculated 
by purely algebraic means. 
First, we introduce the Bloch operators 

a��k� ��  = e�Ha��k�e
−�H (A.2) 

The equation for the order parameter can be 
written as 

����k� = Z−1Tr e−�Ha��k�e
−�He�Ha��−k� 

= Z−1Tr e−�Ha��−k� ��a��k� 
(A.3) 

where we’ve used the cyclic property of the 
trace. 

Near the transition temperature the sym­
metry breaking terms in the BCS Hamilto­
nian are small and can be treated as a pertur­
bation, so we split the Hamiltonian into two 
parts, H =H0 +H1 where 

= �k�a+�k�a��k� (A.4)H0 E� �

��k


and 

1 ∑[ 
H1 = a†

��k�����k�a�
† �−k� 

2 k 

−a��k�� ∗ ���k�a��−k� (A.5) 

In the interaction picture we write 

e −�H = e −�H0 K��� (A.6) 

where K��� satisfies 

dK��� − =H1���K��� (A.7)
d� 

with 

H1��� = e�H0 H1e −�H0 

†= 1 ∑ 
e��E��k�+E��−k��a��k�a

†
�2 k�� 

∗ × �−k�����k� +−����k� 

× e −r�E��k�+E��−k��a��k�a��−k� 

(A.8) 

Integrating (A.7) to first order gives 

K��� = 1 − d� �H1��
�� 

0 

1 ∑ e��E��k�+E��−k�� −1 = 1 − 
2 k E��k� +E��−k� 

×a�
† �k�a†

��−k�����k� 

1 − e −��E��k�+E��−k�� 
−� ∗ �k� 

E��k� +E��−k� 

× a��k�a��−k� (A.9) 

We then have for a��k� ��  to first order 

a��k� ��  = e −�E��k�K−1���a��k�K��� 

1 ∑ e��E��p�+E �−p�� −1 = e −�E��k� a��k� + 
2 p�  E��p� +E �−p� 

× a†
��p�a

†
 �−p�� a��k� �� �p� = e −�E��k�a� 

1 −�E��k� 
e��E��p�+E �−p�� −1 × �k� + e �� �p� 2 p�  E��p� +E �−p� 

× a†
��p�� ��k� −p� −����k� p�a

†
 �−p� 

= e −�E��k�a��k� − e −�E��k� 

��E��−k�+E��k�� −1 × ∑ e 
����k�a

† �−p� 
E� − �k� +E��k�

�
p� 

(A.10) 

Inserting this into (A.3) we have 

����k� = �a��−k� ��a��k�� 
= e −�E��−k�����−k� − e −�E��−k� 

��E��k�+E��−k�� −1∑ e × ����−k�n�E�� 
p� E��k� +E��−k� 

(A.11) 

where n�E�� = �a†
��p�a��k�� = �e�E� +1�−1 

is the usual Fermi-Dirac occupation function. 
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Using the antisymmetry of the order param­
eter, (A.11) can be written as 

−�E��−k�e
����k� = 

1 + e�E��−k� 

��E��k�+E��−k�� −1e × ����k�n�E�� E��k� +E��k� 

= n
E��−k��n
E��k�� 

��E��k�+E��−k��−1 e × ����k� E��k� +E��k� 
(A.12) 

With a little algebra we have 

1 −n
E��−k�� −n
E��k�� 
����k� = ����k� E��k� +E��−k� 

(A.13) 
If we now use the definition of the gap func­
tion, (A.13) becomes Eq. (7.60). 

1 −n
E��−k�� −n
E��k�� 
����k� = 

E��k� +E��−k� 

× V���� �k� p��� �p� (A.14) 
p 

FURTHER READING 

Some of the classical articles on the BCS theory 
have already been mentioned at the beginning of the 
chapter. The article by Cooper (1956), predicting the 
formation of the “pairs” that bear his name, provided 
the setting for the BCS theory formulated by Bardeen, 
Cooper, and Schrieffer in 1957, and elaborated upon 
in the books by de Gennes (1966), Fetter and Walecka 
(1971), and Schrieffer (1964). 

The textbook by Tinkham (1985) provides a good 
introduction to the BCS theory, and Tilley and Tilley 
(1986) give a briefer introduction. 

Gorkov (1959) showed that the Ginzburg–Landau 
theory, which was discussed in the previous chapter, 
follows from the BCS theory. This provided a solid 
theoretical foundation for the GL theory. 

Chapters 4–14 of the book, Theories of High 
Temperature Superconductivity (Halley, 1988), discuss 
applications of the BCS theory. Allen (1990) reviewed 
the BCS approach to electron pairing. The pairing state 

7 BCS THEORY 

in YBa2Cu3O7−� is discussed by Annett et al. (1990). 
We will cite some representative articles. 

The weak and strong limits of BCS have been dis­
cussed (Carbotte (1990), Cohen, 1987; Cohen and Penn, 
1990; Entin-Wohlman and Imry, 1989; Nasu, 1990). 
There is a crossover between a BCS proper regime of 
weakly coupled, real space-overlapping Cooper pairs 
and a Bose–Einstein regime involving a low density 
boson gas of tightly bound fermion pairs (Pistolesi and 
Strinati, 1994; Quick et al., 1993; Tokumitu et al., 
1993). The BCS theory has been applied to high tem­
perature superconductors (Berlinsky et al., 1993; Ihm 
and Yu, 1989; Japiassu et al., 1992; Jarrell et al., 1988; 
Kitazawa and Tajima, 1990; Lal and Joshi, 1992; Lu 
et al., 1989; Marsiglio, 1991; Marsiglio and Hirsch, 
1991; Penn and Cohen, 1992; Pint and Schachinger, 
1991; Sachdev and Wang, 1991). 

The present chapter, although based in part on 
the electron–phonon coupling mechanism (Jiang and 
Carbotte, 1992b; Kirkpatrick and Belitz, 1992; Kresin 
et al., 1993; Marsiglio and Hirsch, 1994; Nicol and 
Carbotte, 1993; Zheng et al., 1994), is nevertheless 
much more general in its formalism. Unconventional 
phonon or nonphonon coupling can also occur (Annett 
et al. (1991), Bussmmann-Holder and Bishop, 1991; 
Cox and Maple, 1995; Dobroliubov and Khlebnikov, 
1991; Keller, 1991; Klein and Aharony, 1992; Krüger, 
1989; Spathis et al., 1992; Tsay et al., 1991; Van Der 
Marel, 1990), involving, for example, excitons (Bala 
and Olés, 1993; Gutfreund and Little, 1979; Takada, 
1989), plasmons (quantized plasma oscillations; Côte 
and Griflin, 1993; Cui and Tsai, 1991; Ishii and Ruvalds, 
1993), polaritons (Lue and Sheng, 1993), polarons (elec­
tron plus induced lattice polarization; Kabanov and 
Mashtakov, 1993; Konior, 1993; Nettel and MacCrone, 
1993; Wood and Cooke, 1992) and bipolarons (de 
Jongh, 1992; Emin, 1994; Khalfin and Shapiro, 1992). 
Both s-wave and d-wave pairings have been considered 
(Anlage et al., 1994; Carbotte and Jiang, 1993; Côte and 
Griflin, 1993; Lenck and Carbotte, 1994; Li et al., 1993; 
Scalapino, 1995; Wengner and Östlund, 1993; Won 
and Maki, 1994). Kasztin and Leggett (1997) discussed 
the nonlocality of d-wave superconductivity, Prozovov 
and Giannetta (2006) examined the electrodynamics of 
unconventional pairing, and Hirsch feld and Golden feld 
(1993) commented on the effects of impurities. 

Some authors question the applicability of BCS to 
high temperature superconductors (Collins et al., 1991; 
Kurihara, 1989). Tesanovic and Rasolt (1989) suggested 
a new type of superconductivity in very high magnetic 
fields in which there is no upper critical field. The 
BCS theory has been examined in terms of the Hubbard 
(Falicov and Proetto, 1993; Micnas et al., 1990; Sofo 
et al., 1992) and Fermi liquid (Horbach et al., 1993, 
Ramakumar, 1993) approaches, which are discussed in 
Chapter 10. 
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193 FURTHER READING 

Carbotte (1990) reviewedEliashberg (1960a,b) the­
ory and its relationship with BCS. Representative arti­
cles concern (a) high temperature superconductors (Jin 
et al., 1992; Lu et al., 1989; Marsiglio, 1991; Mon­
thoux and Pines, 1994; Sulewski et al., 1987; Wermbter 
and Tewordt, 1991a; Williams and Carbotte, 1991), 

(b) anisotropies (Combescot, 1991; Lenck et al., 1990; 
Radtke et al., 1993; Zhao and Callaway, 1994), (c) 
transport properties (Kulic and Zeyher, 1994; Ullah and 
Dorsey, 1991), (d) weak coupling limits (Combescot, 
1990; Crisan, 1887), and (e) strong coupling limits 
(Bulaevskii et al., 1988; Heid, 1992 (Pb); Rammer, 1991). 
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8 
Cuprate 

Crystallographic 

I. INTRODUCTION 

Chapter 3 shows that the majority of 
single-element crystals have highly symmet­
rical structures, generally fcc or bcc, in which 
their physical properties are the same along 
the three crystallographic directions x, y, 
and z. The NaCl-type and A15 compounds 
are also cubic. Some compounds do have 
lower symmetries, showing that supercon­
ductivity is compatible with many differ­
ent types of crystallographic structure, but 
higher symmetries are certainly more com­
mon. In this chapter we will describe the 
structures of the high-temperature supercon­
ductors, almost all which are either tetrago­
nal or orthorhombic, but close to tetragonal. 

Structures


In Chapter 3, we also gave some exam­
ples of the role played by structure in 
determining the properties of superconduc­
tors. The highest transition temperatures in 
alloys of transition metals are at the bound­
aries of instability between the bcc and 
hcp forms. The NaCl-type compounds have 
ordered vacancies on one or another lat­
tice site. The magnetic and superconducting 
properties of the Chevrel phases depend on 
whether the large magnetic cations (i.e., pos­
itive ions) occupy eightfold sites surrounded 
by chalcogenide ions, or whether the small 
magnetic ions occupy octahedral sites sur­
rounded by Mo ions. 

The structures described here are held 
together by electrons that form ionic or cova­
lent bonds between the atoms. No account 

195 
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is taken of the conduction electrons, which 
are delocalized over the copper oxide planes 
and form the Cooper pairs responsible for 
the superconducting properties below Tc. The 
later Chapter 10 will be devoted to explain­
ing the role of these conduction electrons 
within the frameworks of the Hubbard model 
and band theory. Whereas the present chapter 
describes atom positions in coordinate space, 
the Hubbard Model/Band Structure chapter 
relies on a reciprocal lattice elucidation of 
these same materials. 

We begin with a description of the per­
ovskite structure and explain some reasons 
that perovskite undergoes various types of 
distortions. This prototype exhibits a num­
ber of characteristics that are common to the 
high-temperature superconducting cuprates 
(see Section V). We will emphasize the 
structural commonalities of these materi­
als and make frequent comparisons between 
them. Our earlier work (Poole et al., 1988) 
and the comprehensive review by Yvon 
and François (1989) may be consulted for 
more structural detail on the atom posi­
tions, interatomic spacings, site symmetries, 
etc., of these compounds. There have been 
reports of superconductivity in certain other 
cuprate structures (e.g., Murphy et al., 1987), 
but these will not be reported on in this 
chapter. 

There is a related series of layered 
compounds Bi2O2�Mm−1RmO3m+1� called 
Aurivillius (1950, 1951, 1952) phases, with 
the 12-coordinated M = Ca, Sr, Ba, Bi, Pb, 
Cd, La, Sm, Sc, etc., and the 6-coordinated 
transition metal R = Nb, Ti, Ta, W, 
Fe, etc. The m = 1 compound Bi2NbO6 

belongs to the same tetragonal space group 
I4/mmm� D4

17 
h as the lanthanum, bismuth, 

and thallium high temperature superconduc­
tors (Medvedeva et al., 1993). 

We assume that all samples are well 
made and safely stored. Humidity can affect 
composition, and Garland (1988) found that 
storage of YBa2Cu3O7−� in 98% humidity 
exponentially decreased the diamagnetic sus­
ceptibility with a time constant of 22 days. 

8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES 

II. PEROVSKITES 

Much has been written about the 
high-temperature superconductors being per­
ovskite types. The prototype compound 
barium titanate, BaTiO3, exists in three 
crystallographic forms with the following 
lattice constants and unit cell volumes 
(Wyckoff, 1964): 

cubic: a = b = c = V = 64�57 Å
3 

4�0118 Å 

tetragonal: a = b = 3�9947� V = 64�37 Å
3 

(8.1) 
c = 4�0336√

ortho a = 4�009√2 Å� V = 2�64�26� Å
3 

rhombic: b = 4�018 2 Å� 
c = 3�990 Å 

A. Cubic Form 

Above 201 �C barium titanate is cubic 
and the unit cell contains one formula unit 
BaTiO3 with a titanium atom on each apex, 
a barium atom in the body center, and an 
oxygen atom on the center of each edge 
of the cube, as illustrated in Fig. 8.1. This 
corresponds to the barium atom, titanium 
atom, and three oxygen atoms being placed 

Figure 8.1 Barium titanate �BaTiO3 � perovskite 
cubic unit cell showing titanium (small black circles) 
at the vertices and oxygen (large white circles) at the 
edge-centered positions. Ba, not shown, is at the body 
center position (Poole et al., 1988, p. 73). 
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197 II PEROVSKITES 

in positions with the following x, y, and z 
coordinates: 

E site: Ti �0� 0� 0� Ti on apex 
F site: O 

C site: Ba 

�0� 0� 1 
2 �� 

�0� 1 
2 � 0�� 

� 1 
2 � 0� 0� 

� 1 
2 � 

1 
2 � 

1 
2 � 

three oxygens 
centered on 
edges 

Ba in center. 

(8.2) 

The barium in the center has 12 nearest-
neighbor oxygens, so we say that it is 12-fold 
coordinated, while the titanium on each apex 
has 6-fold (octahedral) coordination with the 
oxygens, as may be seen from the figure. 
(The notation E for edge, F for face, and 
C for center is adopted for reasons that 
will become clear in the discussion which 
follows.) Throughout this chapter we will 
assume that the z-axis is oriented vertically, 
so that the x and y axes lie in the horizon­
tal plane. 

Ordinarily, solid-state physics texts 
place the origin (0, 0, 0) of the perovskite 
unit cell at the barium site, with titanium in 
the center and the oxygens at the centers of 
the cube faces. Our choice of origin facili­
tates comparison with the structures of the 
oxide superconductors. 

This structure is best understood in 
terms of the sizes of the atoms involved. 
The ionic radii of O2− (1.32 Å) and Ba2+ 

(1.34 Å) are almost the same, as indicated 
in Table 8.1, and together they form a per­
fect fcc lattice with the smaller Ti4+ ions 
(0.68 Å) located in octahedral holes sur­
rounded entirely by oxygens. The octahe­
dral holes of a close-packed oxygen lattice 
have a radius of 0.545 Å; if these holes 
were empty the lattice constant would be 
a = 3�73 Å, as noted in Fig. 8.2a. Each tita­
nium pushes the surrounding oxygens out­
ward, as shown in Fig. 8.2b, thereby increas­
ing the lattice constant. When the titanium is 
replaced by a larger atom, the lattice constant 
expands further, as indicated by the data in 
the last column of Table 8.2. When Ba is 

Table 8.1 Ionic Radii for Selected 
Elementsa 

Cu2+ 0.72Å Y3+ 0.89 Å 
Small 

Bi5+ 0.74 Å 

Cu+ 0.96 Å Tl3+ 0.95 Å 
Small-Medium	 Ca2+ 0.99 Å Bi3+ 0.96 Å 

Nd3+ 0.995 Å 

La3+ 1.06 Å Sr2+ 1.12 Å 
Medium-Large 

Hg2+ 1.10 Å 

Pb2+ 1.20 Å Ag+ 1.26 Å 
Large K+ 1.33 Å O2− 1.32 Å 

Ba2+ 1.34 Å F− 1.33 Å 

a See Table VI-2 of Poole et al. (1988) for a more 
extensive list. 

Figure 8.2 Cross section of the perovskite unit cell 
in the z = 0 plane showing (a) the size of the octahedral 
hole (shaded) between oxygens (large circles), and (b) 
oxygens pushed apart by the transition ions (small cir­
cles) in the hole sites. For each case the lattice constant 
is indicated on the right and the oxygen and hole sizes 
on the left (Poole et al., 1988, p. 77). 
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198 8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES 

Table 8.2 Dependence of the Lattice Constants a of Selected 
Perovskites AMO3 on the Alkaline Earth A (right) and the Ionic 
Radius of Transition Metal Ion M (left); the Alkaline Earth Ionic 
Radii are 0.99 Å (Ca), 1.12 Å (Sr), and 1.34 Å �Baa� 

Lattice constant a, Å  
Transition Transition metal 
metal radius, Å Ca Sr Ba 

Ti 0.68 3�84 3�91 4�01 
Fe — — 3�87 4�01 
Mo 0.70 — 3�98 4�04 
Sn 0.71 3�92 4�03 4�12 
Zr 0.79 4�02 4�10 4�19 
Pb 0.84 — — 4�27 
Ce 0.94 3�85 4�27 4�40 
Th 1.02 4�37 4�42 4�80 

a Data from Wyckoff (Vol. 2, 1964, pp. 391ff). 

replaced by the smaller Ca (0.99 Å) and Sr 
(1.12 Å) ions, by contrast, there is a corre­
sponding decrease in the lattice constant, as 
indicated by the data in columns 3 and 4, 
respectively, of Table 8.2. All three alkaline 
earths, Ca, Sr, and Ba, appear prominently 
in the structures of the high-temperature 
superconductors. 

B. Tetragonal Form 

At room temperature barium titanate 
is tetragonal and the deviation from cubic, 
�c − a�/ 2

1 �c + a�, is about 1%. All of the 
atoms have the same x, y coordinates as 
in the cubic case, but are shifted along the 
z-axis relative to each other by ≈ 0�1 Å, pro­
ducing the puckered arrangement shown in 
Fig. 8.3. The distortions from the ideal struc­
ture are exaggerated in this sketch. The puck­
ering bends the Ti–O–Ti group so that the 
Ti–O distance increases while the Ti–Ti dis­
tance remains almost the same. This has the 
effect of providing more room for the tita­
nium atoms to fit in their lattice sites. We will 
see later that a similar puckering distortion 
occurs in the high-temperature superconduc­
tors as a way of providing space for the Cu 
atoms in the planes. 

Figure 8.3 Perovskite tetragonal unit cell showing 
puckered Ti–O layers that are perfectly flat in the cubic 
cell of Fig. 8.1. The notation of Fig. 8.1 is used (Poole 
et al., 1988, p. 75). 

C. Orthorhombic Form 

There are two principal ways in which 
a tetragonal structure distorts to form an 
orthorhombic phase. The first, shown at the 
top of Fig. 8.4, is for the b-axis to stretch 
relative to the a-axis, resulting in the for­
mation of a rectangle. The second, shown at 
the bottom of the figure, is for one diago­
nal of the ab square to stretch and the other 
diagonal to compress, resulting in the for­
mation of a rhombus. The two diagonals are 
perpendicular, rotated by 45� relative to the 
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Figure 8.4 Rectangular- (top) and rhombal- (bottom) 
type distortions of a two-dimensional square unit cell of 
width a (Poole et al., 1989). 

Figure 8.5 Rhombal expansion of monomolecular 
tetragonal unit cell (small squares, lower right) to 
bimolecular orthorhombic unit cell (large squares) with 
new axes 45� relative to the old axes. The atom posi­
tions are shown for the z = 0 and z = 1

2 layers (Poole 
et al., 1988, p. 76). 

original axes, and become the a′� b′ dimen­
sions of the new orthorhombic unit cell, as 
shown in Fig. 8.5. These a′� b′ lattice con­

√ 
stants are ≈ 2 times longer than the original 
constants, so that the volume of the unit 
cell roughly doubles; thus, it contains exactly √ 
twice as many atoms. (The same 2 factor 
appears in Eq. 8.1 in our discussion of the 
lattice constants for the orthorhombic form 
of barium titanate.) 

When barium titanate is cooled below 
5 �C it undergoes a diagonal- or rhombal­
type distortion. The atoms have the same 
z coordinates (z = 0 or  2

1 ) as in the cubic 
phase, so the distortion occurs entirely in the 
x� y-plane, with no puckering of the atoms. 
The deviation from tetragonality, as given by 
the percentage of anisotropy, 

100�b−a� 
% ANIS = = 0�22%� (8.3)1 �b+a�2 

is less than that of most orthorhombic copper 
oxide superconductors. We see from Fig. 8.5 
that in the cubic phase the oxygen atoms in 
the z = 0 plane are separated by 0.19 Å. The 
rhombal distortion increases this O–O sepa­
ration in one direction and decreases it in the 
other, in the manner indicated in Fig. 8.6a, 
to produce the Ti nearest-neighbor configu­
ration shown in Fig. 8.6b. This arrangement 
helps to fit the titanium into its lattice site. 

The transformation from tetragonal to 
orthorhombic is generally of the rhombal 
type for �La1−xSrx�2CuO4 and of the recti­
linear type for YBa2Cu3O7−�. 

D. Planar Representation 

Another way of picturing the structure 
of perovskite is to think of the atoms as 
forming horizontal planes. If we adopt the 
notation [E F C] to designate the occupation 
of the E, F, and C sites, the sketches of per­
ovskite presented in Figs. 8.1 and 8.3 follow 
the scheme 

z = 1 �TiO2–	 Ti at E, O at two F sites 
z = 2

1 �O–Ba	 O at E, Ba at C  
z = 0 �TiO2–	 Ti at E, O at two F sites 

(8.4) 
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Figure 8.6 Shift of the oxygens (large circles) in the 
a, b-plane around the titanium atom (small circle) of 
perovskite from the room-temperature tetragonal (and 
cubic) configuration (a) to the rhombal configuration (b) 
of its low-temperature orthorhombic structure. 

The planes at the heights z = 0� 1
2 , and 1 can 

be labeled using this notation. The usefulness 
of this labeling scheme will be clarified in 
Section V. 

This completes our treatment of the 
structure of perovskite. We encountered 
many features that we will meet again in 
the analogous superconductor cases, and we 
established notation that will be useful in 
describing the structure of the cuprates. In 
Section V of Chapter 9 we will discuss 
several cubic and close-to-cubic perovskite 
superconducting compounds. 

8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES 

III. PEROVSKITE-TYPE SUPERCON­
DUCTING STRUCTURES 

In their first report on high-temperature 
superconductors Bednorz and Müller (1986) 
referred to their samples as “metallic, 
oxygen-deficient 
 
 
 perovskite-like mixed-
valence copper compounds.” Subse­
quent work has confirmed that the new 
superconductors do indeed possess these 
characteristics. 

In the oxide superconductors Cu2+ 

replaces the Ti4+ of perovskite, and in most 
cases the TiO2-perovskite layering is retained 
as CuO2 layers, which is common to all of 
the high-temperature superconductors; such 
superconductors exhibit a uniform lattice size 
in the a� b-plane, as the data in Table 8.3 
demonstrate.ThecompoundBaCuO3 doesnot 
occur because the Cu4+ ion does not form, but 
thisvalenceconstraint isovercomebyreplace­
ment of Ba2+ by a trivalent ion, such as La3+ 

or Y3+, by a reduction in the oxygen content, 
or by both. The result is a set of “layers” con­
taining only one oxygen per cation located 
between each pair of CuO2 layers, or none 
at all. Each high-temperature superconductor 
has a unique sequence of layers. 

We saw from Eq. (8.2) that each atom 
in perovskite is located in one of three types 
of sites. In like manner, each atom at the 
height z in a high-temperature superconduc­
tor occupies either an Edge (E) site on the 
edge (0, 0, z), a Face (F) site on the mid­
line of a face (�0� 1

2 � z�  or � 1
2 � 0� z�  or 

both), or a Centered (C) site centered within 
the unit cell on the z-axis � 1

2 � 2
1 � z�. The 

site occupancy notation [E F C] is used 
because many cuprates contain a succession 
of �Cu O2 –	 and �– O2 Cu	 layers in which 
the Cu atom switches between edge and cen­
tered sites, with the oxygens remaining at 
their face positions. Similar alternations in 
position take place with Ba, O, and Ca layers, 
as illustrated in Fig. 8.7. 

Hauck et al. (1991) proposed a classi­
fication of superconducting oxide structures 
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Table 8.3 Crystallographic Characteristics of Oxide Superconducting and Related Compoundsa 

Form.

Compound Code Symm Type Enlarg. Units a 0 �ÅÅÅ� c 0 �ÅÅÅ� c 0 /Cu %%%Anis T c �K� Comments


BaTiO3 — C A 1 1 4.012 4�012 — 0 — T > 200 � C 
BaTiO3 — T A 1 1 3.995 4�03 — 0 — 20 � C √ √ 
BaTiO3 — O A 2 2 4�013 2 3�990 — 0.23 — T < 5 � C 
BaPbO3 — C A 1 1 4.273 4�273 — 0 0�4 √ √ 
BaPb0�7Bi0�3O3 — T S √ 2 4 4�286 √ 2 4�304 — 0 12 
BaBiO3 — M A 2 2 4�355 2 4�335 — 0.13 — � = 90�17 
Ba0�6K0�4BiO3 — C A 1 1 4.293 4�293 — 0 30 
La2CuO4 0201 T S 1 2 3.81 13�18 6�59 0 35 Sr, doped√ √ 
La2CuO4 0201 O S 2 4 3�960 2 13�18 6�59 6.85 35 Sr, doped 
YBa2Cu3O6 0212 T A 1 1 3.902 11�94 3�98 0 — 
YBa2Cu3O8 0212 O A 1 √ 1 3.855√ 11�68 3�89 1.43 92 
Bi2Sr2CaCu2O8 2212 O S 5 √ 2 20 3�81 √ 2 30�6 7�65 0 84 
Bi2Sr2Ca2Cu3O10 2223 O S 5 2 20 3�83 2 37 6�17 0.57 110 
Tl2Ba2CuO6 2201 T S 1 2 3.83 23�24 11�6 0 90 
Tl2Ba2CaCu2O8 2212 T S 1 2 3.85 29�4 7�35 0 110 
Tl2Ba2Ca2Cu3O10 2223 T S 1 2 3.85 35�88 5�98 0 125 
TlBa2CuO5 1201b T A 1 1 3.85 9�09 9�09 0 52 
TlBa2CaCu2O7 1212 T A 1 1 3.85 12�7 6�35 0 80 
TlBa2Ca2Cu3O9 1223c T A 1 1 3.81 15�2 5�1 0 120 
TlBa2Ca3Cu4O11 1234 T A 1 1 3.85 19�0 4�75 114 
TlBa2Ca4Cu5O13 1245 T A 1 1 3.85 22�3 4�42 101 
HgBa2CuO4 1201 T A 1 1 3.86 9�5 9�5 0 95 
HgBa2CaCu2O6 1212 T A 1 1 3.86 12�6 6�3 0 122 
HgBa2Ca2Cu3O8 1223 T A 1 1 3.86 17�7 5�2 0 133 

a Code symmetry (cubic C, tetragonal T, orthorhombic O, monclinic M); type (aligned A, staggered S); enlargement in a, b-plane (diagona√ 
distortion 2, superlattice 5); formula units per unit cell; lattice parameters (a 0 � c0, the single layer compound, and c 0 per Cu ion); % anisotropy;
and transition temperature T c. For the orthorhombic compounds tabulated values of a 0 are averages of a 0 and b 0. The single layer compound
Bi2Sr2CuO6 does not superconduct.

b 40% of Ba replaced by La;
c 50% of Tl replaced by Pb. 

201 
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Figure 8.7 Types of atom positions in the layers of 
a high-temperature superconductor structure, using the 
edge, face, center notation [E F C]. Typical site occu­
pancies are given in the upper right (Poole et al., 1989). 

in terms of the sequence (a) superconducting 
layers �Cu O2 –	 and �– O2 Cu	, (b) insulating 
layers, such as [Y – –] or [– – Ca], and (c) hole-
donating layers, such as �Cu Ob –	 or [Bi – O]. 

The high-temperature superconductor 
compounds have a horizontal reflection plane 
(⊥ to z) called �h at the center of the unit 
cell and another �h reflection plane at the top 
(and bottom). This means that every plane 
of atoms in the lower half of the cell at 
the height z is duplicated in the upper half 
at the height 1 − z. Such atoms, of course, 
appear twice in the unit cell, while atoms 
right on the symmetry planes only occur once 
since they cannot be reflected. Figure 8.8 
shows a �Cu O2 –	 plane at a height z 
reflected to the height 1 − z. Note how the 
puckering preserves the reflection symme­
try operation. Superconductors that have this 
reflection plane, but lack end-centering and 

Figure 8.8 Unit cell of YBa2Cu3O7 showing the 
molecular groupings, reflection plane, and layer types. 

body-centering operations (see Section VII), 
are called aligned because all of their cop­
per atoms are of one type; either all on the 
edge (0, 0, z) in E positions or all centered 
� 2

1 � 1
2 � z� at C sites. In other words, they all 

lie one above the other on the same vertical 
lines, as do the Cu ions in Fig. 8.8. 

IV. ALIGNED YBa2Cu3O7 

The compound YBa2Cu3O7, sometimes 
called YBaCuO or the 123 compound, in 
its orthorhombic form is a superconduc­
tor below the transition temperature Tc ≈ 
92 K. Figure 8.8 sketches the locations of the 
atoms, Fig. 8.9 shows the arrangement of the 
copper oxide planes, Fig. 8.10 provides more 
details on the unit cell, and Table 8.4 lists 
the atom positions and unit cell dimensions 
(Beno et al., 1987; Capponi et al., 1987; 
Hazen et al., 1987; Jorgensen et al., 1987; 
Le Page et al., 1987; Siegrist et al., 
1987; Yan and Blanchin, 1991; see also 
Schuller et al., 1987). Considered as a per­
ovskite derivative, it can be looked upon 
as a stacking of three perovskite units 
BaCuO3� YCuO2, and BaCuO2, two of them 
with a missing oxygen, and this explains why 
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203 IV ALIGNED YBa2Cu3O7 

Figure 8.9 Layering scheme of orthorhombic YBa2Cu3O7 with the puckering indicated. The 
layers are perpendicular to the c-axis (Poole et al., 1988, p. 101). 

Figure 8.10 Sketches of the superconducting orthorhombic (left) and 
nonsuperconducting tetragonal (right) YBaCuO unit cells. Thermal vibra­
tion ellipsoids are shown for the atoms. In the tetragonal form the oxygen 
atoms are randomly dispersed over the basal plane sites (Jorgensen et al., 
1987a, b; also see Schuller et al., 1987). 
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Table 8.4 Normalized Atom Positions 
in the YBa2Cu3O7 Orthorhombic Unit 
Cell (dimensions a = 3�83 Å, b = 3�88 Å, 
and c = 11�68 Å) 

Layer Atom x y z 

�Cu O –	 
Cu(1) 
O(1) 

0 
0 

0 
1 
2 

1 
1 

�O – Ba	 
O(4) 
Ba 

0 
1 
2 

0 
1 
2 

0.8432 
0.8146 

Cu(2) 0 0 0.6445 
�Cu O2 –	 O(3) 

O(2) 
0 
1 
2 

1 
2 
0 

0.6219 
0.6210 

�– – Y	 Y 1 
2 

1 
2 

1 
2 

�Cu O2 –	 

O(2) 
O(3) 

1 
2 
0 

0 
1 
2 

0.3790 
0.3781 

Cu(2) 0 0 0.3555 

�O – Ba	 
Ba 
O(4) 

1 
2 
0 

1 
2 
0 

0.1854 
0.1568 

�Cu O –	 
O(1) 
Cu(1) 

0 
0 

1 
2 
0 

0 
0 

c ≈ 3a. It is, however, more useful to dis­
cuss the compound from the viewpoint of its 
planar structure. 

A. Copper Oxide Planes 

WeseefromFig.8.9 that threeplanescon­
taining Cu and O are sandwiched between two 
planes containing Ba and O and one plane con­
taining Y. The layering scheme is given on the 
right side of Fig. 8.8, where the superscript 
b on O indicates that the oxygen lies along 
the b-axis, as shown. The atoms are puck­
ered in the two �Cu O2 –	 planes that have the 
[– – Y] plane between them. The third cop­
per oxide plane �Cu Ob –	, often referred to 
as “the chains,” consists of –Cu–O–Cu–O– 
chains along the b axis in lines that are per­
fectly straight because they are in a horizon­
tal reflection plane �h; where no puckering 
can occur. Note that, according to the figures, 
the copper atoms are all stacked one above 
the other on edge (E) sites, as expected for an 
aligned-type superconductor. Both the copper 
oxide planes and the chains contribute to the 
superconducting properties. 

B. Copper Coordination 

Now that we have described the planar 
structure of YBaCuO it will be instructive 
to examine the local environment of each 
copper ion. The chain copper ion Cu(1) is 
square planar-coordinated and the two cop­
pers Cu(2) and Cu(3) in the plane exhibit 
fivefold pyramidal coordination, as indicated 
in Fig. 8.11. The ellipsoids at the atom posi­
tions of Fig. 8.10 provide a measure of 

Figure 8.11 Stacking of pyramid, square-planar, and 
inverted pyramid groups along the c-axis of orthorhom­
bic YBa2Cu3O7 (adapted from Poole et al., 1988, 
p. 100). Minor adjustments to make more room can 
be brought about by puckering or by distorting from 
tetragonal to orthorhombic. 
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the thermal vibrational motion which the 
atoms experience, since the amplitudes of the 
atomic vibrations are indicated by the rela­
tive size of each of the ellipsoids. 

C. Stacking Rules 

The atoms arrange themselves in the 
various planes in such a way as to enable 
them to stack one above the other in an effi­
cient manner, with very little interference 
from neighboring atoms. Steric effects pre­
vent large atoms such as Ba (1.34 Å) and 
O (1.32 Å) from overcrowding a layer or 
from aligning directly on top of each other 
in adjacent layers. In many cuprates stacking 
occurs in accordance with the following two 
empirical rules: 

1. Metal ions occupy either edge	 or cen­
tered sites, and in adjacent layers alternate 
between E and C sites. 

2. Oxygens are found in any type of site, but 
they occupy only one type in a particular 
layer, and in adjacent layers they are on 
different types of sites. 

Minor adjustments to make more room can 
be brought about by puckering or by distort­
ing from tetragonal to orthorhombic. 

D. Crystallographic Phases 

The YBa2Cu3O7−
 compound comes in 
tetragonal and orthorhombic varieties, as 
shown in Fig. 8.10, and it is the latter phase 
which is ordinarily superconducting. In the 
tetragonal phase the oxygen sites in the chain 
layer are about half occupied in a random or 
disordered manner, and in the orthorhombic 
phase they are ordered into –Cu–O– chains 
along the b direction. The oxygen vacancy 
along the a direction causes the unit cell 
to compress slightly so that a < b, and the 
resulting distortion is of the rectangular type 
shown in Fig. 8.4a. Increasing the oxygen 
content so that 
 < 0 causes oxygens to begin 

occupying the vacant sites along a. Superlat­
tice ordering of the chains is responsible for 
the phase that goes superconducting at 60 K. 

YBaCuO is prepared by heating in the 
750–900 �C range in the presence of various 
concentrations of oxygen. The compound 
is tetragonal at the highest temperatures, 
increases its oxygen content through oxy­
gen uptake and diffusion (Rothman et al., 
1991) as the temperature is lowered, and 
undergoes a second-order phase transition of 
the order-disorder type at about 700 �C to  
the low-temperature orthorhombic phase, as 
indicated in Fig. 8.12 (Jorgensen et al., 1987, 
1990; Schuller et al., 1987; cf. Beyers and 
Ahn, 1991; Metzger et al., 1993; Fig. 8). 
Quenching by rapid cooling from a high 
temperature can produce at room temper­
ature the tetragonal phase sketched on the 
right side of Fig. 8.10, and slow anneal­
ing favors the orthorhombic phase on the 

� 
1 
2 � 0� 0Figure 8.12 Fractional occupancies of the 

� 
(bottom) and 0� 1

2 � 0 (top) sites (scale on left), and 
the oxygen content parameter 
 (center, curve scale on 
right) for quench temperatures of YBaCuO in the range 
0–1000�C. The 
 parameter curve is the average of 
the two site-occupancy curves (adapted from Jorgensen 
et al., 1987a; also see Schuller et al., 1987; see also 
Poole et al., 1988). 
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left. Figure 8.12 shows the fractional site 
occupancy of the oxygens in the chain site 
�0� 2

1 � 0� as a function of the temperature 
in an oxygen atmosphere. A sample stored 
under sealed conditions exhibited no degra­
dation in structure or change in Tc four years 
later (Sequeira et al., 1992). Ultra-thin films 
tend to be tetragonal (Streiffer et al., 1991). 

E. Charge Distribution 

Information on the charge distribution 
around atoms in conductors can be obtained 
from a knowledge of their energy bands (see 
description in Chapter 10). This is most eas­
ily accomplished by carrying out a Fourier-
type mathematical transformation between 
the reciprocal ks� ky� kz-space (Chapter 8, 
Section II of the first edition) in which the 
energy bands are plotted and the coordi­
nate x� y� z-space, where the charge is dis­
tributed. We will present the results obtained 
for YBa2Cu3O7 in the three vertical symme­
try planes (x� z, and y� z, and diagonal), 
all containing the z-axis through the origin, 
shown shaded in the unit cell of Fig. 8.13. 

Contour plots of the charge density of 
the valence electrons in these planes are 
sketched in Fig. 8.14. The high density at the 
Y3+ and Ba2+ sites and the lack of contours 
around these sites together indicate that these 
atoms are almost completely ionized, with 
charges of +3 and +2, respectively. It also 
shows that these ions are decoupled from the 
planes above and below. This accounts for 
the magnetic isolation for the Y site whereby 
magnetic ions substituted for yttrium do not 
interfere with the superconducting proper­
ties. In contrast, the contours surrounding the 
Cu and O ions are not characteristic of an 
ordinary ionic compound. The short Cu–O 
bonds in the planes and chains (1.93–1.96 Å) Figure 8.14 Charge density in the three symmetry 

increase the charge overlap. The least overlap planes of YBaCuO shown shaded in Fig. 8.13. The x, z, 

appears in the Cu(2)–O(4) vertical bridging 
diagonal and the y, z planes are shown from left to right, 
labeled �100	� �110	, and �010	, respectively. These 

bond, which is also fairly long (2.29 Å). The results are obtained from bandstructure calculations, as 
Cu, O charge contours can be represented will be explained in the following chapter (Krakauer 

by a model that assigns charges of +1�62 and Pickett, 1988). 

Figure 8.13 Three vertical crystallographic planes 
(x, z-, and y, z-, and diagonal) of a tetragonal unit cell 
of YBa2 Cu3O7, and standard notation for the four crys­
tallographic directions. 
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and −1�69 to Cu and O, respectively, rather 
than the values of +2�33 and −2�00 expected 
for a standard ionic model, where the charge 
+2�33 is an average of +2� +2, and +3 
for the three copper ions. Thus the Cu–O 
bonds are not completely ionic, but partly 
covalent. 

F. YBaCuO Formula 

In early work the formula 

YBa2Cu3O9−
 

was used for YBaCuO because the proto­
type triple pervoskite �YCuO3��BaCuO3�2 

has nine oxygens. Then crystallographers 
showed that there are eight oxygen sites in 
the 14-atom YBaCuO unit cell, and the for­
mula YBa2Cu3O8−
 came into widespread 
use. Finally, structure refinements demon­
strated that one of the oxygen sites is sys­
tematically vacant in the chain layers, so the 
more appropriate expression YBa2Cu3O7−
 

was introduced. It would be preferable to 
make one more change and use the formula 
Ba2YCu3O7−
 to emphasize that Y is analo­
gous to Ca in the bismuth and thallium com­
pounds, but very few workers in the field do 
this, so we reluctantly adopt the usual “final” 
notation. In the Bi–Tl compound notation 
of Section VIII, B, Ba2YCu3O7−
 would be 
called a 0213 compound. We will follow the 
usual practice of referring to YBa2Cu3O7−
 

as the 123 compound. 

G. YBa2Cu4O8 and Y2Ba4Cu7O15 

These two superconductors are some­
times referred to as the 124 compound and 
the 247 compound, respectively. They have 
the property that for each atom at position 
�x� y� z� there is another identical atom at 
position �x� y + 12 � z + 12 �. In other words, 
the structure is side centered. This property 
prevents the stacking rules of Section C from 
applying. 

Figure 8.15 Crystal structure of YBa2Cu4O8 show­
ing how, as a result of the side-centering symmetry oper­
ation, the atoms in adjacent Cu–O chains are staggered 
along the y direction, with Cu above O and O above 
Cu (Heyen et al., 1991; modified from Campuzano 
et al., 1990). 

The chain layer of YBa2Cu3O7 becomes 
two adjacent chain layers in YBa2Cu4O8, 
with the Cu atoms of one chain located 
directly above or below the O atoms of the 
other, as shown in Fig. 8.15 (Campuzano 
et al., 1990; Heyen et al., 1990a, 1991; Iqbal, 
1992; Kaldis et al., 1989; Marsh et al., 1988; 
Morris et al., 1989a). The transition temper­
ature remains in the range from 40 K to 80 K 
when Y is replaced by various rare earths 
(Morris et al., 1989). The double chains do 
not exhibit the variable oxygen stoichiometry 
of the single ones. 

The other side-centered compound, 
Y2Ba4Cu7O15, may be considered according 
to Torardi, “as an ordered 1:1 inter-growth 
of the 123 and 124 compounds 

�YBa2Cu3O7 +YBa2Cu4O8 = Y2Ba4Cu7O15�” 

(Bordel et al., 1988, Gupta and Gupta, 
1993). The 123 single chains can vary in 
their oxygen content, and superconductiv­
ity onsets up to 90 K have been observed. 
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This compound has been synthesized with 
several rare earths substituted for Y (Morris 
et al., 1989b). 

V. ALIGNED HgBaCaCuO 

The series of compounds 

HgBa2Ca n Cun+1O2n+4� 

where n is an integer, are prototypes 
for the Hg family of superconductors. The 
first three members of the family, with 
n = 0� 1� 2, are often referred to as Hg– 
1201, Hg–1212, and Hg–1223, respectively. 
They have the structures sketched in Fig. 8.16 
(Tokiwa-Yamamoto et al., 1993; see also 
Martin et al., 1994; Putilin et al., 1991). The 
lattice constants are a = 3�86 Å for all of 
them, and c = 9�5, 12.6, and 15.7 Å for n = 
0� 1� 2, respectively. The atom positions of 
the n = 1 compound are listed in Table 8.5 
(Hur et al., 1994). The figure is drawn with 

8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES 

mercury located in the middle layer of the 
unit cell, while the table puts Hg at the origin 
(000) and Ca in the middle � 1

2 2
1 

2
1 �. Figure 8.17 

presents the unit cell for the n = 1 compound 
HgBa2CaCu2O6+
 drawn with Ca in the mid­
dle (Meng et al., 1993a). The symbol 
 rep­
resents a small excess of oxygen located in 
the center of the top and bottom layers, at 
positions 1

2 2
1 0 and 1

2 2
1 1 which are labeled 

“partial occupancy” in the figure. If this oxy­
gen were included the level symbol would be 
[Hg – O] instead of [Hg – –]. These Hg com­
pound structures are similar to those of the 
series TlBa2Ca n Cun+1O2n+4 mentioned above 
in Section VIII.F. 

We see from Fig. 8.16 that the cop­
per atom of Hg–1201 is in the center of a 
stretched octahedron with the planar oxy-
gens O(1) at a distance of 1.94 Å, and the 
apical oxygens O(2) of the [O – Ba] layer 
much further away (2.78 Å). For n = 1 each 
copper atom is in the center of the base 
of a tetragonal pyramid, and for n = 2 the 
additional CuO2 layer has Cu atoms which 

Figure 8.16 Structural models for the series HgBa2Can Cu n+1O2n+4. The first three members with n = 0� 1� 2 
are shown (parts a, b, and c, respectively) (Tokiwa-Yamamoto et al., 1993). 
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209 V ALIGNED HgBaCaCuO 

Table 8.5 Normalized Atom Positions 
in the Tetragonal Unit Cell of 

aHgBa2Ca0�86Sr0�14Cu2O6+� 

Layer Atom x y z 

�Hg – –	 
Hg  
O(3) 

0 
1 
2 

0 
1 
2 

1 
1 

�O – Ba	 
O(2) 
Ba 

0 
1 
2 

0 
1 
2 

0.843 
0.778 

Cu 0 0 0.621 
�Cu O2 –	 O(1) 

O(1) 
0 
1 
2 

1 
2 
0 

0.627 
0.627 

�– – Ca	 Ca, Sr 1 
2 

1 
2 

1 
2 

�Cu O2 –	 

O(1) 
O(1) 

1 
2 
0 

0 
1 
2 

0.373 
0.373 

Cu 0 0 0.379 

�O – Ba	 
Ba 
O(2) 

1 
2 
0 

1 
2 
0 

0.222 
0.157 

�Hg – –	 
O(3) 
Hg  

1 
2 
0 

1 
2 
0 

0 
0 

a Unit cell dimensions a = 3�8584 Å and c = 12�6646 Å, 
space group is P4/mmm, D1

4 h. The Hg site is 91% 
occupied and the O(3) site is 11% occupied �� = 0�11�. 
The data are from Hur et al. (1994). 

are square planar coordinated. The layer­
ing scheme stacking rules of Section IV.C 
are obeyed by the Hg series of compounds, 
with metal ions in adjacent layers alternat­
ing between edge (E) and centered (C) sites, 
and oxygen in adjacent layers always at dif­
ferent sites. We see from Table 8.5 that the 
[O – Ba] layer is strongly puckered and the 
�Cu O2 –	 layer is only slightly puckered. 

The relationships between the layering 
scheme of the HgBa2Ca n Cun+1O2n+4 series 
of compounds and those of the other cuprates 
may be seen by comparing the sketch of 
Fig. 8.18 with that of Fig. 8.29. We see that 
the n = 1 compound HgBa2CaCu2O6 is quite 
similar in structure to YBa2Cu3O7 with Ca 
replacing the chains [Cu O –]. More surpris­
ing is the similarity between the arrangement 
of the atoms in the unit cell of each 

HgBa2Ca n Cun+1O2n+4 

Figure 8.17 Schematic structure of the 
HgBa2CaCu2O6+
 compound which is also called 
Hg–1212 (Meng et al., 1993a). 

Figure 8.18 Layering schemes of three 
HgBa2CanCun+1O2n+4 compounds, using the notation 
of Fig. 8.29. 

compound and the arrangement of the atoms 
in the semi-unit cell of the corresponding 

Tl2Ba2Ca n Cun+1O2n+6 
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compound. They are the same except for the 
replacement of the [Tl – O] layer by [Hg – –], 
and the fact that the thallium compounds are 
body centered and the Hg ones are aligned. 

Supercells involving polytypes with 
ordered stacking sequences of different 
phases, such as Hg–1212 and Hg–1223, 
along the c direction have been reported. The 
stoichiometry is often 

Hg2Ba4Ca3Cu5Ox 

corresponding to equal numbers of the Hg– 
1212 and Hg–1223 phases (Phillips, 1993; 
Schilling et al., 1993, 1994). 

Detailed structural data have already 
been reported on various Hg family com­
pounds such as HgBa2CuO4+
 (Putlin et al., 
1993) and the n = 1 compound with partial 
Eu substitution for Ca (Putlin et al., 1991). 
The compound 

Pb0�7Hg0�3Sr2Nd0�3Ca0�7Cu3O7 

has Hg in the position (0.065, 0, 0), 
slightly displaced from the origin of the 
unit cell (Martin et al., 1994). Several 
researchers have reported synthesis and pre­
treatment procedures (Adachi et al., 1993; 
Itoh et al., 1993; Isawa 1994a; Meng, 1993b; 
Paranthaman, 1994; Paranthaman et al., 
1993). Lead doping for Hg has been used 
to improve the superconducting properties 
(Iqbal et al., 1994; Isawa et al., 1993; Martin 
et al., 1994). 

VI. BODY CENTERING 

In Section V we discussed aligned-
type superconductor structures that possess 
a horizontal plane of symmetry. Most high-
temperature superconductor structures have, 
besides this �h plane, an additional symme­
try operation called body centering whereby 
for every atom with coordinates �x� y� z� 

8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES 

there is an identical atom with coordinates 
as determined from the following operation: 

1 1 1 
x → x± � y  → ±  � z  → z± (8.5)

2 2 2 

Starting with a plane at the height z this oper­
ation forms what is called an image plane 
at the height z± 1

2 in which the edge atoms 
become centered, the centered atoms become 
edge types, and each face atom moves to 
another face site. In other words, the body-
centering operation acting on a plane at 
the height z forms a body centered plane, 
also called an image plane, at the height 
z ± 1

2 . The signs in these operations are 
selected so that the generated points and 
planes remain within the unit cell. Thus if 
the initial value of z is greater than 1

2 , the 
minus sign must be selected, viz., z → z− 1

2 . 
Body centering causes half of the Cu–O 
planes to be �Cu O2 –	, with the copper 
atoms at edge sites, and the other half to be 
�– O2 Cu	, with the copper atoms at centered 
sites. 

Let us illustrate the symmetry features of 
a body-centered superconductor by consid­
ering the example of Tl2Ba2CaCu2O8. This 
compound has an initial plane �Cu O2 –	 with 
the copper and oxygen atoms at the verti­
cal positions z = 0�0540 and 0.0531, respec­
tively, as shown in Fig. 8.19. For illustrative 
purposes the figure is drawn for values of 
z closer to 0.1. We see from the figure that 
there is a reflected plane �Cu O2 –	 at the 
height 1 − z, an image (i.e., body centered) 
plane �– O2 Cu	 of the original plane at the 
height 1

2 + z, and an image plane �– O2 Cu	 
of the reflected plane (i.e., a reflected and 
body centered plane) at the height 2

1 − z. 
Figure 8.19 illustrates this situation and indi­
cates how the atoms of the initial plane can 
be transformed into particular atoms in other 
planes (see Problem 5). Figure 8.20 shows 
how the configurations of the atoms in one-
quarter of the unit cell, called the basic 
subcell, or subcell I, determine their config­
uratinon in the other three subcells II, III, 
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Figure 8.19 Body-centered tetragonal unit cell con­
taining four puckered CuO2 groups showing how the 
initial group (bottom) is replicated by reflection in the 
horizontal reflection plane z = 2

1 , by the body center­
ing operation, and by both. 

and IV throught the symmetry operations of 
reflection and body centering. 

VII. BODY-CENTERED 
La2CuO4� Nd2CuO4 AND Sr2RuO4 

The body-centered compound 

M2CuO4 

has three structural variations in the same 
crystallographic space group, namely the 
M = La and M = Nd types, and a third mixed 

Figure 8.20 Body-centered unit cell divided into 
four regions by the reflection and body centering 
operations. 

variety (Xiao et al., 1989). Table 8.5 lists 
the atom positions of the first two types, and 
Fig. 8.21 presents sketches of the structures 
of all three. The compound Sr2RuO4 is iso­
morphic with La2CuO4. Each of these cases 
will be discussed in turn. 

A. Unit Cell of La2CuO4 Compound 
(T Phase) 

The structure of the more common 
La2CuO4 variety, often called the T phase, 
can be pictured as a stacking of CuO4La2 

groups alternately with image (i.e., body cen­
tered) La2O4Cu groups along the c direction, 
as indicated on the left side of Fig. 8.21. 
(Cavaet et al., 1987; Kinoshita et al., 1992; 
Longo and Raccah, 1973; Ohbayashi et al., 
1987; Onoda et al., 1987; Zolliker et al., 
1990). Another way of visualizing the struc­
ture is by generating it from the group 
Cu0�5O2La, comprising the layers [O–La] and 
1 �Cu O2 –	 in subcell I shown on the right 2 
side of Fig. 8.22 and also on the left side of 
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Figure 8.21 (a) Regular unit cell (T phase) associated with hole=type 
�La1−xSrx�2CuO4 superconductors, (b) hybrid unit cell (T∗ phase) of the hole-type 
La2−x−yRySrxCuO4 superconductors, and (c) alternate unit cell (T′ phase) associated 
with electron-type �Nd1−xCex�2CuO4 superconductors. The La atoms in the left structure 
become Nd atoms in the right structure. The upper part of the hybrid cell is T type, and 
the bottom is T′. The crystallographic space group I4/mmm is the same for all three unit 
cells (Xiao et al., 1989; see also Oguchi, 1987; Ohbayashi et al., 1987; Poole et al., 1988, 
p. 83; Tan et al., 1990). 

Fig. 8.23. (The factor 1
2 appears here because 

the �Cu O2 –	 layer is shared by two sub-
cells.) Subcell II is formed by reflection from 
subcell I, and subcells III and IV are formed 
from I and II via the body-centering oper­
ation in the manner of Figs. 8.19 and 8.20. 
Therefore, subcells I and II together con­
tain the group CuO4La2, and subcells III and 
IV together contain its image (body cen­
tered) counterpart group La2O4Cu. The BiSr-
CaCuO and TlBaCaCuO structures to be dis­
cussed in Section VIII can be generated in 
the same manner, but with much larger repeat 
units along the c direction. 

B. Layering Scheme 

The La2CuO4 layering scheme consists 
of equally-spaced, flat CuO2 layers with their 
oxygens stacked one above the other, the 
copper ions alternating between the (0, 0, 
0) and 1

2 �
1
2 �

1
2 sites in adjacent layers, 

as shown in Fig. 8.24. These planes are 
body-centered images of each other, and 
are perfectly flat because they are reflection 

planes. Half of the oxygens, O(1), are in the 
planes, and the other half, O(2), between the 
planes. The copper is octahedrally coordi­
nated with oxygen, but the distance 1.9 Å 
from Cu to O(1) in the CuO2 planes is much 
leess than the vertical distance of 2.4 Å from 
Cu to the apical oxygen O(2), as indicated in 
Fig. 8.25. The La is ninefold coordinated to 
four O(1) oxygens, to four O(2) at 2

1 � 1
2 � z  

sites, and to one O(2) at a (0, 0, z) site. 

C. Charge Distribution 

Figure 8.26 shows contours of constant-
valence charge density on a logarithmic 
scale drawn on the back x, z-plane and 
on the diagonal plane of the unit cell 
sketched in Fig. 8.13. These contour plots 
are obtained from the band structure calcula­
tions described in Chapter 10, Section XIV 
of the first edition. The high-charge density 
at the lanthanum site and the low charge den­
sity around this site indicate an ionic state 
La3+. The charge density changes in a fairly 
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213 VII BODY-CENTERED La2CuO4� Nd2CuO4 AND Sr2RuO4 

Figure 8.22 Structure of La2CuO4 (center), showing the formula units 
(left) and the level labels and subcell types (right). Two choices of unit cell 
are indicated, the left-side type unit cell based on formula units, and the more 
common right-side type unit cell based on copper-oxide layers. 

regular manner around the copper and oxy­
gen atoms, both within the CuO2 planes and 
perpendicular to these planes, suggestive of 
covalency in the Cu–O bonding, as is the 
case with the YBa2Cu3O7 compound. 

D. Superconducting Structures 

The compound La2CuO4 is itself an anti­
ferromagnetic insulator and must be doped, 
generally with an alkaline earth, to exhibit 
pronounced superconducting properties. The 
compound �La1−xMx�2CuO4, with 3% to 
15% of M = Sr or Ba replacing La, are 
orthorhombic at low temperatures and low M 
contents and are tetragonal otherwise; super­
conductivity has been found on both sides of 
this transition. The orthorhombic distortion 

can be of the rectangular or of the rhombal 
type, both of which are sketched in Fig. 8.4. 
The phase diagram of Fig. 8.27 shows the 
tetragonal, orthorhombic, superconducting, 
and antiferromagnetically ordered regions 
for the lanthanum compound (Weber et al., 
1989; cf. Goodenough et al., 1993). We see 
that the orthorhombic phase is insulating 
at high temperatures, metallic at low tem­
peratures, and superconducting at very low 
temperatures. Spin-density waves, to be dis­
cussed in Chapter 10, Section IX, occur in 
the antiferromagnetic region. 

E. Nd2CuO4 Compound (T′ Phase) 

The rarer Nd2CuO4 structure 
(Skantakumar et al., 1989; Sulewski et al., 
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Figure 8.23 Layering schemes of the La2CuO4 (T, 
left) and Nd2CuO4 (T′, right) structures. The locations 
of the four subcells of the unit cell are indicated in the 
center column. 

1990; Tan et al., 1990) given on the right 
side of Fig. 8.21 and Table 8.6 has all of its 
atoms in the same positions as the standard 

La2CuO4 structure, except for the apical 
O(2) oxygens in the [O–La] and [La–O] 
layers, which move to form a �– O2 –	 
layer between [– – La] and [La – –]. 
These oxygens, now called O(3), have the 
same x� y coordinate positions as the O(1) 
oxygens, and are located exactly between 
the CuO2 planes with z = 1

4 or 4
3 . We see 

from Fig. 8.21 that the CuO6 octahedra have 
now lost their apical oxygens, causing Cu 
to become square planar-coordinated CuO4 

groups. The Nd is eightfold coordinated 
to four O(1) and four O(3) atoms, but 
with slightly different Nd–O distances. 
The CuO2 planes, however, are identical 
in the two structures. Superconductors 
with this Nd2CuO4 structure are of the 
electron type, in contrast to other high-
temperature superconductors, in which the 
current carriers are holes. In particular, the 
electron superconductor Nd1�85Ce0�15CuO4−
 

with Tc = 24 K has been widely studied 
(Fontcuberta and Fàbrega, 1995, a review 

Figure 8.24 CuO2 layers of the La2CuO4 structure showing horizontal displacement of Cu atoms 
(black dots) in alternate layers. The layers are perpendicular to the c-axis (Poole et al., 1988, p. 87). 
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Figure 8.25 Ordering of axially distorted CuO6 octa­
hedra in La2 CuO4 (Poole et al., 1988, p. 88). 

Figure 8.27 Phase diagram for hole-type 
La2−xSrx CuO4−y indicating insulating (INS), antifer­
romagnetic (AF), and superconducting (SC) regions. 
Figure VI-6 of Poole et al. (1988) shows experimental 
data along the orthorhombic-to-tetragonal transition 
line. Spin-density waves (SDW) are found in the AF 
region (Weber et al., 1989). 

chapter; Allen 1990; Alp et al., 1989b; 
Barlingay et al., 1990; Ekino and Akimitsu, 
1989a, b; Lederman et al., 1991; Luke et al., 
1990; Lynn et al., 1990; Sugiyama et al., 
1991: Tarason et al., 1989a). Other rare 
earths, such as Pr (Lee et al., 1990) and Sm 
(Almasan et al., 1992) have replaced Nd. 

The difference of structures associated 
with different signs attached to the current 
carriers may be understood in terms of the 
doping process that converts undoped mate­
rial into a superconductor. Lanthanum and 
neodymium are both trivalent, and in the 
undoped compounds they each contribute 
three electrons to the nearby oxygens, 

La → La3+ +3e−� 

(8.6) 
Nd → Nd3+ +3e−� 

Figure 8.26 Contour plots of the charge density of 
La2CuO4 obtained from band structure calculations. The 
x� z-crystallographic plane labeled �100	 is shown on 
the left, and the diagonal plane labeled �110	 appears 
on the right. The contour spacing is on a logarithmic 
scale (Pickett, 1989). 
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Table 8.6 Atom Positions in the La2CuO4 and Nd2CuO4 Structures 

La2 CuO4 structure Nd2CuO4 structure 

Layer Atom x y z Layer Atom x y z 

O(1) 1 
2 0 1 O(1) 1 

2 0 1 
�Cu O2 –	 Cu  0  0  1  �Cu O2 –	 Cu  0  0  1  

O(1) 0 1 
2 1 O(1) 0 1 

2 1 

�La – O	 
La 1 

2 
1 
2 0.862 [– – Nd] Nd 1 

2 
1 
2 0.862 

�La – O	 

O(2) 

O(2) 
La 

0 

1 
2 
0 

0 

1 
2 
0 

0.818 

0.682 
0.638 

�– O2 –	 

[Nd – –] 

O(3) 
O(3) 

Nd 

0 
1 
2 

0 

1 
2 
0 

0 

3 
4 
3 
4 

0.638 

O(1) 1 
2 0 1 

2 O(1) 1 
2 0 1 

2 

�– O2 Cu	 Cu 1 
2 

1 
2 

1 
2 �– O2 Cu	 Cu 1 

2 
1 
2 

1 
2 

O(1) 0 1 
2 

1 
2 O(1) 0 1 

2 
1 
2 

[Nd – –] Nd 0 0 0.362 

�La – O	 

�O – La	 

La 
O(2) 

O(2) 

0 
1 
2 

0 

0 
1 
2 

0 

0.362 
0.318 

0.182 
�– O2 –	 

O(3) 
O(3) 

1 
2 
0 

0 
1 
2 

1 
4 
1 
4 

La 1 
2 

1 
2 0.138 �– – Nd	 Nd 1 

2 
1 
2 0.138 

O(1) 0 1 
2 0 O(1) 0 1 

2 0 
�Cu O2 –	 Cu  0  0  0  �Cu O2 –	 Cu  0  0  0  

O(1) 1 
2 0 0 O(1) 1 

2 0 0 

to produce O2−. To form the superconductors 
a small amount of La in La2CuO4 can be 
replaced with divalent Sr, and some Nd in 
Nd2CuO4 can be replaced with tetravalent 
Ce, corresponding to 

Sr → Sr2+ +2e− �in La2CuO4� 
(8.7) 

Ce → Ce4+ +4e− �in Nd2CuO4� 

Thus, Sr doping decreases the number of 
electrons and hence produces hole-type car­
riers, while Ce doping increases the electron 
concentration and the conductivity is elec­
tron type. 

There are also copper-oxide electron 
superconductors with different structures, 
such as Sr1−xNdxCuO2 (Smith et al., 1991) 
and TlCa1−xRxSr2Cu2O7−
, where R is a 
rare earth (Vijayaraghavan et al., 1989). 
Electron- and hole-type superconductivity in 
the cuprates has been compared (Katti and 
Risbud, 1992; Medina and Regueiro, 1990). 

F. La2−x−y RxSry CuO4 Compounds 
(T∗ Phase) 

We have described the T structure of 
La2CuO4 and the T′ structure of Nd2CuO4. 
The former has O(2) oxygens and the latter 
O(3) oxygens, which changes the coordina­
tions of the Cu atoms and that of the La 
and Nd atoms as well. There is a hybrid 
structure of hole-type superconducting lan­
thanum cuprates called the T∗ structure, illus­
trated in Fig. 8.21b, in which the upper half 
of the unit cell is the T type with O(2) 
oxygens and lower half the T′ type with 
O(3) oxygens. These two varieties of half-
cells are stacked alternately along the tetrag­
onal c-axis (Akimitsu et al., 1988; Cheong 
et al., 1989b; Kwei et al., 1990; Tan et al., 
1990). Copper, located in the base of an oxy­
gen pyramid, is fivefold-coordinated CuO5. 
There are two inequivalent rare earth sites; 
the ninefold-coordinated site in the T-type 
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halfcell is preferentially occupied by the 
larger La and Sr ions, witle the smaller rare 
earths R (i.e., Sm, Eu, Gd, or Tb) prefer the 
eightfold-coordinated site in the T′ halfcell. 
Tan et al. (1991) give a phase diagram for 
the concentration ranges over which the T 
and T∗ phases are predominant. 

G. Sr2RuO4 Compound (T Phase) 

Superconductivity was found in the lan­
thanum and neodymium cuprates during the 
initial years of the high temperature super­
conductivity era, but the phenomenon was 
not found in strontium ruthenate until 1994 
(Maeno et al.), and did not attract widespread 
attention until several years later at the 
arrival of the new millennium. The unit cell 
dimensions of the three compounds are quite 
close to each other 

La2CuO4 a0 = 3�79 Å� c0 = 13�23 Å 

Nd2CuO4 a0 = 3�94 Å� c0 = 12�15 Å 

Sr2RuO4 a0 = 3�87 Å� c0 = 12�74 Å 

(8.8) 

and the ionic radius of tetravalent ruthe­
nium Ru4+ (0.67 Å) is close to that of diva­
lent copper Cu2+ (0.72 Å). The two cuprates 
are insulators, which become conductors and 
superconductors at 24 K and 35 K, respec­
tively, when they are appropriately doped. 
Sr2RuO4, on the other hand, is a Fermi liq­
uid metal (Wysokinsky et al., 2003) without 
doping, and has a much lower transition 
temperature Tc = 1�5 K. The c-axis resis­
tivity, however, becomes nonmetallic above 
TM = 130 K, with the in-plane resistivity 
remaining always metallic (Maeno et al., 
1996). The lanthanum and neodymium com­
pounds are similar to other cuprates in their 
type of superconductivity, whereas strontium 
ruthenate is believed to be a more exotic type 
of superconductor, hence the recent inter­
est in it. Some of the significant properties 
of Sr2RuO4 are: the Sommerfeld specific 
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heat constant �0 = 37�5 mJ/mole K2, the 
specific heat jump at Tc given by �C = 
27 mJ/mole (Annett et al., 2002), the resis­
tivity anisotropy �c/�ab = 500 (Wysokinsky 
et al., 2003), the presence of incommensu­
rate spin fluctuations (Sidis et al., 1999), 
and the Pauli limiting field BPauli � 2T (Maki 
et al., 2001). 

The Cooper pairs in Sr2RuO4 are 
believed to be odd parity spin triplets (Litak 
et al., 2004), and the compound is said 
to exhibit time reversal symmetry break­
ing (Luke et al., 1998). Won and Maki 
(2001) pointed out that the only other 
spin triplet superconductors found in met­
als are the heavy Fermion compound UPt3, 
and the Bechgaard salt organic conductors 
�TMTSF�2X with the structure sketched in 
Fig. 9.39, where the monovalent counter 
ion X− can be, for example, ClO− 

4 or PF− 
6 

(Won and Maaki, 2001). Analogies have 
been pointed out to the triplet superfluid­
ity found in 3He (Rice and Sigrist, 1995, 
Wysokinsky et al., 2003). The Fermi surface 
of Sr2RuO4 has the three quasi-two dimen­
sional sheets shown in Fig. 8.28, and these 
lead to anisotropic resistivity, susceptibil­
ity, and other properties. Several researchers 
have suggested that the superconductivity is 
of the odd parity p wave or f wave type 
(e.g. Won and Maki, 2000). The presence 
of some Ru in the Sr2RuO4-Ru eutectic 
system raises the transition temperature to 
Tc � 3K. 

Figure 8.28 Fermi surface of Sr2RuO4 calculated 
by the tight binding method. The three quasi two-
dimensional sheets ���, and � are indicated. (Wysokin­
ski et al., 2003, Fig. 1). 
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VIII. BODY-CENTERED BiSrCaCuO 
AND TlBaCaCuO 

Early in 1988 two new superconduct­
ing systems with transition temperatures 
considerably above those attainable with 
YBaCuO, namely the bismuth- and thallium-
based materials, were discovered. These 
compounds have about the same a and b lat­
tice constants as the yttrium and lanthanum 
compounds, but with much larger unit cell 
dimensions along c. We will describe their 
body-centered structures in terms of their 
layering schemes. In the late 1940s some 
related compounds were synthesized by the 
Swedish chemist Bengt Aurivillius (1950, 
1951, 1952). 

A. Layering Scheme 

The Bi2Sr2Ca n Cun+1O6+2n and 
Tl2Ba2Ca n Cun+1O6+2n compounds, where 
n is an integer, have essentially the same 
structure and the same layering arrangement 
(Barry et al., 1989; Siegrist et al., 1988; 
Torardi et al., 1988a; Yvon and François, 
1989), although there are some differences 
in the detailed atom positions. Here there are 
groupings of CuO2 layers, each separated 
from the next by Ca layers with no oxygen. 
The CuO2 groupings are bound together by 
intervening layers of BiO and SrO for the 
bismuth compound, and by intervening layers 
of TIO and BaO for the thallium compound. 
Figure 8.29 compares the layering scheme of 

Figure 8.29 Layering schemes of various high-temperature superconductors. The 
CuO2 plane layers are enclosed in small inner boxes, and the layers that make up a 
formulaunit areenclosed in largerboxes.TheBi-SrcompoundsBi2Sr2CanCun+1O6+2n 

have the same layering schemes as their Tl-Ba counterparts shown in this figure. 
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the Tl2Ba2Ca n Cun+1O6+2n compounds with 
n = 0, 1, 2 with those of the lanthanum and 
yttrium compounds. We also see from the 
figure that the groupings of �Cu O2 −	 planes 
and �− O2 Cu	 image (i.e., body centered) 
planes repeat along the c-axis. It is these 
copper-oxide layers that are responsible 
for the superconducting properties. 

A close examination of this figure shows 
that the general stacking rules mentioned in 
Section VI.C for the layering scheme are sat­
isfied, namely metal ions in adjacent layers 
alternate between edge (E) and centered (C) 
sites, and adjacent layers never have oxy-
gens on the same types of sites. The horizon­
tal reflection symmetry at the central point 
of the cell is evident. It is also clear that 
YBa2Cu3O7 is aligned and that the other four 
compounds are staggered. 

Figure 8.30 (Torardi et al., 1988a) 
presents a more graphical representation 
of the information in Fig. 8.29 by show­
ing the positions of the atoms in their 
layers. The symmetry and body centering 
rules are also evident on this figure. Rao 
(1991) provided sketches for the six com­
pounds TlmBa2CanCun+1Ox similar to those 
in Fig. 8.30 with the compound containing 
one �m = 1� or two thallium layers �m = 2�, 
where n = 0, 1, 2, as in the Torardi et al. 
figure. 

B. Nomenclature 

There are always two thalliums and 
two bariums in the basic formula for 
Tl2Ba2Ca n Cun+1O6+2n, together with n 
calciums and n + 1 coppers. The first three 
members of this series for n = 0� 1, and 2 

Figure 8.30 Crystal structures of Tl2 Ba2 Ca n Cun+1O6+2n superconducting compounds with n = 0� 1� 2 arranged 
to display the layering schemes. The Bi2Sr2Ca n Cun+1O6+2n compounds have the same respective structures (Torardi 
et al., 1988a). 
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are called the 2201, 2212, and 2223 com­
pounds, respectively, and similarly for their 
BiSr analogues Bi2Sr2Ca n Cun+1O6+2n. Since 
Y in YBa2Cu3O7 is structurally analogous to 
Ca in the Tl and Bi compounds, it would 
be more consistent to write Ba2YCu3O7 for 
its formula, as noted in Section IV.F. In this 
spirit Ba2YCu3O7−
 might be called the 1212 
compound, and �La1−xMx�2CuO4−
 could be 
called 0201. 

C. Bi-Sr Compounds 

Now that the overall structures and 
interrelationships of the BiSr and TlBa 
high-temperature superconductors have been 
made clear in Figs. 8.29 and 8.30 we 
will comment briefly about each compound. 
Table 8.3 summarizes the characteristics of 
these and related compounds. 

The first member of the BiSr series, 
the 2201 compound with n = 0, has octa­
hedrally coordinated Cu and Tc ≈ 9 K  
(Torardi et al., 1988b). The second mem­
ber, Bi2�Sr� Ca�3Cu2O8+
, is a superconduc­
tor with Tc ≈ 90 K (Subramanian et al., 
1988a; Tarascon et al., 1988b). There are 
two �Cu O2 –	 layers separated from each 
other by the [– – Ca] layer. The spacing 
from [Cu O –] to [– – Ca] is 1.66 Å, which 
is less than the corresponding spacing of 
1.99 Å between the levels �Cu O2 –	 and [– 
– Y] of YBaCuO. In both cases the copper 
ions have a pyramidal oxygen coordination 
of the type shown in Fig. 8.11. Superlat­
tice structures have been reported along a 
and b, which means that minor modifica­
tions of the unit cells repeat approximately 
every five lattice spacings, as explained 
in Sect. VIII.E. The third member of the 
series, Bi2Sr2Ca2Cu3O10, has three CuO2 lay­
ers separated from each other by [– – Ca] 
planes and a higher transition tempera­
ture, 100 K, when doped with Pb. The two 
Cu ions have pyramidal coordination, while 
the third is square planar. 

8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES 

Charge-density plots of 

Bi2Sr2CaCu2O8 

indicate the same type of covalency in the 
Cu − O bonding as with the YBa2Cu3O7 

and La2CuO4 compounds. They also indi­
cate very little bonding between the adjacent 
[Bi – O] and [O – Bi] layers. 

D. Tl-Ba Compounds 

The TlBa compounds 

Tl2Ba2Ca n Cun+1O6+2n 

have higher transition temperatures than their 
bismuth counterparts (Iqbal et al., 1988b; 
Torardi et al., 1988a). The first member of 
the series, namely Tl2Ba2CuO6 with n = 
0, has no [– – Ca] layer and a relatively 
low transition temperature of ≈ 85 K. The 
second member �n = 1�, Tl2Ba2CaCu2O8, 
called the 2212 compound, with Tc = 
110 K has the same layering scheme as 
its Bi counterpart, detailed in Figs. 8.29 
and 8.30. The �Cu O2 –	 layers are thicker 
and closer together than the correspond­
ing layers of the bismuth compound (Toby 
et al., 1990). The third member of the series, 
Tl2Ba2Ca2Cu3O10, has three �Cu O2 –	 lay­
ers separated from each other by [– – Ca] 
planes, and the highest transition tempera­
ture, 125 K, of this series of thallium com­
pounds. It has the same copper coordina­
tion as its BiSr counterpart. The 2212 and 
2223 compounds are tetragonal and belong 
to the same crystallographic space group as 
La2CuO4. 

We see from the charge-density plot of 
Tl2Ba2CuO6 shown in Fig. 8.31 that Ba2+ 

is ionic, Cu exhibits strong covalency, espe­
cially in the Cu-O plane, and Tl also appears 
to have a pronounced covalency. The bond­
ing between the [Tl – O] and [O – Tl] planes 
is stronger than that between the [Bi – O] 
and [O – Bi] planes of Bi −Sr. 
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Figure 8.31 Contours of constant charge density on a logarithmic scale 
in two high-symmetry crystallographic planes of Tl2Ba2CuO6. Oxygen 
atoms O(1), O(2), and O(3) are denoted 1, 2, and 3, respectively. The 
planar Cu-O(1) binding is strongest (Hamann and Mattheiss, 1988; see 
Pickett, 1989). 

E. Modulated Structures 

The x-ray and neutron-diffraction pat­
terns obtained during crystal structure 
determinations of the bismuth cuprates 
Bi2Sr2Ca n Cun+1O6+2n exhibit weak satel­
lite lines with spacings that do not arise 
from an integral multiple of the unit cell 
dimensions. These satellites have modulation 
periods of 21 Å, 19.6 Å, and 20.8 Å, respec­
tively, for the n = 0� 1, and 2 compounds (Li 
et al., 1989). Since the lattice constant a = 
5�41 Å �b = 5�43 Å� for all three compounds, 
this corresponds to a superlattice with unit 
cell of dimensions ≈ 3�8a� b� c, with the 
repeat unit along the a direction equal to ≈ 
3�8a for all three compounds. A modulation 
of 4�7b has also been reported (Kulik et al., 
1990). This structural modulation is called 
incommensurate because the repeat unit is 
not an integral multiple of a. 

Substitutions dramatically change this 
modulation. The compound 

Bi2Sr2Ca1−x YxCu2O y 

has a period that decreases from about 
4�8b for x = 0 to the commensurate 
value 4�0b for x = 1 (Inoue et al., 1989; 
Tamegai et al., 1989). Replacing Cu by 
a transition metal (Fe, Mn, or Co) pro­
duces nonsuperconducting compounds with 
a structural modulation that is commensu­
rate with the lattice spacing (Tarascon et al., 
1989b). A modulation-free bismuth-lead 
cuprate superconductor has been prepared 
(Manivannan et al., 1991). Kistenmacher 
(1989) examined substitution-induced super­
structures in YBa2�Cu1−xMx�3O7. Super-
lattices with modulation wavelengths as 
short as 24 Å have been prepared by 
employing ultra-thin deposition techniques 
to interpose insulating planes of PrBa2Cu3O7 

(Jakob et al., 1991; Lowndes et al., 1990; 
Pennycook et al., 1991; Rajagopal and 
Mahanti, 1991; Triscone et al., 1990). 
Tanaka and Tsukada (1991) used the 
Kronig-Penney model (Tanaka and Tsukada, 
1989a, b) to calculate the quasiparticle spec­
trum of superlattices. 
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F. Aligned TI-Ba Compounds 

A series of aligned thallium-based 
superconducting compounds that have the 
general formula TIBa2Ca n Cun+1O5+2n with 
n varying from 0 to 5 has been reported 
(Ihara et al., 1988; Rona, 1990). These con­
stitute a series from 1201 to 1245. They have 
superconducting transition temperatures 
almost as high as the Tl2Ba2Ca n Cun+1O6+2n 

compounds. Data on these compounds are 
listed in Table 8.3. 

G. Lead Doping 

Over the years a great deal of effort has 
been expended in synthesizing lead-doped 
superconducting cuprate structures (Itoh and 
Uchikawa, 1989). Examples involve sub­
stituting Pb for Bi (Dou et al., 1989; 
Zhengping et al., 1990), for Tl (Barry et al., 
1989; Mingzhu et al., 1990), or for both 
Bi and Tl (Iqbal et al., 1990). Differ­
ent kinds of Pb, Y-containing superconduc­
tors have also been prepared (cf. Mattheiss 
and Hamann, 1989; Ohta and Maekawa, 
1990; Tang et al., 1991; Tokiwa et al., 
1990, 1991). 

IX. SYMMETRIES 

Earlier in this chapter we mentioned the 
significance of the horizontal reflection plane 
�h characteristic of the high-temperature 
superconductors, and noted that many of 
these superconductors are body centered. In 
this section we will point out additional sym­
metries that are present. Table VI-14 of our 
earlier work (Poole et al., 1988) lists the 
point symmetries at the sites of the atoms in 
a number of these compounds. 

In the notation of group theory the 
tetragonal structure belongs to the point 
group 4/mmm (this is the newer inter­
national notation for what in the older 
Schönflies notation was written D4h). The 
unit cell possesses the inversion operation at 
the center, so when there is an atom at posi­
tion �x� y� z�, there will be another identical 
atom at position �−x� −y� −z�. The inter­
national symbol 4/mmm indicates the pres­
ence of a fourfold axis of symmetry C4 and 
three mutually perpendicular mirror planes 
m. The Schönflies notation D4h also specifies 
the fourfold axis, h signifying a horizontal 
mirror plane �h and D indicating a dihedral 
group with vertical mirror planes. 

We see from Fig. 8.32 that the z-axis is a 
fourfold �90�� symmetry axis called C4, and 

Figure 8.32 Symmetry operations of the tetragonal unit cell showing a fourfold 
rotation axis C4, three twofold axes C2, and reflection planes of the vertical �zx = �v, 
horizontal �xy = �h; and diagonal �d types. 
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that perpendicular to it are twofold �180�� 
symmetry axes along the x and y direc­
tions, called C2, and also along the diago­
nal directions �C2

′ � in the midplane. There 
are two vertical mirror planes �d which are 
also vertical, and a horizontal mirror plane 
�h. Additional symmetry operations that are 
not shown are a 180� rotation C2 

z around 
the z axis, 

Cz = Cz 
4Cz 

4� (8.9)2 

and the improper fourfold rotation S4 
z around 

that corresponds to C4 
z followed by, or pre­

ceded by, �h, 

Sz 
4 = Cz 

4�h = �hCz 
4 (8.10) 

where C4 
z and �h commute. 

The orthorhombic structure has 
mmm� D2h symmetry. We see from 
Fig. 8.33 that both the rectangular and 
rhombal unit cells, which correspond to 
Figs. 8.4a and 8.4b, respectively, have 
three mutually perpendicular twofold axes, 
and that they also have three mutually 
perpendicular mirror planes � , which are 
not shown. The two cases differ in having 
their horizontal axes and vertical planes 
oriented at 45� to each other. 

Figure 8.33 Rotational symmetry operations of an 
orthorhombic unit cell (a) with rectangular distortion, 
and (b) with rhombal distortion from an originally 
tetragonal cell. 

Cubic structures, being much higher in 
symmetry, have additional symmetry oper­
ations, such as fourfold axes C4 

x� C4 
y, and 

C4 
z along each coordinate direction, three­

fold axes C3 along each body diagonal, 
and numerous other mirror planes. These 
can be easily seen from an examination of 
Fig. 8.1. Buckyballs C60 belong to the icoso­
hedral group, which has twofold �C2�, five­
fold �C5�, and sixfold �C6� rotation axes, 
horizontal reflection planes, inversion sym­
metry, and sixfold �S6� and tenfold �S10� 
improper rotations, for a total of 120 indi­
vidual symmetry operations in all (Cotton, 
1963). 

X. LAYERED STRUCTURE OF THE 
CUPRATES 

All cuprate superconductors have the 
layered structure shown in Fig. 8.34. The 
flow of supercurrent takes place in conduc­
tion layers, and binding layers support and 
hold together the conduction layers. Con­
duction layers contain copper-oxide �CuO2� 
planes of the type shown in Fig. 8.24 with 
each copper ion �Cu2+� is surrounded by four 
oxygen ions �O2−�. These planes are held 
together in the structure by calcium �Ca2+� 
ions located between them, as indicated in 
Fig. 8.35. An exception to this is the yttrium 
compound in which the intervening ions are 
the element yttrium �Y3+� instead of cal­
cium. These CuO2 planes are very close to 
being flat. In the normal state above Tc, con­
duction electrons released by copper atoms 
move about on these CuO2 planes carry­
ing electric current. In the superconducting 
state below Tc, these same electrons form the 
Cooper pairs that carry the supercurrent in 
the planes. 

Each particular cuprate compound has 
its own specific binding layer consisting 
mainly of sublayers of metal oxides MO, 
where M is a metal atom; Fig. 8.36 gives 
the sequences of these sublayers for the 
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BINDING LAYERS 

CONDUCTION LAYERS WITH CuO2 

BINDING LAYERS 

CONDUCTION LAYERS WITH CuO2 

BINDING LAYERS 

CONCUCTION LAYERS WITH CuO2 

BINDING LAYERS 

Figure 8.34 Layering scheme of a cuprate superconductor. Figure 8.35 shows details of the conduction 
layers for different sequences of copper oxide planes, and Fig. 8.36 presents details of the binding layers 
for several cuprates. (Owens and Poole, 1996, Fig. 8.1). 

principal cuprate compounds. These bind­
ing layers are sometimes called charge 
reservois layers because they provide the 
charge for the Cooper pairs that form in the 
copper-oxide planes. Figure 8.30 presents a 
three-dimensional perspective of how con­
duction and binding layers are arranged 
in the thallium compounds containing one, 
two, and three copper oxide planes, i.e., 
having n = 1� 2, and 3 in the formula 
Tl2Ba2Can−1CunO2n+4. 

The fact that all of the cuprates have 
structures with alternating conduction lay­
ers and binding layers stacked along the 
z direction led to the adoption of a 
four digit code for designating their com­
position and structure. The general for­
mula for a cuprate superconductor with a 
binding layer AjBkO

j+k
, and a conducting 

layer Sn−1Cu O2n, is AjBkS CunOj+k+2n+2,n n−1
and most high temperature superconduc­
tors have the more specific formula 
AjB2S Cu Oj+2n+2. A sublayer BO of the 

n−1 n

binding layer is always adjacent to a CuO2 

sublayer of the conduction layer, with AO 
sublayers between BO sublayers. The sepa­

ration atoms S always lie between CuO2 sub-
layers of the conduction layer. This means 
that a CuO2 sublayers can only have BO 
or S sublayers adjacent to it. A four digit 
code jkmn is often employed to designate the 
structure type AjBkSmCun. 

In typical cases the binding layer con­
sists of oxides of A atoms which are Bi, Tl 
or Hg, and oxides of B atoms which are Sr or 
Ba. The separation atoms S of the conduction 
band are usually Ca, but in the yttrium super­
conductor they are Y. Using the notation 
jkmn we have the following examples of four 
digit codes: 

0201 �La1−xSrx�2CuO4 

1212 HgBa2CaCu2O6 

1212 CuBa2YCu2O7 

�Usually written YBa2Cu3O7� 

1223 TlBa2Ca2Cu3O9 

2201 Bi2Sr2CuO6 

2234 Tl2Ba2Ca3Cu4O12 
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CuO2 

Conduction layer with one copper oxide plane 

CuO2


Ca


CuO2


Conduction layer with two copper oxide planes 

CuO2


Y


CuO2


Conduction layer of yttrium compound with two copper oxide planes 

CuO2


Ca


CuO2


Ca


CuO2


Conduction layer with three copper oxide planes 

Figure 8.35 Conduction layers of the various cuprate superconductors showing sequences of CuO2 

and Ca (or Y) planes in the conduction layers of Fig. 8.34. (Owens and Poole, 1996, Fig. 8.3). 

Sometimes the A atom symbol is used as 
a prefix to the code, and in this notation 
five of the above six codes would be writ­
ten: La-0201, Hg-1212, Tl-1223, Bi-2201, 
and Tl-2234 to designate the corresponding 
compounds. 

XI. INFINITE-LAYER PHASES 

In 1993 superconductivity was dis­
covered in the series of compounds with 
the general formula Srn+1CunO2n+1+
; these 
compounds represent perhaps the simplest of 
the copper oxide superconductors contain­
ing only two metallic elements, strontium 
and copper. Like the cuprates these are lay­

ered compounds, and the parameter n des­
ignates the number of copper oxide layers. 
The layering scheme is very simple, and it 
can be visualized from Fig. 8.37. The bind­
ing layer Sr2O for all of these compounds 
consists of successive Sr, O, and Sr planes, 
as indicated at the top of Fig. 8.37. This 
binding layer is much thinner than those of 
the cuprates; conduction layers are similar to 
the cuprate ones shown in Fig. 8.35 but with 
strontium atoms between the CuO2 planes 
instead of calcium or yttrium. Thus these 
compounds may properly be considered as 
cuprate types. 

The n = 1 compound has a structure 
similar to that of La2CuO4, discussed ear­
lier and shown in Fig. 8.21. This n = 1 
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LaO


LaO


Lanthanum Superconductor La2CuO4 

BaO 

CuO 

BaO 

Yttrium Superconductor YBa2Cu3O7 

SrO 

BiO 

BiO 

SrO 

Bismuth Superconductor Bi2Sr2Can–1CunO2n+4 

BaO 

TlO 

TlO 

BaO 

Thallium Superconductor Tl2Ba2Can–1CunO2n+4 

BaO


Hg(O)


BaO


Mercury Superconductor HgBa2Can–1CunO2n+2 

Figure 8.36 Sequences of MO sublayers in the binding layers of Fig. 8.34 where M stands for various 
metal ions. The parentheses around the oxygen atom O in the lowest panel indicates partial occupancy. 
(Owens and Poole, 1996, Fig. 8.4). 

compound with the formula Sr2CuO3�1 has 
a large number of vacancies in the binding 
layers and a transition temperature of 70 K. 
These vacancies provide the doping mecha­
nism for holes in the CuO planes. The n = 2 
compound Sr3Cu2O5+
 has a T of 100 K. c 

The limit of the series for very large 
n is SrCuO2; it has the infinite layer struc­
ture shown in Fig. 8.38. This material can be 
made into an electron-doped superconduc­

tor with Tc = 43 K by replacing some of the 
divalent Sr2+ with trivalent La3+; this has the 
effect of putting electron carriers in the cop­
per oxide planes. The large n material doped 
with holes occurs only in a small fraction of 
the samples, and it has a transition tempera­
ture of 110 K. It is not clear what causes hole 
doping, but it is believed to involve some 
kind of defect structure. One idea is that an 
oxygen atom may be trapped between two Sr 
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Sr 

O 

Sr 

Binding layer of infinite layer phases Srn + 1CunO2n + 1 + δ 

CuO2 

Conduction layer of Sr2CuO3 + δ 

CuO2


Sr


CuO2


Conduction layer of Sr3Cu2O5 + δ 

CuO2


Sr


CuO2


Sr


CuO2


Conduction layer of Sr4Cu3O7 + δ 

Figure 8.37 Binding layer (top) followed by, in succession, conduction layers of the first three 
infinite layer phase compounds, namely Sr2CuO3+
� Sr3Cu2O5+
 and Sr4Cu3O7+
. The figures are drawn 
assuming 
 = 0. (Owens and Poole, 1996, Fig. 8.17). 

atoms, forming an Sr–O–Sr defect. Another 
proposal is that a corrugated Sr–O layer is 
substituted for one of the copper oxide layers. 

XII. CONCLUSIONS 

Almost all the high-temperature oxide 
superconductors have point symmetry 
D4h �a = b� or symmetry close to D4h �a ∼ b�. 
These superconductors consist of horizontal 
layers, each of which contains one positive 
ion and either zero, one, or two oxygens. 
The copper ions may be coordinated square 
planar, pyramidal, or octahedral, with some 
additional distortion. Copper oxide layers are 
never adjacent to each other, and equivalent 

layers are never adjacent. The cations alter­
nate sites vertically, as do the oxygens. The 
copper oxide layers are either flat or slightly 
puckered, in contrast to the other metal oxide 
layers, which are generally far from planar. 
The highest Tc compounds have metal layers 
(e.g., Ca) with no oxygens between the copper 
oxide planes. 

FURTHER READING 

Chapter 8 by R. Gladyshevskii and P. Galez in the 
Handbook of Superconductivity edited by C. P. Poole, Jr., 
provides the structures of most of the cuprates. The Inter­
national Tables for X-Ray Crystallography (Henry and 
Lonsdale, 1965, Vol. 1) provide the atom positions and 
symmetries for all of the crystallographic space groups. 
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Figure 8.38 Crystal structure of the infinite layer 
phase SrCuO2. (Owens and Poole, 1996, Fig. 8.18). 

PROBLEMS 

1. Show that the radius of the octahedral hole 
in an fcc close-packed lattice of atoms √ 
of radius r0 is equal to � 2 − 1	r0. What 
is the radius of the hole if the lattice is 
formed from oxygen ions? 

2. Show that the radius of the tetrahedral hole 
in an fcc close-packed lattice of atoms of 
radius r0 is equal to 

� 
�3/2�1/2 −1 

� 
r0. What 

is the radius of the hole if the lattice is 
formed from oxygen ions? 

3. The	 “image perovskite” unit cell is 
generated from the unit cell of Fig. 8.1 by 
shifting the origin from the point (0, 0, 0) 
to the point � 1

2 � 2
1 � 2

1 �. Sketch this “image” 
cell. Show that the planes of atoms in 
this cell are the image planes related 
by the body centering operation to those 
of the original perovskite. This image 
cell is the one that usually appears as 
a figure to represent perovskite in solid-
state physics texts. 

8	 CUPRATE CRYSTALLOGRAPHIC STRUCTURES 

4. Calculate the distance between the yttrium 
atom and its nearest-neighbor Ba, Cu, 
and O atoms in the superconductor 
YBa2Cu3O7. 

5. Write down the x� y� z coordinates for the 
five numbered atoms in the initial plane 
of Fig. 8.19. Give the explicit symmetry 
operations, with the proper choice of sign 
in Eq. (8.5) for each case, that transform 
these five atoms to their indicated new 
positions on the other three planes. 

6. Explain how the international and Schön­
flies symbols, mmm and D2h respec­
tively, are appropriate for designating 
the point group for the orthorhombic 
superconductors. 

7. What are the symmetry operations of the 
A15 unit cell of Fig. 3.19? 

8. The	 D2h point group consists of eight 
symmetry operations that leave an 
orthorhombic cell unchanged, namely an 
identity operation E that produces no 
change, three twofold rotations C2 

i along 
I = x� y� z, three mirror reflection planes 
�ij , and an inversion i. Examples of these 
symmetry operations are 

E x → x y → y z → z 

Cx 
2 x → x y → −y z → −z 

�xy x → x y → y z → −z 

i x → −x y → −y z → −z 

A group has the property that the suc­
cessive application of two symmetry 
operations produces a third. Thus, we 
have, for example, 

C2 
x�xy = �zx 

C2 
y
Cx = Cz 

2 2 

iC2 
y = �zx 

�zx�yz = C2 
x 

These four results have been entered 
into the following multiplication table 



Elsevier AMS Job code: SUP CH08-P088761 23-6-2007 2:59p.m. Page:229 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

�

�

PROBLEMS	 229 

E Cx
2 Cy

2 Cz
2 i �xy �yz �zx 

E 
Cx 

2


Cy

2


Cz

2 

i 

xy 

yz 

�zx 

�zx 

Cz 
2 

�zx 

Cz 
2 

for the D2h group. Fill in the remain­
der of the table. Hint: each element of 
a group appears in each row and each 
column of the multiplication table once 
and only once. 

9. Construct the multiplication table for 
the D4h point group which contains 
the 16 symmetry elements that leave a 
tetragonal unit cell unchanged. Which 
pairs of symmetry elements A and B 
do not commute, i.e., such that AB �= 
BA? Hint: follow the procedures used in 
Problem 8. 

10. Draw diagrams analogous to those in 
Fig. 8.29 for the first two members of 
the aligned series TlBa2Ca n Cun+1O5+2n, 
where n = 0� 1. 

11. Draw the analogue of Fig. 8.22 for the 
Nd2CuO4 compound, showing the loca­
tion of all of the Cu and O atoms. How do 
Figs. 8.24 and 8.25 differ for Nd2CuO4? 

12. Select	 one of the compounds 
�Tl2Ba2CuO6� Bi2Sr2CaCu2O8, Bi2Sr2­
Ca2Cu3O10,  Tl2Ba2Ca2Cu3O6� and 
construct a table for it patterned after 
Tables 8.5 or 8.6. 
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9 
Unconventional


Superconductors


I. INTRODUCTION 

The classical superconductors which are 
discussed in Chap. 3 consist of elements, 
alloys, intermetallic compounds, and ionic 
compounds. They are all s-wave types with 
properties that are explained well by the stan­
dard isotropic BCS theory. The cuprate high 
temperature superconductors discussed in 
Chap. 8 exhibit Cooper pairing of a d-wave 
type, and are anisotropic in their proper­
ties. Their symmetries are either tetrago­
nal or orthorhombic, but close to tetragonal. 
The nonclassical or unconventional nature 
of their properties arises from their layered 
structures, as described in Chap. 8. This 
chapter will cover materials which exhibit 
other types of unconventional superconduc­
tivity. Some of these unconventional super­

conductors were discussed in the previous 
edition, such as heavy electron types, charge 
transfer organics and borocarbides toward 
the end of Chap. 3, and perovskites and 
buckministerfuller4enes in both Chap. 3 and 
Chap. 7 of that edition, while others were 
discovered in more recent years. The present 
chapter will cover the properties of all these 
superconducting materials. 

II. HEAVY ELECTRON SYSTEMS 

For several years prior to 1987 there was 
a great deal of interest in the study of heavy-
electron superconductors, i.e., superconduc­
tors whose effective conduction-electron 
mass m ∗ is typically more than 100 electron 

231 



Elsevier AMS Job code: SUP CH09-P088761 22-6-2007 11:59a.m. Page:232 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

232 

masses. Physicists have given these mate­
rials a somewhat more pretentious name 
“heavy fermion superconductors.” The first 
such superconductor, CeCu2Si2, was discov­
ered in 1979 (Steglich et al., 1979), and some 
time passed before the phenomenon was con­
firmed by the discovery of other examples, 
such as UBe13 (Ott et al., 1983) and UPt3 

(Stewart et al., 1984). Since then many addi­
tional cases have been found. Many of the 
investigators who became active in the field 
of cuprate superconductivity obtained their 
experience with the heavy-electron types. 
Work on heavy-electron superconductors has 
been reviewed in a number of studies (Coles, 
1987; Ott, 1987; Stewart, 1984). 

The Cooper pairing in the heavy elec­
tron systems is of the � = 1 or p-wave type. 
Since the superconducting charge carriers are 
Cooper pairs formed from heavy electrons 
and since these pairs are bosons, it would 
be more appropriate to call these compounds 
“heavy boson superconductors.” This, how­
ever, is never done, so we will conform to 
the conventional usage. Ordinary supercon­
ductors are not usually called boson super­
conductors either. 

9 UNCONVENTIONAL SUPERCONDUCTORS 

The large effective mass has a pro­
nounced effect on several properties of 
superconducting materials since it enters into 
the expression (Eq. (1.41)) for the electron 
density of states at the Fermi level: 

1 
� 

2m ∗ 
�3/2

1/2
D�EF � = EF � (9.1)

2�2 �2 

Heavy-electron compounds have densities of 
states that correspond to values of m ∗ ≈ 
200me in Eq. 9.1, as shown by the data in 
Table 9.1. 

The rare-earth element Ce has two 4f 
electrons and the actinide element U has 
three 5f electrons. In compounds each of 
these elements has f electron configura­
tions that can mix as linear combinations or 
hybridize with the conduction electrons and 
together produce sharp energy bands near 
the Fermi level. The narrow width of such 
a band gives it a high density of states, and 
hence, by Eq. 9.1, a large effective mass. A 
situation of this type is sketched in Fig. 9.1 
in which a narrow hybridization band super­
imposed on the usual conduction electron √ 
expression D�E� � E from Fig. 6.5 of the 

Table 9.1 Properties of Several Heavy-Electron Superconductorsa 

Compound Tc (K) TN (K) � (K) �eff /�B m ∗/mc 

CeAl3 −43 2	62 
CeCu6 −88 2	68 
NpBe13 3	4 −42 2	76 
UBe13 0	85 8	8 −70 3	1 192 
UCd11 5	0 −23 3	45 
UPt3 0	43 5	0 −200 2	9 187 
U2Zn17 9	7 −250 4	5 
CeCu2 Si2 0	6 0	7 −140 2	6 220 
UNi2Al3 1	0 4	6 
UPd2 Al3 ≈ 2	0  14	0 
URu2Si2 1	3  17	5 

a Tc is the superconducting transition temperature; TN is the Néel temperature; � is the Curie-Weiss 
temperature; 
eff is the effective magnetic moment and m ∗/mc is the ratio of the effective mass 
to the free electron mass. Some of the data are borrowed from Stewart (1984). Additional data are 
from Geibel et al. (1991a) on UNi2Al3, from Geibel et al. (1991b and 1991c) on UPd2Al2, and 
Issacs et al. (1990) on URh2Si2. 
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II HEAVY ELECTRON SYSTEMS 

Figure 9.1 Density of states of a heavy fermion com­
pound showing a peaked, narrow, half-occupied band at 
the Fermi level. (first edition, Fig. 3.26) 

Figure 9.2 Density of states of a narrow hybridiza­
tion band calculated for three values of the hybridization 
between a conduction electron and an f electron wave 
function (Hofmann and Keller, 1989). 

first edition. The figure is drawn for the situ­
ation where the Fermi level is at the center of 
the hybridization band. Figure 9.2 shows the 
density of states at the Fermi level calculated 
for three values of the effective hybridization 

233 

between a conduction electron and an f elec­
tron wave function (Hofmann and Keller, 
1989). We see that the sharpness of the peak 
in D�EF� depends on the strength of this 
interaction. The electrons in these f shells of 
Ce and U are also responsible for the forma­
tion of the superconducting state. Other rare 
earths and actinides do not form these types 
of hybridization bands at the Fermi level. 

Much of the evidence for the high effec­
tive mass comes from experimental observa­
tions in the normal state. For example, the 
conduction-electron contribution to the spe­
cific heat from Eq. (1.52) 

� = 1 
�2D�EF�k

2
B� (9.2)

3 

is proportional to the density of states 
(9.1) and hence is unusually large for 
heavy-electron compounds. The electronic 
specific-heat coefficients � for heavy-
electron superconductors are, on average, 
more that 10 times larger than those of 
other superconducting compounds, as may 
be seen by consulting Table 4.1. The dis­
continuity �Cc − �Tc� in the specific heat 
at the transition temperature is also corre­
spondingly large for heavy-electron com­
pounds, so the ratio �Cs −�Tc�/�Tc is close 
to the usual BCS value of 1.43, as may be 
seen from the same table. Figure 9.3 shows 
a measurement of this discontinuity in the 
compound UPt3. 

Heavy-electron systems often exhibit 
two ordering transitions, a superconducting 
transition at Tc and an antiferromagnetic 
ordering transition at the Néel temperature 
TN, with typical values given in Table 9.1. 
The superconducting transition is illustrated 
by the drop in magnetic susceptibility at Tc 

(shown in Fig. 9.4 for URu2Si2). When the 
magnetic moments of the ions couple anti­
ferromagnetically, the magnetic susceptiblil­
ity often exhibits Curie-Weiss behavior (cf. 
Eq. (1.79)). Many of these compounds have 
effective magnetic moments exceeding the 
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234 9 UNCONVENTIONAL SUPERCONDUCTORS 

Figure 9.3 Specific heat of the heavy fermion compound UPt3 in the 
neighborhood of the transition temperature. The solid lines correspond to 
a single ideally sharp transition while the dashed lines are fits to the data 
with two adjacent sharp transitions (Fisher et al., 1989). 

Figure 9.4 Dependence of magnetic susceptibility 
 on tempera­
ture for the heavy fermion compounds URu2−x Rhx Si2, with 
 in the 
range 0 ≤ 
 ≤ 0	02 (Dalichaouch et al., 1990). 
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235 II HEAVY ELECTRON SYSTEMS 

Figure 9.5 Peak near 16K in the resistivity-versus-temperature plot 
of the heavy fermion compound URu2Si. The inset shows the supercon­
ducting transition below 1K in an expanded scale (Mydosh, 1987; see 
also Palst et al., 1987). 

Bohr magneton, as shown in Table 9.1. The 
table lists several other properties of these 
materials. 

The heavy-electron superconductors 
have anisotropic properties that become 
apparent in such measurements as those for 
the critical fields, electrical resistivity, ultra­
sonic attenuation, thermal conductivity, and 
NMR relaxation. Figures 9.5 and 9.6, respec­
tively, show typical anisotropies in the resis­
tivity (Coles, 1987; Mydosh, 1987; Palst 
et al., 1987) and upper-critical field (Assmus 
et al., 1984; Stewart, 1984). The presence of 

Figure 9.6 Upper critical-field anisotropy in tetrago­
nal heavy fermion superconductor CeCu2Si2 parallel to, 

a peak in the resistivity shown in Fig. 9.5 is respectively perpendicular to, the Ce planes. Note the lack 

characteristic of the heavy fermions. of anisotropy at Tc where both orientations have the same 

The lower-critical fields Bc1 are several slope, −23T/K, as given by the dashed line. The inset 
shows the temperature dependence of the resistivity under 

mT at 0 K, while the upper-critical fields Bc2 various applied fields (Assmus et al., 1984). 
at 0 K approach 1 or 2 tesla as shown by the 
example in Fig. 9.6. The critical field deriva- square root factor in the classical expression


tives dBc2/dT are high in absolute magni- in (2.28)


tude, such as −10 T/K for CeCu2Si2 and � 
m ∗ 

�1/2


−44 T/K for UBe13. �L = 
2 

(9.3)

The London penetration depth �L is sev-

�0nse

eral thousand angstroms, consistent with the In ordinary superconductors magnetic 
large effective mass m ∗, which enters as a impurities suppress the superconducting state 
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due to the pair-breaking effect of the mag­
netic moments. In anisotropic superconduc­
tors, on the other hand, any kind of impurity 
is pair breaking. In particular, small amounts 
of nonmagnetic impurities replacing, for 
example, uranium, beryllium, or platinum, 
bring about a pronounced lowering of Tc. 
Some researchers have suggested that the 
heavy-electron materials exhibit an uncon­
ventional type of superconductivity that does 
not involve the ordinary electron-phonon 
interaction (Bishop et al., 1984; Coles, 1987; 
Gumhalter and Zlatic, 1990; D. W. Hess 
et al., 1989; Ott, 1987; Ozaki and Machida, 
1989; Rodriguez, 1987; Stewart, 1984). 

There have also been reports of high 
effective masses in the oxide supercon­
ductors, with, for example, m ∗/m ≈ 12 
(Matsura and Miyake, 1987) in LaSrCuO, 
and m ∗/m ≈ 5 (Gottwick et al., 1987), 
m ∗/m = 9 (Salamon and Bardeen, 1987), 
and m ∗/m ≈ 102 in YBaCuO (Kresin and 
Wolf, 1987). Some more recently dis­
covered heavy-electron superconductors are 
Ce3Bi4Pt3 (Riseborough, 1992), UNi2Al3 

(Geibel et al., 1991a; Krimmel et al., 1992), 
UPd2Al3 (Geibel et al., 1991b, c; Krimmel 
et al., 1992; Sato et al., 1992), and YBiPt 
(Fisk et al., 1991). 

III. MAGNESIUM DIBORIDE 

Superconductivity in magnesium 
diboride was discovered by Nagamatsu et al. 
in 2001. MgB2 is a simple intermetallic 
compound with a hexagonal unimolecular 
unit cell. It was a surprise to find that 
its transition temperature Tc � 39K is so 
far above that of all other intermetallic 
compounds. Its superconductivity is the 
simple BCS phonon mediated s-wave type, 
but complicated by the presence of two 
energy gaps. During the year after its 
discovery the superconducting community 
of scientists embarked on a worldwide 
concentrated effort to unravel the reasons 

9 UNCONVENTIONAL SUPERCONDUCTORS 

why such a simple compound could be such 
a good superconductor. Two years later the 
journal Physica C devoted a special issue to 
the topic (Vol. 385, Nos. 1–2, March 2003), 
which we will denote by PhC. 

A. Structure 

Magnesium diboride has the AlB2 

hexagonal structure sketched in Fig. 9.7, with 
a0 = 0	3084 nm and c0 = 0	3262 nm, cor­
responding to crystallographic space group 
P3ml�D3d

3�. Mg is in the special position 
000, and B is in the two special posi­
tions 1/3

2/3
1/2 and 2/3

1/3
1/2 in the unit cell. 

There are alternating layers of magnesium 
and boron atoms perpendicular to the c axis, 
with the Mg adopting a close packed pla­
nar hexagonal arrangement, and the B atoms 
in a graphite- type hexagonal arrangement. 
Each boron atom has a triangular array of 
magnesiums above and below it, and each 
magnesium has an array of six borons above 
and six below, as is clear from the figure. 
The nearest neighbor distances are 

Figure 9.7 Arrangement of magnesium atoms (large 
open circles) in planes z = 0 and z = c, with a planar 
hexagonal arrangement of boron atoms (solid dots) at 
the height z = 1/2c between these planes. (Thanks are 
due to Michael A. Poole for preparing this figure). 
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III MAGNESIUM DIBORIDE 

dB-B = 0	177 nm 

dMg-B = 0	250 nm (9.4) 

dmg-Mg = 0	308 nm 

Since boron has the valence electron config­
uration 2s2p and magnesium has 3s2, only s 
and p electrons are involved in the electronic 
structure and the Cooper pairing. Within 
the boron layers the bonding is strongly 
covalent, and between the boron and mag­
nesium layers the bonding is more metallic-
like, involving some electron delocalization 
[Mazin and Antropov, 2003]. 

Boron has two naturally occur­
ring isotopes: 10B�19	78%� and 
12B�80	22%�, and magnesiusm has three: 
24Mg�78	99%�� 25Mg�10	00%�, and 
26Mg�11	01%�. When Tc was measured with 
isotopically enriched samples it was found 
that the isotope effect exponent � = 0	32 
for boron, somewhat below the theoretical 
BCS value of � = 0	5. Figure 9.8 shows the 

Figure 9.8 Isotope shift determined by magnetiza­
tion (upper panel) and resistivity (lower panel) measure­
ments. (Canfield et al., 2003, Fig. 1). 

237 

isotopic shift determined by magnetization 
and resistivity measurements. The shift for 
magnesium enrichment was negligible. This 
indicates that the phonons involved in the 
Cooper-pairing were mainly from vibrations 
of the lighter boron atoms, with phonons 
arising from Mg vibrations making very 
little contribution. 

B. Physical Properties 

In the special issue of the journal Phys­
ica C mentioned above Canfield et al., (2003) 
wrote an introductory article which summa­
rized the basic physical properties of MgB2, 
and a number of these properties are listed in 
Table 9.2. Some of these data are averages, 
and do not take into account the presence 
of two gaps in the energy bands. Figure 9.9 
shows the temperature dependence of the 
resistivity in zero field and in applied mag­
netic fields between 2.5T and 18T. We see 
that the transition temperature is lowered 
and the transition is broadened for increasing 
fields, as expected. Figure 9.10 presents the 
temperature dependence of the magnetiza­
tion of aligned single crystals in a magnetic 
field of 0.5mT applied along the c crystal­
lographic direction. We see that the mag­
netization below Tc is much more negative 
for zero field cooling (ZFC) than it is for 
field cooling (FC). The hysteresis loop in 
the inset obtained at a temperature of 10K 
corresponds to a critical current density Jc < 
105 A/cm2. 

C. Anisotropies 

Magnesium diboride has the layered 
crystal structure illustrated in Fig. 9.7 and 
this causes some of its physical properties 
to be anisotropic, with values that differ for 
measurements made in the a, b plane and 
along the c direction. The temperature depen­
dence of the penetration depth factor �� 
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238 9 UNCONVENTIONAL SUPERCONDUCTORS 

Table 9.2 Basic physical properties of the superconductor MgB2. 
Some parameters are anisotropic, with only average values 
listed here. 

Superconducting transition temperature Tc 39K∗


Coherence length �0 5 nm∗


Penetration depth � 140 nm∗


Ginzburg-Landau parameter � � 25

electron mean free path � � 60 nm∗


Residual resistivity ratio RRR = ��300K�/��42K� � 20

Debye temperature �D 340K

Fermi surface electron velocity VF 4	8 ×105 m/sec ∗


Isotope effect constant � 0.32

Upper critical field Bc2, clean sample �� � �0� 16T∗


dirty sample �� � �0� 30T∗ 

Irreversibility field Birr , clean sample 7T∗ 

dirty sample 15T∗ 

Thermodynamic critical field Bc 0.43T 
Lower critical field Bcl 30mT 
Critical current density Jc � 4 ×105 A/cm2∗ 

∗ Values obtained from Canfield et al. (2003) article cited above. 

Figure 9.9 Temperature dependence of the resistivity of MgB2 

crystals in zero field and in an 18T applied magnetic field. The 
inset presents low field data for applied fields, from bottom to top, 
of 0, 2.5, 5, 7.5, 10, 12.5, 15, 16, 17, and 18T. (Canfield et al., 
2003, Fig. 2). 

�� = ��T� −��0� (9.5) nique, and the inset to the figure gives the 
ratio of the observed frequency shifts for the 

presented in Fig. 9.11, shows that �� is applied field perpendicular to and parallel to 
larger for a magnetic field applied along the the c axis. The second critical field Bc2 is also 
c direction than it is for the field applied anisotropic, being about six times larger for 
in the a, b plane. These measurements were fields applied in the a, b plane than for fields 
made using a sensitive radio frequency tech- along the c axis, as shown in Fig. 9.12a. 



Elsevier AMS Job code: SUP CH09-P088761 22-6-2007 11:59a.m. Page:239 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

239 III MAGNESIUM DIBORIDE 

Figure 9.10 Temperature dependence of the magnetization 
for field cooled (FC) and zero field cooled (ZFC) measurements 
in an applied field along the crystallographic c direction with 
Bapp = 0	5 mT. The inset shows a hysteresis loop of a MgB2 

single crystal at 10K with Bapp � c. (Lee, 2003, Fig. 3). 

Figure 9.11 Temperature dependence of the pen­
etration depth factor �� = ��T� −��0� for measure­
ments made in the ab plane ���a � and in the axial 
direction ���c�. The insert shows the ratio of changes 
in the circuit resonant frequency �F for the magnetic 
field applied in the a, b plane and parallel to the c axis. 
(Fletcher et al., 2005, Fig. 1). 

The temperature dependence of the criti­
ccal field anisotropy factor �H = B c2

ab/B c2 

is indicated in Fig. 9.12b. Since we know 

from Eq. (12.56b) that B c2
i = �0/2��j�k it 

follows that �H = �ab/�c. Equation (12.43) 
shows that the product �i�i for all three direc­
tions i, j, k = a, b, c is expected to be constant 
for each superconductor, which means that 
the critical field anisotropy factor can also 
be written in the form �H = �c/�ab. The self-
consistency of these three expressions for �H 

can be checked experimentally. 

D. Fermi Surfaces 

A sketch of the configuration of the 
Fermi surface of MgB2 published in the 
above mentioned special issue of Physica C 
by Kogan and Bud’ko (2003) is presented 
in Fig. 9.13, and Cooper et al. (2003) pro­
vide a similar sketch in the same issue. The 
three energy bands (#3,4 and 5) that cross 
the Fermi level give rise to four Fermi sur­
face sheets, two axial quasi two-dimensional 
�-band sheets, and two contorted three-
dimensional �-band sheets, as shown in the 
figure. The �-bands originate from the boron 
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Figure 9.12 (a) Temperature dependence of the upper critical 
field for measurements made in the a, b plane (lower data set) 
and parallel to the c axis (upper data). Squares and triangles 
represent measurements made using two different samples and two 
different measurement techniques. (b) Temperature dependence 
of the upper critical field anisotropy given by the factor �H = 

cBc2
ab/Bc2 in the notation used in the text. The full lines are 

theoretical curves calculated by the method of Miranvoic et al. 
(Angst. et al., 200, Fig. 3). 

valence electron in-plane sp2 hybridization 
involving bonding px and py orbitals that 
are somewhat weakly coupled [see Samuely 
et al., 2003], and form two concentric nearly 
cylindrical sheets along the �–A–� axis 
in the k direction of the Brillouin zone, z 

as shown in the figure. Because of their 
cylindrical shape these sheets have a two 
dimensional character. Conduction electrons 
can move in the kz direction on these 
�-band surfaces from one Brillouin zone 
to the next since eight adjacent zones join 
together at the special point � , and the � 
cylindrical surfaces are continuous across the 
boundary. 

It is clear from the figure that the 
�-bands, which arise from aromatically 
hybridized (covalent) bonding and antibond­
ing pz orbitals of boron that are more strongly 

coupled, form very convoluted surfaces that 
are three dimensional in character. The sheet 
from band 3 involves electron-type antibond­
ing, and that from band 4 is hole-type bond­
ing. We see from Fig. 9.13 that the surface of 
�-band No.5 crosses into the next Brillouin 
zone along the kx and ky directions at the 
special points L, and the surface of �-band 
No. 4 crosses the zone boundaries at special 
points M. All of these �-band crossings cor­
respond to electron flow in the kx� ky, plane. 
As a result of these geometric characteris­
tics of the Fermi surface electrical properties 
such as the resistivity, and other properties 
of magnesium diboride are anisotropic, and 
hence depend on the direction of an applied 
magnetic field. 

Lee et al. (2001) provide sketches of 
extremal orbits of electrons encircling spe­
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Figure 9.13 Fermi surface of MgB2 calculated by Choi et al., 2002. Four sheets formed from 
three energy bands, and points of special symmetry in the tetragonal Brillouin zone, are indicated. 
(Kogan and Bud’ko, 2003, Fig. 4). Cooper et al. (2003) identify the bands. 

cial points � , A, K, L, and M on the Fermi 
surface. De Haas-van Alphen experiments 
can be carried out with preferentially ori­
ented applied magnetic fields to determine 
the areas enclosed by these orbits in k-
space, and thereby confirm the configuration 
of these various energy surfaces in k-space 
(Cooper et al., 2003). 

E. Energy Gaps 

The superconducting energy gap dif­
fers for the two �-bands and for the two 
� bands, and the spread in the correspond­
ing gap values is sketched in Fig. 9.14. 

The pi gap has the approximate value �� � 
2	8meV, and for the larger sigma gap �� � 
6	8meV. The temperature dependencies of 
these gaps are of the conventional type, 
decreasing to zero as the transition temper­
ature is approached from below, as indi­
cated in Fig. 9.15. It is this multigap feature 
that makes magnesium diboride so interest­
ing as a superconductor, and endows it with 
some unique properties. The transition tem­
perature Tc is the same for both gaps, and 
they have the respective reduced gap values 
��/kBTc � 1	7 and ��/kBTc � 4, one being 
less than and one greater than the BCS value 
of 3.528. 
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Figure 9.14 Distribution in energy of the lower �-band 
gap near 2meV and the upper �-band gap near 7 mV. (Kogan 
and Bud’ko, 2003, Fig. 5). 

Figure 9.15 Temperature dependence of the pi-band 
gap �� and the sigma-band gap �� . The data points 
determined from experimental conductance measure­
ments are compared to BCS theoretical curves. (Daghero 
et al., 2003, Fig. 5). 

Data from many experiments are easier 
to explain using a two gap model, such as 
those involving crystal field, Hall effect, pho­
toemission, Raman scattering, specific heat, 
thermoelectric power, and tunneling mea­
surements. Electron-phonon coupling calcu­
lations have been carried out individually 
for the �- and for the �-bands. Many of 
these results are found in the PhC arti­
cles. For example, Daghero et al. [2003] 
found different values for the upper critical 
field Bc2 for the two bands, and scanning 
tunneling spectroscopy for c-plane orien­
tation reveals only the single �� narrow 
gap, while ab-plane tunneling resolves two 
gaps with the larger �� gap dominant, 
as shown in Fig. 9.16 [Iavarone et al., 
2003, Martinez-Samper et al., 2003, Gonnelli 
et al., 2004]. 

Figure 9.16 Simulated tunneling conductance spectra of MgB2 for tunneling along the c-axis, in an inter­
mediate case, and in the a, b plane. (Iavarone et al., 2003, Fig. 2). 
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IV. BOROCARBIDES AND 
BORONITRIDES 

During the preparation of the first 
edition of this book superconductivity was 
discovered in a series of quaternary borocar­
bide compounds, ordinarily referred to sim­
ply as borocarbides, with the general for­
mula �RC�nM2B2 where R is a transition 
metal and M is ordinarily Ni. The isostruc­
tural boronitride series has the general for­
mula �RN�nM2B2 where nitrogen replaces 
carbon. The subject has been reviewed by 
Canfield (2000), by Hilscher and Michor 
(1999), and by Müller and Narozhnyi (2001). 
The latter review emphasizes the inter­
action between magnetism and supercon­
ductivity in these compounds. Table 9.3 

Table 9.3 Superconducting transition 
temperatures of various borocarbide 
compounds (see Hilscher and Michor 
(1999), and Müller and 
Narozhuyi (2001).) 

Compound Tc �K� 

CeNi2B2C 0	1 
DyNi2 B2C 6	3 
ErNi2B2C  10	5 
HoNi2 B2C 7	8 
LuNi2B2C  16	5 
ScNi2B2 C  15	 
ThNi2B2C 8	 
TmNi2B2C  11	 
YNi2 B2C  12	5 
LaPd2B2C 1	8 
ThPd2B2 C  14	5 
YPd2B2 C 9	7 
LaPt2 B2C  10	 
PrPt2 B2C 6	 
ThPt2B2C 6	5 
YPt2 B2C  10	 
YRu2 B2C 9	7 
LaPt1	5Au0	5B2C  11	 
PrPt1	5Au0	5B2C 6	5 
YPt1	5Au0	5 B2C  11	 
La0	5Lu0	5Ni2 B2C  14	8 
Sc0	5Lu0	5 Ni2B2 C  15	6 
La0	5Th0	5Ni2 B2C 3	9 
La3Ni2 B2N3 12	 

lists the superconducting transition temper­
atures of a number of borocarbides, and 
Table 9.4 provides various properties of the 
two borocarbide superconductors YNi2B2C 
and LuNi2B2C. 

A. Crystal Structure 

The RNi2B2C compound has the tetrag­
onal structure sketched in Fig. 9.17 in which 
staggered Ni2B2 layers alternate with flat 
RC planes. Schematic presentations of struc­
tures for n = 1, 2, 3, and 4 are sketched 
in Fig. 9.18. They all have the same Ni2B2 

layres and RC or RN planes. The Ni atoms 
are in the center of distorted B4 tetrahedra 
which share edges to form slabs held in place 
by short linear B-C-B bridges, as indicted 
in Figs. 9.17 and 9.18. The bonding is 
partly ionic and partly covalent. The distance 
between nearby nickel atoms in the Ni2B2 

layers is slightly less than the nearest neigh­
bor distances in atomic nickel, and the Ni-B 
bonding has a strong admixture of a covalent 
character. The boron to carbon interatomic 
distance of 1.47Å suggests that these are dou­
ble bonds. The resulting rigid three dimen­
sional framework can accommodate various 
sizes of transition metal atoms R. Larger 
transition atoms increase the R-C separation 
in the plane, and compress the B4 tetrahe­
dra, thereby decreasing the thickness of the 
R2B2 layer, and decreasing the c-parameter. 
Higher members of the �RC�nM2B2 series, 
with n > 1, stack RC layers one above the 
other in an NaCl type arrangement, as indi­
cated in Fig. 9.18. The right hand side of 
Fig. 9.17 provides a more realistic view of 
the atom packing in the n = 1 structure. 

The borocarbides with odd-n have 
the body-centered tetragonal crystallographic 
space group I4/mmm, and those with even-n 
are in the primitive tetragonal space group 
P4/nmm which has a horizontal reflection 
plane at the center of the unit cell. The primi­
tive structures have one formula unit per unit 
cell, while the body centered structures have 
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Table 9.4 Tc—superconducting transition temperature, Bc2—upper critical field at 
T = 0� Bcl—lower critical field at T = 0� Bc—thermodynamical critical field at 
T = 0� ��0�—coherence length at T = 0���0�—penetration depth at T = 0� ��0� 
Ginzburg-Landau parameter at T = 0� �C—specific heat jump at Tc� 	—normal state 
Sommerfeld constant, N�EF�—density of state at the Fermi level in states per eV and 
unit cell, 
F—Fermi velocity, �ph—electron-phonon coupling constant, �∗—Coulomb 
pseudopotential, �D—Debye temperature, ��0�—quasiparticle energy gap at 
T = 0� l—mean free path, RRR—residual resistance ratio 

�300K�/
�T ≈ Tc�� TD—Dingle temperature. (compiled by Müller and 
Marozhuyi, 2001) 

Property YNi2B2 C LuNi2B2C Property YNi2B2C LuNi2 B2C 

Tc�K� 15.5 16.5 N�EF ��1/eV� 4.31 4.05 
Bc2 �T� 11 7.5,9 �F �105 ms−1 � 0.85, 3.8, 4.2 0.96 � � �  3.7, 4.2 
Bc1 �mT� 
Bc�T� 

30 
0.23 

30, 80 
0.31, 0.54 

�ph 


∗ 
0.9, 1.20 
≈ 0	1� 0	13 

0.75, 1.22 
≈ 0	1� 0	13 

��0��nm� 8 � � �  10, 5.5 6 �D�K� 490 360 
��0��nm� 120, 350 130, 71 ��0��meV� 2.2 2.2 
��0� 15, 35 22, 12 ��0�/KBTc 2.1, 1.7 2.2, 1.7 
�C�mJ mol−1K−1� 460 695 l�nm� 33 70, 29 
��mJ mol−1K−2 � 18.5 19.5, 35 RRR 43 27, 44 
�C/�Tc 1.77 2.21 TD �K� 2.8 4 

two formula units per unit cell, as is clear 
from Fig. 9.18. I4/mmm is also the space 
group of the thallium Tl2Ba2CanCun+1O2n+6 

and bismuth Bi2Sr2CanCun+1O2n+6 series of 
cuprate high temperature superconductors, 
whereas cuprates with aligned CuO2 lay­
ers such as HgBa2CanCun+1O2n+4 belong to 
primitive tetragonal space group P4/nmm 
which differs from P4/nmm adapted by even-
n borocarbides. 

B. Correlations of Superconducting 
Properties with Structure 
Parameters 

A number of lanthanide nickel boro­
carbides superconduct when the diameter of 
the R atom is not too large, and their tran­
sition temperatures are listed in Table 9.5 
together with the density of states at the 
Fermi level D�EF�, and the magnetic order­
ing temperature for ferromagnetic (F) and 
antiferromagnetic (A) compounds. To obtain 
correlations with the structure the parameter 

c’ was defined by Baggio-Saitovitch (2001) 
as the length of the basic six atom RM2B2C 
group along the axial direction for every n 
in the general chemical formula �RC�nM2B2, 
which means not taking into account extra 
RC layers in compounds for n > 1. We see 
from Fig. 9.18 that c’ is always less than 
the lattice parameter c, and it has the special 
value c� = c/2 for n = 1. 

Figure 9.19 shows how the lattice 
parameters a and c defined in Figs 9.17 
and 9.18 depend on the ionic radius of the 
transition ion R. We see from the figure 
that a increases approximately linearly with 
the radius for both n = 1 and n = 2 com­
pounds. In contrast to this the axial param­
eter c remains fairly constant for the n = 2 
series, and decreases with an increase in the 
radius for the n = 1 series. The C-B and Ni-
B distances remain approximately the same 
for different transition ion substitutions, and 
the decrease in c with an increase in a results 
from the distortion of the NB4 tetrahedra, and 
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Figure 9.17 Unit cell (left) of the tetragonal structure (space group 14/mmm, D4h”) of 
RNi2B2C, and the atom packing arrangement (right). The vertical z axis is a fourfold rotation 
axis �4� C4�, and the centrally located RC planes are horizonotal reflection planes �m� �h �. 
The unit cell also has vertical reflection planes ��v �, horizontal two-fold axes �2� C2 �, and 
inversion symmetry (i). (Godart et al., 1995; Nagarajan, 2001, Fig. 4; Drechsler et al., 2001, 
Fig. 1, with kind permission from Springer Science). 

the consequent reduction of the thickness of 
the Ni2B2 layer. 

C. Density of States 

According to Eq. (7–119) of the BCS 
theory chapter a high value of the super­
conducting transition temperature Tc is asso­
ciated with a large density of states D�EF� 
at the Fermi level. The LDA band struc­
ture calculations carried out by Rosner et al. 
(2001) on YNi2B2C show a flat band at the 
Fermi level near the point X (110) and pro­
ceeding from X toward the origin � (000) 
in the Brillouin zone (Winzer et al., 2001). 
The flatness of the band puts many k-values 

at the Fermi level so the density of states 
is high there. Fig. 9.20 plots the total den­
sity of states, and the partial densities of 
states for the electrons associated with the 
different atoms of YNi2B2C. The Ni-3d and 
Y-4d electrons make the main contribution to 
D�EF� at the Fermi level. Divis et al. (2001) 
determined the total density of states for the 
five compounds RNi2B2C with R = Er, Tm, 
Pr, Nd and Sm, and they found that the first 
two compounds (Er, Tm) which supercon­
duct have sharp peaks of D(E) at E = EF 

which resemble those shown in Fig. 9.20 for 
YNi2B2C. These peaks are missing for the 
three nonsuperconducting compounds. The 
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Figure 9.18 Schematic drawings of the members of the structure series �RC�nNi2B2 and 
�RN�nNi2B2 for n = 1� 2� 3 and 4 formed by borocarbides and boroonitrides, respectively, 
with Pearson codes designated. Shading indicates relative height above the plane of the paper. 
Thick lines connect non-metal atoms and thin lines Ni and B atoms. Compounds with even-n 
contain one formula unit per vertical distance c, and those with odd-n have two formula units 
per vertical distance c. (Gladyshevskii in Poole, 2000, Fig. 6.21). 

Figure 9.19 Values of lattice constants a, c at room temperature for RNiBC 
and RNi2B2C compounds as a function of the ionic radius of the rare earth. 
(Baggio-Saitovitch et al., 2001, Fig. 2, with kind permission from Springer 
Science). 

density of states at the Fermi level for several 
borocarbides is listed in Table 9.5. 

We see from the data plotted in Fig. 9.21a 
that the density of states D�EF� and the 
superconducting transition temperatureTc fol­
low a similar dependence on the rare earth 
transition ion type R over the entire series 
of borocarbides RNi2B2C. The Hoppfield 
parameter  � = D��EF��I�2 �, where �I�2 � is 

the average electron-phonon matrix element 
for atom �, varies with R and � across the 
borocarbide series in the manner shown in 
Fig. 9.21b. The dependence of !Ni for the 
nickel atoms shown at the top of Fig. 9.21b 
is similar to the dependences of D�EF� and Tc 

shown in Fig. 9.21a. We see from these two 
figures that the highest values of D�EF�� Tc 

and !Ni occur for the higher atomic number 
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Figure 9.20 Total and partial densities of states for 
YNi2B2C. The Fermi level is at the zero of energy. 
(Rosner et al., 2001, Fig. 2, with kind permission from 
Springer Science). 

range of the borocarbide series. Figure 9.22 
showshowthe transition temperatureTc varies 
with the totaldensityofstatesat theFermi level 
for various borocarbides, using the notation 
RC�NiB�2 for RNi2B2C. The figure compares 

values calculated by the scalar full potential 
local orbital method (Drechsler et al. 1999) 
with experimentally measured values. 

D. Thermodynamic and Electronic 
Properties 

The specific heat of the compound 
YNi2B2C is a sum of the Sommerfeld elec­
tronic term �NT and the low temperature 
Debye term "DT3, as was explained in 
Sect. VII of Chapter 4. 

Cp = �NT + #DT3 

The plot of experimentally measured val­
ues of Cp/T versus T2 shown in Fig. 9.23 
exhibits the usual jump in value at the tran­
sition to the superconducting state, with the 
transition from the superconducting to the 
normal state occurring at lower temperatures 
for increasing applied magnetic fields, as 
shown on the figure. It is clear that the mag­
nitude of the jump in Cp also decrease with 
the temperature in the manner discussed in 
Sect. X. of Chapter 4. The intercept of the 
extrapolated normal state curve for T =⇒ 0 
provides an evaluation of the Sommerfeld 

Table 9.5 Type of the ground state of RNi2B2C compounds: SC—superconducting,

AFM—commensurate antiferromagnet structure, SDW—incommensurate

antiferromagnet order (spin density wave), WFM—weak ferromagnetism;

TN—magnetic order temperature, Tc—superconducting transition temperature and

N�EF�—density of states at the Fermi level. (compiled by Müller and

Narozhnyi, 2001)


Compound Ground state TN �K� Tc�K� N�EF� 

CeNi2B2C Mixed valence (SC) — (0.1) 2	4 
PrNi2 B2C AFM 4.0 — 2	00 
NdNi2 B2C AFM 4.8 — 2	10 
SmNi2B2 C AFM 9.8 — 2	97 
GdNi2 B2C SDW 19.4 — 3	57 
TbNi2B2C SDW WFM 15.0 — 4	11 
DyNi2 B2C AFM/SC 11.0 6.2, 6.4 4	16 
HoNi2 B2C AFM/SC 5 � � � 8 8, 7.5 4	04 
ErNi2B2C SDW (WFM) SC 6 � � � 6.8 10.5 4	32 
TmNi2B2C SDW/SC 1.5 11 4	02 
YbNi2 B2C Heavy fermion — — 
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Figure 9.21 Calculated density of states N�EF � and superconducting transition temperatures Tc on 
the atom type R in the borocarbide RNi2B2C (left panel), and Hoppfield parameters !� for the four 
atoms (right panel). (Hilscher et al., 2001, Fig. 1, with kind permission from Springer Science). 

Figure 9.22 Dependence of experimentally deter­
mined Sommerfeld constants � (upper panel) and super­
conducting transition temperatures Tc (lower panel) on 
the density of states (DOS) at the Fermi level. Values 
from the literature (Dreschler et al., 1999) are denoted 
by open circles. (Dreschler et al., 2001, Fig. 2, with kind 
permission from Springer Science). 

constant �N = 20	2 mJ/moleK2. Figure 9.24 
shows how the transition temperature and 
the Sommerfeld constant vary with the con­
centration x in the mixed crystal system 
YxLu1−xNi2B2C. The figure also presents the 
variation of the upper and lower limits of the 
upper critical field Bc2 versus the concentra­
tion x. This mixed crystal system was con­
venient for study because neither YNi2B2C 
nor LuNi2B2C exhibit any ordered magnetic 
behavior. 

Iavarone et al. (2001) used scanning tun­
neling microscopy and microwave surface 
impedance measurements to study LuNi2B2C 
thin films grown on several substrates. The 
STM data provided conductance G = dI/dV 
versus voltage V plots, and an I versus V 
plot obtained by integration is shown in the 
inset to Fig. 9.25. The conductance min­
ima provided the energy gap values plot­
ted in Fig. 9.25, and extrapolation to T = 0 
gives the gap 2�0 = 4	0mV. Since the transi­
tion temperature Tc = 15	1K this corresponds 
to the dimensionless ratio 2�0/kBTc = 
3	0, which is slightly less than the BCS 
value 3.5. 



Elsevier AMS Job code: SUP CH09-P088761 22-6-2007 11:59a.m. Page:249 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

249 IV BOROCARBIDES AND BORONITRIDES 

Figure 9.23 Dependence of the specific heat cp/T of YNi2B2C on the  
temperature squared T2 for various applied magnetic fields. (Lipp et al., 2001, 
Fig. 2, with kind permission from Springer Science). 

Figure 9.24 Concentration dependence x of the 
Superconducting transition temperature Tc (upper 
panel), the Sommerfeld constant � (middle panel), and 
the upper and lower bounds of the upper critical field 
Bc2 (lower panel) of YxLu1−xNi2B2C. (Lipp et al., 2001, 
Fig. 4, with kind permission from Springer Science). 

In order to carry out microwave surface 
impedance measurements superconducting 
films of LuNi2B2C where made end plates 
of a sapphire �Al2O3� cylindrical resonator. 
Microwave frequency shift measurements �f 
provided the values of the penetration depth 
��T� which are plotted in Fig. 9.26. It is clear 
that the data fit the theoretical BCS curve 

very well. The figure lists the two parame­
ters used for making the BCS fit, namely the 
low temperature mean free path � = 2 nm,  
and Tc = 14	5K. 

Hall effect measurements were carried 
out with the two compounds YNi2B2C and 
LuNi2B2C, and for each compound the Hall 
resistivity $xy was negative in both the nor­
mal and the superconducting states. Thus the 
sign reversal at Tc that is typical for the 
cuprates was not observed with these two 
borocarbides. 

E. Magnetic Interactions 

The borocarbides are a class of com­
pounds in which magnetism and supercon­
ductivity can coexist. The magnetism arises 
from the magnetic moments of the transition 
ions R, which are proportional to the magne­
ton numbers g %J�J +1�& 

1/2 which are plotted 
in Fig. 9.27 for the rare earth series of atoms. 
These ions provide local magnetic moments 
in the lattice at sites between the Ni2B2 layers 
(see Fig. 9.17), and are responsible for the 
weak ferromagnetism, antiferromagnetism or 
spin density waves that exist in some of 
the borocarbides. The magnetic transition 
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Figure 9.25 Temperature dependence of the superconducting energy gap 
�/�0 for two different LuNi2B2C junctions. The inset gives a typical I-V curve 
with the gap positions indicated by arrows. (Iavarone et al., 2001, Fig. 2, with 
kind permission from Springer Science). 

Figure 9.26 Temperature dependence of the penetration depth shift from its 
value at 4.5K, ��T� −��4	5K�, for LuNi2B2C films grown on copper. The fit 
parameters to the BCS curve are indicated in the upper left. (Iavarone et al., 
2001, Fig. 3, with kind permission from Springer Science). 

temperatures TM to these ordered magnetic Table 9.5. A measure of the effectiveness 
states, as well as the nature of the type of local moments on the superconducting 
of magnetic order that is present in partic- properties is given by the de Gennes factor 
ular borocarbide compounds, are listed in �gJ − 1�2J�J + 1� (see Freudenberger et al., 
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Figure 9.27 Dependence of the magneton number g�J�J + 
1��1/2 and the de Gennes factor �gJ −1�2J�J+1� on the individ­
ual atoms of the rare earth series. (Thanks are due to Michael 
A. Poole for preparing this figure). 

2001, and Hilscher et al., 2001) plotted in has a 6S7/2 ground state so J = 7/2� gJ = 2, 
Fig. 9.27 for the second half of the lan- and �gJ −1�2J�J +1� = 15	75. The magnetic 
thanide series, where gJ, is the Landé g- transition temperature TM correlates with the 
factor, and J is the total angular momentum de Gennes factor in the manner shown in 
quantum number. For example gadolinium Fig. 9.28 which suggests that the coupling 

Figure 9.28 Dependence of the magnetic transition temperature TM on the de Gennes 
factor �gJ −1�2J�J +1� for three series of borocarbide compounds. (Baggio-Saitovitch et al., 
2001, Fig. 7, with kind permission from Springer Science). 
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between the 4f electrons of the R atoms 
involves the RKKY interaction whereby the 
magnetic interchange between these 4f elec­
trons takes place through the intermediary 
of magnetization induced in the conduction 
electrons. We see from the figure that the 
values of TM increase linearly with the de 
Gennes factor for n = 1 �RNi2B2C�, whereas 
the n = 2 (RNiBC) data exhibit a peak for 
dysprosium, as do the data for the RRh4B4 

compounds. 
The superconducting transition temper­

ature Tc also exhibits a regular variation 
with the de Gennes factor across the lan­
thanide series for the n = 1 compounds as 
shown in Fig. 9.29, and has linear correla­
tions with the crystallographic c’/a ratio, as 
indicated in Fig. 9.30. The latter correlations 
exist for the usual borocarbide compounds 
�RC�nM2B2, as well as for mixed borocar­
bides �Rx

� R1
��
−xC�nM2B2 which contain two 

types of rare earth ions R� and R��. The vari­
ation of TC and TM with concentration x of 
dysprosium in the series from nonmagnetic 

9 UNCONVENTIONAL SUPERCONDUCTORS 

YNi2B2C to magnetic DyNi2B2C is shown 
in Fig. 9.31. Figure 4 of Müller and Narozh­
nyi (2001) highlights the linear variations of 
TC and TM on the de Gennes factor with 
opposite slopes. 

Hall probe measurements were carried 
out to determine how magnetic flux lines 
from an applied magnetic field penetrate into 
an ErNi2B2C superconducting crystal using 
the Hall sensor arrangement sketched at the 
top of Fig. 9.32. It is clear from the figure 
that at the temperature of 7.2K, which is 
between the magnetic ordering temperature 
TM � 6K and the superconducting transi­
tion temperature Tc = 10	8K, more magnetic 
flux penetrates into the sample in the center 
than at its edges. There is a large gradient 
of flux between the two sensors 2 and 11 
immediately outside the sample and sensors 
3 and 10, respectively, located just inside 
the edge of the crystal due to the shield­
ing currents of density J flowing near the 
edge, arising from the Maxwell curl expres­
sion �oJ = ' ×B. In the absence of appre-

Figure 9.29 Dependence of the magnetic transition temperature TM on the de Gennes 
factor �gJ −1�2J�J +1� for RNi2B2C compounds. (Baggio-Saitovitch et al., 2001, Fig. 8, with 
kind permission from Springer Science) 
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Figure 9.30 Dependence of the superconducting transition temperature Tc on the c’/a ratio 
for several series of borocarbide compounds. (Baggio-Saitovitch et al., 2001, Fig. 9, with kind 
permission from Springer Science). 

Figure 9.31 Dependence of the superconducting and the mag­
netic transition temperatures Tc and TM, respectively, on the concen­
tration x in the Y1−xDyxNi2B2C series of borocarbide compounds. 
(Hossain et al., 1999). 
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Figure 9.32 Magnetic flux line profiles measured 
for increasing (open symbols) and decreasing (closed 
symbols) applied magnetic fields in an ErNi2B2C sin­
gle crystal. The Hall probe sensor positions 0 and 12 
represent the applied magnetic field Bapp. (Dewhurst 
et al., 2001, Fig. 1, with kind permission from Springer 
Science). 

ciable pinning the flux lines that enter at the 
surface migrate toward the center and accu­
mulate there, as shown in the figure. Increas­
ing the applied field strength increases the 
accumulation toward the center, as shown. 
For a decreasing external field the density 
of flux lines is fairly uniform across the 
sample, as shown. When the measurements 
were repeated at the much lower tempera­
ture T = 2	75K < TM, where bulk pinning is 
appreciable, most of the flux entered at one 
side of the sample near the edge. For higher 
applied fields there was a second accumula­
tion of flux on the other side of the sample 
with an almost flux fee region between the 
two accumulations. When the external field 
was gradually decreased under these condi­
tions the flux remained more uniform across 
the sample, as was the case with the 7.2K 
measurements. 

F. Magnetism of HoNi2B2C 

Some borocarbides exhibit a complicated 
magneticbehavior, andHoNi2B2Cisanexam­
ple. The temperature dependence of the resis­
tivity � presented in Fig. 9.33 shows a sharp 

Figure 9.33 Temperature dependence of the resis­
tivity of HoNi2 B2C (upper panel) in the presence of 
applied magnetic fields in the range from 0 to 0.3 T, 
showing the reentrant superconductivity near 6K. The 
neutron diffraction intensity results (lower panel) iden­
tify the presence of the commensurate, the spiral c ∗ 

incommensurate, and the postulated a∗ incommensurate 
structures, sketched in Fig. 35, in the neighborhood of 
the near reentrant behavior. (Müller et al., 201, Fig. 8, 
with kind permission from Springer Science). 

drop to zero at the transition temperature of 
7.8K in zero magnetic field. The applica­
tion of a magnetic field of 0.14T induces 
a near-reentrant behavior, namely a finite 
onset of resistivity below TC in a magnetic 
field near the magnetic ordering temperature 
of TM = 5	2K, and the application of higher 
fields increases � further, as shown. The 
behavior is called near-reentrant because its 
onset requires the presence of an applied 
field. The specific heat plot of Fig. 9.34 con­
firms that there are additional phases in the 
sample. Müller et al. (2001) interpret these 
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Figure 9.34 Temperature dependence of the spe­
cific heat Cp of a 2  mm  × 3 mm  × 0	1 mm HoNi2B2C 
monocrystal measured in zero magnetic field. The con­
tributions from the three phases that are present are 
indicated by arrows. (Müller et al., 2001, Fig. 2, with 
kind permission from Springer Science). 

reentrant data in terms of the magnetic struc­
tures sketched in Fig. 9.35. Structure (a) is 
commensuratewithferromagneticallyaligned 
planes antiferromagnetically coupled to each 
other, and it occurs below 6–7K, as shown 
by the vertical dashed line in Fig. 9.33b. 

Figure 9.35b illustrates an incommensurate c∗ 

structure with a spiral arrangement of the spins 
along the c direction, called a spin wave state, 
which is present in the neighborhood of the 
reentrant state at 5.2K. The postulated incom­
mensurate structure a∗ sketched in Fig. 9.35c 
appears to be more closely related to the reen­
trant behavior than structure c∗ . If the Ho 
atoms are replaced by a small percentage of Y 
or Lu atoms the spiral c∗ structure dominates 
over the commensurate one of Fig. 9.35a, but 
there is very little change in structure a∗ at the 
onset of the near-reentrant behavior. Müller 
et al. (2001) suggest that the a∗ structure is 
associated with the Fermi surface nesting, and 
is closely related to enhanced pair-breaking 
induced by the magnetic field applied at the 
reentrant temperature TN. 

The compound HoNi2B2C also has 
metamagnetic phases with spin orderings 
↑ ↑ ↓ and ↑ ↑ → which are intermediate 
between the ferromagnetic ↑ ↑ ↑ ↑ and anti­
ferromagnetic ↑ ↓ ↑ ↓ types, as well as a 
paramagnetic phase. Figure 9.36a presents a 
magnetic phase diagram in the applied mag­
netic field versus temperature plane when the 

Figure 9.35 Magnetic structures of HoNi2B2C determined by neutron diffraction: (a) com­
mensurate, (b) spiral incommensurate c∗ type, and (c) postulated incommensurate a∗ type. 
(Müller et al., 2001, Fig. 4, with kind permission from Springer Science). 
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Figure 9.36 Magnetic phase diagrams of HoNi2B2C: (a) in the applied 
magnetic field versus temperature plane with the field applied along the 
tetragonal a axis, and (b) in the applied field versus the angle � plane, where � 
is the angle in the plane perpendicular to the c axis that the applied magnetic 
field makes with the magnetically easy [001] direction. The regions where the 
ferromagnetic �↑↑↑↑�, antiferromagnetic �↑↓↑↓�, metamagnetic �↑↑↓ and 
↑↑→) and paramagnetic (para) phases are present are indicated (see Müller 
and Narozhnyi, 2001). (Canfield et al., 1996). 

field is applied along the tetragonal a axis. 
Figure 9.36b presents a magnetic phase dia­
gram in the applied magnetic field versus 
angle � plane when the field is applied per­
pendicular to the tetragonal c axis, making 
an angle � with respect to the magnetically 
easy [110] direction. Metamagnetic phases 
are also found in the borocarbide supercon­
ductors TbNi2B2C and DyNi2B2C. 

V. PEROVSKITES 

The main perovskites that superconduct 
are the two cubic compounds 

Ba1−xK BiO3−y and MgCNi3x

and a series of lower symmetry perovskites 

BaPb1−xBixO3 

that exhibit superconductivity over part of 
their ranges of structural stability. In the first 
two sections we discuss the two cubic exam­
ples which differ markedly in their types of 
superconductivity, and then in the follow­
ing section we examine the lower symme­
try cases which have some affinities to the 
cuprates. 

A. Barium-Potassium-Bismuth Cubic 
Perovskite 

The compound 

Ba1−xK BiO3−y�x

which forms for x > 0	25, crystallizes in the 
cubic pervoskite structure with a = 4	29Å 
(Cava et al., 1988; Jin et al., 1992; Mattheiss 
et al., 1988). K+ ions replace some of the 
Ba2+ ions in the C site, and Bi ions occupy 
the E sites of Eq. (7.2) (Hinks et al., 1988b; 
Kwei et al., 1989; Pei et al., 1990; Salem-
Sugui et al., 1991; Schneemeyer et al., 1988). 
Some oxygen sites are vacant, as indicated 
by y. Hinks et al. (1989) and Pei et al. (1990) 
determined the structural phase diagram (cf. 
Kuentzler et al., 1991; Zubkus et al., 1991). 
We should note from Table 8.1 that the 
potassium (1.33Å) and barium (1.32Å) ions 
are almost the same size, and that Bi5+ 

(0.74Å) is close to Ti4+ (0.68Å). Bismuth 
represents a mixture of the valence states 
Bi3+ and Bi5+ which share the Ti4+ site in 
a proportion that depends on x and y. The 
larger size (0.96Å) of the Bi3+ ion causes the 
lattice constant a to expand 7% beyond its 
cubic BaTiO3 value. Oxygen vacancies help 
to compensate for the larger size of Bi3+ . 

The compound Ba1−xKxBiO3−y was not 
discovered until after the advent of high-Tc 
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(Cava et al., 1988; Mattheiss et al., 1988), 
and is of particular significance for several 
reasons. It is the first oxide superconductor 
without copper that has a transition temper­
ature above that of all the A15 compounds 
(≈ 40K for x ≈ 0	4). This high Tc 

occurs without the presence of a two-
dimensional metal-oxygen lattice. Features 
of Ba1−xK BiO3−y, such as the fact thatx

it contains a variable valence state ion 
and utilizes oxygen vacancies to achieve 
charge compensation, reappear in the high-
temperature superconducting compounds. 

Many experimental measurements have 
been made on this system, such as magne­
tization (Huang et al., 1991b; Kwok et al., 
1989), photoemission (Hamada et al., 1989; 
Jeon et al., 1990; Nagoshi et al., 1991), 
x-ray absorption (Salem-Sugui et al., 1991), 
energy gap (Schlesinger et al., 1989), and the 
irreversibility line (Shi et al., 1991); a value 
for the isotope effect exponent �≈ 0	38 has 
been reported (Hinks et al., 1988b, 1989; 
W. Jin et al., 1991). 

Uemura et al. (1991) point out that 
Ba1−xK BiO3−y shares with the cuprates,x

Chevrel phase compounds, heavy fermions, 
and organic superconductors a transition 
temperature Tc which is high relative 
to its Ns/m

∗ (carrier density-to-effective 
mass) ratio. 

B. Magnesium-Carbon-Nickel Cubic 
Perovkskite 

The perovskite compound MgCNi3, 
with the unit cell depicted in Fig. 9.37, has 
carbon atoms in octahedral Ni sites, and 
the lattice constant a = 3	809. Mao et al. 
(2003) report the following characteristic 
parameters: Tc = 7	63K� � = 46� �o = 
4	6nm� �0 = 213nm� �D = 280K� � = 
9�2 mJ/moI-NiK2� Bc1 = 13mT� Bc = 
0	22T� Bc2 = 14	4T� 2�/kBTc = 
4	6� �C/�Tc = 2	3. In some cases other 
researchers have reported values (He et al. 
2001; Rosner et al. 2002); which differ from 

Figure 9.37 Unit cell of the perovskite compound 
MgCNi3 showing C in the center, Ni at the face centers 
and Mg at the apices of the cell. (Thanks are due to 
Michael A. Poole for preparing this figure). 

these, such as �D = 440K by Zhi-Feng 
et al. (2002). Many of these are typical 
values which make MgCNi3 seem like a 
conventional superconductor, but in reality 
it is an exotic type. There are several 
reasons for this. Most perovskites are ionic 
compounds, like Ba1−xK BiO3−y which was x

discussed above, characterized by a strongly 
electronegative ion F− or O2− at the F site of 
Eq. 8-2, and positively charged ions at the 
C and E sites. In contrast to this MgCNi3 is 
an intermetallic compound with the metallic 
ion Ni at the site that is ordinarily occupied 
by electronegative fluorine or oxygen. The 
presence of the magnetic Ni ions at the 
F-sites makes the compound unstable toward 
ferromagnetism, and hole doping with Co or 
Fe can bring on the ferromagnetism. Hole 
doping with 3% Co or Fe lowers Tc by 
1K, and electron doping with only 1% Cu 
destroys the superconductivity altogether. In 
addition there is a strong singularity in the 
density of electronic states just below the 
Fermi level which is associated with a van 
Hove singularity. 

Several properties such as specific heat, 
nuclear magnetic resonance relaxation rates, 
and tunneling measurements support an s-
wave mechanism of superconductivity. In 
contrast to this the dominance of non s-wave 
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Figure 9.38 Penetration depth of MgCNi3 plotted 
versus the square of the temperature T2. The fits of the 
data to the power laws T2	44 (dotted line) and T2 (solid 
line) are indicated. The inset shows the residuals for 
these fits. The standard s-wave curve is included for 
comparison purposes. (Prozorov et al., 2003, Fig. 3). 

pairing is supported by the appearance of 
a zero-bias conductance peak attributed to 
Andreev bound states (Mao et al. 2003), and 
the significant suppression of superconduc­
tivity brought about through the introduc­
tion of nonmagnetic disorder by irradiation 
(Karkin et al., unpublished). A more defini­
tive test is the comparison of the temper­
ature dependence of the penetration depth 
���T� = ��T� − ��Tmin� with the standard 
s-wave BCS behavior shown in Fig. 9.38 
(Prozorov et al. 2003). This result indi­
cates the presence of low energy quasipar­
ticles and hence unconventional non s-wave 
superconductivity which is consistent with 
d-wave pairing in the presence of strong 
impurity scattering, although other uncon­
ventional mechanisms could possibly explain 
the observations. 

C. Barium-Lead-Bismuth Lower 
Symmetry Perovskite 

In their pioneering article Bednorz and 
Müller (1986) called attention to the dis­
covery of superconductivity in the mixed-
valence compound BaPb1−xBixO3 by Sleight 
and other researchers. (Bansil and Kaprzyk, 

9 UNCONVENTIONAL SUPERCONDUCTORS 

1991; Batlogg et al., 1988; Gilbert et al., 
1978; Prassides et al., 1992; Sleight et al., 
1975; Sleight, 1987; Suzuki et al., 1981a, 
b; Thorn, 1987). It was pointed out in these 
studies that the stoichiometric form of this 
compound presumably has the composition 
Ba2Bi3+Bi5+O6; structurally, it is distorted 
perovskite. 

The metallic compound BaPbO3 is 
a cubic perovskite with the relatively 
large lattice constant (Wyckoff, 1964; cf. 
Nitta et al., 1965; Shannon and Bierstedt, 
1970) listed in Table 8.3. At room tem­
perature semiconducting BaBiO3 is mon­� √ � 
oclinic a ≈ b ≈ c/ 2� #  = 90	17� , but 
close to orthorhombic (Chaillout et al., 
1985; Cox and Sleight, 1976, 1979; cf. 
Federici et al., 1990; Jeon et al., 1990; 
Shen et al., 1989). These two compounds 
form a solid solution series BaPb1−xBixO3 

involving cubic, tetragonal, orthorhombic, 
and monoclinic modifications. Superconduc­
tivity appears in the tetragonal phase, and 
the metal-to-insulator transition occurs at the 
tetragonal-to-orthorhombic phase boundary 
x ≈ 0	35 (Gilbert et al., 1978; Koyama and 
Ishimaru, 1992; Mattheiss, 1990; Mattheiss 
and Hamann, 1983; Sleight, 1987; cf. Bansil 
et al., 1991; Ekino and Akimitsu, 1989a, b; 
Papaconstantopoulous et al., 1989). 

The compound BaPb1−xBixO3 supercon­
ducts in the composition range 0	05 ≤ x ≤ 
0	3 with Tc up to 13K. Many consider this 
system, which disproportionates 2Bi4+ → 
Bi3+ + Bi5+ in going from the metallic to 
the semiconducting state, as a predecessor to 
the LaSrCuO system. The highest Tc of 13K, 
came with the comparatively low carrier con­
centration of 2 ×1021 −4 ×1021 (Than et al., 
1980). The intensity of the strong vibrational 
breathing mode near 100 cm−1 was found to 
be proportional to Tc (Bednorz and Müller, 
1986; Masaki et al., 1987). These results led 
Bednorz and Müller to reason that, “Within 
the BSC system, one may find still higher 
Tc’s in the perovskite type or related metal­
lic oxides, if the electron-phonon interactions 
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and the carrier densities at the Fermi level 
can be enhanced further.” It was their deter­
mination to prove the validity of this conjec­
ture that led to the biggest breakthrough in 
physics of the latter part of the 20th century. 
Their choice of materials to examine was 
influenced by the 1984 article of Michel and 
Raveau (1984) on mixed-valent Cu2+� Cu3+ 

lanthanum-copper oxides containing alkaline 
earths. 

VI. CHARGE-TRANSFER ORGANICS 

Organic compounds and polymers are 
ordinarily considered as electrical insula­
tors, but it is now known that some of 
them are also good electrical conductors. 
For example, the organic compound 7, 7, 
7, 8, -tetracyano-p-quinodimethane, called 
TCNQ for short, forms highly conducting 
salts with a number of compounds, and the 
properties of these and other organic con­
ductors were widely studied in the 1970s. 
Several of the �TMTSF�2X charge-transfer 
salts superconduct under pressure, where 
TMTSF is an electron donor and the mono­
valent counter ion X− is, for example, 
AsF− 

6 � CIO− 
3 � PF− 

4 � SbF− 
6 , or  4 � FSO− 

6 � ReO− 

TaF− 
6 . Figure 9.39 gives the structural formu­

lae of some of the principal organic molecules 
thatplay the roleofelectrondonors inconduct­
ing and superconducting organics. Figure 9.40 
shows the number and range of transition tem­
peratures associated with each. 

The electrical properties of organic con­
ductors are often highly anisotropic. TCNQ 
salts behave as quasi-one-dimensional 
conductors, and salts of other organ­
ics, such as bis(ethylenedithia)tetrathia- Figure 9.40 Number of known organic supercon­
fulvalene, called BEDT-TTF for short, ductors classified by their molecular type as a function 

exhibit low-dimensional behavior (Brooks of Tc (Ishiguro and Yamaji, 1990, p. 263). 

et al., 1992; Fortune et al., 1992), with Tc 

reported in excess of 13K (Schirber et al., anisotropic. For example, the triclinic com­
1991). In addition, the superconducting prop- pound #–�ET�2I3 has lower-critical fields 
erties of the organics, such as the critical Bc1 = 5� 9, and 36 �T along the a� b, and 
fields and the coherence length, are often c crystallographic directions, respectively 

Figure 9.39 Structures of the principal molecules 
that form organic conductors and superconductors 
(Ishiguro and Yamaji, 1990, p. 2). 
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Figure 9.41 Increase in the transition temperature Tc with time (Ishiguro 
and Yamaji, 1990, p. 259). 

and corresponding upper-critical fields Bc2 = 
1	78, 1.70, and 0.08 T (Schwenk et al., 
1985; Tokumoto et al., 1985). The coherence 
lengths are ���plane = 350 Å in the conducting 
plane and ���⊥ = 23 Å (Ishiguro and Yamaji, 
1990, p. 260). Other anisotropic properties 
are the plasma frequency (0.89 and 0.48 eV) 
and the effective mass m ∗/mc = 2	0 and 
m ∗/mc = 7	0) parallel to and perpendicular to 
the �−110� direction, respectively (Kuroda 
et al., 1988). 

The transition temperatures Tc of the 
organics are in the range of typical classi­
cal superconductors as shown in Fig 9.41. 
Some of the organics, such as BEDT­
TTF, exhibit interesting similarities with the 
cuprates because of their layered structures 
(Farrell et al., 1990b). 

VII. BUCKMINSTERFULLERENES 

The compound C60, called buckminster­
fullerene, or fullerene for short, consists 

of 60 carbon atoms at the vertices of the 
dotriacontahedron (32-sided figure) that is 
sketched in Fig. 9.42. The term fullerene is 
used here for a wider class of compounds Cn 

with n carbon atoms, each of whose carbon 

Figure 9.42 Structure of the buckminsterfullerene 
molecule C60 . 



Elsevier AMS Job code: SUP CH09-P088761 22-6-2007 11:59a.m. Page:261 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

261 VII BUCKMINSTERFULLERENES 

Figure 9.43 The three resonant structures of the (hypothetical) tetrahedral com­
pound C4. 

atoms is bonded to three other carbons to 
form a closed surface, with the system con­
jugated such that for every resonant struc­
ture each carbon has two single bonds and 
one double bond. The smallest possible com­
pound of this type is tetrahedral C4, which 
has the three resonant structures shown in 
Fig. 9.43. Cubic C8 is a fullerene, and we 
show in Problem 17 that it has nine res­
onant structures. Icosahedral C12 is also a 
fullerene, but octahedral C6 and dodecahe­
dral C20 are not because their carbons are 
bonded to more than three neighbors. These 
hypothetical smaller Cn compounds have not 
been synthesized, but the larger ones, such 
as C60� C70� C76� C78, and C82, have been 
made and characterized. Some of them have 
several forms, with different arrangements of 
twelve pentagons and numerous hexagons. 
Clusters of buckminsterfullerenes, such as 
icosahedral �C60�13, have also been studied 
(T. P. Martin et al., 1993). 

The C60 molecule might be called 
the world’s smallest soccer ball! Because 
of its resemblance to the geodesic dome 
of architect R. Buckminster Fuller it has 
been referred to as buckminsterfullerene, 
or fullerene for short. The dual resem­
blances have prompted the sobriquet buck­
yball. All sixty carbon atoms are equiva­
lent so the 13C NMR spectrum is a narrow 
singlet. There are 12 regular pentagons and 
20 hexagons with three carbon to carbon 
band lengths that are slightly longer than the 
other three. 

The outer diameter of the C60 molecule 
is 7.10 Å and its van der Waals separation 
is 2.9 Å, so that the nearest-neighbor dis­
tance (effective diameter) in a solid is 10.0 Å. 
The bonds shared by a five-membered and 
a six-membered ring are 1.45 Å long, while 
those between two adjacent six-membered 
rings are 1.40 Å long. Above 260K these 
molecules form a face centered cubic lat­
tice with lattice constant 14.2 Å; below 260K 
it is simple cubic with a = 7	10 Å (Fischer 
et al., 1991; Kasatani et al., 1993; Troullier 
and Martins, 1992). When C60 is doped with 
alkali metals to form a superconductor it 
crystallizes into a face centered cubic lattice 
with larger octahedral and smaller tetrahedral 
holes for the alkalis. The C60 ions are ori­
entationally disordered in the lattice (Gupta 
and Gupta, 1993). 

The compound C60 is not itself a super­
conductor, but when alkali metals are added 
it becomes superconducting. The doped 
compound forms a face-centered cubic lat­
tice with a lattice constant of 10.04 Å. The 
structure has two tetrahedral holes (sites) and 
one octahedral hole per C60 molecule. If all 
of these holes are occupied by alkali met­
als A, the resulting compound is A3C60. An  
example of such a compound is K2RbC60 

with the potassiums in the smaller tetrahedral 
holes and the rubidiums in the larger octa­
hedral holes. The transition temperatures of 
several of these doped fullerenes are given in 
Table 9.6. The compound Rb3C60 has been 
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Table 9.6 Transition Temperature Tc of 
some Alkali Metal-Doped C60 

Compounds 

Compound Tc� K 

K3C60 19 
K2RbC60 22 
Rb2KC60 25 
Rb3C60 29 
Rb2CsC60 31 
Cs2RbC60 33 
Cs3C60 47 

found to have an isotope effect exponent � = 
0	37 (Ramirez et al., 1992a). 

VIII. SYMMETRY OF THE 
ORDER PARAMETER IN 
UNCONVENTIONAL 
SUPERCONDUCTORS 

The early suggestion that high 
temperature superconductors might exhibit 
unconventional, d-wave pairing, (Annett, 
Goldenfeld et al. 1991; Monthoux, Balatsky 
et al. 1991) has lead to a wide variety of 
new experimental probes with sensitivity 
sufficient to test this hypothesis. The 
pioneering work of Hardy and coworkers 
demonstrated that high resolution measure­
ments of the London penetration depth could 
detect the presence of nodal quasiparticles 
characteristic of a d-wave pairing state 
(Hardy, Bonn et al. 1993). Since that time, a 
large number of new superconductors have 
been discovered, many of which exhibit 
nontrivial departures from BCS behavior. 
For some further reading, the reader is 
encouraged to explore the following articles: 

9 UNCONVENTIONAL SUPERCONDUCTORS 

A. Symmetry of the Order Parameter 
in Cuprates 

a. Hole-doped high-Tc cuprates 
To our knowledge, the first penetra­

tion depth measurement to claim non s-wave 
superconductivity was that of Gross et al. 
(Gross, Chandrasekhar et al. 1986; Gross-
Alltag, Chandrasekhar et al. 1991) on a 
heavy fermion material, UPt3. Those authors 
observed power-law behavior of the pene­
tration depth, ��T � −��0� = �� ∼ Tn with 
the exponent n = 1� 2� 3 depending on the 
mutual orientation of the vector potential to 
a p-wave gap vector, and originating from 
different nodal structures (nodal points and 
lines) in a 3D Fermi surface. 

Early penetration depth measurements 
in high-Tc cuprates claimed either s-wave 
pairing, probably due to insufficient sensi­
tivity, or T 2 behavior, due to poor qual­
ity samples. Microwave measurements on 
single crystals YBaCuO by Hardy et. al. 
(Hardy, Bonn et al. 1993) were the first to 
show the linear T dependence characteristic 
of line nodes. By now, this linear variation 
has been observed in several copper oxides. 
In Figure 9.44 we show data for a single 
crystal of optimally doped YBaCuO, mea­
sured with a tunnel diode oscillator at a fre­
quency of 12 MHz. The superfluid density 

1.00 

ρ s
,i 
=

 [λ
 i(0

)/
λ i(

T
)]

2 0.95 
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ρs,b 

Δλ [Å
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0.80
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Maki 1998; Brandow 1999; Timusk and Figure 9.44 Linear temperature dependence of the 
Statt 1999; Tsuei and Kirtley 2000; Carbotte superfluid density and penetration depth in clean YBCO 
and Marsiglio 2003). crystal. 
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$s and �� are shown with the ac field par­
allel to both the a and b crystalline axes. 
$ is linear over a substantially wider range s 

than �, illustrating the point made earlier 
that these two quantities have the same T 
dependence only asymptotically as T → 0. 
For the optimally doped sample shown here, 
d�/dT ≈ 4	2 Å/K in close agreement with 
the microwave data. Remarkably, this lin­
ear variation indicative of nodal quasipar­
ticles has been found to persist, relatively 
unchanged, even in extremely underdoped 
YBaCuO samples (Hoessini, Broun et al. 
2004). This result remains one of the mys­
teries of superconductivity in the copper 
oxides (Lee and Wen 1997; Sheehy, Davis 
et al. 2004). 

b. Electron-doped cuprates 
The situation in electron-doped cuprates 

has been far more controversial, probably 
owing to the difficulty in growing high qual­
ity single crystals. Early microwave data 
in Nd2−xCe CuO4−y (NCCO) down to 4.2 x

Kelvin were interpreted within an s-wave 
model (Anlage, Wu et al. 1994). However, 
Cooper suggested that the spin paramag­
netism of Nd3+ ions could be masking a 
power law temperature dependence expected 
if the material were d-wave (Cooper 1996). 
Lower temperature measurements on single 
crystals of NCCO clearly showed a vary 
large spin paramagnetic effect on the pen­
etration depth below 4 K, as we describe 
later (Alff, Meyer et al. 1999; Prozorov, 
Giannetta et al. 2000; Prozorov, Giannetta 
et al. 2000). Additional measurements on 
nonmagnetic Pr2−xCe CuO4−y (PCCO) down x

to 0.4 K showed a superfluid density varying 
as T 2. Our data are shown in Figure 9.45, for 
several crystals. Data for Nb, a fully gapped 
s-wave superconductor, are shown for com­
parison. 

The quadratic power law is consistent 
with a d-wave pairing state exhibiting unitary 
limit impurity scattering, as we discuss later 
(Hirschfeld and Goldenfeld 1993, Prozorov, 

1.0 Nb data 

isotropic 
s-wave 

0.9 

ρs 

0.8

different

PCCO

crystals


0.7 

0.0 0.1 0.2 0.3 

(T/Tc)2 

Figure 9.45 Superfluid density in three PCCO crys­
tals plotted versus �T/Tc�

2 to emphasize dirty d-wave 
behaviour. Data for Nb obtained in the same apparatus 
are also shown, along with the expected behavior for an 
isotropic s-wave superconductor. 

2000 #202; Kokales, Fournier et al. 2000; 
Prozorov, Giannetta et al. 2000). Coincident 
measurements of half-integral flux quanta in 
PCCO films (Tsuei and J.R. Kirtley 2000) 
also gave evidence for d-wave pairing in 
PCCO. Later mutual inductance measure­
ments on PCCO thin films have shown a 
variety of temperature dependencies rang­
ing from T 3 to T and, more recently, expo­
nential, depending upon the method of film 
growth and the presence of a buffer layer 
(Kim, Skinta et al. 2003). Our own measure­
ments on laser ablated thin films of PCCO 
continue to show a power law behavior 
that depends upon the oxygen doping level 
(Snezhko, Prozorov et al. 2004). Figure 9.46 
shows data for optimally doped PCCO film 
and the fit to the disordered d-wave behavior, 
Eq.(Hirschfeld), which apparently describes 
the data very well. 

To avoid possible demagnetizing effects 
in the H � c orientation, we also measured the 
PCCO films with H � ab– plane. For films 
of order � or less in thickness, the signal is 
very weak and the data is somewhat noisy, as 
shown in the inset. Nonetheless, to the best 
of our knowledge, the inset to Figure 9.46 
is the first reported measurement of a thin 
film in such an orientation. The data are fully 
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Prozorov, Giannetta et al. 2000; Prozorov, 
1.00 Giannetta et al. 2000). 
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B. Organic Superconductors 

ρ s
 

0.90 Probably the most thoroughly stud­
ied organic superconductors belong to the 

0.85 

0.80 

class generically referred to as �-�ET�2X 
(Ishiguro, Yamaji et al. 1998; Kondo and 
Moriya 1998; McKenzie 1998; Schmalian 0.0 0.1 0.2 0.3 0.4 

T/Tc 

Figure 9.46 (main frame) Superfluid density in opti­
mally doped PCCO film measured in with H�c ­
axis; s-wave BCS behaviour is shown by dashed lines, 
while a fit to Eq. (Hirschfeld) is shown by solid line. 
The inset shows a comparison between single crystal 
(solid line) and thin film data, the latter measured in 
the H�ab – plane orientation. A standard BCS curve 
is also shown. 

consistent with previous measurements on 
single crystals. 

Tunneling measurements in PCCO show 
zero bias conductance peaks. These are now 
believed to arise from Andreev bound states 
(discussed later) and are thus direct evi­
dence for unconventional pairing. However, 
the presence of these states appears to depend 
upon doping so s-wave pairing for some 
range of parameters is not ruled out (Biswas, 
Fournier et al. 2002). A large number of 
and experimental and theoretical works cur­
rently support d-wave pairing in the electron-
doped cuprates. Raman spectroscopy (Liu, 
Luo et al. 2005; Qazilbash, Koitzsch et al. 
2005), ARPES (Armitage, Lu et al. 2001; 
Matsui, Terashima et al. 2005) specific heat 
(Yu, Liang et al. 2005) and Hall effect (Lin 
and Millis 2005) are all consistent with the d-
wave picture. A fuller discussion of this issue 
is outside the scope of this chapter. We point 
out that precision penetration depth measure­
ments were the first to call into question the 
s-wave picture of superconductivity in these 
materials (Kokales, Fournier et al. 2000; 

1998; Louati, Charfi-Kaddour et al. 2000). 
These are highly anisotropic, nearly two 
dimensional layered superconductors with 
parameters in the extreme Type II limit. 
NMR measurements show evidence of a spin 
gap and d-wave pairing (Mayaffre, Wzietek 
et al. 1995; Soto, Slichter et al. 1995), some­
what similar to the situation in the copper 
oxides. We discuss two of the most widely 
studied compounds, �-�ET�2Cu�NCS�2 with 
Tc = 10	4 K and �-�ET�2Cu%N�CN�2&Br with 
Tc = 11	6 K. Both materials superconduct 
under atmospheric pressure. Early penetra­
tion depth measurements claimed s-wave 
pairing, but lower temperature and higher 
precision measurements by Carrington et al. 
down to 0.35 K provided strong evidence 
for nodal quasiparticles (Carrington, Bonalde 
et al. 1999). That data are shown in 
Figure 9.47. 

The distinction between penetration 
depth and superfluid density is particularly 
important here, since � changes rapidly 
with temperature, and its absolute value is 
large. The measured quantity is �� = ��T�− 
��0	36 K�, from which the in-plane super­
fluid density is calculated for several choices 
of ��T ≈ 0�. �SR measurements typically 
give ��0� ≈ 0	8 �m (Le, Luke et al. 1992). 
For any plausible choice of ��0� the data 
clearly follow a power law. Fits correspond 
to the dirty d-wave form discussed earlier 
and yield values of the impurity crossover 
T ∗ ≈ 0	8 K. The fact that the measurements 
extend down to T/TC = 0	03 rules out all 
but an extremely small energy gap. By 
now, a large number of other measurements 



Elsevier AMS Job code: SUP CH09-P088761 22-6-2007 11:59a.m. Page:265 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

VIII SYMMETRY OF THE ORDER PARAMETER IN UNCONVENTIONAL SUPERCONDUCTORS 265 

also indicate d-wave pairing (Behnia, Behnia 
et al. 1998; Arai, Ichimura et al. 2001; Izawa, 
Yamajuchi et al. 2002; Printeric, Tomic et al. 
2002). However, there is still no consensus 
on the location of the purported nodes on 
the Fermi surface. In addition, some specific 
heat measurements do show evidence for 
an energy gap in these materials (Elsinger, 
Wosnitza et al. 2000). 

Despite this very strong evidence for 
nodal quasiparticles, the superfluid density 

T/Tc 

1.0 
0 0.05 0.1 0.15 0.2 

1.8 
1.3 λ (0) 

0.9	 1.0 
0.8 

is never purely linear, and in fact exhibits 
an interesting regularity. Figure 9.48 shows 
the penetration depth itself plotted versus 
T 1	5. Over nearly a decade of tempera­
ture, samples of both �-�ET�2Cu%N�CN�2&Br 
(a,b) and samples �-�ET�2Cu�NCS�2 (c,d) 
fit this power law with extraordinary pre­
cision. Many samples that have been mea­
sured since that time show precisely the same 
behavior. Although the dirty d-wave func­
tional form can, with an appropriate choice 
of parameters, appear as a T 1	5 power law, 
the fact that every sample measured obeys 
this law would imply a remarkable regular­
ity in the impurity crossover temperature T ∗ . 
We have observed no such regularity in the 
copper oxides. At the time the data were 

ρ
=

[λ
(0

)/
λ(

T
)]

2 

reported, Kosztin et al. had proposed a Bose­

0.8 1.0	
Einstein/BCS crossover theory for the under­

0.8 doped copper oxides (Kosztin, Chen et al. 
0.6 1998; Chen, Kosztin et al. 2000). They pre­

0.7 0.4 
dicted a superfluid density that would vary 0.2 

0.0 as T + T 1	5, the new T 1	5 component com­0 2 4  6  8 10 12  

0.6	 ing from finite momentum pairs, similar to 
0	 0.5 1 1.5 2 2.5 

a Bose-Einstein condensate. However, when T [K] 
plotted as a superfluid density, our data do 

Figure 9.47 In plane superfluid density for differ­
ent choices of �(0) in �-�ET�2Cu%N�CN�2 &Br. Fits to 
the data use the dirty d-wave interpolation formula. 
The inset shows data up to Tc (Carrington, Bonalde, 
et al. 1999). 
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aa 

0.2 10–1 d 
b 

not fit this power law. Interestingly, more 
recent measurements on the heavy fermion 
compound CeCoIn5 also exhibit the same 
��  ∝ T 1	5 behavior (Özcan, Broun et al. 
2003). They speculate that the fractional 
power law behavior may come from a renor­
malization of parameters near to a quantum 
critical point. Several different experiments 
indicate that CeCoIn5 is also a d-wave super­

Δλ
 [μ

m
] 10–2	 c 

0.03	 0.1 0.3 
[T/Tc] 

d 
0.1 

0 
0 0.02 0.04 0.06 0.08 0.1 

[T/Tc]
1.5 
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conductor, so the experimental situation is 
rather analogous to the organics. Chia et al. 
also observed the same power law in this 
material and believed it can be explained by 
nonlocal effects (Chia, Van Harlingen et al. 
2003). However, nonlocality is unlikely to be 
relevant for organic superconductors, which 
exist in an extreme Type II limit. 

�-�ET�2Cu%N�CN�2&Br and �-�ET�2Figure 
�-�ET�2Cu%N�CN�&2Br (a,b) and two samples Cu�NCS�2 are highly anisotropic layered 
�-�ET�2Cu�NCS�2 (c,d) plotted versus T 3/2 (Carrington, superconductors. By orienting the ac mea-
Bonalde et al. 1999).	 surement field along the conducting planes, 
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the magnetic response is dominated by inter-
plane currents which penetrate in from the 
edges on a length scale �⊥, the interplane 
penetration depth. In general, there is no sim­
ple formula for �⊥ involving just the gap 
function and the Fermi surface parameters. 
This is because �⊥ depends on both the 
pairing state and the details of the transport 
between conducting planes. If this transport 
is coherent, then $⊥ = ��⊥�0�/�⊥�T��2 will 
exhibit the same temperature dependence as 
$� = ��⊥�0�/���T��2. If not, $⊥ will gener­
ally follow a higher power law than $� in a d­
wave superconductor. The precise exponent 
can vary from n = 1 to n  = 3 and in special 
cases, as high as n = 5 (Graf, Palumbo et al. 
1995; Radtke, Kostur et al. 1996; Hirschfeld, 
Quinlan et al. 1997; Sheehy, Davis et al. 
2004). In most copper oxides one has 1 − 
$⊥ ∝ T 2–2	5, indicating incoherent transport 
between the conducting planes (Hoessini, 
Broun et al. 2004). 

Figure 9.49 shows both �⊥ and the 
superfluid density $⊥ in �-�ET�2Cu�NCS�2. 
�⊥�0� � 100 �m is sufficiently large that it 
can be determined directly from the fre­
quency shift of the resonator, as described 
earlier. We find that 1 −$⊥ ∝ T 1	3–1	5. Fit­
ting the inplane superfluid density to a pure 
power law we obtain 1 − $� ∝ T 1	2–1	4, 
which has very nearly the same exponent. 
(The latter depends somewhat on the choice 

1.00 128 

9 UNCONVENTIONAL SUPERCONDUCTORS 

of ���0�.) Coherent interplane transport 
is somewhat surprising given the extreme 
anisotropy of the ET-class of organic super­
conductors. Nevertheless, recent magnetore­
sistive measurements do demonstrate a small 
but but unequivocal three dimensional char­
acter to the Fermi surface. It should also be 
stressed that the power law variation shown 
in Figure 9.49 is another very clear demon­
stration of nodal quasiparticles in the organic 
superconductors. �⊥�0� is so large relative 
to ��⊥ that $⊥ ≈ 1 − 2��⊥�T�/�⊥�0� is an 
excellent approximation within the temper­
ature range over which the gap is constant. 
Therefore, the power law exponent is not 
particularly sensitive to the choice for �⊥�0�. 
There is no hint of an energy gap down to 
the lowest temperatures measured. 

C. Influence of Bandstructure on 
Superconductivity 

Even conventional s-wave superconduc­
tors can exhibit unconventional behaviour if 
the bandstructure has certain peculiarities. 
In general, in most superconductors, there 
is more than one sheet of the Fermi sur­
face. If those were completely independent, 
one would expect possibly different super­
conducting gaps with their own Tc and Hc. 
Usually however, significant interband scat­
tering smears this out resulting in a single 
effective gap. However, when the dimension­
ality of different sheets of the Fermi surface 

ρ = 1–0.025 T1.49 

κ-(ET)2Cu(SCN)2 
differs significantly, the interband scattering 

126 is reduced and two-band superconductivity 
becomes possible. Another important ingre­
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Figure 9.49 Interplane penetration depth and super­
fluid density for �-�ET�2Cu%SCN&2. Fits are to pure 
power laws. 

a. MgB2 

There is by now considerable evidence 
that MgB2 is a two-band superconductor. By 
this we mean that each Fermi surface sheet 
possesses a different gap function. Although 
strong interband scattering leads to a sin­
gle Tc, the gap magnitudes on the � and 
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� surfaces are significantly different. This 
was first observed in tunneling measure­
ments where two conductance peaks were 
observed, one of which was more easily 
suppressed in a magnetic field (Schmidt, 
Zasadzinski et al. 2002; Zalk, Brinkman 
et al. 2006). Penetration depth measure­
ments on MgB2 wires indicated s-wave pair­
ing but with a gap magnitude significantly 
smaller than the weak coupling BCS value 
(Prozorov, Giannetta et al. 2001). Subse­
quent penetration depth measurements on 
single crystals by Manzano et al. were fit 
to a two-band �-model discussed previously 
(eqs. (27,28)). The data and fits are shown 
in Figure 9.50. The deviation from a sin­
gle gap picture is very clear. It was found 
that the larger gap on the � sheet is �� = 
75 ± 5 k and the �-band gap is �� = 29 ± 
2K (Manzano, Carrington et al. 2002). Mea­
surements by Fletcher et al. determined the 
temperature dependence of the anisotropy 
in the interplane versus in-plane penetration 
depth (Fletcher, Carrington et al. 2005). It 
was found that at low temperatures �c/�ab 

is approximately unity, and it increases to 
about 2 at Tc. This is opposite to the tem­
perature dependence of the coherence length 

anisotropy, which decreases from about 6 to 
about 2. This observation has provided firm 
quantitative evidence for a two-gap nature of 
superconductivity in MgB2. 

Figure 9.50 provides a good example of 
using two components of the superfluid den­
sity and the full temperature range BCS treat­
ment to show the two-gap nature of MgB2 

single crystals. So far, MgB2 remains the 
only superconductor with two confirmed dis­
tinct gaps, although both vanish at the same 
temperature. 

b. NbSe2 

Structurally similar to MgB2� NbSe2 

was also believed to have two distinct 
gaps. The recent penetration depth measure­
ments performed on different single crys­
tals (Fletcher, Carrington et al. 2006) do 
not support this conjecture, and lead to the 
conclusion that there is a single anisotropic 
s-wave gap, or there is some possibility of 
two slightly different gaps on 2D Nb sheets 
of the Fermi surface, but not on the Se 3D 
sheet (which appears to be fully gapped). 

Figure 9.51 plots the in-plane London 
penetration depth in single crystal NbSe2	 
A weak coupling BCS behavior with a 
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Figure 9.50 Two components of the superfluid density in 
single crystal MgB2 (from Fletcher, Carrington et al. 2005). 
Solid lines are fits to the �-model. The inset shows the temper­
ature dependencies of the two gaps used for the fits. 
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Figure 9.52 Two components of the superfluid den­
sity measured in single crystal CaAlSi. Solid lines show 
the results of a full 3D BCS fit with an ellipsoidal gap 
shown in the inset as the fit parameter. 

anisotropic 3D gap. In this system both com­
ponents of the superfluid density were mea­
sured, and full temperature range BCS cal­
culations with anisotropic ellipsoidal gap as 
the fitting parameter were carried out. 

Figure 9.52 shows the result of simulta­
neous fitting two components of the super­
fluid density in a lower-Tc version of the 
CaAlSi superconductor. In higher – Tc sam­
ples the anisotropy is greatly reduced and 
most likely the highest – Tc material is an 
isotropic weak coupling BCS superconduc­
tor (Prozorov, Olheiser et al. 2006). Most 
probably the single gap is due to significant 
interband scattering and the 3D nature of the 
in-plane and interplane bands. 

D. Some Other Superconductors 

a. Heavy-fermion superconductors 
In a set of remarkable low-temperature 

measurements using a SQUID magnetome­
ter, Gross et al. obtained power law 
temperature dependencies of ��T� with 
different exponents corresponding to dif­
ferent orientations of the sample in the 
heavy fermion superconductor UBe13 (Gross, 
Chandrasekhar et al. 1986; Gross-Alltag, 
Chandrasekhar et al. 1991). The measure­
ments provided strong evidence for p-wave 

T (K) 

Figure 9.51 London penetration depth in 2H-NbSe2. 
Inset shows full temperature range and extracted from 
the skin depth resistivity. 

slightly reduced gap is indicated. The 
reduced gap is due to anisotropy. A detailed 
analysis is given elsewhere (Fletcher, 
Carrington et al. 2006). Stronger inter-
band scattering and a significantly differ­
ent density of states on different energy 
bands are probably responsible for such 
behaviour. 

Another aspect to consider is the stack­
ing sequence of 2H-NbSe2, where lay­
ers are held together only by van der 
Waals forces. This makes the material closer 
to layered superconductors where inter-
layer transport makes the penetration depth 
appear more gapped than in-plane response 
(at least in the case of d-wave super­
conductors (Radtke, Kostur et al. 1996; 
Hirschfeld, Quinlan et al. 1997; Sheehy, 
Davis et al. 2004)). The anisotropic electro­
magnetic response has been analysed in Ref. 
(Dordevic, Basov et al. 2001). An additional 
feature of NbSe2 is the incommensurate 
charge-density wave state observed below 
33 K. Currently there is no clear understand­
ing how it might affect the superconducting 
properties. 

c. CaAlSi 
A good example of an anisotropic 

3D s-wave superconductor is CaAlSi, isot­
sructural with MgB2 but exhibiting almost 
ideal weak-coupling BCS behaviour with, an 
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of the magnetic penetration depth and pair­
ing symmetry is open, and we are currently 

2000 
working on its resolution. In magnetic boro­

Δλ
(T

) 
(Å

) carbides the penetration depth has a large 
influence on the underlying magnetic struc­
ture and therefore it is useless for establish­
ing the pairing symmetry. However, these 
systems are very interesting from the point 
of view of the interplay between supercon­
ductivity and magnetism (Ghosh, Krishna 
et al. 1997; Chia, Bonalde et al. 2001; Chia, 
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Figure 9.53 Magnetic penetration depth in two ori­
entations in heavy fermion superconductor, CeCoIn5. 
Reprinted with permission from Ref. (Chia, Van Harlin­
gen et al. 2003). Copyright: American Physical Society. 

superconductivity for which the theoreti­
cal description is complicated by the vector 
nature of the superconducting gap (it depen­
dence on the mutual orientation of the vector 
potential and the crystal axes). The general 
consensus seems to be that these materials 
have p-wave symmetry of the order parame­
ter (Joynt and Taillefer 2002). 

A more recent addition to the heavy 
fermion superconducting family is CeCoIn5. 
Figure 9.53 shows the penetration depth 
measured in two orientations in this mate­
rial taken from Ref. (Chia, Van Harlingen 
et al. 2003). Arguing that the effect of impu­
rities should be visible on both components 
(and, apparently it is not seen in �⊥�T�), it 

Cheong et al. 2005). 

c. Sr2RuO4 

The penetration depth in Sr2RuO4 as 
shown in Fig. 9.54 does not follow a stan­
dard s-wave behavior. Moreover, measure­
ments of the NMR Knight shift across the 
superconducting transition had indicated a 
triplet pairing state. In that case, the gap is 
a vector and the data analysis is very dif­
ficult. Current debates are between various 
versions of p- and f- wave pairing (Annett 
1999; Bonalde, Yanoff et al. 2000; Won 
and Maki 2000). 
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was concluded that a quadratic variation of 
the in-plane component is due to a non-local 
response of a superconductor with nodes. 
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A strong-coupling correction have also been 0.96 

suggested. 0.2 0.92 
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Figure 9.54 Superfluid density in Sr2RuO4. Lines 
show various fits and the Authors concluded that there 
is a nodal gap and nonlocal quadratic corrections (see 
Section). Reprinted with permission from Ref. (Bonalde, 
Yanoff et al. 2000). Copyright: American Physical Soci­
ety. 

b. Borocarbides 
At some point it seemed that non­

magnetic borocarbides are s-wave materi­
als, maybe with some degree of anisotropy. 
However, most of the single crystals had 
residual metallic flux, which could mask the 
true behaviour. Annealing in vacuum could 
change the behaviour as well. The question 
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ovskite superconductor MgCNi3 (He, Huang 4 

et al. 2001) is viewed as a bridge between 0.6 2 

high-Tc cuprates and conventional inter­
metallic superconductors. This material is 
close to a magnetic instability on hole dop­ Δλ
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ing. It was suggested that strong magnetic 
fluctuations may lead to unconventional pair­
ing (Rosner, Weht et al. 2002). As far as 
pairing symmetry is concerned, the current 
experimental situation is controversial. On 
one hand, evidence for conventional s-wave 
behavior is found in specific heat measure­
ments (Lin, Ho et al. 2003), although the 
authors disagree on the coupling strength. 
The T1 nuclear spin-lattice relaxation rate of 
13C, seems to exhibit a behavior character­
istic of an s-wave superconductor (Singer, 
Imai et al. 2001). On the other hand, a zero-
bias conductance peak (ZBCP) attributed to 
Andreev bound states has been observed, 
and it was argued that the observed ZBCP 
could not be due to intergranular coupling 
or other spurious effects (Mao, Rosario 
et al. 2003). Nonmagnetic disorder intro­
duced by irradiation was found to signif­
icantly suppress superconductivity (Karkin, 
Goshchitskii et al. 2002). Such suppression is 
not expected in materials with a fully devel­
oped s-wave gap, and is a strong indica­
tion of an order parameter with nodes. The­
oretical calculations support this conclusion 
(Granada, da Silva et al. 2002). Furthermore, 
recent theoretical developments predict the 
possibility of a unique unconventional state 
(Voelker and Sigrist 2002), which might rec­
oncile apparently contradictory experimental 
observations. 

It is very difficult to experimentally 
identify the non-exponential contribution of 
low-energy quasiparticles due to the pres­
ence of nodes in the superconducting gap 
on the Fermi surface. In the case of thermal 
measurements, this electronic contribution is 
masked by a large phonon contribution. For 
electromagnetic measurements, sensitivity is 

0.0	 Nb 

0.0	 0.2 0.4 0.6 0.8 1.0 

T/Tc 

Figure 9.55 Penetration depth measured in MgCNi3 

superconductor. The main frame compares the full tem­
perature range to a conventional s-wave (Nb). The inset 
shows the low temperature regime which clearly indicats 
a quadratic (non-exponential) behavior of the penetra­
tion depth. 

typically a problem. Precise measurements 
of the London penetration depth are therefore 
very important see Fig. 9.55. 

IX. MAGNETIC 
SUPERCONDUCTORS 

A. Coexistence of superconductivity 
and magnetism 

Coexistence of superconductivity and 
magnetism is one of the most interesting sub­
jects in the physics of correlated electrons. 
Many review books and articles have been 
published on this subject (Abrikosov, 1988, 
Bulaevskii, 2984, Buzdin and Bulaevskii, 
2986, Fischer and Peter, 1973, Izyumov 
and Skryabin, 1974, Khan and Raub, 1985, 
Kulic, 2006, Maple, 1983, Matthias, 1979, 
Nakanishi, 1984, Whitehead et al., 1985, 
Fischer 1990). Indeed, in a simple pic­
ture, ferromagnetism cannot coexist with sin­
glet pairing, because of the antiparallel spin 
arrangement. Triplet pairing, on the other 
hand can coexist with ferromagnetism, and 
this has been discussed (Matthias, 1979), 
but there are only few superconductors 
where triplet pairing is realized and it is 
not clear if there is an example of a bulk 
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superconductors such as layered antifer­
romagnetic Sm1	85Ce0	15CuO4−y or heavy 
fermion CeCoInx. 

Finally, the most interesting case is 
when TFM < Tc. In this case ferromagnetism 
develops on a superconducting background, 
and close to the ferromagnetic transition 
the spin structure is significantly modified 
either by helicoidal rotation or by split­
ting into domains. The exact structure of 
the coexisting phase is determined by many 
factors, including the magnetic and super­
conducting anisotropies. There are only a 
few well-established examples of ferromag­
netic superconductors – the best known and 
most studied are HoMo6S8 and ErRh4B4 

(Abrikosov, 1988, Buzdin and Bulaevskii, 
1986, Buzdin et al., 1984). An example of 
the AC magnetic susceptibility in the latter 
in various applied magnetic fields is shown 
in Figure 9.56. 

In zero applied magnetic field, both nor­
mal state – superconductor (SC) and super­
conductor – ferromagnet transitions are very 
sharp. However, when a magnetic field is 
applied the behavior in the mixed state is 
non-trivial, closer to the ferromagnetic tran­
sition. An apparent delay or suppression of a 
superfluid density may be related to a field – 

IX MAGNETIC SUPERCONDUCTORS 

ferromagnetic triplet superconductor. Most 
superconductors are singlet (including s, d 
and g pairing states, and thus all con­
ventional superconductors, borocarbides and 
cuprates). Therefore it is not surprising that 
the majority of known magnetic supercon­
ductors are antiferromagnetic. There are dis­
cussions of so called weak ferromagnetic 
superconductors, such as ruthenocuprates 
Rz−(CexRuSr2Cu2Oy (R=Eu and Gd), but it 
is still unclear whether this is bulk super­
conductivity (Felner, 2003). A more estab­
lished example is the low-temperature phase 
in ErNi2B2C (Canfield et al., 1997, Kawano-
Furukawa, 2001). 

Ferromagnetism, however, can coexist 
with superconductivity if the exchange 
interaction is indirect. as is the case of 
elements with partially occupied 4f and 5f 
orbitals. If such RKKY – type exchange 
is not strong (so that the ferromagnetic 
transition temperature, TFM, is only few 
degrees), ferromagnetism can coexist with 
superconductivity. In all cases the resulting 
state is inhomogeneous. If TFM is larger than 
the superconducting transition temperature, 
Tc, superconductivity will either not appear 
at all or will destroy the ferromagnetism, 
depending on the ratio between the effective 
molecular magnetic field, I (in energy units) 
and the superconducting order parameter, √ 
�0. If  I < �0/ 2 superconductivity sup­
presses ferromagnetism, and in the opposite 0.00 

case it does not. The transition between two 
–0.25 

H = 0 

ErRh4B4 single crystal8500 Oe 

PMSCFM 

states as a function of the parameter I is a 

4π
χ 

–0.50first order phase transition. However, even if √ 
I > �0/ 2 it is possible to have coexisting 
superconducting and ferromagnetic states. In –0.75 

this case, both magnetic and superconducting –1.00 
order parameters are spatially modulated. 

0 2 4 6  8 10  
This is the so called Larkin-Ovchinnikov-
Fulde-Ferrell state (LOFF) (Ovchinnikov, 
1964, Fulde and Ferrell, 1964), which has 
been a goal for experimentalists for the last 
forty years. Yet no definite experimental 
evidence for such a state exists, although 
there are many indirect results in several 

T (K) 

Figure 9.56 The AC susceptibility measured by a 
tunnel diode superconductor (R. Prozorov and M. W. 
Vannette) in single crystal ErRh4B4 (grown by the P. 
C. Canfield group) in different applied magnetic fields, 
Normal (paramagnetic, (PM)), superconducting (SC), 
and ferromagnetic (FM) phases are clearly evident. 
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dependent vortex core-size, and even to the 
development of ferromagnetism in the vor­
tex cores. It could also be due to a predicted 
domain structure or an exotic spin structure. 
In addition, the FM-SC-FM transition is hys­
teretic with a distinctly different behavior 
upon warming or cooling. Clearly, despite 
a vast literature and tremendous theoretical 
and experimental efforts, the topic is far from 
being settled, and more work is needed to 
understand the coexistence of bulk supercon­
ductivity and bulk magnetism. 

B. Antiferromagnetic 
Superconductors 

Borocarbides with the general formula 
RT2B2C (R=Sc, Y, La, Th, Dy, Ho, Er, Tm, 
Lu and T=Ni, Ru, Pd, Pt) constitute a very 
interesting class of materials. Whereas not 
all combinations of T and R result in super­
conductivity, many do. Many Nickel-based 
(T=Ni) borocarbides exhibit antifferomag­
netism coexisting with superconductivity. 
Some prominent examples are ErNi2B2C and 
HoNi2B2C (Canfield et al., 1997. With 
transition temperature around 16 K and 
Neel temperature of about 6 K, ErNi2B2C 
also shows features characteristic of ferro­
magnetism below 2.3 K, and therefore is 
believed to be a weak ferromagnetic super­
conductor. The compound HoNi2B2C, on the 
other hand, exhibits several antiferromag­
netic structures coexisting with superconduc­
tivity, and nearly reentrant behavior at the 
Néel temperature. 

Other examples of antiferromagnetic 
superconductors include RRh4B4 (R=Nd, 
Tm, Sm), RMo6S8 (R=Tb, Dy, Er, 
Gd, Nd), and ErMo6Se8. As expected, 
antiferromagnetic order does not prohibit 
superconductivity, but certainly influences 
it. For example, antiferromagnetic supercon­
ductors may exhibit gapless superconductiv­
ity and a nonmonotonic temperature depen­
dence of the upper critical field (Buzdin and 
Bulaevskii, 1986). More examples can be 
found in Fischer (1990). 

C. Magnetic Cuprate

Superconductor – SmCeCuO


Thus far our discussion has been limited 
to relatively low-Tc superconductors. Some 
cuprates also exhibit magnetic ordering, but 
due to their layered structure superconductiv­
ity and magnetism do not coexist in the same 
volume (we do not discuss weak antiferro­
magnetic ordering of Cu in Cu–O planes, 
which is well understood). We restrict our­
selves to one example in which a magnetic 
ordering transition has a profound influence 
on the penetration depth: The electron-doped 
copper oxide SCCO (Prozorov et al., 2004). 
In the parent compound Sm2CuO4, rare earth 
Sm3+ ions order at 5.95 Kelvin (Jiang et al., 
1992). The ordering is ferromagnetic within 
each layer parallel to the conducting planes, 
and antiferromagnetic from one layer to the 
next (Sumarlin et al., 1993). Ce doping 
and subsequent oxygen reduction result in a 
superconductor Sm1	85Ce0	15CuO4–( (SCCO) 
with TC ≈ 23K. 

Figure 9.57 shows a full-temperature 
scale variation of the penetration depth in a 
single crystal SCCO in two orientation. The a 
interplane shielding is very weak, yet it 
exhibits a transition to a more diamagnetic 
state below about 4 K. The in-plane response 
shows this effect more clearly. It was tempt­
ing to associate this transition to the loss of 
spin – disorder scattering below the ordering 
temperature of the Sm3+ sublattice. How­
ever, the magnetic field dependence is sug­
gesting a different scenario. 

Figure 9.58 (left) shows the low temper­
ature penetration depth measured in SCCO 
for several values of a magnetic field applied 
along the c-axis. First, there is clear evidence 
for a phase transition near T ∗ �H� ≈ 4K that 
is rapidly suppressed by the magnetic field. 
Second, the penetration depth drops below 
the transition indicating stronger diamagnetic 
screening. This enhanced diamagnetism is 
quite different from the weaker screening 
that results from paramagnetic impurities dis­
cussed earlier. The two effects are consistent 



Elsevier AMS Job code: SUP CH09-P088761 22-6-2007 11:59a.m. Page:273 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

IX MAGNETIC SUPERCONDUCTORS 273 

0 
–10 hac(t) 

–20 

Δf
 ~

 Δ
λ(

T
) –30 

–3000 
–40 

T* –50 

0 2 4 6 8 10 12 

–6000 hac(t) 
–7700 

–7800 

T* –7900 

0 4 6 82 10
–9000 

0 5 10  15  20  25  

T (K) 

Figure 9.57 Temperature variation of the penetration 
depth �� in an SCCO superoncductor at two orientations. 
The insets show low temperature regions where a distinct 
break of the diamagnetic signal is evident. 
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Figure 9.58 Magnetic field dependence of the penetration depth �� 
in single crystal SCCO (left), and the downturn field H∗ as a function of 
the temperature (right). The downturn field is linear in 1/T∗, as shown 
by the data replotted in the inset (right), 

with a model involved a spin-freezing tran­
sition at T ∗ �H�. Work during the 1980’s on 
the effects on the influence of random impu­
rities on superconductive properties showed 
that while spin fluctuations can be pair break­
ing, the freezing out of these processes 
will reduce spin-flip scattering and lead to 
a sharpened density of quasiparticle states 
(Schachinger et al., 1988). The latter leads, in 

turn, to stronger diamagnetic screening and 
a shorter penetration depth. That one must 
consider a spin-glass type of transition is sup­
ported by the rapid suppression of the transi­
tion by a magnetic field. An ordinary antifer­
romagnetic transition is relatively insensitive 
to fields on this scale. In fact, heat capac­
ity measurements on the parent compound 
in fields up to 9 T showed only a tiny shift 
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of the ordering temperature. Therefore, the 
processes required to induce superconductiv­
ity not only reduce the magnetic ordering 
temperature, but apparently also result in a 
disordered spin system. It is well known that 
the transition temperature in spin-glasses is a 
strong function of the magnetic field. In fact, 
it was found that the field dependence T ∗�H� 
shown in Figure 9.58 (right) has precisely 
the functional form observed in Fe92Zr8, a  
well-known spin glass system (Ryan et al., 

9 UNCONVENTIONAL SUPERCONDUCTORS 

2001). At this point, it is not known whether 
the spins actually freezing are the Sm3+ . 
It is possible that the Sm spins interact 
with Cu2+ spins in the conducting layers, 
for which spin freezing near 4 K is a well-
known phenomenon in cuprate superconduc­
tors (Lascialfari et al., 2003). This example 
also serves to demonstrate the invaluable role 
of an external magnetic field in interpreting 
penetration depth measurements on complex 
superconductors. 
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10 
Hubbard Models


I. INTRODUCTION 

In addition to the phenomenological 
Ginzburg-Landau theory and the micro­
scopic BCS theory presented in Chapters 5 
and 6 respectively, there are other less fun­
damental theoretical approaches which have 
been used to explain the presence of super­
conductivity of some classes of compounds, 
and to interpret superconducting properties 
of individual superconductors. This chapter 
will summarize two of these theoretical 
approaches, namely the Hubbard model and 
band structure calculations. Further details of 
these methods can be found in Chap. 8 of 
the first edition. 

Some of the basic properties of electrical 
conductivity are clarified very well by the 

and Band

Structure


independent electron approximation in which 
the wave functions are plane waves ei�k··r−�t� 

and the energy is all kinetic 

Ek = Eo�a/��2�kx
2 +Ky

2 +kz
2� (10.1) 

where kx = 2�/x� ky = 2�/y� kz = 2�/z, 
and a cubic structure is assumed with lattice 
spacing a. Energy bands are plots of Ek ver­
sus the value of k along various directions of 
the Brillouin zone. 

Many of the most interesting proper­
ties of materials, such as magnetic ordering 
and superconductivity, require theories that 
go beyond the independent-electron approx­
imation. In order to understand these phe­
nomena it is necessary to take into account 

275 
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electron correlations. The simplest model of 
correlated electrons is the one-state Hubbard 
(1963, 1964) model, and so we will empha­
size it. 

II. ELECTRON CONFIGURATIONS 

Free electron energy bands calculated 
using the independent electron approxima­
tion are an oversimplification of the true state 
of affairs. For actual compounds there are 
additional factors to be taken into account. 
The unit cell contains several atoms with 
each atom contributing one or more elec­
trons, as listed in Table 10.1. A separate 
Schrödinger equation is written down for 
each electron, and these equations are solved 
self-consistently. An initial guess for the 

10 HUBBARD MODELS AND BAND STRUCTURE 

wavefunctions of these electrons is used 
to calculate the potential, the Schrödinger 
equations are solved with this potential to 
obtain new wavefunctions, and these new 
wavefunctions are then used to provide an 
improved potential. The process is repeated 
until the difference between the new poten­
tial and the previous potential is less than 
some predetermined limit. 

A. Configurations and Orbitals 

Table 10.1 gives the electronic configu­
rations of several atoms that occur commonly 
in superconductors. For each atom the table 
gives the total number of electrons, the num­
ber of electrons in the core that do not 
directly enter the calculations, the configu­
ration of the outer electrons, and the con­
figuration of an ion that may be present if 

Table 10.1 Electron Configurations of Selected Atoms Commonly Used for Band 
Structure Calculations of Superconductorsa 

Atom Atom No. valence Ion 
number Symbol Coreb� c configuration elctrons Ions configuration No. electrons 

8 O Be 4 �2s2�2p4 4 O1− 2p5 5 
O2− 2p6 6 

14 Si Ne 10 3s2 3p2 4  Si4+ – 0 
19 K Ar 18 �3p6�4s 1 K+ – 0 
20 Ca Ar 18 4s2 2  Ca2+ – 0 
23 V Ar 18 3d34s14p1 5 V3+ 3d2 2 
29 Cu Ar 18 3d10421 11 Cu1+ 3d10 10 

Cu2+ 3d9 9 
Cu3+ 3d8 8 

38 Sr Kr 36 5s2 2  Sr2+ – 0 
39 Y Kr 36 4d15s2 3 Y3+ – 0 
41 Nb Kr 36 4d35s15p1 5  Nb4+ 4d1 1 
50 Sn – – 46 5s2 5p2 4  Sn4+ – 0 
56 Ba Xe 54 �5p6�6s2 2  Ba2+ – 0 
57 La Xe 54 5d16s2 3  La3+ – 0 
80 Hg – – 78 �5d10�6s2 2  Hg2+ �5d10� 0 
81 Tl – – 78 �5d10�6s2 6p1 3  Tl3+ �5d10� 0 
82 Pb – – 78 �5d10�6s2 6p2 4  Pb4+ �5d10� 0 
83 Bi – – 78 �5d10�6s2 6p3 5  Bi3+ �5d10�6s2 2 

Bi4+ �5d10�6s1 1 
Bi5+ �5d10� 0 

a Core electrons listed in square brackets are sometimes included in the basis set. 
b The core of Sn is Kr plus the fourth transition series �4d10 � closed shell. 
c The core of Tl, Pb, and Bi is Xe plus the rare earth �4f 14	 and fifth transition series �5d10	 closed shells. 
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a simple ionic picture is adopted. The nota­
tion used is nlN , where n is the principal 
quantum number corresponding to the level, 
the orbital quantum number l is 0 for an s 
state, 1 for a p state and 2 for a d state, and 
N is the number of electrons in each l state. 
A full l state contains 2�2l + 1� electrons, 
corresponding to 2,6, and 10 for s� p, and 
d states, respectively. The wavefunctions of 
these outer electrons are called orbitals. 

The various s� p, and d orbitals have 
the unnormalized analytical forms given in 
Table 10.2, and the electronic charge distri­
bution in space of the d orbital is sketched in 
Fig. 10.1. Each orbital represents the charge 
of one electron; the sign on each lobe is 
the sign of the wavefunction. For example, 
we see from the table that pz is given by 
r cos 
, which is positive along the positive 
z-axis �
 = 0�, negative along the negative 
z-axis �
 = ��, and zero in the x� y-plane 

 = 1 � . Linear combinations of atomic 2 

orbitals, called hybrid orbitals, are used to 
form covalent bonds that hold the atoms 
together, as illustrated in Fig. 10.2 for bond-

Table 10.2 Unnormalized Analytical 
Expressions in Cartesian and Polar 
Coordinates for the s� p, and d Orbitalsa 

Orbital Cartesian form Polar form 

s 1 1 

px 
x 

r 
sin 
 cos � 

py 
y 

r 
sin 
 sin � 

pz 

dxy 

z 

r 
xy 

r2 

cos 
 

sin2 
 sin � cos � 

dyz 
yz 

r2 
sin 
 cos 
 sin � 

dzz 

dx2−y2 

dz 

zx 

r2 

x2 −y2 

r2 

3z2 − r2 

r2 

sin 
 cos 
 cos � 

sin2 
 �cos2 � − sin2 

3 cos2 
 −1 

�� 

a l = 0� 1, and 2, respectively. 

ing between an oxygen p orbital �p � and a � � x

copper d orbital d 2 −y2 . The figure shows, x

first, a bonding case in which the signs of 
the two orbitals that form the hybrid are the 
same in the region of overlap, second, and 
antibonding case in which the signs are oppo­
site where overlap occurs, and, third, a non-
bonding case where there is no appreciable 
overlap. Figure 10.3 presents a sketch of a 
Cu-O2 plane of a high temperature cuprate 
superconductor. 

Each orbital can accommodate two elec­
trons of opposite spin. In the usual case the 
two electrons enter the low-lying bonding 
level to form a chemical bond that holds the 
atoms together while the anti-bonding level 
remains empty, as illustrated in Fig. 10.4. 
The “bonding overlap” case is called a sigma 
�
� bond, and a Cu-O bond of this type can 
be called a 3dx2 −y2 −2p� bond. We will see 
later that the band structures of superconduc­
tors generally consist of many fully occupied 
bonding levels, called valence bands, which 
lie below the Fermi level, many unoccupied 
antibonding levels well above it, and one 
or more partly occupied hybrid orbitals that 
pass through the Fermi level. 

The same approach may be used to treat 
holes as well as electrons. For example, the 
copper ion �3d9� may be considered as a 
filled d shell �3d10� plus one 3d hole, while 
the oxygen mononegative ion �2p5� may be 
treated as a full p shell �2p6� plus one 2p hole. 

B. Tight-Binding Approximation 

In Section I we talked about the nearly 
free electron case in which the poten­
tial energy is small and the eigenfunctions 
approximate plane waves. Here the energy 
bands are broad and overlapping. At the 
beginning of the present section we dis­
cussed atomic orbitals, and noted that when 
the atomic potential energy is dominant the 
eigenfunctions approximate atomic orbitals 
centered on individual atoms. This is the case 
for core electrons whose energy levels lie 
deep within the atom and do not depend on k. 



Elsevier AMS Job code: SUP CH10-P088761 22-6-2007 9:37a.m. Page:278 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

� 

278 10 HUBBARD MODELS AND BAND STRUCTURE 

Figure 10.1 Spacial distribution of electron density for the five d orbitals. The signs 
�±� on the lobes are for the wavefunction; the sign of the electric charge is the same 
for each lobe of a particular orbital (Ballhausen, 1962). 

Figure 10.2 Examples of bonding (left), nonbonding (center), and antibonding (right) 
configurations involving the dx2−y2 orbital with px and py orbitals. 

In this section we will discuss the 
intermediate case in which valence-electron 
orbitals centered on adjacent atoms overlap 
as shown in Fig. 10.5. Here the isolated atom 
picture is no longer valid, but the overlap is 
not sufficiently great to obscure the identity 
of the individual atomic contribution. This 
limit, which corresponds to narrow bands 
with appropriate atomic quantum numbers 
assigned to each band, is referred to as the 
tight-binding approximation. This approach 
is employed in the Hubbard model as well 
as in the full band structure calculations to 
be discussed in Sections III – VI. 

To clarify the nature of this approach we 
will examine the case of one atomic state—for 

example, an s state—which is well isolated in 
energy from nearby states. A possible basis set 
for a crystal made up of N such atoms includes 
states in which the electron is localized on 
one atom, ��r −R�, where ��r� is an atomic 
wave function and R is a direct lattice vector. 
These states overlap and are not orthogonal, 
and the overlap integral defined by 

��R −R�� = d3r� ∗ �r −R���r −R�� 

(10.2) 

is a measure of nonorthogonality. When the 
overlap integral for nearest-neighbor atoms 
is small, the atomic states are approximately 
orthogonal. 
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279 II ELECTRON CONFIGURATIONS 

Figure 10.3 Orbitals used for a model of Cu-O planes in a cuprate supercon­
ductor. Each copper contributes a dx2 −y2 orbital and each oxygen contributes 
either a px or a py orbital, as shown. The unit cell contains one of each type 
of ion, and hence one of each type of orbital. The figure shows four unit cells. 

Figure 10.4 Hybridization of a copper dx2−y2 orbital 
with an oxygen px orbital to form a low-energy bonding 
configuration and a high-energy antibonding configu­
ration. Two antiparallel electrons that form a chemical 
bond are shown in the bonding level. 

These states, however, do not behave 
under lattice transformations, r� → r + R, 
according to Bloch’s theorem 

Figure 10.5 Overlap ��Ri −Rj� of atomic wave-
functions for nearby atoms. 

�k�r +R� = eik·R�k�r�� (10.3) 

We can remedy this situation by construct­
ing Bloch states, i.e., linear combinations of 
localized states of the form 

�k�r� = �N�−1/2 eik·r��r −R�� (10.4) 
R 
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which are orthogonal but not normalized, 

d3r�k
∗
��r��k�r� =e −i�k−k��·R d3r�k

∗
��r� 

�k�r� (10.5) 
� 

= 0 

��k� 

k� ≤ k 

k� = k� 
(10.6) 

We show in Problem 9 that ��k� is the 
Fourier transform of the overlap integral 

��k� = e −ik·R��R�� (10.7) 
R 

Since the full Hamiltonian H is sym­
metric under lattice transformations and the 
Bloch states �k�r� for different values of k 
are orthogonal, it follows that in the simple 
one-band approximation �k�r� is an eigen­
state of H . The eigenvalue ��k� can be eval­
uated by calculating the expectation value 
d3r�k

∗��r�H�k�r�. We show in Problem 10 
that this gives 

B�k� 
��k� = � + � (10.8)a ��k� 

where the energy of an isolated atom �a 

includes a kinetic-energy part p2/2m and a 
Coulomb part u�R�, 

u�R� = d3r� ∗ �r −R��V �r −R����r −R��a

(10.9) 

��k� is given by Eq. (10.7) and B�k� is the 
Fourier transform of the exchange integral 
��R�, 

B�k� = e −ik·R��R�� (10.10) 
R 

��R −R�� = d3r� ∗ �r −R� 

× V �r −R��� ��r −R���a

R�� 

(10.11) 

10 HUBBARD MODELS AND BAND STRUCTURE 

where Va�r-R��� is the potential due to the 
nucleus at the lattice position R�� and the 
summation in Eq. (10.11) excludes the case 
R = R� . 

We can see from Fig. 10.5 that overlap 
integrals fall off very rapidly with distance. 
The same is true of the exchange inte­
grals. Therefore, we are justified in retain­
ing in 10.7 and 10.10 only terms in which 
R� is either R or a nearest neighbor to R, 
which gives 

��k� ≈ �0 + e −ik·R��R� 
R 

≈ �0 +2�1�cos kxa + cos kya� 
(10.12) 

and 

B�k� ≈ 2�1�cos kxa + cos kya� (10.13) 

so that 

2� 
��k� ≈ �a + �cos kxa + cos kya� (10.14)

�0 

where we have assumed that � << �0 and 
�1 << �0. The width of the band measured 
along the line � −X, for example, is �� = 
��0� 0�–���/a� 0� = 4�/�0. The exchange 
integral � determines the degree of disper­
sion in the band. If � is very small, as is 
the case for well-separated atoms, the bands 
are nearly flat and centered about the atomic 
energy level �a. Since � �k� is a slowly vary­
ing function of k, it is possible to form a 
superposition of states with different k but 
essentially the same energy. If we wish, we 
can construct a wave packet that is centered 
on one atom, and in this way return to our 
original set of atomic orbitals. 

Typical band structure calculations take 
into account several atomic orbitals � �r–R�n

for each atom, so we can define the Bloch 
states 

�nk�r� = �N�−1/2 eik·r�n�r −R�� (10.15) 
R 
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281 III HUBBARD MODEL 

where n now labels each of the atomic 
states in the basis. The formalism leading 
to Eq. 10.8 must now be generalized some­
what to include a greater number of overlap 
integrals, 

� �R −R�� = d3r� ∗ �r −R�� �r −R���nm n m

(10.16) 

and exchange integrals, 

� �R−R��= d3r� ∗ �r −R�nm n 

× V �r −R��� � �r −R���a m
R∗ 

(10.17) 

and their respective Fourier transform coun­
terparts �nm�k� and Bnm�k�. The eigenstates 
are linear combinations of atomic orbitals, 
and the associated method is often referred 
to as LCAO. 

Having covered some background on 
energy bands and chemical bonding, we 
will proceed to describe the Hubbard model 
which, despite its simplicity, exhibits many 
properties that are characteristic of supercon­
ductors (Anderson 1987a; cf. Hirsch 1985a, 
b, 1987). This will prepare the way for 
understanding the more complex band struc­
tures of the elements, of the A15 com­
pounds, and finally, of the high-temperature 
superconductors. 

III. HUBBARD MODEL 

The essential principles of the Hubbard 
Model can be explained by using only one 
electron orbital, but the use of three such 
orbitals provides a more realistic description 
of a cuprate superconductor. We will start 
with the first and then pass on to the sec­
ond after saying a few words about the wave 
functions that are involved. 

A. Wannier Functions and Electron 
Operators 

In the tight-binding approximation we 
made use of the Bloch states �k�r� as 
given by Eq. (10.4), which are superposi­
tions of atomic functions ��r–R� over lattice 
positions. These states are orthogonal, and 
���k��−1/2 from Eq. (10.7) constitutes their 
normalization constant. A summation of nor­
malized Bloch states over all of the k-states 
of a band, 

W�r −R� = �N�1/2 ���k��−1/2 e −ik·R�k� 
k 

(10.18) 

provides a new wavefunction W�r–R� 
associated with the atom at lattice 
position R. This wavefunction represents a 
Wannier state. 

The Wannier states are useful because 
the overlap of two Wannier states at different 
lattice sites R and R� is zero. For two differ­
ent bands with indices n and n�, the associ­
ated Wannier states Wn�r–R� and Wn��r–R� 
are orthogonal, corresponding to the general 
orthonormality condition 

d3rWn 
∗ �r −R�Wn��r −R�� = �nn��RR� � 

(10.19) 

The Wannier states are also complete: 

W ∗ �r −R�W �r � −R� = ��r − r ��� n n

r � R


(10.20) 

If the band is narrow each W�r–R� is local­
ized about one lattice point R. Using Wannier 
states as a basis, the electron operator for a 
single band �
 can be written as 

���r� = �N�−1/2 a��R�W�r −R�� 
R 

(10.21) 

The operators a†

�R� and a
�R� are, respec­

tively, the electron creation operator and the 
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electron annihilation operator, and together 
they form the number operator n
�R� for 
electrons of spin 
 in the Wannier state 
W�r–R�, 

n
�R� = a†

�R�a
�R�� (10.22) 

where no summation is intended. These 
operators satisfy the anticommutation rule 

�†

�R�a
��R�� +a
��R��a†


�R� = �

��RR� � 
(10.23) 

and have the properties 

a−�0� = 0 

a−�−� = �0� 
a−�+� = 0 

a−�±� = �+� 
(10.24) 

a† 
−�0� = �−� 

a† 
−�−� = 0 

a† 
−�+� = �±� 

a† 
−�±� = 0 

Similar expressions can be written for the 
spin-up operators, a+ † and a+. The wave-
functions �j� correspond to sites occupied 
by a spin-up electron �+�, by a spin-down 
electron �−�, or by two electrons of opposite 
spin �±�, while �0� denotes a vacant site. We 
will use these expressions and extensions of 
them to the two-electron case �ij� to evaluate 
the energy of some Hubbard Hamiltonians. 

B. One-State Hubbard Model 

In a one-state Hubbard model there is 
one electron orbital per unit cell. To con­
struct this model we begin, as in the tight-
binding approximation, with electrons local­
ized in atomic-like states at the positions R 
of the atoms. We assume that there is only 
one valence orbital per atom and each atom 
can accommodate 0, 1, or 2 electrons. 

10 HUBBARD MODELS AND BAND STRUCTURE 

The Hamiltonian consists of a kinetic 
energy term proportional to a “hopping 
amplitude” t >  0 that represents the electron 
correlation; a term −�N̂ , where � is the 
chemical potential and N̂ is the total number 
of electrons; and an on-site Coulomb repul­
sion term (10.9), U >  0. We thus have 

H =− t �a†

�R�a
�R

�� 
R�R��� 

+a†

�R

��a
�R�� 

−� a†

�R�a
�R� 

R�� 

R�� 

+U n+�R�n−�R�� (10.25) 
R 

where � = 0 for the undoped case when 
the orbitals are half filled with electrons. 
The kinetic energy is the sum of two her­
mitian conjugates. The “hopping amplitude” 
t given by 

�
2 

t = d3r�W ∗ �r −R� ·�W�r −R�� 
2m 

(10.26) 

is a measure of the contribution from an 
electron hopping from one site to another 
neighboring site. It is assumed that the over­
lap of Wannier functions separated by more 
than one lattice spacing is negligible, and 
that t is the same for all nearest-neighbor 
pairs R� R�. The chemical potential term is 
included because we are interested in the 
change in the properties of the model as the 
number of electrons is varied. The Coulomb 
repulsion is assumed to be the same for all 
sites. The Hamiltonian takes into account 
only nearest-neighbor correlation and on-site 
Coulomb repulsion. 

The Hamiltonian (10.25), simple as it 
appears, embodies a great deal of physics. 
This Hamiltonian, or a generalization of it, 
is the starting point for a number of theories 
of high-Tc superconductivity, the Mott insu­
lator transition, and other phenomena related 
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III HUBBARD MODEL 

to highly correlated many-electron systems. 
Allen (1990) went so far as to state what he 
called the Hubbard hypothesis: “The funda­
mental physics of the oxide superconductors 
is contained in the Hamiltonian (10.25) on 
a two-dimensional square lattice for small 
numbers of holes.” 

In Sections III.D, III.E, and III.F 
we will discuss examples of the limiting 
case U >> t. Typical values have been 
given of t ∼ 0�25 −0�5 eV and U ∼ 3–4 eV 
(Ruckenstein et al., 1988). The opposite 
limit, U << t, has also been discussed 
(e.g., see Varma et al., 1988). 

C. Electron-Hole Symmetry 

As we shall see, the Hubbard 
Hamiltonian exhibits an electron-hole sym­
metry. Such symmetry is of considerable 
importance, in that most high-temperature 
superconductors are hole types with a close 
to a half-full conduction band. To demon­
strate this symmetry it is convenient to begin 
by writing out the generalized Hamiltonian 
(10.25) in the more symmetric form 

H =− t �a†

�R�a
�R

�� 
R�R��� 

+a†

�R

��a
�R�� 

−� a†

�R�a
�R� 

R�� 

� 1 1 +U n+�R� − n−�R� − � 
2 2R 

(10.27) 

This can be done because the extra terms 
simply shift the chemical potential and the 
zero point of energy. 

The next step is to consider a transfor­
mation to “hole” operators by recalling that 
a site in k-space that is missing an electron is 
occupied by a hole, so destruction of a hole is 
equivalent to creation of an electron. Accord­
ingly, we can define the “hole” operators 

b
 
†�R� = a−
�R�� 

283 

b
�R� = a† 
−
�R�� (10.28) 

where 
 and −
 denote opposite spin direc­
tions. We then have for the number operator, 
from Eq. (10.22), 

n
�R� = a†

�R�a
�R� 

= b−
�R�b† 
−
�R� (10.29) 

= 1 −b† 
−
�R�b−
�R� 

= 1 − ñ−
�R�� (10.30) 

where the anticommutation rule (10.23) 
is applied to obtain the number operator 
ñ
�R� = b


†�R�b
�R� for holes. Using these 
expressions, the Hamiltonian can be written 
in terms of hole operators, 

H =t �b†

�R�b
�R

�� 
R�R��� 

+b†

�R

��b
�R�� 

+�Ns + b†

�R�b
�R� 

R�� 

� 1 1 +U ñ+�R� − ñ−�R� − � 
2 2R 

(10.31) 

where Ns is the number of sites on the lattice. 
The thermodynamic potential � is given 

by 

���� T� t� U� =−kBT log Tr�e−H/kT �	 
(10.32) 

=−2�Ns +��−�� T� −t� U�� 
(10.33) 

If the lattice is bipartite, that is, if it can be 
decomposed into two sublattices, A and B, 
with the property that an atom of one sublat­
tice has atoms of the other sublattice as its 
nearest neighbors, the electron-hole transfor­
mation can be modified to 

a−
† 
��R� R ∈ A 

b
�R� = 
† 

(10.34)−a−��R� R ∈ B 
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This has the effect t →−t, so that Eq. (10.33) 
becomes 

���� T� t� U� =−2�Ns +��−�� T� t� U�� 
(10.35) 

The average number of particles N��� T� is 

N��� T� =−d�/d� (10.36) 

= 2Ns −N�−�� T�� (10.37) 

and for � = 0 we obtain 

N�0� T�  = Ns� (10.38) 

that is, one electron per site. Because of 
the simple relationship (10.37) we need only 
consider � ≥ 0; the properties of the system 
for � <  0 are then easily found by means of 
the electron-hole transformation (10.34). 

D. Half-Filling and Antiferromagnetic 
Correlations 

The high-temperature superconductors 
and related compounds typically have a set 
of full low-lying bands, an almost half-full 
hybrid band near the Fermi level, and a set 
of empty bands at higher energy. The half-
full, one-state Hubbard model stimulates this 
hybrid band, and thereby provides a sim­
ple approximation to the materials. Later, we 
will see how a three-state Hubbard model 
more closely approximates the behavior of 
high-temperature superconductors. 

We take � = 0 so that !�n
�R�� = 1. 
Thus there is on average one electron per 
lattice site. If the on-site repulsion is large, 
U � t, states with double occupancy will 
be suppressed. Therefore, let us consider 
as a subset of all states of the half-filled 
band those states with exactly one electron 
at each site. The Coulomb repulsion term 
U!n+�R�n−�R� only exists for a site that is 
doubly occupied, so it vanishes in this case. 
Were it not for the hopping term, these states 
would all be degenerate with zero energy. 

10 HUBBARD MODELS AND BAND STRUCTURE 

Here we show that hopping removes the 
degeneracy, and, in addition, show by sim­
ple perturbation theory that the effect of the 
hopping term is to lower the energy of an 
antiferromagnetic pair relative to a ferromag­
netic pair of nearest-neighbor electrons. 

Consider a nearest-neighbor pair of 
electrons that occupies one of the two anti­
ferromagnetic states, with antiparallel spins 

�+−� and �−+�� (10.39) 

or one of the two ferromagnetic states, with 
parallel spins 

�++� and �−−�� (10.40) 

where + denotes spin up, and − signifies 
spin down. In addition to these four states, 
there are two higher energy states 

�0±� and �±0�� (10.41) 

in which both electrons are localized on the 
same atom. 

We wish to apply perturbation theory up 
to second order for the case U � t corre­
sponding to the expression 

Ei = Ei
�0� +Ei

�1� +Ei
�2� (10.42) 

for the ith-order energy, where 

Ei = ��i�HCoul��i�+��i�Hhop��i� 
� ���i�Hhop��j ��2 

+ � (10.43) 
j � i −Ei= Ej 

As noted earlier, there is no Coulomb con­
tribution for the four states (10.39) and 
(10.40), so that the zero-order term vanishes, 
Ei

�0� = 0. The first-order energy must be eval­
uated from the expression 

Ei
�1� −��i�Hhop��i�� (10.44) 

where the hopping operator Hhopp has the 
explicit form 

Hhop =− t�a+�1�a+�2� +a +�2�a+�1�+ +
+ ++a−�1�a−�2� +a−�2�a−�1��� 

(10.45) 
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285 III HUBBARD MODEL 

Since each term of this operator changes the 
spin state, the first-order energy (10.44) also 
vanishes. 

Second-order perturbation theory entails 
evaluating the matrix elements ��i�Hhop��j � 
for i � j. The only nonvanishing terms are =

�+−�Hhop�0±� = �+−�Hhop�±0� 
= �−+�Hhop�0±� 
= �−+�Hhop�±0� 
= −t� (10.46) 

The denominator Ej –Ei of the second-order 
term of Eq. (10.43) is −U , which gives 
for the energy of the two antiferromagnetic 
states 

2t2


E+− = E−+ = −  � (10.47)

U


Since the energy of the two ferromagnetic 
states is zero (Problem 17), 

E++ = E−− = 0� (10.48) 

the hopping term has the effect of lowering 
the energy of an antiferromagnetic pair rela­
tive to that of a ferromagnetic pair. 

E. t-J Model 

In one variant of the Hubbard model, 
called the t-J : model, the Coulomb repulsion 
U term in the Hamiltonian is replaced by the 
Heisenberg term J!Si ·Sj (Anderson, 1978a, 
b; Rodriguez and Douçot, 1990; Zhang and 
Rice, 1988; Halley, 1988, Chapters 15–20). 
This model may be obtained as the large-U 
limit �U � t� of the Hubbard model (Harris 
and Lange, 1967; Marde et al., 1990). We 
will justify it in terms of the discussion in 
the previous section. 

If we restrict our attention to states with 
one electron per site, we can describe the 
states completely in terms of the spin- 1

2 oper­
ators for the electrons at each site, Sk�R�. 

Although we have employed a basis in which 
one component of the spin, conventionally 
the z-component, is diagonal, the Hubbard 
Hamiltonian is invariant under rotations in 
spin space. To second order in perturbation 
theory, the effective Hamiltonian for the sub­
set of states can therefore be written in the 
Heisenberg form, 

HHeis =−J!S�R� ·S�R��� (10.49) 

where the exchange coupling term is 

J = 4t2/U� (10.50) 

Typical values of the parameters, t ≈ 0�4 eV  
and U ≈ 3�5 eV (Ruckenstein et al., 1987), 
give J close to the experimentally deter­
mined value J ≈ 0�14–0�16 eV (Gagliano 
and Bacci, 1990; Singh et al., 1989). We 
conclude that at half filling, in the limit 
U/t →�, the ground state of the Hubbard 
model is equivalent to that of a Heisenberg 
antiferromagnet. 

The Heisenberg term used in the t-J 
model corresponds to the Hamiltonian 

H =−t!�a+ +a + � + J!Si ·Sj �i�aj� jaai� 

(10.51) 

Undoped materials can be understood in 
terms of the two-dimensional Heisenberg 
term (Chakravarty et al., 1988; Dagotto 
et al., 1990), and in the presence of empty 
sites the hopping matrix element t can rep­
resent holes propagating in a fluctuating 
antiferromagnetic background arising from 
this J!Si · Sj term (Poilblanc and Dagotto, 
1990; Zotos et al., 1990). Many believe that 
the t-J model embraces the essential fea­
tures of high-temperature superconductivity 
(Ohkawa, 1990), and there is an extensive 
literature on the subject. 

The symbol t-J is used to designate 
the two terms in the Hamiltonian (10.51). 
In the same spirit, the ordinary Hubbard 
model could be called the t-U model, 
but this notation is never employed. The t-J 
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286 10 HUBBARD MODELS AND BAND STRUCTURE 

and Hubbard models have been compared 
(e.g., Bhattacharya and Wang, 1992; Dagotto 
et al., 1992). 

F. Resonant-Valence Bonds 

The Hubbard model is deceptively sim­
ple, and while some exact results for the 
ground state are known in the limit U/t →� 
and for the case of half filling, the nature of 
the ground states for arbitrary U and t are not 
known. An alternate choice of basis for elu­
cidating the nature of the low-lying levels of 
the model makes use of “resonant-valence­
bond” (RVB) states (Anderson, 1987a, 
b; Emery and Reiter, 1988; Feine, 1993; 
Kivelson, 1989; Wittmann and Stolze, 1993; 
and Zhang and Rice, 1988). Electrons 
at nearest-neighbor sites are paired into 
“bonds” and linear combinations of the basis 
states are used to construct eigenstates of the 
total electronic spin (Allen, 1990). 

For two electrons the total spin S can 
be 1 or 0, and the corresponding triplet 
(S = 1, M = 0� ±1� and singlet �S =M = 0� 
wavefunctions are, respectively, 

�11� =�++� 
1 �10� =√ ��+−�+�−+��

2


triplet�E  = 0 (10.52) 

�1 −1� =�−−�

1
�VB� =√ ��+−�−�−+�� 
2


singlet�E  =−4t2/U� (10.53)


where we have used the notation �SM� on 
the left side. There are two additional ionized 
states �A� and �B� which are both singlets, 

1 �A� = √ ��0±�−�±0�� E  = U 
2 

(10.54a) 

1 4t2 

�B� = √ ��0±�+�±0�� E  = Ul + � 
2 U 

(10.54b) 

and, of course, a state in which there are no 
electrons, 

�vacuum� = �00�� 

The singlet state with two electrons labeled 
�VB� is the lowest in energy, and it con­
stitutes the “valence bond” state. The ener­
gies of these two electron states as given in 
(10.52)–(10.54b) are sketched in Fig. 10.6 

The RVB theory starts by assuming that 
the ground state of insulating La2CuO4 is a 
linear combination of �VBij� states for vari­
ous pairs of electrons i� j, 

Figure 10.6 Energy levels of the two-site, nearest-neighbor electron-pair 
problem at half filling, shown for the zero-order (left), Hubbard model (center), 
and resonant valence-bond (right) approximations. 
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287 III HUBBARD MODEL 

�RVB� = c12�VB12�+ c34�VB34� 
+ c56�VB56�+ · · · � (10.55a) 

and in the presence of a single hole with spin 
down �h−� paired with a spin-up electron 
�e+� this becomes 

�RVB� 1 hole� = c12�h−��e+�+ c34�VB34� 
+ c56�VB56�+ · · · � 

(10.55b) 

where the hole can hop between sites. 

G. Spinons, Holons, Slave Bosons, 
Anyons, and Semions 

In the RVB formulation of the two-
dimensional large-U Hubbard model, the 
spin and charge degrees of freedom are 
separated. The elementary excitations are 
either neutral spin- 1

2 solitons (fermion soli­
tary excitations, Doda et al., 1982; Doi et al., 
1992; Drazi and Johnson, 1989; Kivshar, 
1991; Rokhsar, 1990; Tighe et al., 1993), 
called spinons, or charged boson particles, 
called holons (Allen, 1990; Anderson and 
Zou, 1988; Kivelon, 1989; Nori et al., 1990; 
Schmeltzer, 1994; Schofield and Wheatley, 
1993; Sinha, 1992; Wang, 1989; Xing and 
Liu, 1991; Zou and Anderson, 1988). 

There is a version of the t-J model, 
called the slave boson representation, in  
which the Hamiltonian contains spinon and 
holon creation and annihilation operators 
(Schönhammer, 1990; Sheng et al., 1990). 
The so-called slave boson operators are intro­
duced to specify and keep track of empty and 
singly occupied sites (Arrigoni et al., 1990; 
Jolicoeur and LeGuillou, 1991; Rodriguez 
and Douçot, 1992). From a more general 
viewpoint, the slave boson formulation maps 
a purely fermionic model onto an effective 
bosonic one (Lilly et al., 1990), and the 
slave boson fields provide a larger quan­
tum mechanical (Fock) space that is sub­
ject to constraints involving the slave boson 

operators (Jolicoeur and LeGuillou, 1991; 
Rodriguez and Douçot, 1992; Zhang et al., 
1993; Zou and Anderson, 1988). In addi­
tion, the slave bosons carry a conserved 
quantum number, namely charge (Zou and 
Anderson, 1988). 

In quantum mechanics we learn that the 
wavefunction U�r2� r1� for the exchange of 
two particles is given by 

U�r2� r1� = ei
U�r2� r1� (10.56) 

where 
 = 0 for bosons which are sym­
metric under interchange, and 
 = � for 
fermions which are antisymmetric. Wilczek 
(1982a, b) coined the word anyon for a par­
ticle with some other value 
 in the range 
−� < 
 < �, and such a particle is said to 
have fractional statistics. It violates the usual 
time reversal (T) and parity (P) conservation 
laws. Anyons have been used to explain the 
fractional quantum Hall effect in semicon­
ductor heterojunctions (Arovas et al., 1984; 
Halperin, 1984; Prange and Girvin, 1987). 
Kalmeyer and Laughlin (1987; Laughlin, 
1988a, b) suggested that semions, anyons 
with 
 =±�/2, 

U�r2� r1� = iU�r2� r1�� (10.57) 

might be the charge carriers responsible 
for high temperature superconductivity. In 
principle this can be tested by experiments 
involving T, P symmetry, but the results have 
not been encouraging (Shen and Lu, 1993; 
Zhou and Chen, 1993). Some studies of an 
anyon gas suggest that its ground state is 
superconducting, that a collective excitation 
is a phonon mode, and that a single particle 
excitation can be identified as a vortex (Choi 
et al., 1992; Gelfand and Halperin, 1992; 
Mori, 1991; Zhang et al., 1990). 

H. Three-State Hubbard Model 

The one-state Hubbard model that we 
discussed in Section II.B involved one orbital 
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per unit cell, with two parameters, a hop­
ping amplitude t and an on-site Coulomb 
repulsion U . We will now extend the model 
to a unit cell, shown outlined in Fig. 10.3, 
containing a Cu atom that contributes a 
d 2−y orbital, and two oxygens one of which 2x

contributes a px orbital, the other a py orbital 
(Jefferson et al., 1992). This corresponds to 
the configuration of the CuO2 plane shown 
in the figure, which is believed to be respon­
sible for the super-conducting properties of 
the cuprates. In this plane each copper has 
four oxygen nearest neighbors and each oxy­
gen has two copper nearest neighbors. The 
figure is drawn with the signs on the orbital 
lobes selected so that all of the overlaps are 
of the bonding type. The convention chosen 
for assigning positive (e.g., +px) and nega­
tive (e.g., −py) signs to the orbitals is given 
in the figure. 

I. Energy Bands 

The energy bands calculated by Entel 
and Zielinksi (1990) are plotted in Fig. 10.7a, 
and the density of states, together with the 
partial contributions from the p electrons 
�n � and d electrons �nd�, is plotted inp

Fig. 10.7b. The conditions for the calculation 
are clear from the labels in the energy scale 
of Fig. 10.7a hopping amplitudes tp = "p = 
0� td = "d = 3�6 eV, and Coulomb repulsion 
terms Upp = 4 eV� Udd = 10�5 eV. We see 
that a predominately p-type band rises above 
the Fermi level at the corner point M , and 
that the Fermi surface consists of the p-like 
pocket of holes indicated in the Brillouin 
zone shown as an inset to Fig. 10.7a. The 
low-lying, mainly p-type pair of bonding 
bands, and the higher, predominately d-
type antibonding band, are separated from 

Figure 10.7 Band structure for the three-state Hubbard model for 4.5 electrons per unit cell. The model 
assumes one d state and two bonding p states per unit cell: (a) Energy bands with the Fermi energy below the gap, 
(b) density of states, Energies involving hopping amplitudes "p = 0� "d = 3�6 eV, and Coulomb repulsion terms 
Upp 4�0 eV, and Udd = 10�5 eV are indicated in the ordinate scale of (a). Total density of states #t together with the 
partial p and d contributions #p and #d are shown. The free-electron result #f is included for comparison. Bands 
are occupied indicated by cross hatching below the Fermi level EF = 6�2 eV, (from Entel and Zielinski (1990)). 
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the three bands near the Fermi level by insu­
lating gaps. 

Since there are three orbitals in the set 
chosen for the calculation, and since each 
can contain two electrons of opposite spin, it 
takes six electrons to fill all of the bands. As 
electrons are added to the system, the Fermi 
level rises in the manner shown in Fig. 10.8. 
Note the two sharp jumps in EF where the 
two band gaps are located. The amount of 
dispersion, or range of energy, over which 
a band is spread is called the width of the 
band. The width depends on the number of 
electrons in the unit cell. The predominately 
p-type band (No. 5) that passes through the 
Fermi level in Fig. 10.7a for the n = 4�5 
electron case has the greatest dispersion. 

We see from Figs. 10.7a and 10.7b that 
there are regions where the energy bands are 
flat, and at these energies the density of states 
becomes large, corresponding to what are 
called van Hove singularities (cf. XIII. A). 
Singularities of this type will be encountered 
later in the chapter. A DOS peak associated 
with a CuO2 plane van Hove singularity can 

Figure 10.8 Three-state Hubbard model showing the 
variation with band filling of the Fermi energy (chemical 
potential) at T = 100 K, The metal-to-insulator transi­
tion occurs at the discontinuity in the Fermi energy near 
n = 5 (Entel and Zielinski, 1990). 

289 

cause a peak in the transition temperature Tc 

as a function of hole doping (Mahan, 1993; 
Markiewicz, 1991a, 1991b; Pattnaik et al., 
1992; Penn and Cohen, 1992). 

The ability to calculate occupation num­
bers ni for individual electrons associated 
with the various bands permits us to deter­
mine the contribution of the electrons from 
each atom in the unit cell of a superconduc­
tor to the density of states. In the following 
sections we will present several such plots 
of individual atom density of states versus 
energy. 

J. Metal-Insulator Transition 

When the fifth band of Fig. 10.7a is 
almost full, the Fermi level lies near the top 
of the band. Adding more electrons fills this 
band and additional electrons enter the sixth 
band far above it. This causes the Fermi level 
to rise above the energy gap to the level of the 
top band. When this occurs the system under­
goes a transition from a metal to an insu­
lator. Evidence for this transition is seen in 
the discontinuity at the position of the upper 
energy gap where there are five electrons 
per cell. Figure 10.9 presents the metal-to­
insulator phase diagram, showing the metal­
lic and insulating regions as a function of 
the p electron Coulomb repulsion energy 
U and the energy difference between the pp 

p and d hopping integrals, � = 2
1 �td – tp�, 

called the charge-transfer energy (Entel and 
Zielinski, 1990). We see from the figure that 
a charge-transfer insulator (CTI) arising from 
the presence of a charge-density wave forms 
for Udd � �, and that a Mott insulator (MI) 
forms for Udd � �. The present calculation 
is for the ratio Udd/� = 5�8, so that it corre­
sponds to the metallic region above the ordi­
nate value Udd/� > 5, which could be close 
to the transition to a charge-transfer insula­
tor. The p orbital Coulomb repulsion energy 
U has much less effect on the phase dia­pp 

gram than its d orbital counterpart Udd. The 
phase diagram of an actual superconductor 
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Figure 10.9 Metal-to-insulator phase diagram for 
the three-state Hubbard model with Vdp = 0, where the 
charge transfer energy is given by � = 1

2 �td –tp�. The 
regions where the charge-transfer insulator (CTI) and 
the Mott insulator (MI) occur are indicated. For the 
charge-transfer insulator, which arises from the presence 
of a charge-density wave, np > nd for the band beneath 
the gap (Entel and Zielinski, 1990). 

can be more complicated, Hebard (1994b) 
discusses the nature of the superconductor– 
insulator transition. 

The orbital character of the bands 
depends on Upp. This is shown in Fig. 10.10 
for the fifth band when the number of elec­
trons in the unit cell is maintained at the 
value 4.9. There is a strong dependence of 
the ratio nd/np on Upp since decreasing Upp 

from its chosen value of 4 eV to below 3.6 eV 
raises band 3 above bands 4 and 5. This 
accords with the proximity of these bands at 

Figure 10.10 Dependence of the occupation num­
bers np and nd in the band beneath the gap on the 
intra-atomic Coulomb repulsion energy Upp for n = 4�9 
electrons per unit cell in the three-state Hubbard model 
(Entel and Zielinski, 1990). 

10 HUBBARD MODELS AND BAND STRUCTURE 

the point � of Fig. 10.7a. It causes the “new 
fifth band” to become more d-like so that 
we have nd > np for low values of Upp, as  
indicated in Fig. 10.10 instead of the oppo­
site ratio nd < np for the large Upp case of 
Fig. 10.7. 

Now that we have surveyed several vari­
eties of Hubbard models we will proceed to 
describe the band structure results obtained 
for several superconductors. Many of the fea­
tures characteristic of the three-state Hub­
bard model will be found duplicated in the 
move sophisticated band structures to be 
discussed. 

IV. BAND STRUCTURE OF 
YBa2Cu3O7 

We will begin our discussion of the 
energy bands of the high-temperature super­
conductors with the compound YBa2Cu3O7 

since its structure is of the aligned type; 
as explained in Chapter 8, Section IV, and 
hence its Brillounin zone is simpler than 
those of the cuprates which are body cen­
tered. This section will describe the band 
structure reported by Pickett et al. (1990) 
and Pickett (1989; cf. Costa-Quintana et al., 
1989; Curtiss and Tam, 1990; Krakaer et al., 
1988; Singh et al., 1990; Wang (1990) J. Yu 
et al., 1991). The bands reflect the princi­
pal structural features of the compound—the 
presence of two CuO2 planes containing the 
Cu(2), O(2), and O(3) atoms, and a third 
plane containing chains of Cu(1)–O(1) atoms 
along the b direction, as shown in Fig. 10.11 
and described in Chapter 8, Section IV. 
The ortho-rhombic Brillouin zone, also 
shown in the figure, has a height-to-width 
ratio 

�2�/c�/�2�/a� = a/c ≈ 0�33� 

which is the reciprocal of the height-to-width 
ratio of the unit cell in coordinate space. 
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291 IV BAND STRUCTURE OF YBa2Cu3O7 

Figure 10.11 Two views of the YBa2Cu3O7 unit cell and sketch of the 
corresponding Brillouin zone (Krakauer et al., 1988). 

A. Energy Bands and Density of States 

The energy bands of YBa2Cu3O7 near 
the Fermi surface are presented in Fig. 10.12 
along the principal directions connecting the 
symmetry points �� X� Y , and S in the cen­
tral �kz = 0� horizontal plane of the Brillouin 
zone. The bands change very little at the cor­
responding symmetry points Z, U, T, and R 
of the top �kz = 2

1 � plane. The highest tran­
sition temperature is found in the case of a 
small amount of oxygen deficiency, � ≈ 0�1, 
in the formula YBa2Cu3O7−�. This slightly 
less than half-full condition, where � = 0 
for half-full, means that there are missing 
electrons near EF, and that the conductiv­
ity is of the hole type. This is confirmed by 
Hall effect measurements, as will be seen in 
Chapter 16 Section VI. 

The two narrow CuO plane-related 
bands are shown in Fig. 10.12 strongly dis­
persed, i.e., rising far above the Fermi sur­
face at the corner points S and R of the 
Brillouin zone of Fig. 10.11. These two 
bands are almost identical in shape, resem­
bling the Hubbard band that is shown ris­
ing above EF at the corner point M of the 

Brillouin zone in the inset of Fig. 10.7a. 
The much broader chain band that is shown 
strongly dispersed in both the S and the 
Y (also R and T ) or chain directions far 
above EF arises from the Cu–O sigma bonds 
along the chains formed from the oxygen 
py and copper dx2−y2 orbitals, as illustrated 
in Fig. 10.13 There is another chain band 
which undergoes very little dispersion, stay­
ing close to the Fermi surface, but it rises 
slightly above EF at S and R, as shown 
in the figure. Oxygen deficiency depopu­
lates the chains, and this is reflected in 
the absence of chain bands in the semicon­
ducting compound YBa2Cu3O6 (Yu et al., 
1987). 

The lack of appreciable dispersion in the 
bands along kz demonstrated by the similar­
ity of Figs. 10.12a and 10.12b means that the 
effective mass m ∗ defined by Eq. (1.47), 

1 1 d2Ek = � (10.58) 
m ∗ �2 dk2 

z EF 

is very large, and since the electrical con­
ductivity � from Eq. (1.22) is inversely pro­
portional to the effective mass, this means 
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Figure 10.12 Energy bands of YBa2Cu3O7 along 
the principal directions in the Brillouin zone sketched 
in Fig. 10.11. The two plane bands rise sharply above 
the Fermi level at points S and R, and the broader chain 
band is high in energy between S and Y , and between 
R and T (Pickett et al., 1990). 

that the conductivity is low along the z direc­
tion. In contrast, the plane and chain bands 
appear parabolic in shape along kx and ky , 
corresponding to a much lower effective 
mass. This explains the observed anisotropy 
in the normal-state electrical conductivity, 
�c/�ab ≈ 20. 

The total density of states and the con­
tribution of each copper and oxygen to D�E� 
are presented in Fig. 10.14. There are peaks 
(called van Hove singularities, II, I) in the 
partial DOS of the planar oxygens O(2) and 
O(3) at energies at which the planar Cu(2) 
atoms also have peaks, whereas chain Cu(1) 
have peaks that match those of the O(1) and 
O(4) oxygens bonded to it. This suggests that 
the planes and chains are partially decoupled 

Figure 10.13 Sigma bonding between Cu(1) and 
O(1) orbitals along chains in the crystallographic b 
direction of YBa2Cu3O7. 

from each other, as we might have expected, 
since the bridging oxygen O(4) is 1.8 Å from 
Cu(1) compared to the much longer distance 
2.3 Å from Cu(2). Super current can flow 
along both the planes and chains. 

B. Fermi Surface: Plane and Chain 
Bands 

The Fermi surface of YBa2Cu3O7 is 
plotted in Fig. 10.15 for the kz = 0 and 
kz = �/a horizontal planes of the Brillouin 
zone, with the symmetry points S and R, 
respectively, selected as the origin, in accor­
dance with Fig. 10.16. The close similarity 
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Figure 10.14 Density of states of YBa2Cu3O7. The 
top panel shows the total density of states, the second 
panel gives the partial DOS of Cu(1) [—] and Cu(2) 
[----], the third panel presents the same for O(1) [—] 
and O(4) [----], and the bottom one gives O(2) [—] and 
O(3) [----] (Krakauer et al., 1988). 

between the respective left �kz = 0� and right 
�kz = �/a� panels of the figure confirms that 
there is very little dispersion in the verti­
cal �kz� direction. The shapes of these Fermi 
surfaces can be deduced from where the cor­
responding bands cross the Fermi surface in 
Fig. 10.12. 

The two plane–band Fermi surfaces pre­
sented in the four center panels of Fig. 10.15 
consist of large regions of holes in the cen­
ter, with narrow bands of electrons around 
the periphery. The surface of one plane 
band makes contact with the zone bound­
ary between points Y and � due to the 
small maximum that rises above EF between 
these points in Fig. 10.12. When 0.2 fewer 
electrons are present, the Fermi surface is 
lowered and the contact with the zone bound­
ary extends over a larger range between Y 
and � . Adding 0.2 more electron raises the 
Fermi surface above the small relative max­
imum near Y , and the zone boundary is no 
longer reached. Thus the oxygen content, 

which determines the electron concentration, 
influences details of the shape of the Fermi 
surface. As already noted in Section A, the 
highest Tc occurs for � ≈ 0�1. The regions 
of holes around the central points R and 
S (not shown) resemble their counterpart 
around point M of the three-state Hubbard 
model. 

The two chain-band Fermi surfaces 
sketched in the upper and lower pairs of pan­
els of Fig. 10.15 differ considerably. The 
upper panels show the highly dispersed chain 
band that lies above EF everywhere except 
from � to X, where it is below EF, as  
shown in Fig. 10.12. This corresponds to a 
narrow one-dimensional-like slab containing 
electrons that extends continuously from cell 
to cell along the direction �–X–�$ $ $  , and 
parallel to it there is a wide hole-type slab 
along Y –S–Y $ $ $  , as shown at the top of 
Fig. 10.15. The edges of this wide slab are 
mostly parallel, a condition needed for nest­
ing, but are not close enough to the boundary 
to create strong nesting, as will be explained 
in Section VIII. The other chain band lies 
entirely below the Fermi level except for a 
narrow region near point S in Fig. 10.12. 
Figure 10.15 shows this small hole region in 
the zone centers S and R of the lower two 
panels. 

V. BAND STRUCTURE OF MERCURY 
CUPRATES 

Band structure calculations have been 
carried out for the aligned Hg-1201 and the 
Hg-1221 members of the 

HgBa2CanCun+1O2n+4+� 

series of compounds, and we will summarize 
some of the results that were obtained. The 
Brillouin zone is the tetragonal anologue of 
the orthorhombic one sketched in Fig. 10.11 
with point y identical with point x, and T 
identical with u from symmetry. 
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Figure 10.15 Fermi surfaces of YBa2Cu3O7−� calculated from the band structure with the electron (e) and 
hole (h) regions indicated. The left panels are for the midplane of the Brillouin zone �kz = 0� with point S 
at the center and those on the right are for the top plane �kz = �/a� with point R at the center. Points S and 
R are not labeled. The two top panels show a well dispersed chain band that rises far above the Fermi level. 
The second pair of panels shows the first plane band; it crosses the Fermi level closest to points X and Y in 
Fig. 10.12. The third pair of panels presents the second plane band with the crossing further from these points. 
The bottom panels display the chain band, which is mostly below the Fermi surface, rising above it only near 
point S (and point R) in Fig. 10.12. The solid lines are for the calculated Fermi surface with � = 0, the short 
dashed curve is for � = 0�2 containing 0.2 fewer electron, and the long-dashed curve is for � =−0�2 with 0.2 
more electron (Krakauer et al., 1988). 
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Figure 10.16 Relationship between Brillouin zone 
boundary in Fig. 10.11 (dashed lines) when point � or 
Z is at the center and Fig. 10.15 (solid lines) when S or 
R is chosen as the center. 

The band structure calculations were 
carried out by adding to the usual orbital set 
the following upper core level orbitals: Cu 3s 
and 3p� O 2s� Ba5s and 5p, and Hg 5p and 
5d, with � = 0. Ca 3s and 3p orbitals were 

added for Hg-1223. Figures 10.17 and 10.18 
show the energy bands and density of states 
for the n = 0 compound (Singh, 1993), and 
Figs. 10.19 and 10.20 present their counter­
parts for the n = 2 compound (Rodriguez, 
1994; Singh, 1994). In addition the articles 
provide Fermi surface across sections for the 
two compounds. 

The bands of HgBa2CuO4 presented in 
Fig. 10.17 are highly two dimensional, with 
very little dispersion in the z direction shown 
from � to Z in the figure. Only one band 
crosses the Fermi surface, and that is the 
pd�∗ band derived from the CuO2 planes, 
which is characteristic of all the layered 
cuprates. An unoccupied band arising from 
hybridization of Hg 6pz and O(2) 2pz orbitals 
lies above the Fermi level, and approaches 
it without ever crossing it. As a result the 
pd�∗ band is exactly half full, and the stoi­
chiometric compound �� = 0� is expected to 
be a Mott insulator. This is in contrast to the 
case of Ba2Tl2CuO6, where the hybridization 
band does dip below the Fermi level. 

Figure 10.17 Energy bands of stoichiometric 
HgBa2CuO4�� = 0� along the �–S–X–� directions defined by 
Fig. 10.11 for the kz = 0 plane, and along the corresponding 
Z–U–R–Z directions of the kz = 2

1 plane in reciprocal space. 
The horizontal dashed line at E = 0 denotes the Fermi level 
(Singh et al., 1993a). 
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Figure 10.18 Total (top panel) and local site densities of 
states derived from the band structure of HgBa2CuO4 shown in 
Fig. 10.17, where 1 Ry = 13�6 eV� O�1� is in the CuO2 layer, 
and O(2) is in the [O–Ba] layer (Singh et al., 1993a). 

Figure 10.19 Energy bands of stoichiometric compound 
HgBa2Ca2Cu3O8 �� = 0� using the notation of Fig. 10.18. The 
five lowest energy bands shown are the Hg 5d manifold, and 
because of their flatness they produce the large Hg DOS shown 
in Fig. 10.20 at E = 0�6 Ry (Singh et al., 1993b). 
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Figure 10.20 Total (top panel) and local site densities of states 
derived from the bands of HgBa2Ca2Cu3O8 shown in Fig. 10.19 where 
1 Ry  = 13�6 eV� O�1� is in the central Cu(1) layer, O(2) is in the Cu(2) 
layer, and apical O(3) is in the [O–Ba] layer (Singh et al., 1993b). 

We see from Fig. 10.20 that the density is largely responsible for the DOS shown 
of states of HgBa2CuO4 at the Fermi level above EF in Fig. 10.20. 
is quite small because only the pd� ∗ band The HgBa2CuO4+� calculations were 
passes through this level, and it is quite steep carried out for stoichiometric materials, 
there. Near but below the Fermi level the i.e., � = 0, so no account was taken of the 
DOS arises mainly from the Cu and O(1) possibility of the presence of oxygen in the 
atoms of the CuO2 planes. The hybrid band Hg plane at the 2

1 
2
1 0� 2

1 
2
1 1 site of O(3) listed 
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in Table 8.5. The table mentions 11% oxygen 
occupancy of this site, and this would result 
in the presence of Cu3+ ions as observed, 
corresponding to hole doping in the CuO2 

planes and metallic behavior. 
In addition calculations were carried out 

of the positron charge density that is pre­
dicted for angular correlation of annihilation 
radiation (ACAR) experiments carried out 
with positron irradiation, and the resulting 
contour plots are shown in Fig. 10.21 for 
two planes of the crystallographic unit cell. 
The charge density is smallest at the atom 
positions because the positrons avoid the 
positively charged atomic cores. It is largest 
at the empty O(3) site along the �110� 
direction. 

Table 10.3 shows the calculated electric 
field gradients Vii at all of the HgBa2CuO4 

atom positions, where Vxx = dEx/dx, etc. 
For each site Laplace’s equation is obeyed, 
V +V +V = 0, and at sites of tetrago­xx yy zz 

nal symmetry Vxx = Vyy . The gradients are 
smallest in magnitude for Cu in the planar 
direction, and largest for Hg. 

The energy bands of the stoichiomet­
ric HgBa2Ca2Cu3O8+� compound �� = 0� 
are shown in Fig. 10.19 and the density of 
states plots are in Fig. 10.20. There are some 

Figure 10.21 Contour plot of positron charge den­
sity normalized to one positron per HgBa2CuO4 unit 
cell determined by ACAR. Adjacent contours are sep­
arated by 0.0005 e+/a.u. The density is largest in the 
voids (O(3) site) of the Hg layer. A uniformly distributed 
positron would have a density 0.00104 e+/a.u. (Singh 
et al., 1993a). 

10 HUBBARD MODELS AND BAND STRUCTURE 

Table 10.3 Electric Field Gradients at 
the Atom Sites of HgBa2CuO4 in Units of 
1022V/m2. The x, y, z Directions Are 
along the Crystallographic a, b, c 
Directions, Respectively, but for the O(1) 
Site the x Direction is Toward the 
Neighboring Cu Atoms. Four of the Sites 
have Tetragonal Symmetry: Vxx = Vyy 

Site Vxx Vyy Vzz 

Cu 
O(1) 
Ba 
O(2) 
Hg 

0�096 
1�31 

−0�33 
−0�70 

3�85 

0�096 
−0�87 
−0�33 
−0�70 

3�85 

−0�192 
−0�44 

0�66 
1�39 

−7�70 

very strong similarities with HgBa2CuO4, 
but there are also some marked differences. 
There are three pd�∗ well dispersed anti-
bonding bands that cross the Fermi surface, 
one for each CuO2 layer, and they are almost 
superimposed. The hybrid band dips below 
the Fermi surface at the X and U points and 
takes electrons from the pd�∗, band so there 
are less electrons in the CuO2 planes, corre­
sponding to the bands of these planes being 
less than half full. Thus this three-layer Hg 
compound is self-doped: the Hg layer pro­
duces hole doping of the CuO2 layers. This 
is analogous to the Tl2Ba2CuO6 case men­
tioned below. 

We see from Fig. 10.20 that the den­
sity of states near but below the Fermi level 
arises from the three CuO2 planes, while that 
slightly above EF is due to Hg and the oxy­
gen atom O(3) in the Hg plane. Subsequent 
band structure calculations carried out by 
Singh and Pickett (1994) showed that oxygen 
occupation of the 2

1 
2
1 0� 2

1 
2
1 1 site produces 

additional hole doping of the CuO2 planes. 
They mentioned that measured values of � 
are 0.06, 0.22, and 0.4 for the n = 0� n  = 1, 
and n = 2 mercury compounds, correspond­
ing to 0.12, 0.22, and 0.27 holes per Cu atom, 
respectively, for these three compounds. 
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VI. BAND STRUCTURES OF 
LANTHANUM, BISMUTH, AND 
THALLIUM CUPRATES 

The lanthanum ��La1−xSr�2Cu2O4�, bis­
muth �Bi2Sr2CanCun+1O2+2n� and thallium 
�Tl2Ba2CanCun+1O2+2n� cuprate supercon­
ducting compounds have body centered 
crystal structures, and the tetragonal ones 
have the Brillouin zone sketched in 
Fig. 10.22. The geometrical relationship 
between two adjacent Brillouin zones is 
shown in Fig. 10.23. The body centered 
cuprates which exhibit a small orthorhombic 
distortion from tetragonality have a slightly 
distorted version of this Brillouin zone which 
is depicted in Fig. 8.42 of the second edition 
of this text. 

A. Orbital States 

For the undoped compound La2CuO4, 
the copper contributes five d states while 
each of the four oxygens provides three p 
states for a total of 17 orbitals. These orbitals 
are occupied by 33 electrons, which may be 
counted in one of two ways. Counting by 
ions, there are nine �3d9� from Cu2+ and six 
�2p6� from each of the four O2− ions. The 
ionic state La3+ has no valence electrons. 

Figure 10.22 Brillouin zone of body-centered 
La2CuO4 with the symmetry points indicated. The sym­
bols � and U denote general points along the [110] 
directions (adapted from Pickett, 1989). 

Figure 10.23 Geometrical relationship between 
adjacent La2CuO4 Brillouin zones (Kulkarni et al., 
1991). Note that the kx� ky axes in this figure are rotated 
by 45� relative to the axes of Fig. 10.22. The description 
in the text is in terms of the axes of Fig. 10.22 

Counting by atoms, there are three from each 
La, 11 from Cu, and four from each oxy­
gen. These numbers are listed in Table 10.1. 
Contour plots of the valence charge den­
sity around these atoms in coordinate space 
that were calculated from the band structure 
are sketched in Fig. 8.26, and discussed in 
Chapter 8, Section VII.C. 

If 10% of the La is replaced by Sr to 
give the superconducting compound 

�La0�9Sr0�1�2CuO4� 

charge neutrality can be maintained by a 
change in copper valence to Cu2

0
+ 
�8Cu3+ 

0�2, with 
an average of Cu2�2+. From Table 10.1 we see 
that Cu2+ has the configuration 3d9 and Cu3+ 

the configuration 3d8, which means that Cu 
contributes 8.8 electrons, instead of 9, and 
the total number of electrons is 32.8, not 33. 
A deficit of oxygen can also contribute to 
the maintenance of charge neutrality. 

B. Energy Bands and Density of States 

The energy bands of nonsuperconduct­
ing La2Cu2O4 are presented in Fig. 10.24. 
The superconducting doped compound 
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Figure 10.24 Energy bands of La2CuO4 along the symmetry directions 
of the Brillouin zone defined in Fig. 10.22, with EF taken as the zero of 
energy. These bands also apply to the doped compound �La0�9Sr0�1 �2Cu4−�. 
This compound has fewer electrons so its Fermi energy is below (adapted 
from Pickett et al., 1987). 

�La0�9Sr0�1�2Cu2O4 has the same band con­
figuration, but with the Fermi level slightly 
lower. In both cases there are 16 low-lying 
“bonding” bands below the Fermi energy 
fully occupied by 32 of the 33 valence elec­
trons, one bonding “hybrid” band near EF 

and 17 empty higher-energy “antibonding” 
bands. The hybrid band contains exactly one 
electron for La2CuO4 and 0.8 electron for 
the doped compound �La0�9Sr0�1�2CuO4, as  
already noted. Its principal excursion above 
EF in the X direction is analogous to that 
of its counterpart at point M in the three-
state Hubbard model of Fig. 10.7a. That the 
bands are in fact two-dimensional is seen by 
observing in Fig. 10.24 how flat they are 
along the vertical paths from � to Z ((0,0,0) 
to (0,0,1)), from (1,0,0) to (1,0,1), and from 
� to U ((h,h,0) to (h, h, 1), where h is arbi­
trary). We can again argue from Eq. (10.58) 
that the effective mass m ∗ is large in the 
kz direction, and hence that the electrical 
conductivity is low for current flow perpen­
dicular to the planes. 

The hybrid band that crosses the Fermi 
surface lies below it at special points � and 
Z so these points are electron-like regions, 
and at point X the same band rises far above 
the Fermi surface so this is a hole region, as 
is clear from the sketch of the Fermi surface 
in Fig. 10.25. Since doping with strontium 
lowers EF the top of the hybrid band at posi­
tion A, B on Fig. 10.24 rises above the Fermi 
level, and it transforms from being electron-
like to being hole-like at its peak. The result 
is that the overall configuration of the Fermi 
surface changes from being electron-type 
with enclosed holes to being hole-type with 
enclosed electrons, as shown in Fig. 10.25. 
In the former case there is an interconnected 
region of electrons with isolated patches of 
holes around special point X, and in the lat­
ter case there is an interconnected region of 
holes with isolated islands of electrons at 
points � and Z. This changeover occurs at a 
Van Hove singularity arising from the hybrid 
band being fairly flat near points N and A, 
B of the Fermi level. 
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Figure 10.25 Fermi surfaces (a) of La2CuO4 with enclosed holes, and (b) of �La0�9M0�1�2CuO4 with enclosed 
electrons. See Figs. 10.22 and 8.38 for a clarification of the path �–A–B–Z. The bold arrows on (b) approximate 
nesting wave vectors drawn somewhat longer than the �–X distance. The changeover from enclosed holes to 
enclosed electrons occurs at a van Hove singularity (Pickett, 1989). 

Since the point Z is a distance �/c 
above � , as shown in Fig. 10.22, the 
electron regions of the superconductor 
�La0�9Sr0�1�2CuO4−� extend vertically, from 
� to Z to � , and so on, forming a cylin­
der of irregular cross-section (Klemm and 
Liu, 1991) containing electrons surrounded 
by holes. The shapes of this cross section 
around the point � and around the point Z 
are shown in Fig. 10.25a. In like manner, the 
compound La2CuO4 has vertical cylinders of 
holes centered at the point X and surrounded 
by electrons. The change from cylinders of 
holes to cylinders of electrons is reminiscent 
of the electron–hole symmetry that was dis­
cussed in Section III.C. 

The density of states at the Fermi level is 
Figure 10.26 Total density of states (top) and partial 
densities of states for the individual atoms of La2CuO4

highest in regions where the energy bands are determined from the band structure. The Oxy oxygens 
fairly flat. It is clear from Fig. 10.26 that this are in the CuO2 planes (Pickett et al., 1987). 

increase of the density of states at EF when 
the lowering occurs is mainly associated with 
the copper and oxygen �Oxy� atoms in the 
CuO2 planes where the superelectrons are The sketch of the “Fermi surface” of 
concentrated. Figures 10.27 and 10.28 show La2CuO4 in Fig. 10.25 is not in accord 
that the density of states at the Fermi Levels with experiment because La2CuO4 is an anti-
of the compounds Bi2Sr2CaCu2O8 and thal- ferromagnetic insulator with a 2eV energy 
lium Tl2Ba2CuO6 is likewise highest in the gap, and hence no Fermi surface may be 
CuO2 planes at the copper and oxygen (O(1)) defined for it. This shows the limitations of 
atom positions. band structure calculations. 
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Figure 10.27 Total (top) and partial densities of 
states from the band structure of Bi2 Sr2 CaCu2O8. The 
distributions of Cu and O are similar to those from the 
other cuprates. Most of the Bi density lies above EF, but 
two Bi derived bands do drop to or below EF (Krakauer 
and Pickett, 1988). 

VII. FERMI LIQUIDS 

In the independent electron approxi­
mation we treat conduction electrons as 
noninteracting particles obeying Fermi– 
Dirac statistics, i.e., as constituting a Fermi 
gas. When the electrons continue to obey FD 
statistics and interact with each other in such 
a way that their properties remain close to 
those of a Fermi gas, they constitute what 
may be called a Fermi liquid. 

Landau (1957) developed a method of 
taking account of electron–electron interac­
tions in such a manner as to maintain a one-
to-one correspondence between the states of 
a free-electron gas and those of the inter­
acting electron system. The existence of 
such a one-to-one correspondence constitutes 
the usual definition of a Fermi liquid. In 
such a liquid the Pauli exclusion principle 
permits electrons at the Fermi surface to 

Figure 10.28 Total (top) and partial densities of 
states from the band structure of Tl2Ba2CuO6. The Cu– 
O densities are similar to those from the other cuprates. 
The Tl2 and O(2) spectral density extends just to EF 

from above (Hamann and Mattheiss, 1988). 

experience only momentum-changing colli­
sions. Elementary excitations of quasiparti­
cles and quasiholes correspond to those of a 
Fermi gas. In what are called marginal Fermi 
liquids, the one-to-one correspondence con­
dition breaks down at the Fermi surface, but 
many of the properties continue to resemble 
those of a Fermi liquid (Baym and Pethick, 
1991; Levine, 1993; Williams and Carbotte, 
1991; Zimanyi and Bedell, 1993). 

Transport properties of the cuprates, 
such as resistivity and the Hall effect, are 
often described by considering the conduc­
tion electrons as forming a normal Fermi 
liquid (Crow and Ong, 1990; Tsuei et al., 
1989). Varma et al., (1989) ascribed anoma­
lies in these normal-state properties to 
marginal Fermi liquid behavior. Anderson 
(1987c) attributes the superconductivity of 
the cuprates to the breakdown of Fermi liq­
uid theory and suggested the applicability of 
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what are called Luttinger liquids (Anderson, 
1990a, b). 

VIII. FERMI SURFACE NESTING 

The phenomenon of Fermi surface nest­
ing occurs when the two sheets of the Fermi 
surface are parallel and separated by a com­
mon reciprocal lattice wave vector G = 
knest. We see from the bottom of Fig. 10.25 
that the two sheets of the Fermi surface 
of �La1−xSrx�2CuO4 on either side of the 
hole region are roughly parallel, and that the 
reciprocal lattice spacing across the region 
is close to the wave vector �110��/a, of  √ 
length 2�/a, which is also the distance 
from � to X (Crow and Ong, 1990; Emery, 
1987a; Pickett, 1989; Virosztek and Ruvalds, 
1991; Wang et al., 1990). Two such nesting 
wave vectors are shown as bold arrows in the 
figure. The lanthanum compound approaches 
near-perfect nesting with knest equal to a 
reciprocal lattice vector. 

If more electrons are added to the bands, 
the hole region contracts and the nesting vec­
tor turns out to be less than G. Decreasing the 
number of electrons enlarges the hole region, 
but this also leads to an instability in which 
the Fermi surface switches from the config­
uration of isolated hole regions shown at the 
right of the figure to the isolated electron 
regions in the left drawing. Further doping 
decreases the size of these electron regions 
until the spanning vector k is no longer a 
reciprocal lattice vector G, and the Fermi 
surface is no longer nested. 

More generally, nesting may lead to 
instabilities in the Fermi surface even in the 
absence of this “switchover” instability. This 
can be seen from the viewpoint of pertur­
bation theory by considering the fact that 
the energy denominator in the perturbation 
expression 1/�Ek −Ek+G� of Eq. (10.43) can 
approach zero over a wide range of k values 
for a nesting wave vector knest. The result 

might be the generation of either a charge-
density wave (CDW), a spin-density wave 
(SDW), or both. 

The yttrium compound also exhibits 
a nesting feature, as may be seen from 
the parallel Fermi surfaces of Fig. 10.15. 
However, the spanning k-vectors are not 
close to the reciprocal lattice vectors, the 
energy denominators �Ek − Ek+G� do not 
become small as in the lanthanum case, and 
no instability develops. 

IX. CHARGE-DENSITY WAVES, 
SPIN-DENSITY WAVES, AND SPIN 
BAGS 

We noted in Sections V and VI.A con­
tour plots of the charge density around the 
atoms of a superconductor can be determined 
from a band-structure calculation. Exam­
ples of such plots were given in Figs. 8.14 
and 8.26 for the yttrium and lanthanum com­
pounds, respectively. In this section we will 
be concerned with the charge density of an 
independent electron gas that is calculated 
self-consistently (cf. Section III) using the 
Hartree–Fock approximation referred to in 
Chapter 1, Section II. 

If this method is applied to an indepen­
dent electron gas using a potential that is 
periodic in space and independent of spin, 
self-consistency can be obtained with solu­
tions involving charge density which is peri­
odic in space. In other words, the solution is 
a charge-density wave. The CDW can have 
periodicities that are incommensurate with 
the lattice spacings, and as noted above in 
Section VIII, CDW is favored by Fermi sur­
face nesting. A crystal structure distortion 
and the opening up of a gap at the Fermi 
surface accompany the formation of a CDW 
and stabilize it by lowering the energy. The 
presence of the gap can cause the material to 
be an insulator. Sufficiently high doping of 
La2CuO4 with Sr or Ba disables the nesting 
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and destabilizes the CDW, thereby convert­
ing the material to a metal and making it 
superconducting. 

In quasi-one-dimensional metals the 
CDW instability that leads to a struc­
tural distortion is called a Peierls instabil­
ity (Burns, 1985), a phenomenon which has 
been discussed in the superconductor litera­
ture (e.g., Crow and Ong, 1990; Fesser et al., 
1991; Gammel et al., 1990; Nathanson et al., 
1992; Ugawa et al., 1991; Wang et al., 1990). 
This CDW represents a nonmagnetic solu­
tion to the Hartree–Fock equations for an 
independent electron gas. Solutions with uni­
form charge densities that are fully mag­
netized can also be obtained. Overhauser 
(1960, 1962) assumed an exchange field 
that oscillates periodically in space and 
obtained a lower energy solution involving 
a nonuniform spin density whose magni­
tude or direction varies periodically in space. 
This solution corresponds to a spin density 
wave. Generally, the SDW is incommensu­
rate because its periodicities are not multiples 
of the crystallographic lattice parameters, 
and, as noted, a nesting Fermi surface is 
favorable for the excitation of a SDW state 
(Burns, 1985). The antiferromagnetic insula­
tor state of La2CuO4 mentioned at the end 
of Section VI.B involves antiparallel nearest-
neighbor spins, so that it is the SDW of 
maximal amplitude and shortest wavelength 
(Phillips, 1989a). The antiferromagnetism of 
itinerant electrons, as in a conductor, can be 
described as a spin-density wave (Kampf and 
Schrieffer, 1990; Wang et al., 1990). 

One attempt to understand the mecha­
nism of high-temperature superconductivity 
has involved the use of what are called spin 
bags (Allen, 1990; Anisimov et al., 1992; 
Goodenough and Zhou, 1990; Schrieffer 
et al., 1988; Weng et al., 1990). Consider 
the case of a half-filled band and an appro­
priately nested Fermi surface, so that the gap 
�SDW extends over the Fermi surface and the 
system is an antiferromagnetic insulator. The 
presence of a quasi-particle alters the nearby 

10 HUBBARD MODELS AND BAND STRUCTURE 

sublattice magnetization and forms a region 
of reduced antiferromagnetic order. Such a 
region is called a spin bag because it is a 
metallic domain of depleted spin immersed 
in a surrounding SDW phase. This spin bag, 
which moves together with the quasiparticle, 
has a radius rbag equal to the SDW coherence 
length, namely rbag = �%F/�SDW (Kampf and 
Schrieffer, 1990). Two spin bags attract each 
other to form a Cooper pair and, as a result, 
two holes tend to lower their energy by shar­
ing one common bag. 

X. MOTT-INSULATOR TRANSITION 

If the lattice constant of a conduc­
tor is continuously increased, the overlap 
between the orbitals on neighboring atoms 
will decrease, and the broad conduction 
bands will begin to separate into narrow 
atomic levels. Beyond a certain nearest-
neighbor distance what is called a Mott tran­
sition occurs, and the electrical conductivity 
of the metal drops abruptly to a very small 
value. The metal has thus been transformed 
into what is called a Mott insulator. 

One of the chronic failures of band-
structure calculations has been an inability to 
obtain the observed insulating gaps in oxides 
such as FeO and CoO. In the prototype Mott 
insulator NiO the calculated gap has been 
observed to be an order of magnitude too 
small (Wang et al., 1990). The Mott insulator 
problem involves learning how to accurately 
predict the electronic properties of materials 
of this type. 

For the large U case the ground state of 
the undoped �x = 0� Hubbard model system 
is a Mott insulator, sometimes called a Mott-
Hubbard insulator. In the cuprates almost all 
of the Cu ions are in the 3d9 state, and there 
is one hole on each site of the system. There 
exists a large gap for excitations to levels 
where two antiparallel holes can occupy the 
same site. This gap of several eV, called the 
Mott–Hubbard gap, is too large to permit 
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significant thermal excitation to occur. The 
system can, however, lower its energy by 
having individual holes make virtual hops to 
and from antiparallel neighbors. This virtual 
hopping process can be maximized by having 
the spin system assume an antiferromagnet­
ically ordered configuration. Such ordering 
has been found experimentally in insulating 
members of the yttrium and lanthanum fam­
ilies of compounds (Birgeneau et al., 1987; 
Crow and Ong, 1990). Some of the cuprate 
superconductors order antiferromagnetically 
at very low temperatures. The Mott tran­
sition in high-temperature superconductors 
has been widely discussed (Aitchison and 
Mavromators, 1989; Arrigoni and Strinati, 
1991; Brandt and Sudbø, 1991; Cha et al., 
1991; Dai et al., 1991; Hallberg et al., 1991; 
Hellman et al., 1991; Ioffe and Kalmeyer, 
1991; Ioffe and Kotliar, 1990; Kaveh and 
Mott, 1992; Khurana, 1989; Mila, 1989; 
Millis and Coopersmith, 1991; Reedyk et al., 
1992a; Schulz, 1990; Spalek and Wojcik, 
1992; Torrance et al., 1992). 

XI. DISCUSSION 

In this chapter we presented the Hub­
bard model approach and then described 
band-structure calculations that have been 
carried out for several types of superconduc­
tors. The calculated bands, densities of states, 
and Fermi surface plots together provide a 
good explanation of the normal-state prop­
erties of the various materials. For example, 
they describe well the planar nature of the 
conductivity in the high-temperature super­
conducting compounds and yield plots of 
electron density that elucidate the chemical 
bonding of the atoms. The calculated density 
of states at the Fermi level does not corre­
late well with known Tc values in various 
compounds, however. 

Some results of band-structure calcula­
tions agree well with experiment, whereas 
others exhibit rather poor agreement. There 

are differences in the calculated results pub­
lished by different investigators. This would 
appear to indicate that these calculations are 
unreliable for estimating properties that have 
not yet been measured, and thus are more 
descriptive of superconductivity than predic­
tive of it. In particular, investigators have not 
been successful in anticipating whether or 
not new compounds will be superconductors, 
and if so, with how high a Tc. Neverthe­
less, it is our belief that band structures do 
provide insight into the nature of supercon­
ductors that could not be obtained otherwise, 
in addition to elucidating their normal-state 
properties. 

FURTHER READING 

See the first edition for more details and more 
references on Hubbard models and bond structure. 

PROBLEMS 

1. Show that	 ��k� is the Fourier trans­
form of the overlap integral ��R� 
(Eq. (10.7)), where 

��k� = e −ik·R��R�� 
R 

2. Calculate the expectation value 

d3r�k 
∗ � �r�H�k�r�� 

and show that the energy in the one-band 
case is given by Eq. (10.8): 

B�k� 
"�k� = " + �a ��k� 

3. Write	 down expressions similar to 
Eqs. (10.13) and (10.12) for a diatomic 
lattice of the NaCl or ZnS type. Why 
are equations of this type not valid for 
diatomic lattices in general? 
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4. Show that the only nonvanishing oper­
ations involving one-electron number 
operators are 

n+�+� = �+� n−�−� = �−� 
n+�±� = �±� n−�±� = �±� 

5. Why does the first-order energy shift of 
the hopping term: Hhop (10.52) vanish? 

6. What is the total number of electrons 
outside the closed shells in the com­
pound �La0�9Sr0�15�2CuO3�9? How many 
are contributed by each atom and how 
many/by each ion? What is the average 
valence of copper? 

7. Show that the denominator	 Ej −Ei of 
the second-order term in Eq. (10.43) is 
equal to the Coulomb repulsion term U 
for the states �j� = �0±� and �±0�. 

8. Prove that the only nonvanishing terms 
of ��i�Hhop��j � for i � j are given by = 
Eq. (10.46). 

9. Show that the energy of the ferromag­
netic states (10.40) is zero, as given by 
Eq. (10.48). 

10	 HUBBARD MODELS AND BAND STRUCTURE 

10. Prove	 Eq. (10.40), namely that J = 
4t4/U . 

11. Show that in the Hubbard model the 
ionic states �0±� and � ±  0� have 
the energy U + 2t2/U , as shown in 
Fig. 10.6. 

12. Show that in the RVB model the two 
ionic states �00� and �ion� have the 
respective energies U and U +4t2/U , as  
shown in Fig. 10.6. 

13. Show that in the RVB model the states 
�VB� and �ion� mix, and have the 
eigenenergies Ei = 12 U ± � 14 U 2 +4t2�1/2. 
Show that these reduce to those shown 
in Fig. 10.6 for the limit U � t. 

14. Find the length of the distances � to Z 
(vertical), � to Z (horizontal), � to X� � 
to N� � to P, and X to P in the Brillouin 
zone of La2CuO4 (Fig. 10.22). Express 
the answers in �nm�−1. 

15. Explain why S = 0�06, 0.22, and 
0.40 for the n = 0� 1� 2 Hg com­
pounds HgBa2Ca n Cun+1O2n+4 give 0.12, 
0.22, and 0.27, respectively, holes per 
Cu atom. 
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11 
Type I 

Superconductivity 
and the 

Intermediate State 

I. INTRODUCTION 

In Chapters 5, 6, and 7 we showed 
that the superconducting state can only exist 
in a material when the external B field at 
the surface is less than the critical field Bc 

for a Type I superconductor and less than 
the upper critical field Bc2 for a Type II 
superconductor. For a rod-shaped sample in 
a parallel external field, the demagnetiza­
tion factor is zero, so the field H at the 
surface equals the externally applied field, 
Hin = Happ, and the situation is not compli­
cated. For other field directions and other 

sample shapes, the fact that the demagne­
tization factor does not vanish complicates 
matters because it raises the question whether 
the external field can exceed the critical field 
over part of the surface but not over the 
remainder. When this occurs with a Type I 
superconductor, the sample lowers its free 
energy by going into an intermediate state 
involving partial penetration of the external 
field into the interior. In the present chapter 
we will examine how this happens. We will 
discuss thin films, the domains that form in 
thin films in the intermediate state and the 
magnetic field configurations associated with 

307 
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thin films. We will also treat the interme­
diate state induced by transport current in a 
wire. Most of the chapter will be devoted to 
these discussions of the intermediate state of 
a Type I superconductor. 

A Type II superconductor exists in 
what is called the Meissner state of total 
flux exclusion, Bin = 0, for applied fields 
in the range Bapp < Bc1 and in the mixed 
state of partial flux penetration when the 
applied field is in the range Bc1 < Bapp < 
Bc2 between the lower and upper critical 
fields. The way in which the demagnetiza­
tion factor affects these Meissner and mixed 
states will be discussed the next chapter. For 
now, bear in mind that the term, interme­
diate state, applies to Type I superconduc­
tors, and the term, mixed state, to Type II 
superconductors. 

II. INTERMEDIATE STATE 

We learned in Chapter 1 that the mag­
netic fields inside any material, including a 
superconductor, satisfy the general expres­
sion (1.69) 

Bin = �0�Hin +M�� (11.1) 

We saw in Chapter 2 that an ideal Type I 
superconductor has the following internal 
magnetic fields: 

⎫
= 0 ⎪
Bin ⎪ ⎬ 
M =−Hin Type I 

Bc ⎪ Superconducting State ⎪Hin < ⎭ 
�0 (11.2) 

In this chapter we will see that in the interme­
diate state of an ideal Type I superconductor, 
the Hin field is pinned at the value Bc/�0. 
This provides us with the relationships 

⎫ 
B

Hin = c ⎬ Type I 
�0 ⎭ Intermediate State 

�0M = Bin −Bc 

(11.3) 

for the fields inside. Finally, above Tc 

the normal state exists with the field 
configurations 

M ≈ 0 Normal State 
Bin ≈ �0Hin Above Tc 

(11.4) 

where we have written M ≈ 0 since in the 
normal state ��� � 1, as we showed in 
Chapter 1, Section XV. 

In Chapter 5 we were concerned with the 
internal fields of a superconducting ellipsoid 
in an applied magnetic field, and we made 
use of expression (10.33), 

NBin + �1 −N��0Hin = Bapp� (11.5) 

where N is the demagnetization factor. The 
magnetostatic properties of the intermediate 
state follow from Eqs. (11.3) combined with 
(11.5). Since it is not obvious why the inter­
nal field Hin is pinned at the value Bc/�0 in 
the intermediate state, we will provide some 
justification for this in the next section before 
applying Eq. (11.5) to elucidate the proper­
ties of this state. 

III. SURFACE FIELDS AND 
INTERMEDIATE-STATE 
CONFIGURATIONS 

We saw in Chapter 5, Section XIII, that 
the surface field Bsurf ��� immediately out­
side a perfectly superconducting sphere has 
no radial component; it is parallel to the sur­
face, with the value at the angle � given by 
Eq. (5.66) with � =−1, 

3 
Bsurf ���= Bapp sin �� (11.6)

2 

If the applied field Bapp is less than 2Bc/3, 
the surface field will be less than Bc for 
all angles, and the perfectly superconduct­
ing state can exist. If, on the other hand, the 
applied field is greater than 2Bc/3, we see 
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from Eq. (11.6) that there will be a range of 
angles near � = �/2, 

�c <�< �−�c� (11.7) 

where 

c�c = sin−1 2B
� (11.8)

3Bapp 

for which the surface field will exceed Bc. 
Thus the sphere is unable to remain perfectly 
superconducting. In the range of applied 
fields 

2 
Bc < Bapp < Bc� (11.9)

3 

the surface field must decompose into super­
conducting and normal regions that prevent 
the average internal field Hin from exceed­
ing the critical value Hc. In other words, the 
sphere must enter the intermediate state. For 
lower applied fields it is perfectly supercon­
ducting, whereas for higher applied fields 
it is in the normal state, as indicated in 
Fig. 11.1. The arrows in the figure show how 
the intermediate state can be traversed by 
varying either the applied magnetic field or 
the temperature. 

One possibility for an intermediate state 
is for the sphere to go normal in a band 
around the equator delimited by �c of 
Eq. (11.8). This, however, would not satisfy 
the boundary conditions. Another possibility 
would be for a normal outer layer to sur­
round a superconducting inner region. But 
such states do not exist because it is ener­
getically more favorable for a sphere to split 
into small regions of normal material adja­
cent to regions of superconducting material. 
We know that below Tc the superconducting 
state is energetically favored. Thus, the for­
mation of the intermediate state is the way 
in which a material can continue to possess 
some of this favorable superconducting-state 
energy while still satisfying the boundary 
conditions on the surface field. 

Figure 11.1 Dependence of the critical field Bc�T� 

of a Type I superconductor on temperature (upper 
curve), where Bc = Bc�0� is the critical field at 0 K. The 
figure also plots the curve 2

3 Bc�T�, which is the lower 
limit of the intermediate state (I) of a superconducting 
sphere. The vertical arrow indicates the path S → I →N 
traversed by a zero-field-cooled sphere as increasing 
applied fields bring it from the superconducting state 
(SC) at Bapp = 0 through the intermediate state to the 
normal state (N) that exists for Bapp > Bc�T�. The hor­
izontal path N → I → S traversed by field cooling of 
the sphere is also shown. 

It is easier to picture how the interme­
diate state forms by considering the case of 
a Type I superconducting film in a perpen­
dicular magnetic field. We assume a demag­
netization factor N = 0�9 corresponding to 
the phase diagram of Fig. 11.2. When the 
applied field is raised to a value slightly 
above 0�1Bc�T�, small regions of normal 
material appear embedded in a superconduct­
ing matrix, as shown in Fig. 11.3a. This is 
reminiscent of the vortex lattice that forms 
in Type II superconductors. We see from the 
sequence of structures in Figs. 11.3a–11.3f 
that as the applied field increases along the 
vertical path of Fig. 11.2, normal regions 
grow at the expense of the superconduct­
ing regions. For very high applied fields, 
as in Fig. 11.3f, when most of the material 
has become normal, there is still a tendency 
for the extensive normal regions to be sur­
rounded by what appear to be filaments 
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Figure 11.2 Magnetic phase diagram of a film with 
demagnetization factor N = 0�9 in a perpendicular mag­
netic field. This large demagnetization factor causes the 
intermediate state to be quite extensive. The vertical 
isothermal path S → I traversed by the film in pass­
ing through the succession of configurations depicted in 
Figs. 11.3a–11.3f is indicated. 

of superconducting material. This has been 
referred to as a closed topology, that is, nor­
mal regions surrounded by a superconducting 
phase (Huebener, 1979). 

We have just described the passage 
through the intermediate state for increas­
ing values of the applied field experienced 
by a sample that has been precooled in zero 
field (ZFC) at a particular temperature below 
Tc. We showed that this S → I path pro­
ceeded along the vertical line in Fig. 11.2. 
Figure 11.1 shows a vertical S → I →N path 
for a ZFC sphere that starts in the supercon­
ducting state, passes through the intermedi­
ate state as the field increases at constant 
temperature, and finally reaches the normal 
state for Bapp >Bc�T�. Another way of attain­
ing the intermediate state is by field cool­
ing the sphere along the N → I → S path 
in the same figure. As the sample gradu­
ally cools through the intermediate region, 
it expels flux by forming superconducting 
regions embedded in a normal matrix, corre­
sponding to what is called an open topology, 
the opposite of what happens in the case 
S → I → N. 

IV. TYPE I ELLIPSOID 

Now that we have clarified the nature of 
the intermediate state, it will be instructive 
to write down the equations of the internal 
fields in a perfectly superconducting ellip­
soid. For such an ellipsoid the factor 2Bc/3 
in Eq. (11.9) becomes �1–N�Bc, and for the 
purely superconducting state we have, from 
Eqs. (5.35)–(5.37), 

Bapp < �1 −N�Bc� (11.10) 

Bin = 0� (11.11) 

Hin = Bapp/�1 −N��0� (11.12) 

�0M =−Bapp/�1 −N�� (11.13) 

� =−1� (11.14) 

This states exists over the range given by 
Eq. (11.10). 

The equations for the intermediate 
state obtained by combining Eqs. (11.3) 
and (11.5) are 

�1 −N�Bc < Bapp < Bc� (11.15) 

1 
Bin = 

N 
�Bapp − �1 −N�Bc�� (11.16) 

Hin = Bc/�0� (11.17) 

1 
�0M =−  

N
�Bc −Bapp�� (11.18) 

1 
� =−  �1 −Bapp/Bc�� (11.19)

N 

The last equation (11.19), will be derived 
in the following section. The fields given 
by Eqs. (11.16)–(11.18) are, of course, aver­
ages over the normal and superconducting 
regions, as depicted in Figs. 11.3a–11.3f. 

Setting N = 1/3 in Eqs. (11.15)–(11.19) 
recovers the expressions for a sphere. 
Figures 11.4, 11.5, 11.6, and 11.7 show how 
the various fields and the susceptibility of 
a sphere vary with the applied field in the 

http:11.3a�11.3f
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Figure 11.3 Intermediate state domain configurations of a 9.3-�m thick super­
conducting Pb film in a perpendicular magnetic field at 4.2 K. The structure is shown 
for the following field values: (a) 9.5 mT, (b) 13.2 mT, (c) 17.8 mT, (d) 21.8 mT, 
(e) 34.8 mT, and (f) 40.9 mT. The critical field Bc = 80 mT for Pb. The photographs 
were obtained using a magneto-optical method in which normal and superconduct­
ing regions are displayed as bright and dark, respectively. Figure 11.2 plots this 
sequence of increasing fields (Huebener, 1979, p. 22). 

perfectly superconducting and intermediate- V. SUSCEPTIBILITY 
state ranges. The internal field Bin is zero 
up to 3

2 Bc and then increases linearly to its We have seen that a material in the 

normal state value, as shown in Fig. 11.4. intermediate state is admixture of an nor-

Figure 11.5 shows how Hin increases at first, mal and superconducting regions that co­

and then remains pinned at H through- exist at the mesoscopic level. Viewed from 
c 

out the intermediate state. The magnitude a macroscopic perspective, we average over 

of the magnetization, presented in Fig. 11.6, this structure, considering the material to 

increases more rapidly than it would for a be homogeneous with uniform susceptibility 
� =M/Hin given by 

parallel cylinder, then drops linearly to zero.

We see from Eqs. (11.4) and (11.19) and M

Fig. 11.7 that the susceptibility stays pinned � = 

H
� (11.20)


c
at the value � = −1 until the intermediate

state is reached and then drops linearly Substituting the expression from Eq. (11.18)

to zero. in the latter expression gives Eq. (11.19).
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Figure 11.4 Internal magnetic field Bin in the Meiss­
ner (S) and intermediate (I) states of a Type I supercon­
ducting sphere �N = 1/3� as a function of the applied 
field Bapp (Eqs. (11.11) and (11.16), respectively). In 
this and Figs. 11.5, 11.6, and 11.7, the solid lines rep­
resent the function that is being plotted, vertical dashed 
lines indicate the boundaries of the Meissner, intermedi­
ate, and normal regions, and the unit slope line �−·− · 
−� gives the behavior for zero demagnetization factor 
�N = 0�. 

Figure 11.5 Internal field Hin (Eqs. (11.12) 
and (11.17)) for the case of Fig. 11.4. 

Since � is an average of the value −1 in the  
superconducting regions and 0 in the normal 
regions, for the intermediate state it lies in 
the range 

−1 < � < 0� (11.21) 

Figure 11.6 Magnetization M (Eqs. (11.13) 
and (11.18)) for the case of Fig. 11.4. 

Figure 11.7 Magnetic susceptibility � (Eqs. (11.14) 
and (11.19)) for the case of Fig. 11.4. 

assuming the value � = −1 for Bapp ≤ 
�1 −N�B and � = 0 for B ≥ B .c app c

Susceptibility is an intrinsic property of 
a material defined by Eq. (1.77) in terms of 
the internal field Hin, 

M 
� = � (11.22)

Hin 

When the magnetization of a sample is 
measured in an applied magnetic field 
Bapp = �0Happ, the experimentally deter­
mined susceptibility is often deduced from 
the expression 
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�exp =M/Happ� (11.23) 

and the ratio of these gives for the interme­
diate state 

� = �expBapp/Bc� (11.24) 

We can also use a more general expression 
(10.52), 

� = �exp/�1 −N�exp�� (11.25) 

to obtain � from � .exp

VI. GIBBS FREE ENERGY FOR 
THE INTERMEDIATE STATE 

The intermediate state can be described 
in thermodynamic terms using the formalism 
for the Gibbs free energy that was developed 
in Chapter 4, Sections VII–X. In this section 
we sometimes simplify the notation by writ­
ing B for the applied field Bapp and Bc for the 
critical field Bc�T� at a finite temperature. 

Consider the case of a zero-field-cooled 
Type I superconductor in an applied mag­
netic field that is isothermally increased from 
Bapp = 0 to  Bapp =Bc�T� along a vertical S → 
I → N path of the type shown in Figs. 11.1 
and 11.2. To calculate the Gibbs free energy 
density along this path, we begin by integrat­
ing Eq. (4.33), 

∫ B 
G�B� = K− MdB� (11.26) 

0 

where K is a constant to be evaluated. For the 
pure superconducting region, we have from 
Eq. (11.13), 

M =−B/�0�1 −N�� (11.27) 

For the intermediate state region M is given 
by Eq. (11.18), 

M =−�Bc −B�/N�0� (11.28) 

313 

where B is the externally applied field. The 
free energy density is easily calculated for the 
superconducting region (11.10) by substitut­
ing the expression for M from Eq. (11.27) in 
(11.26). Carrying out the integration we obtain 

B21 app
G�Bapp�= K+ � (11.29)

1 −N 2�0 

which is an expression that is valid for 
Bapp < �1 −N�Bc. For higher applied fields, 
the interval of integration must be split into 
two parts, 

∫ �1−N�Bc 
∫ B 

G�B �= K− MdB− MdB�app
0 �1−N�Bc 

(11.30) 

Inserting the appropriate expressions (11.27) 
and (11.28) for the magnetization and carry­
ing out the two integrations, we obtain after 
some cancellation of terms 

G�Bapp� = K− �1/2N�0��Bc −Bapp�
2 

+Bc
2/2�0� (11.31) 

an expression that is valid for �1 −N�Bc < 
B < B . At the onset of the normal state app c

�Bapp = Bc�, this reduces to the expression 

G�Bc�= K+Bc
2/2�0 (11.32) 

for the free energy density of what is now 
the normal state. Further integration beyond 
Bc does not yield anything more because in 
the normal state � ≈ 0, and hence M ≈ 0, as 
we showed in Table 1.2. 

The constant K is selected as the nega­
tive of the condensation energy Bc

2/2�0 

K =−Bc
2/2�0 (11.33) 

to make the free energy vanish at the upper 
critical field. This makes G�B � the free app

energy of the superconducting state relative 
to that of the normal state at T = 0. The quan­
tity (11.33) is the condensation energy of 
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Figure 11.8 Dependence of the Gibbs free energy G on the applied magnetic field Bapp for six values of 
the demagnetization factor, N (0, 0.1, 1/3, 1/2, 0.9, and ≈ 1), all at T = 0 K. Equations (11.35) were used to 
plot the curves. 

Eq. (6.19) found from the Ginzburg–Landau 
theory and indicated in Fig. (6.2b). 

If we define two normalized quantities 

g�b� =G�Bapp�/�Bc
2/2�0�� (11.34a) 

b = Bapp/Bc� (11.34b) 

Eqs. (11.29) and (11.31) become, respec­
tively, for the superconducting and interme­
diate regions at T = 0, 

b2 

g�b� =−1 + 0 < b < 1 −N� 
1 −N 

(11.35a) 

−�1 −b�2 

g�b� = 1 −N < b < 1� 
N 

(11.35b) 

with the special values 
⎧ 
⎪−1 b = 0 ⎨ 

g�b�= −N b  = 1 −N (11.36) ⎪ ⎩0 b = 1 

at the boundaries of the various regions. 

Equations (11.35) are plotted in 
Fig. 11.8 for the cases of parallel geome­
try �N = 0�, a cylinder in a parallel field 
�N = 0�1�, a sphere �N = 1

3 �, a long cylinder 
in a perpendicular field �N = 2

1 �, and a disk 
in a perpendicular field �N = 0�9� N  ≈ 1�. 
We see from this figure that a disk or flat 
plate is in the intermediate state for almost 
all applied fields below Bc. (This will be dis­
cussed in Section VIII.) The transformation 
from the superconducting to the intermediate 
state occurs when G crosses the dashed line 
of unit slope in Fig. 11.8. For each case the 
superconducting state exists at lower fields 
(the curve for G below the dashed line in the 
figure), while the intermediate state exists 
above the line. 

Figure 11.8 presents plots of the Gibbs 
free energy from Eqs. (11.35) versus the 
applied field for several demagnetization fac­
tors at T = 0. Related figures in Chapter 4 
(Figs. 4.10, 4.11, 4.15, and 4.19) present 
plots of the Gibbs free energy versus temper­
ature for several applied fields with N = 0. 
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Figure 11.9 Dependence of the Gibbs free energy G on the applied 
magnetic field Bapp for demagnetization factors N = 0� 1

2 , and 1 at several 
reduced temperatures t = T/Tc, as indicated in Fig. 11.10. The sample is in 
the superconducting or mixed state to the upper left of the dashed line and 
in the normal state to the lower right of the line. The figure is drawn for the 
condition �0� Tc

2 /Bc
2 = 1/� = 2�8. 

Problem 8 shows how to combine the rel­
evant expressions—(11.35) for T = 0, and 
(4.51) for N = 0—to obtain more general 
expressions that are valid in the supercon­
ducting and intermediate states when all 
three quantities T� Bapp, and N have nonzero 
values. Using these results, the Gibbs free 
energy G�Bapp� for N = 0� 1

2 , and 1 is plot­
ted in Fig. 11.9 versus the applied field 
for the reduced temperatures t = T/Tc = 0, 
0.55, 0.7, 0.8, 0.9, and 1.0, as indicated in 
Fig. 11.10. We see from these plots that when 
the temperature is increased, the range of 
applied fields over which the material super­
conducts decreases. However, the fraction of 
this range that is in the intermediate state 

remains the same since it depends only on 
the demagnetization factor. 

VII. BOUNDARY-WALL ENERGY 
AND DOMAINS 

We have been discussing the field con­
figurations and the Gibbs free energy in 
superconductors without taking into account 
the details of the resulting domains. In this 
and the following two sections we will dis­
cuss these domains and their significance. 
We begin with the case of a Type I supercon­
ductor placed in an applied magnetic field 
which is in the intermediate range (11.15), 
and then comment on a Type II superconduc­
tor in the mixed state with Bc1 < Bapp < Bc2. 
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Figure 11.10 Dependence of the critical field Bc�T� of a Type I supercon­
ductor on temperature. The points on the curve designate the values of the critical 
fields for the reduced temperature points indicated on the dashed line of Fig. 11.9. 

We adopt the model of a Type I super­
conductor in the intermediate state that 
splits into domains of normal material with 
� ≈ 0 embedded in pure superconducting 
regions with � =−1. The boundary between 
these regions contains a density of magnetic 
energy Bc

2/2�0. The superconducting regions 
exclude the magnetic field Bin and are lower 
in energy because of the Cooper pair con­
densation energy. The super electron density 
n extends into the normal region by a dis-s 

tance equal to the coherence length �. The 
magnetic field within the boundary, which is 
of thickness �, contributes a positive energy 
the magnitude of which is diminished by the 
effect of the penetration depth � associated 
with the decay of the magnetic energy. As 
a result of this effect, the boundary is effec­
tively shortened, and has thickness 

dbound ≈ ��−��� (11.37) 

The overall energy density per unit area of 
the boundary layer has the value 

B2 

Ebound = c dbound (11.38)
2�0 

for a Type I superconductor in the interme­
diate state. 

For Type II superconductors, � exceeds 
� and the effective domain wall thickness 
from Eq. (11.37) is negative, so that the 
boundary energy is negative. In other words, 
the boundary wall energy is positive for 
small � and negative for large �, where � = 
�/� is the Ginzburg–Landau parameter. For 
large � it becomes energetically favorable 
for the superconducting material to split into 
domains of large magnetic field strength with 
positive energies and surrounding transition 
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Figure 11.11 Domain core in the normal state with 
positive energy surrounded by a transition layer bound­
ary of thickness dbound with negative energy for the case √ 
� > 1/ 2. 

regions of negative boundary energy, as 
shown in Fig. 11.11. The crossover between 
the positive and negative wall energies actu­√ 
ally occurs at �= 1/ 2, so that domain for­
mation becomes energetically favorable for √ 
�> 1/ 2. For the mixed state, which occurs √ 
for � > 1/ 2, the “domains” are, of course, 
vortices with cores of normal material, as 
sketched in Fig. 12.7. This energy argument 
makes it plausible to conclude that the mixed 
or vortex state forms in Type II supercon­√ 
ductors, which have � > 1/ 2, but does not 
form in Type I superconductors. 

VIII. THIN FILM IN APPLIED FIELD 

Many studies have been carried out 
with films that are thin in comparison with 
their length and width. When such a mate­
rial is placed in a magnetic field Bapp that 
is oriented perpendicular to its surface, the 
field penetrates in the intermediate state, as 
shown in Fig. 11.12. We illustrate the case 
for N = 6

5 , so the factor 1 − N = 6
1 for 

this film. Figures 11.13–11.16 show plots 
of Eqs. (11.10)–(11.19) giving the depen­
dences of Bin� Hin� M , and �, respec­
tively, on the applied field. The great extent 
of the intermediate state is evident from 
these plots. 

Figure 11.12 Magnetic field penetration through a 
superconducting thin film whose thickness d is small 
compared to the penetration depth �. 

Figure 11.13 Internal magnetic field Bin in a super­
conducting film �N = 5/6� as a function of the applied 
field Bapp (Eqs. (11.11) and (11.16)) (cf. case of a sphere, 
Fig. 11.4). Here and in Figs. 11.14 and 11.15, the unit 
slope line �−·−·−� represents the behavior for zero 
demagnetization factor �N = 0�. 

Let us examine in more detail the case 
of a disk-shaped film of radius a and thick­
ness t � a. We know from Table 5.1 and 
Problem 6 of Chapter 5 that this film has 
a demagnetization factor N ≈ 1 − 1

2 �t/a, so  
that, from Eq. (11.15), the intermediate state 
extends over the range 



Elsevier AMS Job code: SUP CH11-P088761 22-6-2007 9:38a.m. Page:318 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

318 11 TYPE I SUPERCONDUCTIVITY AND THE INTERMEDIATE STATE 

Figure 11.14 Internal field Hin (Eqs. (11.12) and 
(11.17)) in the film sketched in Fig. 11.12. 

Figure 11.16 Magnetic susceptibility � 

(Eqs. (11.14) and (11.19)) of the film sketched in 
Fig. 11.12. 

Figure 11.15 Magnetization M (Eqs. (11.13) 
and (11.18)) for the film sketched in Fig. 11.12. 

1 �t B2 app
< < 1� (11.39) 

a Bc 

This means that a superconducting film with 
a thickness-to-diameter ratio t/2a = 10−3 

and a lower critical field Bc1 = 50 mT is 
driven to the intermediate state by the Earth’s 
typical field of 50 �T. The internal field from 
Eq. (11.16), 

1 �t 
Bin = Bapp − 2 �Bc −Bapp�� (11.40) 

Na 

is close to the applied field, Bin ≈ Bapp, over 
most of the intermediate state to a much 
greater extent than that shown in Fig. 11.13, 
since �t/2Na � 1

6 . When the film thickness 
becomes comparable with or less than the 
penetration depth, the situation is more com­
plicated, however. 

IX. DOMAINS IN THIN FILMS 

We just saw that a thin film in a perpen­
dicular field below Tc is in the intermediate 
state for almost all applied fields below Bc. 
We will proceed to investigate the nature of 
this state. From the boundary conditions, the 
macroscopic B fields are continuous across 
the boundary, as shown in Fig. 11.12. 

Bin = Bapp� (11.41) 

If we take into account the domain structure, 
a fraction of the material fn will be nor­
mal material with Bin = Bc and a fraction fs 
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Figure 11.17 Passage of magnetic field lines B of a perpendicular applied field 
through normal domain regions with diameter Dn of a superconducting thin film. 
The distortion distance Ddist , normal regions in which Bin = Bc, and superconducting 
regions (SC) in which Bin = 0 are shown. The energy densities in the normal regions 
un, in regions far from the film uapp, and in regions near the film �u� are indicated. 

will be perfectly superconducting with Bin = Bapp = fnBc� (11.44) 
0, where 

from Eq. (11.41). The boundaries or domain 
fs +fn = 1� (11.42) walls between the normal and superconduct­

ing regions also contain the field Bc, but it is 
The magnetic field avoids the supercon- assumed that the fraction of material fw in the 
ducting parts and passes through the nor- domain walls is small and can be neglected. 
mal regions, as shown in Fig. 11.17. This The figure gives the energy density u = 
means that B2/2 �0 at three positions in the field. 

Figure 11.18 sketches the domain struc-

Bin = fnBc� (11.43) ture in a thin film of length L, width W , and 
thickness d that is oriented perpendicular to 

so that the direction of the applied field. The figure 

Figure 11.18 Thin film in a perpendicular applied magnetic field showing 
normal regions (n) of length Dn, superconducting regions (SC) of length Ds, 
and domain walls of thickness � separating these regions. The repetition length 
D = Dn +Ds +2� is also shown. 
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320 11 TYPE I SUPERCONDUCTIVITY AND THE INTERMEDIATE STATE 

shows normal regions of width Dn and super­
conducting regions of width Ds separated by 
domain walls of thickness �. In drawing this 
figure we have assumed that the domains are 
all the same size and equally spaced. This 
simplifies the mathematics without changing 
the physics of the situation. We can define a 
repetition length D for the domain pattern 

Ds +Dn +2�= D� (11.45) 

where each domain has two walls. If we 
neglect the thickness of the domain walls, 
as is done on Fig. 11.17, by assuming that 
��Ds� Dn, we can write 

Ds +Dn =D� (11.46) 

where 

Ds = fsD� 
(11.47) 

Dn = fnD� 

The number of domains Nd is equal to the 
length L divided by the domain repetition 
length D: 

Nd = L/D� (11.48) 

The magnitude of the B field is appre­
ciably distorted from its far value Bapp 

only within a distance Ddist of the surface 
given by 

1/Ddist = 1/Ds +1/Dn� (11.49) 

and with the aid of Eq. (11.47) we obtain 

Ddist = fsfnD (11.50) 

for the field distortion distance indicated in 
Fig. 11.17. 

Let us try to justify Eq. (11.49) by a 
hydrodynamic analogy. Consider the B lines 
as the flow lines of a fluid passing through 
slots or holes in a barrier, where the density 
of flow lines represents the speed. The speed 
changes appreciably near the holes only if 

the diameter of the holes is small and near 
the material between the holes only when the 
holes take up most of the space, as shown in 
Fig. 11.19. Therefore Ddist ≈Dn in the former 
case, when Dn � Ds, whereas Ddist ≈ Ds in 
the latter case, when Dn �Ds. Figure 11.19 
illustrates the cases Ds = 3Dn� Ds =Dn, and 
Ds = 1 Dn.3 

The distortion of the applied magnetic 
field brought about by the presence of the 
film, as sketched in Figs. 11.17 and 11.19, 
serves to increase the Gibbs free energy G 

of the system. Figure 11.17 shows the mag­
netic energy densities of each region. The 
Gibbs free energy is also increased by the 
magnetic energy stored in the domain walls. 
A long repetition length reduces the num­
ber of domains and decreases the domain 
wall energy, whereas a short repetition 
length lessens the distortion of the field and 
decreases the field distortion energy at the 
expense of more domain wall energy. An 
intermediate domain repetition length is best, 
and we will derive an expression for the opti­
mum value of D. 

The magnetic energy stored in each pair 
of domain walls 2W�d� 1

2 Bc
2/�0� gives for the 

total domain wall contribution to the Gibbs 
free energy 

Gw = 2Nd�W�d� 
1 
Bc

2/�0 (11.51)
2 

= 2�WL�d/D� 
1 
Bc

2/�0 � (11.52)
2 

where we have used Eq. (11.48). The change 
in field energy arises from the difference 
between energy density near the surface, 
1 f B2/�0, and the energy density far from 2 n c 

the film, 1 B2 /�0, where the factor f in2 app n 

the former expression takes into account the 
fact that this field exists only near the normal 
regions, as shown in Figs. 11.17 and 11.19. 
This gives for the magnetic field contribution 
to the Gibbs free energy 
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321 IX DOMAINS IN THIN FILMS 

Figure 11.19 Illustration of the distortion distance Ddist for the cases Ds = 3Dn 

with Ddist ≈ Dn �a�� 2
1 Dn = 2

1 Ds ≈ Ddist �b�, and Ds = 3
1 Dn with Ddist ≈ Ds �c�, where 

the wall thickness � is negligible, i.e., ��Dn � Ds. 

Gf = 2WLDdist fn

1 
Bc

2/�0 

dG = 0� (11.56)
2 dD 

− 1 
B2 /�0 (11.53) is equal to 

2 app

( 
1 

) D = �d��1/2/fsfn� (11.57) 
= 2�WLD�fs

2fn
2 Bc

2/�0 � (11.54)
2 

where the product fsfn is easily deduced 

where we have used Eqs. (11.42), (11.44), from Eqs. (11.42) and (11.44):


and (11.50). The total Gibbs free energy G is

the sum of these two, namely G=Gw +Gf . 

fsfn = Bapp�Bc −Bapp�/Bc
2� (11.58)


Per unit area of film we have

The thinner the film, the smaller the value 

1 of D and the greater the number of domains. 
G/WL= 2

2 
Bc

2/�0 ��d/D+fs
2fn

2D�� D is large at both ends of the range, where 
(11.55) either fn or fs is small, corresponding to 

The domain repetition distance D obtained Bapp � Bc and Bapp ≈ Bc, respectively. It is 
by minimizing the total free energy per smallest in the middle, where fn = fs = 2

1 

unit area, and Bapp = 2
1 Bc. 
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This derivation assumes that the domain 
wall thickness � is much less than the domain 
sizes Dn and Ds. It does not take into account 
how the surface energy depresses the value 
of the critical field. When the film thickness 
is much greater than the domain wall, d � �, 
the critical field Bc is shifted to a lower value 
Bc 

� given by (Tinkham 1996, p. 29) 

Bc 
� = �1 −2��/d�1/2�Bc d � �� (11.59) 

A similar depression of the lower critical field 
Bcl occurs with Type II superconductors. 

X. CURRENT-INDUCED 
INTERMEDIATE STATE 

The intermediate state that we have been 
discussing arose from the presence of a mag­
netic field that exceeded the critical field 
at the surface of the superconductor. We 
will now examine the intermediate state that 
forms when a transport current from a cur­
rent generator produces a magnetic field at 
the surface of a superconducting wire that 
exceeds the critical field. In this section we 
simplify the notation by writing I instead of 
IT for the transport current. 

We know from Eq. (2.42) that the mag­
netic field at the surface of a wire of radius 
a carrying a current I is in the � direction 
with magnitude 

H = I/2�a� (11.60) 

This surface field is independent of the dis­
tribution of current density inside the wire. 

When the surface field reaches a particular 
value, called the critical field Bc =�0Hc, we  
say that the transport current has attained its 
critical value Ic, corresponding to 

Hc = Ic/2�a� (11.61) 

If the current exceeds the critical value, the 
magnetic field at the surface will exceed Hc 

and the wire will no longer be able to remain 
a perfect superconductor. This destruction of 
pure superconductivity by a transport current 
is called the Silsbee effect. If the wire were to 
respond by going normal at the surface, the 
superconducting core would constitute a wire 
of even smaller radius r < a carrying the same 
amount of current. From Eq. (11.60) it is clear 
that the field at the surface of the wire would 
then be even larger than the field that drove 
the surface normal. Following this line of rea­
soning, the entire wire would become normal. 
There is, however, a second solution to the 
problem, proposed by F. London (1937; see 
also F. London, 1950), whereby the wire is 
assumed to have a core of radius ai that is in 
an intermediate state and an outer layer that is 
normal. We will show how this could occur. 

When the total current I exceeds Ic, part 
of the current In flows in the outer normal 
region and the remainder Ii along a parallel 
path through the core, which is in the inter­
mediate state, 

I = In + Ii� (11.62) 

as indicated in Fig. 11.20. The current 
density Jn in the outer layer is constant, with 
a value given by 

Figure 11.20 Division of applied transport current flowing through a 
superconducting wire of radius a into a portion In flowing in the outer 
normal region and a portion Ii in the intermediate state flowing in the core 
of radius ai. 
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InJn = 2 ai < r < a�  (11.63)
��a2 −ai � 

For this normal current In to flow there must 
be a potential difference between the two 
ends of the wire, which means that there is 
an axial electric field E in the normal layer 
given by Eq. (1.21), 

E = Jn�n� (11.64) 

where both Jn and E are unknown. 
The intermediate state has regions of 

superconducting material and regions of nor­
mal material, so there is also an elec­
tric field E�r� present. All the magnetic 
fields that are present are independent of 
time, so from the Maxwell curl relation 
� ×E =−�B/�t = 0� E  is also independent 
of the radial distance r. Therefore, E�r� has 
the same value E in the normal and in the 
intermediate state region, and we can write 
an analogue of Eq. (11.64) for the interme­
diate state, 

E = Ji�r��i�r� 0 < r < ai� (11.65) 

where Ji�r� satisfies the boundary condition 
for continuity of the current density at r = ai. 
Thus we obtain 

Ji�ai�= Jn� (11.66) 

�i�ai�= �n� (11.67) 

We saw in Section II that the interme­
diate state is characterized by the pinning of 
the internal field Hin at the critical value, 

Hin =Hc 0 < r < ai� (11.68) 

This permits us to write Eq. (11.61) for the 
intermediate state, 

Hc = Ii�r�/2�r  r < ai� (11.69) 

where 
∫ r 

Ii�r� = Ji�r��2�r�dr� (11.70) 
0 

We show in Problem 10 that the current den­
sity in the intermediate state is given by 

Ji�r� = �ai/r�Jn r ≤ ai� (11.71) 

as illustrated in Fig. 11.21, where 

Hc = Jnai� (11.72) 

Combining Eqs. (11.64) and (11.72) gives 
for the radius of the intermediate state region 

ai =Hc �n/E� (11.73) 

which depends on the applied current in the 
manner shown in Fig. 11.22. The resistivity 
in the intermediate state is proportional to 
the radius r, 

r 
�i�r� = �n r ≤ ai� (11.74) 

ai 

Figure 11.21 Dependence of the current density 
J�r� on distance r from the center in a superconducting 
wire of radius a that is in the intermediate state. J�r� 
decreases with r in the intermediate-state core region 
of radius ai and has a constant value Jn = Hc/ai in the 
outer layer, where ai ≤ r ≤ a, as shown. The extrapo­
lation (– – –) of the core region behavior of J�r� to the 
value Hc/a at the surface is indicated. 
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Figure 11.22 Dependence of the core radius ai of a superconducting wire on 
the applied transport current I . The intermediate state occurs for transport currents 
exceeding the value Ic = 2�aHc. 

as shown in Fig. 11.23 (see Problem 11). 
This means that the longitudinal path length 
of the current through the normal region at 
the radius r is proportional to r. This fits 
the configuration illustrated in Fig. 11.24, 
which had been suggested by F. London. In 
this configuration the core has a sequence 
of conical regions of superconducting mate­
rial arranged along the axis with interlaced 
regions of normal material. 

It is shown in Problem 16 that the total 
current flowing through the wire is given by 

I = ��a2 +a 2i �Jn� (11.75) 

Figure 11.23 Dependence of the resistivity ��r� of 

By Eqs. (11.64), (11.72), and (11.73), this a superconducting wire in the intermediate state on the 

may be written as a quadratic equation in radial distance r from the center of the wire. Note that 
��r� increases linearly with r in the intermediate-state 

terms of the electric field, core region, where r < ai, and has the normal state value 
�n in the outer region, r > ai, of the wire. 

I�E� = �a2 

�

E 

n 

+�Hc
2 �

E 
n � (11.76) 

which has the solution	 The average resistivity ��� is E/�J� and the 
average current density �J� through the wire 

E = 1 
I
�n 1 ± [ 1 − �Ic/I�

2
]1/2 

� 
is I/�a2, so we can write 

2 �a2 

(11.77) ��� = E��a2/I��	 (11.78) 



Elsevier AMS Job code: SUP CH11-P088761 22-6-2007 9:38a.m. Page:325 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

325 X CURRENT-INDUCED INTERMEDIATE STATE 

Figure 11.24 London model for the intermediate-state structure of a wire 
of radius a carrying a transport current in excess of the critical value Ic = 
2�aHc, where ai is the radius of the core region (F. London, 1937, 1950). 

and Eq. (11.77) gives us the London model 
expression 

⎧ ⎫ [ ( )2 
]1/2 ⎨ ⎬��� 1 I= 1 + 1 − c � (11.79)

�n 2 ⎩ I ⎭ 

which is valid for I > Ic. The positive sign 
has been selected in Eq. (11.77) because 
it gives the proper asymptotic behavior of 
���→ �n for I � Ic. 

The various resistivity results in the 
London model can be grouped together as 
follows: 

⎧ 
⎪0 I < I⎪ c ⎪ ⎨��� ⎪ 

2
1 { } I = Ic 

�
= ⎪ 1 1 + [ 1 − �I /I�2

]1/2 
I > In ⎪ 2 c c ⎪ ⎪ ⎩1 − 1

4 �Ic/I�
2 I � Ic� 

(11.80) 

We see that at the point I = Ic the resis­
tivity jumps discontinuously from 0 to the 
value 2

1 �n. It then slowly approaches �n for 
higher applied currents in accordance with 
Eq. (11.80), as shown in Fig. 11.25. Exper­
imental data, such as those plotted in the 
figure, ordinarily show a larger jump of 2

3 or 
more at I = I instead of 1 . A refined version c 2 

Figure 11.25 London model dependence of the resistance of the intermediate 
state of a superconducting wire on the value of the transport current I for a fixed 
temperature T . Experimental data on indium wires at 2.02 K (Watson and Huebener, 
1974) are shown for comparison. 
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326 11 TYPE I SUPERCONDUCTIVITY AND THE INTERMEDIATE STATE 

Figure 11.26 Temperature dependence of the resistance in the intermediate 
state of a current-carrying wire showing Tc decreasing by the variable amount 
�T for resistance in the range 1

2 Rn < R < Rn, and by a fixed amount �T in the 
range R < 1

2 Rn. The figure is drawn for the case of a constant applied transport 
current. 

of the London model developed by Baird 
and Mukherjee (1968, 1971) exhibits a larger 
jump and fits the data better (Huebener, 
1979, p. 213; Watson and Huebener, 1974). 
It is interesting that the intermediate state 
persists above Ic, and that some supercon­
ductivity is predicted to remain in the core 
region for all finite currents. 

Tinkham (1996, p. 34) shows that there 
is also a dependence of the resistivity on tem­
perature, �T = Tc–T , in the neighborhood of 
the transition temperature, and this is shown 
in Fig. 11.26. 

We have discussed the current-induced 
intermediate state for superconducting wire 
of circular cross-section. The same phe­
nomenon can occur with samples of other 
shapes, such as tapes or thin films, but the 
mathematical analysis can be more complex. 

XI. RECENT DEVELOPMENTS IN 
TYPE I SUPERCONDUCTIVITY 

A. History and General Remarks 

The intermediate state has a long his­
tory beginning with the pioneering works 

of Landau (1927, 1038) and continuing to 
the present day (Reisin and Lipson, 2000, 
Prozorov et al., 2005, Choksi et al., 2004, 
Goldstein et al., 1996, Dorsey and Gold­
stein, 1998, Narayan, 1998, Hernandez and 
Dominguez, 2002, De Luca, 2000). The 
topic has been intensively studied from 
the early 60 s for about 30 years when 
most of the classical results were obtained 
and the thermodynamic interpretation was 
developed. However, the literature of that 
period, and especially later periods, is full 
of observations incompatible with the Lan­
dau laminar model (Solomon and Harris, 
1971, Livingston and DeSorbo, 1969). These 
results were mostly interpreted to be due 
to sample imperfections, particular shape, or 
other special (vs. general thermodynamic) 
experimental circumstances. 

The Type-I problem involves both 
microscopic mechanisms of superconduc­
tivity and the physics of highly nonlinear 
systems, so exact mathematical solutions 
do not exist, and various approximations 
have to be used. Early models based on 
free energy minimization were insensitive 
to the manner in which the intermediate 
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327 XI RECENT DEVELOPMENTS IN TYPE I SUPERCONDUCTIVITY 

state was prepared, and could not predict 
the equilibrium pattern of flux penetration. 
During the past decade many new ideas 
and methods in physics and mathematics of 
complex and nonlinear systems were devel­
oped. These advances resulted in more gen­
eral approaches to the intermediate state (Liu 
et al., 1991, Hernandez and Dominguez, 
2002, Reisin and Lipson, 2000, Dorsey and 
Goldstein, 1998, Goldstein et al., 1996, 
Jeudy et al., 2004, Prozorov et al., 2005). 
In particular, recent contributions considered 
the evolution of arbitrarily-shaped domains 
through a current-loop approach (Dorsey 
and Goldstein, 1998, Goldstein et al., 1996, 
Reisin and Lipson, 2000), analyzed the kinet­
ics of the transition as an important factor 
determining the structure (Liu et al., 1991, 
Frahm et al., 1991), studied the transforma­
tion of a tubular to a laminar structure in 
thin films (Jeudy and Gourdon, 2006), and 
showed the existence of a topological hys­
teresis (Prozorov et al., 2005). 

Applications of the developed ideas 
are found in many scientific disciplines 
such as superconductivity and superfluidity, 
hydrodynamics, reaction-diffusion problems, 
oceanography, astrophysics, meteorology, 
combustion, geophysical and biological 
dynamics, and semiconductors (Walgraef, 
1997, Strogatz, 1994, Metlitski, 2005). There 
is an intense ongoing research effort to 
explain the formation and evolution of com­
plex patterns observed in these systems. 
The selection of one pattern over another 
is an inherently nonlinear evaluation. Amaz­
ing similarities between hexagonal structures 
observed in Type-I superconductors (see 
Fig 11.27). and some chemical and hydraulic 
systems provide further evidence of the inti­
mate connection of their formation. Like­
wise, a well-known Landau laminar structure 
is not unique for Type-I superconductors. 
Figure 11.28 shows two very similar pat­
terns. Figure 11.28a shows a pattern obtained 
as a result of a photochemical reaction after 

4π
M

(1
–

N
) 

(G
) 

Figure 11.27 Magneto-optical images of the intermediate state (at magnetic field 
values indicated by arrows) in pure lead, shown together with DC magnetization loops 
measured at 5 K. The wide hysteretic loop was measured in a cold-worked sample, 
whereas the inner loop was obtained in a stress-free sample (Prozorov et al., 2005). 
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328 11 TYPE I SUPERCONDUCTIVITY AND THE INTERMEDIATE STATE 

Figure 11.28 Comparison of patterns observed in 
(a) a photochemical reaction upon irradiation of mercury 
dithizonate with visible light (from (Walgraef, 1997), 
page 28) and (b) a laminar intermediate state pattern 
observed in stress-free lead upon flux exit (Prozorov 
et al., 2005). 

mercury dithizonate was irradiated with vis­
ible light (picture reproduced from (Wal­
graef, 1997)), whereas Fig. 11.28b shows 
a laminar intermediate state pattern in a 
stress-free pure lead sample upon magnetic 
flux exit (Prozorov et al., 2005). Another 
example involves the transformation of a 
closed topology to an open topology pat­
terns, which occurs in one system at dif­
ferent external conditions. Figure 11.29a,b 
shows an experimental realization of the 
Turing instability mechanism, based on a 
nonlinear interaction between reaction and 
diffusion in a chlorite-iodide-malonic acid 
reaction in gels. Figure 11.29c,d shows 
the intermediate state patterns in pure lead 
upon flux entry (c) and exit (d). Further­
more, closed and open topologies can coexist 
within one sample. We present two exam­
ples of such coexistence: Figure 11.30a 
depicts the results of a numerical analy­
sis of Hopf bifurcation patterns, whereas 
Fig. 11.30b shows the transformation of a 
tubular phase into a laminar structure in 
pure lead. 

To summarize, as of today, the problem 
of the formation and evolution of the inter­
mediate state in samples of arbitrary shape 
(especially non-ellipsoidal) and for the arbi­
trary values of the G-L parameter (as well 
as other materials parameters) has not yet 
been settled. Clearly, it cannot be deduced 
solely from energy minimization arguments, 

Figure 11.29 (a–b) Turing instability patterns 
observed in a disk gel reactor (Walgraef, 1997), and 
(c–d) intermediate state patterns in pure lead upon 
flux entry (c) and exit (d), after Ref. (Prozorov et al., 
2005). 

Figure 11.30 Coexistence of closed and open 
topologies within a single ample: (a) numerical solu­
tion of Hopf bifurcation patterns, and (b) disruption of 
a tubular phase by a defect. 

including solving the non-linear G-L equa­
tions, and requires methods developed in 
the field of nonlinear complex systems. On 
the other hand, the systematic experimen­
tal investigation of the pattern formation in 
Type-I superconductors can influence other, 
sometimes quite remote, fields of science. An 
example is new concepts in the physics of 
neutron stars (Buckley et al., 2004). Another 
very important subject is pattern formation in 
highly nonlinear systems for which a Type-I 
superconductor is a perfect model system 
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(Coullet and Huerre, 1991, Choksi et al., 
2004, Walgraef, 1997). It provides a set of 
characteristics, such as a very small effec­
tive mass of the S-N boundary, and easy 
manipulation by the external magnetic field, 
unachievable in other, mostly chemical dif­
fusive systems. 

B. The Intermediate State 

The intermediate state is formed in 
Type-I superconducting samples when the 
actual magnetic field at the sample’s edge 
exceeds the critical field, Hc, which occurs 
for an applied magnetic field of H =H �1 −c

D�, and it disappears when the applied field 
reaches H = Hc (Livingston and DeSorbo, 
1969, Huebener, 2001). As illustrated in 
Fig. 11.31, there are four ways to arrive to a 
particular point on the magnetic field – tem­
perature, H–T , phase diagram. These four 
ways are field cooling (FC or �NI�H�, zero-
field cooling (ZFC or �SI�H), and ascending 
and descending branches of the magnetiza­
tion loop, �SI�T and �NI�T, respectively. We 
utilize the notation developed in the early lit­
erature as it better reflects the specifics of 
the transition from a Meissner superconduct­
ing state (S), or a normal state (N), to an 
intermediate state (I). 

Normal 
800 Hc 

(NI)T 

laminar 
(open topology) 

600 Intermediate 

400 (SI)H (NI)H 

Meissner (1 – D)Hc 

200 
flux tubes 

(closed topology) (SI)T 

0 
0 1 2 3 4 5 6 7 8 

T (K) 

Figure 11.31 Four ways to obtain particular field 
and temperature responses on an H−T phase diagram. 
The diagram for a rctangular crossection lead sample 
with demagnetization factor D = 0�5 is shown. 

H
 (

O
e)

 
The uncertainty in understanding the 

formation of an intermediate state already 
begins at this point. The notion of the 
demagnetization factor is strictly applica­
ble only to the samples of ellipsoidal shape 
(Osborn, 1945, Abrikosov, 1988). Only in 
this case does the magnetic field inside 
the sample remain uniform and equal to 
H/�1 −N� (denoted D in Fig. 11.31). Direct 
visualization of the intermediate state is ordi­
narily carried out on samples with flat sur­
faces, usually slabs or disks. There is an 
ongoing discussion on the effects of this 
non-ellipsoidal geometry, with no consensus 
yet achieved (Huebener, 2001, Dorsey and 
Goldstein, 1998, Castro et al., 1999, Castro 
et al., 1997). 

The thermodynamics of the intermedi­
ate state has been the subject of many works 
(Livingston and DeSorbo, 1969, Huebener, 
2001, DeSorbo and Healy, 1964, Clem et al., 
1973, Choksi et al., 2004, Farrell et al., 
1972). The conventional approach is to 
assume some geometrical pattern of the inter­
mediate state, and then minimize its free 
energy by varying the geometrical para­
meters. The typical and most used structure 
is the Landau laminar pattern of alternat­
ing normal and superconducting regions. The 
free energy is assumed to consist of the 
condensation energy loss inside the normal 
domain, the S-N surface energy, the mag­
netic field energy, and energy associated 
with the distortion of the magnetic field out­
side the sample. The latter has often been 
analyzed in terms of interactions between 
the lamellae. The variety of the observed 
structures as well as the general difficulty 
of expressing the free energy by taking 
into account all terms inside and outside of 
the sample motivated various refinements of 
these models as well as some adjustments 
of the geometrical patterns, such as possi­
ble branching near the superconductor sur­
face or the lamellae corrugation (Livingston 
and DeSorbo, 1969). The hexagonal pat­
tern for the intermediate state was also 
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analyzed (Goren and Tinkham, 1971). The 
closed topology patterns in the form of 
flux tubes (typically carrying thousands of 
flux quanta) were also frequently observed 
and discussed (Huebener and Gallus, 1973, 
Huebener and Kampwirth, 1974, Huebener 
et al., 1974, Chimenti and Huebener, 1977, 
Buck et al., 1981, Pavlicek et al., 1981, 
Parisi et al., 1983, Fietz et al., 1984, Pro­
zorov et al., 2005, Pavlicek et al., 1982, 
Livingston and DeSorbo, 1969, Huebener, 
2001, Goren and Tinkham, 1971). Typical 
explanations included the edge barrier in 
(mostly) thin samples. Recent works con­
centrate more and more on the question of 
pattern formation in the intermediate state 
by studying the dynamics of the S-N (and 
N-S) transition, and/or considering systems 
that consist of nuclei that can evolve and 
change geometry upon interaction with the 
environment (e.g., the current-loop model) 
(Liu et al., 1991, Doelman and Harten, 1995, 
Indekeu and van Leeuwen, 1995, Goldstein 
et al., 1996, Castro et al., 1997, Dorsey 
and Goldstein, 1998, Reisin and Lipson, 
2000, Blossey, 2001, Abreu and Malbouis­
son, 2004, Jeudy et al., 2004, Choksi et al., 
2004, Prozorov et al., 2005). 

It should be noted that we mostly dis­
cussed experimental works in which the 
intermediate state patterns were directly 
observed. There is also an extensive liter­
ature involving the use of various indirect 
techniques. While these works provide 
important contributions, especially in terms 
of the analysis and overall consistency of 
the results with theoretical models, it is dif­
ficult to consider particular topological fea­
tures without literally viewing them. 

C. Magneto-Optics with In-Plane 
Magnetization – a Tool to Study 
Flux Patterns 

The magneto-optical technique is a pow­
erful method for studying the distribution 
of the magnetic induction B on the surface 

of a superconductor. Appearing in the late 
50 s (Alers, 1957) and greatly improved dur­
ing the followed decade (Castro et al., 1999, 
Huebener, 1970), it has become a unique tool 
for the experimental study of these mate­
rials. The idea behind the technique is to 
place a transparent magnetic material (an 
indicator) on the surface of an object under 
study. Linearly polarized light propagating 
throughout the indicator and reflected back 
is rotated proportionally to the magnetiza­
tion strength along the direction of travel 
(Faraday Effect). If an indicator is made 
of a soft magnetic material, the distribution 
of the magnetization inside the indicator 
mimics the distribution of the perpendic­
ular component of the magnetic induction 
on the surface of the sample under study. 
Various indicators were used. Most known 
results obtained on visualization of flux pat­
terns in Type-I superconductors in 60 s–70 s 
were obtained using Ce3+ salts and later 
EuS-EuF systems (Kirchner, 1973, Haber­
meier, 2004, Huebener and Clem, 1974, 
Huebener, 2001). Unfortunately, the former 
has a very low Verdet constant (how much 
1 mm of thickness rotates the polarization 
plane per unit of magnetic field), and the 
latter systems have complicated magnetic 
transitions at low temperatures. Neverthe­
less, it was possible to successfully utilize 
these indicators for imaging the interme­
diate state (Alers, 1957, Kirchner, 1969, 
Kirchner, 1973, Huebener and Clem, 1974, 
Huebener, 2001). However, measurements of 
the actual magnetic induction were too dif­
ficult. Another disadvantage of these indica­
tors was the need to deposit them directly 
onto the surface of superconductors. For 
reviews of the magneto-optical technique 
and its applications, see Ref. (Jooss et al., 
2002, Huebener, 2001, Habermeier, 2004, 
Livingston and DeSorbo, 1969). 

The widespread use of magneto-optics 
for studying high-Tc superconductors began 
with the introduction of ferrimagnetic 
in-plane indicators (Dorosinskii et al., 
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A Bi – doped 
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Mz = 0H = 0 
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Light intensity ~ Mz ~Bz 

Figure 11.32 Principle of magneto-optical visual­
ization using a Y-Fe-garnet indicator with in-plane spon­
taneous magnetization. 

1993, Vlasko-Vlasov et al., 1992, Castro 
et al., 1999), which have a spontaneous 
magnetization lying in the indicator plane. 
Figure 11.32 illustrates the principles of 
operation of such magneto-optical system. 
A light beam passes through a linear polar­
izer (P), propagates through the optically 
transparent indicator film, reflects from a 
mirror deposited on the bottom surface of 
an indicator, and finally arrives at an ana­
lyzer (A) which is oriented perpendicular to 
a polarizer. The spontaneous magnetization 
of a ferrimagnetic indicator (Curie temper­
ature about 400 K) is aligned in the film 
plane. Faraday rotation only occurs if there 
is a magnetic moment in the direction of 
the light beam, therefore without an exter­
nal magnetic field there is no Faraday rota­
tion. When a perpendicular magnetic field 
is applied the nonzero perpendicular compo­
nent �Mz� of the magnetization is induced, 
and the intensity of the light transmitted 
through an analyzer increases in proportion 
to the applied field strength. When such 
an indicator is placed on a superconductor, 
the distribution of the out of plane compo­
nent of magnetization, Mz, inside the indi­
cator is proportional to the distribution of 
the perpendicular component of the magnetic 
induction, Bz, on a superconductor surface. 
Therefore, it can be visualized as a real-

time two-dimensional optical picture. The 
main advantages of this technique are the 
ability to perform quantitative measurements 
of the magnetic induction (and even of the 
magnetic moment), outstanding spatial res­
olution and magnetic field sensitivity, and 
the near absence of a temperature depen­
dence below 100 K. Figure 11.27 presents 
magneto-optical (MO) images of the inter­
mediate state in pure lead, as well as corre­
sponding DC magnetization loops measured 
at the same temperature on the same sample 
(Prozorov et al., 2005). The wide hysteretic 
loop was measured in a cold-worked sample 
and corresponding MO images show den­
dritic flux penetration and substantial flux 
trapping upon reduction of the external field 
to zero. In contrast, the stress-free sam­
ple (obtained by homogeneous solidification 
from the melt) shows two distinct topologies 
of the intermediate state: a closed topology 
in the form of flux tubes on flux entry, and an 
open laminar-type structure upon flux exit. 
Although, a similar tube phase was observed 
in the 60 s, it has never been accepted as a 
possible true equilibrium topology (of thick 
samples). Moreover, recent experiments on 
samples of different shapes confirm that in 
ellipsoidal samples the tubular phase is the 
stable pattern of the intermediate state, both 
for flux penetration and flux exit. 

Another aspect of magneto-optical 
imaging is a possibility of obtaining the 
current density distribution from the mea­
sured induction pattern. This is a difficult 
mathematical problem, because it involves 
two dimensional inversion of the Biot-
Savart integral with kernel singularities 
(Wijngaarden et al., 1996, Jooss et al., 2002). 
Figure 11.33a shows a polygonal pattern 
obtained in pure lead (note the interesting 
hexagonal structure of heptagonal inclu­
sions), and Fig. 11.33b shows correspond­
ing current density flow. This information 
is important since it takes into account the 
success of the recent current-loop model 
(Choksi et al., 2004, Reisin and Lipson, 
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Figure 11.33 (a) Experimental polygonal intermedi­
ate state pattern at elevated fields upon flux penetration, 
and (b) reconstructed current density flow. 

2000, Narayan, 1998, Goldstein and Dorsey, 
1998, Dorsey and Goldstein, 1998, Goldstein 
et al., 1996). 

D. AC Response in the Intermediate 
State of Type I Superconductors 

At small amplitudes of the excitation 
fields the response of a superconductor is 
reversible. In a pure Meissner state the 
magnetic field penetrates only to the depth 
determined by the London penetration depth 
�, and the magnetic susceptibility of both 
Type-I and Type-II superconductors also 
depends only on the London penetration 
depth, �. For example, for an infinite slab 
of width 2w� 4�� = �/w tanh �w/�� − 1 
(Schoenberg, 1952), and this can be general­
ized for a finite slab (Prozorov et al., 2000). 
By sweeping the external DC magnetic field 
it is possible to study the dynamic magnetic 
susceptibility, dM/dH, without affecting the 
overall field distribution inside a supercon­
ductor. In Type-II superconductors if the 
amplitude of the excitation field is small 
the Abrikosov vortices are not displaced, 
but rather they oscillate around their equi­
librium positions providing a quasi-elastic 
response known as the Campbell regime 
(Campbell and Evetts, 1972, Blatter et al., 
1994, Brandt, 1995, Coffey and Clem, 1991). 
In this regime the effective penetration depth 
becomes, �2 = �L 

2 +�C
2 , where �C 

2 = �−1Cxx 

is the Campbell penetration depth, Cxx is 

the relevant elastic modulus (either com­
pression or tilt) of the vortex lattice, and 
� is the Labusch parameter (Coffey and 
Clem, 1991, Dew-Huges, 1974, Campbell 
and Evetts, 1972, Brandt, 1995). 

Figure 11.34 shows measurements of 
the small-amplitude AC response in a stress-
free lead sample during the sweeping of an 
external magnetic field. Also shown are MO 
images. The appearance of the intermediate 
state manifests itself by an abrupt deviation 
from the H2 behavior (due to penetration 
from the corners (Prozorov et al., 2005)). 
Clearly the response is hysteretic, but this 
hysteresis is only related to the topologi­
cal differences, and to differences in the 
quasi-elastic response. This conclusion is 
supported by comparison with the DC mag­
netization, Figure 11.27, where flux exit cor­
responds to smaller magnetization values, 
which in Type-II superconductors would cor­
respond to a larger penetration depth (Pro­
zorov et al., 2003). In Fig. 11.34 larger 
values correspond to the flux entry, and indi­
cate a softer phase compared to the lami­
nar structure observed at flux exit. As the 
field increases the growing flux tubes seem 
to form a more rigid honeycomb structure, 
thus leading to a decrease of the penetra­
tion depth at elevated magnetic fields, as 
observed in Fig. 11.34. In the cold-worked 
sample, where the flux penetration is den­
dritic (see Fig. 11.27), such a non-monotonic 
behavior is not observed. Thus this dis­
tinct feature may serve as a useful tool for 
the study the intermediate state in samples 
where direct MO imaging is not possible. 
Finally, as the field continues to increase, 
Fig. 11.34 shows that the superconductiv­
ity is quenched at Hc, but the penetration 
depth remains significantly lower than the 
normal state skin-depth due to the presence 
of surface superconductivity. Furthermore, 
the hysteresis of the AC response is observed 
both for M�H = const� T�  and M�H�T = 
const� measurements. Another verification 
of the correspondence of the AC response to 
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Figure 11.34 Magnetic penetration depth measured by using a 
tunnel-diode resonator, and the corresponding evolution of intermediate 
state patterns. 

the particular geometry of the intermediate 
state is the vanishing of the non-monotonic 
behavior upon the application of an inclined 
magnetic field (Prozorov et al., 2005). This 
effect is related to the induced unidirectional 
anisotropy of the otherwise frustrated inter­
mediate state structure, as first demonstrated 
by Sharvin (Sharvin and Sedov, 1956, Liv­
ingston and DeSorbo, 1969). 

Unfortunately, no theory of the 
quasi-elastic small-amplitude AC magnetic 
response of the intermediate state of Type-I 
superconductors is yet available. A theoreti­
cal analysis along the lines of the Campbell 
response, but for Type-I superconductors, is 
needed. Once a correlation is established and 
understood, the unique characteristics of the 
AC response will be very useful in study­
ing ellipsoidal samples, as well as very small 
samples, which cannot be directly imaged 
by magneto-optics. Ellipsoidal samples are 
important because they provide the ther­
modynamically equilibrium response needed 
to conclusively answer the basic question 
of the ground state intermediate state pat­
tern. Recent magneto-optical experiments 
performed on hemispheres indicate that the 

tubular structure is the equilibrium pattern of 
Type-I superconductors. 

XII. MIXED STATE IN TYPE II 
SUPERCONDUCTORS 

In this chapter we have been explain­
ing how demagnetization effects in Type I 
materials produce the intermediate state in an 
effort to prevent surface fields from exceed­
ing the critical field Bc� and driving the mate­
rial normal. In a Type II super-conductor, 
when Bapp becomes large enough to produce 
surface fields equal to the lower critical field, 
Bc1, vortices appear inside the material near 
the surface and the mixed state forms at a 
lower field Bc1� than it would under the con­
dition N = 0. Ideally, a Type II supercon­
ductor is in the � =−1 or Meissner state for 
B <Bc1� and in the mixed state above Bc1� .app 

The mathematical description of the 
Meissner state of a Type II superconductor 
is similar to that of the Type I case that 
was presented above in Section IV, with Bc1 

replacing Bc at the upper limit of Eq. (11.10). 
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334	 11 TYPE I SUPERCONDUCTIVITY AND THE INTERMEDIATE STATE 

This limit is the shifted lower critical field 
Bc1� mentioned above, 

Bc1� = �1 −N�Bc1� (11.81) 

Thus we can rewrite Eqs. (11.10)–(11.14) for 
a Type II superconducting ellipsoid in the 
Meissner state as follows: 

Bapp < Bc1�	 (11.82) 

Bin = 0�	 (11.83) 

Hin = Bapp/�1 −N��0� (11.84) 

�0M =−Bapp/�1 −N�� (11.85) 

� =−1� (11.86) 

This state exists over the range given by 
Eq. (11.82). 

When B exceeds Bc1� , vortices begin app 

to form and the material enters the mixed 
state. Since this state can exist for Hin greater 
than Bc1�/�0, the value of Hin does not 
become pinned at the critical field, as in 
the Type I case, but continues to increase 
as the applied field increases. This removes 
the constraint of Eq. (11.2), so the fields are 
given by the following more general expres­
sions of Eqs. (5.35)–(5.37): 

Bc1� < Bapp < Bc2� (11.87) 

1 +� 
Bin = Bapp 1 +�N 

� (11.88) 

B
Hin = app 

� (11.89)
�0�1 +�N� 

Bapp � 
M = � (11.90) 

�0 �1 +�N� 

These equations resemble those of the mixed 
state of a Type II ellipsoid, rather than those, 
(11.15)–(11.19), of the corresponding Type 
I intermediate state. The presence of the 
demagnetization factor N in the denomina­
tor of expressions (11.88)–(11.90) causes the 
internal fields to be larger than they would be 
for the case N = 0 of a cylinder in a parallel 
applied field. 

Pakulis (1990) proposed a mixed state 
in zero field with normal regions called ther­
mons that contain no magnetic flux. 

PROBLEMS 

1. Find the range of angles for which the 
magnetic field at the surface of a perfectly 
superconducting sphere �� = −1� is (a) 
greater than, (b) equal to, or (c) less than 
the applied field Bapp. 

2. What are the smallest and the largest pos­
sible values of the angle �c of Eq. (11.8) 
and at what applied fields do they occur? 

3. Deduce the equations for	 Bin� Hin� M , 
and � in the intermediate state of a Type I 
superconducting cylinder in a perpendic­
ular magnetic field. 

4. Show that the magnetic fields at the sur­
face of a sphere in an applied magnetic 
field in the intermediate state have the fol­
lowing radial and azimuthal components: 

Br = Bin cos �� 

B� = Bc sin �� 

5. Show that the magnetic fields at the sur­
face of a sphere in an applied magnetic 
field in the perfectly diamagnetic state 
have the following radial and azimuthal 
components: 

Br = 0 

3 
B� = Bapp sin �� 

2 

6. Show that the expressions 

�exp = �/�1 +N��� 

� = �exp/�1 −N�exp�� 

1 Bc� = 1 − �exp N Bapp 

are valid for the intermediate state of an 
ellipsoid. 
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PROBLEMS 

7. Show that the boundary between the 
superconducting and intermediate state 
of an ellipsoid in a magnetic field lies 
along the dashed line of unit slope shown 
in Fig. 11.8. Show that along this bound­
ary the Gibbs free energy is −NBc

2/2�0. 
8. Show that the normalized Gibbs free 

energy g�b� t� of an ellipsoid in an 
applied magnetic field is given by the 
expressions 

g�b� t� =−t2/�− �1 − t2�2 +b2/�1 −N� 

0 < b < �1 −N��1 − t2� 

g�b� t� =−t2/�− �1 − t2 −b�2/N 

�1 −N��1 − t2� < b < �1 − t2�� 

These are plotted in Fig. 11.9 for sev­
eral values of N and t using the BCS 
expression 1/� = 2�8. 

9. Show that the dashed line of Fig. 11.9 
corresponds to the expression Gs = 
Bc

2/2�0��Bapp/Bc�−1�. 
10. Derive Eq. (11.71), 

Ji�r� = Jn�ai/r� r ≤ ai� 

and show that 

Ji�r�=Hc/r  r < ai� 

11. Derive Eq. (11.74), 

�i�r�= �n�r/ai� r  ≤ ai� 

335 

and show that 

�i�r� = rE/Hc r < ai� 

12. Show	 that the radius ai of the 
intermediate-state region of a current-
carrying superconducting wire is 
given by 

aI
ai = c � 

I�1 + �1 − �Ic/I��
1/2� 

13. Show	 that the radius ai of the 
intermediate-state region of a current-
carrying superconducting wire has the 
limiting behavior ai = a for I = Ic and 
that ai ≈ aIc/2I for I � Ic. 

14. Show that Eq. (11.77) is the solution to 
Eq. (11.76). 

15. Show that in the intermediate state the 
current density averaged over the whole 
wire has the value 

Hc 

( 
ai

2 ) 

�J� =  1 + � 
ai a2 

Since this is greater than Jn, we see that 
the formation of the intermediate state 
causes more current to flow in the core 
than would have happened if the wire 
had become normal. 

16. Show	 that the total current flowing 
through the intermediate-state region of 
the wire in Fig. 11.24 is 2�a2

i Jn, and 
that the total current flowing through the 
wire is given by Eq. (11.75), namely I = 
��a2 +ai

2�Jn. 
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12 
Type II 

Superconductivity 

I. INTRODUCTION 

In Chapters 2 and 11 we discussed 
Type I superconductors, which are super­
conductors that exhibit zero resistance and 
perfect diamagnetism. They are also per­
fect diamagnets for applied magnetic fields 
below the critical field Bc, and become nor­
mal in higher applied fields. Their coherence 
length exceeds their penetration depth so it 
is not energetically favorable for boundaries 
to form between their normal and super­
conducting phases. The superconducting ele­
ments, with the exception of niobium, are all 
Type I. 

We showed in Chapter 6, Section XII, 
that when the penetration depth � is larger 
than the coherence length �, it becomes 
energetically favorable for domain walls to 

form between the superconducting and nor­
mal regions. When such a superconductor, 
called Type II, is in a magnetic field, the free 
energy can be lowered by causing domains 
of normal material containing trapped flux 
to form with low-energy boundaries cre­
ated between the normal core and the sur­
rounding superconducting material. When 
the applied magnetic field exceeds a value 
referred to as the lower critical field, Bc1, 
magnetic flux is able to penetrate in quan­
tized units by forming cylindrically sym­
metric domains called vortices. For applied 
fields slightly above Bc1, the magnetic field 
inside a Type II superconductor is strong in 
the normal cores of the vortices, decreases 
with distance from the cores, and becomes 
very small far away. For much higher applied 
fields the vortices overlap and the field inside 

337 
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the superconductor becomes strong every­
where. Eventually, when the applied field 
reaches a value called the upper critical field 
Bc2, the material becomes normal. Alloys 
and compounds exhibit Type II supercon­
ductivity, with mixed-type magnetic behav­
ior and partial flux penetration above Bc1. 
Type II superconductors also have zero resis­
tance, but their perfect diamagnetism occurs 
only below the lower critical field Bc1. The 
superconductors used in practical applica­
tions, which have relatively high transition 
temperatures, carry large currents and often 
operate in large magnetic fields, are all of 
Type II. Their properties will be described in 
this chapter. In the latter part of the chapter 
we will examine the properties of the vor­
tices, discussing how they confine flux, how 
they interact, and how they move about. 

II. INTERNAL AND CRITICAL FIELDS 

A. Magnetic Field Penetration 

The general expression (1.69) 

B = �0�H +M� (12.1) 

is valid both inside and outside a super­
conducting sample in an applied field. For 
simplicity we will examine the case of an 
elongated cylindrical superconductor with its 
axis in the direction of the applied mag­
netic field, as shown in Fig. 12.1. For this 
“parallel” geometry the boundary condition 
(1.74) requires the H fields outside �Happ = 
Bapp/�0� and inside �Hin� to be equal at the 
surface of the sample, 

Happ = Hin (12.2) 

If we apply Eq. (12.1) to the fields inside 
a Type I superconductivity and recall that 
Bin = 0, we obtain for the magnetization in 
the sample, with the aid of Eq. (12.2) 

�0M = −Bapp� (12.3) 

12 TYPE II SUPERCONDUCTIVITY 

Figure 12.1 Internal fields produced inside a per­
fectly superconducting cylinder �� = −1� in an external 
magnetic field Bapp =�0 Happ applied parallel to its axis. 
This arrangement is referred to as parallel geometry. 

Above the critical field Bc the mate­
rial becomes normal, the magnetization M 
becomes negligibly small, and Bin ≈ Bapp. 
This situation is indicated in Fig. 2.27 and 
plotted in Fig. 12.2, with the field �0Hin 

below Bc indicated by a dashed line in the 
latter figure. 

The corresponding diagram for a Type II 
superconductor has two critical fields, Bc1, 
the field where flux begins to penetrate, and 
Bc2, the field where the material becomes 
normal. For this case, again applying the 
boundary condition (12.2), the internal field 
and magnetization given by 

�0M = −Bapp 0 ≤ Bapp ≤ Bc1	 (12.4a) 
Bin = 0 

�0M = −�Bapp −Bin� Bc1 ≤ Bapp ≤ Bc2	 

(12.4b) 

are shown plotted in Figs. 12.3 and 12.4, 
respectively. The dashed line ��0Hin� in 
Fig. 12.3 represents asymptote of Bin as it 
approaches Bc2. Also shown in these two 



Elsevier AMS Job code: SUP CH12-P088761 22-6-2007 9:39a.m. Page:339 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

339 II INTERNAL AND CRITICAL FIELDS 

Figure 12.2 Internal fields Bin and Hin and magne­
tization M for an ideal Type I superconductor. Use is 
made of the permeability �0 of free space in this and 
the following two figures so that Bin 	 �0 Hin , and �0M 
have the same units, in accordance with Eq. (12.1). 

Figure 12.3 Internal fields Bin and Hin and magne­
tization M for an ideal Type II superconductor, using 
the notation of Fig. 12.2. 

Figure 12.4 Dependence of magnetization M on the applied field 
for an ideal Type II superconductor. The equality of the areas separated 
by the thermodynamic critical field Bc is indicated. 
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figures is the thermodynamic critical field Bc 

defined by the expression 

∫ Bc ( )

Bapp +�0M dBapp


Bc1 ∫ Bc2 = �0 �−M� dBapp	 (12.5) 
Bc 

which makes the two areas shown shaded in 
Fig. 12.4 equal. Figures 12.2, 12.3, and 12.4 
are idealized cases; in practice, the actual 
magnetization and internal field curves are 
rounded, as indicated in Fig. 12.5. 

12 TYPE II SUPERCONDUCTIVITY 

We used the parallel geometry arrange­
ment because it avoids the complications 
of demagnetization effects; these were dis­
cussed later in Chapter 5, Sections X and XI. 
For this geometry the demagnetization factor 
N , which is a measure of these complica­
tions, is zero. 

B. Ginzburg-Landau Parameter 

In Chapter 6, Sections V and VII, 
respectively, we introduced two characteris­
tic length parameters of a superconductor— 
the coherence length � and the penetration 

Figure 12.5 Dependence of internal magnetic field Bin and magnetization M 
on an applied field Bapp for a nonidealized Type II superconductor in which the 
curves near the lower-critical field are rounded. This is in contrast to the idealized 
cases of Figs. 12.3 and 12.4 which exhibit abrupt changes in Bin and M when the 
applied field passes through the value Bc1. 
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depth �. Their ratio is the Ginzburg–Landau 
parameter 
 of Eq. 6.83, 


 = � (12.6) 

The density of super electrons ns, which 
characterizes the superconducting state, 
increases from zero at the interface with a 
normal material to a constant value far inside, 
and the length scale for this to occur is 
the coherence length �. An external mag­
netic field B decays exponentially to zero 
inside a superconductor, with length scale �. 
Figure 12.6 plots these distance dependences 
of ns and B near the boundary of a super­
conductor with a normal material for the two 
cases 
 < 1 and 
 > 1. 

For a Type I superconductor the coher­
ence length is the larger of the two length 
scales, so superconducting coherence is 

maintained over relatively large distances 
within the sample. This overall coherence 
of the superconducting electrons is not dis­
turbed by the presence of external mag­
netic fields. 

When, on the other hand, the material is 
Type II, the penetration depth � is the larger 
of the two length parameters, and external 
magnetic fields can penetrate to a distance 
of several or more coherence lengths into the 
sample, as shown in Fig. 12.6b. Thus, near 
the interface relatively large magnetic field 
strengths coexist with high concentrations 
of superconducting electrons. In addition, 
inside the superconductor we find tubular 
regions of confined magnetic flux (the vor­
tices) as already noted. These have an effec­
tive radius of a penetration depth beyond 
which the magnetic field decays approxi­
mately exponentially to zero, in the manner 

Figure 12.6 Increase in the number of superconducting electrons ns and decay 
of the magnetic field Bin with distance x from the surface of the superconductor. 
The coherence length � and penetration depth � associated with the change in ns 

and Bin, respectively, are shown. (a) Type I superconductor, with � > �, and (b) 
Type II superconductor, with � > �, and Bapp < Bc1. 



Elsevier AMS Job code: SUP CH12-P088761 22-6-2007 9:39a.m. Page:342 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

342 12 TYPE II SUPERCONDUCTIVITY 

Figure 12.7 Sketch of (a) the magnetic field around an individual vortex, and (b) 
the field (top) from a group of nearby overlapping vortices (bottom). The coherence-
length radius of the core, penetration-depth radius of the field outside the core, and 
decay of B at large distances are indicated for an individual vortex. The region of 
fluxoid quantization is cross-hatched for the individual vortex and for one of the 
overlapping vortices. 

illustrated in Fig. 12.7. As the applied field 
increases, more and more vortices form and 
their magnetic fields overlap, as indicated in 
Fig. 12.7b. Type II material is said to be in a 
mixed state over the range Bc1 < Bapp < Bc2 

of applied fields. 
Values of �	 �, and 
 for a number 

of superconducting materials are given in 
Table 12.1. Superconductors are classified 
as Type I or Type II depending on whether 
the parameter 
 is less than or greater than √ 
1/ 2, respectively. We see from the table 
that all the elements (except for Nb) are Type 
I and that all the compounds are Type II, 
with the copper-oxide superconductors hav­
ing the highest 
 values, on the order of 100. 
Many of the data in the table are averages 
from several earlier compilations that do not 
agree very closely. The scatter in the values 
of � and � listed in Table 12.2 for five of the 
elements is comparable to that of the high-
temperature superconductors in Table III-1 
of our earlier work (Poole et al., 1988). 

C. Critical Fields 

In Chapter 4, Section VIII, and 
Chapter 6, Section IV, we saw that a Type I 
superconductor has a critical field Bc, and in 
Eq. (4.37) we equated the difference Gn – Gs 

in the Gibbs free energy between the normal 
and the superconducting states to the mag­
netic energy Bc

2/2 �0 of this critical field, 

B2 

Gn −Gs = c (12.7)
2�0 

Since this is a thermodynamic expression, 
Bc is called the thermodynamic critical 
field. Both Type I and Type II supercon­
ductors have thermodynamic critical fields. 
In addition, a Type II superconductor has 
lower- and upper-critical fields, Bc1 and Bc2, 
respectively, given by 

�0 ln 
 
Bc1 = 	 (12.8)

4
�2 

�0Bc2 = � (12.9)
2
�2 



Elsevier AMS Job code: SUP CH12-P088761 22-6-2007 9:39a.m. Page:343 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

343 II INTERNAL AND CRITICAL FIELDS 

Table 12.1 Coherence Length �, Penetration Depth �, and Ginzburg–Landau 
Parameter � of Various Superconductorsa 

Material Tc �K� � �nm� � �nm� � ��/�� Source 

Cd 0�56 760 110 0�14 Meservey and Schwartz (1969)

Ala 1�18 15�10 40 0�03 Table 9.2

Ina 3�41 360 40 0�11 Table 9.2

Sna 3�72 180 42 0�23 Table 9.2

Ta 4�4  93  35  0�38 Buckel (1991)

Pba 7�20 82 39 0�48 Table 9.2

Nba 9�25 39 52 1�28 Table 9.2

Pb–In 7�0 30 150 5�0 Orlando and Delin (1991)

Pb–Bi 8�3 20 200 10 Orlando and Delin (1991)

Nb–Ti 9�5 4 300 75 Orlando and Delin (1991)

Nb–N 16 5 200 40 Orlando and Delin (1991)

PbMo6S8 (Chevrel) 15 2 200 100 Orlando and Delin (1991)

V3Ga �A15� 15 ≈2�5  90  ≈35 Orlando and Delin (1991)

V3Si �A15� 16 3 60 20 Orlando and Delin (1991)

Nb3Sn �A15� 18 3 65 22 Orlando and Delin (1991)

Nb3Ge �A15� 23�2 3 90 30 Orlando and Delin (1991)

K3C60 19 2�6 240 92 Holczer et al. (1991)

Rb3C60 29�6 2�0 247 124 Sparn et al. (1992)

�La0�925Sr0�075�2CuO4 

b 37 2�0 200 100 Poole et al. (1988)

YBa2Cu3O7 

b 89 1�8 170 95 Poole et al. (1988)

HgBaCaCuO 126 2�3 Gao et al. (1993)

HgBa2Ca2Cu3O8+� 131 100 Schilling et al. (1994b)


a Figures are rounded averages from Table 12.2.

b Averages of the polycrystalline data from our earlier Table III-1 (1988).


Table 12.2 Coherence Length � and Penetration Depth � of Five Superconducting 
Elements from Several Reportsa 

Parameter Al In Sn Pb Nb Reference 

⎧ 
⎪ 360 175 510 39 Buckel (1991) ⎪ ⎨1360 275 94 74 Huebener (1979) 

Coherence length ⎪1600 360 230 90 40 Orlando and Delin (1991) ⎪�	 nm ⎩
1600 440 230 83 38 Van Duzer and Turner (1981) 
⎧ 
⎪ 24 31 32 32 Buckel (1991) ⎪ ⎨51 47 52 47 Huebener (1979) 

Penetration depth ⎪ 50 65 50 40 85 Orlando and Delin (1991) ⎪�	 nm ⎩
16 21 36 37 39 Van Duzer and Turner (1981) 

a Some of the data are reported averages from earlier primary sources. Table 12.1 lists rounded averages calculated 
from these values, with the entry � = 510 nm for Pb excluded. 

These can be expressed in terms of the as follows: 
thermodynamic critical field Bc, B ln 
 

Bc1 = √c 	 (12.11) 
�0

2 
 
Bc = 

2 
√ 

2
�� 
	 (12.10) 

Bc2 =
√ 

2 
Bc� (12.12) 
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344 12 TYPE II SUPERCONDUCTIVITY 

It is also of interest to write down the ratio Figure 12.3 shows the position of the lower 
and the product of the two critical fields: and upper critical fields as well as the ther­

Bc2/Bc1 = 2
2/ ln 
	 (12.13a) 
modynamic critical field on the magnetiza­
tion curve, and Table 12.3 lists the critical 

�Bc1Bc2�
1/2 = Bc�ln 
�1/2� (12.13b) fields of a few Type II superconductors. 

Table 12.3 Critical Fields of Selected Type II Superconductorsa 

Material Tc �K� Bcl �mT� Bc �mT� Bc2 �T� Reference 

Nb wire, RRR = 750 9�3 181�0 0�37 2�0 Roberts (1976) 
Nb wire, cold-drawn 9�3 248�0 ≈10�0 Roberts (1976) 
In0�95Pb0�05 (alloy) 3�7  31�8  37�5 0�049 Roberts (1976) 
Mo≈0�1Nb≈0�9 (alloy) 6�4  29�0  78�5 0�414 Roberts (1976) 
Mo0�66Re0�34 (alloy) 11�8  38�1 0�113 Roberts (1976) 
Nb0�99Ta0�01 (alloy) 8�8 173�0  20�4 0�445 Roberts (1976) 
Nb–Ti 9�5  13�0 Orlando and Delin (1991); Van 

Duzer and Turner (1981) 
CTa (NaCl Structure) ≈10�0  22�0  81�0 0�46 Roberts (1976) 
Nb–N (NaCl Structure) 16�0 9�3  15�0 Orlando and Delin (1991); Roberts 

(1976) 
Cr3Ir �A15� 0�75 16�8 1�05 Roberts (1976) 
V3Ge �A15� 6�8 ≈5�0 Roberts (1976) 
V3Ga�A15� 15�0  23�0 Orlando and Delin (1991); Van 

Duzer and Turner (1981) 
V3Si �A15� 16�0  55�0 670�0  23�0 Roberts (1976) 
Nb3Sn �A15� 18�2  35�0 440�0  23�0 Roberts (1976) 
Nb3Ge �A15� 23�1  37�0 Orlando and Delin (1991); Van 

Duzer and Turner (1981) 
HfV2 (Laves) 9�2 187�0  21�7 Vonsovsky et al. (1982, p. 376) 
�Hf0�5Zr0�5�V2 (Laves) 10�1 197�0  28�3 Vonsovsky et al. (1982, p. 376) 
ZrV2 (Laves) 8�5 219�0  16�5 Vonsovsky et al. (1982, p. 376) 
NbSe2 7�2 7�2 204�0  17�4 Roberts (1976) 
PbMo6Se8 (Chevrel) 3�8 3�8 Vonsovsky et al. (1982, p. 420) 
LaMo6S8 (Chevrel) ≈6�5 5�4 Vonsovsky et al. (1982, p. 420) 
LaMo6Se8 (Chevrel) 11�0  44�5 Vonsovsky et al. (1982, p. 420) 
SnMo6S8 (Chevrel) 11�8  34�0 Vonsovsky et al. (1982, p. 420) 
PbMo6S8 (Chevrel) 15�0  60�0 Orlando and Delin (1991) 
U0�97Th0�03Be13 (heavy 0�35 4�0 Rauchschwalbe et al. (1987) 

fermion) 
UPt3 (heavy fermion) 0�46 1�9 Schenström et al. (1989) 
U0�985La0�015Be13 (heavy 0�57 3�8 Dalichaouch et al. (1991) 

fermion) 
UBe13 (heavy fermion) 0�9 6�0 Maple et al. (1984) 
K3C60 (buckyball) 19�0  13�0  32�0 Boebinger et al. (1992); Foner et al. 

(1992); Holczer et al. (1991); C. 
E. Johnson et al. (1992); Z. H. 
Wang et al. (1993) 

Rb3C60 (buckyball) 29�6  12�0  57�0 Foner et al. (1992); C. E. Johnson 
et al. (1992); Sparn et al. (1992) 

HgBa2CuO4+� 99 103 >35 Thompson et al. (1993) 

a Some of the data are averages from more than one source. 
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Figure 12.8 Comparison of the temperature dependence of the upper-critical 
fields Bc2 of Nb–Ti, Nb3Ge, LaSrCuO, YBaCuO, and TlBaCaO. The slopes are 
close to the Pauli limit 1.83 T/K (Poole et al. 1988, p. 8). 

Section IV gives expressions similar to 
Eqs. (12.8–12.12) for anisotropic cases. 

When the applied magnetic field is per­
pendicular to the surface of the superconduc­
tor, the upper critical field is truly Bc2. When 
it is parallel to the surface, however, it turns 
out that the superconducting state can persist 
in a thin surface sheath for applied surface 
fields up to the higher value Bc3 = 1�69 Bc2 

(Saint-James and de Gennes, 1963; Saint-
James et al., 1969; Van Duzer and Turner, 
1981, p. 319; Walton et al., 1974; Yuan and 
Whitehead, 1991). 

The temperature dependence of the ther­
modynamic critical field Bc is given in 
Chapter 2, Section XIII. The lower and upper 
critical fields of Type II superconductors 
have a similar temperature dependence. The 
fields Bc2 needed to extinguish Type II super­
conductivity are much larger than those Bc 

that are sufficient for extinguishing the Type 
I variety. These large upper-critical fields 
make Type II superconductors suitable for 
magnet applications. 

Quoted upper-critical fields are usually 
given for 4.2 K or for extrapolations to 0 K. 

Values of technological interest are the 4.2 K 
fields for the low-temperature supercon­
ductors and the 77 K fields for the high-
temperature superconductors. For example, 
Bc2 for the standard magnetic material NbTi 
is 10 T at 4 K and can be 30 T or more 
at 77 K for high-temperature superconduc­
tors, as shown in Fig. 12.8 (Fischer, 1978; 
Newhouse, 1969, p. 1268; Vonsovsky et al., 
1982, p. 431). Theoretical articles have 
appeared that discuss upper-critical fields 
(e.g., Brézin et al., 1990; Estrera and Arnold, 
1989; Norman, 1990; Pérez-González and 
Carbotte, 1992; Pérez-González et al., 1992; 
Santhanam and Chi, 1988; Theodorakis and 
Tesanovic, 1989). 

III. VORTICES 

We have seen that an applied mag­
netic field Bapp penetrates a superconductor 
in the mixed-state, Bc1 < Bapp < Bc2. Pene­
tration occurs in the form of tubes, called 
vortices (see Fig. 12.9), which serve to con­
fine the flux (Abrikosov 1957; Belitz 1990). 
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Figure 12.9 Sketch of shielding currents circulating 
around a vortex core. 

The highest field is in the core, which has a 
radius �. The core is surrounded by a region 
of larger radius � within which magnetic flux 
and screening currents flowing around the 
core are present together, as is clear by com­
paring Figs. 12.7 and 12.9. The current den­
sity Js of these shielding currents decays with 
distance from the core in an approximately 
exponential manner. Analytical expressions 
for the distance dependence of B and J are 
derived in the following section for the high-
kappa �
 � 1� approximation. 

A. Magnetic Fields 

Equation (6.39) provides us with an 
expression for the magnetic flux passing 
through a region, 

∫ �0m ∗ ∫ J ·dI
B ·dS + 

e ∗2 ���2 
= n�0	 (12.14) 

where n is the number of vortex cores 
enclosed by the integrals. For an isolated vor­
tex n = 1 because it is energetically more 
favorable for two or more quanta to form sep­
arate vortices rather than to coexist together 
in the same vortex. Integration of B over the 
cross-sectional area of an isolated vortex can 

12 TYPE II SUPERCONDUCTIVITY 

be taken from r = 0 to  r = �, so the sur­
face integral is numerically equal to the flux 
quantum �0, 

B ·dS = �0	 (12.15) 

and the line integral vanishes because J 
become negligibly small at large distances. 
The quantum condition (12.15) fixes the 
total magnetic flux in an isolated vortex at 
one fluxoid, including flux in the core and 
in the surrounding region. The possibility 
of vortices containing two or more quanta 
has been discussed (Buzdin, 1993; Sachdev, 
1992; Tokuyasu et al., 1990). 

As the applied magnetic field increases, 
the density of vortices increases and they 
begin to overlap, making the vortex–vortex 
nearest-neighbor distance less than the pen­
etration depth. The high-density case can be 
treated by assuming that the magnetic field 
at any point is a linear superposition of the 
fields from all of the overlapping vortices. 
At high densities Bin becomes very large and 
the variation of the field in the space between 
the cores becomes very small, as indicated 
in Fig. 12.10. Nevertheless, the quantization 
condition still applies and each vortex has, 
on average, one quantum of flux �0 associ­
ated with it, as indicated in Fig. 12.7b. For a 
regular two-dimensional lattice arrangement 
of vortices, Eq. (12.15) holds as long as the 
integration is carried out over the vortex unit 
cell; the line integral (9.14) of the current 
density vanishes when it is taken around the 
periphery of this cell. 

When � is much larger than �, as is the  
case with the high-temperature superconduc­
tors, there is considerable overlap of vortices 
throughout most of the mixed-state range, 
and the magnetic flux is present mainly in 
the surrounding region, rather than in the 
actual cores. 

There is no limit to the length of a vor­
tex. Along the axis, which is also the applied 
field direction, the magnetic field lines are 
continuous. Thus the flux does not begin and 
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Figure 12.10 Sketch showing how the magnetic 
field Bin inside a superconductor increases as the con­
centration of vortices increases and their fields increas­
ingly overlap. 

end inside the superconductor, but instead 
enters and leaves at the superconductor sur­
face, which is also where the vortices begin 
and end. This is illustrated in Fig. 12.11. 

We have seen that a vortex has a core 
radius equal to the coherence length � and 
a surrounding outer region with radius equal 
to the penetration depth �. Such an entity 
can only exist in a Type II superconductor, 
where � is greater than �. A vortex does not 
exist, and is not even a meaningful concept 
under Type I conditions �� > ��. 

Scanning tunneling microscope studies 
of superconducting surfaces (H. F. Hess 
et al., 1989, 1990, 1991; Karrai et al., 1992; 
Renner et al., 1991) reveal an enhancement 
of the differential tunneling conductance (see 
Chapter 15, Section V) in the vortex core. 
This has been attributed to the presence of 
bound states of quasiparticles in the core. As 
the magnetic field increases, additional vor­
tices form accompanied by the breakup of 
Cooper pairs, and more and more quasiparti-

Figure 12.11 Passage of external magnetic field 
lines through a flat-plat superconductor in the region of 
a vortex. 

cles or normal electrons become localized in 
the vortex cores (Daemen and Overhauser, 
1989; Gygi and Schlüter, 1990a, b, 1991; 
Klein, 1989, 1990; Overhauser and Daemen, 
1989; Shore et al., 1989; Ullah et al., 1990). 

B. High-Kappa Approximation 

To obtain a description of vortices that 
is more quantitative in nature as opposed to 
the rather qualitative description presented 
in the previous section, it will be helpful to 
have a closed-form expression for the dis­
tance dependence of the confined magnetic 
fields. For the high-
 limit, � � �, which 
is valid for the copper-oxide superconduc­
tors that typically have 
 ≈ 100, we can 
make use of the Helmholtz equations that 
were derived from the London formalism in 
Chapter 6, Section IX. The vortex is assumed 
to be infinitely long and axially symmetric 
so that there are no z or angular dependences 
of its field distribution. The problem is thus 
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equivalent to the two-dimensional problem 
of determining the radial dependences. 

The magnetic field of the vortex is in 
the z direction, and its radial dependence 
outside the vortex core is obtained from 
the Helmholtz Eq. (6.67). Here we will 
write the Helmholtz equation in cylindrical 
coordinates for the two-dimensional case of 
axial symmetry without assuming any angu­
lar dependence, 

�2 d d 
r B −B = 0	 (12.16) 

r dr dr 

This equation has an exact solution, 

�0B�r� = K0�r/��	 (12.17)
2
�2 

where K0�r/�� is a zeroth-order modified 
Bessel function. With the aid of Eq. (12.8) 
this can be written 

K0�r/��B�r� = � (12.18)Bc1 1 ln�
�2 

To obtain the current density we sub­
stitute Eq. (12.17) in the Maxwell equation 
for Bin, 

� ×Bin = �0Js	 (12.19) 

to obtain 

�0Js�r� = K1�r/�� (12.20) 
2
�0�

3 

K1�r/�� = 	 (12.21)J0 1 ln�
�2 

where K1�r/�� is a first-order modified 
Bessel function, and the characteristic cur­
rent density Jc is defined in analogy with 
Eq. (2.51), 

Jc = Bc1/�0�� (12.22) 

The function K1�r/�� results from dif­
ferentiation of Eq. (12.19), as expected 

12 TYPE II SUPERCONDUCTIVITY 

from the modified Bessel function recur­
sion relation K1�x� = −dK0�x�/dx (Arfken, 
1985, p. 614). The current density 
also satisfies the Helmholtz equation, 
Eq. (6.68), expressed in cylindrical coordi­
nates (Eq. 12.16)) as 

�2 d d 
r J +J = 0� (12.23) 

r dr dr s s 

Figure 12.12 compares the distance depen­
dence of the modified Bessel functions 
K0�r/�� and K1�r/�� associated with B�r� 
and J �r�, respectively. s 

These modified Bessel functions have 
asymptotic behaviors at small radial dis­
tances, 

( r ) 2� 
K0 ≈ ln −� r  	 �	 (12.24)

� r 

1�123� ≈ ln r 	 �	 (12.25) 
r 

( r ) � 
K1 ≈ r 	 �	 (12.26)

� r 

Figure 12.12 Comparison of the distance depen­
dence of the zero-order �K0 � and first-order �K1� modi­
fied Bessel functions associated with the magnetic field 
and current density, respectively, of a vortex. Asymp­
totic behavior at short distances �· · · · · · ·� is indicated. 
Both modified Bessel functions have the same large-
distance asymptotic behavior (– – – – – –),  as  shown 
(Aktas, 1993). 
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where � = 0�57721566 � � �  is the Euler– 
Mascheroni constant (Arfken, 1985, p. 284) 
and the factor 2e−� = 1�123. These expres­
sions show that K1�r� �K0�r� near the core, 
where r 	 �, as indicated in Fig. 12.12. 
At large distances the corresponding expres­
sions are 

( r ) exp�−r/��
K0 ≈ r � � (12.27)

� �2r/
��1/2


( r ) exp�−r/��

K1 ≈ r � �� (12.28)

� �2r/
��1/2 

Figure 12.12 compares the asymptotic 
behaviors with the actual functions K0�r/�� 
and K1�r/��. These large-distance expres­
sions permit us to express the magnetic field 
and current density far from the core in 
the form 

�2
�1/2 exp�−r/��
B = Bc1 r � �	 

ln�
� �r/��1/2 

(12.29) 

�2
�1/2 exp�−r/��
Js = Jc r � �� 

ln�
� �r/��1/2 

(12.30) 

We see from Eqs. 12.24 and (12.26) that 
both B and Js are singular at r = 0. Since the 
core is so small in the high-kappa approxi­
mation, it is appropriate to remove the singu­
larity by assuming that the magnetic field in 
the core is constant with the value B(0) given 
by Eq. (12.17) for r = �. Even if the math­
ematical singularity were not removed, the 
total flux would still remain finite as r → 0, 
as is proven in Problem 5. In Problem 3 we 
derive the following expression for the frac­
tion of the total flux of the vortex that is 
present in the core: 

�core ≈ ��0/2
2� ln 2
+ 1 −� � (12.31)
2 

Figure 12.13 sketches the dependence of 
�core/�0 on k. 

Since the magnetic field in the sample 
is confined to vortices, the total flux is �0 

Figure 12.13 Fraction of the total flux quantum, 
�core/�0, present in the core of an isolated vortex as a 
function of the GL parameter k. 

times the number of vortices, and the average 
internal field Bin, given by 

Bin = NA�0	 (12.32) 

is proportional to NA, the number of vor­
tices per unit area. For high applied fields 
much larger than Bc1 but, of course, less 
than Bc2, the internal field is approxi­
mately proportional to the applied field (see 
Fig. 12.3), and therefore the density of vor­
tices becomes approximately proportional to 
the applied field. 

C. Average Internal Field 
and Vortex Separation 

Since interaction between the vortices is 
repulsive, as we will show in Section V.A, 
the vortices assume the arrangement that will 
keep them furthest apart—namely, the two-
dimensional hexagonal lattice structure illus­
trated in Fig. 12.14. To observe this structure 
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Figure 12.14 Two-dimensional hexagonal lattice of 
vortex cores. 

using what is called the Bitter (1931) tech­
nique, the surface is decorated by expos­
ing it to a gas containing tiny suspended 
magnetic particles that adhere to the vor­
tex cores and show up well on a photo­
graphic plate (Dolan et al., 1989; Gammel 
et al., 1987; Grier et al., 1991; Vinnikov and 
Grigor’eva, 1988). The imaging can also be 
done with a scanning-tunneling (H. F. Hess 
et al., 1989) or scanning-electron micro­
scope, with Lorentz electron microscopy, or 
with electron holography (Bonevich et al., 
1993). Individual vortices have been studied 
by magnetic force microscopy (Hug et al., 
1995; Moser et al., 1995a,b). 

The vortices arrange themselves in a 
hexadic pattern when their density is so high 
as to make the repulsive interactions between 
them appreciable in magnitude. Each vor­√ 
tex will then occupy the area 1

2 3d2 of the 
unit cell sketched in Fig. 12.15, where d is 
the average separation of the vortices. Such 
a structure has been observed on the sur­
faces of classical as well as high-temperature 
superconductors. The average field Bin inside 
the superconductor is given by 

Bin = 
1 
√ 	 (12.33)

3d2 
2 

and the number of vortices N equals the total 
cross-sectional area AT divided by the area √ 
per vortex 1

2 3d2, 

ATN = √ � (12.34)
1 3d2 
2 

Figure 12.15 Vortex unit cell for the hexagonal lat­√ 
tice of Fig. 12.14. The area of the cell is 1

2 3d2. 

The vortex lattice structure is not always 
the hexagonal type depicted in Fig. 12.14 
for it can also depend on the magnetic field 
direction. In low-
 Type II alloys of, for 
example, Nb, Pb, Tc, or V, the vortices form 
a square lattice when the magnetic field is 
parallel to a fourfold crystallographic sym­
metry axis and a hexagonal lattice when Bapp 

is along a threefold axis. When Bapp is along a 
twofold axis direction, a distorted hexagonal 
lattice is observed (Huebener, 1979, pp. 
75ff; Obst, 1971). For YBa2Cu3O7−� in tilted 
applied fields, an SEM micrograph shows “a 
pinstripe array of vortex chains” lying in the 
Bapp, c plane (Gammel and Bishop, 1992), 
and for the applied field perpendicular to the 
c direction, chains of oval-shaped vortices 
are observed (Dolan et al., 1989b). 

D. Vortices near Lower Critical Field 

When the flux first penetrates the super­
conductor at B = Bc1 the vortices are near app 

the surface and isolated. As the applied 
field increases more vortices enter, and their 
mutual repulsion and tendency to diffuse 
causes them to migrate inward. Eventually 
they become sufficiently dense and close 
enough to experience each others’ mutual 
repulsive forces, so they begin to arrange 
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themselves into a more or less regular pat­
tern resembling that in Fig. 12.14. For this 
case we can find an expression for the aver­
age internal field �Bin� in terms of the aver­
age separation d by eliminating �0 from 
Eqs. (12.8) and (12.33) 

8
 �2 

�Bin� = Bc1 √ � (12.35)
3 ln  
 d2 

Therefore, the separation of vortices when 
the average internal field equals the lower-
critical field is given by 

⎛ ⎞1/2 

⎜ 
 ⎟
d = 2 ⎝ √ 1 ⎠ � (12.36) 

3 · ln 
 
2


3�81�
= √ �Bin� = Bc1� (12.37)
ln 
 

√ √ 
Since ln 10 = 1�52 and ln 100 = 2�15, the 
value of 
 does not have much effect on 
the separation of the vortices. Figure 12.16 
shows the dependence of the average internal 
field on their separation 1

2 d/�. 
The process of vortex entry into, and 

exit from, a superconductor is actually more 
complicated than this. It can occur in a sur­
face sheath similar to the one that remains 

superconducting for applied fields in the 
range Bc2 < Bapp < Bc3, as mentioned in 
Section II.C. Walton et al. (1974) assumed 
the presence of a surface layer with “nascent” 
vortices that turn into nucleation sites for the 
formation of vortices. As the applied field 
increases, the interface between the surface 
region containing the vortices and the field-
free bulk is able to move inward by diffusion 
at a velocity proportional to the field gradient 
(Frahm et al., 1991). 

Since it is the applied field rather than 
the internal field which is known experimen­
tally, it is of interest to determine how the 
separation of vortices depends on the ratio 
Bapp/Bc1 between the applied field and the 
lower-critical field. It is assumed that the 
vortices distribute themselves in a regular 
manner to produce a uniform internal field, 
Bin = �Bin�. Figure 12.17, an enlargement 
of the low-field part of Fig. 12.5, shows a 
typical example illustrating an internal field 
increasing with increasing applied field in 
the neighborhood of the lower-critical field. 
From the slope of the curve of Bin versus 
Bapp, we conclude that the internal field will 
reach the value Bc1 when the applied field 
approaches the upper limit of the range Bc1 < 
Bapp < 2Bc1, and we estimate that this might 

Figure 12.16 Relationship between applied and internal fields, Bapp and Bin, 
and half the ratio 1

2 d/� between the vortex separation d and the penetration depth 
�, for two values of 
. For much smaller separations d 	 �	 Bin approaches Bapp. 
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Figure 12.17 The Magnitude of the internal magnetic field Bin (solid line) in a Type II 
superconductor in the neighborhood of the lower-critical field. Bin approaches the dashed unit slope 
line through the origin for very high applied fields. 

occur for Bapp ≈ 1�8Bc1. Using this figure to 
convert from Bin to Bapp graphs of Bapp versus 
1 d/� are plotted in Fig. 12.16. 2 

We see from the figure that when the 
applied field is slightly greater than the lower-
critical field, the vortices are much further 
apart than just one penetration depth. At 
higher applied fields, the vortices move closer 
together until near an applied field Bapp ≈ 
2Bc1 their separation is about two penetration 
depths. For higher applied fields appreciable 
overlap occurs � 12 d < ��. Thus, relatively low 
fields produce a concentration of vortices high 
enough for the vortices to be treated as a con­
tinuum rather than as isolated entities. 

E. Vortices near Upper Critical Field 

When the applied magnetic field 
approaches the upper-critical field Bc2 given 
by Eq. (12.9) the vortices are very close 
together, with their separation d some what 

greater than the coherence length �. Equat­
ing �Bin� and Bc2 in Eqs. (12.9) and (12.33), 
respectively, we obtain an expression for the 
vortex nearest-neighbor distance d in terms 
of the coherence length: 

√ 
d = 2��
/ 3�1/2 (12.38) 

≈ 2�69�� (12.39) 

Since d >  2�, the cores do not quite touch 
for this highest density case. 

F. Contour Plots of Field 
and Current Density 

In Section III.B we wrote down the 
closed-form expressions (12.17) and (12.20), 
respectively, for the magnetic field and cur­
rent density of an isolated vortex, and in 
Fig. 12.12 we plotted the distance depen­
dence of these quantities for an isolated vor­
tex. In this section we will provide plots that 
were constructed from calculations of the 
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Figure 12.18 Geometrical relationships of a vortex unit cell showing the 
midpoint M between three vortices V at which the internal field Bin is a minimum 
and the saddle point S midway between two vortices. The triangle V–S–M is the 
calculational cell, which is one-twelfth the vortex unit cell sketched in Fig. 12.15 
and contains all of the information on the fields and currents. Also shown are the 
current circulation around the vortices V and the midpoint M (Aktas et al., 1994). 

position dependence of the field and the cur- � = 1000 Å and separation d = 400 Å, which 
rent density associated with densely packed corresponds to considerable overlap. We see 
vortices (carried out by Aktas, 1993; Aktas from the figure that the field increases along 
et al., 1994). The computations involved the two paths M → S and M → C. There 
adding the contributions of the many over- is a saddle point S midway between the 
lapping vortices in the neighborhood of a two vortices, with the magnitude of the field 
particular vortex, as indicated in Figs. 12.7b decreasing slightly from S to M and increas­
and 12.10. This meant taking into account ing appreciably from S to V. 
hundreds of vortices, but it was sufficient to Figure 12.18 portrays the current density 
carry out the calculations in only one-twelfth encircling the vortex cores V in one direc­
of the unit cell because the smaller calcula- tion and flowing around the minimum points 
tional cell defined by the triangle V–S–M– M in the opposite direction. Along the path 
C–V of Fig. 12.18 replicates itself 12 times from one vortex to the next the current den-
in the vortex unit cell of Fig. 12.15. sity passes through zero and reverses direc-

The magnetic field is a maximum at tion at the saddle point S. Along the path 
each vortex position V, of course, and a from the minimum point M to a vortex V 
minimum at the midpoint M between three there is a curvature change point C at which 
vortices. Figure 12.19 plots this calculated the current flow switches between clockwise 
field change along the path V → S → M → and counterclockwise circulation. Points V, 
C → V for the case of vortices with “radius” M, and S are well defined geometrically; the 
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Figure 12.19 Magnitude of internal magnetic field along the 
three principal directions V → S	 S → M, and M → V from the 
origin at the vortex V in the calculational cell of Fig. 12.18 for 
d = 400 Å and � = 1000 Å (Aktas, 1993). 

position of point C along the line from V to 
M has to be calculated. Figure 12.20 plots 
the current density calculated along the path 
V → S → M → C → V around the periph­
ery of the calculational cell. A comparison of 
Figs. 12.19 and 12.20 indicates that the cur­
rent density tends to be fairly constant over 
more of the unit cell than is the case with the 
magnetic field. 

The previous few paragraphs describe 
the internal magnetic field on a meso­
scopic scale, with resolution over distances 
comparable with the penetration depth. Ordi­
narily, we are interested in the value of 
the macroscopic internal field, which is an 
average over these mesoscopic field varia­
tions. Forkl et al. (1991) used a magneto-
optical Faraday effect technique to determine 
the distribution of the macroscopic inter­
nal field inside a disk-shaped sample of 
YBa2Cu3O7−�; the results are given in 
Figs. 12.21 and 12.22. Other investigators 
have published similar internal-field pro­
files (Flippen, 1991; Glatzer et al., 1992; 

Mohamed et al., 1989, 1990) and surface-
field profiles (Brüll et al., 1991; H. Muller 
et al., 1991). 

G. Closed Vortices 

The vortices that we have been dis­
cussing are of the open type, in the sense 
that they begin and end at the surface of 
the superconductor. Here the flux is contin­
uous with flux entering and leaving from 
the outside, as indicated in Fig. 12.11. We 
recall from Figs. 2.36 and 6.19 that a trans­
port current flowing in a superconductor 
has encircling magnetic field lines, and that 
the portion of this encircling magnetic flux 
inside the superconducting material will be 
in the form of vortices that close in on 
themselves, basically vortices with loops of 
totally confined flux. The encircling flux in 
the region outside the superconductor is not 
quantized. When both transport and screen­
ing current are present, some of the vortices 
close in on themselves, and some do not. 
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355 IV VORTEX ANISOTROPIES 

Figure 12.20 Current density along the three principal directions V → 
S	 S → M, and M → V measured from the origin at the vortex V in 
the calculational cell of Fig. 12.18 for d = 400 Å and � = 1000 Å. The 
curvature change point C along the path M → V at which the current flow 
direction shifts from clockwise around V to counterclockwise around M 
(cf. Fig. 12.18) is indicated. Comparison with Fig. 12.19 shows that the 
current density exhibits more abrupt changes than the fields (Aktas, 1993). 

IV. VORTEX ANISOTROPIES 

Section III.B gave expressions for the 
magnetic field and current densities associ­
ated with a vortex in a high-
 isotropic super­
conductor. Many superconductors, such as 
those of the high-Tc type, are not isotropic, 
however, and in this section we will exam­
ine the configurations of the resulting vor­
tices. These configurations depend on the 
coherence length and the penetration depth, 
which in turn depend on the anisotropies of 
the carrier effective mass, so we will say 
a few words about these parameters first. 
We will emphasize the case of axial symme­
try; for this case the a and b directions are 
equivalent to each other. Such a geometry 
is exact for tetragonal, and a good approx­

imation for orthorhombic high-temperature 
superconductors. The reader is referred to 
the text by Orlando and Delin (1991) for 
derivations of the various expressions in this 
section. 

An alternative approach to that pre­
sented here considers an isolated vortex as 
having elastic properties that are analogous 
to those of a string under tension (Hanaguri 
et al., 1994; Toner, 1991a; Widom et al., 
1992). The vortex is assumed to be held in 
place at its end points by the coupling to 
the external magnetic field, and when dis­
torted it tends to return to a linear configu­
ration. The flux-line lattice in an anisotropic 
superconductor is more complicated, and has 
been treated using anisotropic elasticity the­
ory (Sardella, 1992). 
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Figure 12.21 Radial distribution of internal mag­
netic field in a superconducting rod of 1 mm radius for 
applied fields from 15 mT to 222 mT. The penetration 
depth � ≈ 20 �m (Forkl et al., 1991). 

Figure 12.22 Radial distribution of internal mag­
netic field in the superconducting rod of Fig. 12.21 
following application of a field of 222 mT and in the 
remanent state following removal of this field (Forkl 
et al., 1991). 

A. Critical Fields and Characteristic 
Lengths 

The electron or hole carriers of an 
anisotropic superconductor have effective 
masses m ∗ that depend on the direction, with 
the principal values ma	 mb, and mc along 
the three principal directions a	 b, and c 
of the crystal. The Ginzburg–Landau theory 
tells us that, on the basis of Eqs. (6.26) and 
(6.45), respectively [cf. Eq. 7.123)]. 

12 TYPE II SUPERCONDUCTIVITY 

�2 = �2/2m ∗�a�	 (12.40) 
∗ 

�2 = m
	 (12.41)

�0e ∗2����2 

the coherence length � is inversely pro­
portional, and the penetration depth � is 
directly proportional, to the square root of 
m ∗, where the factors a and �� of the GL 
theory depend on the temperature. Since the 
anisotropy arises from the effective mass, to 
a first approximation we can write for the 
three principal directions 

√ √ √ 
�a ma = �b mb = �c mc	 (12.42a) 

√ √ √ 
�a/ ma = �b/ mb = �c/ mc� (12.42b) 

Multiplying these expressions together term 
by term gives 

�a�a = �b�b = �c�c	 (12.43) 

which is the basic characteristic length rela­
tionship of anisotropic superconductors. 

Many superconductors, such as the 
cuprates, are axially symmetric with in-plane 
�ma = mb = mab� and axial-direction �mc� 
effective masses. We define the ratio � by 

� = mc/mab	 (12.44) 

with reported values � ≥ 29 for YBa2Cu3O7−� 

(Farrell et al., 1988), � ≥ 3000 for 
Bi2Sr2CaCu2O8 (Farrell et al., 1989b), and 
� ≥ 105 for Tl2Ba2CaCuO8 (Farrell et al., 
1990a). Using Eqs. (12.42)–(12.44) we can 
show that the coherence length �ab and pene­
tration depth �ab in the a	 b plane are related 
to their values �c and �c along the c direction 
through the expression (Kes et al., 1991). 

� = ��ab/�c�2 = ��c/�ab�
2	 (12.45) 

where for the cuprates (Hikita et al., 1987; 
Worthington et al., 1987) we have 

�c < �ab 	 �ab < �c� (12.46) 
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Some reported values of these quantities are 
listed in Table 12.4. 

The GL parameter 
i for the mag­
netic field in the ith principal direction is 
(Chakravarty et al., 1990) 

∣ ∣1/2 ∣�j�k ∣ 

i = 	 (12.47) ∣ �j�k 

∣ 

which gives for the cuprates with the applied 
field in the a	 b-plane �
ab� and along the c 
direction �
 �, respectively, c

∣ ∣1/2 ∣ �ab�c 
∣ 


ab = ∣ �ab�c 
∣∣ (12.48a) 


c = �ab/�ab� (12.48b) 

In the next two sections we will employ these 
quantities to write down explicit expressions 
for the core perimeter, magnetic fields, and 
current densities of vortices in the pres­
ence of anisotropies. An average GL param­
eter 
a� = ��1�2�3/�1�2�3�

1/3 has also been 
defined (Clem and Coffey, 1990). 

B. Core Region and Current Flow 

The vortices described in Section III.B 
for 
 � 1 were axially symmetric, with the 
shielding current flowing in circular paths 
around the axis, as illustrated in Fig. 12.9 
Axial symmetry is also observed for the 
cuprates when the applied field is aligned 
along c. When, however, it is along the b 
(or a) direction, the core cross-section is 
an ellipse with semi-axes �ab and �c along 
the a and c directions, as indicated in 
Fig. 12.23. The current flows in an elliptical 
path with semi-axes ��c and ��ab, as shown 
in Fig. 12.24, where � is a numerical factor 
that depends on the distance of the current 
from the core. We know from Eq. (12.43) 
that �ab/�c = �c/�ab, so the core and cur­√ 
rent flow ellipses have the same ratio � 
of semi-major to semi-minor axis, and hence 

the same eccentricity. The equation for the 
current flow ellipse with � = 1 is  

2 2x z

�2 
+ 

�2 = 1 Bapp��b	 (12.49a) 
c ab 

where x and z are the Cartesian coordinates 
of points on the perimeter. The correspond­
ing current flow equation for the applied field 
along the c direction is a circle, 

2 +y2x

�2 = 1 Bapp��c� (12.49b) 
ab 

Equations (12.49a) and (12.49b) also cor­
respond to loci of constant magnetic field 
around the vortex. They are plotted on 
the left and right sides, respectively, of 
Fig. 12.23 to indicate the relative size of 
the two vortices. Expressions analogous to 
Eqs. (12.49) can be written down for the 
perimeters of the cores. 

Since the current paths are ellipses, each 
increment of current �I flows in a channel 
between a pair of ellipses, in the manner 
illustrated in Fig. 12.24. When the channel 
is narrow, as it is at the top and bottom of 
the figure, the flow is fast, so the current 
density is large, as indicated. Conversely, in 
the wider channels on the left and right, the 
flow is slow and J is small, as indicated. The 
increment of current �I through each part 
of the channel is the same, so the product 
J times the width must be constant, and we 
can write 

Jx�z = Jz�x� (12.50) 

This is a special case of the fluid mechanics 
expression J1A1 = J2A2 for current flow in a 
pipe of variable cross section A. 

C. Critical Fields 

The isotropic expressions for the critical 
fields given in Section III.B can be modi­
fied for anisotropy by using the GL param­
eter 
i (12.47) for the applied field in the i 
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Table 12.4 Coherence Lengths � i and Penetration Depths � i of Various Superconductors in the Symmetry Plane (called the
a�b-plane) and in the Axial Direction (called the c-axis), and Values of the Anisotropy Ratio � 

Material Tc �K� � ab �nm� � c �nm� � ab �nm� � c �nm�  ��mc /mab � Reference 

NbSe2 7�7 2�3 69 230 11 Salamon (1989)

UPt3 (heavy fermion) 0�46 782 707 Broholm et al. (1990)

K-�ET� 2Cu�NCS� 2 9 980 Harshman et al. (1990)


K-�ET� 2Cu�NCS� 2 10 >4 ×104 Farrell et al. (1990b)

K-�ET� 2Cu�N�CN� 2 � 2Br 11�4 650 Lang et al. (1992a, b)

K-ET� 2Cu�N�CN� 2 � 2Br 11�6 3�7 0�4 86 Kwok et al. (1990b)


�La0�925Sr0�075� 2CuO4 34 2�9 Hase et al. (1991)

�La0�91Sr0�09 � 2CuO4 30 3�3 283 Li et al. (1993)

�Nd0�925Ce0�075� 2CuO4 

a 21�5 80 100 Wu et al. (1993)


�Nd0�9Ce0�1 � 2CuO4 
a ≈600 O and Markert (1993)


�Sm0�925Ce0�075� 2CuO4−�
a 11�4 7�9 1�5 Dalichaouch et al. (1990b)


�Sm0�925Ce0�075� 2CuO4−�
a 18 4�8 S. H. Han et al. (1992)


YBa2Cu3O6�5 62 2�0 0�45 19 Vandervoort et al. (1991)

YBa2Cu3O6�9 83 142 >700 Harshman et al. (1989)

YBa2Cu3O6�94 91�2 1�7 150 Ossandon et al. (1992a)


YBa2Cu3O7−� 66 260 Lee and Ginsberg (1991)

YBa2Cu3O7−� 90 2�5 0�8 10 Chaudhari et al. (1987)

YBa2Cu3O7−� 89 3�4 0�7 26 125 25 Worthington et al. (1987)


YBa2Cu3O7−� 92�4 4�3 0�7 27 180 41 Gallagher (1988)


YBa2Cu3O7−� 92 1�2 0�3 89 550 ≈27 Salamon (1989)


YBa2Cu3O7−� 90 1�3 0�2 130 450 ≈25 Krusin-Elbaum et al. (1989)
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YBa2Cu3O7−� 92 1�6 0�3 Welp et al. (1989) 
EuBa2Cu3O7−� 95 2�7 0�6 20 Hikita et al. (1987) 
EuBa2Cu3O7−� 94 3�5 0�38 Y. Tajima et al. (1988) 

TmBa2Cu3O7−� 86 7�4 0�9 68 Noel et al. (1987) 
Y0�8Pr0�2Ba2Cu3O7+� 73 2�4 0�78 9.5 Jia et al. (1992) 
Bi2Sr2CaCu2O8 84 1�1 Johnston and Cho (1990)

Bi2Sr2CaCu2O8 109 500 Maeda et al. (1992) 
Bi2Sr2Ca2Cu3O10 109 2�9 0�09 Matsubara et al. (1992) 
Bi2Sr2Ca2Cu3O10 111 1�0 0�02 Q. Li et al. (1992) 

�Bi	 Pb� 2Sr2CaCu2O8 91 2�0 178 H. Zhang et al. (1992) 
�Bi0�9Pb0�1 � 2Sr2CaCu2O8+� 91�1 2�04 0�037 W. C. Lee et al. (1991) 
�Bi0�9Pb0�1 � 2Sr2Ca2Cu3O10+� 103 1�18 W. C. Lee et al. (1991) 

Pb2Sr2 �Y	 Ca�CaCu3O8 76 1�5 0�3 258 643 ≈12 b Reedyk et al. (1992b) 
Tl2Ba2CaCu2O8−� 100 182 Ning et al. (1992) 
Tl2Ba2Ca2Cu3O10 123 173 480 8 Thompson et al. (1990) 

Tl2Ba2Ca2Cu3O10 100 ≥105 Farrell et al. (1990a) 
HgBa2CuO4+� 93 2�1 117 Thompson et al. (1993) 
HgBa2Ca2Cu3O8+� 133 1�3 130 3500 730 Schilling et al. (1994b) 

Note: The axial direction is along the c-axis for high temperature superconductors, and along the a-axis for typical organic materials.

a This is an electron superconductor.

b An estimate, since the ratios �ab/�c and �c/�ab differ.
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360 12 TYPE II SUPERCONDUCTIVITY 

Figure 12.23 Shape of the core (shaded) and the perimeter one penetration length from the center of a 
vortex for an applied magnetic field along the b (left) and c (right) crystallographic directions, respectively. 
The magnetic field is constant along each ellipse and along each circle. The figure is drawn for the condition 
�c = 2�ab = 6�ab = 12�c . 

Figure 12.24 Flow of differential current �I in an elliptical path around a vortex for an 
applied magnetic field along the b crystallographic axis. The current densities are Jx = �I/�z�y 
on the z-axis, and Jz = �I/�x�y on the x-axis. 

direction, and inserting the appropriate char- �0 

acteristic lengths for the directions perpen- Bc2�i� = 
2
�j�k 

(12.51b) 

dicular to i. When the applied field is along 
the ith principal direction, expressions (12.8) These can be written in terms of the thermo­

and (12.9) for the critical fields Bc1�i� and dynamic critical field Bc, 

Bc2�i� become ln 
iBc1�i� = √ 
2
i 

Bc	 (12.52a) 

Bc1�i� = �0 ln 
i 	 (12.51a) √ 
4
�j�k Bc2�i� = 2
iB 	 (12.52b)c
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361 IV VORTEX ANISOTROPIES 

where B itself (9.10), c 

�0B = √ 	 (12.53)c 
2 2
�i�i 

is independent of the direction since, from 
Eq. (12.43), the product �i�i has the same 
value for i = a	 b	 c. The expressions for 
the ratio 

Bc2�i�/Bc1�i� = 2
i 
2/ ln 
i	 (12.54) 

and the product of these critical fields, 

�Bc1���Bc2�i��
1/2 = Bc�ln 
i�

1/2	 (12.55) 

are generalizations of Eqs. (12.13). For the 
particular case of axial symmetry we have 
for the critical fields in the a, b-plane, 

�0 ln 
abBc1�ab� = 	 (12.56a) 
4
�ab�c 

�0Bc2�ab� = 	 (12.56b)
2
�ab�c 

and along the c direction, 

�0 ln 
cBc1�c� = 	 (12.57a) 
4
�2 

ab 

�0Bc2�c� = 	 (12.57b)
2
�2 

ab 

where 
ab and 
c are defined by Eqs. (12.48). 
The ratio of the upper critical fields, 

Bc2�ab� √ = �	  (12.58)
Bc2�c� 

is a particularly simple expression. 
Table 12.5 provides some experimentally 
determined values of these critical field 
anisotropies. 

D. High-Kappa Approximation 

In Section III.B we wrote down expres­
sions for the radial dependence of the mag­
netic field and current density associated 

with a vortex in an isotropic superconductor. 
Now we will generalize these expressions to 
account for the presence of anisotropy. 

When the applied magnetic field is in the 
z direction, along the c-axis, the vortex has 
axial symmetry and the magnetic field and 
current densities have the distance depen­
dence, 

B2�x	 y� = �0 K0 �x
2 +y 2�1/2/�ab 	 2
�2 

ab 

(12.59) 

Js�x	 y� = 
2
�

�

0

0 

�3 K1 �x
2 +y 2�1/2/�ab 

ab 

yi −xj× 
�x2 +y2�1/2 

	 (12.60) 

where K0 and K1 are zeroth- and first-order 
modified Bessel functions, respectively. 

When the applied magnetic field is in the 
x direction, along the a-axis, the vortex no 
longer has axial symmetry, and the distance 
dependences are more complicated: 

2 2�0 

( 
y z

)1/2 

Bx�y	 z� = K0 + 	 
2
�ab� �2 �2 

c c ab 

(12.61) 

Js�y	 z� = �0


2
�0�ab�c


( 2 2 )1/2 
y z

K1 + 
�2 �2 
c ab × ( )1/22 2y z+ 

�2 �2 
c ab 

× 
�

y 
2 
k − 

�

z 
2 j � (12.62) 

c ab 

Equation (12.62) is obtained from (12.61) 
with the aid of relation � × B = �0Js. 
Analogous expressions can be written down 
for Bapp along y. The asymptotic equa­
tions (12.24)–(12.28) for the modified Bessel 
functions can also be applied to the 
anisotropic case. 
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Table 12.5 Critical Fields of Selected Anisotropic Type II Superconductors

Bab Bc Bab −dBab −dBc
c2 /dT c2 /dT

Material T c (K) (mT) (mT) B c (T) (T) B c2
c (T) (T/K) (T/K) Reference

c1 c1 c2

CeCu2Si2 (heavy fermion) 0�63 2�0 2�4 Assmus et al. (1984) 
�-�ET� 2I3 (organic) 1�5 7 a 36 1�74 b 0�08 Ishiguro and Yamaji (1990)
�-�ET� 2I3 1.6 kbar 7�2  25  2�7 Ishiguro and Yamaji (1990)
�-�ET� 2IBr2 (organic) 2�3 390 1600 3�48 c 1�5 Ishiguro and Yamaji (1990)
�-�ET� 2AuI2 (organic) 4�2 400 2050 ≈6�35 ≈0�8 Ishiguro and Yamagi (1990)
K-�ET� 2Cu�N�CN� 2 �Br 11�6  20  2�2 Kwok et al. (1990b) 
�Sm0�925Ce0�05 � 2CuO4 11�4  28�2 5�2 3�6 0�1 Dalichaouch et al. (1990b) 

(electron type) 
�La0�95Ca0�05 � 2CuO4 ≈14�0 >20 >13 4 0�3 Hidaka et al. (1987) 
�La0�9Ca0�1 � 2CuO4 30 0�2 32  1�5  Li  et al. (1993) 
�La0�93Ca0�07 � 2CuO4 

d ≈34�0 7 30 Naito et al. (1990) 
YBa2Cu3O6�5 62 2�5 8�3 0�38 380 87 8�7 2�0 Vandervoort et al. (1991) 
YBa2Cu3O6�94 91�2 32 115 1�8 Ossandon et al. (1992a) 
YBa2Cu3O7−� 53 520 Dinger et al. (1987) 
YBa2Cu3O7−� 70 130 ≈1�0 0�65 Song et al. (1987) 
YBa2Cu3O7−� 88�8 ≤5 500 2�65 140 29 2�3 0�46 Worthington et al. (1987) 
YBa2Cu3O7−� 92�4 ≤5 500 1�93 240 34 3�8 0�54 Gallagher (1988)
YBa2Cu3O7−� 24 103 ≈1�7 14 Salamon (1989)
YBa2Cu3O7−� 110 40 3�4 1�0 Nakao et al. (1989) 
YBa2Cu3O7−� 90 18 53 ≈1�8 Krusin-Elbaum et al. (1989) 
YBa2Cu3O7−� 92 10�5 1�9 Welp et al. (1989) 
EuBa2Cu3O7−� 95 190 45 3�0 0�7 Hikita et al. (1987) 
EuBa2Cu3O7−� 94�8 245 28 3�8 0�41 Y. Tajima et al. (1988) 
Y0�8Pr0�2Ba2Cu3O7−� 73 174 56 3�4 1�1 Jia et al. (1992) 
Bi2Sr2CaCu2O8+� 90 85 Maeda et al. (1992) 
�Bi	 Pb� 2Sr2CaCu2O8 91 0�65 ≈89 1�4 L. Zhang et al. (1992) 
Bi2Sr2Ca2Cu3O10+� 109 16 0�5 Matsubara et al. (1992) 
Pb2Sr2 �Y	 Ca�Cu3O8 76 9�5  50�5 0�80 590 96 11 1�75 Reedyk et al. (1992b) 
HgBa2Ca2Cu3O8+� 131 45 190 2�0 Schilling et al. (1994b) 

Note: Some of the thermodynamic critical fields B c were calculated from Eq. (12.53) using data from Table 12.4.

a Average of Ba = 5 mT	 Bb = 9 mT;  b Average of Ba 1�78 T	 Bb 1�70 T; c Average of Ba = 3�36 T	 Bb = 3�60 T; d −dBab 1�8 mT/K	 −dBc 5�5 mT/K.
c1 c1 c2 = c2 = c2 c2 c1 /dT = c1 /dT =

362 
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When the applied magnetic field is 
aligned at an oblique angle relative to the c 
direction, the expressions for the magnetic 
field and current density in the neighborhood 
of a vortex become very complicated, and 
we will not try to specify them. 

E. Pancake Vortices 

In high-temperature superconductors the 
coherence length �c along the c-axis is 
less than the average spacing between the 
copper-oxide planes, and hence the cou­
pling between the planes tends to be 
weak. The Lawrence–Doniach model (1971; 
Bulaevskii, 1973; Bulaevskii et al., 1992; 
Clem, 1989, 1991) assumes that the super­
conductor consists of parallel superconduct­
ing layers that are weakly Josephson coupled 
to each other. A vortex perpendicular to these 
layers, which conventionally would be con­
sidered a uniform cylinder of confined flux 
surrounded by circulating currents, is looked Figure 12.25 Stack of two-dimensional pancake 

upon in this model as a stacking of two- vortices aligned along the c direction (Clem, 1991). 

dimensional (2D) pancake-shaped vortices, 
one pancake vortex per layer with surround­
ing, nearly circular current patterns confined 
to the layer. The stacked 2D Abrikosov 
vortices shown in Fig. 12.25 are coupled 
together by means of Josephson vortices 
whose axes thread through the Josephson 
junctions between the superconducting lay­
ers, stretching from the center of each pan­
cake vortex to the center of the adjacent vor­
tices above and below. The field and current 
distributions for the individual pancake vor­
tices in this stack, aligned along c, as well as 
in a “leaning tower” or tilted stack of such Figure 12.26 Pancake vortex model showing a seg­

vortices have been calculated (Clem, 1991). ment of vortex displaced to the right (Maley, 1991). 

Thermal agitation can shake the stack, 
decouple pancake vortices in adjacent lay- F. Oblique Alignment 
ers, and even cause the stack to break up, 
as in a Kosterlitz–Thouless-type transition. When the applied magnetic field is 
Figure 12.26 shows a segment of a vortex inclined at an angle with respect to the c-axis 
displaced but still coupled. In this model of an anisotropic superconductor, neither the 
melting might occur in the direction perpen- internal magnetic field nor the magnetization 
dicular to the layers, with the vortices within is oriented in the same direction as Bapp 

each layer forming 2D solids. (Felner et al., 1989; D. H. Kim et al., 1991b; 
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Kolesnik et al., 1992; L. Liu et al., 1992; 
Tuominen et al., 1990; K. Watanabe et al., 
1991; Welp et al., 1989). This complicates 
the trapping of magnetic flux and align­
ment of the vortices. Elliptically shaped mag­
netic field contours around vortices have 
been published for the case of anisotropy 
(Thiemann et al., 1989). In addition, the 
upper-critical field and critical current both 
depend on the orientation (K. Watanabe 
et al., 1991). Transverse magnetization of 
an Abrikosov lattice, which is absent in 
an isotropic superconductor, has been deter­
mined for the anisotropic case using torque 
measurements (Farrell et al., 1989b; Gray 
et al., 1990). 

V. INDIVIDUAL VORTEX MOTION 

The mutual-repulsion Lorentz force 
Ji ×�j between vortices arising from the 
interaction of the current density Ji of one 
vortex with the flux �j of another causes the 
vortices to become arranged in the hexago­
nal equilibrium configuration of Fig. 12.14. 
During the equilibration process each mov­
ing vortex experiences a frictional or damp­
ing force f = �v that retards its motion, and 
a second force, called the Magnus force, 
which is given by �nse�v × �0�, where ns 

is the density of the superconducting elec­
trons. (The origin of the Magnus force will 
be explained in Section E.) Many vortices 
become trapped at pinning centers and hin­
der the motion of nearby vortices. When the 
pinning forces FP are not sufficiently strong 
to prevent flux motion, the superconductor is 
called soft; otherwise it is called hard. When 
transport current Jtr is present, the Lorentz 
force Jtr ×�0 acts to unpin the vortices and 
induce a collective flux motion. When the 
pinning forces still dominate, this very slow 
motion is called flux creep, and when the 
Lorentz force dominates, the faster motion is 
called flux flow. 

The forces acting on the vortex, such as 
FP and J × �0, are actually forces per unit 

12 TYPE II SUPERCONDUCTIVITY 

length, but we have simplified the notation 
by referring to them as simply forces. 

A. Vortex Repulsion 

It is shown in electrodynamics texts that 
the Lorentz force density f for the interaction 
between an electric current density J and a 
magnetic field B is given by 

f = J ×B� (12.63) 

The force between two vortices may be 
considered as arising from the interaction 
between the magnetic field B of one vortex 
and the current density J present at the posi­
tion of this field and arising from the other 
vortex, as shown in Fig. 12.27. It is assumed 
that both vortices are infinitely long and axi­
ally symmetric and that they are aligned par­
allel to each other a distance d apart. Since f 
is the force per unit volume, the total force F 
is obtained by integrating the current density 
over the volume containing the B field, 

F = J ×Brdrd�dz	 (12.64) 

where cylindrical coordinates, r	 �, and z, 
have been used, and r = �x2 + y2�1/2. Since 
there is no z dependence, it is more appro­
priate to calculate the force per unit length, 
which is given by 

F/L = J�r ′� ×B�r�rdrd�	 (12.65) 

where from Fig. 12.28 the distance r ′ is given 
by 

r ′ = �r2 +d2 −2rd cos ��1/2� (12.66) 

In the high-
 approximation the expressions 
in Eqs. (12.17) and (12.20) for B�r� and 
J�r ′�, respectively, can be substituted in the 
integral, 

�0
2 ∫ ( r ) r ′ 

F/L = 
4
2�0�

5 
K0 �

K1 � 
r dr d�	  

(12.67) 
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Figure 12.27 Repulsive interaction involving the magnetic field B1 in a vortex core 
with current density J2 from another parallel vortex B2. The repulsive force F/L = 
J2 ×�1 is shown. 

Figure 12.28 Coordinates for calculating the repulsive force between two vortices. 

which can be evaluated to give the force per 
unit length. This force, which is indicated 
in Fig. 12.27, is repulsive and moves the 
vortices apart. 

The current density and magnetic field 
strength vary over the region of integration 
in the manner illustrated in Fig. 12.29, and 
Eq. (12.67) cannot be integrated in closed 
form. If the vortices are far enough apart as to 
make the current density effectively constant 
throughout the region of integration, J�r ′� 

may be approximated by J�d� and taken out­
side the integral, 

F/L = J�d� × B�r�r dr d�� (12.68) 

We know that the magnetic field B integrated 
over the cross-section of a vortex equals a 
fluxoid �0 oriented along z, giving us 

F/L = J ×�0� (12.69) 
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Figure 12.29 Cross section through a vortex core (center) with the strength 
of its magnitude field B directed upward from the page and proportional to the 
density of the dots. The current density lines Js arising from another vortex 
located to the left become more widely separated toward the right, away from 
the other vortex. The Lorentz force density J × B is directed to the right and 
serves to move the two vortices apart. 

As before, the force F is along the negative 
y direction, so it is more convenient to write 
it as a scalar, F . Inserting Eq. (12.20) for 
J�d� and using the approximation (12.28) for 
r � �, we obtain 

F �0
2 exp�−d/�� = √ d � �� 

L 2�0�2
�5�1/2 d 
(12.70) 

Thus the repulsive interaction between vor­
tices is very weak when the vortices are 
far apart. The forces between vortices are 
fairly short range with the penetration depth 
a measure of the range, and they must be 
sufficiently close together, compared to �, 
for their interaction to be appreciable. We 
saw from Fig. 12.17 that an applied field 
Bapp ≈ 1�8 Bc1 can be strong enough to bring 
vortices sufficiently close together for this 
interaction to be effective. 

An analogous case occurs when a wire 
carrying an electric current I = JA interacts 
with a magnetic field B. Equation (12.63) 
applies to this case also, and we write 

F/L = I ×B� (12.71) 

In this case a wire carrying a current I2 is 
encircled by magnetic field lines B2 and a 
second parallel current I1 a distance d away 
interacts with B2 and experiences a force of 
attraction, 

F/L = �cI1I2 

2
d 
(12.72) 

as shown in Fig. 12.30. This repre­
sents a much slower fall-off with dis­
tance than its vortex counterpart (12.70). 
Thus there is a close analogy between the 
interaction of vortices with a current den­
sity “field” and the interaction of current-
carrying wires with a magnetic field. The 
vortices confine B and interact with J , 
while the wires confine J and interact 
with B. A crucial difference is the sign 
of the interaction; one repels and the other 
attracts. 

In an anisotropic superconductor the B 
field of a vortex is not necessarily parallel 
to the vortex core, but depends on the loca­
tion of this field relative to the vortex axis 
and the c direction. There even exist special 
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Figure 12.30 Attractive interaction involving a cur­
rent I1 and the magnetic field B2 from a second parallel 
current I2 following in the same direction. The force of 
attraction F is shown. 

applied field orientations that are tilted with 
respect to the principal axes for which adja­
cent vortices experience an attractive interac­
tion (Bolle et al., 1991; Daemen et al., 1992; 
Kogan et al., 1990). 

B. Pinning 

Pinning forces in general are not well 
understood, and it will be helpful to make a 
few qualitative observations. Various mod­
els and theories to explain pinning have 
been proposed (e.g., Brass et al., 1989; 
Coffey, 1992; Daemen and Gubernatis, 
1991; Glyde et al., 1992; Levitovi, 1991; 
Wördenweber, 1992). 

A pinning force Fp is a short-range force 
that holds the core of a vortex in place at, 
inter alia, a point defect (Giapintzakis et al., 
1992; Hylton and Beasley, 1990), colum­
nar defect (Nelson and Vinokur, 1992; Prost 
et al., 1993), screw dislocation (Ivlev and 
Thompson, 1992; S. Jin et al., 1991), oxy­
gen vacancy (Chudnovsky, 1990; Feenstra 
et al., 1992), inclusion (Murakami et al., 
1991; Sagdahl et al., 1991; Shi et al., 1989, 
1990a, b), grain boundary (Müller et al., 
1991), twin boundary (Kwok et al., 1990a; 
Lairson et al., 1990; J.-Z. Liu et al., 1991; 

367 

Svensmark and Falicov, 1990), intragranular 
or intergranular nonsuperconducting region 
(Davidov et al., 1992; Jung et al., 1990), or 
praseodymium (Pr) doping (Paulius et al., 
1993; Radousky, 1992). The density of pin­
ning centers can be high, with average sep­
arations of 100 Å or less (Martin et al., 
1992; Tessler et al., 1991). Pinning can be 
an activated process involving pinning barri­
ers (Campbell et al., 1990; Kopelvich et al., 
1991; McHenry et al., 1991; Steel and Gray­
beal, 1992; Zhu et al., 1992), with typical 
values between 1 and 12 eV for granular 
YBa2Cu3O7−� (Nikolo and Goldfarb, 1989). 
Vortices can undergo thermally activated 
hopping between pinning centers (Fisher 
et al., 1991; Liu et al., 1991; Martin and 
Hebard, 1991). 

The Lorentz force needed to depin a 
single vortex equals the pinning force. The 
force per unit length needed to produce this 
depinning, Fp, has been found to have the 
temperature dependence 

Fp = Fp�0��1 − �T/Tc��
n	 (12.73) 

with F �0� varying over a wide range from p

10−12 to 4 × 10−4 N/m and n ranging from 
1.5 to 3.5 (Fukami et al., 1991a; Goldstein 
and Moulton, 1989; O. B. Hyun et al., 1989; 
O. B. Hyun et al., 1987; Job and Rosen­
berg, 1992; Park et al., 1992; Shindé et al., 
1990; Wadas et al., 1992; Wu and Srid­
har, 1990). A distribution of pinning (acti­
vation) energies have been reported in the 
range of hundreds of meV (e.g., Civale et al., 
1990; Ferrari et al., 1989; Fukami et al., 
1991b; J.-J. Kim et al., 1991a,b; Mohamed 
and Jung, 1991; Nikolo et al., 1992). Kato 
et al. (1991) suggested that for T = 0�9Tc = 
9 K, a vortex that is 2� from a pinning cen­
ter moves toward it at ≈ 1000 m/sec to be 
trapped in ≈ 10−9 sec. Several workers have 
found the pinning force to be a maximum 
for applied fields of ≈ 1

4 Bc2, with Bapp both 
along and perpendicular to the c direction 
(Cooley et al., 1992; Fukami et al., 1989; 
Satchell et al., 1988). 
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In tetragonal high-temperature super­
conductors such as the bismuth and thallium 
types, the dominant pinning mechanism 
is generally relatively weak interactions 
between vortices and randomly distributed 
defects. In orthorhombic superconductors, 
such as the yttrium compound, twin 
boundaries provide stronger pinning to 
the flux lines. High-temperature super­
conductors tend to have lower pinning 
forces than classical superconductors (Ferrari 
et al., 1991). 

Some authors take into account a har­
monic pinning force Fp = −kx or Fp = 
−k sin�qx� or a stochastic force due to ther­
mal fluctuations (Chen and Dong, 1991; 
Golosovsky et al., 1991, 1992; Inui et al. 
1989). Harmonic pinning can be important 
for oscillating applied fields and thermal 
fluctuations. 

Ionizing radiation increases the concen­
tration of pinning centers (Civale et al., 
1991b; Fleisher et al., 1989; Gerhäuser 
et al., 1992; Konczykowski et al., 1991; 
Weaver et al., 1991), which can have the 
effect of increasing the critical current den­
sity. For example, neutron irradiation of 
HgBa2CuO8+� increased the area of the high 
field �±1T� hysteresis loop, and hence raised 
the value of Jc, by one or two orders of mag­
nitude (Schwartz et al., 1994). This enhance­
ment of Jc is much greater than that obtained 
with other cuprates and suggests a scarcity of 
pinning centers before exposure to the neu­
tron flux. Irradiation can be used to maximize 
J or to optimize the pinning force density for c 

a given applied field Bapp and superconductor 
type (Kahan, 1991; Vlcek et al., 1992). 

C. Equation of Motion 

We will examine the case of an isolated 
vortex �0 in a region of constant current 
density J, as shown in Fig. 12.31. When the 
pinning force exceeds the Lorentz force, 

FP > J ×�0	 (12.74) 

12 TYPE II SUPERCONDUCTIVITY 

Figure 12.31 Lorentz force F = J × � 
exerted on a vortex by a perpendicular transport 
current J. 

the vortex is held in place and no motion 
can occur. When the Lorentz force exceeds 
the pinning force, motion begins. The vortex 
with an effective mass per unit length m� 

(Blatter et al., 1991a; Coffey, 1994; Coffey 
and Clem, 1991; Gittleman and Rosenblum, 
1968; van der Zant et al., 1991) is set 
into motion and accelerated by the Lorentz 
force J×�0, and the two velocity-dependent 
forces come into play. One possible equation 
of motion is 

dv
J ×�0 −�nse�v ×�0� −�v = m� � 

dt 

(12.75) 

There is an initial period of acceleration that 
is too short to be observed, followed by 
steady-state motion at the terminal velocity 
����. The steady-state motion is governed 
by the equation (Heubener, 1979) 

J ×�0 −�nse�v ×�0� −�v = 0	 (12.76) 

with the Lorentz force J × �0 balanced by 
the two velocity-dependent forces. A more 
general expression, written in terms of an 
unspecified dissipative force f, 

J ×�0 −�nse�v ×�0� − f = 0	 (12.77) 
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reduces to Eq. (12.76) for the case f =�v that 
is suggested by intuition. We will comment 
on this more general expression at the end of 
the section. 

D. Onset of Motion 

At the onset of motion the velocity is very 
low and the two velocity-dependent terms in 
Eq. (12.75) can be neglected. This means that 
the initial velocity and acceleration are along 
the J × �0 or x direction. As motion con­
tinues the velocity v�t� increases in magni­
tude toward a terminal value v��� = v� with 
time constant �� as well as shifting direction. 
We will show below that this terminal veloc­
ity vector lies in the x	 y-plane in a direction 
between J and J ×�0. 

To estimate the magnitude of ��, we  
recall from hydrodynamics that the time con­
stant for the approach of an object moving 
in a fluid to its terminal velocity is pro­
portional to the effective mass, and we also 
know that the effective mass is proportional 
to the difference between the mass of the 
object and the mass of fluid which it dis­
places. In other words, it is proportional to 
the difference between the density of the 
object and the density of the medium. Vortex 
motion involves the movement of circulating 
super currents through a background medium 
comprised of super electrons of comparable 
density, and the closeness of these densi­
ties causes m�, and hence ��, to be very 
small. The terminal velocity is reached so 
rapidly that only the final steady-state motion 
need be taken into account. Gurevich and 
Küpfer (1993) investigated the time scales 
involved in flux motion and found values 
ranging from 1 to 104 sec. Carretta and Corti 
(1992) reported an NMR measurement of 
partial flux melting with correlation times of 
tens of microseconds. 

E. Magnus Force 

The Magnus effect involves the force, 
sometimes called the lift force, that is exerted 

on a spinning object moving through a fluid 
medium. This force arises from the Bernoulli 
equation for streamline (non-turbulent) flow, 

1 
��2 +P = const	 (12.78)

2 

where 1
2 ��

2 is the kinetic energy density, P 
is the pressure, and the gravity term �gh is 
negligible and hence omitted. 

When a vortex is moving through a 
medium at the speed ��, as shown in 
Fig. 12.32a, from the viewpoint of an 
observer on the vortex the medium is moving 
at the speed −��, as indicated in Fig. 12.32b. 
On one side of the vortex the velocity �s of 

Figure 12.32 Vortex moving in a superconducting 
medium (a) relative to an x	 y coordinate system fixed 
in the medium, (b) viewed from an x′	 y′ coordinate 
system fixed on the vortex, and (c) resulting deviated 
path in the medium arising from the Magnus (lift) force. 
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the circulating current adds to the velocity of 
the medium and on the other side it subtracts 
from it, in accordance with Fig. 12.32a, and 
for these two cases Eq. (12.78) assumes the 
scalar form 

1 
���� ±�s�

2 +P± = const� (12.79)
2 

Since the kinetic energy is greater for the 
positive sign, it follows from Eq. (12.79) that 
P+ < P−. This pressure difference causes a 
force Flift to be exerted on the moving vortex 
in a direction at right angles to its velocity, 
toward the lower pressure side. The result­
ing deviated path is shown in Fig. 12.32c. 
The sideways acting force, called the Mag-
nus force, is given by −�nse�v� × �0�, as  
indicated in Eqs. (12.75)–(12.77). The Mag-
nus coefficient � has different values in dif­
ferent models. 

F. Steady-State Motion 

For the case of steady-state vortex 
motion with the viscous retarding force f 
given by �v, as in Eq. (12.76), the vectors �v 
and �nse�v ×�0� are mutually perpendicu­
lar, as illustrated in Fig. 12.33a. The vortex 

velocity vector shown in Fig. 12.33b has the 
magnitude �� given by 

J�0�� = 	 (12.80) 
��2��nse�0�

2�1/2 

and subtends the angle ��, where 

tan �� = �nse�0/�	 (12.81) 

with the J ×�0 direction. Thus we see that 
the greater the viscous drag coefficient � 
and the greater the Magnus force coeffi­
cient �ns, the slower the velocity �� of the 
vortices. 

Various theories have been proposed to 
explain steady-state vortex motion. It is com­
mon to assume that the core of the vortex 
is normal, that T 	 Tc (so that normal elec­
trons outside the core can be neglected), that 
� = 1, and that the vortices move freely 
without any influence from pinning. Relax­
ation is so rapid that the distance a vortex 
moves in one relaxation period, ��, is small 
compared to the core radius �. Bardeen and 
Stephen (1965), van Vijfeijken and Niessen 
(1965a,b), and Nozières and Vinen (1966) 
have proposed models for steady-state vortex 

Figure 12.33 Vortex motion at the terminal velocity showing (a) the bal­
ance of forces, and (b) the directions of the current flow (J) and vortex motion 
�v��. These figures are drawn for the case f = �v� of Eq. (12.77). 



Elsevier AMS Job code: SUP CH12-P088761 22-6-2007 9:39a.m. Page:371 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color
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motion based on assumptions of this type. 
Nozières and Vinen assumed that � = 1, and 
wrote Eq. (12.77) in the form 

nse�vs −v�� ×�0 − f = 0	 (12.82) 

asserting that the intuitive choice f = �v� 

does not agree with experiment. Another 
possible choice is f = �vs. Different the­
ories of vortex motion make predictions 
of the Hall resistivity and the Hall angle 
�H of Eq. (1.93) and these predictions can 
be checked with experiment (Chien et al., 
1991; Jing and Ong, 1990; Wang and Ting, 
1992b). The drag force coefficient � can 
be looked upon as proportional to a fluxon 
viscosity. Viscosity coefficients have been 
determined for the yttrium and bismuth com­
pounds (Golosovsky et al., 1992; Matsuda 
et al., 1994). 

G. Intrinsic Pinning 

Pinning forces were introduced in 
Section B for the isotropic case. When the 
applied field is in the c direction there is 
very little anisotropy in the a and b direc­
tions, so that motion proceeds as in the 
isotropic case. When the field is applied in 
the a	 b-plane, the vortex lines are par­
allel to the layers. They have their lowest 
energy when their cores are located between 
the layers (Carneiro, 1992). In the absence 
of pinning centers, vortex motion within the 
layers is uninhibited, but motion perpendicu­
lar to the layers is hindered by what is called 
intrinsic pinning. Intrinsic pinning is observ­
able in untwinned YBa2Cu3O7−� when the 
applied field is aligned along the a	 b-planes 
(Chakravarty et al., 1990; Ivlev and Kopnin, 
1990; Ivlev et al., 1991a, b; Kwok et al., 
1991; Tachi and Takahashi, 1989; vide also 
Feinberg and Villard, 1990). The simulta­
neous presence of two species of vortices, 
with different orientations, has also been dis­
cussed (Daemen et al., 1993). 

H. Vortex Entanglement 

A typical vortex is much longer than 
its core radius and can be pinned in several 
places (Niel and Evetts, 1992). For example, 
a straight vortex aligned along the c direc­
tion of a 1�2 �m-thick grain of YBa2Cu3O7 

has a length of about 1000 unit cells �c = 
1�194 nm�, 500 core radii �� ≈ 2�6 nm�, and 
five penetration depths �� ≈ 0�26 �m�. Such 
a vortex can twist and turn in the material, 
and sections of it might move while others 
remain pinned; it could also undergo a per­
pendicular excursion along the a	 b-plane of 
a high-temperature superconductor. Another 
scenario is for two vortices to become entan­
gled, and if this happens they might undergo 
a reconnection interaction by interchanging 
segments. These configurations and motions 
are much harder to handle mathematically 
in the case of an array of vortices, but they 
are probably a more accurate representation 
of the situation than the more idealized case 
of straight, parallel vortices we have been 
discussing. 

VI. FLUX MOTION 

The previous section dealt with the 
motion of individual vortices. Now we wish 
to talk about the motion of vortices that are 
packed together sufficiently densely to be 
considered as a continuum, or to be thought 
of as moving about together in groups called 
flux bundles. 

A. Flux Continuum 

We saw in Section III.D that the vortices 
in a Type II superconductor are about two 
penetration depths apart when the applied 
magnetic field Bapp reaches a value ≈ 1�8Bc1. 
For Bapp > 2Bc1 there is a strong overlap of 
the magnetic fields from neighboring vor­
tices, and the internal field Bin exhibits spa­
tial variations about an average value that 
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are sketched in Figs. 12.7b and 12.10. The 
overlap is so great that it is reasonable to 
consider an array of vortices as constituting 
a continuum of magnetic flux. 

When in motion such a continuum has 
some of the properties of a highly viscous 
fluid. Many vortices move as a unit or in 
large groups under the action of perturbing 
forces. There are two regimes of flux motion, 
both of which involve dissipation (Palstra 
et al., 1988). The first is flux creep, when the 
pinning force dominates (Anderson, 1962), 
and the second flux flow, when the Lorentz 
force dominates (Kim et al., 1964; Tin­
kham, 1964). 

Flux motion is strongly dependent on 
vortex pinning. Strong pinning centers hold 
individual vortices in place independently 
of the presence of the weaker interaction 
forces from nearby vortices, while weak pin­
ning centers compete with nearby vortices 
in their ability to hold an individual vortex 
in place. A large collection of weak pin­
ning centers produces what is called collec­
tive pinning (Larkin and Ovchinnikov, 1974; 
Ovchinnikov and Ivler, 1991). In this case 
individual vortices cannot move about freely 
because of constraints from their neighbors 
so that a relatively small number of pin­
ning centers can restrain the motion of many 
nearby vortices. 

We know that the condensed phases of 
the liquid and solid state of a particular mate­
rial are characterized by a fixed density, 
whereas the gas phase can have a wide range 
of density. An interesting feature of the con­
densed vortex phases is that they do not occur 
for a fixed density, but rather over a range 
of densities from �min to �max. This range 
may be approximated by the ratio between � 
and �, 

�max ≈ 
2	 (12.83)
�min 

where the Ginzburg-Landau parameter 
 = 
�/� enters as a square because the den­
sities � are two-dimensional. For high­
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temperature superconductors with 
 ≈ 100 
this range of densities is 104. Density varia­
tions and fluctuations can occur during flux 
motion. 

B. Entry and Exit 

The presence of the applied field at the 
surface of the superconductor induces vor­
tices to form right inside the surface, and a 
relatively high local concentration can accu­
mulate. An increase in the applied field 
causes more vortices to enter and move 
inward by diffusion and by virtue of mutual 
repulsion, with some of the vortices becom­
ing pinned during migration. The Lorentz 
force density J ×B associated with the inter­
actions between vortices acts like a magne­
tomechanical pressure serving to push the 
flux inward. The vortices relax to a new 
equilibrium distribution consistent with the 
new screening currents associated with the 
increase in the applied field. 

Foldeaki et al. (1989) found that in 
YBa2Cu3O7−� there is a large difference 
between the rate of flux flow in the case 
of expulsion of flux caused by removal of 
the applied field Bapp following field cool­
ing versus the rate at which flux penetrates 
the sample when Bapp is turned on following 
zero field cooling. The activation energies 
in the former case, 14–28 meV, are signifi­
cantly smaller than those, 34 to 67 meV, in 
the latter case. 

C. Two-Dimensional Fluid 

Ordinarily, we think of a gas as a col­
lection of molecules that are so widely sepa­
rated that the interactions between them are 
negligible, and that the molecules move inde­
pendently of each other except when under­
going elastic collisions that change their 
directions and velocities. A liquid is a 
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collection of molecules that are held closely 
together by short-range attractive forces, 
with thermal energy causing them to move 
around while remaining in contact, thereby 
preserving short-range order. In the solid 
state the nearest-neighbor attractive forces 
dominate over thermal effects, and the 
molecules become fixed in position in a reg­
ular lattice arrangement of the type shown 
on Fig. 12.14, with long-range order. 

Molecules confined to a surface can 
exist in two-dimensional gas, liquid, and 
solid states. If some of the molecules in such 
a two-dimensional fluid become attached to 
the pinning centers, the motion of the fluid 
will be restricted by having to flow past the 
pinned molecules. An array of vortices in a 
superconductor has many of the properties 
of these two-dimensional states of matter, 
but there are some fundamental differences 
between the two cases. First the interactions 
between the vortices are repulsive rather 
than attractive. In addition, the forces have 
two characteristic lengths, a short coherence 
length that constitutes a closest-approach dis­
tance, and a (much) greater penetration depth 
which is a measure of the range of the repul­
sive interaction. The vortices are also much 
longer than their core diameters so they can 
become twisted and distorted, as was already 
mentioned in Section V.H. 

When the average separation of vor­
tices is much greater than the penetration 
depth, they will form a two-dimensional gas 
in which they are able to move indepen­
dently of each other, assuming pinning is 
absent. We can deduce from Fig. 12.16 that 
applied fields only slightly above the lower-
critical field—e.g., Bapp ≈ 1�1Bc1 for 
 ≈ 
100—can produce relatively closely spaced 
vortices (see Problem 6). In addition, the 
lower-critical field is often not a sharply 
defined quantity. As a result of these factors, 
the range of applied fields over which a vor­
tex gas state might be able to exist is too 
small to be significant. It is the condensed 
phases which are mainly of interest. 

373 

D. Dimensionality 

A flux fluid is three-dimensional 
because it occupies a volume of space, but 
it moves in a plane perpendicular to the 
internal field direction, so its motion is 
often treated as two-dimensional. When the 
applied field Bapp is along the c direction of 
a cuprate superconductor, the vortices break 
up into pancake vortices that are confined to 
the CuO2 layers. If the layers then become 
decoupled from each other, the resulting flux 
flow can be looked upon as a movement 
of pancake vortices in each layer that are 
independent of each other. If a strong pin­
ning center exists in one layer, the pancake 
vortices in that layer will flow around it. 
Pancake vortices in the layers above and 
below will not experience that pinning cen­
ter, however. 

There is also a dimensionality in the 
super current flow. We see from Fig. 8.30 
that the cuprates have groups of closely 
spaced and, hence, strongly coupled CuO2 

layers. These CuO2 layers are also more 
widely separated from the next group above 
and below, with the coherence length in the c 
direction less than the distance between pairs 
of superconducting layers or groups of lay­
ers. For example, the Tl2Ba2Ca n Cun+1O6+2n 

compound has n + 1 closely spaced CuO2 

planes with intervening Ca ions that are sep­
arated from the next such planar group by 
layers of BaO and TlO. Adjacent groups 
of planes are uncoupled from each other 
and conductivity is two-dimensional (2D) 
whenever the coherence length along the c√ 
direction is less than s/ 2, where s is the 
spacing between successive planar groups 
(Bulaevskii, 1973). For example, 

YBa2Cu3O7−� 

at 0 K has �c�0� ≈ 3 Å, and s = 11�9 Å  
is the lattice parameter along c, so  �c 	√ 
s/ 2 and the superconductivity is two-
dimensional (2D). 
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The coherence length �c�T� has the tem­
perature dependence 

�c�T� ≈ �c�0��1 − �T/Tc��
−1/2	 (12.84) 

√ 
and when � �T� is equal to s/ 2 there is c

a crossover between 2D and 3D behavior, √ 
the latter occurring for �c > s/  2. Marcon 
et al. (1992) report crossover temperatures of 
0�99Tc for Bi2Sr2CaCu2O10 and 0�88Tc for 

YBa2Cu3O7−�� 

The presence of an applied field lowers the 
critical temperature, Tc�B� < Tc, and this 
depresses the crossover temperature as well 
(Božovic, 1991; Farrell et al., 1990c; Gray 
et al., 1992; Koorevaar et al., 1990; Weber 
and Jensen, 1991). 

E. Solid and Glass Phases 

When vortices become sufficiently 
numerous so that their charge and current 
densities overlap appreciably, they form a 
condensed phase, either a liquid phase if 
the temperature is relatively high or a solid 
near absolute zero. In the absence of pin­
ning and anisotropy the vortices form the 
hexadic pattern of Fig. 12.14 with each vor­
tex stretched between its two end points like 
an elastic string, as noted in Section IV. 
This configuration has long-range order, so 
the state is called a flux lattice. When ran­
dom pinning centers are present, the spa­
tial structure will reflect their distribution 
and the long-range order will be disturbed. 
The result is what is called a vortex glass 
(Chudnovsky, 1991). The portions of the flux 
lines between the pinning sites are held in 
place by repulsion from nearby vortices and 
form local hexadic arrangements, so short-
range order is present. Bitter pattern deco­
rations of YBa2Cu3O7 crystals display this 
short-range order (Dolan et al., 1989a; Gam­
mel et al., 1987). 

A flux-glass phase can also form 
and exhibit short-range order (Chudnovsky, 

1989; Fisher, 1989). The positional order of 
a vortex glass is analogous to the magnetic 
order of a spin glass (Binder and Young, 
1986; Fisher and Huse, 1988). Both a flux 
lattice and a flux glass are solid phases, 
since in these phases the vortices remain 
fixed in place so long as the temperature 
is low enough, the applied field remains 
the same, and there is no transport current. 
Several researchers have reported evidence 
for a vortex-glass phase in epitaxial films 
(Koch et al., 1989) and monocrystals (Rossel 
et al., 1989a, b), other investigators have 
studied flux melting and the transition to 
the vortex-glass state (Charalambous et al., 
1992; Dekker et al., 1992; Dorsey et al., 
1992; Koka and Shrivastava, 1990a, b; Safar 
et al., 1992; Yeh, 1990; Yeh et al., 1992a, b). 
Mechanical oscillation methods have been 
employed to study the melting transition 
(Gammel et al., 1989; Gupta et al., 1991; 
F. Kober et al., 1991; Luzuriaga et al., 1992; 
E. Rodriguez et al., 1990). The subject has 
also been examined theoretically (Gingras, 
1992; Toner, 1991b). 

F. Flux in Motion 

The very slow flux motion at temper­
atures far below Tc is referred to as flux 
creep. When a magnetic field is applied to a 
superconducting sample for T 	 Tc, the field 
penetrates very slowly. Plots of the magneti­
zation versus the logarithm of time tend to be 
linear, with flux continuing to enter the sam­
ple several hours later. Figure 12.34 shows 
the time dependence of the magnetization in 
a superconductor that was zero field cooled 
then exposed to a 5-T field that was subse­
quently decreased to 3 T. In this experiment 
(Kung et al., 1992; see also Pencarinha et al., 
1994) the time dependence of the magneti­
zation of YBa2Cu3O7 containing Y2BaCuO5 

particles (green phase) functioning as pin­
ning centers to enhance Jc was monitored for 
several hours after the field had been reduced 
to 3 T. Experimental results are shown for 
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Figure 12.34 Magnetic relaxation of YBa2Cu3O7 in a 3-T field show­
ing the linear dependence of magnetization on the logarithm of time for 
temperatures between 5 K and 50 K (Kung et al., 1992; see also Pencarinha 
et al., 1994). 

temperatures between 5 K and 50 K. Simi­
lar results have been obtained with an elec­
tron spin resonance surface probe technique 
(Pencarinha et al., 1994). We see from the 
figure that the magnetization is greater in 
magnitude and decays faster at the lower 
temperatures. The logarithmic time depen­
dence of M , shown at low temperatures as in 
Fig. 12.34, often becomes nonlogarithmic at 
higher temperatures (Lairson et al., 1990b; 
J. Z. Liu et al., 1992; Safar et al., 1989; Shi 
et al., 1991). 

For weak pinning the vortex lattice 
reacts elastically to an applied force, such 
as the Lorentz force from a transport cur­
rent. In the case of strong pinning, untrapped 
vortices move past trapped vortices and flux 
flows along channels between regions of 
trapped flux (Brechet et al., 1990). This latter 
flow can involve groups of vortices mov­
ing cooperatively as a unit, forming what 
are called flux bundles (Geim et al., 1992; 
C. A. Wang et al., 1992; Zeldov et al., 
1989) containing from 4 (Stoddart et al., 
1993) to 104 (Plaçais and Simon, 1989) vor­
tices. Energy barriers can hinder flux creep 
(Anderson, 1962; Anderson and Kim, 1964) 

which involves thermally activated jumps of 
flux bundles (Cross and Goldfarb, 1991). 
In high-temperature superconductors the flux 
creep rate is much greater for flow parallel 
to the planes than for flow perpendicular to 
the planes (Biggs et al., 1989). 

G. Transport Current 
in a Magnetic Field 

Suppose that a transport current I of 
uniform density J flows along a supercon­
ducting wire located in a transverse magnetic 
field. If the pinning forces are not sufficiently 
strong to prevent flux motion, i.e., the super­
conductor is soft, then: (1) The current exerts 
a force J ×�0 on the vortices, causing them 
to move from one side of the wire to the 
other. Viscous drag limits this motion to a 
constant velocity �� and the Magnus force 
causes it to occur at the angle �� shown 
in Fig. 12.33, as already noted; (2) through 
Maxwell’s equation � ×B = �0J a constant 
magnetic field gradient is established across 
the sample. When the applied field is in the 
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Figure 12.35 Triangular lattice of vortices with gra­
dient �Bx = dBz�y�/dy in the y direction due to appli­
cation of a transport current density Jx in addition to the 
magnetic field Bz. The direction of the Lorentz force 
J × B is shown. In the absence of pinning forces the 
current density causes the vortices to move downward 
at a constant velocity, with new vortices entering the 
superconductor at the top and old vortices leaving at the 
bottom. Pinning forces can stop this motion and pro­
vide dissipationless current flow. Figure 12.14 shows 
this vortex lattice in the same applied field but without 
a transport current. 

z direction and the current flows in the x 
direction, the gradient is given by 

d 
Bz�y� = �0Jx� (12.85)

dy 

this situation is sketched in Fig. 12.35. 
(Wilson, 1983); (3) the flux flow corresponds 
to a magnetic field B moving across the 
sample at the constant speed ��. Such a mov­
ing magnetic field generates an electric field 

E = v� ×B (12.86) 

in the superconductor which is perpendicu­
lar to both v� and B. The electric field has 
a component with the same direction as J, 
giving rise to the ohmic loss J ·E, 

J ·E = J · �v� ×B�� (12.87) 

Another way of viewing the situation is to 
consider flux flow as a rate of change of 
flux which, by Faraday’s law, produces a 
voltage drop in the superconductor along 
the direction of the current flow. The resis­
tivity associated with this flow, according 
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to Ohm’s law, provides the mechanism 
for heat dissipation. Pinning of the vor­
tices prevents the flux from flowing, and 
the result is no voltage drop and zero 
resistance. 

The pinning forces must be weak 
enough to permit the initial vortex movement 
required for the establishment of the flux 
gradient of Eq. (12.85), and strong enough 
to prevent the continuous vortex motion that 
produces the heat dissipation of Eq. (12.87). 
Pinning forces are ordinarily quite weak. 
Intensive present-day research and develop­
ment efforts are aimed at achieving suffi­
ciently strong pinning forces for high current 
densities. 

The mutual repulsion between vortices 
acts to set up a uniform vortex density, and, 
hence to oppose the establishment of the flux 
gradient sketched in Fig. 12.35. The pin­
ning must be strong enough to maintain the 
gradient against these opposing forces. The 
stronger the pinning, the greater the magni­
tude of the gradient that can be maintained, 
and hence, from Eq. (12.85) the greater the 
current density that can flow without dissi­
pation. This means that the highest current 
density that can flow in a superconductor, as 
given by the critical value Jc, increases with 
an increase in the pinning strength. 

H. Dissipation 

Transport currents and thermal fluctu­
ations can both induce flux motion and 
produce dissipation. This can involve, for 
example, the release and transportation of 
vortices to other pinning centers (Lairson 
et al., 1991), and the pinning and depinning 
of flux bundles. 

Heat produced by flux motion flows 
away from the region of generation toward 
the boundary of the material. A steady state is 
established in which the interior of the super­
conductor is at a somewhat higher tempera­
ture. We know from Chapter 2, Sections XII 
and XVI, that the critical current density Jc 
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depends on the applied field and the temper­
ature, so the heat that is generated will limit 
the value of Jc; the sample will go normal if 
the applied current density exceeds Jc. High 
critical currents can be attained by preparing 
samples with favorable distributions of pin­
ning centers. This is especially important for 
magnet wire, which must carry high currents 
in the presence of strong magnetic fields. 

I. Magnetic Phase Diagram 

Figure 12.36 is a simplified phase dia­
gram of the magnetic states of a Type II 
superconductor based on a Meissner phase of 
perfect diamagnetism (absence of vortices) at 
the lowest temperatures and a mixed (vortex­
lattice) phase at higher temperatures. From 
the foregoing discussion it is reasonable to 
assume that the situation is actually much 
more complicated, however. Several more 
realistic phase diagrams have been suggested 
in the literature (Farrell et al., 1991a; Fisher, 
1990; Gammel et al., 1991; Gerber et al., 
1992; Glazman and Koshelev, 1991a, b; 

Figure 12.36 Simplified magnetic phase diagram 
showing the mixed and Meissner states of a Type II 
superconductor separated by the Bc1�T� line. 

Huang et al., 1991a; Kes et al., 1991; Gerber 
Marchetti and Nelson, 1990; Safar et al., 
1993; Schaf et al., 1989; Zwerger, 1990). We 
will describe one such diagram (Yeh, 1989, 
1991; Yeh and Tsuei, 1989). 

Figure 12.37 depicts, in addition to the 
Meissner phase, a flux solid phase with 
vortices pinned or otherwise held in place, 

Figure 12.37 More complex magnetic phase diagram showing the 
Meissner phase, flux solid, and flux liquid regions separated by the irre­
versibility line �Tirr �, plasma phase, lower-�Bc1�T�� and upper-�Bc2�T�� 
critical field curves, and melting �TM� and Kosterlitz-Thouless �TKT � 
temperatures (Yeh, 1989; Yeh and Tsuei, 1989). 
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and a flux liquid phase with many vortices 
unpinned or free to move reversibly, but 
with dissipation. These two phases are sep­
arated by what is called the irreversibility 
line Tirr . In the narrow region, called the 
plasma phase, thermal fluctuations create 
positively and negatively oriented vortices, 
called intrinsic vortices. These latter vortices 
are more numerous than the field-induced 
(extrinsic) vortices we will be describing in 
the following section. 

Some authors call the boundary between 
the flux liquid and the condensed flux phase 
the melting line; along this line depinning 
takes place (Hébard et al., 1989), and flux 
creep becomes flux flow. 

A number of theoretical treatments 
involving the structure and dynamics of 
the various phases of the flux state have 
appeared. The vortex configurations in these 
phases have been simulated by Monte Carlo 
(Hetzel et al., 1992; Li and Teitel, 1991, 
1992; Minnhagen and Olsson, 1991; Reger 
et al., 1991; Ryu et al., 1992) and other 
calculational methods (Aktas et al., 1994; 
Jensen et al., 1990; Kato et al., 1993). 
Computer-generated contour drawings of 
vortices and vortex motion have been cre­
ated (Brass and Jensen, 1989; Brass et al., 
1989; Kato et al., 1991; Schenström et al., 
1989; Tokuyasu et al., 1990; Xia and 
Leath, 1989). 

VII. FLUCTUATIONS 

Thermal fluctuations can have important 
effects on the properties of superconductors. 
In the present section we will give several 
examples of these effects. 

A. Thermal Fluctuations 

Thermal fluctuations increase with tem­
perature, and as they do so they increase 
the extent to which vortices vibrate. Iso­
lated flux lines acting as stretched strings 
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can undergo longitudinal or transverse vibra­
tions, but at higher concentrations the vibra­
tions are more localized along the length 
of the core with numerous nearby vortices 
participating. Thermally induced fluctuations 
are better described as localized vibrations 
of a flux-line lattice with amplitudes and 
frequencies that depend on the wave vec­
tor dependent shear �c66�, bulk �cB�, and tilt 
�c44� elastic constants (Brandt, 1989, 1990, 
1992; Brandt and Sudb, 1991; Houghten 
et al., 1989; Kogan and Campbell, 1989; 
Shrivastava, 1990; Sudb and Brandt, 1991a, 
b; Yeh et al., 1990). When the vibra­
tions become large enough they cause the 
solid-flux phase to disorder into a flux liq­
uid consisting of mobile, pulsating vortices 
(Fisher et al., 1991). According to the usual 
Lindemann criterion, melting occurs when 
the root mean-square fluctuation amplitude 
urms exceeds the quantity ≈ 10−1d, where 
d is the average vortex separation intro­
duced in Section III.C (Blatter and Ivler, 
1993; Lindemann, 1910; Sengupta et al., 
1991). The thermal fluctuations can intro­
duce noise and otherwise influence measure­
ments of, for example, electrical conductivity 
(Jensen and Minnhagen, 1991; Song et al., 
1992), specific heat (Riecke et al., 1989), 
and NMR relaxation (Bulut and Scalapino, 
1992). 

In granular samples the superconduct­
ing grains can couple together by means 
of Josephson weak links (cf. Chapter 15, 
Section VI.A) over a range of coupling ener­
gies. When the thermal energy kBT exceeds 
the Josephson coupling energy of a pair of 
grains, the two grains can become uncou­
pled so that supercurrent no longer flows 
between them. 

B. Characteristic Length 

The flux quantum �0 is associated with 
a characteristic length �T which is deter­
mined by equating the quantized flux energy 
to the thermal energy. The energy UM of a 
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magnetic field in a region of volume V is 
given by 

UM = �B2/2�0�V (12.88a) 

= ��2/2�0��V/A
2�	 (12.88b) 

where B = �/A. If this is equated to the 
thermal energy kBT for a quantum of flux, 
and if we write A2/V = 2
/�T, we obtain 
for the characteristic length 

�2 

�T = 0 (12.89)
4
�0kBT 

1�97 = cm	 (12.90) 
T 

where T is the temperature in degrees 
Kelvin. This is much larger than other char­
acteristic lengths, such as � and �, except 
in the case of temperatures extremely close 
to Tc, where �T can become very large 
(cf. Eq. (2.57), Fig. 2.42). Therefore, fluc­
tuation effects are expected to be weak 
in superconductors. In the high-temperature 
cuprates several factors combine to enhance 
the effects of thermal fluctuations: (1) higher 
transition temperature, (2) shorter coher­
ence length �, (3) large magnetic penetra­
tion length �, (4) quasi-two-dimensionality, 
and (5) high anisotropy (Fisher et al., 
1991; Nelson and Seung, 1989; Vinokur 
et al., 1990; cf. discussion of Schnack and 
Griessen, 1992). 

C. Entanglement of Flux Lines 

At the lowest temperatures a hexagonal 
flux lattice is expected, perhaps with irreg­
ularities due to pinning. At higher tempera­
tures thermal agitation becomes pronounced 
and can cause an individual vortex that is 
pinned in more than one place to undergo 
transverse motion between the pinning sites. 
This induces a wandering of vortex fila­
ments and leads to an entangled flux liquid 
phase, as illustrated in Fig. 12.38. A pair of 
flux lines passing close to each other can 

Figure 12.38 Sketch of vortex lines of an entangled 
flux lattice (Nelson and Seung, 1989). 

be cut, interchanged, or reattached (LeBlanc 
et al., 1991; Marchetti, 1991; Nelson and 
LeDoussal, 1990; Nelson and Seung, 1989; 
Obukhov and Rubinstein, 1990; Sudb and 
Brandt, 1991a, b). 

D. Irreversibility Line 

Another characteristic of a glass state 
is irreversibility. This can manifest itself 
in resistivity, susceptibility, and other mea­
surable parameters (Ramakrishnan et al., 
1991). This history-dependent property 
was observed by Müller et al. (1987) 
at the beginning of the high-Tc era. 
The magnetization data plots presented 
in Fig. 12.39 for the three supercon­
ductors YBa2Cu3O7	 Bi2Sr2CaCu2O8, and 
Bi2Sr2Ca2Cu3O10 all have a temperature Tirr 

above which the zero-field-cooled and field-
cooled points superimpose, and below which 
the ZFC data are more negative than the 
FC ones (de Andrade et al., 1991). The 
irreversibility temperature Tirr �B� has been 
determined for a series of applied fields 
B, and results for the yttrium sample of 
Fig. 12.39 are plotted in Fig. 12.40. The lin­
earity of these irreversibility line plots shows 
that there is a power-law relationship, 

B ≈ a 

[ 

1 − Tirr�B� 

Tc�0� 

]n 

	 (12.91) 

where a is a proportionality constant 
(Lombardo et al., 1992; Sagdahl et al., 1990; 
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Figure 12.39 Temperature dependence of normalized magnetiza­
tion of YBa2Cu3O7	 Bi2Sr2CaCu2O8, and Bi2Sr2Ca2Cu3O10 for a 0.1­
mT field applied parallel to the c-axis. Both field-cooled (upper curves) 
and zero-field-cooled (lower curves) data are shown for each supercon­
ductor (Y. Xu and Suenaga, 1991). 

Figure 12.40 Log–Log plot of applied field versus temperature for 
YBa2Cu3O7 films and monocrystals where Tr is the irreversibility tem­
perature (Y. Xu and Suenaga, 1991). 

Y. Xu and Suenaga, 1991). The slopes of 
the lines give n ≈ 1�2 for thin films and n ≈ 
1�5 for crystals. Analogous plots are avail­
able for the flux-lattice melting temperature 
TM�B�, vortex glass-liquid transition temper­
ature Tg (Koch et al., 1989), and resistive 
transition temperature TR�B�. The resistivity 
plots exhibit a similar type of irreversibility 

as magnetization plots. Some other experi­
mental studies of the irreversibility line of 
cuprates have been carried out by means 
of resistivity (Jeanneret et al., 1989; Yeh, 
1989; Yeh and Tsuei, 1989) and susceptibil­
ity (Geshkenbein et al., 1991; Khoder et al., 
1990; Perez et al., 1991; Pureur and Schaf, 
1991) measurements. Results are available 
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381 VII FLUCTUATIONS 

for the new mercury superconductors (Chu, 
1994; Jwasa et al., 1994b, Huang et al., 
1994). Safar et al. (1989, 1991) mentioned 
that the melting and irreversibility lines tend 
to merge at higher fields, and this trend is 
clear from Fig. 12.40. 

The irreversibility line is not very sen­
sitive to the type and distribution of defects, 
although these defects have a pronounced 
effect on the critical current density (Cival 
et al., 1990, 1991a, b). 

Six samples of YBa2Cu3O6�38 with tran­
sition temperatures in the range 7–17 K, 
adjusted by varying the quenching temper­
ature, were studied, and the irreversibility 
temperature Tirr�B� was found to depend 
on Tc. Plotting Tirr /Tc versus �1 − �Tirr /Tc�� 
on a log–log scale, however, caused all of 
the data to follow the same universal curve 
(Seidler et al., 1991). This type of scaling 
of irreversibility curves has been interpreted 
in terms of the Bean model (Wolfus et al., 
1988). The classical superconductors Nb3Sn 
and Nb–Ti, when produced in the form of 
fine multifilamentary wires, exhibit magne­
tization reversibility with an irreversibility 
temperature Tirr �B� that may be close to 
the flux-lattice melting temperature (Suenaga 
et al., 1991; cf. Drulis et al., 1991). This is 
not the case for the cuprates, for which Tirr 

is interpreted as the depinning temperature. 

E. Kosterlitz–Thouless Transition 

We mentioned in Section VI.I that 
thermal fluctuations at low temperatures 
result in the production of vortex–antivortex 
pairs, called intrinsic vortices, where the 
flux and screening currents of an antivor­
tex flow in a direction opposite to that 
of the vortex. A vortex and antivortex 
attract each other; at low temperatures they 
form bound pairs that dissociate at what is 
called the Kosterlitz–Thouless temperature 
TKT, indicated in Fig. 12.37 (Berezinskiv, 
1971; Creswick et al., 1992; Kosterlitz 
and Thouless, 1972, 1973; Matlin et al., 

1989; Nelson, 1980; Pradhan et al., 1993; 
Scheidl and Hackenbroich, 1992; Yeh, 1989; 
Yeh and Tsuei, 1989). In the cuprates 
the bound pairs tend to reside between 
planes (Dasgupta and Ramakrishnan, 1991). 
Experimental evidence for the KT transition 
in superconductors has been reported, and 
references to this work are given in the first 
edition of this book (p. 308). 

By way of summary, some of the con­
cepts and processes discussed in the previous 
sections are visualized in Fig. 12.41 (Brandt, 
1990). The original article should be con­
sulted for those parts of the figure that have 
not been discussed here. 

PROBLEMS 

1. Consider a Type II superconductor with 
a Ginzburg–Landau parameter 
 = 100, 
transition temperature Tc = 100 K, and 
Debye temperature of 200 K. Use stan­
dard approximation formulae to estimate 
its upper critical field, lower critical 
field, thermodynamic field, energy gap, 
and electronic and vibrational spe­
cific heats. 

2. Consider	 three vortices that form an 
equilateral triangle 3 �m on a side, with 
one of the vortices pinned. The tem­
perature T = 4

1 Tc and the penetration 
depth ��0� = 3000 Å. What is the force 
per unit length on each vortex and in 
what direction will the two unpinned 
vortices move? 

3. Show that for	 
 � 1, the quantity of 
magnetic flux in the core of an isolated 
vortex is given by 

�core ≈ �0/2
2�ln 2
 +1/2 −��	 

where � is the dimensionless Euler– 
Mascheroni constant. What fraction of 
the total flux is in the core of an isolated 
vortex of Ti2Nb, of Nb3Sn, or of a typi­
cal high-temperature superconductor? 
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382	 12 TYPE II SUPERCONDUCTIVITY 

Figure 12.41 Schematic visualization of superconductor concepts and processes. 
(a) left: simplified 2D interaction between nearly parallel vortex lines, right: more 
realistic 3D interaction between vortex segments; (b) pair of vortices approaching, 
crossing, and reconnecting; (c) soft vortex liquid flowing between pinning regions; 
(d) vortex lattice or liquid, with each vortex pinned by many small pins, subjected to 
a Lorentz driving force acting toward the right; (e) vortex lattice pinned at equidistant 
lattice planes parallel to the Lorentz force, which presses it through these channels; 
plots showing the vortex displacements u and the zigzag shear strain �; (f) magnetic 
field (small arrows) arising from a vortex segment (dark arrow) in an isotropic super­
conductor; (g) the same in an anisotropic superconductor; (h) magnetic field lines 
associated with a point pancake vortex (vertical arrow) on a superconducting layer 
shown bent by the other layers (horizontal lines) and forced to become parallel to 
these layers; (i) vortex kinks (upper left), kink pairs (upper right), and a 3D kink 
structure (lower); (j) current–voltage curves for thermally activated vortex motion; and 
(k) damping � and frequency enhancement �  of high-temperature superconducting 
vibrating reed in a longitudinal field. (See original article (Brandt, 1990) for details.) 

4. We	 have seen that parallel vortices 6. For a high-temperature superconductor 
inside a superconductor repel each other �
 ≈ 100�, how high an applied field Bapp 

and become distributed throughout the is needed, relative to Bcl, to cause the 
interior. Show that charges of the same average separation d between nearest-
sign inside a normal conductor repel neighbor vortices to reach (a) 100�, (b) 
each other and become distributed over 30�, (c) 10�, (d) 3�, or (e) 1�? 
the surface. Hint: use Gauss’ law and the 7. The small argument limit, r 	 �, of  
continuity equation.	 the zero-order modified Bessel function 

5. Show that the integrals of the asymptotic	 is given by different authors in differ-
forms of the modified Bessel functions ent forms: 
K0�r/�� and K1�r/�� of Eqs. (12.24)– 
(12.26) do not diverge as r → 0, but 
rather provide finite fields and currents, k0�r/�� ≈− ln 

r −� + ln 2 
respectively, in the neighborhood of the � 

origin. Arftken, 1985, pp. 284, 612 
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383 PROBLEMS 

r − ln 

Abramowitz and Stegun, 

eds., 1970, p. 375 

r 
ln −0�5772 � � �  

2� 

Jackson, 1975, p. 108 

+ ln +0�12 � � �  
r 

Tinkham, 1985, p. 147 

1�123� + ln Present work 
r 

Which of these are equivalent? 
8. At	 what points along the path 

V → S → M → C → V, starting and 
ending at the same vortex, V, does the 
current density pass through zero and at 
what points does it change sign? Explain 
these changes, and explain why J has 
opposite signs at the beginning and at 
the end of the plot in Fig. 12.20. 

9. Derive Eqs. (12.57) and (12.58). 

10. The eccentricity	 e of an ellipse with 
semi-major and semi-minor axes a and 
b, respectively, is defined by 

c = �a2 −b2�1/2/a� 

Show that for a high-temperature super­
conductor the two expressions 

√ 
a/b = � 

e = �� −1�1/2 

are valid for both the core and the current 
flow ellipses of a vortex, where � is the 
effective mass ratio of Eq. (12.44). 

11. Show that for an applied magnetic field 
aligned along the y direction of a high-
temperature superconductor with �x2 + 
z2�1/2 � �c, the current densities Js�x	 z� 
of a vortex at points along the x- and 
z-axes, respectively, are given by 

�0�cJs�x	 0� = By�x	 0� 

�0�abJs�0	 z�  = By�0	 z�� 
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13 

I. INTRODUCTION 

Most of the properties of superconduc­
tors are reversible. There are other proper­
ties that are irreversible in the sense that 
when a parameter such as the temperature, 
the pressure, or the strength of an applied 
electric or magnetic field is changed in direc­
tion the system does not reverse or retrace 
its former path, but rather hysteretic effects 
occur. In this chapter we will examine some 
of these latter cases. The emphasis will be 
on the Bean Model, a simple model which 
captures the essential features of some irre­
versible behaviors of superconductors. Mag­
netic hysteresis effects will be discussed in 
some detail. 

Irreversible

Properties


II. CRITICAL STATES 

In Chapter 7 we described the Bardeen– 
Cooper–Schrieffer (1957) microscopic the­
ory that had been devised to explain the 
nature of superconductivity, subsequently 
showing that many of the properties pre­
dicted by the BCS theory are satisfied by the 
classical and by the cuprate superconductors. 
In Chapter 6 we delineated the Ginzburg– 
Landau (1950) phenomenological theory, 
a theory which is helpful for explaining 
many other properties of superconductors. 
Chapter 10 presented the Hubbard model and 
band theory viewpoints on superconductiv­
ity. There is yet another approach, introduced 

385 
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in two works by Bean (1962, 1964), which 
is too simplified to be called a theory and is 
instead referred to simply as a model. The 
Bean model, which has been employed by 
many experimentalists as an aid in the inter­
pretation of their data, is a type of critical-
state model. We begin with a discussion of 
critical state models in general, and then we 
apply the Bean model to a number of cases. 

These models postulate that for low 
applied fields or currents, the outer part of 
the sample is in a so-called “critical state” 
with special values of the current density 
and magnetic field, and that the interior is 
shielded from these fields and currents. The 
Bean model assumes that the super current 
density always has the magnitude Jc in the 
critical state, while the Fixed Pinning model 
assumes that the pinning force is constant in 
the critical state. In all the models the mag­
netic field B and the super current density 
J are coupled through the Maxwell relation 
� ×B = �0J, so either one can be calculated 
from knowledge of the other. When the fields 
and currents are applied simultaneously and 
then reversed in direction, they produce mod­
ified critical states in the outer parts of the 
sample, consistent with the assumption of 
the particular model. High values of the 
applied fields or currents cause the critical 
state to penetrate to the innermost parts of 
the superconductor. The models do not take 
into account the existence of a lower-critical 
field Bc1 or the difference between the Meiss­
ner and the mixed states. We do not claim 
that these models really explain the nature 
of superconductivity. Rather, they provide a 
convenient means of describing some exper­
imentally observed phenomena. 

In this chapter we will confine our atten­
tion to the simple geometry of a solid slab 
in which the applied magnetic field is par­
allel to the surface and the demagnetization 
effects discussed in Chapter 5, Sections X 
and XI, do not have to be taken into account. 
The first edition of this work treats cylindri­
cal geometry. The literature can be consulted 

13 IRREVERSIBLE PROPERTIES 

for critical-state models involving ellipsoidal 
samples (Bhagwat and Chaddah, 1990, 1992; 
Chaddah and Bhagwai, 1992; Krasnov, 1992; 
Krasnov et al., 1991; Navarro and Camp­
bell, 1991). 

III. CURRENT–FIELD 
RELATIONSHIPS 

A. Transport and Shielding Current 

Electric currents that flow through a 
superconductor owing to the action of an 
external current or voltage source are called 
transport currents. Those which arise in 
the presence of an externally applied mag­
netic field and cancel the magnetic flux 
inside the superconductor are called screen­
ing currents. Figure 13.1a shows the induced 
shielding current produced by an applied 
magnetic field and Fig. 13.1b, the induced 
magnetic field produced by an applied trans­
port current. More complicated cases in 
which both a transport current and a mag­
netic field are applied to the superconduc­
tor will also be examined. In such cases 
transport and screening currents are present 
simultaneously. 

Figure 13.1 (a) Shielding currents Jsh induced in a 
superconducting rod of rectangular cross section by an 
external magnetic field Bapp along its axis, and (b) mag­
netic field B induced in (and around) the same super­
conducting rod by a transport current Jtr flowing along 
the axis. 
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387 III CURRENT–FIELD RELATIONSHIPS 

B. Maxwell Curl Equation 
and Pinning Force 

We mentioned earlier that the magnetic 
field and current density that are present 
in a superconductor are related through the 
Maxwell curl equation, 

� ×B = �0J� (13.1) 

This means that the B and J vectors are per­
pendicular at every point in space. We will 
examine the case of a rectangular slab ori­
ented as shown in Fig. 13.2 in the presence 
of a magnetic field Bapp along the z direction. 
We assume that the magnetic field inside 
the slab, Bin = Bzk, is along the z direction 
and that the current density J = Jyj has a 
component only in the y direction; the cur­
rent density component Jx at the ends of the 

loops is neglected. For this case we find from 
Eq. (13.1) that 

d 
B �x� = �0Jy�x�� (13.2)

dx z

which means that the field and current den­
sity depend only on x. 

The internal magnetic field Bz�x� is 
equal to the product n�x��0 of the number 
of vortices per unit area n�x� times the flux 
per vortex �0. Equation (13.2) becomes 

d 
�0 n�x� = �0Jy�x�� (13.3)

dx 

We assume that the vortices in the mate­
rial are in a static equilibrium configura­
tion. The curl of the magnetic field strength 
(13.1) produces a gradient in the vortex den­
sity (13.3) in a direction perpendicular to the 
current flow direction, and this is sketched 

Figure 13.2 Superconducting slab of thickness 2a oriented in the y, 
z-plane with an externally applied magnetic field Bapp directed along z. 
The induced shielding current density Jy flowing in the y direction inside 
the front and back faces is shown. 
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in Fig. 12.35. The pinning force density Fp 

holds the vortices in place, while the Lorentz 
force density J ×B acting on the vortices is 
balanced by Fp, 

Fp = J ×B (13.4) 

= �� ×B�×B/�0� (13.5) 

where we have again used Eq. (13.1). For 
the present case Fp only has an x component, 
with magnitude 

Fpx 
= JyBz (13.6) 

1 dB= · z Bz (13.7a) 
�0 dx 

= 1 · d · 1 
Bz 

2� (13.7b)
�0 dx 2 

C. Determination of Current–Field 
Relationships 

Equations (13.1)–(13.7) must be satis­
fied when B is in the z direction and J in 
the y direction. There are many configura­
tions of Bz�x�� Jy�x�, and Fp�x� that meet 
this requirement. The Bean model assumes 
Jy = const, while the Fixed Pinning model 
assumes Fp = const; all the other models 
assume a more complex relationship between 
the internal field and the current density. For 
most models the relationship between Jy�x� 
and Bz�x� for the slab geometry is of the form 

JKJy�Bz� = � (13.8)
f�B �z

where f�Bz� is a function of the magnetic 
field and JK is independent of the field, 
but can depend on the temperature. Jy is 
substituted into Eq. (13.2) and the resul­
tant differential equation is solved to obtain 
Bz�x�, the position dependence of the internal 
field. Finally, this result is substituted back 
in Eq. (13.8) to give Jy�x�, and Eq. (13.6) 
immediately provides Fp�x�. 

13 IRREVERSIBLE PROPERTIES 

IV. CRITICAL-STATE MODELS 

A. Requirements of a Critical-State 
Model 

When a magnetic field is turned on it 
enters a superconductor, its magnitude inside 
the superconductor decreasing with distance 
from the surface. If the applied field is weak 
enough the internal field will be zero beyond a 
certaindistancemeasured inwardfromthesur­
face. Critical current flows where the field is 
present, in accordance with the Maxwell equa­
tion (13.1); this is called a critical state. As  
one moves inward, the critical current density 
generally increases as the field decreases, in 
accordance with Eq. (13.8). The current den­
sity is also zero beyond the point at which the 
internal field vanishes. When the applied field 
increases in magnitude, the internal field and 
current densities penetrate further and for suf­
ficiently strong fields are present throughout 
the sample. Each critical-state model is based 
on a particular assumed relationship between 
the internal field and the critical-current den­
sity which satisfies these requirements. 

Table 13.1 gives the current–field rela­
tionships for several well known critical state 
models. In these expressions the internal 
field B = B�x�, where x is the distance from 
the center toward the surface. In most of the 
models Jc is the critical current in the absence 
of an applied field. 

B. Model Characteristics 

Each of the critical-state models depends 
on a parameter BK associated with the inter­
nal field and a parameter JK associated with 
the critical-current density. Both of these 
parameters can depend on the temperature. 
The quantity 

	
BK −�B�x��� (13.9) 

is called the Heaviside step function. One can 
also write a more general power-law model 
J�B� = A�B�x��−n (Askew et al., 1991; Irie 
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V BEAN MODEL 389 

Table 13.1 Current–field relationships corresponding to Eq. (12.8) for

several critical state models


J�B� = Jc Bean (1962, 1964) 
JcJ�B� = Fixed Pinning (Ji et al., 1989; Le Blanc and Le Blanc, �B�x��/BK 1992)


Jc
J�B� = Square Root (Le Blanc and Le Blanc, 1992) �B�x�/BK �1/2


Jc
J�B� = Kim (Kim et al., 1962, 1963) 
1 +�B�x��/BK 

J�B� = Jc exp
−�B�x��/BK � Exponential (Fietz et al., 1964) 

J�B� = Jc − Jc
� �B�x��/BK Linear (Watson, 1968) 

JcJ�B� = Quadratic (Leta et al., 1992) 
1 + 
�B�x��/BK �

2 

J�B� = Jc�1 −�B�x��/BK �	�BK −�B�x��� Triangular Pulse (Dersch and Blatter, 1988) 

JcJ�B� = Generalized (Lam et al., 1990; M. Xu et al., 1990) 

1 +�B�x��/BK �

� 

and Yamafuzi, 1967; Yeshurun et al., 1988), 
which reduces to the Bean, Square Root, and 
Fixed Pinning models for n = 0� 2

1 and 1, 
respectively. The Kim model resembles the 
Fixed Pinning model for high applied fields 

��B�x�� � BK �� (13.10) 

while the exponential model, linear model 
with JK = JK

� , and Kim model all reduce 
to the Bean model for low applied fields 
��B�x�� � BK�. 

Theexplicit expressions for B�x�and J�x� 
that are obtained by solving the differential 
equation(13.2) for the functionsofEq.13.8 for 
various cases depend on boundary conditions, 
such as the strength of the applied field, the 
size, shape, and orientation of the sample, and 
the previous magnetic history. Examples of 
these solutions will be given for several com­
monly encountered cases. We will emphasize 
the Bean model in this chapter. 

V. BEAN MODEL 

The Bean model (1962, 1964) for super 
current flow is the simplest, and by far the 

most widely used of the critical-state mod­
els that have been proposed for describing 
the field and current distribution in a super­
conductor. The model assumes that wherever 
the current flows, it flows at the critical den­
sity Jc and that the internal magnetic field is 
given by Eq. (13.1). 

A. Low-Field Case 

We will first write down solutions for 
what is called the low-field case. In this 
case there is a field- and current-free region 
�−a� < x < a�� near the center. In the 
next section we will provide solutions for 
the high-field case, i.e., the case in which 
the fields and currents exist throughout the 
superconductor. 

For the slab geometry of Fig. 13.2 the 
boundary conditions are that the internal field 
at the surface, x = ±a, equals the applied 
field B0, and that there is a depth, x = ±a� 

inside the superconductor at which the inter­
nal field drops to zero, 

Bz�±a� = B0� (13.11a) 

B �±a �� = 0� (13.11b)z
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The differential equation obtained by substi­
tuting Jy�x� = Jc in Eq. (13.2) has the solu­
tion 

Jy�x� = Jc −a ≤ x ≤−a �� (13.12a) 

J �x� = 0 −a � ≤ x ≤ a �� (13.12b)y

Jy�x� =−Jc a � ≤ x ≤ a� (13.12c) 

Equation (13.2) requires that Bz�x� depend 
linearly on x in regions where Jy = ±Jc, so  
that we have for the internal magnetic fields 

a� +x 
Bz�x� = B0 � −a 

−a ≤ x ≤−a �� 
a

(13.13a) 

B �x� = 0 −a � ≤ x ≤ a ��z

(13.13b) 

Bz�x� = B0 

x−a
a � ≤ x ≤ a� 

a−a� 
(13.13c) 

These expressions match the boundary con­
dition Bz�0� = B0 on the two surfaces x = 
±a. The quantities Jc and B0 are related to 
each other by the expression 

B0J = � (13.14)c �0�a−a�� 

with the aid of Eq. (13.7), we obtain the 
pinning forces 

� +x 
Fp�x� = JcB0 

a

a� −a 
−a ≤ x ≤−a �� 

(13.15a) 

Fp = 0 −a � ≤ x ≤ a �� 

(13.15b) 

Fp�x� =−JcB0 

� 
x−a� 

a−a� 

� 

a � ≤ x ≤ a� 

(13.15c) 

These equations for Bz�x�� Jy�x�, and Fp�x� 
are plotted in Figs. 13.3a for a finite value of a� 

and in Fig. 13.3b for a� = 0. We see from these 
figures that Bz�x� is symmetric about the point 
x = 0, while the other two functions Jy�x� and 
Fp�x� are antisymmetric about this point. 

13 IRREVERSIBLE PROPERTIES 

B. High-Field Case 

Now that we have explained the low-
field Bean model let us introduce its high-
field counterpart. The two may be related in 
terms of a characteristic field B∗ proportional 
to the radius a, as given by 

B ∗ = �0Jca� (13.16) 

B ∗ has the property that when B0 = B ∗ the 
fields and currents are able to reach the center 
of the slab, as shown in Fig. 13.3b. Thus 
there are two cases to consider, one for small 
applied fields, 

B0 < B  ∗ � (13.17a) 

which was discussed in the previous section, 
and the other for high applied fields, 

B0 > B  ∗ � (13.17b) 

It is easy to show that at high field the cur­
rents and fields, respectively, are given by 
the expressions 

Jy�x� = Jc −a ≤ x ≤ 0� (13.18a) 

Jy�x� =−Jc 0 ≤ x ≤ a� (13.18b) 
� � 

a+x = B0 −B ∗ −a ≤ x ≤ 0�B �x�z a 
(13.19a) 

B �x� = B0 +B ∗ 
x−a 

0 ≤ x ≤ a�z a 
(13.19b) 

It is left as an exercise (Problem 3) to write 
down the pinning forces at high field. 

The magnitude of the critical-current 
density Jc is fixed by the characteristics of 
the particular superconductor, and depends 
on such factors as the superconducting mate­
rial, granularity, twinning, concentration of 
defect centers, etc. The applied field can be 
varied, and Fig. 13.3 shows how the internal 
field, current density, and pinning force vary 
with the ratio B0/B∗ for the Bean model. 
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V BEAN MODEL 391 

Figure 13.3 Dependence of the internal magnetic field Bz�x�, current density Jy�x�, and pinning 
force Fp�x� on the strength of the applied magnetic field B0 for normalized applied fields given by 
(a) B0/�0J a = 2

1 , B0/�0J a = 1, and (c) B0/�0J a = 2. This and subsequent figures are drawn for c c c

the Bean model. There is a field free region in the center for case (a), while case (b) represents the 
boundary between the presence versus the absence of such a region. 

Figure 13.3a is for the low-field case B0 < The figures that we have drawn are 
B∗, Fig. 13.3b, with B0 = B∗ the boundary for zero-field-cooled samples in which the 
between the two cases, and Fig. 13.3c is for applied field had been increased from its ini­
high fields, B0 > B∗ . tial value Bapp = 0 to the value B0, as shown. 
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In particular, the three sets of curves drawn 
in Fig. 13.3 were obtained by increasing the 
applied field from 0 to 2

1 B∗ , then to B∗ , 
and finally to the value 2B∗ . We will see 
in Section VI that reversing the field leaves 
some flux trapped, which is reflected in the 
shape of the plots for Bz�x� versus x. 

C. Transport Current 

We have discussed the Bean model for 
a thin slab in an applied magnetic field. Ana­
lytic expressions were deduced for the mag­
netic field, current density, and pinning force 
for these cases. Let us now apply the same 
Bean model analysis to the case of a transport 
current in which a fixed amount of current 
passes along the slab or wire, and both exter­
nal and internal magnetic fields are induced 
by this current. 

We will again discuss the case of a 
slab oriented in the y� z-plane, but this time 

13 IRREVERSIBLE PROPERTIES 

assuming an applied transport current of 
magnitude I flowing in the positive y direc­
tion, as shown in Fig. 13.4. The current 
distributes itself in the x, z-cross section in 
accordance with the Bean model. Thus the 
critical-current density Jc is adjacent to the 
outer boundary, between x = −a and x = 
−a�, with zero current in the center, as shown 
in Fig. 13.5a. Since the cross-sectional 
area is 2�a− a��L, the transport current is 
given by 

I = 2�a−a ��LJ � (13.20) c

This current flow produces internal magnetic 
fields with the orientations shown in the 
figure. The external fields that are induced 
outside the slab will not be of concern 
to us. 

The equations for Bz�x�� Jy�x�, and 
Fp�x� for the case of a transport current 
are the same as Eqs. (13.13)–(13.19) for the 

Figure 13.4 Superconducting slab of length 2L, height 2L and 
thickness 2a oriented in the y, z-plane with an applied transport 
current Iy flowing in the positive y direction. The induced internal 
magnetic fields Bz are indicated. The induced external fields are not 
taken into account, and hence are not shown. 
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Figure 13.5 Dependence of the internal magnetic 
field Bz�x�, current density Jy�x�, and pinning force 
Fp �x� on the strength of an applied transport current for 
the Bean model. Figures are drawn for applied currents 
I that are (a) less than the critical current Ic = 2aLJc, 
or (b) equal to the critical current Ic. Applied currents 
in excess of the critical current cause the wire to go 
normal. 

applied field case, except for several rever­
sals of sign, so we will not bother to write 
them down. Figures 13.5a provide plots of 
these three quantities for I ≈ 2

1 Ic, where 

Ic = 2aLJc� (13.21) 

We see from the figure that the induced 
magnetic field is in opposite directions on 
either side of the slab, while the internal 
pinning force has the same direction as in 
the screening current case. A comparison 
of Figs. 13.3 and 13.5 shows that B and 
J reverse their symmetries about the point 
x = 0� B  being symmetric and J antisym­
metric in the screening case, and B anti­
symmetric and J symmetric in the transport 

case; the pinning force Fp is antisymmetric in 
both cases. This is because in both cases the 
Lorentz force J×B acts to move the current– 
field configurations inward, while the pin­
ning force opposes this motion and holds 
the fields (or vortices) in place. Figure 13.5b 
shows the field, current density, and pinning 
force when the wire is carrying its maximum 
possible transport current (13.16), namely, 
its critical current Ic. 

D. Combining Screening 
and Transport Current 

When both an applied magnetic field 
and an applied transport current are present, 
the situation is more complicated. The Bean 
model conditions still apply—namely, wher­
ever the current flows it flows at the critical 
density Jc. For the slab geometry, if there is 
an internal magnetic field Bin, it will have 
a gradient (13.2) equal to �0Jc. Figure 13.6 
sketches the slab with an applied external 
field and a transport current present simul­
taneously. The induced currents and fields 
combine with the applied fields to produce 
the net current densities and magnetic fields, 
which have the x dependence plotted in 
Fig. 13.7. This figure is drawn for the high-
field case, in which Bapp > �0Jca; such a case 
occurs in magnet wire wound as a solenoid 
to produce a strong magnetic field. 

The difference 
B between the magnetic 
fields on the left and right sides of the slab, 
where x = −a and x = a, respectively, is 
related to the net average current density in 
the slab arising from the flow of transport 
current. It is left as an exercise (Problem 7) 
to show that 


B = �0Jc�xR −xL�� (13.22) 

where the notation for this equation is given 
in the figure. 

Section VI.G of the first edition exam­
ined more complicated cases involving the 
simultaneous presence of a transport current 
and an external field. 
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Figure 13.6 Superconducting slab of length 2L, height 2L and thick­
ness 2a oriented in the y, z-plane with an applied transport current Iy 

flowing in the y direction and an applied magnetic field B0 oriented in the 
z direction. The internal magnetic fields Bz�x� and current densities Jy�x� 

shown in the figure are superpositions of those arising from the applied 
field and the transport current cases of Figs. 13.2 and 13.4 respectively. 

Figure 13.7 Dependence of the internal field Bz�x� and the current 
density Jy�x� on position x inside the slab of Fig. 13.6 when both a 
magnetic field and a transport current are applied. The figure is drawn 
for the high-field case. 
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E. Pinning Strength 

Pinning forces set limits on the amount 
of resistanceless current that can be car­
ried by a superconductor. We know from 
Eqs. (13.15) that in the Bean model the pin­
ning force has its maximum magnitude Fp at 
the edge of the sample, where x =±a, 

Fp = JcB0� (13.23) 

We will consider how the value of F affectsp 

the field and current distributions for a con­
stant applied field B0. If the slab is a soft 
superconductor, so that the pinning forces 

are too weak to hold the vortices in place, 
from Chapter 12, Section V.C it is clear that 
Fp is zero in the vortex equation of motion. 
Setting Fp = 0 in Eq. (13.23) gives Jc = 0, 
resistanceless current cannot flow, and, from 
Eq. (13.2), the magnetic field penetrates the 
entire cross section, as shown by the curves 
for “no pinning” in Fig. 13.8. For weak pin­
ning, Fp is small, Jc is small, from Eq. (13.2) 
the slope dBz/dx is small, and the magnetic 
field and current still penetrate the entire 
sample, but Bz�x� is weaker in the center. If 
the slab is a hard superconductor, so that Fp 

is large, Jc is also large, the slope dBz/dx 

Figure 13.8 Internal magnetic field Bz�x� and current density Jy�x� for 
strong (- - - - -),  weak (– – – –), and zero (—) pinning in a superconducting 
slab in an external magnetic field, as in Fig. 13.2 (von Duzer and Turner, 
1981, p. 338). 
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is steep, and the field and current only exist 
near the surface of the sample, as shown by 
the curves for “strong pinning” in Fig. 13.8. 
The figure is drawn for the shielding cur­
rent case, though it can also be concluded 
that increasing the pinning strength increases 
the transport supercurrent capacity of a wire 
(M. B. Cohn et al., 1991). 

F. Current-Magnetic Moment 
Conversion Formulae 

The total magnetic moment � (denoted 
here by the symbol M) due to a current den­
sity j�r� in an arbitrary shaped sample is 
given by 

M = 1 

r × j �r��d3r (13.24)

2 
V 

Assuming that the current density is con­
stant across the sample (simple critical 
state Bean model) one can calculate the 
magnetic moment for a plate-shaped sam­
ple of arbitrary cross-section. This is very 
useful because many single crystals can 
be described by such a geometry, which 
includes disks (pellets), slabs and odd-shaped 
flat samples. The formulae below are exact, 
and do not need be adjusted for example 
for demagnetization corrections as long as a 
field-independent critical current is assumed. 

Equation (13.24) is an SI formula in 
which current density j is in amperes per 
square meter, magnetic field B is in tesla, 
and lengths are in meters. When practical 
units are used whereby j is measured in 
A/cm2, magnetic field in Gauss, and length 
in centimeters, the factor 1

2 in Eq. (13.24) is 
replaced by 1/20. To convert the formulae 
below for the magnetic moment to practical 
units simply divide by 10. 

a. Elliptical cross-section 
Let us consider a sample of thickness 

2d, which has an elliptical cross-section in 
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the ab-plane (ellipse of semi-major axis b, 
semi-minor axis w, and volume V ): 

V = 2�wbd (13.25) 

and 

jw w 
M = 1 − V (13.26)

2 3b 

In the particular case of a disk of radius a = 
b = R we have: 

V = 2�R2d (13.27) 

and 

jR
M = V (13.28)

3 

b. Rectangular cross-section 
In the case of a rectangular cross-section 

of sides 2w and 2b �w  ≤ b�� we find: 

V = 8wbd (13.29) 

and 

jw w 
M = 1 − V (13.30) 

2 3b 

In the particular case of a square of side 
2b = 2w we get: 

V = 8w 2d (13.31) 

and 

jw
M = V (13.32)

3 

c. Triangular cross-section 
If the sample cross-section is a triangle 

of sides a� b� n with angles defined as � = 
�a∧n�� � = �b∧n� and � = �a∧b�, we have: 
the semi-perimeters s = �a+b+n�/2 

V = 2d s�s−a��s−b��s−n� ≡ 2dA 
(13.33) 
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and 

jA 2dba2 sin��� 
M = V = 

3s 3c 

× cot + cot (13.34)
2 2 

or 

2 
M = jd�s−a��s−b��s−n� (13.35)

3 

For an equilateral triangle a= b = n we have 

√ 
V = 3 

a 2d (13.36)
2 

da3 

M = j (13.37)
6 

In another particular case of triangle of sides 
a = � n� � � = �b = = �

dan2 � dn3 2a 
M = j sin = j −1 

3 2 12c n 
(13.38) 

d. General remarks 
Note that the formulae for the elliptical 

and rectangular cases are identical (except 
for the volumes) if one replaces the ellipse’s 
semiaxes by half widths. It follows that the 
total magnetic moment, �, of a sample that 
was later broken into two pieces will always 
be greater than sum of the magnetic moments 
of the individual pieces 

� > �+� (13.39) 

For example, if we start with the square sam­
ple of side 2b = 2w we have for its moment 
from Eq. (13.32) 

jb
M = V (13.40) 

3 

Now, we cut this sample into two equal 
pieces. Each has dimensions b × 2b × 2d, 
(so w = b/2) and the volume of each is 

just half of the whole. The total magnetic 
moment of the two pieces is given by 
Eq. (13.30), 

jw 5 V 5 jb 5 
2M1 = 2 = V = M (13.41)

2 6 2 8 3 8 

VI. REVERSED CRITICAL STATES 
AND HYSTERESIS 

Up until now we have made the implicit 
assumption that the sample was zero field 
cooled and then subjected to an applied field 
that only increased in value. As the surface 
field Bo is increased, it begins to proceed 
inward. Figure 13.9 shows the internal field 
configurations brought about by a series of 
six successive increases in the applied field. 
We know from Eqs. (13.19) that the applied 
field B∗ causes the innermost internal field 
to just reach the center point x = 0; and that 
twice this surface field, 2B ∗, causes the field 
at the center point to be B∗, as illustrated in 
the figure. 

The present section will examine what 
happens when the field decreases from a 
maximum value. We will not try to write 
down the equations for all the different cases 

Figure 13.9 Internal field in a superconducting slab 
for increasing values of the applied field. When Bapp 

reaches the value B∗, the internal field reaches the cen­
ter; when Bapp = 2B∗, the field at the center is B∗ . 
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because they are very complicated, as illus­
trated in Problem 9, without being very 
instructive. Instead, we will provide a quali­
tative discussion by sketching how the field 
and current configurations change as the field 
decreases. 

A. Reversing Field 

The first three panels of Fig. 13.10 show 
the field and current configurations as the 
applied field is increased from 0�5B∗ to 
2�5B∗, while the next three panels show the 
configurations for a decrease in Bapp from 
the maximum value 2�5B∗ to the minimum 
−2�5B∗ . This begins at the surface by a 
decrease in the internal field there. A B ver­
sus x line with the opposite slope moves 
inward, as shown in Figs. 13.10d and 13.10e. 
The result is that the flux is trapped inside 
during the field-lowering process as shown 
shaded in Fig. 13.11b. Thus the field inside 
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exceeds that at the surface, and the average 
field inside is larger than the surface value. It 
will be clear from the discussion below that 
the amount of trapped flux reaches a max­
imum when the applied field has decreased 
through the range 
B = 2B∗ and that further 
decreases in the field maintain the amount 
of trapped flux constant. Finally, the applied 
field drops below zero and a negative applied 
field forms a critical state in the opposite 
direction, as shown. Figure 13.10 also shows 
the current flow patterns for each step in the 
field-lowering process. 

We see from Fig. 13.10 that increas­
ing the applied field beyond B∗ produces a 
critical state with the maximum amount of 
shielded flux. The subsequent decrease of 
the field by 2B∗ or more produces a critical 
state with the maximum amount of trapped 
flux. Figure 13.11 shows these two cases 
and depicts the shielded and trapped flux as 
shaded regions. The area of the shaded region 

Figure 13.10 Applied field cycle with Bapp starting at 0, increasing from 0�5B∗ to 
2�5B∗, decreasing through zero to the negative value −2�5B∗, and then beginning to 
increase again. Plots are shown of the internal field Bz�x� and the current density Jy�x� 

for successive values of Bapp. 
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has the magnitude B ∗ a, which means that 
the maximum flux trapped per unit length 
�max/L is 

�max = B ∗ a� (13.42)
L 

Flux shielding occurs when the average field 
�B� inside the superconductor is lower in 
magnitude than the applied field, whereas 
flux trapping occurs when the average inter­
nal field exceeds the applied field. It is 
a simple matter to calculate these aver­
ages. Thus we have, for positive B0 > B∗ 

and Bapp > 0, 

�B� = Bapp − 1
2 B ∗ �shielding� (13.43a) 

�B� = Bapp + 1
2 B ∗ �trapping�� (13.43b) 

corresponding to Figs. 13.7a and 13.11 
respectively. We see from Fig. 13.10 that 
these two cases are associated with current 
flow in opposite directions. 

If the applied field is increased from 
zero to B0 and then decreased back to zero, 

the amount of trapped flux will depend 
on whether the maximum field B0 is less 
than B∗ , between B∗ and 2B∗ , or greater 
than 2B∗ . 

In Eqs. (13.43a) and (13.43b) we gave 
the average internal fields for the conditions 
of maximum shielding and maximum trap­
ping when B0 > B∗. The first edition of this 
work shows how to determine the average 
internal field throughout a complete raising 
and lowering cycle. 

Figure 13.12 presents a plot of the aver­
age field �B� versus the applied field Bapp. 
There are five special points indicated on 
the loop: 1) the end points a and a� where 
�B� is a maximum, 2) point b where �B� =  
B and the magnetization M is zero, 3) app 

point c where the applied field Bapp is zero, 
4) point d where the average field �B� 
is zero, and 5) point e which appears in 
Figs. 13.13b and 13.13c as the onset of a lin­
ear portion of magnetization versus applied 
field loop. The definitions of these special 
points are given in Table 13.2. The first 
edition provides (Chap. 12, Sect. VI) the 
information needed to calculate Figs. 13.12 
and 12.13. 

Figure 13.11 Examples of (a) shielded flux (shaded) for an 
increasing applied field, and (b) trapped flux (shaded) for a decreas­
ing applied field. 
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Figure 13.12 Average field �B� versus the applied mag­
netic field Bapp cycled over the range −B0 ≤ Bapp ≤ B0 for 
the case B0 = B ∗ . 

Figure 13.13 Hysteresis loops of magnetization �0M versus applied mag­
netic field Bapp cycled over the range −B0 ≤ Bapp ≤ B0 for three cases: 
(a) Ba = 2

1 B∗, (b) B0 = 4
5 B∗, and (c) B0 = 3B∗. The magnetization has the 

values listed in Table 12 for the special points a, b, c, d, and e indicated on 
the loops. 
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Table 13.2 Definitions of the Special 
Points a, b, c, d, and e on the Hysteresis 
Loops of Figs. 13.12, 13.13, and 13.14. 

Point Characteristics 

a Bapp = B0 end point of loop 

b M = 0 �B� = Bapp 

c Bapp = 0 near midpoint of loop 

d �B� = 0 �0 M =−Bapp 

e onset of linear portion of loop (exists for 
B0 > B∗ and absent for B0 < B∗) 

Figure 13.14 Magnetization hysteresis loop for the 

B. Magnetization case B0 = B ∗ . 

The magnetization M is given by the 
relation (1.69), 

in accordance with Fig. 13.13a Figure 13.14 B 
M = −H� (13.44) shows the intermediate field case for B0 = 

�0 B∗ . The magnetization saturates at M = 
For the slab case depicted in Fig. 13.2 B∗/�0 over most of the range for the case 

the boundary condition (1.76) shows that B0 � B∗, as indicated in Fig. 13.13c. The 

H is the same outside and inside the hysteresis loops are labeled with the same 

superconductor, with the value �0H = B . points a, b, c, d, and e that were introduced in 
app

Ordinarily, we think of M as the aver- the previous section; values for the magneti­

age magnetization, M = �M�. Bearing this zation at these points are given in Table 13.3. 

in mind, Eq. (13.44), written for average The onset of the flat horizontal portion of 
quantities inside the superconductor, is as the loop is indicated by point e. These loops 
follows: may be compared with their experimentally 

determined low-field counterparts shown in 
�0M = �B�−Bapp� (13.45) Figs. 5.5 and 5.6; the former figure illustrates 

the onset of the saturation phenomenon. The 
Thus we see that the magnetization high-field hysteresis loops of Fig. 5.7 are sat-
determines how great is the difference urated over most of their range, but exhibit 
between the average internal field and the the additional feature of a discontinuity at 
applied field. the field Bc1, which is not taken into account 

in the Bean model. 
If the magnetization is taken around a 

C. Hysteresis Loops cycle of the loop, the net work done by the 
A hysteresis loop is a plot of the mag- external field, expressed as the energy loss Q 

netization M versus the applied field Bapp. per unit volume, is equal to the area enclosed 
Examples of such loops are presented in by the loop: 
Figs. 13.12 to 13.14. 

The magnetization loop is narrow and 
� 

inclined at close to a 45� angle for B � B∗ , 
Q = MdB� (13.46) 
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Table 13.3 Expressions for the Average Magnetic Field �B� and the Magnetization 
�0M at Various Points on the Hysteresis Loops of Figs. 13.12, 13.13 and 13.14 over 
a Range of Maximum Fields B0 Relative to the Full Penetration Field B∗. Point e is 
absent for B0 < B∗ 

Point Range of B0 Applied field Bapp Average field �B� Magnetization �0M 

a 0 ≤ B0 ≤ B∗ B0 
1 
2 B

2 
0 /B∗ −B0 + 

1 
2 B

2 
0 

B∗ 
a B∗ ≤ B0 B0 B0 − 1 

2 B
∗ − 1 

2 B
∗ 

b 

b 

B0 � B∗ 

B∗ ≤ B0 

1 
2 B

2 
0 

B∗ 

B0 − �2 − √ 
2�B∗ 

1 
2 B

2 
0 /B∗ 

B0 − �2 − √ 
2�B∗ 

0 

0 

c 0 ≤ B0 ≤ B∗ 0 1 
4 B

2 
0 /B∗ 

1 
4 B

2 
0 

B∗ 

c B ∗ ≤ B0 ≤ 2B ∗ 0 B0 − 1 
2 B ∗ − 

1 
4 B

2 
0 

B∗ B0 − 1 
2 B ∗ − 

1 
4 B

2 
0 

B∗ 
c 2B∗ ≤ B0 0 1 

2 B
∗ 1 

2 B
∗ 

d 0 ≤ B0 ≤ 3 
2 B

∗ B0 − 
2B∗�2B0 −B∗��1/2 0 −B0 + 
2B∗�2B0 −B∗��1/2 

d 3 
2 B

∗ ≤ B0 − 1 
2 B

∗ 0 1 
2 B

∗ 

e B∗ ≤ B0 B0 −2B∗ B0 − 3 
2 B

∗ 1 
2 B

∗ 

Figure 13.15 Estimating the area of a magnetization 
hysteresis loop at low field; B0 � B ∗ . 

Figure 13.15 shows that the area of the low-
field hysteresis loop is proportional to its √ 
length ≈ 2B0 times its width ≈ B0

2/2B∗ , 
using values estimated from Table 13.3. The 
area may be expressed as 

2B0
2 

Q = ����� (13.47)
�0 

where the loss factor ���� has the approxi­
mate value 

���� ≈ � < 1 (13.48)
3 

where 

B0� = � (13.49)
B∗ 

For high fields, B0 � B∗ , the area of 
the loop, to a first approximation, equals its 
height B∗ times the horizontal distance 2B0 

between the points a and a� , which gives 
Q ≈ 2B0B

∗ = 2B0
2/�, as may be seen from 

Fig. 13.13. The correction factor ≈ 4B∗2/3 
must be subtracted to account for the rounded 
part at the ends. Adding these two parts gives 
the energy loss (13.47), where the energy 
loss factor ���� is approximated as 

1 2 
���� ≈ − � > 1� (13.50) 

� 3�2 

where � is given by Eq. (13.49). Figure 13.16 
shows the dependence of the calculated loss 
factor ���� on � for the slab case, which 
has the limiting approximations (13.48) 
and (13.50), and also for a cylinder in a 
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403 VI REVERSED CRITICAL STATES AND HYSTERESIS 

Figure 13.16 Energy loss factor ���� for different superconductor shapes and orientations in an applied 
magnetic field. The case of a slab parallel to the applied field is treated in the text, with the low-field side, B0 < B∗ 

approximated by Eq. (13.48) and the high-field side, B0 > B∗, by Eq. (13.50). Equation (13.51) provides analytical 
expressions for ���� in the case of a cylinder oriented parallel to the field (Wilson, 1983, p. 164). 

parallel and perpendicular field. The low- ± 1 B∗. We know from Eq. (13.34) that 2 
and high-field approximations for ���� of

the cylinder are as follows: B ∗ = �0Jca� (13.52)


2� �2 A high-field hysteresis loop provides the dif­
���� ≈ 

3 
− 

3 
� < 1� (13.51a) ference, 

2 1 
���� ≈ − � > 1� (13.51b) M+−M− = J a� (13.53)c3� 3�2 

between the upper and lower magnetization 
plateaux, where 

D. Magnetization Current 
�0M+ = 1 B ∗ � (13.54a) We have seen that for high applied fields 2 

satisfying the condition Bapp � B∗, the aver- �0M− = − 2
1 B ∗ � (13.54b) 

age internal field �B� varies between Bapp + 
1 B∗ and Bapp − 1 B∗, so that the magnetiza- as indicated in Fig. 13.13c. This gives us an 2 2 
tion �0M = �B�−Bapp varies over the range expression for the critical current in terms 
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of measured values of the magnetization 
through the Bean model formula, 

2�M+−M−� 
Jc =	 (13.55)

d 

= 1�59 ×106 �0
M 
�A/m2�� 

d 
(13.56) 

where �0
M = �0�M+−M� is expressed in 
teslas while d is the diameter of the sample 
grains, measured in meters. More precisely, 
this represents a high-field Bean model for­
mula. Such an indirect method of measuring 
Jc using hysteresis loops is widely employed 
(Biggs et al., 1989; Crabtree et al., 1987; 
Frucher and Campbell, 1989; Kohiki et al., 
1990; Kumakura et al., 1987; Nojima and 
Fujita, 1991; Sun et al., 1987; van den Berg 
et al., 1989; Xiao et al., 1987b), and consti­
tutes one of the most important applications 
of the Bean model. 

Many authors use electromagnetic units 
for the magnetization, which corresponds to 
the expression 

Jc = 30�M+−M−� 
A/cm2� (13.57)

d 

where d is now in centimeters. 
This method has been widely applied 

for determining Jc. An example is the mea­
surement by Shimizu and Ito (1989) of the 
critical currents of 16 YBa2Cu3O7−� samples 
with a range of particle diameters from 3 
to 53 �m. Figure 13.17 shows some of their 
hysteresis loops. Shimizu and Ito determined 
the critical current from the plots of 
M ver­
sus d shown in Figs. 13.18 and 13.19 for 
three applied field strengths at temperatures 
of 4.2 K and 77 K. The horizontal bar through 
each datum point gives a range of diameters 
between 25% and 75% of the diameter distri­
bution. The results were J = 2 ×106 A/cmc 

at 4.2 K in a field of 0.3 T and 7×104 A/cm
at 77 K in a field of 0.03 T. The experimental 
results’ presented in Figs. 13.18 and 13.19 
show that, for small particle diameters, the 

13 IRREVERSIBLE PROPERTIES 

Figure 13.17 Experimental magnetization hystere­
sis loops of YBa2Cu3O7−� at 4.2 K used to determine 
the critical current Jc with powder diameters (a) 3 �m, 
(b) 15 �m, (c) 36 �m, and (d) 53 �m (Shimizu and 
Ito, 1989). 

magnetization is indeed proportional to the 
diameter (Shimizu and Ito, 1989; Tkaczyk 
et al., 1992; cf. Babic et al., 1992; Der­
sch and Blatter, 1988), which means, from 
Eq. (13.51), that the measured critical cur­
rent is independent of the diameter. We 
also see from these figures that the mag­
netization saturates for particle diameters 
greater than 20 �m, suggesting that appre­

2 ciable magnetization current cannot flow 
2	 through boundaries more than 20 �m wide. 

Using the Bean expression (13.57) in this sat­
uration region provides values of Jc that are 
too low. 



Elsevier AMS Job code: SUP CH13-P088761 22-6-2007 9:41a.m. Page:405 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

405 VII PERFECT TYPE-I SUPERCONDUCTOR 

Figure 13.18 Dependence of the magnetization 
parameter 
M on the particle diameter d for a series of 
YBa2Cu3O7−� samples at 4.2 K. The horizontal lines are 
a measure of the distribution in diameter, as explained 
in the text. The critical current is determined from the 
slope 
M/d of the lines on the left using Eq. (13.56) 
(Shimizu and Ito, 1989). 

Figure 13.19 Dependence of the magnetization 
parameter 
M on the particle diameter d for a series of 
YBa2Cu3O7−� samples at 77 K, using the same notation 
and Jc determination as in Fig. (13.18). 

VII. PERFECT TYPE-I 
SUPERCONDUCTOR 

We have been treating various cases in 
which the magnetization is not reversible, 
but rather exhibits hysteresis when the mag­
netic field undergoes a change. Textbooks 
often discuss a perfect magnetization loop 
of a superconductor in which the magnetiza­
tion is linear and reversible during changes 
in the applied field. To the best of our knowl­
edge there has been no report of an actual 
measurement of such a material. The prob­
lem is the prevalence of all kinds of irre­
versible contributions that induce a hysteresis 
and other deviations from the “ideal” shape. 
These effects can be due to bulk or surface 
pinning, a geometric barrier, edge geome­
try, and other deviations from the perfect 
situation. The recent understanding of possi­
ble topological hysteresis, at least in Type-I 
superconductors, made it unclear whether 
or not such loop could be measured at all. 
Figure 13.20 shows the result of an actual 
measurement performed by using a Quan­
tum Design MPMS on a small sphere which 
was cast from high purity lead and solidified 
during free fall in air. Evidently, all char­
acteristic parameters satisfy the description 
of a perfect Type-I superconducting sphere 
with the expected demagnetization factor 
of N = 1/3. We are not aware of similar 
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measurements in Type-II superconductors, 
although some materials such as CeCoIn5 

can be extremely clean, and exhibit almost no 
hysteresis. 

VIII. CONCLUDING REMARKS 

The Bean model qualitatively repro­
duces many of the experimentally observed 
properties of Type II superconductors, 
such as the hysteresis loops discussed in 
Chapter 5, Section IV. It is also widely used 
in contemporary research for the understand­
ing and interpretation of experimental data. 
One example is work on time-dependent 
effects, such as flux creep and magnetic 
relaxation phenonema. Perhaps the most 
important application is the determination of 
critical currents by magnetization measure­
ments, as was explained in Section VI.D. 

PROBLEMS 

1. Find solutions analogous to Eqs. (13.18) 
and (13.19) for the Kim model in the 
high-field case; in this case there is no 
current-field-free region in the center. 
Show that this occurs for the condition 
B0 > �0Jca. 

2. Show that the expression 

B0 =Jc �0�a−a�� 

is valid for both the low-field Kim model 
and the low-field Bean model. Write 
down the corresponding expressions for 
the pinning forces in the high-field 
Bean model. 

3. Show that the condition 

13	 IRREVERSIBLE PROPERTIES 

4. Draw figures analogous to those shown 
in Figs. 13.3a, 13.3b, and 13.3c for the 
Kim model. 

5. Draw	 figures analogous to all those 
shown in Figs. 13.5a and 13.5b for the 
Kim model. 

6. Derive Eq. (13.22) 


B = �0Jc�xR −xL�� 

where the notation is given in 
Fig. 13.7. 

7. The applied field Bapp is increased from 
0 to the value B0, where 0 < B∗ < B0. 
Show that if it is then decreased down 
into the range 

−B0 < Bapp < B0 −2B ∗ � 

the average field will have the value 

�B� = B + 1 B ∗ �app 2 

What is the magnetization? 
8. The applied field Bapp is increased from 

0 to the value B0, where 0 < B0 < B∗ . 
Show that if it is then decreased down 
into the range 0 < Bapp < B0, the magne­
tization will be given by 

�B0 −Bapp�
2 B0

2 

�0M = Bapp + − � 
4B∗ 2B∗

What is the average field �B�? 
9. Calculate the magnetizations associated 

with the magnetic field configurations of 
Figs. 13.13a, b, and c. 

10. Show that when	 B0 = B∗, the point d 
at which �B√� = 0 occurs at the position 

I � Bapp = �1 − 2�B∗ (cf. Fig. 13.12). 
= Jy�x�dx = Jc�a−a �� 11. Show that when B0 = B ∗, points d and L 

e occur at the same spot on the hystere­
leads to the definition (13.14) of Jc. sis loop. 
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PROBLEMS 407 

12. For what values of the ratio B0/B ∗ will 13. Find the internal magnetic fields and 
point e be found between points a� and d pinning forces associated with the expo-
in Fig. 13.13b, and when will it be found nential model. 
between d and c? 14. Justify the form of ���� in Eqs. (13.51a) 

and (13.51b). 
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14 

I. ISOTROPIC LONDON 
ELECTRODYNAMICS 

The notion of a characteristic length for 
magnetic field penetration into a supercon­
ductor was established soon after the discov­
ery of the magnetic field expulsion in tin 
and lead by W. Meissner and R. Ochsenfeld 
in 1933. (Meissner and Ochsenfeld, 1933, 
Meissner and Ochsenfeld, 1983) C. J. Gorter 
and H. Casimir (GC) introduced a two-fluid 
model of superconductivity in 1934. (Gorter 
and Casimir, 1934b, Gorter and Casimir, 
1934c, Gorter and Casimir, 1934a) Anal­
ysis of the specific heat and critical field 
data, prompted GC to suggest an empir­
ical form for the temperature dependence 

Magnetic 
Penetration 

Depth 

of the density of superconducting electrons, 
ns = n�1 − t4�, where t = T/Tc and n is the 
total density of conduction electrons. In 1935 
F. and H. London (London and London, 
1935) introduced a phenomenological model 
of superconductivity in which the magnetic 
field inside a superconductor B obeys the 
equation, 

�2 �B −B = 0 (14.1)L

where �L, known as the London penetration 
depth, is a material-dependent characteristic 
length scale given by 

2 

�2 
L = mc

2 
(14.2)

4�n es 

409 
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Combining this definition with the GC form 
for the density of superconducting electrons 
results in a temperature dependent penetra­
tion depth, 

��0� 
��T� = √ (14.3)

1 − t4 

It should be noted that although 
Eq. (14.3) had no microscopic justi­
fication, at low temperatures it takes 
the form ��T� ≈ ��0��1 + t4/2 +O�t8��. 
Numerically, the ��t� ∼ t4 power law behav­
ior is practically undistinguishable from 
the exponential behavior ��t� ∼ exp�−�/T� 
obtained more than 20 years later from 
the microscopic theory of J. Bardeen, L. N. 
Cooper and J. R. Schrieffer (BCS). (Bardeen 
et al., 1957) The GC formula has been 
extensively used where a simple analytical 
approximation for ��t� over a full tempera­
ture range was needed. However, as shown in 
Figure 14.1, the GC approximation underes­
timates the absolute value of the penetration 
depth by about a factor of two. Some suc­
cessful attempts were made to generalize the 
GC approximation to better fit the results of 
the measurements. (Lewis, 1956). To obtain 
practical results in the spirit of Eq. (14.3), 
we solved the full BCS equations for both 

10 

8 

6 

4 

2 

0 

1 1–t 2 –s-wave 

1 1–t 4/3 –d-wave 

Gorter-Casimir 

0.0 0.2 0.4 0.6 0.8 1.0 

(T/Tc)
4 

Figure 14.1 Approximate functional forms for the 
penetration depth in the entire temperature range for the 
d-wave and s-wave clean limits. 

λ(
T

)/
λ(

0)
 

14 MAGNETIC PENETRATION DEPTH 

s- and 2D d-wave symmetries of the order 
parameter, and found the following approxi­
mations: 

��T� = ��0� √ − s-wave 

��T� = 
1 − t2 

��0� √ −d-wave 

(14.4) 

1 − t4/3 

Figure 14.1 illustrates the behaviour of 
Eqs. (14.4). Symbols are calculated from 
Eqs. (14.28) and (14.30) below and solid 
lines are calculated from Eqs. (14.4). The 
GC behavior, Eq. (14.3), is also shown. 
We note that while Eqs. (14.4) are quite 
good approximations in the entire temper­
ature range, they are not accurate at low 
temperatures. There, formulae (14.37) and 
(14.40) should be used instead. In fact, 
the entire low temperature �T/Tc ≤ 0�35Tc� 
region where any rigorous test for the exis­
tence of gap nodes must be performed is 
essentially invisible on Fig. 14.1. It is inter­
esting to note that the best approximation for 
the s-wave temperature behavior is compat­
ible with the empirical form of the critical √ 
field, √ 

Hc =Hc�0��1−t2� via√Hc1 =Hc/ 2�	 

� = 
0 ln���/4�Hc1 ∼ 1/ 1 − t2. 
One of the central issues in early pene­

tration depth measurements was whether all 
electrons participate in the superconductiv­
ity as T → 0. Experiments on pure metals 
gave values larger than predicted, implying 
that some electrons remaine normal. Pippard 
(1953) was the first to suggest a non-local 
version of London electrodynamics similar 
to earlier generalizations of Ohm’s law. If 
the microscopic BCS coherence length, �0 = 
�vF/��0, is larger than the London penetra­
tion depth defined by Eq. (14.2) (denoted by 
�L), the response of a superconductor to a 
magnetic field is weakened due to the reduc­
tion of the vector potential over its length, 
�L, and the effective magnetic penetration 
depth increases (Tinkham, 1996) 

( )1/3
�0�eff ≈ a�L (14.5)
�L 
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where a = 0�65 in an extreme (Type-I) case 
of �L�0� � �0. In the presence of impurities, 
the effective coherence length is introduced 

�−1 = �0 
−1 +�−1 (14.6) 

where and � is the mean free path. In 
this case, the effective penetration depth is 
(Tinkham, 1996) 

�0�eff = �L 1 + (14.7) 

Since all non-elemental superconductors 
are Type-II, the Pippard model is not appli­
cable to our discussion, and from this point 
on we will assume London electrodynamics 
��/� � 1� to hold. For a copper oxide super­
conductor like YBaCuO one has �/� ≈ 100 
even at low temperatures so the London limit 
is easily satisfied. We note, however, that 
a different type of nonlocality can arise in 
unconventional superconductors due to the 
divergence of the coherence length along 
nodal directions. (Kosztin and Leggett, 1997) 

II. PENETRATION DEPTH IN 
ANISOTROPIC SAMPLES 

The fact that many unconventional 
superconductors are strongly anisotropic 
presents some difficulty in determining the 
basic electromagnetic parameters. We con­
sider the simplest case, in which there 

Hac 

2w 

λab 

λc2d 

2b (a) 

are there are now two different penetration 
depths, �ab and �c. The geometry is shown 
in Fig. 14.2a. A sample of constant cross 
section in the x-y plane extends infinitely far 
in the z-direction. The sample has thickness 
2d, width 2b and length w → 	. A mag­
netic field is also applied in the z-direction 
so demagnetizing corrections are absent. To 
facilitate comparison with the copper oxides 
we take the y direction along the c-axis and 
let the x and z directions correspond to the 
a and b axes. Choosing the coordinate axes 
to lie along principal axes of the superfluid 
density tensor we have 

�2 
ii�ji = ji (14.8) 

For the case considered here, supercurrents 
flow in the x and y directions. In-plane super­
currents flowing in the x direction penetrate 
from the top and bottom faces a distance �ab, 
as shown. c-axis supercurrents flowing in the 
y direction penetrate from the left and right 
edges a distance �c.Using (8) and Maxwell’s 
equations it is straightforward to derive the 
generalized London equation for the mag­
netic field, (Ginzburg, 1952, Kogan, 1981, 
Mansky et al., 1994) 


2B 
2Bz z�2 +�2 = B (14.9)c ab z
x2 
y2 

This equation for the field mixes components 
of the penetration depth, and has a less direct 

Hac 
λab 

2w λab 

2d 

(b) 

Figure 14.2 Experimental configurations: (a) geometry relevant to Eq. (14.9) 
when w → 	, and (b) finite w with the field normal to the conducting planes. 
The in-plane penetration depth is assumed to be isotropic. 
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interpretation than Eq. (14.8) for the currents. 
The full boundary value problem for this case 
was solved by Mansky et. al. (1994) They 
obtain a susceptibility, 

�ab d −4�� = 1 − tanh 
d �ab 

−2�cb
2 

∑ tanh

k

�

2 

b̃

b̃

n

3 

/�c� (14.10) 
n=0 n n 

where kn = ��1/2 + n� and b̃n = 
b �1 + �kn�ab/d�

2�. (Note that Eq. (14.10) 
has been re-written in a different form 
compared to (Mansky et al., 1994)). In 
practice, summation to n = 50 suffices. 
It is easy to show that Eq. (14.10) gives 
the correct result for limiting cases. For 
example, if �ab � d and �c � b we obtain 
˜ k−2bn ≈ b and with n = 1/2	 −4�� = 

n=0 
1 − �ab/d tanh�d/�ab� − �c/b tanh�b/�c� 
as expected. More often, the in-plane 
anisotropy is relatively weak (supercurrents 
along x and y both penetrate by �ab) 
whereas �c is considerably larger. In organic 
superconductors, for example, �c ≈ 100�ab. 
In that case, for typical crystal dimensions 
one has �c/d � �ab/b and the susceptibility 
in Eq. (14.9) is dominated by �c. While the 
interplane penetration depth is important in 
its own right, it is often considerably more 
complicated to interpret than the in-plane 
depth since it involves poorly understood 
properties of the interplane transport mecha­
nism. (Radtke et al., 1996, Hirschfeld et al., 
1997, Sheehy et al., 2004) 

To measure �ab in highly anisotropic 
materials one must find either extremely thin 
samples ��c/d � �ab/b� or restrict super­
currents to the conducting planes. The lat­
ter approach requires the geometry shown in 
Fig. 14.2 (b), with the magnetic field normal 
to the planes. In this case, large demagnetiza­
tion effects occur, and no closed form solu­
tions of the London equation exist. Strictly 
speaking, a demagnetizing factor can only 
be defined for ellipsoidal samples, but for 

14 MAGNETIC PENETRATION DEPTH 

real samples an effective demagnetizing fac­
tor can be defined. A more difficult problem 
is to determine the effective sample dimen­
sion by which to normalize the penetration 
depth in this demagnetizing geometry. A 
semi-analytical solution for this problem was 
found for disks and slabs by Prozorov et al. 
(2000a). The susceptibility is given by, 

1 � R̃−4�� = 1 − tanh 
1 −N R̃ � 

(14.11) 

where R̃ is the effective dimension, and N 
is the demagnetization factor. For a disk of 
thickness 2d and radius w and a magnetic 
field applied perpendicular to the plane of 
the disk (i.e. along d), 

R̃≈ { [ ] 
w } ( )22d ( w ) 2d 

2 1+ 1+ arctan − 
w 2d w 

(14.12) 

In the thin limit, d � w	 R̃ ≈ 0�2w. The 
demagnetization correction is given by the 
expression, 

1 w ≈ 1 + (14.13)
1 −N 2d 

The tanh� ̃R/�� term is an approxima­
tion, which only becomes exact for d	 w → 
	 whence R̃ = w/2. For an infinitely 
long cylinder the London equation gives 
I1� ̃ R/�� – the ratio of the modified R/��/I0� ̃
Bessel functions of the first kind. However, 
these distinctions are important only close to 
T (more specifically where � ≥ 0�4w) and c 

even then the results are quite similar. At 
low temperatures where R̃/� � 1 the hyper­
bolic factor is essentially unity and therefore 
irrelevant. For rectangular slabs Eqs. (14.12) 
and (14.13) can be applied with the effective 
lateral dimension 

W̃ = db 
(14.14)

b +2d/3 
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413 III EXPERIMENTAL METHODS 

Equation (14.14) was obtained by fitting 
the numerical solutions of Eq. (14.10) in its 
isotropic form ��c =�ab� to the Eq. (14.11). A 
straightforward generalization of Eq. (14.12) 
would lead to a similar expression, but with­
out factor 2/3 in the denominator. Equa­
tion (14.14) is more accurate, because it is 
obtained for a rectangular slab, not for the 
disk described by Eq. (14.12). 

When large enough single crystals are 
unavailable penetration depth measurements 
are often done on granular samples. Very 
reasonable results can often be obtained 
by approximating the grains as spherical 
and using, 

3 3� r 3�2 

−4��Sphere = 1 − coth + 
2 r � r2 

(14.15) 

where r is the grain radius. This equation 
is especially useful for small grains, r � �. 
For a more accurate measure Eq. (14.15) 
may be averaged over the grain size distri­
bution, f�r�, (Waldram et al., 1994, Porch 
et al., 1993) 

r3f�r���r�dr 

−4���� = 0 
	 (14.16) 
r3f�r�dr 

0 

If � is anisotropic, as is often the case, the 
grains can be cast in epoxy and aligned with 
a large magnetic field prior to measurement. 
(Manzano et al., 2002) 

III. EXPERIMENTAL METHODS 

Many experimental techniques have 
been developed to measure the penetration 
depth. Among other existing techniques we 
shall mention reversible magnetization, (Hao 
and Clem, 1991) first critical field, AC sus­
ceptibility, microwave cavity perturbation, 
tunnel-diode oscillator, mutual inductance, 

kinetic inductance, muon spin relaxation, 
grain boundary Josephson transport, infrared 
spectroscopy, electron paramagnetic reso­
nance, and neutron diffraction, as well 
as various indirect estimations from elec­
tromagnetic and thermodynamic quantities. 
Descriptions of these techniques and their 
variations (e.g. there are quite a few versions 
of reversible magnetization measurements) 
would require a separate review. 

Some of the most versatile and sen­
sitive techniques utilize frequency-domain 
measurements. At microwave frequencies 
this is called a cavity-perturbation technique. 
At radio frequencies, it has been developed 
as a self-resonating LC circuit driven by 
a tunnel diode (Carrington et al., 1999b, 
2001, Prozorov et al., 2000a, 2000b). In the 
microwave approach (Hardy et al., 1998, 
Jacobs, 1995 #218, Mao, 1995 #260) a very 
high quality factor cavity is typically driven 
externally while its in-phase and quadrature 
response are measured. In the tunnel diode 
method, the “cavity” is simply an inductor, 
typically copper, with a Q of  order 100. The 
coil forms part of an LC tank circuit that 
is driven to self-resonate with a negative 
resistance tunnel diode. Tunnel diode oscil­
lators were used early in low temperature 
physics, but the potential of this approach 
for very high resolution measurements was 
first demonstrated by van de Grift. (DeGrift, 
1975) By placing a superconducting sample 
inside the coil, changes in the penetration 
depth, or more accurately its rf magnetic sus­
ceptibility, result in changes of inductance 
and therefore oscillator frequency. With care, 
frequency resolution of 10−9 in a few sec­
onds counting time can be achieved. For the 
sub-mm sized crystals characteristic of mod­
ern superconductivity research, this resolu­
tion translates into changes in � of order 
0.5 Å or smaller. In order to isolate variations 
of the sample temperature from the oscil­
lator, the sample is attached to a sapphire 
cold finger (Sridhar et al., 1989) whose tem­
perature can be varied independently from 
350 mK to 100 Kelvin. The cold finger stage 
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can be moved, in situ, to determine field 
and temperature dependent backgrounds, and 
to calibrate the oscillator response. (Carring­
ton et al., 1999b) We mention that Signore 
et al. (1995) used a tunnel diode oscilla­
tor to observe unconventional superconduc­
tivity in the heavy fermion superconductor 
UPt3 More recent variations that provide 
sample/oscillator thermal isolation have been 
developed to measure ��T� down to 50 mK. 
(Chia et al., 2003, Bonalde et al., 2000a, 
2005, Fletcher et al., 2006) 

A major advantage of the tunnel diode 
method is that the resonator need not be 
superconducting so that an external magnetic 
field can be applied to the sample. This fea­
ture was exploited early on by Jacobs et al. 
(1995) to search for possible changes in the 
penetration depth of YBCO with magnetic 
field, and to study vortex motion. Tunnel 
diode oscillators with suitably designed coils 
are now used in very large and even pulsed 
magnetic fields. (Coffey et al., 2000) The 
relatively low quality factor of the LC com­
bination means that AC excitation fields can 
be very small (∼ 20 mOe) and thus do not 
perturb the sample in any significant way. 
Unless one is very close to Tc, the imag­
inary part of the sample conductance, and 
thus the penetration depth, dominates the 
response. The oscillator approach provides 
tremendous resolution, but one does not have 
direct access to the dissipative component of 
the response, as is possible in a driven cavity 
or mutual inductance technique. 

IV. ABSOLUTE VALUE OF THE 
PENETRATION DEPTH 

One of the important parameters of a 
superconductor is the absolute value of the 
magnetic penetration depth extrapolated to 
zero temperature, ��0�, given in simple theory 
in a clean limit by Eq. (14.2), but it turns out 
that an effective electron mass (determined by 
thebandstructure)givenbyEq. (14.25) should 
be used. It is interesting to note that the clean 
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limit expression for ��0� does not contain any 
superconducting parameters, and therefore so 
called Uemura scaling (total superfluid den­
sity, ∼ ��0�−2, vs transition temperature, Tc) 
is not expected. On the other hand, in a dirty 
limit the superfluid density is proportional 
to the superconducting gap via the inverse 
penetration depth, Eq. (14.7), 

1 1 � ≈ ∝ ��0� ∝ T (14.17)
�2 �2 
eff L �0 

c 

so it appears that the Uemura scaling is 
valid only in the dirty limit. It is not sur­
prising that more and more deviations are 
recently reported indicating that samples 
have become cleaner. 

In principle one could determine ��0� 
by calculating the expected sample suscepti­
bility as a function of �, using Eq. (14.11) 
for example, and then measuring the result­
ing change in frequency as the sample 
is removed from the resonator. However, 
Eq. (14.11) is only approximate and for most 
situations, �/R̃� 1. Moreover the pre-factor 
cannot be calculated precisely. Therefore, it 
is not possible to differentiate between a per­
fectly diamagnetic sample ��/R̃= 0� of arbi­
trary shape, and one with a finite penetra­
tion depth if �/R̃� 1. For highly anisotropic 
materials the interplane penetration depth 
can be of order of 100 �m, in which case 
an approximate value can be directly deter­
mined by this method. (Carrington et al., 
1999a) For powder samples in which the 
grain size distribution is known, Eq. (14.15) 
can be used to extract the full � as dis­
cussed earlier. (Panagopoulos et al., 1997) 
For thin films, since the geometry is well 
controlled, it is also possible to determine 
the full ��T�. This is typically done using a 
mutual inductance technique with drive and 
pickup coils on opposite sides of the film, 
well away from any edges. (Fiory et al., 
1988, Lee et al., 1994) 

It is possible to obtain ��0� from 
measurements of the surface impedance 
Z = R + iX . Changes in the frequency and s s s
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quality factor of a microwave cavity are 
directly related to Xs and Rs respectively. In 
the normal state the sample has skin depth 
�, DC conductivity �DC , and Xs = Rs = 
1/��DC . In the superconducting state one has 
Xs = ��0�. Therefore Xs�T = 0�/Rs�T = 
Tc 

+� = 2��0�/�. By now measuring the 
change in Xs, upon cooling from above Tc 

to T = 0, it is possible to obtain ��0�, sub­
ject to assumptions about the distribution of 
microwave currents (Mao et al., 1995) 

Muon spin rotation (�SR) has been 
widely used to determine ��0�. (Sonier et al., 
2000) This met hod actually measures the sec­
ond moment of the magnetic field distribution 
around a vortex, which is related to ��0�. To  
extract the penetration depth requires a model 
for the vortex lattice as well as knowledge of 
the muon’s location. The moment of the field 
distribution depends in a nontrivial way upon 
the applied field, so an extrapolation to H = 0 
is required to yield reliable estimates of ��0�. 

In the limit that vortex pinning is negli­
gible, the magnetization of a superconductor 
in the mixed state is a well defined func­
tion of the penetration depth. With suitable 
corrections for vortex core effects, Hao and 
Clem (1991) showed that the thermodynamic 
magnetization is given by 

M = −  �0 ln 
�Hc2 (14.18)

32�2�2 H 

Experimentally, if one can find a region 
of field over which M is reversible, then 
(14–15) can be assumed to hold and the 
penetration depth may be extracted. The 
difficulty is that only very clean systems 
exhibit a sufficiently large interval of 
reversible behavior, and even if they 
do so, it is often non-logarithmic in H . 
Understanding such deviations involves 
an analysis of the field dependence of the 
effective coherence length and possible 
nonlocal effects. The general analysis of 
the reversible magnetization applicable to 
various large-� superconductors is currently 
in progress (Kogan et al., 2006). 

415 

Infrared reflectivity measurements can 
also be used to determine ��T = 0�. This 
method is useful when anisotropy is an issue, 
since techniques such as �SR or reversible 
magnetization average over both directions 
in the conducting plane. This issue is impor­
tant in YBaCuO where the response can 
be significantly different for currents along 
the a and b axes. From the reflectance 
one obtains the conductivity and the fre­
quency dependent penetration depth, ���� = 
4������/c2. Since the data begin well 
above � = 0 one must either extrapolate 
backward. or use a sum rule argument to 
obtain ��T = 0� at � = 0 (Basov et al., 1995) 

Yet another technique that can be used 
in conjunction with any sensitive enough sus­
ceptometer is when the sample under study 
is coated with a lower-Tc material (typi­
cally Al) of known thickness and penetration 
depth. This has been used with a home-made 
SQUID magnetometer (Gross-Alltag et al., 
1991) and tunnel-diode resonator. (Prozorov 
et al., 2000b) If the film thickness is smaller 
than its normal state skin depth, then above 
Tc�Al� the resonator sees only the sample 
under study. As one cools below the Tc�Al� 
the Al film screens the external field from 
the sample. This is illustrated in Figure 14.3. 

λ(AI) λ(HTSC) + t 

AI 
HTSC 

T < Tc(AI) T > Tc(AI) 

H 
HTSC AI HTSC AI 

t 

t ≈ 800 Å

λ(AI) ≈ 550 Å


Figure 14.3 Schematics of the experiment used to 
measure the absolute value of the penetration depth by 
coating a high-Tc superconductor with low-Tc (Al in 
this case) material. 
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Figure 14.4 Measurements of the absolute value of 
the penetration depth in Pr1�85Ce0�15CuO4−y (PCCO), 
Bi2Sr2CaCu2O8+y (BSCCO-2212) and YBa2Cu3O7−y 

(YBCO). The negative initial values correspond to the 
thickness of the sputtered aluminium layer. For details 
see Prozorov et al. (2000b). 

The change in resonator frequency from 
T<Tc(Al) to just above Tc�Al� then involves 
total penetration depth of the coated sample, 
and allows one to extract it via, 

�� − t 
��HTSC� = ��Al� + 

1 − exp�−t/��Al�� 

(14.19) 

where �� is the frequency shift measured by 
warming up above the transition temperature 
of the Al layer. Figure 14.4 shows the tech­
nique applied to three different superconduc­
tors for which the absolute values were also 
established by other techniques (Prozorov 
et al., 2000b). The results are in a good agree­
ment with the literature values for BSCCO 
and YBaCuO, and provide a new estimate for 
the electron-doped superconductor PCCO. A 
drawback to this technique is the need to 
know the penetration depth of the metallic 
film coating the sample. Although ��Al� is 
well known for bulk samples, it is certainly 
possible that it may differ substantially in 
thin films. 

Values obtained by various methods can 
differ widely. In the heavy fermion super­
conductor CeCoIn5, for example, ��0� val­
ues derived from �SR were found to differ 
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substantially from those obtained in sur­
face impedance measurements (Özcan et al., 
2003). While each method has its virtue, 
none is completely satisfactory. A sim­
ple, accurate, model-independent technique 
for measuring ��0� remains an outstanding 
experimental challenge. 

V. PENETRATION DEPTH AND 
THE SUPERCONDUCTING GAP 

A. Semiclassical Model 
For Superfluid Density 

We will briefly describe the main results 
of a semiclassical model for the penetration 
depth given by B. S. Chandrasekhar and D. 
Einzel (1993) (See also Annett et al., 1991). 
Given a Fermi surface and a gap function, 
this approach provides a general method for 
calculating all three spatial components of 
the penetration depth. It is limited to purely 
coherent electronic transport, and does not 
include the effects of scattering. 

In the London approximation, the super­
current j(r) is related locally to the vector 
potential A(r) through a tensor equation, 

j = −�A (14.20) 

The symmetric response tensor is given by, 

2 ∮ i j
e vF vF�ij = 

4�3�c 
dS� �vF � 

FS ⎛ ⎞⎤ ∫ 
f�E� N�E� × ⎝1 +2 

E N�0� 

dE⎠⎦ 

���� 

(14.21) 

Here f is the Fermi function and E =√ 
�2 +�2 is the quasiparticle energy. (The 

normal metal band energy � is mea­
sured from the Fermi level.) N�E�/N�0� = 
E/ E2 −��k�2 is the density of states nor­
malized to its value at the Fermi level in 
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the normal state and vF
i are the compo­

nents of Fermi velocity, vF . The average is 
taken over the Fermi surface, with the k-
dependent superconducting gap ��k	 T�  and 
Fermi velocity. We note that often Fermi 
surface averaging is used only on the sec­
ond integral term in Eq. (14.21). This may 
lead to significant deviations in calculating 
the superfluid density if Fermi surface is not 
spherical. In London local electrodynamics 
one has, 

c A�r�
j�r� = (14.22)

4� �2 
ii 

Using a coordinate system defined by the 
principal axes of �, penetration depths cor­
respond to the diagnonal components, 

�2 
ii = c 

(14.23)
4��ii 

The superfluid density is given by, 

nii�T� = cm
2 
ii �ii�T� (14.24) 

e

with the effective mass defined as 

2e n 
mii = (14.25) 

c�ii�0� 

which also depends upon the details of 
the Fermi surface as well of the density 
of states. For example, assuming a spher­
ical Fermi surface, one obtains the total 
electron density, nii�T → 0� = n = k3 

F/3�2. 
The normalized superfluid density is 
given by 

nii�T� �ii�0� 
( 
�ii�0� 

)2 

�ii�T� = = = 
n �ii�T� �ii�T� 

(14.26) 

Equation (14.21) provides the connec­
tion between the experimentally measured 
penetration depth and the microscopic 
superconducting state. Without any further 
calculation these formulae demonstrate the 

important point that in the clean limit 
��T = 0� is simply a band structure prop­
erty, unrelated to the gap function. For super­
conductors with sufficiently strong scattering 
this statement must be modified. The impor­
tance of the gap function becomes evident at 
non-zero temperatures where it is possible to 
generate quasiparticle excitations and a para­
magnetic current. Several important approx­
imations of Eqs. (14.21) and (14.26) should 
be considered. 

a. Isotropic Fermi surface 
In the case of a (2D) cylindrical Fermi 

surface relevant to the copper oxide super­
conductors, 

2�( ) 
1 cos2��� 

�aa =1 − 
bb 2�T sin2��� 

0 

∫ �2 +�2�T	 �� × cosh−2 d�d� 
2T 

0 

(14.27) 

where ���� is angle dependent gap func­
tion. For a 3D spherical Fermi surface and 
an anisotropic gap ���	 ��, Eqs. (14.21) and 
(14.26) become, 

1 2�( ) 
3 cos2��� 

�aa =1 − �1 − z 2� 
bb 4�T sin2��� 

0 0 

∫ �2 +�2�T	 �	 �� × cosh−2 d�d�dz 
2T 

0 

(14.28) 

and 

1 2� 

� =1 − 3 
z 2 cos2���c 2�T 

0 0 

∫ 	 �2 +�2�T	 �	 �� × cosh−2 d�d�dz 
0 2T 

(14.29) 
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where z = cos���. For isotropic s-wave pair­
ing both the 2D and 3D expressions give 

� = 1 − 1 
cosh−2 �2 +�2�T� 

d� 
2T 2T 

0 
(14.30) 

b. Anisotropic Fermi surface, 
isotropic gap function 

This case is useful for treating highly 
anisotropic Fermi surfaces, and in extreme 
cases multiband superconductors. Consider 
two distinct gaps on two different bands 
indexed by k = 1	 2. If �k does not depend 
on the wavevector, it can be removed from 
the integral in Eq. (14.21). Using 

X1 ∫ ( 
vF
ik 

)2 

xii = ii 	 Xii
k = 

k dSk 

Xii 
1 +Xii 

2 vF 
(14.31) 

we obtain, 

�ii�T� = xii�1�T� + �1 −xii��2�T� (14.32) 

which is related to the so-called �-model 
(Bouquet et al., 2001) with individual super­
fluid densities calculated for each individual 
band from Eq. (14.30). This expression was 
successfully used to model the penetration 
depth in MgB2 where two distinct gaps exist. 

1.0 

0.8 

0.6

ρs


0.4 

0.2 

0.0 

dx –y 2 2 

isotropic s-wave 

weak coupling clean limit 

0.0 0.2 0.4 0.6 0.8 1.0 

T/Tc 

Figure 14.5 Superfluid densities calculated for an 
isotropic s-wave superconductor, and for a d-wave 
superconductor. 
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(Fletcher et al., 2005). For the arbitrary case 
of a highly anisotropic Fermi surface and an 
anisotropic or nodal gap, the complete ver­
sion of Eq. (14.21) must be solved. 

B. Superconducting Gap 

To obtain physically meaningful results 
from Eqs. (14.21) and (14.26) the temper­
ature dependence of a superconducting gap 
must be calculated. The self-consistent gap 
equation depends on the gap symmetry and 
the details of the Fermi surface. One has, 

⎛ ( √ ) 
��D tanh 

�2 +�2�T�g2�k� ∫ ⎜ 2T ⎜ ⎝ �2 +�2�T�g2�k� 
0 

⎞ 

tanh � 

c ⎟− 2T ⎟ 
g 2�k� d� = 0 (14.33) ⎠ 

FS 

where g�k� represents a unit-magnitude 
angular dependence of the superconducting 
gap. Table 14.1 summarizes g�k� for sev-

Table 14.1 Some representative gap 
functions for singlet pairing states 

G Notation 

1 isotropic s-wave (Nb) 

1 √	 spheroidal anisotropic s-wave 
1 −� cos2��� 

Abrikosov’s anisotropic s-wave 
1 +� − cos�4�� 

1 − sin4��� cos�4�� 
s +g pairing 

2 

1 +� �cos�6��� 
Anisotropic 6-fold s-wave 

1 −� 

cos�2�� dx2−y2 (high-T cuprates)c 

sin�2�� dxy 

cos�2�� √	 anisotropic d-wave 
1 −� cos2��� 
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eral different gap functions relevant to both 
the cuprates and some newly discovered 
superconductors. We include gap functions 
relevant only to singlet pairing states, for 
simplicity. There is evidence from pene­
tration depth measurements for triplet, p-
wave pairing, most notably in heavy fermion 
superconductors (Gross et al., 1986, Gross-
Alltag et al., 1991) and in SrRuO4 (Bonalde 
et al., 2000b). For a comprehensive discus­
sion of the representation of the symme­
try of the order parameter in singlet and 
triplet states see, e.g., the review of Joynt 
and Taillefer (Joynt, 2002). 

Strong coupling introduces additional 
complications for which the full Eliashberg 
equations must be solved. A discussion can 
be found in Carbotte et al. (1990). For simple 
estimates an approximate form can be used. 
One of the most useful expressions is given 
by Gross et al. (1986) 

� T
��T� = ��0�tanh a c −1 

��0� T 

(14.34) 

where ��0� is the gap magnitude at zero 
temperature and a is a parameter, both to be 
determined for each pairing symmetry from 
Eq. (14.33), as demonstrated in Fig. 14.6. 

3.0 

2.5 

2.0 

1.5 

1.0 
s+g wave Δ(0)=2.77, a=2 
d-wave Δ(0) =2.14, a=4/3

0.5 s-wave Δ(0)=1.76, a=1 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

T/Tc 

Figure 14.6 Temperature dependence of the super­
conducting gap for s, d and s + g symmetries obtained 
from Eq. (14.33) (symbols) and fitting to Eq. (14.34) 
(solid lines), with the fit parameters indicated. 

Δ(
T

) 
As shown in Fig. 14.6, Eq.(14.34) pro­

vides a very good approximation to an exact 
solution of the gap equation, Eq. (14.33). 
In this example, solutions were obtained 
for s-wave, s + g wave, and d-wave pair­
ing (symbols). The solid lines are the results 
of numerical fitting to Eq. (14.34). For 
isotropic s-wave superconductors, ��0� = 
1�76Tc	 a  = 1, for the pure d-wave case, 
��0� = 2�14Tc	 a  = 4/3, and for an s + g 
wave ��0� = 2�77Tc	 a  = 2. The tempera­
ture dependence and magnitude of the gap 
depend sensitively on its angular variation, 
even in an s-wave case. 

C. Mixed Gaps 

It has been suggested that superconduc­
tivity can be complex with various admix­
tures. Theoretically, such a possibility was 
suggested as due to orthorhombic distortion 
in high-Tc cuprates. Gaps of the type dx2−y2 + 
is and dx2 −y2 + idxy where proposed. It does 
not seem that current experiments support 
this conjecture. For illustration we show in 
Figure 14.7 the evolution of the superfluid 
density from a pure d-wave gap to a pure 
s-wave gap. 

1.0 

0.8 pure s 

0.6
ρ pure d


0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

T/Tc 

Figure 14.7 Superfluid density for a mixed gap, 
dx2−y2 + is for a component content of 0, 10, 20, 30, 40 
and 100% (from bottom up). Similar curves are obtained 
for the dx2−y2 + idxy case. 
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D. Low-Temperatures 

As Fig. 14.6 illustrates, even for the case 
of unconventional pairing, the gap function 
is very nearly constant below some temper­
ature range, typically T/Tc ≈ 0�3. It is only 
in this limit where the temperature depen­
dence of the penetration depth allows one to 
draw general conclusions about the pairing 
state. At higher temperatures, the tempera­
ture dependence of the gap itself cannot be 
ignored. Since this is model-dependent, the 
temperature dependence of the penetration 
depth at higher temperatures is not a reli­
able guide to the pairing state. In the low 
temperature limit, things are simpler. Defin­
ing �� = ��T� − ��0�, Eq. (14.26) can be 
written as 

( )−2
���T� ���T� 

� = 1 + ≈ 1 −2 
��0� ��0� 

(14.35) 

a. s-wave pairing 
For g = 1 we obtain the standard 

BCS result in the low temperature limit 
(Abrikosov, 1988) 

2��0 ��0� 
� ≈ 1 − exp − (14.36)

T T 

The corresponding penetration depth, 
��/��0� ≈ �1 −��/2 is given by, 

���T� ��0 ��0� ≈ exp − (14.37)
��0� 2T T 

The exponentially small value of 
��/��0� justifies the linear approximation of 
Eq. (14.35), and shows that � and � have the 
same temperature dependence in this region. 
However, for a gap function with nodes, � 
changes much more rapidly with tempera­
ture. Higher order terms in Eq. (14.35) can 
quickly lead to different T dependences for 
� and �, even if the gap does not change 
with temperature. One must then determine 
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the more fundamental quantity, �, which 
requires an additional determination of ��0�. 

b. d-wave pairing 
For a gap function with nodes, � 

depends upon both the gap topology 
(e.g. point nodes or line nodes) and the 
detailed functional behavior near the nodes. 
(Gross et al., 1986) In principle, there are 
many gap functions consistent with the d-
wave pairing symmetry believed to describe 
the high-Tc cuprates. The widely used form 
� = ��0� cos�2�� leads to, 

2 ln  2  
� = 1 − T (14.38)

��0� 

Another possible choice is a two parame­
ter gap function which varies linearly with 
angle near the nodes and is constant for 
larger angles: 

���0��	 0 ≤ � ≤ �−1 

������ = 
��0�	 �−1 ≤ � ≤ �/4 

(14.39) 

where � = �−1�0�d������/d���→�node 
(Xu 

et al., 1995). This form leads to, 

���T� 2 ln 2  2 ln 2  ≈ T = T 
��0� d�/d���→�node 

���0� 

(14.40) 

Equation (14.40). reduces to the commonly 
used Eq. (14.38) if � =��0� cos�2�� is used. 
In either case, the linear T dependence results 
from the linear variation (near the nodes) of 
the density of states, N�E� ~ E. The impor­
tance of low temperature measurements is 
this direct access to the topological proper­
ties of the gap function, independent of other 
details. 

c. p-wave pairing 
p-wave and f-wave states are triplet pair­

ing states with a symmetric spin part of the 
Cooper pair wave function. Therefore any 



Elsevier AMS Job code: SUP CH14-P088761 22-6-2007 9:41a.m. Page:421 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

( )

√ 
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claim of a such pairing state should include 
experimental evidence of triplet pairing. The 
NMR Knight shift has been successfully used 
for this purpose. When the pairing is sin­
glet, the Knight shift decreases upon enter­
ing the superconducting state because the 
magnetic interaction between the nuclear spi 
and the conduction electrons is weaker. In 
the triplet state, however, pairing does not 
reduce the pair spin, and the Knight shift 
remains unchanged. One of the recent addi­
tions to the triplet state pairing family is the 
Sr2RuO4 superconductor. The well known 
heavy fermion superconductors, UPt3 and 
UBe13 are additional examples of the triplet 
pairing state. 

The analysis of the magnetic penetration 
depth for p-wave pairing is much more dif­
ficult, because in this case the gap function 
is given by 

��k	 T�  = ��T�f�k · l� (14.41) 

where l is the gap axis. The electromag­
netic response depends on the mutual ori­
entation of the vector potential and the gap 
axis, and additionally on the orientation of 
the crystallographic axes with respect to the 
crystal faces. A detailed experimental and 
theoretical study of this situation is pre­
sented by Gross et al., 1986, and Gross-
Alltag et al., 1991. The following low-
temperature asymptotics were obtained for 
various cases: 

T
n��	⊥ 

���	⊥ = 1 −a��	⊥ (14.42)
��0� 

The superfluid density tensor has two eigen­
values – parallel to and perpendicular to the 
gap axis, l. Note that in this case the current is 
no longer always parallel to the vector poten­
tial. The situation in a p-wave superconduc­
tor is summarized in Table 14.2. All low-
temperature asymptotics listed in the table 
have been experimentally observed. 

Table 14.2 Various low-temperature 
coefficients for the p-wave pairing state 

Orientation A n 

axial f�k ·1� = �k ×1� 
(two point nodes) 

�� 

⊥ 

�2 

7�4 

15 

2 

4 

polar f�k ·1� = k · 1 
(equatorial line node) 

�� 

⊥ 

27���3� 
4 

3� ln 2 

2 

3 

1 

VI. EFFECT OF DISORDER 
AND IMPURITIES ON THE 
PENETRATION DEPTH 

A. Non-Magnetic Impurities 

Early measurements of the penetration 
depth in thin films and some crystals of 
copper oxide superconductors showed a T 2 

dependence, instead of the expected linear 
T dependence for a gap function with line 
nodes. The problem found its resolution by 
considering the effect of impurity scattering 
(Hirschfeld and Goldenfeld, 1993, Preosti 
et al., 1994) It was shown that that resonant 
(unitary-limit) scattering leads to a nonzero 
density of quasiparticle states near E = 0. 
In turn, these states lead to a T 2 variation 
of the penetration depth below a crossover 
temperature T ∗. The reason for considering 
the unitary limit was the observation that 
scattering in the Born limit would lead to 
a rapid suppression of Tc, which was not 
observed. A useful interpolation between the 
linear and quadratic regimes was suggested 
by Hirschfeld and Goldenfeld (1993), 

T 2 ˜��T� = ��0� +� (14.43)
T +T ∗ 

where �̃�0� is the effective penetration depth 
obtained by extrapolation of the linear region 
of ��T� to T = 0. The crossover temperature 
is given by kBT ∗ � 0�83 ���0� where � = 
nin/�N�0� is the scattering rate parameter. 
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ni is the concentration of impurities, n the 
electron density and N�0� is the density of 
states at the Fermi level. T ∗ � 0�01T is a typ­c 

ical value for high quality YBCO. Impurities 
also modify the penetration depth at T = 0 � 
��˜ 0�/��0� � 1 + 0�79 �/��0�. Assuming, 
for example, a weak coupling BCS result for 
the d-wave gap, ��0�/kBTc � 2�14, one has 

kB�T ∗�2 

� � (14.44)
1�47Tc 

The modification of the zero-temperature 
penetration depth is then given by, 

�̃�0�/��0� = 1 +0�95T ∗ /��0� 

= 1 +0�44T ∗ /Tc (14.45) 

which is quite small for clean crystals. 
This “dirty d-wave” model has been thor­
oughly studied in both single crystals and 
thin films of YBaCuO. (Bonn et al., 1994, 
Lee et al., 1994) In less clean samples the 
impurity-dominated regime can be a substan­
tial portion of the low temperature region. In 
that case, 

��T� − ˜ (14.46)��0� = c2T 2 

where, 

��0� 
c2 = 0�83 (14.47)

��0�3/2�1/2 

This expression will be useful when we com­
pare the effect of impurities to the quadratic 
temperature dependence arising from nonlo­
cal corrections. 

Figure 14.8 shows the temperature 
dependence of the magnetic penetration 
depth in a BSCCO-2212 crystal. The impu­
rity crossover occurs at T ∗ = 3�5 K while 
T ≈ 92 K. The inset shows the normalized c 

superfluid density derived from the penetra­
tion depth data and plotted over the entire 
temperature range up to Tc. The solid lines 
are the calculated superfluid densities for a 
clean d-wave case, Eq. (14.27), and for a 

λ a
b

(Å
) 
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pure s-wave 

2900 0.9 

ρ 
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Figure 14.8 In-plane London penetration depth in 
single crystal BSCCO-2212. The main frame shows 
the low-temperature part with a fit to Eq. (14.43). The 
inset shows the full temperature range superfluid density 
(symbols) and theoretical curves for a clean d-wave and 
an s-wave weak coupling involving BCS calculations, 
based on Eqs. (14.27) and (14.30), respectively. 

clean s-wave, Eq. (14.30). The agreement 
with the d-wave curve is evident. 

B. Magnetic Impurities 

The ability of magnetic impurities to 
break Cooper pairs leads to profound 
effects on all superconductive properties. 
The most familiar is a suppression of the 
transition temperature, as first calculated 
by Abrikosov-Gorkov. Its generalization to 
unconventional superconductors is beyond 
the scope of this chapter. Magnetic impu­
rities also affect the penetration depth in a 
direct way, though a change of permeability 
when � >  1. Combining the second Lon­
don equation, 4��2j = −cB, with Maxwell’s 
equations and the constitutive relation B = 
�H, we obtain a renormalized penetration √
depth, �� = �/ �, analogous to the modi­
fication of the skin depth in a normal metal. 
Here � is the London penetration depth 
without magnetic impurities, and �� is the 
physical length scale over which the field 
changes. However, the change in resonant 
frequency of an oscillator or cavity involves 
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a change in energy, which leads to an addi­
tional factor of �. Equation (14.11) then 
becomes 

1 ��� R̃−4�� = 1 − tanh 
1 −N R̃ �� 

(14.48) 

The extra factor of � is absent in the argu­
ment of the tanh function since the term 
within the brackets must reduce to 1 −� as 
� → 	. At low temperatures the tanh factor 
becomes unity and the effective penetration 
depth that one measures is given by 

�eff = �� (14.49) 

At low temperatures impurity paramag­
netism leads to � ∼ T −1 and therefore a min­
imum in �eff . The competing magnetic and 
superconducting contributions in Eq. (14.49) 
played an important role in the determining 
the pairing state in electron-doped cuprates. 
Early penetration depth measurements in 
Nd2−xCexCuO4−y (NCCO) extended to 4.2 K 
where, coincidentally, the competing tem­
perature dependences in Eq .(14.49) lead to 
a minimum in �eff �T�. This made the data 
appear to saturate, as would be expected 
for s-wave pairing. Cooper (1996) was the 
first to point out that the paramagnetic effect 
could mask a possible power law dependence 
for ��T�. 

Figure 14.9 shows ��eff �T	 B� = 
�eff �T	 B� − �eff �Tmin	B�  measured in sin­
gle crystal NCCO at several different mag­
netic fields aligned parallel to the c-axis. The 
low-temperature upturn is due to the per­
meability of Nd3+ ions. The fact that the 
curves collapse together below Tmin implies 
that the permeability is field independent. 
As the field is increased beyond the valued 
shown here, the spin system will become 
more polarized and the permeability should 
decrease. The field independence below Tmin 

can help to distinguish an upturn in ��Tmin� 

Δλ
 (Å

) 

4 × 103 

2 × 103 

0 

Tmin 

3000 G 

600 G 

100 G 

H = 0 

NCCO 
single crystal 

0 5 10 15 

T (K) 

Figure 14.9 Change in the effective penetration 
depth of the electron-doped superconductor NCCO for 
different applied fields. The change is measured relative 
to Tmin. For T < Tmin, data at different fields collapse, 
implying a field-independent permeability for Nd3+ ions 
up to 3 KG. 

from paramagnetic ions from a similar look­
ing upturn due to surface Andreev bound 
states. As we discuss later, relatively mod­
est fields can quench the upturn from bound 
states. We have focused on the simplest 
observable consequence of magnetic impuri­
ties on the observed penetration depth. Impu­
rities can have a more profound influence 
by modifying the gap function itself, and 
thus the entire temperature dependence of the 
superfluid density (Carbotte, 1990) 

VII. SURFACE ANDREEV BOUND 
STATES 

The formulae given previously for the 
superfluid density involve only the abso­
lute square of the gap function. As such, 
it was believed for some time that pene­
tration depth measurements were insensitive 
to the phase of the gap function. However 
this is not true, as is shown theoretically by 
(Barash et al., 2000), and experimentally by 
(Prusseit et al., 1999) and (Carrington et al., 
2001). Unconventional superconductors sup­
port the existence of zero energy, current car­
rying surface Andreev bound states (ABS). 
(Bucholtz and Zwicknagl, 1981) These states 
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are a direct consequence of the sign change in 
the d-wave order parameter. (Hu, 1994). The 
zero-bias conductance peak widely observed 
in ab-planar tunneling is generally associated 
with these states (Aprili et al., 1999). As 
shown in Fig. 14.10, for dx2−y2 symmetry, 
the effect is maximal for a [110] orientation 
where the nodal directions are perpendicu­
lar to the sample surface. A quasiparticle 
travelling along the trajectory shown by the 
arrows initially feels a negative pair poten­
tial. After reflection it travels in a positive 
pair potential. This process leads to zero 
energy bound states that are localized within 
a few coherence lengths of the surface, and 
carry current parallel to the surface. As such, 
they can affect the Meissner screening. The 
effect is absent for the more common (100) 
orientation. 

Andreev bound states may be observed 
in penetration depth measurements by 

aa 
[011][001] 

+ 
+ 

+ 
+ 

+ 

+ 

+ 

N(E) 

– 

– 

– 

– 

– 

b
b 

EF Δ 

Figure 14.10 Schematic of the origin of surface 
Andreev bound states. The magnetic field is normal to 
the surface. Quasiparticles travelling along the trajectory 
shown by the arrows experiences a sign change in the 
pair potential (right), resulting in a zero energy bound 
state localized near the surface. In the other situation 
(left) the effect does not exist. The lower panel shows 
the corresponding response of the density of states – 
proliferation of the zero-energy bound (Andreev) 
states. 

14 MAGNETIC PENETRATION DEPTH 

orienting the magnetic field along the c-axis, 
inducing shielding currents that flow along 
the (110) edges of the sample. Bound states 
contribute a singular piece to the overall den­
sity of current carrying states, NABS�E� ∼ 
��E�. When inserted into Eq. (14.21), this 
results in a paramagnetic contribution to the 
penetration depth, ��ABS ∼ 1/T . This diver­
gent term competes with the linear T depen­
dence from nodal quasiparticles, leading to 
a minimum in the penetration depth at T ∼ √ m 

Tc �0/�0. For YBaCuO Tm ∼ 10 K for a 
sample all of whose edges have (110) ori­
entations. The effect is shown in Fig. 14.11 
where four YBaCuO crystals with differ­
ing amounts of [110] surface were mea­
sured. In each case the AC magnetic field 
was first oriented parallel to the conduct­
ing plane (denoted by �a	b) and then along ab 

the c-axis (denoted by �c ). The first shows ab 

the familiar linear variation characteristic of 

200 
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A 

B 

C 

D D 

C 

B 

A 

[100] 
[110] 

40 

30 

20 

10 

0 
0 0.2 0.4 0.6 0.8 

[010] 

Δλab 
c 

Δλ 

〈g(θ)〉 

Δλab 
a,b 

Δλ
 [Å

] 

100 

50 

0 
0 5  10  15 20 

T [K] 

Figure 14.11 �ab in four YBaCuO crystals. Traces 
with the AC field along the c-axis exhibit a 1/T upturn, 
while traces taken with the AC field along conduct­
ing planes show no upturn. The inset shows the rela­
tive size of the 1/T upturn versus the amount of [110] 
perimeter surface. g��� . The low temperature portion 
of trace D was taken in an entirely separate cryostat 
from the portion above 1.3 K. The symbol �c denotesab 

the in-plane penetration depth with the ac field along the 
c-axis. 



Elsevier AMS Job code: SUP CH14-P088761 22-6-2007 9:41a.m. Page:425 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

( ) 

425 VIII NONLOCAL ELECTRODYNAMICS OF NODAL SUPERCONDUCTORS 

nodal quasiparticles, and the second shows 150 

the 1/T upturn from bound states. The 
bound state signal is largest for the sam­
ple exhibiting the largest amount of [110] 100 

BSCCO-2212 

Δλ
 (A

) 

H = 0 

H = 1000 Oe 

surface.

Impurity scattering broadens the zero


energy peak and reduces the paramagnetic 50 

upturn. Another striking feature of the bound 
state signal is its rapid disappearance in an 
applied DC magnetic field. Crudely speak­
ing, the Doppler field shifts the zero-energy 
states, N�E� ∼ � E − 

c
e vF A , resulting in 

a field-dependent penetration depth (see 
Eq. (14.21)), 

1 
��ABS�T	 H� ∼ 

T cosh2�H/ H̃�T�� 

(14.50) 

where H̃ � HcT/Tc and Hc is the thermody­
namic critical field. Figure 14.12 shows the 
field dependence of the 1/T upturn. Fits to 
both the single quasiparticle trajectory model 
(Eq. (14.50)) and the full model of Barash 
et. al. are also shown. The agreement is 
remarkably good. 

These highly distinctive temperature, 
orientation and field dependences differen­
tiate the signal due to bound states from 

0 
0 

1 2 3 4 5 6 

T (K) 

Figure 14.13 Andreev bound states in a BSCCO­
2212 single crystal. The curves are offset for clarity. 

the paramagnetic upturn from magnetic 
impurities that was discussed earlier. We 
reiterate that the bound state effect is inher­
ently phase sensitive, and can distinguish 
between a nodal order parameter without 
a sign change from, for example, a d-
wave state. These Andreev bound states have 
also been observed in other superconductors. 
Figure 14.13 shows the effect in single crys­
tal BSCCO-2212 for several values of the 
magnetic field, showing the quenching effect 
just described. 

VIII. NONLOCAL 

data 

Barash et al. 

cosh model 

NODAL SUPERCONDUCTORS 
–5 

Since the superconductors under con­–10 

0 ELECTRODYNAMICS OF 

Δλ
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)

sideration here are typically in the extreme 
–15 

–20 

–25 

0 20 40 60 80 100 120 

H (Oe) 

Figure 14.12 Paramagnetic upturn, ���H�, mea­
sured at T = 1�34 K in a YBaCuO crystal. “cosh” 
denotes a fit to Eq. (14.50), and a fit to “Barash et al.” 
(2000), Eq. (26), is indicated. 

Type II limit � � �, one would not expect 
nonlocal corrections to the penetration depth 
to be important. Kosztin and Leggett (1997) 
pointed out that since the BCS coherence 
length �� = vF /��� formally diverges along 
nodal directions �� → 0� one may actually 
have � > �  near the nodes, and therefore 
nonlocal corrections to the penetration depth 
may occur. For a clean d-wave superconduc­
tor they predicted that the linear temperature 
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dependence would crossover to a quadratic 
dependence below T ∗ 

NLOC , 

��T� −��0� = ��0
T

� 
∗ 
ln 2 

T 2 (14.51)
TC NLOC 

and 

T ∗ � ��0���0�/��0� (14.52)NLOC 

For YBaCuO with T � 90 K this gives c 

T ∗ � 3 K. The nonlocal correction looks NLOC 

very much like the effect from impurity scat­
tering that was discussed earlier. (As in the 
impurity scenario ��0� is also renormalized, 
but the predicted change is only of order 1%.) 
Since the impurity scattering crossover T ∗ in 
typical YBaCuO or BSCCO is of the same 
order as T ∗ , the two processes would be NLOC 

difficult to distinguish. However, unlike the 
effect from impurities, the predicted nonlo­
cality is dependent upon the orientation of 
the magnetic field and the sample bound­
aries. One must have H��c – axis to ensure 
that the wave-vector defining the spatial 
variation of the vector potential lies in the 
conducting plane. Recent penetration depth 
measurements on Sr2RuO4 (Bonalde et al., 
2000a) and CeCoIn5 (Chia et al., 2003) seem 
to provide experimental evidence for this 
mechanism. 

IX. NONLINEAR MEISSNER EFFECT 

In the presence of a superfluid velocity 
field �vs the energy of a Bogoluibov quasipar­
ticle is changed by �EQP = �v · �pF where p�Fs 

is the Fermi momentum. This effect is some­
times called the quasiparticle Doppler shift. 
Quasiparticles co-moving with �vs are shifted 
up in energy while those moving counter to 
� are shifted down. For T > 0 the increased vs 
population of counter-moving quasiparti­
cles constitutes a paramagnetic current that 
reduces the Meissner screening. The tem­
perature dependence of � ultimately derives 
from this fact. As �v is increased two things s 

14 MAGNETIC PENETRATION DEPTH 

occur. First, higher order corrections to the 
thermal population difference become more 
important, and second pair breaking effects 
reduce the gap itself. In a superconduc­
tor with a finite energy gap everywhere 
on the Fermi surface, the supercurrent J�s = 
−e��vs�1 −��T��vs/vc�

2� acquires a correc­
tion term quadratic in v�s�  c is the bulk 
critical velocity. Since �vs is proportional to 
the applied magnetic field H, this nonlin­
earity results in a field-dependent penetra­
tion depth, 

1 = 1 
[ 

1 − 3��T� 
( 

H 
)2 

] 

��T	 H� ��t� 4 H0�T� 

(14.53) 

H0�T� is of the order of the thermodynamic 
critical field. At low temperatures the coef­
ficient ��T� ∼ exp�−��0�/T�. (Xu et al., 
1995) This occurs because the Doppler shift 
must contend with a finite energy gap and so 
does not affect the quasiparticle population 
at T = 0. The field dependent correction is 
extremely small since the penetration depth 
itself is already exponentially suppressed. 
Any attempt to observe this effect in a con­
ventional type I superconductor must also 
take account of the very large field depen­
dence that occurs in the intermediate state. 

In 1992, Yip and Sauls showed 
theoretically that the situation would be 
quite different in a d-wave superconductor. 
The existence of nodes in the gap function 
implies that the Doppler shift can change 
the quasiparticle population at arbitrarily low 
temperatures so long as ��EQP � � kBT . In  
fact, the effect is predicted to be strongest 
at T = 0, and to depend upon the orienta­
tion of �v relative to the nodal directions. s 

For a d-wave state at T = 0, the nonlin­
earity leads to a nonanalytic correction to 
the current-velocity relation, J�s = −e��vs�1 − 
��vs�/v0� · v0 is of order the bulk critical veloc­
ity. This correction leads to a linear increase 
in the penetration depth as a function of field. 
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For a d-wave pairing state at T = 0 the result 
is, (Yip and Sauls, 1992, Xu et al., 1995) 

1 = 1
1 − 2 H 

��T = 0	H�  ��0� 3 H0 

−→ 
H ��node (14.54) 

1 1 = 1 − √1 2 H 

��T = 0	H�  ��0� 2 3 H0 

−→ 
H ��antinode 

H0 = 3�0/�
2�� is of the order of the ther­

modynamic critical field. The great appeal 
of this idea lies in the possibility of verify­
ing both the existence of nodes and locating 
them on the Fermi surface. Yip and Sauls 
coined the term “nonlinear Meissner effect” 
(NLME) to describe the phenomenon. As 
conceived, it results from a field-induced 
change in quasi-particle populations, and 
does not include field-induced pair breaking 
effects on the gap itself. Since the NLME 
depends upon the quasiparticle energy, and 
therefore ����k��2, it is a probe of nodes, but 
it is not inherently sensitive to the phase of 
the order parameter. This contrasts with the 
case of surface Andreev bound states which 
depend for their existence on a sign change 
of the order parameter. 

Despite considerable experimental 
efforts, the NLME has proven to be 
extremely difficult to identify. A large 
number of constraints must be satisfied. 
First, H must be smaller than the lower 
critical field to avoid contributions from 
vortex motion which can also give a linear 
correction to �. Using YBaCuO as an exam­
ple, HC1/H0 ∼ �01. With that restriction, the 
maximum change in � is of order of 10–15 
Angstroms, so the effect is small indeed. 
Second, unitary limit impurity scattering is 
predicted to rapidly destroy the NLME so 
temperatures above the impurity crossover 
T∗ are needed. For the best YBaCuO 
samples, T ∗ ≈ 1 K. Third, the field depen­
dence is maximal at T = 0, and decreases 
rapidly once �EQP � kBT . For YBaCuO, 

this inequality restricts observation of the 
effect to temperatures below 3–4 K, even at 
H = HC1, the maximum possible field. For 
higher temperatures the field dependence 
becomes quadratic and small. The decrease 
of the linear field dependence with temper­
ature is, however, a distinguishing feature 
of the NLME for a d-wave state. This 
point was ignored in some early attempts to 
identify the effect. In any case, these various 
conditions place extremely tight constraints 
on the observability of the NLME. 

Several different experiments have been 
undertaken. The first focuses on the pre­
dicted anisotropy in the penetration depth 
and therefore the magnetic moment of a 
crystal. Bhattacharya et al. (1999, Žutić and 
Valls, 1998), rotated a sample of YBaCuO 
and searched for harmonics in the angular 
dependence of the signal indicative of the 
nodal anisotropy. They observed anisotropy 
but well below the predicted amount. The 
second class of experiments directly mea­
sures the penetration depth in a dc magnetic 
field superimposed on a much smaller ac 
measurement field. Penetration depth mea­
surements by Maeda and Hanaguri (1998) 
first reported a linear field dependence, but 
did not address the question of the temper­
ature dependence. Later measurements by 
(Carrington et al., 1999b, Bidinosti et al., 
1999) reported a linear H dependence but the 
temperature and sample orientation depen­
dence were completely at odds with the the­
ory. Vortex motion, through the Campbell 
penetration depth, can easily lead to a linear 
field dependence. In contrast to the NLME, 
however, the field dependence coming from 
vortex motion increases with temperature 
since vortices become more weakly pinned. 
(Carrington et al., 1999b) 

The inability to observe the NLME lead 
to a re-examination of the original Yip-Sauls 
argument and to several other suggestions for 
detecting the effect. Li et al. (1998) showed 
that if the vector potential varies spatially 
with the wave-vector q� then nonlocal effects, 
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similar to those described earlier, suppress 
the NLME whenever �vs · �q =� 0 (This would 
occur when the field is oriented normal to the 
conducting planes, for example.) The sup­
pression occurs for fields H < HC1 which 
effectively renders the effect unobservable. 
(Li et al., 1998) However, for other field 
orientations the nonlocal effects should not 
occur. Experiments have been carried out ror 
in several orientations and to our knowledge, 
this nonlocal effect has not been cleanly 
identified. The tunnel diode method used 
by the authors was originally developed to 
search for the NLME. We have routinely 
searched for a NLME in several different 
hole- and electron-doped copper oxides, and 
in the organic superconductors discussed pre­
viously. All of these materials show clear 
evidence, through ��T�, for nodal quasiparti­
cles. All show a linear variation, ���T	 H� ∼ 
!�T�H with field. However, in all cases, 
!�T� varies with temperature in a manner 
expected for vortex motion, despite applied 
fields as low as a few Oe. 

Dahm and Scalapino (1999) proposed 
to exploit the analytic corrections to the 
supercurrent that vary as vs 

2 in order to 
identify the d-wave state. These terms lead 
to changes in � that vary as H2/T , are 
apparently less affected by impurity scat­
tering, and can be observed over a wider 
temperature range. As with the linear-in-
H (Yip and Sauls, 1992)) non-analytic 
corrections, the quadratic corrections are 
largest at T = 0, and are thus dis­
tinguishable from nonlinear effects in 
an s-wave superconductor. The nonlin­
ear penetration depth leads to harmonic 
generation and intermodulation frequency 
generation and so may have relevance in 
microwave and mixer applications. Recently, 
intermodulation measurements were per­
formed on a number of microwave stripline 
resonators made from YBaCuO films. Some 
of the films exhibit the 1/T upturn pre­
dicted for the nonlinear penetration depth 
in a d-wave state. (Oates et al., 2004) 

14 MAGNETIC PENETRATION DEPTH 

These experiments are the first to observe 
the low temperature increase in nonlin­
earity expected for a d-wave supercon­
ductor. However, the effect is distinct 
from the non-analytic, linear-in-H behav­
ior first predicted by Yip and Sauls. To 
our knowledge, the latter has not yet been 
observed. 

X. AC PENETRATION DEPTH 
IN THE MIXED STATE (SMALL 
AMPLITUDE LINEAR RESPONSE) 

When Abrikosov vortices are present, 
the total penetration depth acquires a new 
contribution due to the motion of vortices. 
In general this “vortex penetration depth” 
term can depend upon field, frequency, tem­
perature, orientation, and pinning strength. 
Vortex motion is a complex subject and 
we will only touch upon that aspect relat­
ing to penetration depth measurements. A 
simple model for vortex motion treats the 
displacement u� as a damped harmonic oscil­
lator with a restoring force proportional to 
the curvature of a pinning potential well, a 
damping proportional to the vortex viscos­
ity, and a driving term from the AC Lorentz 
force. The inertial term, proportional to the 
vortex mass, is generally ignored. This is 
the model first developed by Gittleman and 
Rosenblum (1966), which shows a crossover 
from pinning flux motion to flux flow as 
the frequency is increased. Since the advent 
of high temperature superconductivity, enor­
mous attention has focused on the new 
phases of the H-T phase diagram. In par­
ticular, it is widely believed that over a 
substantial portion of the diagram the vor­
tex lattice is melted or at least very weekly 
pinned, so vortices can be easily displaced. 
The much higher temperatures that occur 
in copper oxide superconductors imply that 
flux flow may be thermally assisted. The 
effect of this process on the penetration 
depth was first analyzed by Coffey and Clem 
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(1991, 1991, 1992) and by Brandt (1991). A 
good summary is given in (Brandt, 1995). 
A generalized complex penetration depth in 
case of small amplitude AC response is 
given by 

B2 ( 
�L 

)−1 

�2 = �̃2 + + i��L 4� 1 − i/�" 

≈ �2 
L +�2 

C 

1 − i/�" 
(14.55)

1 + i�"o 

where the last expression is obtained for a 
large barrier for thermal activation, 
U �kBT . In Eq. (14.55), �̃L is the field-
dependent London penetration depth (see 
Eq. (14.56)) and �C is the Campbell length 
(discussed below). " = B2/��TAFF�L� ≈ 
"0 exp�U/kBT� is the relaxation time with a 
flux-flow relaxation time defined as, "0 = 
�/�L = B2/��FF�L�. The thermally assisted 
flux flow resistivity �TAFF = �FF exp�U/kBT� 
where the bare flux flow resistivity is 
�FF = B2/� = �nB/Hc2 , and � = BHc2/�n 

is the vortex viscosity. In the case of very 
strong pinning the superconductor behaves 
as in Meissner state, but with a renormalized 
penetration depth given by 

�̃L = √ 
�L (14.56)

1 −B/Bc2 

equilibrium, and Cnn is the relevant elastic 
modulus – C11 (compressional modulus) for 
a field parallel to the surface or C44 (tilt mod­
ulus) for a magnetic field perpendicular to 
the surface. Both moduli are proportional to 
B2 and therefore, 

B2 B 
�2 
C = ∝ (14.59)

4��L jc 

At low frequencies and not too high tem­
peratures and fields, the response is in-phase 
with the AC field. The effective penetration 
depth is given by 

�2 = �2 
L +�2 

C (14.60) 

At low temperatures and for weak pinning, 
the Campbell contribution rapidly dominates √ 
the London depth, leading to ��B� ∼ B. 

Figure 14.14 shows the typical behavior 
of a stress-free polycrystalline Nb sample. 
A crossover to the flux flow regime is seen 
in both temperature (at different DC fields) 
and magnetic field (at different tempera­
tures) measurements. We show these data 
for two reasons. First, if one’s focus is the 
pairing state and the various magnetic field 
dependent effects that can occur (NLME, 

(The field dependence is conventional, due 3000 

to pair breaking, as discussed earlier.) The 2500 
Campbell length is given by 

Nb polycrystalline sample 
(annealed) 

T = 2 K 

T = 4 K 
T = 4 K (H scan) 

T = 6 K 
T = 6 K (H scan) 

Δf
 (

H
z)

 ~
 Δ

λ 2000 

1500 

1000 

nn�2 = C (14.57)C �L 

where �L is the Labusch parameter (note that 
500 

we use pinning force per unit volume, not 
per unit of vortex length), 0 

0 2000 4000 6000 8000 10000 

jcB 
�L = (14.58) 

crp 

where rp is the radius of the pinning poten­
tial determined by the maximum pinning 
force when the vortex is displaced out of 

H (Oe) 

Figure 14.14 Crossover from the pinning to the 
flux-flow regime as function of the applied magnetic 
field in a polycrystalline Nb sample. The solid lines cor­
respond to direct field scans, whereas the symbols were 
obtained from temperature scans at different tempera­
tures. 
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Figure 14.15 London penetration depth, Campbell 
length, and critical current in BSCCO-2212 single 
crystal. 

bound states, etc.) then the effects of vor­
tex motion can be a significant source of 
systematic error and must be understood. 
On the other hand, if vortex motion is the 
focus of interest, then penetration depth mea­
surements provide a valuable tool to access 
the true critical current, unaffected by flux 
creep, since the time window is fixed by the 
frequency. 

Figure 14.15 shows London and Camp­
bell penetration depths as well as the deduced 
critical current in single crystal BSCCO­
2212. Temperature T ∗ marks a crossover 
between strong and week pinning regimes. 

In the case of a large static gradient due 
to vortex pinning produced by a DC mag­
netic field (superimposed on an AC excita­
tion field), the Labusch parameter becomes 
dependent on the Bean shielding current that 
biases the vortex position in the pinning well. 
The first order correction then gives ��j� = 
�0 1 − j/jc, and 

B2 

�2 
C = √ (14.61)

4�� 1 − j/jc 

which explains many hysteretic phenom­
ena observed with a small amplitude AC 
response (Prozorov et al., 2003). 

Figure 14.16 shows a hysteretic response 
observed in single crystal BSSCO-2212. 
After cooling in zero field and the application 

T (K) 

Figure 14.16 Hysteretic magnetic penetration depth 
measured in single crystal BSCCO-2212. Path 1–2–3 
was taken after the magnetic field was applied subse­
quent to cooling in zero field. Path 3–4 is reversible and 
corresponds to a homogeneous flux distribution. Path 
2–5 was followed when the temperature was reduced 
after 1–2. Upon warming, it would follow 5–2–3. 

of a DC magnetic field, a large Bean cur­
rent causes the penetration depth to increase, 
according to Eq. (14.61). Warming up (1–2– 
3) removes this inhomogeneous vortex dis­
tribution (and the Bean current) and subse­
quent cooling follows curve 3–4. If repeated 
(without turning off the magnetic field), the 
curve will follow 3–4 both on warming 
and cooling. Another manifestation of the 
irreversible behaviour is when the warming 
is interrupted (1–2) and sample is cooled 
down. The response follows path 2–5, where 
the Bean current is decreased, but “frozen”. 
Upon warming from 5, the curve follows 
5–2–3. The large circles indicate the criti­
cal current density, which drops sharply pre­
cisely at the position where the hysteretic 
response of � disappears. 

XI. THE PROXIMITY EFFECT 
AND ITS IDENTIFICATION 
BY USING AC PENETRATION 
DEPTH MEASUREMENTS 

Among the variety of magnetic phenom­
ena that may affect the penetration depth 
we discuss one last subject, the proximity 
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1.0	 strong negative concavity corresponding to 
0.0 130 Oe enhanced diamagnetism. In the clean limit, 

–0.2 proximity diamagnetism is predicted to turn 
20 Oe 

–0.4	 on at T ≈ 5TAndreev where the Andreev tem­
39.4 K –0.6	 perature is defined by �N �TAndreev� = d, the 

MgB2 wire with 

Δλ
 

Δλ

 0.5 

–0.8 excess Mg layer
H=0 film thickness. (Fauchère and Blatter, 1997) 

–1.0 

0 5 10 15 
T (K) 

0.0 

0 10 	20  30  40  

T (K) 

Figure 14.17 Proximity effect induced supercon­
ductivity in MgB2 wires coated with an excess Mg layer. 
The inset shows the low-temperature part where the field 
effect on the proximity effect is evident. 

effect. As is well known, a superconduc­
tor in proximity to a normal metal may 
induce pairing correlations in the normal 
metal that extend over a distance �N (de 
Gennes, 1966) The details depend sensitively 
on whether the normal metal is in the clean 
or the dirty limit. In the clean limit, �N = 
�vF/2�kBT and the induced pairing correla­
tions can extend over macroscopic distances. 
Electrons in the normal metal may now carry 
something similar to a Meissner screening 
current, and therefore make the combined 
system appear to have enhanced diamag­
netism. Figure 14.17 shows the effect on 
the penetration depth (Prozorov et al., 2001). 
The data are shown for a bundle of 180 �m 
diameter MgB2 wires that were coated with 
a layer of Mg (roughly 2 �m thick) left­
over from the growth process. Below approx­
imately 5 Kelvin, � versus T exhibits a 

The diamagnetic downturn vanished com­
pletely after dissolving the Mg layer away in 
alcohol. The � for the MgB2 wires left behind 
exhibited the exponential decrease expected 
for a superconductor whose minimum energy 
gap is roughly 0�4�BCS . 

The inset to Fig. 14.17 shows the 
magnetic field dependence of the prox­
imity diamagnetism. A field of roughly 
300 Oe was sufficient to entirely quench 
the effect. The suppression occurs as the 
external field exceeds the breakdown field 
HB ∼ �0e

−d/�N /d�N of the normal metal 
film. Here d is the film thickness, �N = 

4�e2/m is (formally) the London pene­
tration depth of the normal metal and �0 

is the flux quantum. (Fauchère and Blatter, 
1997) Since the film thickness was not uni­
form, thicker regions with smaller break­
down fields were quenched first, accounting 
for the gradual suppression of the diamag­
netism shown. The fits shown in the inset 
to Fig. 14.17 assumed a log-normal distribu­
tion of Mg thickness d with the mean and 
variance as free parameters. In addition to 
being interesting in its own right, proximity 
diamagnetism is a clear indicator of resid­
ual metallic flux that is sometimes left over 
from the growth process. As Figure 14.17 
shows, its presence can lead to serious errors 
in interpreting the low temperature behavior 
of ��T�. 
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15 
Energy Gap and 

Tunneling 

I. INTRODUCTION 

In Chapter 13 we introduced critical-
state models with an emphasis on the Bean 
model. This gave us a chance not only to 
provide simple explanations for some of the 
magnetic phenomena that had been discussed 
in Chapters 5, 11 and 12, but also to discuss 
critical currents and, thereby, introduce the 
area of transport properties, the subject of 
the present and succeeding chapter. Trans­
port properties are of importance because the 
principal applications of superconductors are 
based upon taking advantage of their ability 
to carry electric current without any loss. 

The chapter begins with a discussion 
of tunneling and super current flow in the 
absence of externally applied fields. After 
covering introductory material on tunneling, 

we will discuss the Josephson effect and 
macroscopic quantum phenomena. It will be 
shown how tunneling measurements provide 
energy gap values. The following chapter 
will examine several transport processes that 
involve applied fields and thermal effects. 

II. PHENOMENON OF TUNNELING 

Tunneling, or barrier penetration, is a 
process whereby an electron confined to a 
region of space by an energy barrier is nev­
ertheless able to penetrate the barrier through 
a quantum mechanical process and emerge 
on the other side. The example shown in 
Fig. 15.1 involves electrons with kinetic 
energy EKE = 2

1 m�2 confined to remain on 
the left side of a barrier by the potential 

433 
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434 15 ENERGY GAP AND TUNNELING 

Figure 15.1 Tunneling of electrons through a barrier 
when the kinetic energy of the electrons is less than the 
barrier energy eVb. 

Vb, where 2
1 m�2 < eVb. We show in this 

figure an electron tunneling through the bar­
rier to the right side where it ends up with the 
same kinetic energy. Such a phenomenon can 
occur because there is a quantum mechan­
ical probability per unit time that the elec­
tron will penetrate the barrier and escape, 
as explained in standard quantum mechan­
ics texts. Tunneling phenomena are rather 
common in physics. For example, radioactive 
decay of nuclei is explained by a barrier pen­
etration model, with half-lives varying from 
less than nanoseconds to many centuries. 

A. Conduction-Electron Energies 

The surface of a normal metal has a 
dipole charge density layer that produces a 
barrier potential Vb. The conduction elec­
trons inside the metal move in a region where 
they experience an attractive potential, so 
that their energies are negative with the value 
−�EF�, as indicated in Fig. 15.2. At absolute 
zero the conduction-band levels are filled up 
to the Fermi level EF and are empty above, 
corresponding to Fig. 1.4a. In some of the 
figures dark shading is used to indicate occu­
pied levels. 

To remove an electron from the interior 
of a metal one must apply a potential equal 
to or greater than the work function poten­
tial Vw. The minimum energy eVw that can 
extract an electron is 

eVw = eVb +�EF�� (15.1) 

Figure 15.2 Energy-level diagram of a conductor 
showing the levels occupied below the Fermi energy EF 

and the energy barrier eVb at the surface. The minimum 
energy (work function) eVw for extracting an electron is 
also indicated. 

Metals differ in their eVw� eVb, and EF val­
ues, so that a proper treatment of how an 
electron is transferred between two metals in 
contact through an insulating barrier should 
take these factors into account. However, 
to simplify the mathematics we will ignore 
these surface potential effects and assume 
that two metals in contact at the same poten­
tial have the same Fermi energy. 

Tunneling phenomena are sensitive to 
the degree of occupation of the relevant 
energy levels by electrons. Hence, in energy 
level diagrams it is helpful to include infor­
mation about the occupation of the levels 
involved in the tunneling. Figure 1.4b plots 
the temperature dependence of the Fermi– 
Dirac distribution function, giving the frac­
tional occupation of levels in the conduc­
tion band. We have replotted this function 
in Fig. 15.3 with energy as the ordinate, 
f�E� as the abscissa, and electron occu­
pation indicated by shading. Figure 15.4a 
presents a sketch of a conduction band that 
is filled at absolute zero and separated from 
an upper energy band by a gap. Figure 15.4b 
shows this same diagram at a finite temper­
ature, combined with the distribution func­
tion plot of Fig. 15.3 to show the level 
populations. 
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Figure 15.3 Energy-level diagram of a conductor 
with electron distribution f�E� at a finite temperature 
near the Fermi level EF plotted at the top. The shading 
in this and subsequent figures indicates electron occu­
pancy. 

Figure 15.4 Semiconductor representation of the 
energy level occupancy of a superconductor (a) at T = 0, 
and (b) at T >  0. The band gap 2� and level popula­
tions are shown for each case, using the convention of 
Fig. 15.3. 

B. Types of Tunneling 

Tunneling can occur through an insulat­
ing layer, I, between two normal materials 
(N–I–N), such as semiconductors, between a 
normal metal and a superconductor (N–I–S), 

or between two superconductors (S–I–S). 
Proximity junctions (S–N–S), in which the 
Cooper pair and quasiparticle transfer across 
the junction via the proximity effect, are dis­
cussed in Section VI.F. Junctions involving 
semiconductors, such as the S-Semicond and 
S-Semicond-S types, will not be discussed 
here (Furusaki et al., 1991, 1992; Kastalsky 
et al., 1991; van Wees et al., 1991). The 
dc and ac Josephson effects involve partic­
ular types of tunneling phenomena across 
a barrier between two superconductors. In 
the next several sections we will examine 
energy level diagrams, and then provide a 
qualitative picture of various tunneling pro­
cesses, concluding with a more quantitative 
presentation. 

III. ENERGY LEVEL SCHEMES 

Before we discuss the N–I–N, N–I–S, 
and S–I–S types of tunneling it will be 
instructive to examine the energy level sys­
tems that are involved in each. Two con­
ventions for representing the energy levels 
will be introduced, called, respectively, the 
semiconductor representation and the Bose 
condensation representation. 

A. Semiconductor Representation 

A superconductor is considered to have 
an energy gap Eg = 2� between a lower 
energy band which is full of super elec­
trons at absolute zero and an upper energy 
band which is empty at that temperature, as 
shown in Figs. 15.4a. At higher tempera­
tures some of the electrons are raised from 
the lower band to the upper band as illus­
trated in Fig. 15.4b; these excited electrons 
are often referred to as quasiparticles. They 
act like normal conduction electrons, that is, 
they behave approximately like free elec­
trons moving at the Fermi velocity �F, as  
discussed in Chapter 1, Section II. When an 
electron jumps down from the bottom of the 
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quasiparticle band to the top of the super 
electron band, its energy falls by the amount 
2�. Following conventional semiconductor 
terminology, we assign the equivalent Fermi 
energy to the center of the gap. This single-
electron picture, called the semiconductor 
representation of a superconductor, does not 
take into account the phenomenon of elec­
tron pairing. 

B. Boson Condensation 
Representation 

Another way of representing a super­
conductor at T = 0 is by a single level for the 
super electrons, as shown in Fig. 15.5a. This 
is justified by the argument that the Cooper 
pairs which occupy this level are paired elec­
trons with zero spin, and hence are boson 
particles which obey Bose-Einstein statistics. 
For bosons there is no Pauli exclusion prin­
ciple, so it is possible for all of them to 
have the same energy. Thus the transition to 
the superconducting state is an example of 
boson condensation, a phenomenon that is 
explained in quantum mechanics texts. The 
condensation takes place when the electrons 
drop into the single-superconducting level 
where they exist as Cooper pairs, as shown 
in Fig. 15.5a. This mode of presenting the 
energy level diagram is called the boson con­
densation representation. 

The Cooper-pair binding energy Eg is 
shared by two electrons, so that � = 2

1 Eg is 
the binding energy per electron. In this rep­
resentation the Cooper-pair level is located a 
distance � below the bottom of the conduc­
tion band, as shown in Fig. 15.5. At absolute 
zero all the conduction electrons are con­
densed in the Cooper-pair level. Above abso­
lute zero some of the pairs break up and the 
individual electrons are excited to the bot­
tom of the conduction band, as shown in 
Fig. 15.5b. These electrons which are pro­
duced by the breakup of Cooper pairs are the 
quasi-particles mentioned above. 

We will find the boson condensation 
representation a little more convenient than 

15 ENERGY GAP AND TUNNELING 

Figure 15.5 Boson condensation representation of 
the energy level occupancy of a superconductor (a) at 
T = 0, and (b) at T> 0, showing the level populations in 
the quasiparticle band for each case. Figure 15.4 presents 
the corresponding semiconductor representation. 

the semiconductor representation for anal­
ysis of the tunneling of super electrons. 
Before proceeding, however, let us say a 
few words about tunneling in general, after 
which we will comment on normal electron 
tunneling. 

IV. TUNNELING PROCESSES 

We start with a brief qualitative descrip­
tion of the three types of tunneling pro­
cesses, following it with a more detailed 
examination. 

A. Conditions for Tunneling 

Three conditions must be satisfied for 
tunneling to occur. First, there must be a 
barrier between the source and destination 
locations of the tunneling electrons prevent­
ing direct electron transport. Second, the 
total energy of the system must be conserved 
in the process, which is why single-electron 
tunneling occurs between levels that have 
the same energy on either side of the barrier. 
In two-electron tunneling, one electron gains 
as much energy as the other electron loses. 
Third, tunneling proceeds to energy states 
that are empty since otherwise the Pauli 
exclusion principle would be violated. A 
bias voltage that lowers the energy levels 
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on the positive side relative to levels on 
the negative side is often applied. This can 
serve to align occupied energy levels on one 
side of the barrier with empty levels on the 
other so as to enable tunneling between the 
two sides. 

There are sign and direction rules that 
apply to the description of tunneling pro­
cesses. When a metal (or superconductor) is 

positively biased relative to another metal, so 
that its potential is +V, its energy levels are 
lowered, as shown in Fig. 15.6b. The electron 
tunneling direction is toward the metal with 
the positive bias, but the tunneling current 
flows in the opposite direction, as indicated 
in the figure. This is because, by conven­
tion, current flow is expressed in terms of 
positive charges so that negatively charged 

Figure 15.6 Normal metal tunneling showing (a) Fermi levels 
aligned for zero applied voltage, and hence zero tunneling current, 
(b) application of a positive bias voltage V to metal 2, lowering its 
Fermi level by eV relative to metal 1 and causing electrons to tunnel 
from left to right (metal 1 to metal 2), corresponding to current flow 
opposite in direction to the electron flow, as indicated by the arrows, 
and (c) linear dependence of the tunneling current on the applied 
voltage. Sketch (b) is drawn with metal 1 grounded, so that when the 
bias is applied, the Fermi level of metal 1 remains fixed while that of 
metal 2 falls. 
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electrons must flow in the opposite direction. 
Thus current flows toward the negative bias, 
as shown in Fig. 15.6c. 

In drawing energy level diagrams, one of 
the two metals is normally grounded so that 
its Fermi level does not change when the bias 
is applied. The Fermi level falls for a metal 
that is biased positive relative to ground, and 
raised for one biased negative. 

B. Normal Metal Tunneling 

Consider two normal metals grounded 
at absolute zero and separated by an insulat­
ing barrier. Their Fermi levels are aligned as 
shown in Fig. 15.6a, so no tunneling occurs. 
A positive-bias voltage is then applied to 
one of the metals, lowering its energy lev­
els, as shown in Fig. 15.6b, so that the elec­
trons are now able to tunnel from the top of 
the conduction band of the grounded metal 
to the empty continuum levels of the posi­
tively biased metal, as shown. The number 
of empty levels that can receive electrons is 
proportional to the bias, so that the current 
flow is also proportional to it, as shown in 
Fig. 15.6c. The magnitude of the tunneling 
current is, of course, small compared to the 
current that flows in the absence of the bar­
rier. Such a process satisfies the three con­
ditions for tunneling—namely, presence of a 
barrier, energy conservation, and empty tar­
get levels. 

C. Normal Metal – Superconductor 
Tunneling 

Next, we consider the case of an 
insulating barrier between a superconduc­
tor and a normal metal. N–I–S tunneling 
occurs through the processes outlined in 
Fig. 15.7, where the top three diagrams 
are the semiconductor representation and 
the three middle diagrams sketch the boson 
condensation representation. In the unbi­
ased cases of Figs. 15.7b and 15.7e no 
tunneling occurs because there is no way 

15 ENERGY GAP AND TUNNELING 

Figure 15.7 Normal metal–superconductor tunnel­
ing. The semiconductor representation shows (a) super 
electron tunneling �SC → N� for V <  −�/e, (b) zero 
tunneling current for the V = 0 case of the Fermi level 
in the gap �−�/e < V < �/e�, and (c) normal electron 
tunneling �N → SC� for V>�/e, which are also shown 
in the boson condensation representation (d), (e), and 
(f), respectively. The arrows show the electron tunnel­
ing directions, which are opposite to the current flow 
directions; the current–voltage characteristic is given in 
(g). The normal metal is grounded so that the super­
conductor bands shift downward when a positive bias is 
applied. 

for energy to be conserved by electrons 
tunneling to empty target levels. This is 
also true for the range −�/e < V <  +�/e 
of biases. For a positive bias, V ≥ �/e, 
electrons can tunnel from the conduction 
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band of the normal metal to the empty 
states above the gap of the superconduc­
tor, as shown in Figs. 15.7c and 15.7f. 
The figures appear similar in both rep­
resentations because Cooper pairs do not 
participate. 

For a negative bias, V ≤ −�/e, the pro­
cess must be considered more carefully since 
the explanation is different in the two repre­
sentations. In the boson condensation picture 
shown in Fig. 15.7d tunneling involves the 
breakup of a Cooper pair, with one electron 
of the pair tunneling down to the top of the 
normal-metal conduction band and the other 
jumping upward to the quasiparticle energy 
band of the superconductor. Thus the paired 
electrons separate to create a quasiparticle in 
the superconductor and transfer a conduction 
electron to the normal metal, with energy 
conserved in the process (Hu et al., 1990; 
Rajam et al., 1989; van den Brink et al., 
1991; Worsham et al., 1991). Both elec­
trons of the Cooper pair are accounted for. 
In the semiconductor representation, only 
the electron that is transferred to the nor­
mal metal is taken into account, as shown 
in Fig. 15.7a. This electron leaves behind 
it a hole in an otherwise filled band, it is 
this hole which constitutes the quasiparti­
cle. Figure 15.7g shows how the experi­
mentally measured current flow between the 
metal and the superconductor depends on 
the bias. 

D. Superconductor – Superconductor 
Tunneling 

Finally, let us consider the case of two 
identical superconductors. S–I–S tunneling 
occurs through the processes depicted in 
Fig. 15.8 for the two representations. Over 
the range of biases −2�/e < V < +2�/e an 
electron in the semiconductor representation 
can tunnel from the super-conducting state 

Figure 15.8 Superconductor-to-superconductor tun­
neling at absolute zero. The semiconductor representa­
tion shows (a) super electron tunneling for V < −2�/e, 
(b) zero tunneling current for bias voltages in the range 
−2�/e < V < 2�/e, and (c) opposite-direction super 
electron tunneling for 2�/e < V , which are also shown 
in the boson condensation representation (d), (e), and (f), 
respectively, where the tunneling arises from the break­
ing of a Cooper pair. The current–voltage characteristic 
is given in (g). The arrows show the electron tunneling 
directions, which are opposite to the current flow direc­
tions. The sketches are drawn with the superconductor 
on the left grounded. 

of one superconductor to become a quasi­
particle in the normal state of the other, as 
shown in Figs. 15.8a and 15.8c. This has 
its counterpart explanation in Figs. 15.8d 
and 15.8f where we see how a Cooper pair 
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in the higher of the two boson condensa­
tion levels can break up, with one electron 
jumping up to become a quasiparticle in 
its own excited level and the other electron 
jumping down to become a quasiparticle in 
the other super-conductor. As the bias volt­
age increases beyond the range −2�/e < 
V <  +2�/e, the current increases abruptly 
in magnitude and then approaches its nor­
mal metal value, as indicated in Fig. 15.8g. 
The current voltage characteristic for two 
identical superconductors is, of course, anti­
symmetric about the point V = 0. By anti­
symmetric we mean that when V → −V 
we will have I → −I. Note that the onset 
of tunneling for S–I–S junctions occurs at 
V = ±2�/e, which is twice the value for the 
N–I–S case. 

Figure 15.8 was drawn for the case 
T = 0. For a finite temperature there will 
be some quasiparticles in each supercon­
ductor, so that a small tunneling current 
will flow for bias voltages below 2�/e, as  
shown in Fig. 15.9 in the boson condensation 
representation (a) and in the semiconducting 
representation (b). The current–voltage char­
acteristic is given in Fig. 15.9c. 

V. QUANTITATIVE TREATMENT 
OF TUNNELING 

The previous section discussed the dif­
ferent tunneling processes in terms of both 
the boson condensation and the semicon­
ductor representations. The former seems to 
give a better physical picture of what is 
happening because it involves the breakup 
of Cooper pairs, whereas the latter provides 
a framework for carrying out quantitative 
calculations of the tunneling current as a 
function of temperature. We will now apply 
the Fermi statistics approach of Chapter 1, 
Section IX, to the semiconductor represen­
tation to derive quantitative expressions for 
the tunneling current. 

15 ENERGY GAP AND TUNNELING 

Figure 15.9 Superconductor-to-superconductor tun­
neling at finite temperatures, T > 0. The semiconductor 
representation (a) and boson condensation representa­
tion (b) show finite tunneling between upper quasiparti­
cle levels sparsely populated by thermal excitation. The 
current–voltage characteristic (c) shows a small current 
flow for 0 <V< 2�/e, and the usual larger current flow 
for 2�/e < V . 

A. Distribution Function 

We explained in Chapter 1, Section IX, 
that the concentration of conduction elec­
trons as a function of their energy is given 
by the product of the Fermi–Dirac (F–D) 
distribution function, f(E), and the density 
of states, D(E). We begin by expressing 
the former in a form that is convenient for 
treating tunneling problems, and then make 
use of the latter, which we write Dn�E� for 
the normal electrons involved in the tun­
neling. The super electrons have a different 
density of states, Ds�E�, which was derived 
in Chapter 7, Section VI. 
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In Chapter 1, Section IX, we expressed 
the energies of a conductor relative to the 
Fermi energy EF. In the present discussion it 
is convenient to select the Fermi level as the 
zero of energy, i.e., to set EF = 0. With this 
in mind the F–D distribution of Eq. (1.35) 
for electrons assumes the form 

1 
f�E� = � (15.2) 

exp�E/kBT�+1 

which at absolute zero equals 1 for neg­
ative energies and 0 for positive energies. 
The corresponding distribution function for 
unoccupied states, sometimes called holes, is 

1 − f�E�. If a bias voltage V is applied, the 
distribution function for electrons becomes 

1 
f�E+ eV� = � 

exp��E+ eV�/kBT�+1 
(15.3) 

and for holes is given by 

1 
1 −f�E+ eV� = � 

1 + exp�−�E+ eV�/kBT� 

(15.4) 

These distributions functions for T >  0 
are plotted in Fig. 15.10 for zero, posi­
tive, and negative biases. Figure 1.4 shows 
the effect of temperature on the F–D 
distribution. 

Figure 15.10 The dependence of the Fermi–Dirac distribution function f(E) 
on the energy for zero bias (a), positive bias (b), and negative bias (c). The 
dependence of the distribution function in the case of holes, 1 − f�E�, on the 
energy for the same bias conditions (d, e, and f). 
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B. Density of States 

Now that we have rewritten the F–D 
distribution functions relative to the zero of 
energy set at the Fermi level Eq. (1.41) 
should similarly be rewritten for the density 
of states Dn�E� of normal electrons with this 
same zero of energy, 

( )1/2
EF +E 

Dn�E� = Dn�0� � (15.5)
EF 

where Dn�0� is the density of states at the 
Fermi level �E = 0�. Plots of D �E�f�E�n

against the energy are shown in Fig. 1.7; we 
will make use of these plots with the zero 
of energy set at the Fermi level. Since E in 
Eq. (15.5) is usually very small compared 
with the Fermi energy �E� � EF, and since 
the energies of interest are generally limited 
by the maximum applied bias voltage Vmax, 
in tunneling calculations it is usually valid 
to write 

Dn�E� ≈ Dn�0� − eVmax < E< eVmax� 

(15.6) 

The density of states in the supercon­
ducting state is given by the BCS expres­
sion (7.80) 

⎧ Dn�0��E� ⎪ E <  −� �15�7� ⎪ ⎪�E2 −�2�1/2 ⎪ ⎨
Ds�E� = 0 −� < E < � �15�8� 

⎪ ⎪ Dn�0��E� ⎪ ⎪ � < E�  �15�9� ⎩�E2 −�2�1/2 

which is plotted in Fig. 7.4. 
Another property of the density of 

states that has important implications for 
superconductivity is the conservation of 
states in k-space that was mentioned in 
Chapter 1, Section X. This is reflected in the 
conservation of energy levels at the onset of 
superconductivity. When a material becomes 
superconducting, an energy gap forms, with 
some energy states shifting upward above 
the gap and some falling below it, with the 

15 ENERGY GAP AND TUNNELING 

total number of states remaining the same, in 
the manner illustrated in Fig. 1.9. Comparing 
Eqs. (15.7) and (15.9) shows that the level 
spacing is the same just above and just below 
the gap. The area under the curve for D�E� 
versus E, which is numerically equal to the 
total number of energy levels, is unchanged 
during the passage through Tc, 

D �E�dE = D �E�dE� (15.10) n s

T>Tc T<Tc


We will use these expressions for f�E� 
and D�E� to write down an analytic expres­
sion for the tunneling current. 

C. Tunneling Current 

We begin by deducing a general expres­
sion for the tunneling current and then dis­
cuss the cases N–I–N, N–I–S, and S–I–S. 
Note, first, that in our qualitative discussion 
we were assuming that tunneling takes place 
in one direction only. A more careful anal­
ysis shows that it actually occurs in both 
directions, and that the net tunneling current 
is the difference between forward and back­
ward tunneling processes. 

Consider the case of a bias voltage V , 

V = V1 −V2� (15.11) 

applied to a metal–insulator–metal junction, 
M1–I–M2, as shown in Fig. 15.11, where 
each M can be a normal metal or a super­
conductor. To simplify the mathematics we 
treat the special case of metal 1 at the poten­
tial V1 = V and metal 2 at zero potential, 
V2 = 0. Electrons can tunnel to the right with 
the current density J12 and to the left with the 
current density J21, as shown. The tunneling 
current is, therefore, 

I = �J12 − J21�A� (15.12) 

where A is the area of the junction. Most 
electrons that impinge on the barrier from the 
left are reflected, but a few penetrate it, as 
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443 V QUANTITATIVE TREATMENT OF TUNNELING 

Figure 15.11 Metal-to-metal tunnel junction in the form of a thin uniform 
insulating layer between two metals M1 and M2. Tunneling current densities J12 and 
J21 in both directions are shown, with J12 > J21 for the bias indicated. 

Figure 15.12 One electron reflected from, and another tunneling 
through, the insulating barrier of a tunnel junction for the bias of 
Fig. 13.11. The tunneling of the electron is in the direction from the nega­
tive to the positive side of the junction, but the corresponding current flow 
J12 is from + to − because it is based on the convention of positive-charge 
carriers. 

illustrated in Fig. 15.12, and contribute to the where 
tunneling current. We recall from quantum 
mechanics that Fermi’s Golden Rule from �2�E� = D2�E��1 −f�E�� (15.14) 
time-dependent perturbation theory provides 
the probability per unit time W that an elec- is the “target” density of empty states in the 
tron will undergo a transition from state 1 to energy range into which the electron tun-
state 2 in the energy range from E to E+�E, nels. We assume that the tunneling matrix 

element HT,

W1→2 = �2�/����2�Hpert �1	�2 �2�E��


(15.13) = H12 = H ∗ �1	 (15.15)HT 21�2�Hpert 
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of the perturbation Hamiltonian Hpert respon­
sible for the penetration at the barrier can 
be evaluated. The tunneling current from 
metal 1 to metal 2 is related to the transition 
probability through the expression 

J12 = e W1→2D1�E− eV�f�E− eV�dE 

= 2�e �HT �2D1�E− eV�f�E− eV� 

×D2�E��1 −f�E��dE� (15.16a) 

where W1→2 is given by Eq. (15.13). We 
note that the integrand is proportional to the 
overlap between the two densities of states. 
By the same reasoning, the tunneling current 
in the reverse direction, J21, is  

J21 = 2�e �HT�2D2�E�f�E� 

×D1�E− eV��1 −f�E− eV��dE� 
(15.16b) 

where again the integrand contains the den­
sity of states overlap. Inserting Eqs. (15.16a) 
and (15.16b) in Eq. (15.12) gives 

I = 2�eA �HT�2 D1�E− eV�D2�E� 

× �f�E− eV�−f�E��dE (15.17) 

for the total tunneling current I in the direc­
tion from metal 1 to metal 2, where it is 
assumed that the tunneling matrix element 
HT is independent of the energy near E = 0. 

In this expression the density-of-states 
functions D1�E− eV� and D2�E� depend on 
the nature of the source and target states, 
whether they are normal or superconducting. 
The distribution function difference �f�E− 
eV�−f�E��, on the other hand, depends only 
on the potential V , being close to 1 for ener­
gies between 0 and eV and approaching zero 
rapidly outside this range. Therefore, strong 
tunneling can occur only where D1�E− eV� 
and D2�E� are both appreciable in magnitude 
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in this energy range. Weak tunneling could 
occur in the tails of the function 

�f�E− eV�−f�E�� 

just beyond this range. These characteris­
tics will be illustrated in the next three sec­
tions for N–I–N, N–I–S, and S–I–S tunnel­
ing, respectively. 

D. N–I–N Tunneling Current 

Normal metal-to-normal metal tunneling 
depends mainly on the difference in the dis­
tribution functions 

�f�E− eV�−f�E��� 

since there is very little difference in the two 
normal metal densities of states. The anal­
ysis of this case is left as an exercise (see 
Problem 1). 

E. N–I–S Tunneling Current 

For tunneling between a normal metal 
and a superconductor, the normal-metal 
density of states Dn�E− eV� can be approx­
imated by Dn�0� and factored out of the 
integral (15.17). N–I–S tunelling will then 
occur when the superconducting density of 
states Ds�E� overlaps with 

�f�E− eV�−f�E��� 

At absolute zero �f�E− eV�− f�E�� is 1 in  
the range 0 ≤ E ≤ eV and zero outside this 
range, so that for a positive bias, V >  0, the 
integrand of (15.17) becomes 

Dn�E− eV�Ds�E��f�E− eV�−f�E�� 

−Dn�0�Ds�E�  � < E < eV  = 
0 otherwise. 

(15.18) 
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A similar reasoning shows that for a negative 
bias, 

Dn�E− eV�Ds�E��f�E− eV�−f�E�� 

−Dn�0�Ds�E� −eV < E < −� = 
otherwise. 

(15.19) 

With the aid of Eqs. (15.7)–(15.9) we see 
that Eq. (15.17) can be integrated in closed 
form, as shown in Problem 4, to give 

⎧ 
⎪ � � ⎪G

[ 
V 2 − )2 

]1/2 
< V  ⎪ n e ⎪ e ⎪ ⎨ 

I = 0 −� < V <  � ns e e ⎪ ⎪ ⎪ ⎪ ( )2 
]1/2 ⎪ � ⎩−G V 2 − V < −� 

n e e 

(15.20) 

where Gn, which has the value 

Gn = 2�A �HT�2Dn�0�� (15.21) 

is the normal metal electron tunneling con­
ductance defined by 

1nGn = (15.22)
V 

and plotted as on asymptotic (dashed) 
straight line in Figs. 15.7g, 15.8g, and 15.9c. 
The N–I–S tunneling current (15.20) is 
shown plotted in Fig. 15.7g. We see that as 
the voltage increases, the current approaches 
the normal conductor value. Experimentally 
determined plots of this type can be used to 
evaluate the energy gap � from N–I–S tun­
neling measurements. 

The expression (15.20) is valid for abso­
lute zero. For T >  0 the tails of the distribu­
tion function difference, 

�f�E− eV�−f�E��� 

produce weak tunneling for potentials �V � in 
the gap close to the value �/e. 

The significance of the overlap condi­
tions in producing N–I–S tunneling is illus­
trated in Fig. 15.13. Figure 15.13a shows the 
lack of overlap when �V � � �/e, so that no 
tunneling occurs. Figure 15.13b indicates the 
small overlap when V is in the gap near the 
edges and there is weak tunneling. Finally, 
Fig. 15.13c shows the strong overlap for 
V > �/e which produces strong tunneling. 
These figures should be compared with the 
more qualitative representations sketched in 
Fig. 15.7. 

F. S–I–S Tunneling Current 

Superconductor–superconductor tunnel­
ing is treated in a manner similar to the treat­
ment we have just used for the N–I–S case. 
Unfortunately, in the S–I–S case the tunnel­
ing current equation (15.17) cannot be inte­
grated in closed form, and instead we present 
the more qualitative treatment that is outlined 
inFig.15.14.We select D1�E− eV�asasuper­
conductor with a small gap �1 and D2�E� as a 
superconductor with a larger gap �2 >�1. As  
thebiasvoltage V is increased, the lowerbands 
of D1 and D2 are made to coincide at a bias 
V = ��2 −�1�/e, as indicated in Fig. 15.14b, 
and also in the semiconductor and boson con­
densation representation plots of Fig. 15.15. 
This coincidence and the overlap of the bands 
results in weak tunneling because of the very 
low concentration of electrons in each level, 
and a small peak appears in the current ver­
sus voltage plot of Fig. 15.16b. The current 
is less on either side of the peak because the 
amount of overlap of the bands is less. The 
decrease of I with increasing V beyond the 
peak at finite temperatures constitutes a nega­
tive resistance region of the I-versus-V char­
acteristic of Fig. 15.16b. At absolute zero this 
current vanishes, as indicated in Fig. 15.16a, 
because the quasiparticle levels are all empty. 

We see from Figs. 15.14c and 15.15b 
that when the magnitude of the bias reaches 
the value V = ��1 +�2�/e, the densities of 
states D1�E� and D2�E� begin to overlap 
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Figure 15.13 Contribution of the occupancy (shaded) of the superconductor density of states Ds �E� to N–I–S 
tunneling for (a) small positive bias, 0 < V  � �/e, and no tunneling current, (b) small bias, V = �/e, for which 
the tail of the distribution function difference �f�E−eV�−f�E�� overlaps Ds�E�, the occupancy of Ds�E� is small, 
and a weak tunneling current flows, and (c) more positive bias, V > �/e, producing a strong overlap so that the 
occupancy of Ds�E� is large near the gap and a strong tunneling current flows. 

at their infinity points, and there is a large �G �1�2 
jump in the tunneling current, as indicated �Is = n 

4e 
in Figs. 15.16a for T = 0 and in Fig. 15.16b ( ) 
for T >  0. The tunneling current is now sinh 

�1 +�2 

large because it flows from a nearly full × ( ) 
2( 
kBT ) � 

level to a nearly empty level. An evaluation cosh 
�1 · cosh 

�2 

of the integral (15.17) at T = 0 and V = 2kBT 2kBT 

��1 +�2�/e gives for the jump in current as (15.25) 
this bias 

which reduces to Eq. (15.23) for T = 0. 
�Gn��1�2�

1/2 If the gaps are the same for the two 
�Is = 

2e
� (15.23) superconductors, �1 = �2 = �, there will 

be no maximum in the weak quasiparti­
where Gn is the normal tunneling conduc- cle tunneling current, but such a weak cur­
tance defined by Eq. (15.22). In Problem 5 rent does flow for V <  2�/e, as shown in 
we show that the ratio of the jump in current Fig. 15.9. For T ��/kB, this current is given 
�Is to the normal tunneling current In at the approximately by (Van Duzer and Turner, 
bias V = 2�/e is given by 1981, p. 87) 

�Is/In = � (15.24) 2Gn 2�
4 I = ��+ eV�s e 2�+ eV 

which represents a jump of around 80%. Van ( ) ( ) 
Duzer and Turner (1981, p. 87) have shown × sinh 

eV 
K0 

eV 
e −�/kBT � 

that, for a finite temperature, this jump has 2kBT 2kBT 

the magnitude (15.26) 
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Figure 15.14 Densities of states for superconductor 1 (top) with the gap �1, for superconductor 2 (middle) with 
the gap �2, and distribution function difference (bottom) for (a) zero bias in which no tunneling current flows, (b) 
bias V = ��2 −�1�/e producing weak tunneling current due to the overlap of the two quasiparticle bands, (c) bias 
V = ��2 +�1�/e for onset of strong tunneling, and (d) bias V � ��2 +�1�/e producing strong tunneling current 
due to the large overlap between the occupied superconductor band of the first superconductor and the empty 
quasiparticle band of the second superconductor. Quasiparticle tunneling (b) arises from the tail of the distribution 
function difference f�E�− f�E+ eV�, hence is very weak and vanishes at absolute zero. Figure 13.13 presents 
energy-level diagrams for these four cases. 

where K0 is the zeroth-order modified Bessel tend to be better resolved in plots of differ-
function (cf. Chapter 12, Section III.B). ential conductance than in plots of I versus 

In Eq. (15.22) we defined the normal V (see example in Section VI.C, especially 
metal electron tunneling conductance Gn as Fig. 15.24). 
the asymptotic slope of the I-versus-V char­
acteristic curve for very large V . We can also 
define the differential conductance, G. Nonequilibrium Quasiparticle 

Gd = dI 
dV 

� (15.27) 
Tunneling 

So far we have assumed that the super 
electrons in the ground energy band and the 

which is the slope at any point of the I- quasiparticles in the excited band are in ther­
versus-V curve. Many workers report their mal equilibrium both between the bands and 
tunneling measurements as plots of Gd ver- within each individual band. The tunneling 
sus V . This has the advantage of providing process, of course, disturbs this equilibrium, 
greater resolution, since structural features but this effect is negligible. 
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448 15 ENERGY GAP AND TUNNELING 

Figure 15.14 (Continued) 

Figure 15.15 Semiconductor (top) and boson condensation (bottom) representations 
of the S–I–S tunneling cases of Fig. 15.14 for (a) zero bias, (b) quasiparticle band 
alignment and weak tunneling, (c) onset of Cooper pair tunneling, and (d) strong tunneling 
of Cooper pair electrons. 
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Figure 15.16 Tunneling current versus bias voltage for S–I–S tunneling involving two superconductors with 
energy gaps �2 >�1 for (a) T = 0, with no tunneling occurring until the bias V = ��2 +�1�/e is reached, and (b) 
T >  0, with weak tunneling at the bias V = ��2 −�1�/e and strong tunneling for V > ��1 +�2 �/e. 

We now wish to treat so-called branch 
imbalance, in which the number of quasi­
particles n+ with momentum in one direc­
tion, pi, is greater than the number of 
quasiparticles n− with momentum in the 
opposite direction, −pi, in accordance with 
Fig. 15.17b. The imbalance �n+ − n−� can 
be brought about by injecting quasiparticles 
across an N–I–S junction (Clarke, 1972). 

When a quasiparticle imbalance exists 
in the neighborhood of a tunnel junction, a 
current flows. 

d 
I = e �n+ −n−�� (15.28)

dt 

to reestablish balance between the positive 
and negative momentum states in the quasi­
particle band. Equilibrium is restored in a 
time �Q, called the branch imbalance relax­
ation time, and we can write 

I�Q
�n+ −n−� = � (15.29) 

e 

For temperatures near Tc the relaxation time 
is predicted, assuming a spacially uniform 

case, to have the temperature dependence 
(Schmid, 1968) 

( )−1/2
T 

�Q�T� ≈ �Q�T � 1 − � (15.30) c Tc 

This relation has also been found experimen­
tally (Clarke and Patterson, 1974). 

A more extensive discussion of quasi­
particle imbalance may be found in the works 
by Tinkham and Clarke (1972), and by Tilley 
and Tilley (1986). 

H. Tunneling in unconventional 
superconductors 

a. Introduction 
Tunneling measurements have proved 

very useful in studying unconven­
tional superconductors. Both Cooper-pair 
(Josephson) tunneling and single electron 
(quasiparticle) tunneling measurements are 
used. In particular, the measurement of the 
tunneling current between a superconductor 
and a normal metal may be utilized for the 
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Figure 15.17 Branch imbalance illustrated using a 
one-electron energy parabola (a) for the usual case of no 
imbalance where the number of electrons with positive 
momentum is equal to the number of electrons with neg­
ative momentum, and (b) for the branch-imbalance state 
(number of electrons with positive momentum greater 
than numbers of electrons with negative momentum). 

direct determination of the superconducting 
gap. If a superconductor is unconventional 
then directional tunneling measurements 
help to clarify the superconducting gap 
structure. Furthermore, Josephson tunneling 
between two superconductors one of which 
is unconventional can be used to probe the 
asymmetry of the superconducting phase, 
for example, by utilizing corner SQUID 
junctions (Van Harlingen, 1995, Tsuei 
and Kirtley, 2000). This is an example 
of so-called phase-sensitive experiments, 
which are very important in distinguishing 
between a highly anisotropic s-wave gap 
and a d-wave gap. For the former case 
the order parameter does not change sign 
anywhere on the Fermi surface, whereas in 
the latter case it does so. 

15 ENERGY GAP AND TUNNELING 

In a simple tunneling experiment 
between a normal metal and a superconduc­
tor the conductance is related to the density 
of states, and the bias voltage is related to the 
energy offset from the Fermi level. Since the 
quasiparticle energy spectrum is gapped with 
a superconducting gap �, an s-wave super­
conductor shows technically zero conduc­
tance up to V = �/e where e is the electron 
charge. In unconventional superconductors 
with nodes the average over the Fermi sur­
face of the quasiparticle energy spectrum is 
linearly proportional to the energy, and tun­
neling measurements do indeed reveal this 
structure. To refine the technique, one can 
use directional tunneling with small planar or 
point contacts. In this case the experiments 
probe the gap structure along a particu­
lar direction with respect to crystallographic 
axes, and reveal the gap anisotropy. Many 
modifications of tunneling geometries and 
contacts are employed. Ramp junctions and 
single grain boundaries, as well as a variety 
of combinations of insulating layers, have 
been utilized during the last decade. 

As in any type of measurement, there 
are many complications in performing and 
interpreting the tunneling experiments. The 
main problems are the quality of the con­
tacts, an incomplete knowledge of impurity 
distributions, distortions and stresses at the 
interface, and the uncertainty of the tunnel­
ing current distribution (so-called tunneling 
cone). As a result, there is still much contro­
versy regarding the interpretation of various 
experiments. Many, sometimes conflicting, 
theories claim to describe the results. It will 
take some time and more experimental statis­
tics on various superconducting systems for 
the situation to become clear. 

b. Zero-Bias Conductance Peak 
One of the signatures of a superconduc­

tor with nodes in tunneling measurements 
is the appearance of the zero-bias conduc­
tance peak arising from surface Andreev 
bound states (Greene et al., 1998, Hu, 1998). 
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If quasiparticles scattered specularly off the 
interface can be Andreev-reflected by the 
pair potential then a hole will go back 
in the direction of the initial quasiparti­
cle trajectory. Multiple scattering events at 
the interface lead to the formation of zero-
energy (with respect to the Fermi level) 
Andreev bound states. Evidently, this inter­
ference with the pair potential is very sen­
sitive to the phase of the superconducting 
wave function. In a dx2−y2 superconductor 
the effect is maximal for a (110) orientation 
with respect to the surface. In this case a 
quasiparticle reflected off the interface expe­
riences a change in sign of the supercon­
ducting order parameter (maximum change 
of the pair potential), and the effect is max­
imal. As a result, the appearance of a large 
conductance via these available states at the 
gap center is possible, and this leads to 
the formation of the zero bias conductance 
peak. 

The presence of Andreev bound states 
is not the only explanation for the experi­
mentally observed conductance peak at zero-
bias. A trivial explanation is the presence 
of a mesoscopic superconducting short cir­
cuit, and before Andreev physics became 
established the dominant theory had been the 
Appelbaum-Anderson model that invoked 
magnetic impurities at the interface. 

A single zero-bias conductance peak is 
formed only when time-reversal symmetry 
is preserved. Therefore the application of 
a magnetic field splits the peak, as was 
observed experimentally. The problem is that 
a similar splitting occurs in the Appelbaum-
Anderson model as well. In that case, how­
ever, it seems that the required fields are 
much larger, and the field dependence of 
the splitting is quite different from that in 
Andreev bound-state physics. Impurities tend 
to smear the peak, which may be why this 
peak splitting had not been seen in some 
earlier experiments carried out with an oth­
erwise “correct” geometry. 

Furthermore, in YBaCuO a spontaneous 
zero-bias conductance peak splitting has 

been observed below 8 K (Aubin et al., 2002, 
Greene et al., 2000, Greene et al., 1998). 
This was interpreted as involving sponta­
neous time-reversal symmetry breaking, and 
the creation of mesoscopic surface currents 
due to the bound states. Such a spontaneous 
change can be due to the crossover to a 
mixed symmetry state such as s + idxy or 
dxy + idx2−y2. 

c. c-Axis Tunneling 
In a pure d-wave superconductor the 

order parameter has lobes of equal area, but 
opposite sign. Therefore, the total Cooper 
pair tunneling current in the c-direction must 
be zero. However, if there is an s-wave 
admixture to the order parameter it must 
lead to the presence of a nonzero c-axis 
supercurrent. The experimental realization 
of this simple idea is not straightforward, 
and until now different groups have reported 
conflicting results. Various versions of this 
idea have been explored, including twisted 
junctions and grain boundaries (Tsuei and 
Kirtley, 2000). 

VI. TUNNELING MEASUREMENTS 

Let us now say a few words about the 
experimental arrangements used in carrying 
out tunneling experiments, followed by a dis­
cussion of representative experimental data 
that have appeared in the literature. 

Tunneling, like photoemission, repre­
sents a surface-probe sampling of a region 
of dimensions determined by the coherence 
length (Cucolo et al., 1991; J.-X. Liu et al., 
1991; Pierson and Valls, 1992), which, for 
high-temperature superconductors, can be 
only one or two unit cell dimensions in mag­
nitude. Lanping et al. (1989) constructed a 
histogram of the distribution of gap param­
eters � determined from tunneling measure­
ments made at 600 different surface locations 
on the same YBa2Cu3O7−� sample, obtain­
ing values ranging from 15 to 50 meV, with 
several data points outside this range. 
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A. Weak Links 

If a superconducting rod is cut at some 
point and then joined through an interven­
ing insulating section, either (1) the insulat­
ing region will turn out to be so thick that 
the two separated superconducting sections 
lose contact and have no interaction, or (2) 
the insulator layer will consist of a mono­
layer of foreign atoms, so that strong contact 
is maintained across it, or (3) the section 
will be intermediate in thickness, so that 
the superconductors are weakly coupled and 
electrons can tunnel. The third case, called 
a weak link, is the one that is most com­
monly used for tunneling studies and Joseph­
son effect measurements (Furusaki and 
Tsukada, 1991). 

B. Experimental Arrangements 
for Measuring Tunneling 

The overall structure at the interface 
between two superconductors or between a 
normal metal and a superconductors is called 
a microbridge. The barrier region is the cru­
cial part of the microbridge. A typical bar­
rier thickness is a coherence length or less 
in magnitude, so that barriers must be much 
thinner for high-temperature superconduc­
tors �� ≈ 2 nm� than for an element like 

lead �� = 80 nm�. Beenakker and van Houten 
(1991) discussed weak links that are quan­
tum point contacts. 

The original Zeller and Giaever tech­
nique (1969; Fulton et al., 1989; Giaever and 
Zeller, 1968) for making an Al–Al2O3−Al 
sandwich-type tunneling junction was to 
embed Sn particles in the aluminum oxide 
since Al oxidizes much faster than Sn, mak­
ing it easier to form a thin insulating oxide 
layer on the tin. The preparation method 
shown in Fig. 15.18 consists in evaporation 
of a strip of aluminum film on a glass sub­
strate, oxidizing the strip, evaporating tin on 
the film, and oxidizing once again. Then a 
second strip of aluminum at right angles to 
the first strip is evaporated on the substrate, 
as shown in the figure. An arrangement 
of the Sn particles for four different sam­
ples is shown in the electron micrographs 
of Fig. 15.19. The final asymmetric feed 
configuration arrangement is sketched in 
Fig. 15.20, with the details of the junction 
area indicated in Fig. 15.21 (Florjanczyk 
and Jaworski, 1989; Monaco, 1990a, b). To 
make a tunneling measurement, a bias volt­
age is applied across the junction using two 
of the leads, with the current monitored at the 
other two leads, as shown. Sandwich-tunnel 
junctions of this type have been made for 
many S–I–S and N–I–S cases using various 

Figure 15.18 Preparation of a tunnel junction containing tin 
particles. Aluminum oxidizes faster than tin, so that the oxide layer 
is thicker between the particles than on their surface, as indicated 
(Zeller and Giaever, 1969). 
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Figure 15.19 Electron micrograph of tin particles on an 
oxidized aluminum film for four particle sizes (Zeller and 
Giaever, 1969). 

Figure 15.20 Sketch of tunnel junction on a glass substrate, showing 
current �I� and applied bias voltage �V�V ′� leads. 

combinations of super-conducting and nor­
mal metals, but the use of embedded parti­
cles, such as Sn, to control the film thickness 
is not generally employed. 

Another common technique for tunnel­
ing measurements employs a scanning elec­
tron microscope (SEM). A probe ground to a 
point with a very small tip radius makes con­
tact with the superconductor surface, as indi­
cated in Fig. 15.22a (typical probe materials 
are Au, Nb, Pt–Rh, Pt–Ir, and W.) The tip 
touches the surface, or comes very close to 

it. If contact is made, tunneling probably 
takes place through a layer of inhomoge­
neous insulating or semiconducting material, 
such as the oxide coating the surface. Tun­
neling can also occur at a constriction, as 
shown in Fig. 15.22b. 

Mooreland’s group developed what they 
call a break junction technique for tun­
neling measurements (Mooreland et al., 
1987a, b). A small piece of bulk material 
is electromechanically broken under liquid 
helium and the freshly fractured interfaces 
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Figure 15.21 Details of the tunnel junction sketched in Fig. 15.20, showing the insulating 
layer between the metal strips. The ammeter measures the tunneling current produced by the bias 
voltage. 

Figure 15.22 Tunnel junction formed from (a) a 
probe tip in contact with, or almost in contact with, the 
superconducting surface, and (b) a constricted region in 
a superconductor. 

joined to form a tunneling barrier with the 
liquid helium acting as insulator. 

We will now present some typical exper­
imental tunneling measurements that were 
made using these techniques. 

C. N–I–S Tunneling Measurements 

Gallagher et al. (1988) made an N–I–S 
tunneling study of YBa2Cu3O7 using a 
scanning tunneling microscope operating in 
liquid helium. A coarse-adjust screw and fine-
adjust piezoelectric transducer provided the 
desired tip-to-sample contact, where the tip is 
embedded in an insulating surface layer with 
a typical 1 M� resistance, which causes the 
junction to end up in the tunneling regime. 
Figure 15.23 shows the I-versus-V charac­
teristic made with an Nb tip and Fig. 15.24 
the dI/dV-versus-V characteristic for a similar 
sample made using a W tip. Note the increased 
resolution of the differential curve. 

Ekino and Akimitsu (1989a, b) reported 
point-contact electron tunneling studies of 
BiSrCaCuO and BiSrCuO bulk, monocrys­
tal, and sputtered film samples. Figure 15.25 
presents the I versus V differential conduc­
tance plot for the 2 : 2 : 2 : 3  sample, and we 
again see that the differential data exhibit 
much more structure. 

D. S–I–S Tunneling Measurements 

Figure 15.26 shows some experimental 
data on tunneling across the Al–Al2O3–Al 
junction formed from an oxide layer between 
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Figure 15.23 Current–voltage characteristics at dif­
ferent positions on the surface of aluminum-doped 
YBa2Cu3O6�5+x determined by scanning tunneling 
microscopy using an Nb tip at 4.2 K. A jump in the 
current is observed at 95, 30, and 2.5 mV, respectively. 
Note the changes in scale for each curve (Gallagher 
et al., 1988). 

Figure 15.24 Recording of dI/dV obtained for 
YBa2Cu3O6�5+x at 4.2 K using a tungsten tip (Gallagher 
et al., 1988). 

two aluminum samples with Tc = 1�25 K. We 
see from the figure that quasiparticle tunnel­
ing is negligible at T = 0, becoming domi­
nant just below T = Tc. The jump in current 

at V = 2�/e and T = 0 appears to be less 
than the expected 80%. 

E. Energy Gap 

We saw in Sections IV.C and IV.D, 
respectively, that N–I–S tunneling occurs for 
biases with magnitudes greater than �/e, 
and that S–I–S tunneling occurs for biases 
exceeding 2�/e, as indicated in Figs. 15.7 
and 15.8. The abrupt rise in current at these 
biases gives us the superconducting energy 
gap �. When the two superconductors that 
form an S–I–S junction have different gaps 
�1 and �2, a finite temperature tunneling 
measurement can give us the values of both 
gaps, as pointed out in Section V.F and 
indicated in Fig. 15.16. Thus a tunneling 
experiment provides a convenient way of 
measuring the energy gap. 

As an example of a gap determination, 
note that the peaks on the derivative N–I–S 
tunneling curve of Fig. 15.24 are separated 
by 5 meV, which gives 2� ≈ 5 meV. The 
inset of Fig. 15.25 shows the I2 versus V 2 

plot of Eq. (15.22), giving us the value of 
the energy gap � from the intercept at zero 
current. The temperature dependence of the 
energy gap, ��T�, obtained by fitting the tun­
neling data to a broadened BCS density-of­
states function, 

��E− i��2 −�2�1/2
D�E�= Re 

{ 
E− i� 

} 

� (15.31) 

where � is the gap broadening parameter, 
provided a good fit to the experimental data 
for two Bi superconductors, as shown in 
Fig. 15.27. However, the ratio 

2�/kBTc ≈ 10�5 

is about three times the BCS value of 3.53. 
Plots similar to Fig. 15.27 have been reported 
elsewhere (e.g., Ekino and Akimitsu, 1990; 
Escudero et al., 1989, 1990a; Flensberg and 
Hansen, 1989). 



Elsevier AMS Job code: SUP CH15-P088761 22-6-2007 9:42a.m. Page:456 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

456 15 ENERGY GAP AND TUNNELING 

Figure 15.25 Current–voltage and dI/dT characteristic curves of Bi2Sr2Ca2Cu3O10 determined by point 
contact tunneling. The inset shows a plot of I2 versus V 2 made from the I-versus-V curve (Ekino and 
Akimitsu, 1989a). 

Figure 15.26 Current–voltage measurements on an Al–Al2O3–Al tun­
nel junction. Zero-current positions for each curve are staggered for clarity 
(Blackford and March, 1968). 

Figure 15.26 shows S–I–S tunneling expected. The ratio 2�/kBTc = 3�52 is almost 
with the sharp rises occurring at the val- precisely the BCS value. 
ues 2��T�. We see from the figure that the The ratio 2��0�/kBTc has been reported 
gap 2��T� decreases with temperature, as in the range 2–10 for high-temperature super­
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Figure 15.27 Temperature dependence of the energy gap 2� of 
Bi2Sr2CaCu2O8 �©� and Bi2Sr2Ca2Cu3O10 ��� obtained by point-contact tun­
neling. Some of the data points have vertical error bars. The solid lines are fits 
to a broadened BCS density of states (Ekino and Akimitsu, 1989a). 

conductors (Mattis and Molina, 1991); the 
older superconductors usually had valves 
near the range 3–5 (Schlesinger et al., 
1990a), much closer to the BCS value of 
3.54. Figure 15.28 shows the dependence 

Figure 15.28 Correlation of the energy gap ��0� 
with the transition temperature Tc for bulk YBa2Cu3O7 

(YBCO), two YBa2Cu3O7 films with tunneling in 
the Cu–O plane direction, Bi2Sr2CaCu2O8 (BSCCO) 
film with tunneling in the Cu–O plane direction, 
bulk Tl2Ba2CaCu2O8 (TBCCO, 2212), and bulk 
Tl2Ba2Ca2Cu3O10 (2223). The dashed line is drawn 
for the BCS slope 2��0�/kB Tc = 3�53 (Takeuchi 
et al., 1989). 

of ��0� on Tc for several high-temperature 
superconductors, all with reported ratios 
2��0�/kBTc ≈ 6 (Takeuchi et al., 1989). 

The energy gaps of high-temperature 
superconductors are anisotropic (Bulaevskii 
and Zyskin, 1990; Mahan, 1989; Spalek 
and Gopalan, 1989), being much larger in 
the a� b-plane than in the c direction. 
Some reported values are 2�ab ≈ 6�2kBTc 

and 2�c ≈ 2kBTc for �La1−xSrx�2CuO4 (Kirt­
ley, 1990a, b), 2�ab ≈ 8kBTc and 2�c ≈ 
2�5kBTc for YBa2Cu3O7−� (Collins et al., 
1989a), 2�ab ≈ 8kBTc for Bi2Sr2CaCu2O8−�, 
and 2�ab ≈ 8kBTc and 2�c ≈ 4kBTc for 
Ba0�6K0�4BiO3 (Schlesinger et al., 1990a; 
see also Kussmanl et al., 1990; Takada 
et al., 1989). The existence of these high 
anisotropies could account for much of the 
scatter in the reported gaps for the high-
temperature superconductors. 

F. Proximity Effect 

We have been discussing the effect of 
an insulating layer between a normal metal 
and a superconductor or between two super­
conductors. If no intervening layer is present, 
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another effect, called the proximity effect, 
comes into play. The direct contact at the 
junction and the overlap of wave functions 
causes the density ns of electron pairs to 
differ in the neighborhood of the surface 
from its value in the bulk. At an N–S inter­
face some electron pairs leak into the normal 
metal while some quasiparticles leak into the 
superconductor, thereby reducing the transi­
tion temperature of the superconductor. The 
proximity effect can cause two superconduc­
tors with different Tc that are in contact with 
each other to exhibit the same intermedi­
ate Tc. Theoretical treatments of this effect, 
such as the tunneling approach of McMillan 
(DiChiara et al., 1991, 1993; Kadin, 1990; 
McMillan, 1968; Noce and Maritato, 1989; 
Stephen and Carbotte, 1991) have been pub­
lished. 

To elucidate this Tc reduction, an experi­
mental study of composite films (Werthamer, 
1963) was undertaken, each film consisting 
of a superconductor of thickness ds and a 
normal metal of thickness dn. Figure 15.29 
shows a plot of the critical temperature Tc 

′ 

of layered PbCu composite relative to Tc = 
7�2 K of bulk Pb versus the Cu layer thick­
ness dn for various thickness ds of Pb. The 
reduction of the critical temperature is small 
for super-conductor layer thicknesses greater 
than the coherence length � = 80 nm irre­
spective of the normal layer thickness. The 
data show that there is a characteristic thick­
ness Ln ≈ 40 nm of the normal layer beyond 
which �dn >Ln� there is no additional reduc­
tion of the transition temperature. Van Duzer 
and Turner (1981, p. 301) associate this 
effect with the diffusion constant D of the 
normal metal through the expression 

Ln = ��D/2�kBT�
1/2� (15.32) 

The thinnest sample studied, ds = 7 nm, went 
normal before this characteristic could be 
attained. Figure 15.30 shows how the limit­
ing value of Tc 

′ obtained from Fig. 15.29 for 
the condition dn > Ln depends on the super­
conducting layer thickness. 

15 ENERGY GAP AND TUNNELING 

Figure 15.29 Proximity effect for a PbCu composite 
illustrating how the critical temperature Tc 

′ of supercon­
ducting Pb in a copper–lead composite relative to Tc 

of bulk lead depends on the Cu film thickness dn for 
several Pb film thickness ds from 7 to 100 nm. The ver­
tical dashed line indicates the characteristic thickness 
Ln (adapted from Werthamer, 1963). 

Figure 15.30 Dependence of the limiting value of 
the relative transition temperature �Tc 

′/Tc�sat of the PbCu 
composite of Fig. 15.29 on the thickness ds of the super­
conducting component Pb (data from Fig. 15.29). 

Similar experiments have been car­
ried out with layers of the superconductor 
YBa2Cu3O7−� containing Ny Cu–O layers 
( 1 Ny unit cells thick) adjacent to NPr Cu–O2 
layers of the nonsuperconducting material 
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Figure 15.31 Normalized transition temperature Tc 
′/Tc of YBa2Cu3O7−�/PrBa2Cu3O7−� layers 

plotted (a) versus the number of Cu–O planes NPr in PrBa2Cu3O7−�, and (b) versus the number 
of Cu–O planes NY in YBa2Cu3O7−�. The calculated curves are drawn to fit the data points (Wu 
et al., 1991a). 

PrBa2Cu3O7−�. The calculations by Wu et al. 
(1991a), which are compared in Fig. 15.31 
with the experimental data of Lowndes 
et al. (1990), provide results comparable with 
those presented in Fig. 15.29. Layered com­
pounds are useful for studying other proper­
ties as well, such as resistivity (Minnhagen 
and Olson, 1992). Radousky (1992) 
reviewed the superconducting and normal 
state properties of the Y1−xPrxBa2Cu3O7−� 

system. 
Proximity junctions are (S–N–S) 

Josephson junctions in which the Cooper 
pair and quasiparticle transfer arises from 
the proximity effect (Agrait et al., 1992; 
Braginski, 1991; Claasen et al., 1991; Gijs 
et al., 1990a; Han et al., 1990a; Harris et al., 
1991; Jung et al., 1990; Klein and Aharony, 
1992; Maritato et al., 1988; Polturak et al., 
1991; J. Yu et al., 1991). Studies have 
also been carried out on S-Semicond-S 
or S-Semicond junctions (Furusaki et al., 
1991, 1992; Kastalsky et al., 1991; Kleiner 
et al., 1992; van Wees et al., 1991) and 
arrays (Hebboul and Garland, 1991; Kwong 
et al., 1992; Lerch et al., 1990; Sohn 
et al., 1992). 

G. Even–Odd Electron Effect 

Measurements of single-electron tunnel­
ing through a small superconducting island 
of volume 3 × 106 containing 6 × 108 con­
duction electrons exhibited a 2e periodicity 
in the tunneling current for T< 0�2Tc. Such a 
parity effect arises from the electron pairing, 
whereby the free energy of the superconduct­
ing island depends on whether there is an 
even or odd number of electrons in the island 
(Tuominen et al., 1993). 

VII. JOSEPHSON EFFECT 

Until now we have been discussing 
the participation of quasiparticles in tunnel­
ing. The S–I–S processes that have con­
cerned us included the strong tunneling 
current that flows between an occupied 
super electron band and an empty quasi­
particle band �S → Q�, as well as the rel­
atively weak tunneling between two quasi­
particle bands �Q → Q�. There is also a 
third case—tunneling between two occupied 
super electron bands at zero bias �S → 
S�. In this process there is transfer of 
Cooper pairs across the junction through an 
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460 15 ENERGY GAP AND TUNNELING 

Figure 15.32 Current–voltage characteristic curves for tunneling via the S → 
S� Q → Q, and S → Q processes. All three processes follow the linear n → n tunneling 
slope at high voltages, above 2�/e. 

effect predicted by Josephson in 1962 and 
observed experimentally shortly thereafter 
(Anderson and Rowell, 1963). Figure 15.32 
compares these processes. In the follow­
ing treatment we assume that the Josephson 
junction is of the weak-link type referred to 
in Section VI.A. 

A. Cooper Pair Tunneling 

When two superconductors are sepa­
rated by a thin layer of insulating mate­
rial, electron pairs are able to tunnel through 
the insulator from one superconductor to the 
other. There are four modes of pair tunnel­
ing: (1) the dc Josephson effect, or flow of 
a dc current J = J0 sin � across the junc­
tion in the absence of an applied electric 
or magnetic field, where � is a phase fac­

tor and J0 the maximum zero voltage cur­
rent, (2) the ac Josephson effect, relating 
to the flow of a sinusoidal current, J = 
J0 sin��–�4�eVt/h��, across a junction with 
an applied voltage V , where � = 2eV/h is 
the frequency of oscillation, (3) the inverse 
ac Josephson effect, whereby dc voltages are 
induced across an unbiased junction by inci­
dent radiation or an impressed rf current, 
and (4) macroscopic quantum interference 
effects, involving a tunneling current J with 
an oscillatory dependence on the applied 
magnetic flux sin���/�0�, where �0 is the 
quantum of magnetic flux. 

B. dc Josephson Effect 

In deriving the basic equations for the 
dc Josephson effect we follow the classic 
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approach of Feynman (1965). Consider two 
superconductors, 1 and 2, separated by an 
insulating barrier, as shown in Fig. 15.11. 
If the barrier is thick enough so that the 
superconductors are isolated from each other, 
the time-dependent Schrödinger equation for 
each side is 

d�1i� = H1�1� (15.33a) 
dt


d�2
i� = H2�2� (15.33b)
dt 

where �i and Hi are the wavefunctions and 
Hamiltonians on either side of the barrier. 
We assume that a voltage V is applied 
between the two superconductors. If the zero 
of potential is assumed to occur in the mid­
dle of the barrier between the two super­
conductors, superconductor 1 will be at the 
potential − 2

1 V with Cooper-pair potential 
energy +eV, while superconductor 2 will be 
at the potential + 2

1 V with Cooper-pair poten­
tial energy –eV . (The factor of 1

2 does not 
appear in the potential energy terms because 
the charge of each Cooper pair is 2e.) 

The presence of the insulating barrier 
couples together the two equations, 

d�1i� = eV�1 +K�2� (15.34a) 
dt


d�2
i� = −eV�2 +K�1� (15.34b)
dt 

where K is the coupling constant for the wave-
functions across the barrier. Since the square 
of each wavefunction is the probability den­
sity that super electrons are present, the two 
wavefunctions can be written in the form 

�1 = �ns1�
1/2 ei�1 � (15.35a) 

�2 = �ns2�
1/2 ei�2 � (15.35b) 

�1 = �2 −�1� (15.35c) 

where ns1 and ns2 are the densities of super 
electrons in the two superconductors and � 
is the phase difference across the barrier. If 

the two wavefunctions (15.35a) and (15.34b) 
are substituted in the coupled wave equa­
tions (15.34) and the results separated into 
real and imaginary parts, we obtain equations 
for the time dependence of the pair densities 
and the phase difference: 

� 
d
ns1 = 2K�ns1ns2�

1/2 sin �� (15.36a) 
dt 

� 
d
ns2 = −2K�ns1ns2�

1/2 sin �� (15.36b)
dt 

d 2e 
� = V� (15.37)

dt � 

We can specify the current density in terms 
of the difference between Eqs. (15.36a) 
and (15.36b) times e 

d 
J = e �ns1 −ns2�� (15.38)

dt 

which has the value 

J = Jc sin �� (15.39) 

where 

4eK�ns1ns2�
1/2 

Jc = � (15.40) 

and the coupling constant K is an unknown 
quantity. Equations (15.37) and (15.39) are 
called Josephson relations; they are the 
basic equations for the tunneling behavior 
of Cooper pairs. Multiplying Eq. (15.39) by 
the area A of the junction gives the cur­
rent I = JA, 

I = I sin � (15.41)c 

where Ic = JcA is the critical current. 
Ambegaokar and Baratoff (1963a, b; cf. 

Aponte et al., 1989) showed that for 
Cooper-pair tunneling between two identical 
superconductors with temperature-dependent 
gaps, ��T�, the critical current is given by 

1 
Ic�T� = �Gn�2��T�/e� tanh���T�/2kBT�� 4 

(15.42) 



Elsevier AMS Job code: SUP CH15-P088761 22-6-2007 9:42a.m. Page:462 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

( ) 

� 

462 15 ENERGY GAP AND TUNNELING 

where the normal tunneling conductance Gn 

is given by Eq. (13.22). In the respective 
limiting cases T → 0 and T → Tc, this is 

1 
Ic�0� = �Gn�2��0�/e� T ≈ 0 

4 
(15.43a) 

Ic�Tc� = 1 
�Gn��

2�T�/ekBTc� T ≈ Tc� 4 
(15.43b) 

The voltage 1
4 ��2�/e� on the right side of 

Eq. (15.43) has the physical significance 
indicated in Fig. 15.32. Thus the maximum 
Josephson current Ic�0�, which occurs for 
T = 0 and � = �/2, is equal to 4

1 �, or  ≈ 
80% of the normal-state current at the gap 
voltage V = 2�/e. Figure 15.33 compares 
the temperature dependence of the maximum 
zero-voltage tunneling currents of an Sn–I– 
Sn junction measured by Fiske (1964) with 
the values predicted by Eq. (15.42). The fit 
of the Pb–I–Sn Josephson junction data to 
the same theory is also shown. 

Copper-oxide superconductors are often 
granular in texture with Josephson junctions 
forming at the intergranular boundaries and 
perhaps at defect centers as well. Current 
flows through and between the Josephson 
junctions, and sometimes the intrajunction 
phases are favorable for the formation of 

complete circuits, which can produce flux 
shielding (Jung et al., 1990; vide Doyle and 
Doyle, 1993). There is a grain-decoupling (or 
phase-locking) temperature Tg below which 
the Josephson junction network exhibits 
coherent properties, as well as a grain 
depairing (or critical) temperature Tc below 
which individual grains superconduct, where 
Tg < Tc (Sergeenkov and Ausloos, 1993). 

C. ac Josephson Effect 

We have been discussing the dc effect, 
whereby a phase difference � = �2 −�1 

between either side of a superconductor junc­
tion causes a dc current to spontaneously 
flow at zero voltage. Now let us examine 
what happens when a dc voltage is applied 
across the junction. 

From Eq. (15.37) we know that a rate of 
change of phase accompanies the presence of 
a voltage across a Josephson junction. Since 
the applied voltage is a constant, this equa­
tion can be integrated directly to give 

2e 
��t� = �0 + Vt� (15.44) 

Figure 15.33 Temperature dependence of the maximum zero-
voltage current, showing fit of theoretical curves to the experimental 
tunneling data of Pb–I–Sn (�) and Sn–I–Sn (©) junctions. The nor­
malized tunneling current Ic�T�/Ic�0�, is plotted (Fiske, 1964). 
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463 VII JOSEPHSON EFFECT 

which provides a characteristic frequency �J 

known as the Josephson frequency 

2eV V 
�1 = = 

h �0 

= 483�6 ×1012V Hz� (15.45) 

where �0 is the quantum of flux (Tsai 
et al., 1983). A more practical expression to 
remember is 

�J = 483�6 MHz/�V� (15.46)
V 

With the aid of these expressions and 
Eq. (13.39), the critical current density can 
be written in the form 

J = Jc sin��Jt+�0�� (15.47) 

where �J = 2��J. 
It can be shown that the critical cur­

rent density Jc depends on the frequency in 
terms of the voltage and that it reaches a 
maximum when the applied voltage is equal 
to the gap voltage, V = 2�/e. This voltage 
dependence of Jc�V�, which was predicted 
by Reidel (1964) and confirmed experimen­
tally by Hamilton (1972), is sketched in 
Fig. 15.34. 

The ac Josephson effect that we have 
been describing occurs when current flows 
across a junction at the frequency given 

Figure 15.34 Dependence of the critical current 
on the Josephson frequency, showing the peak at the 
applied dc voltage V = 2�/e (Van Duzer and Turner, 
1981, p. 144). 

by Eq. (15.45) when a dc voltage V is 
applied across it. There is also an inverse 
ac Josephson effect, whereby a dc voltage is 
induced across the junction when an ac cur­
rent is caused to flow through it, or when an 
electromagnetic field is incident on it. This 
will be discussed in Section VII.E. 

D. Driven Junctions 

The Josephson relations (15.41) and 
(15.37) 

I = Ic sin � (15.48) 

d 

dt 
� = 2e 

� 
V� (15.49) 

apply to an idealized case in which all the 
current is carried by electron pairs. In the 
more general case there can be other types 
of current flowing, such as displacement cur­
rent, quasiparticle tunneling current, and per­
haps conduction current, if the barrier is not a 
perfect insulator. It will be instructive to ana­
lyze the junction in terms of the equivalent 
circuit shown in Fig. 15.35, which contains 
the current source I sin � of the junction, a c 

capacitor to represent the displacement cur­
rent, and a conductance to account for the 
quasiparticle tunneling and capacitor leak­
age currents. We assume that the dc current 
source I = I�V�, shown on the left, drives the 
junction circuit. 

The differential equation for the current 
flow I in the equivalent circuit is 

dV 
I = Ic sin �+GV +C � (15.50) 

dt 

where G is assumed to be constant, although 
in a more general analysis it can be taken as 
voltage dependent. Equation (15.49) can be 
used to eliminate the voltage and write the 
circuit equation in terms of the phase ��t�: 

�C d2� �G d� 
I = · + · + I sin �� 

2e dt2 2e dt c 

(15.51) 
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Figure 15.35 Josephson junction represented by the parallel circuit on the right 
consisting of a junction current source Ic sin �, a capacitor C, and a conductance 
G. The circuit is driven by the dc current source I shown on the left. 

With the aid of the Josephson angular fre­
quency �c = �2e/��Vc for the voltage Vc, 

Vc = Ic/G� (15.52) 

obtained from Eq. (15.45), and a new dimen­
sionless variable �, 

� = �ct� (15.53) 

the circuit equation assumes a simplified 
form, 

I d2� d� = �c + + sin �� (15.54)
Ic d�2 d� 

where �c is the admittance ratio, 

�c = �cC/G� (15.55) 

The solution to this second-order differen­
tial equation exhibit complex time variations 
of the current. We will not try to interpret 
these time dependences, and instead we will 
find the average value of the voltage, from 
Eq. (15.49) 

〈 〉 
V = �V 	 =  d� 

dt 

� 

2e 
� (15.56) 

for simple cases. We readily see from the 
form of Eq. (15.54) that when I ≤ Ic there is 
a solution corresponding to Eq. (15.48), 

I = Ic sin � I ≤ Ic� (15.57) 

with all of the time derivatives equal to zero. 
In other words, this is the zero-voltage solu­
tion. At the other extreme, when I � Ic, the 
term Ic sin � becomes negligible, and we can 
use Eq. (15.49) to obtain the constant-voltage 
solution 

I = GV I � Ic� (15.58) 

where dV/dt = 0. Hence, from Eq. (15.49) 
we have d2�/dt2 = 0 in this limit. The sit­
uation is more complex for driving currents 
that are near the critical current Ic. 

The case in which C ≈ 0, so that �c � 1, 
which corresponds to 

I d� = + sin � (15.59)
Ic d� 

can be solved analytically (see Problem 9), 
and has the solution 

V = 0 for I < Ic� 

(15.60a) 

V = Vc 

[ ( 
I 

Ic 

)2 

−1 

]1/2 

for I > Ic� 

(15.60b) 

V = I 
G 

for I � Ic� 

(15.60c) 
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Figure 15.36 Current–voltage characteristics, I , versus V , for the Josephson junction circuit of Fig. 13.35 with: 
(a) negligible capacitance, �c � 1, (b) appreciable capacitance, �c = 4, and (c) dominating capacitance, �c → �, 
where �c = �cC/G. 

This is plotted in Fig. 15.36a. Pairs of arrows 
pointing in opposite directions mean that 
there is no hysteresis. Figure 15.37 shows 
how the voltage oscillates with the aver­
age values from Eqs. (15.60b) and (15.60c), 
respectively, indicated by points A and B in 
Fig. 15.36a (for further details, see Orlando 
and Delin, 1991, pp. 458ff; Van Duzer and 
Turner, 1981, pp. 170ff). 

When �c � 1, the two solutions (15.57) 
and (15.58) apply with � = �/2 so that 
sin �= 1. The I-versus-V characteristic plot­
ted in Fig. 15.36c shows that there is a 
hysteresis in which V remains pinned at 
the value V = 0 as the current is initially 
increased from zero until the critical current 
is reached, at which point the voltage jumps 
to the value V = Ic/G and there after follows 
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Figure 15.37 Voltage oscillations across the Josephson junction of Fig. 15.35 for the negligible capacitance 
case �c � 1, and small and large dc bias voltages as marked at points A and B, respectively, of Fig. 15.36a (Barone 
and Paterno, 1982, p. 128). 

the diagonal line upwards. Subsequent reduc­
tion of the voltage follows the diagonal line 
into the origin. 

For immediate values of �c, the I-
versus-V characteristic follows the behavior 
illustrated in Fig. 15.36b for the case �c = 4. 
Again there is hysteresis, with the initial rise 
of the current to Ic and its return to the value 
Imin at V = 0. Figure 15.38 shows how Imin 

depends on the value of �c. 
The solutions that we have been dis­

cussing were average values (15.50) of the 
voltage V involving a time average �d�/dt	 
of the derivative of the phase. The voltage 
itself oscillates in time, and Fig. 15.37 shows 
two examples of these oscillations. 

E. Inverse ac Josephson Effect 

We have found that applying a dc volt­
age across a Josephson junction causes an ac 

Figure 15.38 Dependence on �c of the minimum 
current Imin (indicated in Fig. 15.36b) in the circuit of 
Fig. 15.35 when the current is decreased from values 
above Ic (Van Duzer and Turner, 1981, p. 173). 

current to flow. In the reverse ac Josephson 
experiment, dc voltages are induced across 
an unbiased junction by introducing an rf 
current into the junction. 



Elsevier AMS Job code: SUP CH15-P088761 22-6-2007 9:42a.m. Page:467 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

467 VII JOSEPHSON EFFECT 

Figure 15.39 Equivalent circuit of a Josephson junction represented by a junction 
current Ic sin � in parallel with a conductance G = 1/R irradiated with rf power. The 
junction is shown driven by a dc current source I0 in parallel with an rf current source 
Is cos �st. 

To explain this effect we assume that 
the Josephson junction can be represented by 
the parallel equivalent circuit of Fig. 15.39. 
The circuit consists of the usual Josephson 
current Ic sin � in parallel with a conduc­
tance G. In addition, it has as inputs a dc 
source current I0 and an rf source current 
Is cos �st, with the total source current I 
given by 

I�t� = I0 + Is cos �st� (15.61) 

When I�t� is inserted into Eq. (15.50), 
a nonlinear differential equation that is 
difficult to solve results. A numerical solu­
tion provides the staircase I versus V char- Figure 15.40 Current–voltage characteristics of a 
acteristic presented in Fig. 15.40. Measure- point-contact Josephson junction with applied rf power 

ments carried out by Taur et al. (1974) with at 35 GHz, for the ac current source of Fig. 15.39. The 

a 35-GHz source satisfying the condition solid curves calculated for 100 K thermal noise fit the 
experimental data well. The dashed line is from calcula­

�s = 0�16 �c compare well with the calcu- tions done without noise (Van Duzer and Turner, 1981, 
lated curves shown in the figure, where the p. 184). 
zero rf power curve �Is = 0� is shown for 
comparison. This staircase pattern, which is 
referred to as Shapiro steps (Eikmans and

van Himbergen, 1991; Shapiro, 1963; W. Yu It is mathematically easier to analyze


et al., 1992), has been reported by many this problem in terms of the circuit of


observers (e.g., Kriza et al., 1991; Kvale and Fig. 15.41 where the source is an applied


Hebboul, 1991; Larsen et al., 1991; H. C. voltage,


Lee et al., 1991; Rzchowski et al., 1991;

Sohn et al., 1991). V�t� = V0 +Vs cos �st� (15.62)
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468 15 ENERGY GAP AND TUNNELING 

Figure 15.41 Josephson junction of Fig. 15.39 driven by a dc voltage 
V0 in series with an rf voltage Vs cos �st. 

It is shown in Van Duzer and Turner (1981; 
see also Orlando and Delin, 1991) that the 
current I(t) through the Josephson junc­
tion can be written as an infinite series of 
products of Bessel functions Jn and sine 
waves, 

∑ 2eV
I�T� = Ic �−1�nJn

s 

n s 

× sin���J −n �s�t+�′�� (15.63) 

where �′ is a constant of integration. Since 
the I versus V characteristic is drawn for the 
average current, I ≈ �I�t�	, and since the sine 
term averages to zero unless �J = n �s, there 
are spikes appearing on this characteristic for 
voltages equal to 

n� �sV = � (15.64)
2e 

with the maximum amplitude, 

2eVsImax = JcJn � (15.65)
� �s 

occurring for the phase �′ = �/2. 
Figure 15.42 shows these spikes at inter­
vals proportional to the source frequency and 
indicates their maximum amplitude range. 

Figure 15.42 I–V characteristic for the dc compo­
nent of the current versus applied dc voltage V0 of the 
equivalent circuit of Fig. 15.41. The value of the cur­
rent can be anywhere along a particular current spike, 
depending on the initial phase. The dashed line is for 
�I�t�	 = V0 G. 

The current can be anywhere along a par­
ticular spike, depending on the initial phase 
(see Orlando and Delin, 1991). 

Estéve et al. (1987) reported that an 
LaSrCuO sample with the current–voltage 
characteristic shown in Fig. 15.43 exhib­
ited the I −V characteristic of Fig. 15.43b 
when irradiated with x-band (9.4 GHz) 
microwaves. The microwaves produced the 
spike-step pattern we have already described. 
The researchers attributed the results to the 



Elsevier AMS Job code: SUP CH15-P088761 22-6-2007 9:42a.m. Page:469 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color
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Figure 15.43 Oscilloscope presentation of current-versus-voltage characteristics of a tunnel junction at 4.2 K 
formed by an Al tip on a �La0�925Sr0�075 �2CuO4 sample (Estève et al., 1987). (a) Trace obtained in the absence of 
rf power, the letters a through f giving the sense of the trace and the dashed lines indicating switching between 
branches, (b) steps induced by incident microwave radiation at 9.4 GHz (Estève et al., 1987). 

beating of the oscillating Josephson super­
current with the microwaves. The separa­
tion in voltage between these steps is pro­
portional to the microwave frequency, and 
their amplitude is Bessel-like. The Josephson 
junction characteristics were observed even 
when the point-contact metal tip was itself 
superconducting, which indicates that the 
junction was inside the material underneath 
the tip. 

F. Analogues of Josephson Junctions 

Josephson tunneling involves a quan­
tum phenomenon that is difficult to grasp 
intuitively. This is especially true when we 
try to picture how the total current flow­
ing through a Josephson junction depends 
on the phase difference of the electron pairs 
on either side of the junction. The differ- Figure 15.44 Pendulum model of a Josephson junc­

ential equation for this phase difference � 
tion showing the counterclockwise restoring torque 
mgR sin � arising from the presence of a clockwise 

happens to be the same as the differen- applied torque �. 
tial equation for the rotational motion of 
a driven pendulum. We will describe this 
motion and then relate it to the Josephson applied by a motor, it will move the mass 
junction. through an angle �, as shown in Fig. 15.44. 

Consider a simple pendulum consisting We know from our study of mechanics that 
of a mass M attached to a pivot by a massless the force of gravity acting on the mass m 
rod of length R. If a constant torque � is produces a restoring torque mgR sin �. For a 
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Figure 15.45 Pendulum (a) with no applied torque, � = 0, (b) with the torque 
� = 2

1 mgR, and (c) with the critical torque applied, �c = mgR. 

relatively small applied torque the pendulum 
assumes an equilibrium position at the angle 
given by 

d� 
� = mgR sin � = 0 � (15.66)

dt 

as indicated in Fig. 15.45b. The greater the 
torque, the larger the angle �. There is a 
critical torque �c indicated in Fig. 15.45c for 
the angle � = �/2, 

�c = mgR� (15.67) 

If the applied torque exceeds this critical 
value, the pendulum will continue its motion 
beyond the angle �=�/2 and rotate contin­
uously as long as the applied torque � > �c 

operates. The motion is fast at the bottom 
and slow at the top, corresponding to a large 
angular velocity � = d�/dt at the bottom 
and a small � at the top. For a large torque, 
� � mgR, the average angular velocity of 
the motion ��	 increases linearly with the 
torque, reaching a limit determined by retard­
ing drag forces coming from, for example, 
the viscosity � of the air or mechanical fric­
tion. The drag force is assumed to be pro­
portional to the angular velocity �, and is 
written as ��. 

The dependence of the average angular 
velocity on the applied torque is shown in 

Figure 15.46 Relationship between the average 
angular velocity of the pendulum ��	 and the applied 
torque �. For low applied torques the pendulum oscil­
lates and the average velocity is zero, whereas at high 
torques, � > �c, motion is continuous with ��	 pro­
portional to �. Note the hysteresis for increasing and 
decreasing torques. 

Fig. 15.46. We see from the figure that � 
remains zero as the torque � is increased until 
the critical value �c = mgR of Eq. (15.67) 
is reached. Beyond this point � jumps to a 
finite value and continues to rise in the way 
we have already described. If the torque is 
now decreased down from a large magni­
tude, once it passes the critical value (15.67) 
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the pendulum will have sufficient kinetic 
energy to keep it rotating for torques below 
�c, as indicated in the figure. The torque 
must be reduced much further, down to the 
value �c

′ , before friction begins to domi­
nate and motion stops, as indicated in the 
figure. Thus we have hysteresis of motion 
for low applied torques, and no hysteresis for 
high torques. If we compare Fig. 15.46 with 
Fig. 15.36b, we see that the torque–angular 
velocity characteristic curve of the driven 
pendulum has the same shape as the current– 
voltage characteristic of the Josephson 
junction. 

The correspondence between the driven 
pendulum and a Josephson junction can be 
demonstrated by writing down a differential 
equation that governs the motion of the pen­
dulum, setting the applied torque � equal to 
the rate of change of the angular momen­
tum L, 

d
L = mR2 d�� (15.68)

dt dt 

and then adding the restoring and damping 
torques, 

d� 
� = mR2 d

2� +� +mgR sin �� 
dt2 dt 

(15.69) 

where mR2 is the moment of inertia; 
here we have made use of the expression 
� = d�/dt. This equation is mathemati­
cally equivalent to its Josephson counter­
part (15.51), so we can make the following 
identifications: 

Figure 15.47 Washboard analogue of the Josephson 
junction showing a particle of mass m descending along 
a sloped wavy path in a viscous fluid. 

This analogue has been found useful in the 
study of the behavior of Josephson junctions. 

Another mechanical device that illus­
trates Josephson junction-type behavior is the 
washboard analogue sketched in Fig. 15.47, 
in which a particle of mass m moves down 
a sloped sinusoidal path in a viscous fluid, 
passing through regularly spaced minima and 
maxima along the way. 

Electrical analogues have been proposed 
(Bak and Pedersen, 1973; Hamilton, 1972; 
Hu and Tinkham, 1989; cf. Goodrich and 
Srivastava, 1992; Goodrich et al., 1991) that 
do not give as much insight into Josephson 
junction behavior as the mechanical ana­
logues, however, though they are useful for 

applied current I ↔ � applied torque 

average voltage term V�2e/�� = d�/dt ↔ � = d�/dt average angular velocity 

phase difference � ↔ � angular displacement 

capacitance term �C/2e ↔ mR2 moment of inertia 

conductance term �G/2e ↔ � viscosity 

critical current Ic ↔ mgR critical torque 
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472 15 ENERGY GAP AND TUNNELING 

studying the behavior of Josephson junctions 
when the parameters are varied. 

VIII. MAGNETIC FIELD AND 
SIZE EFFECTS 

Until now we have assumed that no 
magnetic fields are applied, and that the 
currents circulating in the Josephson junc­
tions produce a negligible amount of mag­
netic flux. The next few sections examine the 
effect of applying a magnetic field parallel 
to the plane of a single Josephson junction 
as well as perpendicular to a loop containing 
two such junctions. To determine how the 
presence of the field affects the phase �, we  
make use of Eq. (6.33): 

∮ 2� ∮ 
�� ·dI = A ·dI� (15.70) 

�0 

This shows that �� and the vector poten­
tial A play similar roles in determining the 
phase. In writing out this expression we 
have assumed that the line integration is per­
formed over regions of the superconductor 
where the current density is either zero or 
makes no contribution to the integral, so 
that the term J · dI of Eq. (6.33) is omitted. 

This expression will be applied to several 
cases. 

We begin with a discussion of a short 
Josephson junction in which the magnetic 
fields produced by the currents are negli­
gible compared with the externally applied 
field, and then will treat long junctions where 
this is not the case. We first examine two-
junction loops and arrays of many junc­
tions, followed by ultra-small junctions in 
which single-electron tunneling is observ­
able. We will conclude with a brief section 
on superconducting quantum interference 
devices (SQUIDS). 

A. Short Josephson Junction 

Consider a weak-link tunnel junction 
of the type sketched in Fig. 15.11 with a 
magnetic field B0k̂ applied along the ver­
tical z direction, as shown in Fig. 15.48. 
The junction is of thickness d normal to the 
y-axis with cross-sectional dimensions a and 
c along x and z, respectively. It is small 
enough so that the applied magnetic field is 
larger than the field produced by the cur­
rents. One superconductor SC1 is to the right 
of the insulating barrier and the other SC2 to 
the left, as indicated in the figure. 

Because of symmetry, the magnetic field 
B �y� has no x or z dependence, but does z

Figure 15.48 Application of a magnetic field B0 �y� transverse to the 
Josephson junction of Fig. 15.11 with a transport current of density JTr flowing 
to the left. The vector potential Ax�y� of the applied field is indicated. 
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vary with distance along y into the supercon­
ductors, 

B = Bz�y�k̂� (15.71) 

This applied field is derived from the vector 
potential B = � ×A, 

A = Ax�y�î� (15.72) 

which has the value (cf. Eq. (6.41)), 

A = −yB0 ̂i �y� ≤  1 
d� (15.73)

2 

in the barrier layer where the material is nor­
mal and B = B0, as sketched in Fig. 15.49. z 

We assume that the magnetic field decays 
exponentially into the superconductors on 
either side of the barrier, as indicated in 
Fig. 15.49b. If we proceed far enough inside 
where Bz drops to zero A will become con­
stant, as seen from the expression B = � ×A. 

Figure 15.49 Variation of (a) vector potential Ax�y� 

and (b) magnetic field Bz�y� in the neighborhood of the 
junction of Fig. 15.48. 

We assign it the value A1� far inside SC1 and 
the value −A2� far inside SC2, as indicated 
in Fig. 15.49a. 

We start by calculating the value for the 
phase �1�x� at an arbitrary point x along the 
interface between the barrier and the super­
conductor SC1, as shown in Fig. 15.50. This 
phase will be found relative to the phase 
�10 of �1�x� at a reference point x0 on the 
interface, as indicated. The phase difference 
�1�x�−�10 may be determined by integrat­
ing �� ·dl along the path A → B → C → D 
in Fig. 15.50, but it is easier to make use of 
Eq. (15.70) and carry out the equivalent inte­
gration of A ·dl along this same path. Since 
A is a vector in the x direction, it is per­
pendicular to the vertical paths A → B and 
C → D, so that the line integral vanishes for 
these two segments of the path. We already 
mentioned that the vector potential has the 
constant value A1� along the path B → C, 
so that integration gives 

�1�x� = �10 + �2�/�0�A1��x−x0�� 
(15.74) 

An analogous expression can be obtained for 
the other superconductor SC2 using the path 
A′ → B′ → C′ → D′. Hence we can write for 
the phase difference ��x� 

��x� = �2�x�−�1�x� (15.75) 

2� = �0 + �A1� +A2��x� (15.76)
�0 

where �0 = �2�x0�−�1�x0� = �20 −�10 at 
the reference point x0. The quantity �A1� + 
A2�� is evaluated by integrating along a sim­
ilar closed path that has been enlarged to 
enclose the entire barrier and extend deep 
into both superconductors. The resulting line 
integral equals the total flux through the 
barrier, 

� = A ·ds� (15.77) 

Again, the integrand vanishes for the two 
vertical paths along which the vectors A and 
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Figure 15.50 Path of integration around the junction of Fig. 15.48 
for determining the phase difference ��x� = �2�x�– �1�x� across the 
junction at a position x relative to the phase difference �0 = �20 – �10 at 
the position x0 on the left. 

ds are antiparallel. The contributions from 
the top and bottom paths far inside the two 
superconductors add to give for the total 
enclosed flux 

� = a�A1� +A2��� (15.78) 

This total flux is approximately equal to the 
applied magnetic field strength B0 times the 
effective area of the junction, 

� = a�d+2��B0� (15.79) 

The quantity d+2� constitutes the effective 
thickness of the junction, 

deff = d+2�� (15.80) 

Inserting Eq. (15.78) in (15.76) gives 

2�� x 
��x� = �0 + · � (15.81)

�0 a 

If this is substituted in Eq. (15.39) and inte­
grated over the area A = ac of the junction 
(see Problem 12), 

I = Jc sin���x��dx dz� (15.82) 
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we obtain 

sin���/�0I = Ic sin �0 � (15.83)
��/�0 

where Ic = AJc is the critical current. This 
has a maximum for the phase difference �0 = 
�/2, 

sin���/�0Imax = Ic � (15.84)
��/�0 

We call this the Josephson junction diffrac­
tion equation. 

The plot of Eq. (15.84) sketched in 
Fig. 15.51, which has been seen for many 
samples (e.g., Rosenthal et al., 1991; Seidel 
et al., 1991), illustrates how the tunneling 
current varies with increasing magnetic flux 
� through the junction. Figure 15.52 presents 
four special cases. When there is no flux, 
� = 0, the current in the junction is uniform, 
as shown in Fig. 15.52a, and has the criti­
cal value Ic. When half a flux quantum is 
present, �= 1

2 �0, as in Fig. 15.52b, the aver­
age value of the current is the average of a 
sine wave over a half-cycle, namely �2/��Ic. 
For the next maximum, � = 3�0/2, two of 
the half-cycles cancel to give the current 
I = �2/3��Ic, which is one-third of the half-
cycle case. By induction, the nth maximum 

of the current Ic/���n+ 1
2 �� occurs at the flux 

value � = �n+ 12 ��0. We also deduce from 
Fig. 15.52c that the current cancels for even 
cycles, where � = n�0. 

For the case of Fig. 15.52c, in which the 
total phase change across the length of the 
junction is 2�, one flux quantum fits in it. 
We see from the directions of the arrows on 
the figure that the super current flows down 
across the junction on the left and up on the 
right. To complete the circuit it flows hori­
zontally within a penetration depth � inside 
the superconductor to form closed loops, as 
illustrated in Fig. 15.53a. These current loops 
encircle flux, and the resulting configura­
tion is known as a Josephson vortex (Miller 
et al., 1985). There is no core because none 
is needed; the super current density is already 
zero in the center. 

When the phase change across the junc­
tion is 2�n, where n is an integer, there will 
be n Josephson vortices side by side in the 
junction, each containing one flux quantum 
and each having a horizontal length 1/n times 
the length for the single-flux quantum case. 
Figure 15.53b sketches two fluxons in the gap 
for n = 2, with total phase change of 4�. 

Equation (15.83) is mathematically 
equivalent to the well-known expression for 
single-slit Fraunhofer diffraction in optics. 

Figure 15.51 Josephson Fraunhofer diffraction pattern showing the maxi­
mum normalized zero-voltage current Imax /Ic versus �/�0 through the parallel 
junction of Fig. 15.48 when the current density is uniform across the x� z-plane 
of the junction. The values of Imax/Ic at the peaks of the curve, from the cen­
ter outwards, are 1�2/3��2/5��2/7�� � � �  (from Van Duzer and Turner, 1981, 
p. 155). 
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Figure 15.52 Effect of an applied magnetic field on the tunneling-current oscillations across a uniform Josephson 
junction, where the field �0 H0 corresponds to one flux quantum �0 in the junction (Langenberg et al., 1966). 

Peterson and Ekin (1989, 1990; cf. Barone 
and Paterno, 1982) suggest that an Airy 
diffraction pattern, in which the quantity 
sin���/�0� in Eq. (15.83) is replaced 
by twice a first-order Bessel function, 
2J1���/�0� more properly characterizes 
superconductors with grain-boundary barri­
ers in bulk materials. They also give a figure 
in which the Airy and Fraunhofer diffraction 
patterns are compared. 

B. Long Josephson Junction 

We will now examine what are called 
long Josephson junctions, leaving discussion 
of the criterion for longness until the next 
section, VIII.C. We begin by taking the 
derivative of Eq. (15.81), 

2�B = d� (15.86)
�0 

Although we will not prove it, this expres­
sion is more general than (15.81), which may 
be obtained from it by assuming that � arises 
from a constant magnetic field and then inte­
grating. If we make use of the Maxwell rela­
tion � ×B =�0J, which for the present case 
is given explicitly by 

dB �x�z = �0Jy�x�� (15.87)
dx 

we obtain 

d2� 2��0Jy�x�d = � (15.88)
dx2 �0 

d� 2�� Using Eq. (15.39) this becomes the pen­
dx 

= 
�0a 

(15.85) dulum equation (which might also be 
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Figure 15.53 Current distribution around Josephson vortices in the junction of 
Fig. 15.52 for (a) single-vortex case of Fig. 15.52c when the magnetic flux in the junction 
is �0, and (b) the double-vortex case when the magnetic flux is 2�0. 

called the stationary sine Gordon equation) If the time dependence is taken into 
(Fehrenbacher et al., 1992). account, it can be shown that the sine Gordon 

equation is obtained (Orlando and Delin, 

d2� sin ��x� 1991, p. 437), 

dx2 
= 

�2
J 

� (15.89) 
d2� 1 d2� sin ��x� − · = � (15.90) 

where �J = ��0/2��0Jcd�
1/2 called the 

dx2 up 
2 dt2 �J

2 

Josephson penetration depth, is the natural where up, given by 
length scale for the junction. A long junc­
tion is one whose length a is greater than �J, 1 d 

while for a short junction a � �J. 
up = 

��0 ∈�1/2 
· 
d+a�

� (15.91) 
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is the velocity of a transverse electromag­
netic (TEM) mode wave in the junction 
region. This equation has two types of soli­
tary wave (soliton) solutions. The first, called 
kinks or topological solitons, are able to 
propagate and have the property that ��x� 
increases monotonically from 0 to 2� as 
x increases from −� to �. There are 
also propagating antikink solutions for which 
��x� decreases monotonically from 2� to 0 
as x increases from −� to �. Kinks repre­
sent magnetic flux quanta �0 in supercon­
ductivity (Holst et al., 1990; Kivshar and 
Soboleva, 1990), and domain walls in the 
theory of two-dimensional magnetism. The 
second type of solution, called a breather, is  
a nontopological variety of soliton which is 
stationary, i.e., does not travel (Dodd et al., 
1982; Drazin and Johnson, 1989; Kivshar 
et al., 1991). 

Sometimes, perturbation terms for dissi­
pation and energy (current) input are added 
to the sine Gordon equation (Grnbech-Jensen 
et al., 1991; Holst et al., 1990; Malomed, 
1989, 1990; Malomed and Nepomnyashchy, 
1992; Olsen and Samuelsen, 1991; Pagano 
et al., 1991; Petras and Nordman, 1989; 
Ustinov et al., 1992). Phase locking can 
also occur, in which the fluxon motion 
in the long junction follows the frequency 
of the external field, or two such junc­
tions can be phase locked to each other 
(Fernandez et al., 1990; Grnbech-Jensen, 
1992; Grnbech-Jensen et al., 1990; Pedersen 
and Davidson, 1990). Frequency locking to 
the external field produces an ordered state 
and can lead to the appearance of Shapiro 
steps. The absence of phase locking can pro­
duce a disordered state and a condition of 
chaos (Chi and Vanneste, 1990). 

C. Josephson Penetration Depth 

Equation (15.89) was obtained from 
Eq. (15.88) by defining the Josephson pene­
tration depth �J, 

�J = ��0/2��0Jcdeff �
1/2� (15.92) 

15 ENERGY GAP AND TUNNELING 

which is the length criterion that distin­
guishes short from long junctions. To obtain 
a physical significance for this characteristic 
length, let us compare the energies associated 
with the stored fields and with the current 
flow through the junction which is sketched 
in Fig. 15.48. For a constant magnetic field, 
the stored magnetic energy UB is 

∫ B2 

UB = dxdy dz (15.93)
2�0 

= �B0
2/2�0�acdeff 

�0
2 c = · � (15.94)

2�0 adeff 

where we have assumed one Josephson vor­
tex present in the junction, as in Figs. 15.52c 
and 15.53a, with B0 = �0/ad. The energy 
UJ associated with the current flow is 

UJ = JV dxdy dt� (15.95) 

and, using Eqs. (15.39) and (15.49), this 
becomes 

UJ ≈ �0Jcac sin � d�� (15.96)
2� 

If we equate the magnetic and current ener­
gies, UB = UJ, we obtain 

[ ∫ ]1/2 

a = �J 2�2/ sin �d� � (15.97) 

where the factor in the square brackets is 
close to but larger than unity. Thus the two 
energies become comparable when the junc­
tion length a approaches the Josephson pen­
etration depth �J. 

A short junction is one for which a � 
�J� UJ � UB, the magnetic fields arising 
from the current flow are much less than 
the applied field, and the field B is effec­
tively constant over the junction region. A 
long junction is one for which a > �J� UJ > 
UB, etc. 
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D. Two-Junction Loop 

In Section A we derived the diffrac­
tion equation (15.84) for a short Josephson 
junction in the presence of an applied mag­
netic field. In a typical case applied fields 
in the millitesla range (see Problem 13) are 
used to see the current pattern. We will now 
consider the case of a superconducting loop 
containing two weak links (short junctions) 
in parallel, as shown in Fig. 15.54. For this 
arrangement flux quantization occurs in the 
area of the loop, which we are assuming to 
be considerably larger than the area of either 
junction, so that the system is sensitive to 
much smaller changes in applied flux. 

In analyzing the two-junction loop we 
are assuming that the individual junction 
areas are small enough so as to be negligible. 
Integration of Eq. (15.70) around the dashed 
path shown in Fig. 15.54 gives 

2�� 
���2 −��1�− ���2 −��1� = � 

�0 

(15.98) 

where again we are neglecting current flow 
effects on the phases. Using the phase differ­
ence notation of Eq. (15.75), this becomes 

�� = �� +2� �/�0� (15.99) 

The total current I flowing through this par­
allel arrangement of weak links is the sum 
of the individual currents I� and I� in the 
two arms, 

I = I� + I� (15.100) 

and each current satisfies its own individual 
Josephson equation (15.40), to give 

sin �� sin −2� 

I = Ic� sin �� + Ic� sin �� (15.101) 
[ ( )] 

� = Ic� + Ic� �� �0 

(15.102) 

where we have used Eq. (15.99). For equal 
individual currents, 

Ic� = Ic� = Ic� (15.103) 

the total current I is maximized by the choice 
of phase 

1 
�� = �+��/�0� (15.104a) 

2 
1 

�� = �−��/�0� (15.104b)
2 

to give for the magnitude of the maximum 
current 

Imax = 2Ic� cos���/�0��� (15.105) 

Figure 15.54 Superconducting loop containing two weak links � and � of thickness d showing the phases 
�ij at the junctions and the direction of current flow I . The dashed line indicates the path of integration around 
the loop. 
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Figure 15.55 Dependence of the current maximum Imax of Eq. 15.105 of a 
balanced Josephson junction loop �Ic� = Ic�� on the applied flux � normalized 
relative to the quantum of flux �0. 

an expression that we call the Josephson loop 
interference equation. It has its optical ana­
logue in Young’s experiment for detecting 
the interference of light from two identical 
slits. The phase �� is an unknown func­
tion of the flux in the ring, and adjusts 
itself to maximize the current. The depen­
dence of Imax on the applied flux � given 
by Eq. (15.105) for this equal-current case is 
plotted in Fig. 15.55. 

When the two currents are not the same 
(Saito and Oshiyama, 1991), it is more com­
plicated to calculate the phase which max­
imizes the total current (15.101) subject to 
the condition (15.99). Van Duzer and Turner 
(1981) give 

[ ( )]1/2 

Imax = �Ic� − Ic��
2 +4Ic�Ic� cos2 �� 

�0 

(15.106) 

This has the minimum and maximum values 

1 
minimum = Ic� − Ic� � = �n+ ��0� 2 

(15.107a) 

maximum = Ic� + Ic� � = n�0� 
(15.107b) 

where we have assumed that Ic� > Ic�. The 
dependence of Imax on the applied flux given 
by Eq. (15.106) for the case Ic� = 2Ic� 

is plotted in Fig. 15.56 to the same scale 
as in Fig. 15.55 with the ordinate scale 
labeled with the limits of Eq. (15.107). Equa­
tion (15.106) reduces to Eq. (15.105) for the 
equal-current case Ic� = Ic�. 

Equation (15.106) corresponds to the 
analogue of light interference from two non­
identical slits, but this is rarely studied in 
optics because it is so easy to make matching 
slits. Identical Josephson junctions are not so 
easy to fabricate, so the case of Eq. (15.106) 
is of interest in superconductivity. 

E. Self-Induced Flux 

In the previous two sections we tacitly 
assumed that the flux � in the circuits is 
the applied flux, which meant neglecting the 
contribution of the currents. We noted in 
Chapter 2, Section X that the current Icirc cir­
culating in a loop can contribute the amount 
IcircL to the flux, where L is the inductance 
of the loop. The currents I� and I� in the two 
arms of the loop flow in the same direction, 
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481 VIII MAGNETIC FIELD AND SIZE EFFECTS 

Figure 15.56 Dependence of the current maximum Imax of an unbalanced 
Josephson junction loop �Ic� � Ic�= � on the applied flux � normalized relative 
to the quantum of flux �0. The plot is made for the case of setting Ic� = 2Ic� 

in Eq. (15.106). 

Figure 15.57 Circulating current Icirc = 1
2 �I� − I�� in an unbalanced Josephson junc­

tion loop, I� � I�, in the presence of an applied current I I� + I�.= = 

as indicated in Figs. 15.54 and 15.57, produc- when the two currents are not equal, we can 
ing magnetic fields (cf. Fig. 2.35) pointed in decompose them into a symmetrical com­
opposite directions through the loop; for I� = ponent 1

2 �I� + I��, which flows in the same 
I� these fields cancel each other. However, direction in each arm of the loop and does 
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not contribute to the flux, and an antisym­
metrical circulating component, 

1 
Icirc = �I� − I��� (15.108)

2 

as indicated in Fig. 15.57, which contributes 
to the flux. The total flux � is then the sum 
of the applied flux �app and the self-induced 
flux arising from the circulating current, 

1 
� = �app + L�I� − I��� (15.109)

2 

This self-induced flux should be taken into 
account for a proper treatment of Josephson 
junctions. 

F. Junction Loop of Finite Size 

As a final example of tunneling we 
examine a loop in which the two identical 
junctions are large enough in area so as to 
contribute to the observed oscillatory current 
pattern. For this case we can combine the 
diffraction equation (15.84) for the junction 
and the interference equation (15.105) for 
the loop, 

∣ sin���J/�0� ∣ I = 2Ic cos���L/�0� · � ∣ ��J/�0 

(15.110) 

where �J = BappAJ and �L = BappAL are the 
amounts of flux in the junctions of area AJ 

and in the loop of area AL, respectively, for 
a particular applied field Bapp. We can define 
the critical applied fields BJ and BL for which 
one flux quantum �0 is present in the junc­
tion and in the loop in terms of their respec­
tive areas: 

BJ = �0/AJ� (15.111a) 

BL = �0/AL� (15.111b) 

These expressions permit us to write 
Eq. (15.110) in terms of the applied field, 

∣ sin��B /BJ� ∣ 
I = 2Ic ∣ cos��Bapp/BL� 

app

∣ � �Bapp/BJ 

(15.112) 

15 ENERGY GAP AND TUNNELING 

We call this the Josephson loop diffrac­
tion equation. Since AL � AJ, we have 
BL � BJ, and the expected current pattern 
is sketched in Fig. 15.58 for the case BJ = 
3BL. We see from the figure that the slower 
individual junction variations constitute an 
envelope for the more rapid loop oscilla­
tions. Figure 15.59a shows some experi­
mental results for a small loop in which 
the self-induced flux is negligible, so that 
a pattern similar to the pattern in the cen­
ter of Fig. 15.58, but with more oscillations, 
is obtained. Figure 15.59b shows a large 
loop result in which the self-induced flux 
is appreciable, so that the minima in the 
oscillations do not reach zero, as in the pat­
tern of Fig. 15.56. Because this second loop 
is larger, it has more rapid oscillations, as 
shown. On each side of Fig. 15.59b we can 
see traces of the next set of oscillations aris­
ing from the second cycles of Eq. (15.112) 
for the field range BJ <Bapp < 2BJ, and these 
are also shown in the pattern of Fig. 15.58. 

Equation (15.112) corresponds to the 
optics analogue of Fraunhofer diffraction 
from two identical wide slits. 

G. Ultrasmall Josephson Junction 

When a Josephson junction becomes 
much smaller than a typical weak link or 
short junction, new phenomena can appear. 
As an example, consider an ultra-small junc­
tion or nanobridge with area A of 0�01 �m2, 
thickness d of 0.1 nm, and capacitance esti­
mated from the expression C = �0A/d of 
about 10−15 F (Kuzmin and Haviland, 1991; 
Kuzmin et al., 1991). The change in voltage 
�V brought about by the tunneling of one 
electron across the junction barrier is given 
by �V = e/C = 0�16 mV, which is an appre­
ciable fraction of a typical junction voltage. 
This can be enough to impede the tunneling 
of the next electron. Blocking of cur­
rent flow has been termed Coulomb block­
ade (Furusaki and Veda, 1992; Tagliacozzo 
et al., 1989). Note that it is only in recent 
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Figure 15.58 Josephson loop diffraction pattern showing the dependence of the 
super current I flowing through a two-element junction loop of finite size on the 
magnetic field Bapp, producing the flux � passing through the plane of the loop. 
The figure is drawn for the case of setting BJ = 3BL in Eq. (15.112). 

Figure 15.59 Experimentally measured dependence of the 
Josephson current in a two-element loop on the applied mag­
netic field. (a) is for the case BL ≈ 4 mT and BJ ≈ 50 mT 
with negligible self-induced flux �I� ≈ I��, so that the oscil­
lations all return to the baseline, as in Fig. 13.58. (b) is for 
BL ≈ 1�5 mT and BJ ≈ 35 mT, so that the self-induced flux is 
appreciable �I� ≈/ I�� and the rapid oscillations do not return 
to the baseline (Jaklevic et al., 1965). 

decades that techniques such as electron- charge q transferred across a junction. The 
beam lithography have developed to the Hamiltonian, considered as a function of the 
point where nanobridges with capacitances two conjugate variables q and the phase �, 
in the range 10−15−10−16 F can be fabricated may be written as the sum of a capacitor 
(Ralls et al., 1989). charging energy, a current bias term, and a 

Single-electron tunneling manifests Josephson coupling energy. 
itself by the appearance of fluctuations, 
called a Coulomb staircase, on an I versus 
V or dI/dt versus V characteristic, as illus- H�q��� =q 2/2C− ��/2e�I� 
trated in Fig. 15.60 (McGreer et al., 1989). 

The Coulomb blockade is a quantum − ���/4e 2���/Rn� cos �� 

effect that represents the quantization of (15.113) 
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484 15 ENERGY GAP AND TUNNELING 

Figure 15.60 Coulomb staircase structure on plots of I ver­
sus V and dI/dT versus V of tunneling between a granular lead 
film and the tip of a scanning tunneling microscope (McGreer 
et al., 1989). 

where I is the bias current, � is the energy 
gap, C is the junction capacitance, and 
Rn is the normal resistance (Iansiti et al., 
1989; Shimshoni and Ben-Jacobs, 1991). For 
conventional junctions the coupling energy, 
�h/8e2���/Rn� cos �, is dominant and for 
ultrasmall junctions the charging energy 
q2/2C predominates. 

There is an uncertainty relationship 
between the two conjugate variables 

� � �q  ≥ e 
(Graham et al., 1991; Kuzmin et al., 1991). 
In observing the Coulomb blockade, q = e 
and the phase (or voltage) fluctuations are 
large. In the usual dc Josephson effect, which 
we described in Section VII.B, the phase is 
well defined and the fluctuations occur in the 
charge. 

In an ultra-small Josephson junction 
biased by a dc current, correlated tunneling 
of Cooper pairs can lead to what are called 
Bloch oscillations at the frequency 

�B = I/2e� (15.114) 

One-dimensional N -junction arrays have 
been used to observe single electron tun­

neling (Delsing et al., 1989; Kuzmin et al., 
1989). A current of 0�01 �A = 10−8C/s 
corresponds to a frequency ≈3 × 1010 Hz, 
which is in the microwave region. Singu­
larities of the observed microwave resis­
tance at the current values corresponding 
to Eq. (15.114) have provided evidence for 
the presence of Bloch oscillations (Furusaki 
and Veda, 1992; Geerligs et al., 1989; Hu 
and O’Connell, 1993; Kuzmin and Haviland, 
1991; Shimshoni et al., 1989). Another type 
of quantum oscillation is resonant tunneling 
in the tilted cosine potential illustrated in 
Fig. 15.61. The figure shows a microwave 
photon emission accompanying resonant tun­
neling between levels aligned in adjacent 
wells (Hata-kenaka et al., 1990; Schmidt 
et al., 1991). 

In an ultra-small junction the effect of a 
bias current is taken into account by the term 
−�I�/2e in the Hamiltonian (15.113). When 
the bias current energy �Ic/2e becomes com­
parable with the charging energy e2/2C, we  
have IcC ≈ 3�9 × 10−23 AF, where Ic is the 
ideal critical current (Kautz and Martinis, 
1990). This relation is satisfied by represen­
tative current and capacitance values of some 
ultra-small junctions. 
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485 VIII MAGNETIC FIELD AND SIZE EFFECTS 

Figure 15.61 Macroscopic resonant tunneling of 
phase in tilted cosine potential showing the phases 
�i at the turning points and the microwave photon 
emission � � accompanying the tunneling (Hata-kenaka 
et al., 1990). 

H. Arrays and Models for 
Granular Superconductors 

The discussion until now has concerned 
single Josephson junctions, although we have 
also examined a pair of junctions. There is 
an extensive literature on chains, arrays, and 
layers of Josephson junctions that are cou­
pled together in various ways, and sometimes 
coupled to an applied current, magnetic field, 
or radiation (e.g., Eckern and Sonin, 1993; 
van der Zant et al., 1993). High-temperature 
superconductors can be modeled by arrays of 
superconducting grains coupled together by 

Josephson junctions at their interfaces (Babic 
et al., 1991; Cai and Welch, 1992; Deutscher 
and Chaudhari, 1991; Fishman, 1988, 1989; 
Majhofer et al., 1990; Saslow, 1989; Sugano 
et al., 1992). The junctions in the arrays 
are often phase locked to each other (cf. 
Section VIII.B). 

I. Superconducting Quantum 
Interference Device 

Flux changes in a loop with two weak 
lines were shown to produce oscillatory 
variations in the supercurrent through the 
loop. A Superconducting Quantum Interfer­
ence Device (SQUID), is a practical cir­
cuit that measures these current variations 
to quantitatively determine the strength of 
the applied field. It is more acurate to call 
such a device a dc SQUID since it mea­
sures a slowly changing applied field. A dc 
SQUID can detect much smaller changes in 
field than is possible by non-superconducting 
technology. 

One example of a dc SQUID is 
described in Chapter 5, Section VIII (see 
Fig. 5.12), and another version is sketched 
in Fig. 15.62. In the latter arrangement the 

Figure 15.62 Diagram of a Superconducting Quantum Interference 
Device consisting of two weak links, on the left, showing the voltage VSQUID 

across them coupled via the transformer to produce the output voltage Vout . 
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486	 15 ENERGY GAP AND TUNNELING 

Figure 15.63 An rf SQUID consisting of one weak link coupled to 
an LC-tuned circuit driven by an rf current source. The rf output voltage 
is a measure of the change in loading of the tuned circuit produced by a 
change in flux through the loop. 

current change through the weak links is 
detected as a voltage change across the pair 
of weak links and then amplified by a step-up 
transformer followed by further amplifica­
tion and measurement. 

Another type of SQUID, called an rf 
SQUID, is shown in Fig. 15.63. It consists 
of a loop with one weak link W coupled 
to an LC-tuned circuit driven by an rf cur­
rent source. A change in flux in the loop 
produces a change in the loading of the 
tuned circuit, and this is detected by mea­
suring the change in rf voltage across the 
circuit. 

More information on SQUIDs may be 
obtained from the texts by Van Duzer 
and Turner (1981) and by Orlando and 
Delin (1991). SQUIDs have been fabri­
cated from high-temperature superconduc­
tors (Gross et al., 1990b; Siegel et al., 1991; 
Vasiliev, 1991). Miller et al., (1991) dis­
cussed a Superconducting Quantum Inter­
ference Grating (SQUIG), an interferometer 
consisting of several Josephson junctions in 
parallel. 

Since a SQUID easily detects a change 
in one quantum of flux in an area with 
dimensions in the centimeter range, it is 
said to measure a macroscopic quantum 
phenomenon. Orlando and Delin (1991) 
build on Fritz London’s observation that 
superconductivity is inherently a quan­

tum mechanical phenomenon with macro­
scopic manifestations in their utilization of 
a macroscopic quantum model to describe 
superconductivity. 

PROBLEMS 

1. Describe N–I–N tunneling in the	 man­
ner that N–I–S and S–I–S are described 
in Sections V.E and V.F, respectively. 
Calculate D1 and D2. 

2. Derive and justify Eqs. (15.15) 
and (15.16). 

3. Show how to derive the expres­
sions (15.18) and (15.19) for the integrand 
of Eq. (15.17). 

4. Show how to obtain the N–I–S expres­
sion (15.20) for Ins from the general tun­
neling current equation (15.17). 

5. Show that in S–I–S tunneling the ratio 
of the jump in current �Is to the normal 
tunneling current In at the bias V = 2�/e 
is given by 

�Is/In = �/4� 

which is about an 80% jump. 
6. Show how Eq. (15.25) for	 �Is reduces 

to the simple expression (15.23) in the 
limit T → 0. 
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487 PROBLEMS 

7. Plot	 ��T� versus T using the data of 
Fig. 15.26, and compare the plot with 
Fig. 15.27. How well are the data fit by 
Eq. (2.65)? 

8. Derive Eq. (15.96) from Eq. (15.95). 
9. Show how to solve Eq. (15.59): 

I d� = + sin �� 
L d� 

10. Explain how the washboard analogue 
sketched in Fig. 15.47 mimics the behav­
ior of a Josephson junction. 

11. Justify and derive Eq. (15.70). What is 
the physical significance of each term? 

12. Carry	 out the integration (15.82) to 
obtain 

sin���/�0� I = Ic sin �0 � (15.83)
��/�0 

13. Consider a barrier junction that is 35 �m 
long and has a 45-nm oxide layer. What 
applied magnetic field will put one flux 
quantum in the junction if the super­
conductors are Nb on one side of the 
oxide layer and Sn on the other? At what 
value of the applied field will the first 
maximum following the principal cen­
ter maximum appear in the “diffraction 
pattern”? 
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16 
Transport Properties


I. INTRODUCTION 

In the previous chapter we discussed 
electron and Cooper pair tunneling, phe­
nomena that constitute important mecha­
nisms of charge transport in superconductors. 
There are other processes, occurring both 
above and below Tc, which provide addi­
tional information on transport in supercon­
ductors, and we will proceed to discuss a 
number of them. Most of these processes are 
summarized in Table 16.1. 

The chapter begins with a model for ac 
current flow in superconductors. This is fol­
lowed by a discussion of the influence of 
electric and magnetic fields, as well as heat 
and light, on electrical conductivity. Discus­
sion of the spectroscopic aspects of the inter­

action with light will be postponed to the 
next chapter. 

II. INDUCTIVE 
SUPERCONDUCTING CIRCUITS 

In earlier chapters, when we remarked 
that the phenomenon of superconductivity is 
characterized by a zero-resistance flow of 
electrical current, we were referring to dc 
current. There is no heat dissipation when 
current flows without resistance. We also 
pointed out, in Chapter 12 Section V.C, that 
unpinned vortices set into motion by a trans­
port current experience a viscous drag force, 
and that both ac and dc currents can produce 
this flux flow dissipation. We will now dis­
cuss another process that leads to heat loss. 

489 
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490 16 TRANSPORT PROPERTIES 

Table 16.1 Thermoelectric and Thermomagnetic Effectsa 

Temp. 
Electric field Electric gradient Heat current Magnetic 

Effect (E or �V � current (I) ��T � (dQ/dt) field Bapp Figure 

Resistivity Meas. y Appl. y 0 — 0 2�9 
Magnetores. 

longitud. Meas. y Appl. y 0 — Appl. y 16�16 
Magnetores. 

transv. Meas. y Appl. y 0 — Appl. z 16�16 
Thermal cond. — 0 Meas. y Appl. y 0 — 
Hall Meas. x Appl. y 0 — Appl. z 1�16 
Righi-Leduc — 0 Meas. x Appl. y Appl. z 16�47 
Seebeck Meas. y 0 Appl. y — 0  16�34 
Magneto-

Seebeck Meas. y 0 Appl. y — Appl. x, y, or  z 16�39 
Nernst Meas. x 0 Appl. y — Appl. z 16�40 
Peltier — Appl. y 0 Meas. y —  16�44 
Ettinghausen — Appl. y Meas. x — Appl. z 16�45 

a When the applied quantity is in the y direction, an effect measured longitudinally is also in the y direction, an 
effect measured transversely is in the x direction, and in most cases an applied magnetic field is in the z direction. 

A. Parallel Inductances 

In Chapter 2, Section X, we examined 
a perfect conductor in terms of a simple 
circuit resistance in parallel with an induc­
tance. Here we wish to consider two possible 
zero-resistance paths, or channels, through a 
superconducting grain that can be taken by 
a super current. Figure 16.1a shows a sketch 
of the circuit. (It is assumed that the cur­
rent loops have self and mutual inductance, 
as in Fig. 16.1b.) The following equations 
for the two current paths can be deduced 
from simple circuit analysis by observing 
that the voltage drop between points A and 
B of Fig. 16.1b must be the same for the 
two paths, 

dI1 dI2 dI2 dI1L1 +M = L2 +M � (16.1)
dt dt dt dt 

These can be integrated to give for steady-
state current flow 

�L1 −M�I1 = �L2 −M�I2� (16.2) 

In practice, the mutual inductances are neg­
ligible, and we have 

L1I1 = L2I2� (16.3) 

so that the total current I , 

I = I1 + I2� (16.4) 

splits between the two paths in the inverse 
ratio of their inductances I1/I2 = L2/L1. 

B. Inductors 

To gain some perspective on the mag­
nitudes of the inductances that are involved 
in superconducting loops around, for exam­
ple, the grains of superconductors, it will 
be helpful to recall some of the expressions 
that apply to simple inductor geometries with 
dimensions ≈ 20 �m. A closely wound N -
turn coil of radius r and length d has the 
inductance 

��0r
2N 2 

L ≈ � (16.5)
d+0�9r 

where the permeability �0 is assumed to be 
that of free space. A long straight wire of 
length d has the much smaller inductance 

�0d 
L ≈ � (16.6)

8� 
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491 II INDUCTIVE SUPERCONDUCTING CIRCUITS 

Figure 16.1 A super current I split into two parallel currents I1 and I2, 
perhaps passing through different grains of a superconductor, is shown on the 
left (a), and the equivalent circuit involving parallel inductances is shown on 
the right (b). 

A loop of wire with the wire radius a and 
loop radius r has the inductance given by 
Eq. (2.14), which may be written in the form 

r 
L ≈ �0r 0�0794 + ln � (16.7) 

a 

which is small for current paths through 
grains where r would typically be 20 �m or  
less, as is shown in Problem 2. 

C. Alternating Current Impedance 

When superconducting and normal 
charge carriers are present during dc cur­
rent flow, the resistive circuits of the normal 
carriers will be short-circuited by the zero-
resistance circuits of the super current. When 
the current is alternating, it is assumed that 
the super current flows in paths with induc­
tance L, and hence with the reactance i �L, 
and that the normal current flows in paths 
with the resistance R, as shown in Fig. 16.2. 
The super current will lag behind the normal 
current in phase. The voltage drop between 
points A and B in the figure due to the super 
current will be the same as that due to the 

normal current, which corresponds to InR = 
iIs L �. This gives us for the ratio between 
the magnitudes of the two currents 

In/Is ≈ L�/R� (16.8) 

The circular loop of Eq. (16.7) has 
the resistance R = 2�r	/�a2, which gives, 
inserting the numerical value of �0, 

L/R = 2�×10−7�a2/	�×
0�0794+ln�r/a��� 
(16.9) 

We estimate the dimensions r ≈ 30 �m and 
a ≈ 3 �m for typical grain sizes. Using the 
normal state low-temperature resistivity 	 ≈ 
500 �� cm of YBaCuO from Table 2.2, 
we have 

L/R ≈ 2�7 ×10−12H/�� (16.10) 

Equation (16.8) provides an estimate of the 
dimensionless ratio 

In/Is ≈ 1�7 ×10−11
� (16.11) 

where 
 is in Hz, so that very little nor­
mal current will flow at low frequencies, and 
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Figure 16.2 Current split similar to that of Fig. 14.1 
in which one parallel current, Is, flows through super­
conducting material represented by an inductance L, 
while the other, In, flows through normal material rep­
resented by a resistance R. 

we will have I ≈ Is. The current ratio In/Is 

will be negligible until the frequency exceeds 
about 1011 Hz, at which point �L becomes 
comparable to R. At optical frequencies, 
 >  
1014 Hz, the current flow is mostly normal, 
I ≈ In. Figure 16.3 shows these frequency 
dependences of the currents. 

The total dissipated power is the power 
loss due to the normal current in the 
resistance, 

P = In
2R� (16.12) 

From this discussion and Eq. (16.8) we find 
limiting expressions for the power dissipation 
at low and high frequencies, respectively: 

� �2 

P ≈ I2R
L� 

� � R/L� (16.13a) 
R 

16 TRANSPORT PROPERTIES 

P ≈ I2R � � R/L� (16.13b) 

Thus the dissipation is negligible at low fre­
quencies, L� � R, while at high frequencies 
the effective resistance is similar to the nor­
mal state value, as in the optical range. 

The impedance Z of the parallel L–R 
circuit shown in Fig. 16.2 has the magnitude 
and phase angle 

Z = R�L/�R2 +L2�2�1/2 (16.14) 

� = arctan�R/�L�� (16.15) 

with the following limiting values for small 
and large �, respectively: 

Z ≈ L�� � ≈ � 

2 
� � R 

L 
� (16.16a) 

Z ≈ R � ≈ 0 � � R 

L 
� (16.16b) 

The result Z ≈ R at high frequencies con­
firms the change to normal state (resistive) 
behavior that we have already noted. 

III. CURRENT DENSITY 
EQUILIBRATION 

Ordinarily, we are interested in equilib­
rium current flow in which the radial depen­
dence of the current density remains constant 
along the wire. In this section we will exam­
ine what happens when a discontinuity dis­
turbs this regularity. We will find that the 
disturbance persists for a transition distance 
along the wire, beyond which spatial equi­
librium is restored. For simplicity, we will 
assume that the undisturbed super current 
flows with uniform density throughout the 
entire cross section. 

Consider the situation depicted in 
Fig. 16.4, in which current is flowing in 
a Type II superconducting wire of radius 
a. The current enters and leaves the wire 
radially at the ends, where the radius has 
been increased to a much larger value c, 
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Figure 16.3 Dependence of the superconducting Is and normal In components of 
the current I = Is + In on the impedance ratio L�/R for the loop shown in Fig. 14.2 
representing an admixture of superconducting (L) and normal (R) material. 

Figure 16.4 Average current densities in the outer �Ja � and inner �Jb� concentric 
regions of a superconducting wire as a function of the distance z from the junctions at 
the ends where the current enters and leaves. Within the characteristic distance � from 
the ends Ja > Jb (Wilson, 1983, p. 239). 
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Figure 16.5 Cross section of the current flow contours at one of the 
junctions of Fig. 14.4. The radial �E	� and axial �Ez� electric fields associated 
with the current flow in the junction region are indicated. 

as indicated in Fig. 16.5. This figure shows 
how the current-flow contours change grad­
ually from radially directed to longitudinally 
directed as the current proceeds into the wire. 
When it enters the narrower part of the wire, 
it has a greater density toward the surface 
than in the center. As it proceeds along 
the wire it gradually becomes uniformly 
distributed. 

To treat this situation quantitatively, we 
divide the wire into an inner cylinder of 
radius b and an outer cylindrical shell with 
inner and outer radii b and a, respectively, 
as shown in Fig. 16.4. The upper graph in 
the figure presents a plot of the average cur­
rent densities Jb and Ja in these two regions, 
respectively, as a function of the distance 
z along the wire. The figure shows that 
uniform-density flow is established after a 
distance �, called the characteristic length. 
That is, if we wish to measure the critical-
current density by gradually increasing the 
total current until the appearance of a volt­
age drop �V between two electrodes placed 
along the wire, as shown in Fig. 16.6, care 

must be taken to locate the electrodes a dis­
tance from the ends greater than the charac­
teristic distance �. 

Near the ends of the wire, where Ja > 
Jb, equilibrium is brought about by the pres­
ence of a voltage drop between the inner 
and outer parts of the wire. The radial elec­
tric field component E	 associated with this 
voltage drop, shown in Fig. 16.5, causes 
an inward current flow, and E	 decreases 
with the approach to uniform density as we 
proceed along the wire. This situation is 
treated theoretically by Dresner (1978). Plots 
made from Dresner’s equations, which show 
how the voltage drop in the wire associ­
ated with this radial electric field varies with 
the distance from the ends, are presented in 
Fig. 16.7. We see from the figure that as z 
increases from 0�01� to �, the radial electric 
field decreases by over four orders of magni­
tude to a negligibly small value, confirming 
that the current density has now become uni­
form throughout the wire. The three curves 
in the figure are for the three values of the 
parameter n occurring in Dresner’s model. 
The results for z > �  are insensitive to n, 

Figure 16.6 Location of the voltage probes on the wire of Fig. 14.4 
at positions a distance more than one characteristic length � from the 
junctions. 
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Figure 16.7 Voltage V associated with the radial 
electric field inside a filamentary wire as a function 
of the distance z from the junction. Figure 16.5 shows 
the radial field in the junction and also plots E	 in the 
wire. The constant in Dresner’s (1978) equations was 
selected to make V = 104 at z/� = 10−2. We see that for 
all values of Dresner’s parameter n, the radial voltage 
becomes negligibly small within a distance equal to one 
characteristic length from the junction (Wilson, 1983, 
p. 241). 

since the residual radial field approaches zero 
for all three choices of n. 

We have been assuming that equilibrium 
current flow occurs with uniform density. 
There are also cases of a pronounced radial 
distribution, as in the Bean model, when the 
penetration depth � limits the current to a 
surface layer. When this is the case, � is the 
distance that must be traveled to reach the 
equilibrium state. 

IV. CRITICAL CURRENT 

The most important transport property 
of a superconductor is its ability to carry 
a super current without any dissipation. 
Chapter 2 discussed transport current and 
its characteristics of zero resistance and per­
sistence. Some additional understanding of 
super current flow was provided by the 

495 

Bean model treatment of Chapter 13. Shield­
ing current was treated at length in Chap­
ters 5, 12, and 13, while the previous chapter 
discussed current flow through tunnel junc­
tions. The current-induced intermediate state 
was described in Chapter 11. We now wish 
to examine the anisotropy of current flow, 
and its dependence on the magnitude and 
direction of an applied magnetic field. 

A. Anisotropy 

Super current flows more easily in the 
Cu–O planes of high-temperature super­
conductors than perpendicular to these planes 
(Gross et al., 1990a). The data in Table 13.4 
demonstrate that the critical transport current 
for flow in the a, b-planes is much greater 
than for flow perpendicular to these planes, 
i.e., parallel to the c direction, �Jc�ab � �Jc�c. 
Because of this high anisotropy, almost all 
critical current measurements on single crys­
tals or epitaxial films are for flow in the a, 
b-planes. 

A good way of showing that Jc in the 
Cu–O plane is much greater than Jc perpen­
dicular to this plane is to use the magne­
tization current method of determining Jc, 
as explained in Chapter 13, Section VI.E. 
Figure 16.8 shows the temperature depen­
dence of the in-plane magnetization criti­
cal current determined by this method for 
a Bi2Sr2CaCu2O8 monocrystal. The crys­
tal was in the shape of a platelet with the 
c-axis along the short direction, and the 
magnetic field was applied along c for this 
measurement. When the field was applied 
parallel to the plane, as indicated in the 
inset to Fig. 16.9, the current exhibited a 
similar decrease with increasing tempera­
ture. The plot was constructed with the 
aid of the Bean model, taking into account 
the difference in the field penetration along 
the narrow �t� as opposed to along the 
broad �w� faces, as indicated in the inset. 
The researchers found that w/t ratios from 
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Figure 16.8 Temperature dependence of the critical current Jc deter­
mined by magnetization method for a magnetic field applied perpendic­
ular to the Cu–O planes (Biggs et al., 1989). 

Figure 16.9 Temperature dependence of the critical current Jc deter­
mined by the magnetization method for a magnetic field applied parallel 
to the Cu–O planes. Shaded areas of the inset represent flux penetration 
(Biggs et al., 1989). 

8 to 23 gave the same value of Jc. Of  
course, for a continuous current flow path, 
the larger current density, Jcy in the figure, 
is associated with a smaller effective pen­
etration depth, as indicated. Farrell et al. 
(1989a) reported that the magnetization cur­
rent anisotropy of yttrium cuprate is much 
larger than those of the lanthanum and thal­
lium cuprates. 

B. Magnetic Field Dependence 

We will describe the effects of applied 
magnetic fields on the flow of transport cur­
rent in the a, b-plane of cuprates (Satchell 
et al., 1988). We see from Fig. 16.10 that 
for an epitaxial film of Bi2Sr2CaCu2O8 �Tc ≈ 
80 K�, the critical current is smaller when 
the field is applied along c, perpendicular to 
the plane of the film, than when it is applied 
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Figure 16.10 Magnetic field dependence of the transport critical current 
of a Bi2Sr2CaCu2O8 epitaxial film determined at 4.2 K and 60 K for magnetic 
fields applied parallel to the Cu–O planes, i.e. B ⊥ c, and perpendicular to the 
Cu–O planes, i.e. B�c, (Schmitt et al., 1991). 

in the plane. We also see that the drop-off 
in Jc with increasing field is especially pro­
nounced at 60 K, and much less so at 4.2 K. 

Ekin et al. (1990, 1991; cf. Lan et al., 
1991) made a more comprehensive study of 
the magnetic field dependence of transport 
current in grain-aligned 

YBa2Cu3O7−�� 

The grains were platelets, ≈ 5 �m in diam­
eter, with the c-axis perpendicular to the 
plane, forming blocks approximately 1 mm × 
1 mm in cross section and 15 mm long. Their 
results, summarized in Figs. 16.11 and 16.12, 
show that applying the field along the c 
direction �B ⊥ ab� causes a greater decrease 
in the current than applying the field in the 
plane �B � ab�. The current decreased much 
less with increasing field at 4 K than it did 
at 76 K. In all of these measurements, the 
applied field and current flow were perpen­
dicular. Force-free values of Jc were deter­
mined by rotating the applied field along Jc, 
which increased the critical current, as indi­
cated in the figures. 

The dependence of the critical current 
on the angle which the applied field makes 
with the c direction, shown in Fig. 16.13, 
suggests that Jc depends on cos � (Maley 
et al., 1992; Schmitt et al., 1991; Ekin et al., 
1991; Fukami et al., 1991b; Miu, 1992). 
Maley et al. (1992) found that the applied 
field degraded the magnetization currents to 
a greater extent than did the transport cur­
rents, as indicated in Fig. 16.14. 

V. MAGNETORESISTANCE 

In this section we will discuss the resis­
tivity of a wire in the presence of a magnetic 
field, which ordinarily is applied transverse 
to the current direction. This resistivity, 
called the magnetoresistivity 	m, is the same 
as the ordinary zero-field resistivity 	 for 
some metals, though it has a different value 
for others. First we will treat the case of a 
superconductor above and in the neighbor­
hood of its transition temperature, and then 
we will show that below Tc the resistance 
can arise from flux flow. 
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Figure 16.11 Magnetic field dependence of the transport critical 
current of grain-aligned YBa2Cu3O7−� determined at 76 K for mag­
netic fields applied parallel �B � a�b� and perpendicular �B ⊥ a�b� to 
the Cu–O planes. The darkened symbols (filled with X) are measure­
ments made with the applied field rotated so as to be directed along 
the current direction (Ekin et al., 1990). 

Figure 16.12 Same geometry and physical situation as in 
Fig. 16.11, at liquid helium temperature (Ekin et al., 1990). 

A. Fields Applied above Tc may be written in terms of the current den­
sity J = I/ad and the longitudinal electric 

Consider the current flow situation illus­
trated in Fig. 1.16 in the absence of a magnetic 

field Ey = �V2 −V1�/L to give for the resis­
tivity (1.97) 

field. The flowing current produces the poten­
tial difference V2 −V1 between the ends of the 
wire. The resistance R as given by Ohm’s law, 	 = Ey/J� (16.18) 

R = �V2 −V1�/I� (16.17) which is equivalent to Eq. (1.21). 
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Figure 16.13 Dependence of the critical-current 
density of a Bi2Sr2CaCu2O8+x epitaxial film on the 
angle � between the applied magnetic field and the c-
axis. For all angles the field was perpendicular to the 
current direction (Schmitt et al., 1991). 

When a transverse magnetic field is 
applied, as shown in the figure, a trans­
verse Hall effect field Ex = v × Bapp (see 
Eq. (1.90)) is induced that separates the 
charge on either side of the wire, as explained 
in Chapter 1, Section XVI. A resistance mea­
surement provides the magnetoresistivity 	m, 

	m = Ey/J� (16.19) 

which is more precisely called the transverse 
magnetoresistivity. The longitudinal magne­
toresistivity is defined for a magnetic field 
aligned along the direction of current flow. 

For ordinary (normal-state) conductors 
the applied field does not affect the lon­
gitudinal current flow, so that the resis­
tance of a wire is field independent, and 
	m from (16.19) equals the ordinary resis­
tivity from (16.18). However, at very high 
magnetic fields the trajectories of the elec­
trons deflected by the field can be open, 
i.e., extending from one Brillouin zone into 
the next, or they can close on themselves 
in k-space, making the situation compli­
cated. The magnetoresistivity often tends 
to increase with increasing magnetic field 
strength, but in some cases it saturates, that 
is, approaches a field-independent value at 
the highest fields. 

Figure 16.14 Magnetic field dependence of critical-
current densities obtained from magnetization and trans­
port measurements of a Pb-doped BiSrCaCuO/Ag super­
conducting tape showing (a) individual critical current 
densities at 20 K, and (b) ratio of magnetization to trans­
port critical-current densities at 20 K, 35 K, and 50 K 
(Maley et al., 1992). 

The magnetoresistance of the cuprates 
in the normal state is not very much affected 
by the application of small or moderate mag­
netic fields. This can be seen from Fig. 16.15 
for fields up to 7 T applied to Bi2Sr2CaCu2O8 

several degrees above Tc (Briceño et al., 
1991). A study of YBa2Cu3O7 showed very 
little change in the transverse and longitudi­
nal magnetoresistance for fields up to 10 T 
and temperatures up to 200 K. For higher 
fields at 200 K, the longitudinal magnetore­
sistance was found to increase and its trans­
verse counterpart was found to decrease 
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Figure 16.15 Temperature dependence of the magnetoresistance 
in the a�b-plane (top) and along the c direction (bottom) of a 
Bi2Sr2CaCu2O8 monocrystal for magnetic fields of 0, 0.5, and 7.0 T 
applied along the c direction (Briceño et al., 1991). 

slightly as the applied field was raised to 
43 T (Oussena et al., 1987). 

B. Fields Applied below Tc 

In the superconducting state the pres­
ence of an applied magnetic field shifts the 
transition temperature downward and broad­
ens the transition in the manner illustrated 
in Figs. 16.15 and 16.16 for two bismuth 
cuprates (Ando et al., 1991a, b; Briceño 
et al., 1991; Fiory et al., 1990; Palstra et al., 
1988). Such a downward shift is also to 
be expected from Fig. 2.46. Similar results 
have been reported for �La1−�Sr��2CuO4 

(Preyer et al., 1991; Suzuki and Hikita, 

1991), Nd1�85Se0�15CuO4 (Suzuzi and Hikita, 
1990), YBa2Cu3O7 (Blackstead, 1992, 1993; 
Hikita and Suzuki, 1989; Kwok et al., 
1990a), and Tl2Ba2CaCu2O8 (Kim and Rise-
borough, 1990; Poddar et al., 1989). The 
zero-field plots of Fig. 16.15 are similar to 
the YBa2Cu3O7 resistivity plots of Fig. 2.7 
for 	ab and 	c, with the c-direction resis­
tivity exhibiting a rise slightly above Tc for 
both compounds. The figures provide ratios 
	c/	ab ≈ 150 for YBa2Cu3O7 and 

	c/	ab ≈ 5600 

for Bi2Sr2CaCu2O8, which demonstrate that 
the bismuth compound is much more 
anisotropic. This also constitutes one of 
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Figure 16.16 Temperature dependence of the magnetoresistance 
in the a� b-plane of a Bi2�2Sr2Ca0�8Cu2O8+� monocrystal with mag­
netic fields of 0, 2, 5, and 12 T applied parallel to and perpendicular 
to the a� b-plane. The lower part shows the ordinate scale magni­
fied by a factor of about 100 to emphasize the exponential behavior 
(Palstra et al., 1988). 

the principal differences between the two 
superconductors (Raffy et al., 1991). The 
n-type superconductor Nd1�85Se0�15CuO4 has 
	c/	ab ≈ 310, which is closer to the value 
for the yttrium compound (Crusellas et al., 
1991). Figure 16.16 shows that the shift and 
broadening of the in-plane resistivity �	ab� 

plots are greater for applied fields along the 
c-axis than for applied fields in the a�b­
plane. (The lower part of Fig. 16.16 is mag­
nified by a factor of 100 to emphasize the 
rapid exponential drop of the resistivity down 
to zero for all applied field magnitudes and 
directions.) 

We see from Figs. 16.15 and 16.16 that 
the in-plane magnetoresistivity 	ab has a 
bulge halfway down the curve. The expan­
sion of the sharp zero-field resistivity tran­
sition of a YBa2Cu3O7 monocrystal, shown 
in Fig. 16.17, reveals that there are actually 
two very close transition temperatures, Tc1 = 
90�71 K and Tc2 = 90�83 K, which separate in 
applied magnetic fields and are responsible 
for the observed bulge. 

C. Fluctuation Conductivity 

The cuprate superconductors exhibit 
strong temperature and magnetic field 
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Figure 16.17 Expansion of the region near Tc of a 	ab-versus-T curve 
of a YBa2Cu3O7 monocrystal showing the two closely spaced critical 
temperatures Tc1 and Tc2 (Hikita and Suzuki, 1989). 

dependencies just above Tc that are respon­
sible for the rounding of the resistivity plots 
of Figs. 16.15, 16.16, and 2.21 at the knee 
just above Tc. Aronov et al. (1989) assumed 
that the field-dependent part of the electrical 
conductivity �� , 

�� = ��B�−��0�� (16.20) 

obtained from the resistivity measurements, 
where � = 1/	, is due entirely to the super­
conductivity fluctuations. Another approach 
(Bieri and Maki, 1990; D. H. Kim et al., 
1991a; Semba et al., 1991; Suzuki and 
Hikita, 1989) for explaining fluctuation con­
ductivity made use of the Aslamazov–Larkin 
(Aslamazov and Larkin, 1968) term due to 
the excess current carried by Cooper pairs 
and the Maki–Thompson mechanism (Maki, 
1968; Thompson, 1970) of forward scatter­
ing on quasiparticles due to Cooper pairs. 
Several researchers have provided plots of 
�� versus the field or temperature for 
La2−xSrxCuO4 (Suzuki and Hikita, 1989), 
YBa2Cu3O7 (Bieri and Maki, 1990; Matsuda 
et al., 1989; Osofsky et al., 1991; Semba 

et al., 1991), Nd1�85Se0�15CuO4 (Kussmaul 
et al., 1991), and 

T12Ba2CaCu2O8 

(Kim et al., 1991a). The Hikami–Larkin 
approach (Hikami and Larkin, 1988) has 
been used to obtain values of the coher­
ence length �ab = 15�6 Å and �c = 3�6 Å for 
YBa2Cu3O7 (Andersson and Rapp, 1991). 

D. Flux-Flow Effects 

When transport current flows in the pres­
ence of an applied magnetic field, the vor­
tices arising from the field interact with 
the current, as was shown in Chapter 12, 
Section VI.G. This interaction can lead to 
vortex motion and heat dissipation, and the 
result is a resistive term called flux-flow 
resistance. It is a type of magnetoresistance, 
and limits the achievable critical current in 
many samples. 
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Figure 16.18 Electric field E induced by the motion 
of a vortex �0 moving at a velocity �� through an 
applied magnetic field Bapp directed upward from the 
page. The vectors E� v�, and Bapp are mutually perpen­
dicular. The vectors for the current density J and the 
Lorentz force J ×�0 are also indicated. 

We showed in Chapter 12, Section V.C, 
that when the Lorentz force J ×�0 exceeds 
the pinning force FP, 

�J ×�0� > Fp� (16.21) 

where �0 is the quantum of flux, the vortices 
move with the velocity v� in accordance 
with the equation of motion Eq. (12.75). The 
vortex velocity is limited by the frictional 
drag force �v�, while the Magnus force 
�nse�v × �0� shifts the direction of this 
motion through an angle �� away from the 
direction perpendicular to J, as shown in 
Fig. 16.18. 

By Faraday’s law, the motion of the vor­
tices transverse to the current density induces 
a time-averaged macroscopic electric field E, 
which is given by 

E = −v� ×Bin (16.22) 

as indicated in Fig. 16.18, where Bin is 
the average internal field due to the pres­
ence of the vortices. The component of 
this electric field Ey along the current-flow 
direction, 

Figure 16.19 Resolution of the induced electric field 
of Fig. 14.18 into components transverse �Ex� and lon­
gitudinal �Ey� to the current density direction (J). 

Ey = E cos ��� (16.23) 

shown in Fig. 16.19, produces a voltage drop 
along this direction. The other component 
of the induced electric field, Ex = E sin ��, 
produces a Hall effect, as we will show in 
the following section. 

Figure 16.20 shows how the longitudi­
nal voltage drop along the wire depends on 
the applied current for two Nb1/2Ta

1/2 
sam­

ples with different concentrations of pinning 
centers (Strnad et al., 1964; see also Tilley 
and Tilley, 1986, p. 229). Beyond the initial 
curvature, the V versus I curves of Fig. 16.20 
may be represented at low voltage by the 
equation 

V = Rff �I − Ic�� (16.24) 

where the slopes of the lines provide the flux-
flow resistance Rff . The flux-flow resistivity 
is given by 

Rff ad 
	ff = � (16.25)

L 

where the sample dimensions are shown in 
Fig. 1.16. In Fig. 16.20 we see that the 
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Figure 16.20 Voltage–current characteristics of an Nb1/2Ta
1/2 

super­
conductor in a magnetic field of 0.2 T at the temperature 3.0 K. The two 
curves, for samples containing different concentrations of defect pinning 
centers, have almost the same slope and hence the same flux–flow resis­
tance, but differ in their critical currents Ic. The inset shows the experimental 
arrangement for the measurements (Strnad et al., 1964). 

slopes of the straight lines for the two sam­
ples are the same, while the intercepts dif­
fer due to the variation in pinning force. 
Measurements made with different magnetic 
field strengths, shown in Fig. 16.21, exhibit 
slopes that increase with the magnetic field 
(Huebener et al., 1970; see also Huebener, 
1979, p. 126). Figure 16.22 shows the mag­
netic field dependence of the flux-flow resis­
tance for three temperatures. 

To a first approximation, the critical-
current density Jc is obtained by setting the 
Lorentz force J × �0 equal to the pinning 
force FP, 

Jc ×�0 = Fp� (16.26) 

After the onset of flux flow, increasing J 
increases the fluxon velocity v�, which may 
be calculated using the models introduced in 
Chapter 12, Section V.F. If the Magnus force 

is neglected, then, as we show in Problem 7, 
the flux-flow resistivity is 

	ff = �0B0/�� (16.27) 

Strnad et al. (1964) found that 	ff is given 
by the following empirical relation: 

	ff = 	n�Bin/Bc2�� (16.28) 

The ratio Bin/Bc2 is approximately propor­
tional to the fraction of the material that is 
“occupied” by the “normal” vortex cores. 
Thus the resistivity can be imagined as aris­
ing from electric current flowing through 
the normal material that constitutes the vor­
tex cores. 

VI. HALL EFFECT 

The Hall effect provides information 
on the sign, concentration, and mobility of 
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Figure 16.21 Voltage–current characteristics of a niobium foil at 4.22 K 
in magnetic fields ranging from 0.1 to 0.2 T (1000 to 2000 G), as indicated. 
The flux-flow resistances evaluated from the linear portions of the plots range 
from 25 �� for the lowest (0.1 T) curve to 64 �� for the highest (0.2 T) curve 
(Huebener et al., 1970). 

charge carriers in the normal state, with a 
positive sign for the Hall coefficient RH = 
Ex/JB0 = ±1/ne of Eqs. (1.91) and (1.92) 
indicating that the majority carriers are holes. 
In the superconducting state, the Hall voltage 
arises from the electric field induced by flux 
motion. Chapter 1, Section XVI, describes 
a Hall effect measurement made with the 
experimental arrangement of Fig. 1.16. Hall 
effect probes have been used to measure 
the local field at the surface of a super­

conductor in an applied field Bapp (Brawner 
et al., 1993). 

A. Hall Effect above Tc 

Perhaps the most important result that 
has been obtained from Hall effect measure­
ments above Tc is that the charge carriers 
in the copper-oxide planes of most of the 
high-temperature superconductors are holes. 
Included in this group are the lanthanum, 
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Figure 16.22 Magnetic field dependence of the flux-
flow resistivity of Bi2+xSr2−yCuO6±� for transport in 
the a, b-plane at three temperatures below the 7 K tran­
sition temperature. The inset shows the temperature 
dependence of the resistivity at zero field. The abscissae 
are normalized to the value 	�0� = 90 �� cm (Fiory 
et al., 1990). 

yttrium, bismuth, thallium, and mercury 
classes of compounds. The major exception 
is compounds with the Nd2CuO4T′ structure 
described in Chapter 8, Section VII.E; their 
charge carriers are electron-like. 

It is easy to argue on the basis of 
chemical considerations as to why the lan­
thanum and yttrium compounds are hole-
like. Replacing a La3+ by a Sr2+ without 
changing the oxygen content can convert a 
Cu2+ to Cu3+ on one of the CuO2 planes, 
which is the same thing as introducing a hole 
in a plane. The stoichiometric YBa2Cu3O7 

compound has an average Cu charge of 2.33, 
corresponding to one Cu3+ and two Cu2+ 

ions, so there is already one trivalent copper 
ion to contribute a hole. It has also been sug­
gested that the hole might exist on oxygen, 
corresponding to the ion O− . From a band 
structure viewpoint we can say that the hole 
is in an oxygen 2p band. 

In contrast, an electron superconductor 
can be created by doping with a cation having 
a higher charge, such as substituting Ce4+ for 
Nd3+ in �Nd1−xCex�2CuO4, or substituting 
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a trivalent rare earth such as R = Gd3+ for 
Ca2+ in the compound TlCa1−xRxSr2Cu2O7, 
perhaps to convert Cu2+ to Cu+, or to add an 
electron to the conduction band. In addition, 
it has been found that the Hall effect is neg­
ative for the applied field aligned in the a, 
b-plane of YBa2Cu3O7 (Penney et al., 1988; 
Tozer et al., 1987). Table X-3 of our earlier 
work (Poole et al., 1988) summarizes some 
Hall effect results. 

Several research groups have found that 
the Hall number V0/RHe of 

YBa2Cu3O7 

has a temperature dependence of the form 

V0/RHe = A+BT� (16.29) 

as shown in Fig. 16.23, where V0 = 174 Å 

Figure 16.23 Temperature dependence of the Hall 
number V0/RH e of YBa2Cu3O7−�. The squares show the 
nearly temperature independent n-type Hall number of 
one sample for the magnetic field in the a, b-plane, while 
the circles show the p-type Hall number for another 
sample in which the applied field is perpendicular to 
the a, b-plane. The dashed curve is a linear fit to the 
data above Tc; the solid curve is provided as a visual 
aid. Near Tc the Hall number diverges, so that the Hall 
voltage tends to zero (Penney et al., 1988). 
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Figure 16.24 Temperature dependence of the 
Hall coefficient RH for �Nb0�925Ce0�075 �2 CuO4−� 

�Tc = 18 K, e type, T ′ phase), �Nb0�7Ce0�1Sr0�2�2 

CuO4−��Tc = 23 K� T∗ phase), �Nb2/3Ce �41/3

�Nd1/3Ba5/12Sr1/4�4Cu6O �Tc = 38 K, 4:4:6 com­
y 

pound), �La0�925Sr0�075 �2CuO4−� �Tc = 38 K, T 
phase, 2:1:4 compound), and GdBa2Cu3O7−� (1:2:3 
compound) (Cheong et al., 1987; Ikegawa et al., 1990). 

and A≈0 (Penney et al., 1988; a, b-plane 
data from Tozer et al., 1987). The diver­
gence at Tc shown in the figure arises 
from the Hall voltage (i.e., Ex) going to 
zero at the transition. Many superconduc­
tors do not exhibit the temperature depen­
dence of Eq. (16.29), as the data plotted 
in Fig. 16.24 demonstrate (Ikegawa et al., 
1990; Gd compound data from Cheong et al., 
1987). The data for the electron supercon­
ductor �Nd0�925Ce0�075�2CuO4−� that are plot­
ted in this figure show that RH is negative, 
as expected. In Problem 8 it is necessary to 
show that the other four compounds in this 
figure are hole-like. The Hall coefficient is 
also strongly affected by the oxygen content, 
as shown by the plots in Fig. 16.25. 

Figure 16.25 Dependence of the Hall coefficient RH 

on the oxygen content � at 77 K (filled circles) and 290 K 
(open circles). The percentage of the sample exhibiting 
the Meissner effect is also plotted, with the scale on the 
right. The solid lines are provided as visual aids (Z. Z. 
Wang et al., 1987). 

Mandal et al. (1989) compared the Hall 
numbers per Cu ion for the various high-
temperature superconductors. Their results 
are plotted in Fig. 16.26. We see from the 
figure that these Hall numbers lie along two 
straight lines. 

Hall effect measurements, like other 
transport measurements, are affected by sam­
ple quality, and hence strongly dependent on 
factors such as sample preparation, defects, 
and grain boundaries. This can be deduced 
from the scatter in some of the data listed 
in Table X-3 of our earlier work (Poole 
et al., 1988). 

B. Hall Effect below Tc 

We have shown that flux flow arising 
from a transport current in a superconductor 
below Tc induces an electric field E given 
by Eq. (16.22). The component of this elec­
tric field perpendicular to the direction of the 
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Figure 16.26 Plot of the superconducting transition 
temperature Tc versus the Hall number per Cu ion, 
for (1) �La0�925Sr0�075�2CuO4 (Ong et al., 1987), (2) 
YBa2Cu3O6�7 (Z. Z. Wang et al., 1987), (3) YBa2Cu3O7 

(Z. Z. Wang et al., 1987), (4) BiSrCaCuO (Clay­
hold et al., 1988), (5) Bi2 �Sr� Ca�3Cu2O8�35 (Tak­
agi et al., 1988), (6) BiSrCaCu2Ox (Skumryey et al., 
1988), (7) BiSrCaCu2Ox (mixed phase, Mandal et al., 
1989), (8) BiSrCaCu2Ox (85 K phase, Mandal et al., 
1989), (9) Tl2Ca2Ba2Cu3Ox (Clayhold et al., 1988), and 
(10) TlCa3BaCu3Ox (Mandal et al., 1989). The dashed 
lines are provided as visual aids (figure from Mandal 
et al., 1989). 

current, Ex = E sin ��, shown in Fig. 16.19, 
produces a Hall-effect voltage. The Hall 
resistivity 	xy, defined by Eq. (1.99), 

	xy = Ex/Jy� (16.30) 

is close to zero for low applied fields in the 
mixed state below Tc and negative for higher 
fields. Thereafter, it becomes positive and 
increases linearly with further increases in 
field, as shown in Fig. 16.27 for YBa2Cu3O7 

(Hagen et al., 1990a; Rice et al., 1992). The 
inset of this figure shows the Hall resistance 
of a niobium film versus the applied field at 
T = 9�16 K, which is slightly below Tc. 

16 TRANSPORT PROPERTIES 

We see from Fig. 16.28 that in the mixed 
state below Tc the Hall mobility �H = RH/	 
of Bi2+ Sr2−yCuO6±� increases as the mag-x

netic field is increased and also as the tem­
perature is increased. 

VII. THERMAL CONDUCTIVITY 

In Chapter 1, Section VIII, we saw that 
the heat currents carried by conduction elec­
trons are closely related to electrical cur­
rents. An additional complication in the heat 
transport case is that the carriers of heat can 
be either charge carriers like electrons or 
electrically neutral phonons, whereas electri­
cal current arises only from charge carrier 
transport. The transformation to the super­
conducting state changes the nature of the 
carriers of the electric current, so it is to 
be expected that the transport of heat will 
be strongly affected. In this section we will 
examine how this comes about. Some theo­
retical treatments are available (e.g., Oguri 
and Maekawa, 1990; Peacor et al., 1991a; 
Tewordt and Wölkhausen, 1989; Wermter 
and Tewordt, 1991a, b). 

A. Heat and Entropy Transport 

The thermal current density U is the 
thermal energy per unit time crossing a unit 
area aligned perpendicular to the direction 
of heat flow. It is a vector representing 
the transport of entropy density S� at the 
velocity v, 

U = TS�v� (16.31) 

from the hotter to the cooler regions of the 
material (Maki, 1991). It proportional to 
the gradient of the temperature �T through 
Fourier’s law, 

U = −K�T� (16.32) 

where K is the coefficient of thermal 
conductivity. 
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Figure 16.27 Dependence of the Hall resistivity pxy of a 
YBa2Cu3O7 film on the magnetic field from 0 to 7 T for six tem­
peratures near Tc ≈ 90 K, illustrating the linearity at high field. The 
temperatures from bottom to top are 88.4, 89.1, 89.8, 90.5, 91.5, 
and 93.0 K. The inset shows the Hall resistance of a niobium film 
versus the field from 0 to 60 mT at a temperature of 9.6 K (Hagen 
et al., 1990a). 

Figure 16.28 Magnetic field dependence of the Hall 
mobility �H in the mixed state of Bi2+xSr2−yCuO6±� at 
three temperatures (Fiory et al., 1990). 

In the normal state, electrical conduc­
tors are good conductors of heat in accor­
dance with the law of Wiedermann and Franz 
(1.33). In the superconducting state, in con­
trast, the heat conductivity can be much 
lower because, as Uher (1990) points out, 
Cooper pairs carry no entropy and do not 
scatter phonons. 

B. Thermal Conductivity in the 
Normal State 

The principal carriers of thermal energy 
through metals in the normal state are con­
duction electrons and phonons. Heat con­
duction via each of these two channels acts 
independently, so that the two channels con­
stitute parallel paths for the passage of heat. 
A simple model for the conduction of heat 
between two points A and B in the sample 
is to represent the two channels by paral­
lel resistors with conductivities K and Kphe 

for the electronic and phonon paths, respec­
tively, as shown in Fig. 16.29a. The con­
ductivities add directly, as in the electrical 
analogue of parallel resistors, to give the total 
thermal conductivity K, 

K = Ke +Kph� (16.33) 

The electronic path has an electron–lattice 
contribution Ke−L, which is always present, 
and an impurity term Ke−I, which becomes 
dominant at high defect concentrations. In 
like manner, the phonon path has a phonon– 
electron contribution Kph−e plus an additional 
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contribution kph−I from impurities. Since 
each pair of terms involves the same carriers 
of heat, they act in series and add as recip­
rocals, as in the electrical analogue case of 
Mattheissen’s rule (1.30), where the resis­
tivities (reciprocals of conductivities) add 
directly. The result is 

1 1 1 = + � (16.34)
Ke Ke−L Ke−I 

1 1 1 = + � (16.35)
Kph Kph−e Kph−I 

which corresponds to Fig. 16:29b. 
It is shown in standard solid-state 

physics texts that the electronic contribution 
to the thermal conductivity has the form 

Ke−L = 1
3 �FlCe (16.36) 

= 3
1 ��F

2 �T� (16.37) 

where we have used Eqs. (1.5), the electron 
mean free path l = �F�, and, from (1.51), 

Ce = �T . If we recall from Eq. (1.23) that 
� ≈ T−3 at low temperatures and � ≈ T−1 

at high temperatures, applying the law of 
Wiedermann and Franz (1.33) gives us 


const� 
Ke−L ≈ T 2 


const� 

T � �D 

T � �D 

(16.38) 

for temperatures that are low and high, 
respectively, relative to the Debye tempera­
ture �D. In Chapter 1, Section VII, we saw 
that at the lowest temperatures the electri­
cal conductivity ��T� approaches a limiting 
value, ��T� → �0, arising from the impurity 
contribution. For this term the law of Wie­
dermann and Franz gives 

Ke−I → 
const�T T → 0� (16.39) 

The temperature dependence of the thermal 
conductivity of copper, shown in Fig. 16.30, 
seems to follow this behavior. There is 
an initial linear region corresponding to 
Eq. (16.39), a maximum in the curve due 

Figure 16.29 Representation of the electron and phonon heat-
conduction paths between two points A and B (a) by parallel resistors 
with respective conductivities Ke and Kph, and (b) representation of the 
interaction mechanisms with the lattice (L) and impurities (I) operative 
along each of these two paths by a pair of series resistors. 
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Figure 16.30 Temperature dependence of the thermal conductivity of copper 
(Berman and MacDonald, 1952). 

to the 1/T 2 term, which should dominate in 
the intermediate temperature region, perhaps 
near T/�D ≈ 0�05–0�5, and a final asymp­
totic term at high temperatures. 

The lattice contribution to the thermal 
conductivity has a form which is the phonon 
analogue of Eq. (16.36), 

1 
Kph−L = 

3 
�phlphCph� (16.40) 

where Eqs. (1.62a) and (1.62b) give the 
low- and high-temperature limits of Cph, 
respectively. The temperature dependence is, 
however, more complicated than that pre­
dicted by the specific heat term, since Cph 

increases with T , whereas the phonon mean 
free path lph decreases with increasing tem­
perature, which not only compensates for 
Cph, but also tends to cause Kph–L to drop. 

In pure metals the electronic contribu­
tion to the thermal conductivity tends to 
dominate at all temperatures, as in the Cu 

case of Fig. 16.30. When many defects are 
present, as in disorganized alloys, they affect 
Kph more than K , and the phonon contri­e

bution can approach or exceed that of the 
conduction electrons. 

C. Thermal Conductivity below Tc 

Thermal conductivity involves the trans­
port of entropy S�; super electrons, however, 
do not carry entropy nor do they scatter 
phonons. We also know from Eq. (4.47) 
(cf. Fig. 4.8) that below Tc the entropy 
of a superconductor drops continuously to 
zero, so that the thermal conductivity can 
be expected to decrease toward zero also. 
Figure 16.31 shows this behavior for alu­
minum (Burns, 1985, p. 657; Scatterthwaite, 
1962). The figure plots the ratio of the 
superconducting state to normal state ther­
mal conductivities Ks/Kn as a function of 
temperature, where Kn was measured in the 
presence of a magnetic field B > Bc that 
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Figure 16.31 Dependence on temperature of the ratio between 
the electronic thermal conductivity of Al in the superconducting 
state and its normal-state value. The normal-state data were obtained 
in a magnetic field that extinguished the superconductivity. The 
data were fitted by the curve calculated from the BCS theory for 
2�/kBT = 3�52 (Satterthwaite, 1962). 

extinguished the superconductivity. We see 
from the figure that the data fit the BCS 
theory very well. The behavior shown in 
Fig. 16.31 is typical of elemental supercon­
ductors. A material of this type could be 
employed as a heat switch by using a mag­
netic field to change its thermal conductivity 
by more than a factor of 100. 

In high-temperature superconductors the 
phonon contribution to the thermal conduc­
tivity is predominant above Tc. The onset of 
superconductivity can have the effect of first 
increasing the conductivity until it reaches 
a maximum, beyond which it decreases at 
lower temperatures, as shown in Fig. 16.32 
(Cohn et al., 1992a, c; Heremans et al., 
1988; Pillai, 1991; Terzijska et al., 1992; 
Uher and Huang, 1989; R. C. Yu et al., 
1992; cf. Marshall et al., 1992; Szasz et al., 
1990). This increase can occur when the 
thermal conductivity arises mainly from the 
phonon-electron contribution to Kph. The 

onset of the superconducting state causes 
normal electrons to condense into Cooper 
pairs. These no longer undergo collisions 
with the phonons and hence do not par­
ticipate in the phonon–electron interaction. 
The result is a longer mean free path lph 

in Eq. (16.40) and a larger conductivity, as 
shown in Fig. 16.32 for the unirradiated sam­
ple below Tc (Uher, 1990). Irradiating the 
sample produces defects that limit the mean 
free paths of the phonons and charge carri­
ers, and leads to a decrease in the thermal 
conductivity and a suppression of the peak 
of Fig. 16.32. At lower temperatures, freez­
ing out of the lattice vibrations is reflected 
in the Cph ≈ AT 3 term (see Eq. 1.62a) of 
Eq. (16.40), which becomes negligible rela­
tive to the impurity term (16.39). In turn, the 
latter becomes enhanced by irradiation, and 
the result is a decrease in K. 

Thermal conductivity measurements 
have been reported, inter alia, on the lan­
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Figure 16.32 Decrease in the thermal conductivity 
of YBa2Cu3O7−� brought about by irradiation with fast 
neutrons at given levels of irradiation, with fluences 
from 0 up to 6  ×1018 neutrons/cm2, as indicated (Uher 
and Huang, 1989). 

thanum (Bartkowski et al., 1987), bis­
muth (Peacor and Uher, 1989; Zhu et al., 
1989), and Ba1−xKxBi superconductors (Pea­
cor et al., 1990). 

D. Magnetic Field Effects 

In a Type II superconductor the thermal 
conductivity begins to decrease at the lower-
critical field Bc1, passing through a mini­
mum and then increasing with increasing 
field until it reaches its normal-state value at 
the upper critical field Bc2 (Zhu et al., 1990), 
as shown in Fig. 16.33 for the superconduc­
tor Bi doped In (Dubeck et al., 1964). This 
behavior is explained by Uher (1990) as due 
to the presence of vortices acting as addi­
tional scattering centers for phonons, which 
dominate transport far below Tc, and elec­
tronic excitations, which are more important 
near Tc, where quasiparticles are still plenti­
ful. At the lower critical field, vortices enter 
the superconductor, degrading the thermal 

conductivity by inducing increased scatter­
ing. As the upper critical field is approached, 
the electronic excitations associated with the 
normal core of the vortices begin to enhance 
the thermal conductivity. The fact that the 
conductivity is independent of the magnetic 
field in the Meissner state, where Bapp < Bc1, 
as shown in Fig. 16.33, provides further sup­
port for this explanation. 

The magnetic field dependence of the 
thermal conductivity of superconductors has 
been studied (Peacor et al., 1991b; Regueiro 
et al., 1991; Richardson et al., 1991); 
entropy transport due to vortex motion (Pal­
stra et al., 1990) and magnetocaloric cooling 
(Rey and Testardi, 1991) have been observed 
in YBa2Cu3O7. 

E. Anisotropy 

The planar structure of high-temperature 
superconductors makes the thermal conduc­
tivity anisotropic. This type of anisotropy 
has been observed in polycrystalline samples 
of YBa2Cu3O7−� with the microcrystallites 
aligned along the compression axis (Kirk 
et al., 1989). For a single crystal, the ratio of 
the in-plane Kab to the out-of-plane (c-axis) 
Kc thermal conductivity has been observed 
to have the value 

Kab/Kc ≈ 17 

for YBa2Cu3O7 (Shao-Chun et al., 1991), 
Kab/Kc ≈ 6 for BiSr2CaCu2O8 (Crommie 
and Zettl, 1991), and Kab/Kc ≈ 9 for 
Tl2Ba2CaCu2O8 (Shao-Chun et al., 1991). 
The electrical-conductivity anisotropy is 
much greater, amounting to �ab/�c ≈ 104 

for the bismuth crystal (Crommie and 
Zettl, 1991). 

VIII. THERMOELECTRIC AND 
THERMOMAGNETIC EFFECTS 

A conductor which is open circuited, as 
shown in Fig. 16.34, and possesses a temper­
ature gradient can develop an electric field 
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Figure 16.33 Dependence of the thermal conductivity of 
In0�96Bi0�04 normalized to its normal-state value on applied mag­
netic fields up to 70 mT (700 G). Changes in conductivity occur 
at the lower- �Bc1� and upper- �Bc2� critical fields, as indicated 
(Dubeck et al., 1964). 

along the gradient direction, called the ther- direction. This is called the Peltier effect; 
mopower or Seebeck effect, and an electric an electric current flowing perpendicular to 
field perpendicular to this gradient, called the electric current direction is called the 
the Nernst effect. When an isothermal elec- Ettingshausen effect. In the two longitudinal 
tric current flows, a thermal current can effects, Seebeck and Peltier, the central role 
appear flowing parallel to the electric current is played by normal state charge carriers, 

Figure 16.34 Experimental arrangement for measuring the Seebeck effect (thermo-power) 
voltage across a conductor mounted between two temperature reservoirs T1 and T2. The heat 
dissipation in the metal film raises the temperature T2 above T1. 
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or quasiparticles. The two transverse effects, 
Nernst and Ettinghausen, require the pres­
ence of an applied magnetic field. For super­
conductors the central role is played by the 
motion of vortices (Huebener et al., 1990; 
Palstra et al., 1990; Ullah and Dorsey, 1990). 
This means that the Seebeck and Peltier 
effects are useful for studying superconduc­
tors above Tc, whereas the Nernst and Etting­
hausen effects provide important informa­
tion below Tc. Finally, there is a fifth effect, 
called the Righi–Leduc effect, which is the 
thermal analogue of the Hall effect. This 
effect can be observed in superconductors 
below Tc. The characteristics of these five 
effects are summarized in Table 16.1. 

The thermoelectric effects are generally 
described in solid-state physics texts in terms 
of bimetallic circuits. A bimetallic circuit can 
be in the form of a superconducting rod in 
series with an ordinary conducting wire, such 
as one made of copper. Since the transverse 
effects (Nernst, Ettingshausen, Righi–Leduc) 
occur in the presence of a magnetic field, 
they are also referred to as thermomagnetic 
effects. Some articles report more than one 
transport measurement, such as magnetore­
sistivity, Hall effect, thermopower, etc., on 
the same sample (e.g., Burns et al., 1989; 
Freimuth et al., 1991; Fujishita et al., 1991; 
Ikegawa et al., 1992; Kaiser and Uher, 1988; 
Ohtani, 1989; Sugiyama et al., 1992; Z. H. 
Wang et al., 1993). The polar Kerr effect 
(Spielman et al., 1992) and the magneto opti­
cal Faraday effect (Forkl et al., 1990) of 
high-temperature superconductors have also 
been reported. 

A. Thermal Flux of Vortices 

In Chapter 12, Section VI, we discussed 
the motion of vortices in the presence of 
applied magnetic fields and currents; some of 
the thermomagnetic effects can be explained 
in terms of this motion. Vortex motion can 
also be induced by the presence of a tempera­
ture gradient. We will say a few words about 

the origin of this motion before proceeding 
to describe the effects themselves. 

Consider a Type II superconductor in a 
uniform applied magnetic field. The density 
of vortices, which is equal to Bin/�0, where 
�0 is the quantum of flux, is independent 
of the temperature. If a temperature gradi­
ent is established perpendicular to the mag­
netic field direction, the vortices in the high-
temperature regions will have larger radii 
than those in the low-temperature regions 
because the effective radius, which is equal 
to the penetration depth, increases with the 
temperature, as indicated in Fig. 2.42. We 
saw in Chapter 12, Section V.A, that the 
range of the repulsive force between two vor­
tices increases with the penetration length. 
This means that the vortices at the hot end of 
a sample will exert a force on their neighbors 
that pushes them toward the cooler end of 
the sample. Thus the uniformity of the mag­
netic field tends to preserve a constant flux 
density while the thermally induced forces 
tend to produce flux motion. The result is 
a continual flux flow, with vortices entering 
the sample at the hot end and leaving at the 
cold end. This is illustrated in Fig. 16.35. 

From a thermodynamic viewpoint, the 
force producing flux motion can be looked 
upon as a thermal force −S��T equal to 
the product of what is called the transport 
entropy S� (which is measured per vortex 
unit length) (de Lange and Gridin, 1992; 
Samoilov et al., 1992) and the temperature 
gradient �T . The motion of vortices subject 
to this force can be described by a vortex 
equation of motion similar to Eq. (12.75), 
with the Lorentz force term replaced by the 
thermal force. 

The entropy density within a vortex 
core, where the material is in the normal 
state, is higher than it is in the surround­
ing superconducting medium, causing the 
vortex to move toward the lower temper­
ature region, where the medium will have 
a lower entropy density. This pecularity of 
the entropy density represents one explana­
tion for the flux flow in the presence of 
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Figure 16.35 Vortex flow from the warmer end of a super­
conducting slab, where the vortex density is low, to the cooler end, 
where the density is high, under the action of the thermal force Fth = 
−S��T . Note that the vortices have larger radii at the warmer end. 

a temperature gradient. Increasing the vor­
tex density where the temperature is lower 
tends to equalize throughout space the aver­
age entropy density arising from the super­
conducting medium plus the vortices with 
their normal-state cores. 

An additional effect can arise from the 
electrons and holes in the vortex cores, where 
the material is in the normal state. These 
will have different thermal distributions in 
the cores at the hot and cold ends, and the 
drift velocity of the cores will cause these 
charge carriers to experience a Lorentz force 
with the applied magnetic field. This effect 
can also influence the vortex motion (Wang 
and Ting, 1992a). 

Now that we have seen the ways in 
which thermal effects can cause vortex 
motion we are better prepared to understand 
the thermomagnetic effects that are based on 
this notion, such as the Seebeck effect aris­
ing from thermal diffusion of quasiparticles 
under the influence of a temperature gradi­
ent, and the Nernst effect, which is due to 
the thermal diffusion of magnetic flux lines 
(Ri et al., 1993). 

B. Seebeck Effect 

A conductor which has no electric cur­
rent flowing through it, but which has a 
temperature gradient along its length, can 
develop a steady-state electric field in the 
gradient direction, 

E = S�T� (16.41) 

This gives rise to an electrostatic potential 
difference V2 −V1 between the ends, 

V2 −V1 = S�T2 −T1�� (16.42) 

where S is called the thermopower, ther­
moelectric power, or Seebeck coefficient. 
We should be careful not to confuse this 
symbol with the symbol S� for the trans­
port entropy. A typical experimental arrange­
ment for determining the thermopower, 
shown in Fig. 16.34, consists of a con­
ducting rod connecting two copper blocks 
that serve as temperature reservoirs. One 
block is heated with a metal film resistor 
that raises its temperature above that of the 
other block, so that the thermal conductiv­
ity of the two copper blocks exceeds that 
of the conducting rod. A nanovolt meter is 
employed to measure the thermoelectric volt­
age between the ends of the rod arising from 
the longitudinal temperature gradient along 
the rod. 

In the free-electron approximation, the 
thermopower has the value (Ashcroft and 
Mermin, 1976, p. 52; MacDonald, 1962) 

�2 kB T 
S = · · (16.43)

2 e TF 

= 142 

� 
T 

TF 

� 

�V/K� (16.44) 

where the Fermi temperature can be, typ­
ically, 104 to 105 K. Devaux et al. (1990) 
added a temperature-dependent electron dif­
fusion term to this expression. Thermopower 
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results have been explained using percola­
tion (Rajput and Kumar, 1990) and Hub­
bard (Oguri and Maekawa, 1990) models. 
Sergeenkov and Ausloos (1993) discussed 
thermopower of granular superconductors in 
terms of the superconductive glass model 
of Ebner and Stroud (1985). They define a 
phase locking or grain decoupling tempera­
ture below which the grains form a coherent 
Josephson junction network and above which 
(but still below Tc) the grains react indepen­
dently (Mocaër et al., 1991). 

A number of workers have reported ther­
mopower measurements on polycrystalline 
samples of high-temperature superconduc­
tors including the mercury compounds (Ren 
et al., 1993; Subramanian et al., 1994; Xiong 
et al., 1994), but we will confine our atten- Figure 16.37 In-plane thermopower measurements 
tion to the single crystal and the mixed state Sab of sintered Bi2Sr2CaCu2O8+� [Pekala et al. (1989) 
results. Figures 16.36, 16.37, and 16.38 com- (•), Crommie et al. (1989) (�), Chen et al. (1989) �×�, 
pare the temperature dependence of the ther- and TlCaBaCuO (Bhatnagar et al. (1990) ���]. Fits to 

mopower measured in the a�b-plane �Sab� the data are from Pekala et al. (1989); the inset data for 

and perpendicular to this plane �S � for single Sn0�8Ag0�2 ��� and Sn0�6Ag0�4 �+� are from Compans 
c and Baumann (1987); the figure is from Kaiser and 

crystals of YBa2Cu3O7−�� Bi2Sr2CaCu2O8, Mountjoy (1991). 
and TlBaCaCuO. In all these cases the ther­
mopower was zero below Tc and showed a 
sharp rise in magnitude at the transition tem-

Figure 16.36 In-plane thermopower measurements 
Sab of YBa2Cu3O7−� monocrystals. The data are from 
Lin et al. (1989) �+�, Sera et al. (1988) �©�, and Yu 
et al. (1988) �×�; fits to the data are explained in Kaiser 
and Mountjoy (1991); the figure is from Kaiser and 
Mountjoy (1991). 

Figure 16.38 Out-of-plane thermopower measure­
ments Sc of monocrystals fitted to a diffusion model 
(——). The data for YBa2Cu3O7−� are from Crommie 
et al. (1988) ���, the data for Bi2Sr2 CaCu2O8+� are 
from Crommie et al. (1989) ��� and Chen et al. (1989) 
�•�; the figure is from Kaiser and Mountjoy (1991). 
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perature. Its subsequent behavior above Tc 

was not predictable. 
Kaiser and Mountjoy (1991) explained 

these results in terms of the metallic-
diffusion approach, an approach that has 
been successfully applied to other metal sys­
tems in which phonon drag is suppressed. 
They found that the bare thermopower term, 
which is linear in the temperature, like, 
the simpler free-electron expression (16.43), 
is strongly enhanced in high-temperature 
superconductors by the electron–phonon 
interaction. Their fits to the data shown in 
Figs. 16.36, 16.37, and 16.38 are quite good. 
The figures also show the bare thermopower 
contribution, which is especially small for 
the in-plane yttrium data. In the free-electron 
approximation (16.43), the bare phonon lines 
of Figs. 16.37 and 16.38 correspond to 
Fermi temperatures of about 20,000 K and 
40,000 K, respectively; actual Fermi temper­
atures are expected to be smaller than these 
values. Doyle et al. (1992) estimated the 
Fermi energy of Bi1�6Pb0�4Sr2Ca2Cu2O y from 
thermopower measurements. 

Single-crystal thermopower results have 
been reported for the lanthanum (Cheong 
et al., 1989a; Nakamura and Uchida, 1993), 
yttrium (J. L. Cohn et al., 1991, 1992b; 
Lengfellner et al., 1992; Lowe et al., 1991), 
bismuth (Obertelli et al., 1992; Song et al., 
1990), and thallium (Obertelli et al., 1992; 
Shu Yuan et al., 1993) compounds and 
monocrystals of K- and Rb-doped C60 (Inabe 
et al., 1992). The thermoelectric power of 
the Nd–Ce and Nd–Pr electron superconduc­
tors was found to be similar in sign (positive) 
and in terms of temperature dependence to 
those of hole-type cuprates (Lim et al., 1989; 
Xu et al., 1992). The thermopower of the 
organic superconductor 

K–(BEDT–TTF)2Cu[N(CN)2Br 

was positive along the a direction and neg­
ative along c, suggesting that the carriers in 
the a direction are hole-like, whereas those 
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along c are electron-like (J. Yu et al., 1991). 
Electron–phonon enhancement of the ther­
mopower was found in the Chevrel com­
pounds Cu1�8Mo6S8−xMx, where M = Se or 
Te (Kaiser, 1987, 1988). 

We have been discussing the Seebeck 
effect in the normal state. Several work­
ers have applied a magnetic field for ther­
mopower measurements to study the mixed 
state. Figure 16.39 shows the results obtained 
for YBa2Cu3O7 (Hohn et al., 1991) with the 
applied field along the x� y, and z direc­
tions, respectively, of Fig. 16.34. Gridin 
et al. (1989) obtained results similar to those 
shown in Fig. 16.39c for the compound 
Bi2Sr2CaCu2O8 with the applied field along 
the z direction. It was found that the area 
between the curve for the thermopower in 
a field B and the curve for zero field �B = 
0� (cf. Fig. 16.39c) was proportional to the 
applied field B. The Seebeck effect in the 
mixed state has been attributed to counter 
flow of quasiparticles (normal current) and 
super current in the presence of a temper­
ature gradient (Huebener et al., 1990; Ri 
et al., 1991). 

While resistivity and Hall effect exper­
iments determine the density and mobility 
of charge carriers, thermopower experiments 
are intended to measure their energy dis­
tribution. From Eq. (16.32), we see that 
the electric field (16.41) associated with the 
thermopower is proportional to the thermal-
energy flux U of the charge carriers, which, 
in turn, from Eq. (16.31), is proportional to 
the entropy flow S�v. Thermopower mea­
surements have been looked upon as mea­
suring the entropy S� per carrier (Burns 
et al., 1989). 

C. Nernst Effect 

In the presence of an applied magnetic 
field, a conductor with a temperature gradi­
ent and no electric-current flow can develop 
a steady-state electric field transverse to 
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Figure 16.39 Temperature dependence of the mag­
netothermopower S for the experimental arrangement of 
Fig. 16.34 in magnetic fields of 1, 2, 3, 4, and 5 T. The 
c-axis oriented film is in the x� y-plane of Fig. 16.34 
so that the temperature gradient �yT and the measured 
electric field E are both along the y direction. Results y 

are shown for the applied magnetic field oriented (a) in 
the a� b-plane along the y direction parallel to �T , (b) 
in the a� b-plane, along the x direction perpendicular to 
�T , and (c) perpendicular to the a� b-plane, along the 
z direction (Hohn et al., 1991). 

the gradient direction, a phenomenon that 
is called the Nernst effect. The effect is 
very small in normal conductors, but can be 

appreciable in superconductors if flux flow 
occurs. 

To explain the origin of the transverse 
electric field, Huebener (1979, pp. 155ff.) 
made use of the vortex equation of motion 
(9.76) with the thermal force −S��T intro­
duced in Section VII.A replacing the Lorentz 
force J ×�0 as the driving force, 

S��T +�v� +Fp = 0� (16.45) 

where �v� is the drag force, Fp the pinning 
force, and the Magnus force �nse�v� ×�0� 
is neglected (Zeh et al., 1990). The ther­
mal force does not induce flux flow until it 
exceeds the pinning force Fp, and this occurs 
at the critical gradient ��T�c, 

S���T�C = −Fp� (16.46) 

to give 

S�
�T − ��T�c�+�v� = 0� (16.47) 

Therefore, a thermal gradient that exceeds 
the critical gradient causes vortices to move 
from the high-temperature end of the mate­
rial to the low-temperature end, in accor­
dance with Fig. 16.35. 

Consider a magnetic field B applied per­
pendicular to the thermal gradient, as shown 
in Fig. 16.40. The vortex moving at the 
velocity �� in the gradient direction entrains 
its encircling screening currents, as described 
in Chapter 2, Section VIII. Let �e be the 
velocity of an electron encircling the vortex 
when the vortex is stationary. Once the vor­
tex starts to move, the velocity of this elec­
tron on one side is �e +��, and on the other 
side �e − ��, as shown in Fig. 16.41. As a 
result, a Lorentz force ev ×B that is stronger 
on one side of the vortex than on the other 
comes into play, and the vortices move in a 
direction perpendicular to both v and B. This 
causes a flux gradient to be established along 
the x direction of Fig. 16.40, producing an 
electric field E, 

E = −v� ×B� (16.48) 
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Figure 16.40 Experimental arrangement for measuring the Nernst effect of a 
superconducting slab in a transverse magnetic field B. The vortices flow to the left 
with the velocity �� under the action of the temperature gradient �T directed to the 
right. The temperature �T1� T2� and voltage (a, b) measuring leads are indicated. 

Figure 16.41 Electron circulation around a vortex 
which is (a) stationary, and (b) moving to the right with 
the velocity ��. 

which cancels the effect of the magnetic field 
and causes the flux motion along �T to pro­
ceed undeflected. An analogous transverse 
electric field (1.90) arises in the Hall effect. 
As a result, a voltage difference �V , called 
the Nernst voltage, is established between 
the terminals a and b on the two sides of the 
superconductor. 

To obtain the equation for the Nernst 
effect we can substitute �� from Eq. (16.47) 
into Eq. (16.48) and write, in scalar notation, 

dV = −S��B/��
�T − ��T� �� (16.49)
dx c

We define the Nernst coefficient Q as the 
ratio between the transport entropy S� and 
the vortex friction coefficient �, 

Q = S�/�� 

and note that the electric field E is the gradi­
ent of the potential V in the x direction, and 
this gives for the Nernst voltage �V across 
a sample of width d 

�V = −QBd
�T − ��T�c�� (16.50) 

Figure 16.42 shows plots of the Nernst volt­
age measured across thin films of Sn at 
2 K�Tc = 3�7 K for B = 0� for several mag­
netic field strengths. We see from the figure 
that the critical thermal gradient ��T�c is less 
for higher fields, which is to be expected 
because the Lorentz force adds to the thermal 
force in Eq. (16.45) to overcome the pinning. 
The slopes of the lines �V/�T increase with 
the applied field, but this increase does not 
have the proportionality to B predicted by 
Eq. (16.50). 

A measurement of the temperature and 
field dependence of the Nernst coefficient of 
YBa2Cu3O7 below Tc showed that the vortex 
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Figure 16.42 Dependence of the Nernst voltage at 2.0 K of a 6�2-�m thick Sn thin film on 
the longitudinal temperature difference �T = T2 −T1 for the range of applied magnetic fields 
from 11.2 to 14.4 mT (110 to 144 G) (Rowe and Huebener, 1969). 

entropy per unit length S� increases with 
decreasing temperature, with very little field 
dependence (Hagen et al., 1990b), as shown 
in Fig. 16.43. The measured magnetoresis-

Figure 16.43 Dependence of the vortex entropy per 
unit length S� of epitaxial YBa2 Cu3O7 on the temper­
ature for applied magnetic fields of 2, 3, 4, and 6 T. 
The entropy was determined from Nernst effect mea­
surements (Hagen et al., 1990b). 

tance 	xx together with the expression (Kim 
and Stephan, 1969) 

	 = Ex/Jy = �0B/� (16.51)xx 

have been used to evaluate � and to deter­
mine S�. K. Kober et al. (1991) found 
a pronounced dependence of S� on B, 
with the entropy tending to decrease in 
higher fields. The Nernst effect below Tc 

has been reported for thallium supercon­
ductors (Koshelev et al., 1991; Lengfellner 
et al., 1990). 

The existence of the Nernst effect in the 
superconducting state indicates the presence 
of flux flow or vortex motion; flux depinning 
activation energies can be deduced (Lengfell­
ner and Schnellbögl, 1991) and entropy is 
transported by a moving flux line. These fac­
tors distinguish the effect from the thermo­
electric voltage which, since it is produced in 
the absence of an applied magnetic field, is 
due to dissipation processes other than flux 
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motion (Hagen et al., 1990b; Hohn et al., 
1991; Lengfellner et al., 1991a). 

D. Peltier Effect 

When a conductor is maintained at a 
constant temperature with a uniform electric 
current flowing through it, the electric cur­
rent flow is accompanied by a thermal cur­
rent, a phenomenon called the Peltier effect. 
(The thermal current serves to carry away the 
Joule heat generated by the electric current.) 
The electric current density J and thermal 
current density U are related by the Peltier 
coefficient �P 

U = �pJ� (16.52) 

This effect is demonstrated experimentally 
by driving a current through a bimetallic cir­
cuit maintained at a constant temperature and 
measuring the heat absorbed at one junc­
tion and released at the other, as shown in 
Fig. 16.44. Lord Kelvin deduced the relation 
(Thomson or Kelvin relation) 

�P = ST (16.53) 

between the Peltier coefficient �P and the 
thermopower S. The Peltier effect is strong 
in a normal metal but has yet to be observed 
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in a superconductor, perhaps because super 
current does not carry entropy. In a super­
conductor the effect could arise from dissi­
pative electric current associated with flux 
motion carrying Peltier heat across the sam­
ple in the mixed state, with the Thomson 
relation satisfied (Huebener, 1990; Logvenov 
et al., 1991). The calculations of Maki 
(1991) provide an extra Peltier effect due to 
fluctuations. 

E. Ettingshausen Effect 

When a conductor in an applied mag­
netic field is maintained at a constant temper­
ature with a uniform electric current flowing 
through it, heat energy (i.e., a thermal cur­
rent) can travel in the transverse direction 
to establish a transverse temperature gradi­
ent, a phenomenon called the Ettingshausen 
effect. This is the transverse analogue of the 
longitudinal Peltier effect. It is very small 
in a normal metal, but can be large in a 
superconductor in the presence of an applied 
magnetic field because a heat current will be 
generated by the motion of the vortices in 
the field. We will analyze this situation for 
the experimental arrangement of Fig. 16.45, 
which shows the magnetic field B0, current 
density J, and flux flow direction v�, as well 

Figure 16.44 Experimental arrangement for the Peltier effect. An 
electric current is passed through a metal maintained at a constant 
temperature T , and the heat current dQ/dt that enters at the right and 
leaves at the left is measured. 



Elsevier AMS Job code: SUP CH16-P088761 22-6-2007 9:44a.m. Page:523 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

523 VIII THERMOELECTRIC AND THERMOMAGNETIC EFFECTS 

Figure 16.45 Experimental arrangement for measuring the Ettingshausen effect 
of a superconducting slab carrying a transport current density J in a transverse 
magnetic field B0. To establish the transverse temperature difference �T , the vortices 
are caused to flow towards the side of the slab with the velocity v�. The temperature 
�a� b� and voltage �V1 �V2 � measuring leads are indicated. 

as the temperature change �T that is devel­
oped across the sample. 

The electric current flowing through the 
wire exerts a Lorentz force on the flux struc­
tures, which are vortices with quantized flux 
in the mixed state of Type II superconduc­
tors and nonquantized domains in the inter­
mediate state of Type I superconductors, as 
explained in Chapter 11, Section III. This 
causes the structures to move with the veloc­
ity v�; in addition, their motion is dissipative, 
as explained in Chapter 12, Section V.C, so 
that it is accompanied by a flow of heat. 
The heat-current density U� = nTS�v� may 
be equated to the heat flux K�T through 
Fourier’s law (16.31, 16.32), 

nTS�v� = −K�T� (16.54) 

where n is the number of flux structures per 
unit area and S� is the entropy transported 
per unit length of such a structure. If we sub­
stitute �� from Eq. (16.48) in Eq. (16.54), 
where �� = E/B (since v� and B are mutu­
ally perpendicular), and express E as the gra­
dient of a potential �V , we obtain the scalar 
expression 

� � � � � � � � � 
dT 

dx 

� � � = TS� 

K� 

� � � 
dV 

dy 

� � � � (16.55) 

which is the fundamental equation for the 
Ettingshausen effect in the superconducting 
state. Figure 16.45 clarifies the directions of 
these gradients, and shows the terminals a 
and b across which the temperature change 
is measured. It should be emphasized that 
the potential gradient �V , which is in the J 
direction, arises from the motion of the vor­
tices, since the super current flow itself is 
not accompanied by any potential gradient. 
The potential difference, �V = V2 −V1, mea­
sured between the two ends of the sample, as 
shown in Fig. 16.45, provides the magnitude 
of the gradient �V = �V/L. 

Figure 16.46 shows some experimen­
tal data obtained with the Type II alloy 
In0�6Pb0�4 in several applied magnetic fields. 
We see from the figure that �T is almost 
linear in �V = V2 −V1, especially for small 
applied fields. The slopes of the lines, how­
ever, do not exhibit the inverse dependence 
on the applied field which is expected from 
Eq. (16.55). Part of this discrepancy is 
explained by the fact that � in Eq. (16.55) 
is the internal flux, which is not proportional 
to the applied field (cf. Fig. 12.5). The extra 
Peltier effect arising from fluctuations (Maki, 
1991) gives rise to the Ettingshausen effect 
in the presence of an applied magnetic field. 
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Figure 16.46 Transverse temperature difference �Tx arising 
from the Ettingshausen effect in the Type II superconducting alloy 
In0�6Pb0�4 plotted versus the longitudinal flux-flow voltage �Vy for 
the range of applied magnetic fields 39.4–300 mT (394 to 3000 G) 
(Solomon and Otter, 1967). 

Others have reported Ettingshausen effects 
in the superconducting state (Freimuth et al., 
1991; Palstra et al., 1990; Ullah et al., 1990). 

F. Righi–Leduc Effect 

The Righi–Leduc effect is the thermal 
analogue of the Hall effect. One end of the 
sample is heated and the resulting tempera­
ture gradient �yT in the y direction produces 
a thermal current of density Uy that flows 
from the hot end to the cold end, as shown 
in Fig. 16.47. The application of a magnetic 
field B0 along z produces a temperature gra­
dient �xT along x given by 

�xT = RLB0Uy� (16.56) 

where RL is the Righi–Leduc coefficient. 
For metals in which the law of Wiedermann 
and Franz (1.33) is valid, this coefficient is 
related to the Hall coefficient RH (16.28) by 
the expression 

RH = RLL0T� (16.57) 

where L0 = 3
2 �kB/e�2 is the Lorentz number 

that appears in Eq. (1.33). The thermal Hall 

angle �th can be defined by analogy to its 
ordinary Hall effect counterpart (1.93): 

tan �th = �xT/�yT� (16.58) 

Figure 16.48 shows that the y direction tem­
perature gradient behaves differently in the 
Meissner state �Bapp < Bc1�, the mixed state 
�Bc1 < Bapp < Bc2�, and the normal state 
�Bc2 < Bapp�. 

IX. PHOTOCONDUCTIVITY 

Photoconductivity is the increase in 
electrical conductivity produced by shining 
light on a material. A related effect, called the 
photovoltaic effect is the inducing of voltages 
by light. This latter phenomenon is partic­
ularly pronounced in semiconductors when 
the band gap is small and light is able to 
excite electrons from the full valence band 
into the empty conduction band. 

Figure 16.49 shows the time dependence 
of the voltage responses of 

YBa2Cu3O7 
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Figure 16.47 Experimental arrangement for measuring the Righi–Leduc 
effect of a superconducting slab mounted between a cold �Tc� and a hot 
�Th � temperature reservoir in a transverse magnetic field B0. The transverse 
temperature gradient �xT and the longitudinal thermal current flow Uy are 
indicated. 

Figure 16.48 Righi–Leduc effect determination of the magnetic field 
dependence of the transverse temperature gradient for two temperatures. 
The behavior changes at the lower-critical field Bc1, as shown (Stephan 
and Maxfield, 1973). 

to a high-power laser pulse of energy density delayed and weaker photoresponse at 57 K 
2 mJ/cm2 at 99 K in the normal state. This obtained with the pulse of higher energy den-
same laser pulse produced no photoresponse sity 4�5 mJ/cm2 (C. L. Chang et al., 1990). 
in the superconducting state since more The compound YBa2Cu3O7−� is a con-
energy was needed. The figure shows the ductor for � below about 0.4 and a 
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Figure 16.49 Laser intensity in arbitrary units 
(——) and photoresponse voltages from YBa2Cu3 O7 

above Tc at 99 K �· · · · · · ·� and with higher laser intensity 
below Tc at 57 K (- - -) (C. L. Chang et al., 1990). 

Figure 16.50 Temperature dependence of the pho­
toresistivity in YBa2Cu3O6�3 for 0.18-eV incident 
photons with the intensity 1013 ���, 1014 ���, 
1015 ���, 7  × 1015 �©�, 1�1 × 1016 �♦�, and 2�3 × 
1016 photons/cm2 �•�. The dark resistivity, with no 
incident light ���, is also shown (G. Yu et al., 1992). 

semiconductor for � between 0.4 and 1; the 
quantity � correlates with the number of 
charge carriers nc. Figure 16.50 shows the 
dramatic lowering of the resistivity of the 
semiconductor YBa2Cu3O6�3 from its dark 
value to its value for several light inten­
sities, with higher intensities producing a 

Figure 16.51 Temperature dependence of the dark 
resistivity of several DyBa2Cu3O7−� thin films with 
their oxygen contents increasing over the range from 
the insulating antiferromagnetic phase at the top to the 
metallic and superconducting phase at the bottom. The 
inset shows the resistivity of a � = 0 superconducting 
sample on a linear scale (G. Yu et al., 1992). 

greater reduction. Figure 16.51 shows how 
the resistivity of the related superconduc­
tor DyBa2Cu3O7−� decreases as � decreases, 
i.e., as the oxygen content increases. Com­
paring these two figures shows that irradi­
ating the sample has an effect similar to 
that of increasing the oxygen content, since 
both processes have the effect of increas­
ing the number of carriers nc (G. Yu et al., 
1990, 1992). 

Bluzer (1991) studied transient photore­
sponse relaxation in YBa2Cu3O7−� using 
very short pulses, 0.3 ns in length, and 
obtained sharply rising signals followed by 
signals that decreased more slowly, as shown 
in Fig. 16.52b for the case T < Tc. In this 
temperature regime the response signal is 
proportional to the derivative of the quasi­
particle concentration nc. According to the 
n -versus-time curve reconstructed from this c

response and shown in Fig. 16.52a, a laser 
pulse arrives at time t0, with each photoab­
sorbed photon, of energy E0 = 2 eV, splitting 
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Figure 16.52 (a) Time dependence of the Cooper pair density with the quasiparticle formation 
and recombination processes indicated, and (b) measured photoresponse produced by these processes. 
The response signal is proportional to the derivative of the Cooper pair density (Bluzer, 1991). 

a Cooper pair to form two quasiparticles. 
Energetic quasiparticles break up additional 
Cooper pairs via an avalanche or cascade 
process that eventually produces, on aver­
age, 32 quasiparticles per adsorbed photon 
by the time t1 (Han et al., 1990b). Fol­
lowing this cascading process, the lower-
energy quasiparticles thermalize between t1 

and t2 by emitting 40–50 meV phonons, 
which break up additional Cooper pairs. The 
subsequent quasiparticle recombination pro­
cess is detected as a negative photoresponse 
until the Cooper pair density nc returns to 
its initial equilibrium value, as shown in the 
figure. 

Such a cascade process produces quasi­
particles at much higher temperatures than 
the phonons, which are at the lattice temper­
ature. The thermalization process involves 
electron–phonon interaction; this interaction 
has been measured by determining the relax­

ation rate via femtosecond spectroscopy 
(Brorson et al., 1990; Chekalin et al., 1991; 
Rice et al., 1993). 

We have discussed what might be called 
transient photoconductivity. Persistent pho­
toconductivity has also been observed, in 
which the photoinduced conductivity change 
persists for a long time following excita­
tion (Ayache et al., 1992; Kreins and Kudi­
nov, 1992). 

X. TRANSPORT ENTROPY 

The principal quantity obtained from 
thermomagnetic measurements is the trans­
port entropy S�. Experimentally, flux-flow 
resistance measurements determine �0B/� 
with the aid of Eq. (16.27), the Nernst 
effect then gives S�B/� from Eq. (16.50), 
and the Ettingshausen effect provides S�/� 
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Figure 16.53 Three-dimensional plot showing the dependence of the trans­
port entropy S� of a vortex per unit length on the magnetic field and the 
temperature for the Type II alloy In0�6Pb0�4 with Tc = 6�3 K and Bc2 = 6500 G 
(0.65 T) (adapted from Huebener, 1979, p. 161). 

from Eq. (16.55). These results provide the 
entropy per unit length of a vortex in a Type 
II superconductor. 

Figure 16.53 shows how the transport 
entropy S� of the Type II alloy In0�6Pb0�4 varies 
with the temperature and magnetic field in the 
superconducting state. We see from the figure 
that, for a fixed magnetic field, the entropy 
increases from zero at T = 0, passes through 
a maximum (at 3.4 K for B = 0), and then 
decreases to zero at T = Tc�B�. 

PROBLEMS 

1. Find the impedance Z of the circuit of 
Fig. 16.2, and find the ratios In/I and 
Is/I of the two currents to the total cur­
rent I = In + Is. 

2. For the case of relatively small grains, 
compare the inductances of (a) a 5-turn 
coil of radius 5 �m and length 10 �m, (b) 
a straight wire 10 �m long, and (c) a loop 
of radius 10 �m and wire radius 1 �m. 

3. For the case of relatively large grains, 
compare the inductances of (a) a 10-turn 

coil of radius 40 �m and length 80 �m, (b) 
a straight wire 80 �m long, and (c) a loop 
of radius 80 �m and wire radius 5 �m. 

4. For the case of typical electrical circuits, 
compare the inductances of (a) the coil 
of Chapter 2, Section IV.B, (b) a straight 
wire 10 cm long, and (c) a loop of radius 
10 cm with wire radius 0.3 mm. 

5. Determine	 the flux-flow resistance 
determined for each of the V -versus-R 
curves shown in Fig. 16.21. Make a plot 
of R versus B. 

6. Show	 that if the Magnus force is 
neglected, the electric field induced by 
flux flow is aligned along the transport 
current direction with the magnitude 

E ≈ 0 J�0 < Fp 

E ≈ B0�J�0 −Fp� 
J�0 > Fp� 

7. Show	 that if the Magnus force is 
neglected, the differential flux-flow 
resistivity is given by 

�0B0	ff = � 
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8. Show	 that four of the compounds 
with Hall effect data in Fig. 16.24 
are hole-like and that the fifth is 
electron-like. 

9. Derive	 the Ettinghausen equa­
tion (16.55). Deduce the polarity of the 
potential drop along y (i.e., determine 
which end is + and which is −), and 
determine which of the two terminals, 
a or b, is at the higher temperature in 
Fig. 16.45. 

10. Thermopower and Peltier experiments 
were carried out using the same super­
conducting rod. In the former exper­
iment the temperature difference �T 
across the sample produced the volt­
age difference �V , and in the latter 
experiment the input electrical current 
I produced the thermal current dQ/dt. 

Show that 

dS�
I�V = �T � 

dt 

where the temperature and its gradient 
are assumed independent of time. 

11. Why does the absence of a Peltier effect 
in a superconductor show that super cur­
rent does not transport entropy? 

12. Derive	 the Righi–Leduc expression 
(16.57), 

RH = RLL0T� 

What do you assume about �th and �H? 
13. Describe the details of the quasiparticle 

production and recombination processes 
outlined on Fig. 16.52 (consult the orig­
inal reference). 
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17 

I. INTRODUCTION 

Several standard spectroscopic tech­
niques have been widely used for the study 
of superconductors. We will start by describ­
ing the principles of each of these techniques 
and what can be learned from it, and then 
present some of the results that have been 
reported for superconductors. 

Most branches of spectroscopy are con­
cerned with the absorption by the sample of 
an incoming photon of radiation h�, where h 
is Planck’s constant and � is the frequency. 
The photon transfers its energy to the sample 
by inducing a transition from a ground state 
E0 into an excited state Ee. The difference in 
energy between the two states is equal to the 
energy of the photon, 

Ee −E0 = h�� (17.1) 

Spectroscopic 
Properties 

as indicated in Fig. 17.1. The intensity of 
light I0 incident on the sample is partly trans­
mitted, It , and partly reflected, Ir , so that the 
amount absorbed is given by 

Ia = I0 − Ir − It� (17.2) 

as shown in Fig. 17.2. Transmission spec­
trometers measure It , generally when Ir is 
small, while reflectance spectrometers mea­
sure Ir , generally when It is small. Either 
way, the spectrometer provides the frequency 
dependence of the ratio Ia/I0, a maximum 
in Ia indicating the center of an absorption 
line. In a single-beam measurement, Ia itself 
is determined, while in a double-beam tech­
nique the absorption of a sample is measured 
relative to that of a reference material. Super­
conductors tend to be opaque at infrared 
and visible frequencies, so that reflectance 

531 
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Figure 17.1 Incoming photon h� inducing an elec­
tron to jump from a ground state energy level E0 into 
an excited state level Ee. 

Figure 17.2 Absorbed �IA�, transmitted �IT�, and 
reflected �TR� components of an incident light beam of 
intensity I0. 

techniques apply; higher frequencies in the 
x-ray region can penetrate, and transmission 
is often employed here. In the next section 
we will say a few words about reflection 
before proceeding to the various individual 
spectroscopies. 

A number of acronyms, such as ACAR, 
ARPES, BIS, EELS, EPR, ESR, EXAFS, 
IPS, IR, �SR, NMR, NQR, PAS, PES, UPS, 
UV, XAFS, XANES, and XPS, in com­
mon use in the field will be defined in the 
appropriate sections. In addition, spectro­
scopists report their results in terms of differ­
ent energy units. If we had standardized this 
chapter, by for example, converting all ener­
gies to joules, it would have been difficult to 
compare the results we wish to present with 
those found in the literature. The appropriate 
conversion factors are 

1000 cm−1 ≡ 0�124eV 

≡ 30THz ≡ 105 Å� (17.3) 

17 SPECTROSCOPIC PROPERTIES 

II. VIBRATIONAL SPECTROSCOPY 

Vibrational spectroscopy involves pho­
tons that induce transitions between vibra­
tional states in molecules or solids. These 
transitions generally fall within the frequency 
band of infrared (IR) spectrometers, typically 
from 2×1013 to 12×1013 Hz, but sometimes 
over a wider range. It is customary for work­
ers in the field to use the unit of recipro­
cal centimeters, which corresponds to 650 to 
4000 cm−1 for the above range. The conver­
sion factor between the two is the velocity 
of light, 2�9979×1010 cm/s. 

The energy gaps of high-temperature 
superconductors are in the infrared region, 
so that a change in the absorption can occur 
when the vibrational frequency equals the 
energy gap, 

h� = Eg (17.4) 

which gives us a value of Eg = 2	, (see 
Chapter 7, Section VI, F). 

A. Vibrational Transitions 

In infrared spectroscopy, an IR photon 
h� is absorbed directly to induce the vibra­
tional transition (17.1), while in the case of 
Raman spectroscopy an incident optical pho­
ton of frequency h�inc is absorbed and a sec­
ond optical photon h�emit is emitted, with 
the transition induced by the difference fre­
quency h�, 

h� = ���inc −��emit�� (17.5) 

where �inc > �emit for what is called a Stokes 
line and �inc < �emit for an anti-Stokes line. 
The fundamental vibrational energy levels 
E have the energies n 

1 
En = �nv + �h�0� (17.6)

2 

where the vibrational quantum number nv = 
0�1�2�3� 
 
 
  is a positive integer and �0 is 
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the characteristic frequency for a particular 
vibrational mode. Transitions occur for the 
condition 

� = �n′ 
v −nv��0� (17.7) 

The lowest frequency transition with nv 
′ − 

nv = 1 is called a fundamental band. 

B. Normal Modes 

Molecular vibrations occur in what are 
called normal modes. These involve the 
coherent oscillations of atoms in the unit cell 
relative to each other at a characteristic fre­
quency. The oscillations occur in such a man­
ner that the center of gravity is preserved. 
The normal modes of Tl2Ba2CaCu2O8 (also 
isomorphous Bi2Sr2CaCu2O8; cf. Kulkarni 
et al., 1989, 1990; R. Liu et al., 1992b; 
Prade et al., 1989) are sketched in Fig. 17.3, 
with the arrows indicating the motion 
of the various atoms during a normal 
mode oscillation. Analogous mode dia­
grams have been published for the com­
pounds La2CuO4 (Mostoller et al., 1990; 
Pintschovius et al., 1989), �Nd� Ce�2CuO4 

(Zhang et al., 1991a), and YBa2Cu3O6, 
and YBa2Cu3O7 (Bates, 1989). Isomorphous 
compounds have the same normal modes, but 
different frequencies of oscillation because 
of the differences in the masses and bonding 
strengths of the atoms. 

Spectroscopists have developed a nota­
tion for these modes based on characteristics 
of the oscillations. The one-dimensional A 
and B modes refer to atom motions parallel 
to the c-axis, i.e., in the vertical �z� direc­
tion. The A mode is symmetrical for a 90� 

rotation about z, which means that all of the 
arrows on the atoms of Fig. 17.3 are coin­
cident under this operation. The B mode is 
antisymmetrical under this 90� rotation, so 
that the arrows reverse direction. The sub­
script 1 is for a mode which is symmetrical 
for a 180� rotation about x or y, while the 
subscript 2 is for a mode which is antisym­
metrical for this rotation. We see from the 

figure that there is a center of inversion, so 
that atoms interchange positions under the 
inversion operation x → −x� y → −y, and 
z → −z. The even, or gerade �g�, vibrations, 
which preserve this center of symmetry, are 
said to be symmetric with respect to inver­
sion, and the odd, or ungerade �u�, vibrations 
are antisymmetric with respect to inversion. 

There are also two-dimensional modes 
E and E involving atom motions in the g u 

a, b-plane, but these are more difficult to 
characterize. 

C. Soft Modes 

A phase transition in which the low­
and high-temperature crystal structures differ 
by only small lattice displacements is often 
accompanied by what are called soft vibra­
tional modes (Burns, 1985, Section 14-3). 
Most vibrational modes increase in fre­
quency as the temperature is lowered, but 
the soft modes decrease in frequency as the 
transition temperature is approached from 
above, reaching very low frequencies near 
the transition. Further cooling below the 
transition temperature causes the modes to 
increase in frequency again, and some­
times a split into two modes occurs. Phase 
transitions associated with high-temperature 
superconductors often involve orthorhombic­
to-tetragonal changes in crystal structure, in 
which individual atoms undergo very small 
shifts in position, so that soft modes are to 
be expected. 

D. Infrared and Raman Active Modes 

Two important characteristics of a 
vibrating system are its electric dipole 
moment and its polarizability. The electric 
dipole moment �D arises from the separation 
of charge. For point charges −Q and +Q 
separated by the distance d, it is  

�D = dQ� (17.8) 
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Figure 17.3 Raman-active (top panels) and infrared-active (bottom panels) normal vibrational modes of 
Tl2Ba2CaCu2O8, a body-centered tetragonal compound. For the infrared-active modes, the transverse optical 
(TO) frequencies, in cm−1, are given first, followed by the corresponding longitudinal optical (LO) values in 
parentheses. The lengths of the arrows, although not drawn to scale, are indicative-of the relative vibrational 
amplitudes (Kulkarni et al., 1989, 1990). 
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The polarizability P causes the electric vec­
tor of an incident light wave to induce a 
dipole moment �ind. It is defined as the ratio 
of the induced moment to the applied field, 

P = �ind/E� (17.9) 

Therefore, the polarizability is a measure of 
the deformability of the electron cloud of 
the molecule in the presence of an electric 
field. Infrared spectral lines are due to a 
change in the electric dipole moment of the 
molecule, while Raman lines appear when 
there is a change in the polarizability. These 
two spectroscopies are complementary to 
each other because some vibrational transi­
tions are IR active while others are Raman 
active. Infrared active modes are of odd (u) 
type, where the oscillating atoms produce a 
dipole moment, while Raman active modes 
are of even (g) type, having no moment 
themselves, though a moment is induced 
by the electric field of the incident radi­
ation. Thomsen and Cardona (1989) give 
lists of infrared and Raman active modes 
for some high-temperature superconductors. 
Kulkarni et al. (1989) obtained good agree­
ment between calculated vibrational frequen­
cies of Tl2Ba2CaCu2O8 and experimental 
values from infrared and Raman studies. 

E. Kramers-Kronig Analysis 

Infrared and optical reflectance mea­
surements of superconductors can provide 
information on the conductivity. In this 
section we will explain how the conductivity 
is obtained from these data. 

The reflectance (or reflectivity) R repre­
sents the fraction of reflected light, 

I
R = r � (17.10) 

I0 

For normal incidence it is related to the 
relative dielectric constant � through the 
expression 

√ � �−1� 
R = √ � (17.11)� �+1� 

where � has real and imaginary parts �′ and 

� = �′ + i�′′� (17.12) 

corresponding to dispersion and absorption, 
respectively. The limiting dielectric constant 
for large ����, is obtained from a fit to 
the data, so that it is a limiting value for 
the range of frequencies under investigation, 
rather than the ultimate limit �� = 1 of free 
space. Equation (17.11) is more complicated 
for oblique incidence. A Kramers–Kronig 
analysis (Wooten, 1972) can be performed 
to extract the frequency dependence of �′��� 
and �′′���, and the data can sometimes be 
fitted to an expression containing Drude­
like terms such as 

f �2 

���� = �� − p p 

�2 − i�/
 

� fi�
2 

+ i � (17.13)
��2 −�2�− i�/
ii i 

where fi is the oscillator strength and 
the relaxation times 
 and 
i provide the 
broadening of the resonances. The summa­
tion terms are Lorentz oscillator types that 
account for features arising, for example, 
from vibrational absorption lines. The sec­
ond term corresponds to Eq. (1.27), with the 
damping factor i�/
 added, where �p is the 
plasma frequency (1.28), 

�p = �ne2/�0m�1/2� (17.14) 

which was introduced in Chapter 1, 
Section V. 

Some experimentalists report their data 
as plots of �′′ = Im������ versus the fre­
quency. Others present plots of the high-
frequency conductivity �1, 

�1��� = ���′′/4��� (17.15) 

We see from a comparison of Figs. 17.4a 
and 17.4b that the �′′ (or �1) plots are supe­
rior to reflectance plots for determining the 
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Figure 17.4 Infrared spectrum of an Nd2CuO4 single crystal 
at 10K showing (a) the reflectance, and (b) the imaginary part of 
the dielectric constant �′′ determined by a Kramers–Kronig analysis 
using the value �� = 6�8 (Crawford et al., 1990a). 

positions and widths of individual absorption 
lines arising from the summation terms of 
Eq. (17.13). To see why this is so, consider 
the real and imaginary parts of one of the 
terms in the summation of Eq. (17.13), 

�2 −�2


fi�i 
2 

��2 
i −�2

i

�2 + ��/
i�
2


�/
i+ i � (17.16)
��2 

i −�2�2 + ��/
i�
2 

which, in the usual limit of narrow lines, 
�i
i 	 1, can be written 

2��i −��
i 1 + i � 
4��i −��2
i 

2 +1 4��i −��2
i 
2 +1 
(17.17) 

where the factor fi�i
i has been omitted. 
This corresponds to a Lorentzian line shape. 

The sketches of this function in Fig. 17.5 
show that the real (dispersion) and imaginary 
(absorption) parts produce resonant lines 
centered at �i, where 1/
i is the linewidth. 
The reflectance plotted in Fig. 17.4a is a mix­
ture of absorption and dispersion, hence it 
cannot provide the resonant frequencies �i 

with any precision. 

F. Infrared Spectra 

Figure 17.4 shows an example of an 
infrared spectrum of Nd2CuO4 with the T

′ 

structure in the far-infrared region where 
the fundamental band vibrations are found. 
Figure 17.6 shows a much broader scan 
for this same compound, from 50 to 
32�000 cm−1 (4 eV), and Fig. 17.7 presents 
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Figure 17.5 Normalized line shape of the dielectric 
constant � = �′ + i�′′ showing the real part �′, called 
the dispersion, and the imaginary part �′′, called the 
absorption. 

the conductivity of three R2CuO4 com­
pounds, where R = Nd, Sm, or Gd, calcu­
lated from their infrared reflectances. The 
mid-infrared spectrum is devoid of features 
that are typical of an insulating compound. 

What is referred to as a charge-transfer tran­
sition appears at 12�000 cm−1 (1.5 eV). 

The far-infrared reflectance and conduc­
tivity spectra of YBa2Cu3O7−� in the nor­
mal (at 110K) and superconducting (at 2K) 
states are compared for ceramic samples in 
Figs. 17.8 and 17.9 (Bonn et al., 1988). The 
ranges of reflectance and conductivity values 
are much higher than in the Nd2CuO4 case 
of Figs. 17.6 and 17.7, and data for single 
crystals and oriented films have even higher 
reflectances. The low-frequency conductiv­
ity 2100 �� cm�−1 of Fig. 17.9 approaches 
the measured dc value of 3300 �� cm�−1. 
The plasma frequency �p is 6�000 cm

−1 

(0.75 eV), and 1/
 = 300 cm−1. 
Isotopic substitutions have been 

employed to identify modes. For example, it 
was observed that enriching YBa2Cu3O7−� 

with the heavy isotope 65Cu causes the 
148�6cm−1 line, which involves Cu vibra­
tions, to shift downward in energy by 
1�8cm−1, whereas the 112�5cm−1 line, 
which does not involve Cu motion, remained 
at the same frequency. A similar result 

Figure 17.6 Frequency dependence of the reflectance of Sm2CuO4 

(- - -) and Nd2CuO4 �– · ·– · ·–� in the infrared and visible regions (Herr 
et al., 1991). 
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Figure 17.7 Frequency dependence of the conductivity of three 
monocrystals determined from a Kramers–Kronig analysis. The arrows 
indicate the shift direction with increasing mass Nd → Sm → Gd (Herr 
et al., 1991). 

occurs with 18O enrichment of 

�Pr1−xCex�CuO4� 

where three modes involving oxygen vibra­
tions were observed to shift downward by 
3–4%, whereas a fourth mode, which 
involves Pr vibrations, did not change. These 
downward shifts occur because classically, 
the vibrational frequency depends on the 
mass, in accordance with the expression 

�0 = �1/2���k/m�1/2 (17.18) 

where k is the spring constant, so that higher 
masses produce lower frequencies, assum­
ing that the substitution does not change k. 
Table 17.1 lists spring constants for various 
atom pairs in 

�La0�925Sr0�75�2CuO4 

and YBa2Cu3O7 that were deduced from 
measured vibrational frequencies (Bates, 
1989; Brun et al., 1987). 

We see from Fig. 17.7 and Table 17.2 
how the low-frequency infrared line shifts 

downward in frequency from 126 to 
121cm−1 as R of the compound R2CuO4 

changes in the order Pr–Nd–Sm–Gd of 
increasing mass. This is expected behavior 
for a mass change effect. At higher field, the 
other three lines shift in the opposite direc­
tion, which may be attributed to the decrease 
in bond length with a consequent increase in 
the spring constant in the order Pr–Nd–Sm– 
Gd, with the spring constant effect dominat­
ing in Eq. (17.18). 

G. Light-Beam Polarization 

In conventional Raman spectroscopy, 
an incident unpolarized light beam simulta­
neously excites many of the Ag� Bg, and 
Eg Raman active modes. Polarized light 
enhances some of these modes and dimin­
ishes or eliminates others. A variety of direc­
tions and polarizations of the incident and 
scattered light beams can be employed to sort 
out and identify the modes. 

To label the polarized spectra we will 
use the notation ki�Ei� Es�ks to denote the 
orientations of the incident (i) and scattered 
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Figure 17.8 Optical reflectance of YBa2Cu3O7−� in 
the superconducting state (dashed curves) and in the 
normal state (solid curves) for (a) polished sample, (b) 
unpolished sample following several days exposure to 
the air, and (c) unpolished sample immediately after 
annealing in oxygen (Bonn et al., 1988). 

(s) light propagation directions k and elec­
tric vector E polarizations. Sometimes, the 
polarization will be along x′� y′-axes that 
are oriented at 45� with respect to the x� y-
axes, as shown in the inset of Fig. 17.10. 
A horizontal bar will be printed over the 
coordinate (e.g., x̄) to denote the negative 
(e.g., −x) direction. Figure 17.10 illustrates 
the z�x′� y′�z case, in which an incident 

light beam travels along z and is polarized 
along x′, while a scattered beam departs 
along z and is polarized along y′. Some 
authors (e.g., Weber et al., 1988) use a short­
hand notation, specifying only the polariza­
tion directions, writing x′y′ for the case of 
Fig. 17.10. 

H. Raman Spectra 

In the previous section, we discussed 
that the Raman active modes can be sorted 
by using polarized light sources and detec­
tors. For example, YBa2Cu3O7 has five 
observed A modes, at 116, 149, 335, 435, g 

and 495cm−1, plus some weaker B2g and B3g 

modes. Figures 17.11a, 17.11b, and 17.11c 
show how to distinguish between these 
modes by changing the polarization con­
ditions. For example, the z�y′� x′�z̄ spec­
trum contains only the 335cm−1 line, while 
y�zz�ȳ exhibits only the other four Ag types. 
These spectra were obtained with twin-free 
monocrystals. B2g and B3g are essentially the 
same modes with atomic vibrations along a 

and b, respectively, and are detectable using 
the respective polarizations y�z� x�ȳ and 
x�z� y�x̄. These two modes differ because of 
the chains running along the b direction. 

Weber and Ford (1989) published a 
Raman study of undoped La2CuO4 in which 
they demonstrated the superiority of single 
crystal samples by means of the spectra pre­
sented in Fig. 17.12. This figure compares 
a powder sample with micrometer-sized par­
ticles with the freshly broken surface of 
a ceramic sample composed of 1–10�m 
grains, and an optically polished single crys­
tal. Figure 17.13 shows a soft mode at 
104 cm−1 observed below the transition tem­
perature 573K from the high-temperature 
tetragonal phase to the low-temperature 
ortho-rhombic phase. Figure 17.14 shows 
the pronounced decrease in frequency of 
this soft mode as the transition temperature 
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Figure 17.9 Real part of the conductivity of YBa2Cu3O7−� deter­
mined from a Kramers–Kronig analysis of the reflectance of the unpol­
ished sample of Fig. 17.8 immediately after annealing in oxygen, shown 
in the superconducting state (dashed curve) and in the normal state 
(solid curve) (Bonn et al., 1988). 

Table 17.1 Bond Lengths and Effective Spring Constants �keff � of Atom Pairs 
in Lanthanum and Yttrium Compounds 

�La0�925 Sr0�075�2 CuO4 YBa2 Cu3 O7−� 

Bond Lengtha Å keff 
b N/m Bond Lengthc Å keff 

c N/m 

Cu–O(2) 1.89 85 Cu(1)–O(2) 1.83 176 
Cu–O(2) 2.40 20 Cu(1)–O(1) 1.94 152 
La–O(1) 2.64 160 Cu(2)–O(3) 1.93 155 
La–O(2) 2.39 105 Cu(2)–O(4) 1.96 149 
La–O(2) 2.73 50 Cu(2)–O(2) 2.33 103 
La–La 30 Ba–O(2) 2.75 58 
La–Cu 10 Ba–O(1) 2.91 55 
O(1)–O(1) 2.67 20 Ba–O(3) 2.94 54 
O(2)–O(2) 3.77 7 Ba–O(4) 2.94 54 
O(1)–O(2) 3.05 4 Y–O(4) 2.38 79 

Y–O(3) 2.42 77 

a From Collin and Comes (1987).

b From Brun et al. (1987).

c From Bates (1989).


is approached from below. We see from 
Fig. 17.15, which compares spectra of the 
superconductor �La1�85Sr0�15�2CuO4 at room 
temperature and at 8K below Tc, that there 
is no sign of a phonon mode associated with 
the superconducting transition. 

Table 17.3 compares frequencies of the 
Raman active modes of several of the high-
temperature superconductors. Each mode in 
the table is labeled with the atom that dom­
inates the particular vibration. Figure 17.16 
shows the 
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Table 17.2 Shift of Infrared Frequency �i of the Series of Tetragonal R2CuO4 

Compounds (R Changing in the Order Pr, Nd, Sm, and Gd of Increasing Mass 
Number) 

Lattice constant, Å Infrared frequency, cm−1 

Mass 
Atom number a c �1 �2 �3 �4 

Pra 140�9 3�95 12�17 126 299 336 495 
Ndb 144�2 3�94 12�15 127 301 346 510 
Smb 150�4 3�91 11�93 123 304 351 534 
Gdb 157�3 3�89 11�85 121 318 368 545 

a From Crawford et al. (1990b).

b Lattice constants from Wyckoff (1965); IR frequencies from Burns (1989).


Figure 17.10 Experimental conditions for a z�x′� y′�z polarization measure­
ment. (The abbreviated notation x′y′ is sometimes employed.) The inset shows 
the orientation of the x′-y′-axes relative to x-y-axes. 

Bi2Sr2Ca n Cun+1O2n+6 

Raman spectra for n = 0 and n = 1 (M. J. 
Burns et al., 1989), the frequencies of which 
are presented in the table. 

I. Energy Gap 

Tunneling and vibrational spectroscopy 
are complementary ways of determining 
the energy gap of a superconductor (see 

Chapter 15, Section VI.E, for a discussion of 
tunneling spectroscopy and energy gaps). In 
the present section we will say a few words 
concerning the spectroscopic determination 
of gaps. 

For a superconductor at absolute zero, 
we expect light with frequencies lower 
than 2	/h to be transmitted and light 
with frequencies � >  2	/h to be reflected, 
as in the case of a normal metal. 
Above absolute zero these latter frequencies 
can excite quasiparticles and induce a 
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Figure 17.11 (a) Raman spectra of twin-free YBa2Cu3O7 recorded with the laser beam directed along the c-axis 
and the indicated polarizations. The x-axis is the base line for the power spectrum, while the dotted lines indicate 
the base lines of the three upper spectra (McCarty et al., 1990a, b). (b) Raman spectra of twin-free YBa2Cu3O7 

recorded with the laser beam propagating in the x� y-plane, using the notation of Fig. 17.11a. Note the scale factor 
change for the two middle spectra (McCarty et al., 1990a, b). (c) Raman spectra of twin-free YBa2Cu3O7 recorded 
with the laser beam directed along the c-axis, and the indicated polarizations selected to enhance the B2g (top 
spectrum) and B3g (middle spectrum) modes. Note the scale factor change for the lower Ag mode spectrum. The 
five Ag modes, with their frequencies labeled, appear on the upper spectrum due to polarization leakage (McCarty 
et al., 1990a, b). 
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Figure 17.12 Raman spectra of La2CuO4. The laser 
powers and exposure times were 15mW and 50min for 
the powder, 15mW and 10 hr for the ceramic �1–10�m 
grains), and 50mW and 50min for the single crys­
tal. Different polarization conditions were used, and the 
spectra have a common baseline (Weber et al., 1989). 

photoconductive response. Figure 17.17 
shows low-temperature experimental data for 
reflection of infrared radiation at frequen­
cies below the gap value 2	 ∼ 70 cm−1, 
with a drop to zero reflectivity for frequen­
cies above this value for the superconduc­
tor Ba0�6K0�4BiO3 (Schlesinger et al., 1989). 
The figure also shows the drop in reflec­
tivity when the temperature is increased, 
and also when a magnetic field is applied. 
Figure 17.18 presents infrared reflectivity 
(reflectance) spectra for two single-domain 
(untwinned) YBa2Cu3O7−� crystals arising 
from the Cu–O planes when the electric 
field is polarized parallel to the a-axis, and 
with possible contributions from the chains 
as well for polarization parallel to b 
(Schle-singer et al., 1990b; vide also Friedl 
et al., 1990; McCarty et al., 1991). In both 
cases, the superconducting-to-normal state 
resistivity ratios Rs/Rn, obtained at the tem-

Figure 17.13 Low-frequency zz spectra from the 
[010] surface of orthorhombic La2CuO4 at 295K (top), 
and tetragonal La2CuO4 at 573K (bottom). A 50mW, 
514.5 nm laser was employed (Weber et al., 1989). 

peratures 35K and 100K, respectively, peak 
near ≈ 500 cm−1, indicative of an energy 
gap. Brunel et al. (1991) measured the sharp 
infrared reflectivity discontinuity at the gap 
for the superconductor Bi2Sr2CaCu2O8. 

III. OPTICAL SPECTROSCOPY 

Visible (13,000 to 25�000 cm−1, or  
1.6 to 2.5 eV) and ultraviolet (UV) (3.1 
to ≈ 40 eV) spectroscopy, both often 
referred to as optical spectroscopy, have 
been employed to detect crystal field-split 
electronic energy levels in insulating solids 
containing transition ions and to determine 
energy gaps in semiconductors as well as 
the locations of impurity levels within these 
gaps. The response of metals to incident 
optical radiation depends on the plasma 
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Figure 17.14 Plot of frequency squared versus T 

for the soft phonon observed in La2CuO4 for zz scat­
tering under the same conditions as Fig. 17.13 (Weber 
et al., 1989). 

frequency �p (17.14) which, as noted in 
Section II, lies in the near-infrared region for 
the high-temperature superconductors. 

A study was made of the opti­
cal reflectance (reflectivity) of the series 
of La2−xSrxCuO4 compounds prepared for 
the range of compositions indicated in 
Fig. 17.19. The broad spectral scan, up to 
37 eV, which is shown in Fig. 17.20 exhibits 
three reflectivity edges. The highest fre­
quency edge, near 30 eV, falls off as 1/�4, 
which was attributed to excitations involving 
some of the valence electrons. The midfre­
quency band, from 3 to 12 eV, was assigned 
to interband excitations from O 2p valence 
bands to La 5d/4f orbitals, with the semi­
conductor La2CuO4 having an optical energy 
gap of ≈ 2 eV (Uchida et al., 1991). The low­
frequency edge is absent in the x = 0 insulat­
ing compound and present in the two doped 
conductors. Figure 17.21 presents a set of 
Bi compound spectra in the range 0.1–3 eV. 
The superconductor Bi2Sr2CaCu2O8 and the 
metal Bi2Sr2�Ca� Nd�Cu2O8 both exhibit the 

Figure 17.15 Raman spectra from the orthorhombic 
form of �La0�925Sr0�075�2CuO4 at 8K (top), and from the 
tetragonal form at 295K, for the same conditions as 
Fig. 17.13 (Weber et al., 1989). 

absorption edge near 1.1 eV, whereas the 
other two compounds, which are semicon­
ductors, do not. 

A Kramers–Kronig analysis carried out 
for the reflectance spectra of Fig. 17.20 pro­
vided the conductivity spectra presented in 
Fig. 17.22 for the low-energy region. At the 
low-frequency limit ���� increases continu­
ously with the level x of doping, being low 
for the insulators �x = 0� 0�02� 0�06�, high 
for the superconductors �x = 0�1� 0�15� 0�2�, 
and highest for the nonsuperconducting metal 
�x = 0�34�. (Recall that La2−xSrxCuO4 is a 
hole superconductor.) A similar set of spec­
tra obtained for the electron superconductor 
Nd2−xCexCuO4−y exhibited the same depen­
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Table 17.3 Measured Raman Frequencies in cm−1 of the A1g and B1g Modes of 
High-Temperature Superconductorsa 

�La1−xSrx�2CuO4 
b Bi2Sr2CanCun+1 O6+2n Tl2 Ba2 Can Cun+1O6+2n YBa2Cu3 O7 

c TlBa2 CaCu2O7 
c�d 

x = 0�075 n = 0 n = 1 n = 1 n = 2 

226 La 

430 Oz 

196 Bi 

309 Sr 

455 Oz 

625 O0 

164 Bi 

292 Sr 
282 

464 Oz 

625 O0 

134 Tl 
157 Cup 

409 Op 

493 Oz 

599 O0 

92 
129 Tl 

498 Oz 

599 O0 

108 Ba 
152 Cup 

340 
440 Op 

504 Oz 

120 Ba 
148 Cup 

278 

525 Oz 

a Most of the modes are labeled with their dominant vibrating atom; Cup and Op denote copper and oxygen atoms 
in the planes; O0, oxygens centered in an axially distorted octahedron of six heavy-atom nearest neighbors; and 
Oz, oxygens on the c-axis above and below the Cu atoms. From Burns et al. (1989). 

b An Sr atom replacing La in the compound �La1−xSrx�2CuO4 is expected to have its frequency raised from 226 
to 284cm−1. 

c Isostructural compound. 
d Tc = 60K. 

dence of the low-frequency conductivity on x 
as in the hole case. 

The rare-earth ions have crystal-field 
energy-level splittings in the optical region, 
and transitions between them can be 
observed. As an example, the energy lev­
els of six erbium compounds are given in 
Fig. 17.23, and the optical transitions in 
the green region of the visible spectrum 
are shown in Fig. 17.24 for three of them 
(Jones et al., 1990). This technique could 
be employed for checking the purity of a 
sample. 

IV. PHOTOEMISSION 

Photoemission spectroscopy (PES) mea­
sures the energy distribution of the electrons 
emitted by ions in various charge and energy 
states. These electrons have energies char­
acteristic of particular atoms in particular 
valence states. We will describe the tech­
nique, say something about the energy states 
that are probed, and describe what the tech­
nique tells us about superconductors. 

A. Measurement Technique 

To carry out this experiment, the mate­
rial is irradiated with ultraviolet light or 
x-rays, and the incoming photons cause elec­
trons to be ejected from the atomic energy 
levels. The emitted electrons, called photo­
electrons, have a kinetic energy KE which 
is equal to the difference between the pho­
ton energy hvph and the ionization energy 
Eion required to remove an electron from the 
atom, as follows: 

KE = h�ph −Eion� (17.19) 

The detector measures the kinetic energy 
of the emitted electrons, and since hvph 
is known, the ionization energy is deter­
mined from Eq. (17.19). Each atomic energy 
state of each of the ions has a characteris­
tic ionization energy, so that the measured 
kinetic energies provide information about 
the valence states of the atoms. In addition, 
many ionization energies are perturbed by 
the surrounding lattice environment, so that 
this environment is also probed by the mea­
surement. 
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Figure 17.16 Polarized Raman spectra obtained 
at room temperature from single crystal Bi2Sr2CuO6 

(2201, a) and Bi2Sr2CaCu2O8 (2212, b) (Burns 
et al., 1989). 

In ultraviolet photoemission spec­
troscopy (UPS), the excitation energy comes 
from a high-intensity UV source, such as 
the 21.2-eV resonance line (He–I) or the 
higher-frequency 40.8-eV line (He–II) of a 
helium-gas discharge tube. In the x-ray ana­
logue (XPS), the radiation used to excite the 
photoelectrons is obtained from an Mg–K� 

(1253.6), Al–K�, (1486.7 eV) or other con­
venient x-ray source. 

It is also possible to carry out the 
reverse experiment, called inverse photoelec­
tron spectroscopy (IPS), in which the sample 
is irradiated with a beam of electrons and 
the energies of the emitted photons are mea­
sured. When UV photons are detected, the 
method is sometimes called bremsstrahlung 
isochromat spectroscopy (BIS). A related 
experiment is electron energy-loss spec-

Figure 17.17 The frequency dependence of the 
reflectivity R in the superconducting state of 
Ba0�6K0�4BiO3 normalized relative to its normal state 
value Rn showing the low frequency enhancement asso­
ciated with the superconducting energy gap. The sup­
pression of the low frequency enhancement by (a) a 
change in temperature �T = 11� 14� 17� 21K� in zero 
field Bapp = 0, and (b) the effect of applying a field 
�Bapp = 0� 1� 2� 3 T� at the temperature 4K are shown. 
(Schlesinger et al., 1989). 

troscopy (EELS) in which the decrease in 
energy of the incident electron beam is meas­
ured. Another technique, called Auger elec­
tron spectroscopy is based on a radiationless 
transition, whereby an x-ray photon gener­
ated within an atom does not leave the atom 
as radiation, but instead ejects an electron 
from a higher atomic level. 

B. Energy Levels 

We know from the quantum theory of 
atoms that, to first order, the frequency � 
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Figure 17.18 Polarized infrared reflectance spectra 
for two untwinned YBa2Cu3O7−� samples in the nor­
mal state (T = 100K, dashed curves) and in the super­
conducting state (T = 35K, solid curves). Polarization 
parallel to the a-axis is on the left, while polarization 
parallel to the b-axis is on the right. Two samples were 
used, spectra (a) and (b) from one of them and spectra 
(c) and (d) from the other (Schlesinger et al., 1990b). 

Figure 17.19 Compositions of the starting materials 
La2O3� SrCO3, and CuO used to grow single crystals 
of La2−xSrxCuO4 with the indicated x values (Uchida 
et al., 1991). 

Figure 17.20 Optical reflectivity (reflectance) spec­
tra with the E vector polarized in the a, b-plane for 
La2−xSrxCuO4 single crystals with three of the compo­
sitions x indicated in Fig. 17.19 (Uchida et al., 1991) 

Figure 17.21 Room-temperature optical reflectivity 
(reflectance) spectra for four Bi-cuprates with the elec­
tric field E of the incident light polarized in the a, 
b-plane (Terasaki et al., 1990a,b). 
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Figure 17.22 Frequency dependence of the optical 
conductivity ���� of La2−xSrxCuO4 obtained from a 
Kramers–Kronig analysis of reflectance spectra for the 
E vector polarized in the a, b-plane. Results for sev­
eral compositions x from Fig. 17.19 are shown (Uchida 
et al., 1991). 

of a transition from the energy level with 
principal quantum number n1 to the level 
n2 is 

me4Z2 1 1 
� = 

8�0
2h3 2 � 2 � (17.20) 

n1 n2 

where Z is the atomic number and the 
other symbols have their usual meaning. 
Figure 17.25 gives the energy level scheme 
for molybdenum, with additional finestruc­
ture splittings not included in Eq. (17.20). 
For the atomic number �Z� dependence of the 
K� line, which represents the innermost x-ray 
transition from n1 = 1 to  n2 = 2, Eq. (17.20) 
gives Moseley’s law 

√ 
� = aK�Z −1�� (17.21) 

The factor �Z−1� in Eq. (17.21) in place of 
Z takes into account shielding of the nucleus 
by the remaining n1 = 1 electron, whose 
apparent charge falls to �Z − 1�. A similar 

Figure 17.23 Crystal-field energy levels of Er3+ in 
several compounds, including the erbium green-phase 
Er2BaCuO5, which has levels close to those of the 
oxide Er2O3. ErES denotes erbium ethyl sulphate (Jones 
et al., 1990). 

Figure 17.24 Optical spectra for the 4I15/2 →2 H11/2 

transition in ErBa2Cu3O7−� (top), Er2BaCuO5 (middle), 
and Er2O3 (bottom) (Jones et al., 1990). 

expression applies to the next highest fre­
quency L� line, which has n1 = 2 and√n2 = 3. 

Figure 17.26 presents a plot of � ver­
sus the atomic number Z for the experi­
mentally measured K� and L� lines of the 
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Figure 17.25 Energy-level diagram of Mo showing the wavelengths, in 
nanometers, of the K and L series lines, each of which is labeled using the Siegbahn 
notation. The j� l, and n quantum number is given for each energy level. 

elements in the periodic table from Z = 15 
to Z = 60, showing that Moseley’s law 
is obeyed. These inner-level transitions are 
very little disturbed when the atom is bound 
in a solid because of shielding by the outer 
electrons, so that the regularity of Moseley’s 
law applies to bound as well as free atoms, 
permitting atoms to be unambiguously iden­
tified. This law only holds for the innermost 
atomic electrons, however. 

The ionization energies of the outer elec­
trons of atoms are more dependent on the 
number of electrons outside the closed shells 
than on the atomic number, as shown by the 
data in Fig. 17.27. The ionization energies 
are in the visible or near-ultra-violet region. 
When the atom is bound in a solid, its valence 
electrons form ionic or covalent bonds, dras­
tically modifying their upper energy level 
schemes and ionization energies. Atomic 
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Figure 17.26 Moseley plot of the K� and L� characteristic x-ray lines of a 
number of elements in the atomic number range from 17 to 59. 

Figure 17.27 Experimentally determined ionization energy of the outer electron 
in various elements (Eisberg and Resnick, 1974, p. 364). Copyright © 1974. 
Reprinted by permission of John Wiley & Sons, Inc. 
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electrons below the valence electrons but 
not in the deepest levels undergo shifts in 
energy that are intermediate between the two 
extreme cases of the outermost and inner­
most electrons. 

C. Core-Level Spectra 

The four parts of Fig. 17.28b presents 
core-level XPS spectra arising from the 
atoms Ba, Cu, O, and Y of YBa2Cu3O7 

(Steiner et al., 1987). Figure 17.29 gives 
corresponding spectra from Bi, O, and Sr 
of Bi2�Sr� Ca�3Cu2O8+� (Fujimori et al., 
1989). The latter figure shows the decom­
position of each line into components. 
Figure 17.30 shows how the lines in 
the Cu�2p3/2� spectral region with binding 
energy from 934 to 937 eV vary in posi­
tion and intensity for the four compounds 
LaCuO3� La2CuO4, CuO, and Cu2O. The 
Cu�2p1/2� transition is near 954 eV. (Allan 
et al. (1990), and Yeh et al. (1990) show sim­
ilar Cu(2p) spectra for YBa2Cu3O7−� at three 
temperatures in the superconducting region.) 
The lines, near 944 and 963 eV in the spectra 
of Fig. 17.30, are satellites of the two main 
lines. Several researchers have studied the 
photoemission of the oxides Cu2O, CuO, and 
NaCuO2, which have monovalent, divalent, 
and trivalent Cu, respectively, for compar­
ison with cuprate spectra (Brandow, 1990; 
Ghijsen et al., 1990; Karlsson et al., 1992; 
Sacher and Klemberg-Sapieha, 1989; Shen 
et al., 1990). 

The shapes of photoemission core spec­
tra provide information on various sample 
characteristics. 

1. The spectra from the six atoms in the 
compound Bi2Sr2Ca1−x YxCu2O y are pre­
sented in Fig. 17.31 for x = 0� 0�5� 0�8, 
and 1.0, with the x = 0 scan omitted for Y 
(Itti et al., 1991). The decline in the inten­
sity of the Ca line for these four x values 
is evident. Figure 17.32 clarifies how the 
various line positions shift toward higher 
values with the increase in x. 

2. The core spectra from the four atoms of 
YBa2Cu3O7−� are compared in Fig. 17.33 
for no pretreatment, following two 
high-temperature heat treatments in an 
ultra-high vacuum (UHV), and following 
heating and annealing in oxygen (Frank 
et al., 1991). The decomposition into 
component lines arising from the surface 
and from the bulk is shown for three of 
the spectra. As the treatment proceeds, the 
bulk fraction increases relative to the sur­
face fraction, as shown. 

3. A combined photoelectron microscopy 
and spectroscopy experiment compared 
the Bi spin-orbit split d5/2� d3/2 doublet 

Figure 17.28 Photoemission spectra of YBa2Cu3O7, 
showing (a) valence band spectra at low energies, and 
(b) core-level x-ray spectra (XPS) (Steiner et al., 1987). 

(Continues) 
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Figure 17.28 

obtained from different regions, ≈ 20�m 
in diameter, on the surface of cleaved 
monocrystals of Bi2Sr2−x Ca1+xCu2O8+�. 
The spectra are given in Fig. 17.34 
(Komeda et al., 1991). 

We see that some spectra exhibit a dou­
blet from a highly oxidized form of Bi shifted 
by about 2 eV to higher binding energies. The 
change in the Bi oxidation state at the crys­

(Continued) 

tal edges could degrade the superconducting 
properties. 

D. Valence Band Spectra 

The spectra of the outer, or valence, 
electrons occur at lower energies, 0 to 16 eV, 
as shown on the panel of Fig. 17.28a. The 
overlapping of the O2p and Cu3d bands 
depends on the conditions under which they 
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Figure 17.29 Core-level XPS spectra of 
Bi2�Sr�Ca�3Cu2Oy shown fit with calculated line 
shapes. The weak shaded part of the O-1s spectrum 
is due to contamination. The inset shows the elastic 
peak of the electron energy loss spectrum (EELS, dots, 
E0 ≈ 2kV) decomposed into a dominant, purely elastic 
part characteristic of the wide-gap insulator MnO and a 
weak residual signal (Fujimori et al., 1989). 

are obtained, and these conditions can be 
varied to enhance certain features relative to 
others. For example, Fig. 17.35 shows angle­
resolved photoemission spectra (ARPES) 
obtained from �Bi0�8Pb0�2�2Sr2CaCu2O8 sin­
gle crystals cleaved in vacuo for electron-
emission angles in the range from 30� to 
61�5� (Böttner et al., 1990), while Fig. 17.36 
(Arko et al., 1989) presents spectra of 
YBa2Cu3O6�9 for different incident-photon 
energies between 14 and 70 eV. The peaks 
B to F in Fig. 17.35 are associated with 
flat regions of the energy bands. The A and 
D peaks of Fig. 17.36, which vary in the 
extent of their resolution, are assigned to 
the O2p and Cu3d states, respectively. From 
Fig. 17.36 it is clear that the discontinuity 
in intensity at the absorption edge itself, the 
zero of energy, is small compared with the 
atomic absorptions that start near 1 eV. This 
edge has been resolved using UPS with the 
21.7-eV exciting line (Imer et al., 1989). 
Figure 17.37 illustrates how excitation with 
the photon energies of one element, O1s in 
this case, enhances the spectral features from 
another element, the Cu3d lines at 13 eV 

Figure 17.30 XPS spectra of the Cu 2p3/2 �≈ 935eV� and Cu 
2p1/2 �≈ 954eV� regions of four copper oxides: CuO, Cu2O� La2CuO4, 
and LaCuO3. The lines near ≈ 944eV and ≈ 963eV are satellites (Allan 
et al., 1990). 
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Figure 17.31 XPS core spectra of Bi2Sr2Ca1−xYxCu2Oy , with x = 0, 0.5, 0.8, 
and 1.0 from top to bottom, for the atoms: (a) Bi 4f , (b) Sr 3d, (c) Ca 2p, (d) Y 
3p, (e) Cu 2p3/2, and (f) O 1s. There is, of course, no x = 0 spectrum for Y (Itti 
et al., 1991). 

(Sarma et al., 1989). The figure also shows 
an Auger signal (Bar-Deroma et al., 1992; 
Cota et al., 1988). 

Angle resolved photoemission spectra 
have been analyzed by Fermi liquid theory 
(Kim and Riseborough, 1990). Some typical 
articles on valence bands are (Brookes et al., 
1989; Dessau et al., 1991; Matsuyama et al., 
1989; Mehl et al. 1990; Wells et al., 1990). 

E. Energy Bands and Density of States 

Various investigators have employed 
photoemission to obtain information on, for 
example, energy bands (Dessau et al., 1992; 
Liu et al., 1992a; Takahashi et al., 1989), Figure 17.32 Shift of the binding energy of each 

the Fermi surface (Campuzano et al., 1991; core level with the Y content x obtained from the spectra 
of Fig. 17.31. The vertical axis indicates the shift in Mazin et al., 1992; Tobin et al., 1992), and 
binding energy relative to the offset values of 158.1 

the Eliashberg function �2Dph�W� (Arnold (Bi 4f7/2), 131.6 (Sr 3d5/2), 344.8 (Ca 2p3/2), 299.4 
et al., 1991; Bulaevskii et al., 1988) of high- (Y 2p3/2), 932.7 (Cu 2p3/2), and 528.4 eV (O 1s) (Itti 
temperature superconductors. et al., 1991). 
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Figure 17.33 XPS spectra and line shape decomposition of three atoms in 
YBa2Cu3O7−�: (a) Ba 3d5/2, (b) Ba 4d, (c) O 1s, and (d) Cu 2p3/2. Spectra are pre­
sented for samples before pretreatment (A), after heating in vacuo to 520K (B), after 
heating in vacuo to 650K (C), and after annealing in pure oxygen at 700K (D). The 
spectra were recorded at room temperature in vacuo, and both the S-shaped background 
and the K�3�4 satellite contributions have been subtracted out (Frank et al., 1991). 

V. X-RAY ABSORPTION EDGES	 ization energy, which corresponds to the 
K-level, the n = 1 electron can no longer 
be removed and the x-ray absorption coef-

A. X-ray Absorption	
ficient abruptly drops. It does not, however, 

An energetic photon is capable of drop to zero, because the x-ray photon is 
removing electrons from all occupied atomic still energetic enough to knock out elec­
energy levels with ionization energies less trons in the L�n = 2�� M�n = 3�, etc., lev-
than the photon energy. When the pho- els, as is clear from Fig. 17.25. The abrupt 
ton energy drops below the highest ion- drop in the absorption coefficient is referred 
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Figure 17.34 Core-level photoemission energy dis­
tribution curves for Bi 5d3/2 and 5d5/2 lines in 
Bi2Sr2−x Ca1+xCu2O8+�. Spectra were obtained from 
seven ≈ 20�m diameter regions located at different 
places on an electron micrograph of the surface (not 
shown). Regions A and C, which are representative of 
the clean surface, exhibit a single Bi doublet. Regions B 
and D–G, which are situated near the border between the 
monocrystal stacks, show a second-position dependent 
component suggestive of highly oxidized Bi (Komeda 
et al., 1991). 

to as an absorption edge; in this case, 
it is a K-absorption edge. 

A photon with energy slightly below 
the ionization energy can raise the n = 1 
electron to a higher unoccupied level, such 

Figure 17.35 Angle-resolved photoemission spec­
tra (ARPES) of �Bi0�8Pb0�2�2Sr2CaCu2O8 single crystals 
for emission angles between 30� and 61�5� . Calculated 
curves fit to the spectra are shown as solid lines inside 
the fit range and as dashed lines outside. Calculated 
peak positions are shown as tick marks labeled B, C, D, 
E, and F (Böttner et al., 1990). 

as a 3d or 4p level. Transitions of this 
type provide what is called fine structure 
on the absorption edge, furnishing infor­
mation on the bonding states of the atom 
in question. The resolution of individual 
fine-structure transitions can be improved 
with the use of polarized x-ray beams 
(Abbate et al., 1990). Among the special­
ized x-ray absorption spectroscopy (XAS) 
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Figure 17.36 Valence-band photoemission spectra 
of YBa2Cu3O6�9 for a series of incident photon ener­
gies from 14 to 70 eV, normalized to equal maximum 
intensities. The symbols A, B, C, D, E, and F indi­
cate identifiable peaks. Peak F, which shifts with hv to 
apparent higher binding energies, is labeled by arrows. 
The O 2p intensity is strongly concentrated in peaks A 
and B, while the Cu 3d intensity is partly centered on 
peak D, and partly distributed throughout the valence 
bands (Arko et al., 1989). 

techniques that have been used we may 
note x-ray absorption near-edge structure 
(XANES), x-ray absorption fine-structure 
(XAFS), and extended x-ray absorption fine-
structure (EXAFS) spectroscopy. 

Figure 17.38 shows the O 1s x-ray 
absorption edges obtained with twin-free 
monocrystals of 

Figure 17.37 Valence-band photoemission spectra 
of YBa2�Cu0�9Fe0�1�3O6�9. The oxygen Auger line is 
indicated by a vertical tick on three of the spectra (Sarma 
et al., 1989). 

YBa2Cu3O7 and YBa2Cu4O8 

for the case of polarization parallel to the 
a and b directions (Krol et al., 1992). The 
difference spectrum is also shown. The XAS 
spectrum for E��a is due to the O(2) atoms 
in the CuO2 planes, while that for E��b arises 
from the O(3) atoms in the planes and the 
O(1) atoms in the chains. For YBa2Cu3O7, 
the O(1) and apex oxygen O(4) binding ener­
gies determined from the absorption edge 
were found to be 0.4 and 0.7 eV, respec­
tively, both of which is lower than the bind­
ing energies of the oxygens O(2,3). 

Figure 17.39 shows how varying the 
angle between the incident beam and 
the c-axis of YBa2Cu3O6�9 monocrystals 
resolves oxygen–hole structure into a small, 
lower-energy peak (A) at 526.4 eV attributed 
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Figure 17.38 X-ray absorption spectrum of the O 
1s line of (a) YBa2Cu3O7, and (b) YBa2Cu4O8 for 
E�a�•�� E�b�•�, and difference spectrum E�b−Ea�•� 

(Krol et al., 1992). 

to holes on O(2) and O(3) in the CuO2 planes 
and a more prominent (B) peak at 529.2 eV 
assigned to holes on O(4) along the chains 
(Alp et al., 1989b). 

The XANES spectra presented in 
Fig. 17.40 show the effect of doping the hole 
superconductor LaSrCuO and the electron 
superconductor NdCeCuO by comparing 
the absorption with that of the respective 
undoped compounds. The results indicate 
that substitution has less effect on the Cu 
bonding in La2CuO4 than in Nd2CuO4, and 
suggest that electron doping occurs mainly at 
the Cu atom of CuO2 in the Nd compound, 
mainly at the O atom in the La compound. 

Figure 17.39 Energy dependence of the x-ray 
absorption of YBa2Cu3O6�9 by O 1s electrons for a series 
of angles between the electric field and the c-axis. Peak 
A arises from the oxygens O(2) and O(3) in the CuO2 

planes, while peak B is from O(4) along the chains (Alp 
et al., 1989b). 

Substitution of first-transition ions for 
Cu in YBa2Cu3O7−� produces the changes 
in the K-absorption edge that are shown in 
Fig. 17.41. These changes provide evidence 
that Fe and Co substitute for Cu(1) in the lin­
ear chain site, Zn occupies only the in-plane 
position at Cu(2) and Ni resides in both. 

Superconductors have also been stud­
ied by related x-ray techniques, such 
as Rutherford backscattering (Sharma 
et al., 1991). 

B. Electron-Energy Loss 

Another technique for obtaining absorp­
tion edges, called electron-energy loss spec­
troscopy (EELS), involves irradiating a thin 
film with a beam of monoenergetic elec­
trons with energies of, for example, 170 keV. 
As the electrons pass through the film, they 
exchange momentum with the lattice and 
lose energy by exciting or ionizing the atoms. 
An electron-energy analyzer is then used to 
determine the energy Eabs that is absorbed. 
This energy corresponds to a transition of the 
type shown in the energy level diagram of 
Fig. 17.25, and equals the difference between 
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Figure 17.40 X-ray absorption CuK near-edge 
spectra (XANES) for (a) La2CuO4 (solid line) and 
�La0�925Sr0�075�2CuO4 (dashed line), and (b) Nd2CuO4 

(solid line) and �Nd0�925Ce0�075�2CuO4 (dashed line). 
The inset presents the 1s 3d and 1s 4p� regions on a 
magnified scale. The excitation energy was measured 
relative to the first inflection point of the Cu foil K-edge 
(Kosugi et al., 1990). 

the kinetic energy KE0 of the incident elec­
trons and the kinetic energy KEsc of the scat­
tered electrons 

Eabs = KE0 −KEsc� (17.22) 

In a plot of the intensity of the scattered elec­
trons as a function of the absorbed energy, 
peaks will be found at the binding energies 
of the various electrons in the sample. 

An analogue of optical and x-ray polar­
ization experiments can be obtained from 
EELS by varying the direction of the 
momentum transfer q between the incoming 
electron and the lattice relative to the c-axis 
of the crystal. The vector q plays the role of 
the electric polarization vector E in photon 
spectroscopy. 

Figure 17.41 Comparison of the x-ray absorp­
tion oxygen K near-edge absorption spectra of 
YBa2�Cu0�96M0�04�3O7−� for the metal substitutions M 

given by (a) Fe, (b) Co, (c) Ni, and (d) Zn. The 4%­
doped (solid curves) and undoped (dashed curves) spec­
tra are compared for each case (C. Y. Yang et al., 1990). 

VI. INELASTIC NEUTRON 
SCATTERING 

A neutron is a particle with almost the 
same mass as a proton, but, unlike the pro­
ton, it is electrically neutral. Despite this 
lack of charge, it has a magnetic moment, 
which enables it to interact with local mag­
netic moments as it passes through mat­
ter. When it scatters elastically, it has the 
same kinetic energy after the scattering 
event as it had beforehand. In nonmag­
netic materials, neutrons scatter elasti­
cally off atomic nuclei; coherent scattering 
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experiments, called neutron diffraction, are 
similar to their x-ray diffraction counter­
parts, likewise helping to determine crystal 
structures. Neutrons interact strongly with 
the magnetic moments of any transition ions 
that are present, and the resulting diffrac­
tion pattern provides the spin directions, as 
illustrated in Fig. 5.23, for antiferromagnetic 
alignment. 

When neutrons scatter inelastically in 
matter, their kinetic energy changes through 
the creation �+� or absorption �−� of a 
phonon with energy ��ph, 

1 1 
m�2 = m�′2 ±��ph� (17.23)

2 2 

so that energy is exchanged with the lattice 
vibrations. A measurement of the angular 
distribution of neutrons scattered at various 
energies provides detailed information about 
the phonon spectrum, such as the disper­
sion curves and the phonon density of states 
Dph���. The latter determines the dimen­
sionless electron–phonon coupling constant 
� through the Eliashberg relation (7.96), 

� �2���Dph���d� 
� = 2 � (17.24) 

where ���� is the electron–phonon cou­
pling strength; �2���Dph��� is called the 
Eliashberg function. Inelastic scattering has 
also resolved spin waves in La2CuO4 (Aeppli 
et al., 1989). Thus inelastic neutron scatter­
ing measurements can provide us with impor­
tant information about superconductors. We 
will give some representative results obtained 
using this experimental tool. Figure 17.42 
presents the dispersion curves, determined by 
inelastic neutron scattering, of the low-lying 
phonon branches for the superconductor 

�La1−xSrx�2CuO4� 

Phonon dispersion curves were determined 
over a much broader energy range for the 
isomorphous nonsuperconducting compound 

17 SPECTROSCOPIC PROPERTIES 

La2NiO4. A soft mode (cf. Section II.C) 
exists in La2NiO4 at the point X (point 
� 2
1 �0� 12 �) in the Brillouin zone sketched in 

Fig. 10.22. Figure 17.43 shows that this 
soft mode decreases in frequency by 15% 
when the temperature is reduced from 300K 
to 12K. Phase transitions in crystals often 
involve soft modes, as was mentioned in 
Section II.C. 

The experimental phonon density of 
states Dexp��� corresponding to the phonon 
dispersion curves of Li2NiO4 is plotted in 
Fig. 17.44. The calculated values, also shown 
in the figure, are in moderate agreement with 
experiment. The corrected density of states 
Dph��� is obtained from the experimental 
DOS by weighting the vibrations of the ith 
atom with the ratio �i/Mi, where �i is the 
neutron-scattering cross section and Mi is the 
mass of the ith atom. The result is plotted in 
Fig. 17.45. 

The phonon DOS for the cubic super­
conductor Ba0�6K0�4BiO3, is presented in 
Fig. 17.46 together with its counterpart, 
which was calculated by molecular dynam­
ics simulation (Loong et al., 1989, 1991, 
1992). The random nature of the substi­
tution of K on the Ba sites of this com­
pound causes the experimental spectrum to 
be broader and less well resolved than the 
calculated spectrum. The partial DOS calcu­
lated for the atoms Ba, Bi, and K, shown 
in Fig. 17.47, are responsible for the peaks 
seen in the total DOS at around 11 and 
15meV, while the more spread-out region 
beyond 20meV arises from the oxygen 
atoms. The phonon density of states reported 
here is analogous to the more familiar elec­
tron density of states discussed at length in 
Chapter 10. 

We see from these figures that the 
replacement of 16O by  18O shifts the phonon 
DOS frequencies to lower values. This shift 
gives an isotope effect exponent of � = 0�42, 
which is close to the two values of � = 0�35 
and � = 0�41 obtained from the variation of 
Tc (Hinks et al., 1988b). 
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Figure 17.42 Low-lying phonon branches in �La1−xSrx� CuO4 with the 
models labeled according toWeber (1987), showing (a) experimental results, (b) 
calculated dispersion curves, and (c) inset, measured temperature dependence 
near the X point. The dispersion curves are only weakly temperature dependent, 
except for the TO phonon near the X point shown in inset (c). The filled 
symbols show unrenormalized bare phonons, and the open circles indicate 
�1 symmetry phonons renormalized by interactions with conduction electrons 
(Böni et al., 1988). 

Phonons �� are also capable of prob- source, such as 22NaCl, which emits high­
ing the phonon spectrum by inelastic scat-	 energy (545-keV) electrons with positive 
tering. This is monitored by measuring the	 charges e+, called positrons (Benedek and 
frequency shifts, Schüttler, 1990, Chakraborty, 1991). When 

the positron enters the solid, it rapidly loses 
�� = ��′ ±��ph� (17.25) most of its kinetic energy and approaches 

thermal energy, ≈ 3kBT ≈ 0�04eV, in 0.001 
and scattering angles. When the emitted or	 2

to 0.01 ns. Following thermalization, the 
absorbed phonon��ph is acoustic, the process positron diffuses like a free particle, although is called Brillouin scattering, and when it is 
optical, it is referred to as Raman scattering.	 its motion is correlated with nearby conduc­

tion electrons, until it encounters an electron 
e− and annihilates in about 0.1 ns, produc-

VII. POSITRON ANNIHILATION	 ing two 0.51-MeV gamma ��� rays in the 
process 

In positron annihilation spectroscopy 
(PAS), a sample is irradiated by a radioactive e + + e − → � +�� (17.26) 
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Figure 17.43 Temperature dependence of the fre­
quency of the soft mode of La2NiO4 at q = � 1 

2 �0� 1 2 � 

(Pintschovius et al., 1989). 

Figure 17.45 Corrected phonon density of states of 
La2NiO4 obtained by applying corrections to the exper­
imentally determined curve of Fig. 17.44 (Pintschovius 
et al., 1989). 

Figure 17.44 Comparison of the phonon density of 
states experimentally determined by inelastic neutron 
scattering �· · · ·� and calculated (——) (Pintschovius 
et al., 1989). 

The electron has much more momentum 
than the positron, and momentum balance 
causes the two gamma rays, to make a 
slight angle with respect to each other 
as they depart in opposite directions. 
The Angular Correlation of this Annihi­
lation Radiation (ACAR) is one of the 

Figure 17.46 Comparison of the phonon density 
of states of Ba0�6K0�4BiO3 (a) determined experimen­
tally by inelastic neutron scattering, and (b) calcu­
lated by molecular dynamics simulations (Loong et al., 
1991, 1992). 

important parameters which is measured 
in this technique. The positron lifetime, 

, is determined by the time delay between 
the 1.28-MeV gamma ray emitted by the 
radioactive 22Na simultaneously with the 
positron, and the pair of 0.51-MeV gamma 



Elsevier AMS Job code: SUP CH17-P088761 22-6-2007 9:44a.m. Page:563 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

563 VII POSITRON ANNIHILATION 

Figure 17.47 Ba0�6K0�4BiO3 partial phonon density of states calcu­
lated for the atoms Ba, K, Bi, and O (upper panels), and the total density 
of states (lower panel). Isotopic substitution of 18O for 16O shifts the 
oxygen partial DOS and the total DOS in the oxygen region, but does not 
affect the Ba, K, or Bi partial DOS curves (Loong et al., 1991, 1992). 

rays produced by the annihilation event. The hilation, with oxygen vacancies the likely 
emitted gamma rays have a spread in energy trapping sites in high-temperature supercon­
due to Doppler broadening. The positrons ductors. A positron is sensitive to the details 
can become trapped in vacancies before anni- of the local electronic environment, which 
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are reflected in its mean lifetime 
, its angu­
lar correlation, and its Doppler broadening 
parameters S and W . In YBa2Cu3O7−� there 
is a life-time 
1 ≈ 0�2ns due to a shoft-lived 
component, perhaps from annihilation in the 
grains, and a lifetime 
2 ≈ 0�7ns of a long-
lived component, perhaps from annihilation 
at grain surfaces. These parameters exhibit 
discontinuities at the transition temperature 
(Barbiellini et al., 1991; Huang et al., 1988; 
McMullen, 1990; Tang et al., 1990; Wang 
et al., 1988). Figure 17.48 shows four of 
these discontinuities for the superconductor 
YBaCu3O7−� with a midpoint Tc = 85�7K. 
One theoretical study has suggested that BCS 
pairing could be responsible for the measured 

shifts in positron properties near Tc (Benedek 
and Schüttler, 1990). 

The positron annihilation characteristics 
are determined by the overlap of the positron 
and electron densities (Bharathi et al., 1990; 
Sundar et al., 1990b). Figure 17.49 shows the 
positron densities in the [020] vertical plane 
of the three Tl2Ba2Ca n Cun+1O2n+6 supercon­
ductors 2201, 2212, and 2223. In the 2201 
compound, the positron density is quite gen­
erally spread out, while in the other two com­
pounds it is concentrated within the sets of 
copper-oxide layers, especially between the 
layers where the calcium atoms are located. 
The lack of concentration in the CuO2 lay­
ers in the former case is consistent with 
the electron density plot for the 2201 Tl 

Figure 17.48 Temperature dependence of positron annihilation results obtained with a YBa2Cu3O7−� sample 
showing (a) Doppler broadening line shape parameter S, (b) mean lifetime 
, (c) lifetime 
1 of short-lived component, 
and (d) lifetime 
2 of long-lived component. The insets of (b) and (c) show data on an expanded scale. The inset 
of (d) shows the temperature dependence of the relative intensity of the long-lived component. The dashed curve 
of (c) represents “delayed” data taken 40 hours later. The curves are drawn as visual aids (Wang et al., 1988). 
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Figure 17.49 Contour plots of the positron density distribution in the [020] vertical plane of (a) Tl2Ba2CuO6, 
(b) Tl2Ba2CaCu2O8 and (c) Tl2Ba2Ca2Cu3O10 crystals. See Fig. 8.31 for corresponding charge density plots of 
Tl2Ba2CuO6 (Sundar et al., 1990b). 

compound that is presented in Fig. 8.31. In 
contrast to the situation in the hole-type thal­
lium superconductors, the positron density 
is found to be fairly generally distributed 
throughout the unit cell of the electron super­
conductor �Nd0�925Ce0�075�2CuO3�98 (Sundar 
et al., 1990a). 

The upper half of each positron density 
plot of Fig. 17.49 shows the Ba of the Ba–O 
and the O of Tl–O; the lower halves show 
the Tl of the Tl–O and the O of Ba–O. A 
comparison with the unit cells of Figs. 8.29 
and 8.30 shows that this is in accord with the 
atom positions. 

A two-dimensional angular correlation 
technique, called 2D-ACAR, is designed to 
sample the anisotropy of the conduction elec­
tron motion, thus providing information on 
the topology of the Fermi surface (Barbi­
ellini et al., 1991; Rozing et al., 1991). For 
example, Bansil et al., (1991) published plots 
of Fermi surface sheets of YBa2Cu3O7 sim­
ilar to some of those presented in Fig. 10.15 
and Tanigawa et al. (1988) provided three-
dimensional sketches of the first Brillouin 

zone of La2CuO4−�, a zone that exhibits 
electron regions at the point � similar to 
the regions in the upper part of Fig. 10.25 
2D-ACAR studies have been reported for 
single crystals of YBa2Cu3O6�9 (Smedskjaer 
et al., 1992). 

VIII. MAGNETIC RESONANCE 

Another branch of spectroscopy that has 
provided valuable information on supercon­
ductors is magnetic resonance, the study of 
microwave and radio frequency transitions. 
We will comment on several types of mag­
netic resonance, including nuclear magnetic 
resonance (NMR), nuclear quadrupole reso­
nance (NQR), electronspin resonance (ESR 
or EPR), microwave absorption, muon spin 
resonance ��SR�, and Mössbauer resonance, 
all of which have been used to study super­
conductors, and we will discuss some of the 
results that have been obtained. 

Magnetic resonance measurements are 
made in fairly strong magnetic fields, typ­
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ically ≈ 0�33T for ESR and ≈ 10T for 
NMR, which are considerably above the 
lower-critical field Bc1 of a high-temperature 
superconductor. At these fields most of the 
external magnetic flux penetrates into the 
sample, so that the average value of B inside 
is not very different from the value of B 
outside. 

A. Nuclear Magnetic Resonance 

Nuclear magnetic resonance involves 
the interaction of a nucleus possessing a 
nonzero nuclear spin I with an applied mag­
netic field Bapp, giving the energy level split­
ting into 2I +1 lines with energies 

Em = ��Bappm� (17.27) 

where � is the gyromagnetic ratio, some­
times called the magnetogyric ratio, char­
acteristic of the nucleus and m assumes 
integer or half-integer values in the range 
−I < m < I , depending on whether I is an 
integer or a half-integer (Poole and Farach, 
1987). Figure 17.50 shows the energy lev­
els and the NMR transition for the case 
I = 1

2 � m = ± 1
2 . Typical NMR frequencies 

range from about 60 to 400MHz. Several 

17 SPECTROSCOPIC PROPERTIES 

nuclei common to superconductors are listed 
in Table 17.4 together with their spins, natu­
ral abundances and other characteristics. The 
isotopes of Tl and Y are particularly favor­
able for NMR because they have nuclear 
spin I = 1/2, so that they lack a quadrupole 
moment and their lines are not broadened 
by noncubic crystalline electric fields. The 
dominant isotope of oxygen, 16O, which is 
99.76% abundant, has I = 0, so that it does 
not exhibit NMR. Zero-spin nuclei are not 
listed in the table. 

The importance of NMR arises from the 
fact that the value of � is sensitive to the 
local chemical environment of the nucleus. 
It is customary to report the chemical shift �, 

� −�R� = � (17.28)
�R 

which is the extent to which � deviates from 
�R, the value of a reference sample, where, 
for proton reference samples, �R/2� is close 
to 42.576MHz/T. Chemical shifts are small, 
and are usually reported in parts per million 
(ppm). In addition, spin–spin interactions 
with neighboring nuclei can split the line into 
a multiplet, providing further information 
on the coordination to surrounding atoms. 

Figure 17.50 Zeeman splitting of a spin- 12 energy state in a magnetic field. 
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Table 17.4 NMR Data on Nuclei Commonly Found in High-temperature 
Superconductorsa 

Z A Elem I %Abund Mag Monb MHz/Tc Sensit/Bd Sensit/f e eqQf 

1 1 H 1/2 99�985 2�79268 42�5759 1�000 1�000 0 
1 2 D 1 0�015 0�85739 6�5357 0�00965 0�409 0�0029 
6 13 C 1/2 1�108 1�216 10�705 0�016 2�51 0 
8 17 O 5/2 0�037 −1�8930 −5�7719 0�0291 1�58 −0�26 
19 39 K 3/2 93�08 0�39094 1�987 0�0005 0�233 0�049 
20 43 Ca 7/2 0�145 −1�3153 −2�8646 0�0640 1�41 −0�065 
29 63 Cu 3/2 69�09 2�2206 11�285 0�0931 1�33 −0�209 
29 65 Cu 3/2 30�91 2�3790 12�090 1�14 1�42 −0�195 
38 87 Sr 9/2 7�02 −1�0893 1�845 0�00269 1�43 0�15 
39 89 Y 1/2 100�0 −0�13682 2�086 0�000118 0�0005 0 
41 93 Nb 9/2 100�0 6�1435 10�407 0�482 8�07 −0�36 
56 135 Ba 3/2 6�59 0�83229 4�230 0�0049 0�497 0�18 
56 137 Ba 3/2 11�32 0�93107 4�732 0�00686 0�556 0�28 
57 139 La 7/2 99�911 2�7615 6�014 0�0592 2�97 0�22 
60 143 Nd 7/2 12�20 −1�25 2�72 0�00549 1�34 −0�48 
60 145 Nd 7/2 8�30 −0�78 1�7 0�00133 0�838 −0�25 
80 199 Hg 1/2 16�9 0�498 7�60 0�0057 0�178 0 
81 203 Tl 1/2 29�5 1�5960 24�332 0�187 0�571 0 
81 205 Tl 1/2 70�5 1�6115 24�570 0�192 0�577 0 
82 207 Pb 1/2 22�1 0�5837 8�899 0�00913 0�209 0 
83 209 Bi 9/2 100�0 4�0389 6�842 0�137 5�30 −0�46 

a The nucleus 16O (99.8%) has no nuclear spin �I = 0� and thus cannot be observed. Data from Harris (1981); see 
also Emsley, Feeney, and Sutcliffe (1965), and Poole and Farach (1994). 

b Magnetic moment in units of nuclear magneton. 
c Resonant frequency for a field of 1 T in units of MHz. 
d Relative sensitivity at constant field. 
e Relative sensitivity of constant frequency. 
f Quadrupole moment eqQ in units of 10−24 cm2. Data from Landolt–Börnstein, New Series III/20a, 1988. 

Relaxation-time measurements determine the 
efficiency of spin-energy transfer to the lat­
tice (Poole and Farach, 1971). 

Pulsed NMR of 89Y nuclei has been 
observed in YBa2Cu3O7−� at 12.2MHz and 
5.9 T in the temperature range from 59 to 
295K (Mali et al., 1987; Markert et al., 
1987). The value of Tc = 86K at 5.9 T was 
determined by the onset of line broaden­
ing from a width of 0.31mT above Tc to 
0.71mT ten degrees below Tc. This broad­
ening arises from the spatial variation in 
the internal field, as sketched at the top of 
Fig. 12.10, which causes each 89Y nucleus 
to experience a slightly different local field. 
The fraction of 89Y detected decreased from 
100% above Tc to about 80% at 59K due to 

incomplete rf penetration in the mixed state. 
The spin-lattice relaxation time T1 increased 
below Tc. Preparation conditions influence 
the Y site, since different 89Y chemical shifts 
have been observed under different con­
ditions (slowly cooled, rapidly cooled, or 
water-exposed YBa2Cu3O7−�). 

MostNMRstudiesarecarriedoutwith the 
isotope 63Cu (nuclear spin I = 3/2) since it is 
69% abundant. Figure 17.51 presents the 63Cu 
NMRspectra obtained at 100K for the applied 
field parallel to c and in the a� b-plane. The 
resonances attributed to the four-coordinated 
chain Cu(1) sites and to the five-coordinated 
plane Cu(2) sites are indicated. Nuclei in met­
als have their frequency �m shifted in position 
relative to its value �i in a diamagnetic insu­
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Figure 17.51 NMR spectrum of 63Cu in 
YBa2Cu3O7−� at 100K with the applied magnetic field 
parallel to the c-axis (above) and with the applied field 
in the a�b-plane (below). The resonances attributed to 
Cu(1) in the chains and to Cu(2) in the planes are indi­
cated. The inset shows the magnetization for zero field 
cooling (open circles) and field cooling in 1.6mT (open 
squares), with the sharp superconducting transition evi­
dent (Barrett et al., 1990). 

lator by their nuclear spin interaction with the 
spin paramagnetism of the conduction elec­
trons and the relative frequency shift K = 
��m − �i�/�i is called the Knight shift (Lane, 
1962; Pennington and Slichter, 1990). When 
normal conduction electrons convert to super 
electrons as the temperature is lowered in 
the range below Tc the Knight shift K is 
expected to decrease. Figure 17.52 shows 
this decrease for Cu(1) and Cu(2) nuclei in 
the temperature range from 0 to 120K. These 
shifts were found to obey BCS expressions 
for a strong coupling-spin singlet state (Bar­
rett et al., 1990). NMR of 63Cu provided the 
energy-gap ratio Eg/kBTC = 1�3 in  

�La0�915Sr0�085�2CuO4−� 

(Lee et al., 1987). 

17 SPECTROSCOPIC PROPERTIES 

Several high-temperature superconduc­
tors enriched with the rare isotope 17O, 
which has nuclear spin I = 5/2, have been 
studied by NMR. The broad-scan room-
temperature spectrum of YBa2Cu3O7−� pre­
sented in Fig. 17.53 exhibits 20 lines from the 
various oxygens and these are identified in 
the caption. The use of aligned grains consid­
erably increased the resolution of this spec­
trum, indicating a considerable amount of 
anisotropy. The narrower scans of Fig. 17.54 
show that the compounds 

�La0�925Sr0�075�2CuO4� 

Bi2Sr2CaCu2O8+�� 

and Tl2Ba2CaCu2O8+�, all of which have 
similar structures (cf. Chapter 8), exhibit 
similar spectra. These spectra differ from 
those of the compounds �Ba0�6K0�4�BiO3 and 
YBa2Cu3O7−�, which have different struc­
tures. This result is to be expected, sinceNMR 
probes the local environment of the nucleus. 

NMR spectroscopy has been instru­
mental in confirming the structures of the 
fullerenes, such as C60 and C70. The room-
temperature 13C NMR spectrum of C60, 
shown at the top of Fig. 17.55, is a single 
narrow line with a chemical shift of 143 ppm 
relative to the standard compound tetram­
ethylsilane (TMS), confirming the equiva­
lence of all of the carbons as well as demon­
strating that the molecule is rapidly and 
isotropically reorientating. We see from the 
figure that when the molecule is cooled, the 
NMR line broadens. At 77K its spectrum 
is a typical asymmetric chemical shift pat­
tern with the principal values 220, 186, and 
25 ppm, which are typical of aromatic hydro­
carbons. This suggests that the molecules are 
now stationary and randomly oriented in the 
solid. The chemical shift tensor is expected 
to have one principal value in the direc­
tion perpendicular to the approximate plane 
of the sp2 hybrid CC3 group. Within this 
plane the three C–C bonds are not equivalent, 
since two of them connect a five-membered 
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Figure 17.52 Temperature dependence below Tc of the five NMR 
signals of Fig. 17.51 arising from 63Cu in the planes and chains with 
the applied field along the a-� b-, and c-axes, as indicated (Barrett 
et al., 1990). 

Figure 17.53 Room-temperature 17O NMR spectra at 48.8MHz (8.45 T) of YBa2Cu3O7−� magnet­
ically aligned in a field parallel to the c-axis. The measured relative intensities for central and satellite 
transitions have the expected 9 : 8 : 5  ratio, but here the peak intensities have been equalized for clarity. 
All but one of the 20 expected transitions, five lines from each of the four oxygens, are shown: peaks 
2, 4, 12, 18, and 19 from O(1), peaks 5–8, (10, 11), 13–16 from O(2, 3), and peaks 1, 3, 9, 17, and 20 
from O(4) (Oldfield et al., 1989). 

and a six-membered ring, whereas the third played at the top of Fig. 17.56. These 
connects two six-membered rings, thereby lines have the respective intensity ratios 
explaining the lack of axial symmetry in the 10 : 10 : 20 : 20 : 10, corresponding to the 
chemical-shift powder pattern. numbers of their respective carbon atoms in 

The fullerene C70 has the five inequiv- the C70 molecule. The two-dimensional spec­
alent carbons labeled a, b, c, d, and e on trum given in the figure provides the mea-
the left side of Fig. 17.56, giving rise to sured spin–spin coupling constants between 
five lines in the 13C NMR spectrum dis- the carbons. The C–C bond lengths of 
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Figure 17.54 Room-temperature 17O NMR spec­
tra at 67.8MHz (11.7 T) of (a) �Ba0�6K0�4�BiO3, 
(b) �La0�925Sr0�075�2CuO4, (c) YBa2Cu3O7−�, (d) 
Bi2Sr2CaCu2O8+�, and (e) Tl2Ba2CaCu2O8+�. The 
∗ line in (c) arises from O(1) sites in a small popula­
tion of aligned crystallites, which also contribute to the 
absorption at 18 ppm (Oldfield et al., 1989). 

C60 and C70 determined by NMR agreed 
with those deduced from crystallographic 
studies. 

The 13C NMR of alkali metal-doped 
fullerenes, such as KxC60, which are both 
conducting and superconducting, exhibit a 
second narrow 13C resonance at 186 ppm in 
addition to the usual resonance at 143 ppm. 
This resonance appears for 0 < x < 3 and 
arises from K3C60 molecules with the K+ 

ions at interstitial sites adjacent to the C3− 
60 

ions. The C3− ions rotate rapidly at room 60 

temperature to average out the chemical 

Figure 17.55 Temperature dependence of the 15­
MHz 13C NMR spectrum of C60. The single narrow 
line at room temperature shows that all of the carbons 
are equivalent. The sequence of spectra suggests rapid 
reorientation at room temperature and the lack of rota­
tional motion at liquid nitrogen temperature on the NMR 
timescale of 
 ≈ 0�1ms (R. D. Johnson et al., 1992). 

shift anisotropy. Thus KxC60 constitutes a 
two-phase system. The chemical shift is 
identified with a Knight shift arising from 
hyperfine coupling between the 13C nuclei 
and the conduction electrons (Tycko et al., 
1991, 1992). 

Some relevant articles on NMR are: 
1H (DeSoto et al., 1993; Le Dang et al., 
1989; Maniwa et al., 1991b), 9Be�3/2� 
(Tien and Jiang, 1989), 13C (Antropov 
et al., 1993 (t)), 17O�5/2� (Asayama et al., 
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Figure 17.56 The upper trace is the 125.7-MHz 13C NMR spectrum 
of a 13C enriched mixture of C60 and C70. The C60 line and the five 
C70 lines labeled a, b, c, d, and e with the respective relative inten­
sities 10 : 10 : 20 : 20 : 10 are indicated. The two-dimensional spectrum 
presented on the lower left shows doublets arising from the various 
bonded carbon pairs. Reprinted by permission from R. D. Johnson et al., 
1992. Copyright (1992) by the American Chemical Society. 

1991; Coretsopoulos et al., 1989; Howes 
et al., 1991; Reveu et al., 1991; Trokiner 
et al., 1990, 1991), 63�65Cu�3/2� (Horvatic 
et al., 1993; Millis and Monien, 1992; Millis 
et al., 1990 (t), Walstedt et al., 1990, 1992), 
89Y (Alloul et al., 1993; Barrett et al., 1990; 
Carretta and Corti, 1992; Carretta et al., 
1992; Millis and Monien, 1992; Millis et al., 
1990 (t)), 139La�7/2� (Hammel et al., 1990), 
203�205Tl (Fujiwara et al., 1991; Kitaoka et al., 
1991; Song et al., 1991a). Articles on NMR 
relaxation include 17O�5/2� (Barrett et al., 
1991; Hammel et al., 1989; Takigawa et al., 
1991a), 63�65Cu�3/2� (Anikenok et al., 1991; 
Borsa et al., 1992; Martindale et al., 1992; 
Mila and Rice, 1989 (t); Pennington et al., 
1989; Reyes et al., 1991; Takigawa et al., 
1991b; Walstedt et al., 1991), 89Y (Adrian, 
1988, 1989; Alloul et al., 1989; Z. P. Han 
et al., 1991, 1992), 141Pr�5/2� (Teplov et al., 
1991), 169Tm (Bakharev et al., 1991; Teplov 
et al., 1991), 195Pt (Vithayathil et al., 1991), 
and 203�205Tl (Lee et al., 1989; Nishihara 

et al., 1991; Song et al., 1993). (Theory and 
calculation articles are indicated by (t); the 
nuclear spin is given when it is not 12 .) 

B. Quadrupole Resonance 

A nucleus with spin I > 1
2 has an electric 

quadrupole moment. Several such nuclei are 
listed in Table 17.4. The crystalline electric 
fields at an atomic site with symmetry less 
than cubic split the nuclear-spin levels in a 
manner that depends on the site symmetry, 
and the spacings between the levels are mea­
sured experimentally by nuclear quadrupole 
resonance (NQR). The frequencies used for 
making these measurements are similar to 
those employed for NMR. Table VI-14 of 
our earlier work (Poole et al., 1988) lists 
the point symmetries for the occupied atomic 
sites in some of the high-temperature super­
conductors. Babu and Remakrishna (1992) 
reviewed the NQR of superconductors. 
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Figure 17.57 Nuclear quadrupole resonance spectrum of 139La in 
La2CuO4 in zero field at 1.3K. Reprinted by permission from Kitaoka 
et al., 1987a. Copyright (1987) American Chemical Society. 

The 139La NQR spectrum of the proto­
type compound La2CuO4 in zero magnetic 
field at 1.3K is shown in Fig. 17.57. It 
has five main lines from 2.4 to 19.3MHz, 
arising from the five m → m′ transitions 
− 2

1 → 2
1 �+ 2

1 → ± 2
3 �− 2

1 → ± 2
3 �± 2

3 → ± 2
5 , 

and ± 5 → ± 7 of the I = 7 139La nucleus. 2 2 2 
Additional doublet splittings are caused by 
internal magnetic fields that arise from the 
magnetic ordering of the copper ions occur­
ring below 240K (Kitaoka et al., 1987a). 
The doublet splittings are not resolved in 
the barium- and strontium-substituted com­
pounds, as shown in Fig. 17.58, suggest­
ing that the internal magnetic fields decrease 
with alkaline earth doping. The internal field 
parallel to c is about 35mT for low bar­
ium contents �≈ 1%� in the superconduct­
ing region (Kitaoka et al., 1987b). The 
electric field gradient at the La site also 
changes on passing from the normal to 
the super-conducting state (Watanabe et al., 
1989). Cho et al., (1992) used 139La NQR 
relaxation to study magnetic ordering in trum at 1.3K of 139La in �La1−xBax�2CuO4 for (a) x = 
�La1−xSrx�2CuO4. 0�01, (b) x = 0�025, and (c) x = 0�04. The calculated 

The room-temperature 63Cu NQR spec- resonant frequencies are indicated by arrows (Kitaoka 

trum of YBa2Cu3O x presented in Fig. 17.59 et al., 1987a). 

consists of one line at 22.1MHz arising from 
Cu(1) in the chains and another at 31.2MHz 
arising from Cu(2) in the basal plane (Vega these are not shown. The symmetry was 
et al., 1989a). The 65Cu isotope produces found to be close to axial for Cu(2), devi-
NQR lines shifted 6.7% lower in frequency; ating considerably from axial for Cu(1), as 

Figure 17.58 Nuclear quadrupole resonance spec­
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Figure 17.59 Short T1 components of the NQR spectrum of 63Cu in high-
temperature quenched YBa2Cu3O x with the indicated x and Tc values. The 
22.1MHz line arises from Cu(1) in the chains, while the 31.2MHz line is 
from Cu(2) in the planes (Vega et al., 1989a). 

would be expected from an examination of 
the structural drawings in Figs. 8.8, 8.10, 
and 8.11. We see from Fig. 17.59 that the 
linewidth strongly depends on the oxygen 
content. The sharpest line occurs in the stoi­
chiometric compound YBa2Cu3O7. Removal 
of oxygen lowers the symmetries of the two 
sites, broadening the lines and shifting them 
toward each other. This means that oxygen 
is being removed adjacent to both sites. 

When the temperature of the sample is 
gradually lowered from room temperature 
to 20K, the 63Cu�1� resonance decreases in 

frequency by 0.5% while the 63Cu�2� line 
increases in frequency by 1.1% (Mali et al., 
1987), as shown in Fig. 17.60. The variation 
in the electric field gradients at the two Cu 
sites can be accounted for by lattice compres­
sion. There is no discontinuity at the transi­
tion temperature. 

NQR articles for several nuclei are 
17O (Sahoo et al., 1990), 63�65Cu (Carretta 
et al., 1992; Fujiwara et al., 1991; Ishida 
et al., 1991; Kitaoka et al., 1991; Pennington 
et al., 1988, 1990; Pieper, 1992; Reyes et al., 
1990; Saul and Weissmann, 1990; Song 
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Figure 17.60 Temperature dependence of the 63Cu 
nuclear quadrupole frequencies arising from Cu(1) �•� 

in the chain sites and Cu(2) ��� in the planar sites of 
YBa2Cu3O7−� (Mali et al., 1987). 

et al., 1991b; Sulaiman et al., 1991; Vega 
et al., 1989b), 69�71Ga (Pieper, 1992), 135Ba 
(Sulaiman et al., 1992), 139La (Song and 
Gaines, 1991; Sulaiman et al., 1992), 141Pr 
(Erickson, 1991). 

C. Electron-Spin Resonance 

Electron-spin resonance (ESR) detects 
unpaired electrons in transition ions, espe­
cially those with odd numbers of electrons, 
such as Cu2+�3d9� and Gd3+�4f 7�. Free rad­
icals, like those associated with defects or 
radiation damage, can also be detected. The 
Zeeman energy level diagram of Fig. 17.50 
also applies to ESR, except that the ener­
gies or resonant frequencies are three orders 
of magnitude higher for the same magnetic 
field. A different notation is employed for 
the energy, 

Em = g�BBappm� (17.29) 

where �B is the Bohr magneton and g is 
the dimensionless g-factor; g has the value 
2.0023 for a free electron. Equations (17.27) 
and (17.29) are related through the expres­
sion g�B = �� (Poole, 1983; Poole and 
Farach, 1987). 

17 SPECTROSCOPIC PROPERTIES 

Some oxide superconductors exhibit an 
ESR signal, with g in the range from ≈ 
2�05 to ≈ 2�27, arising from the divalent 
copper ions. This signal does not appear 
in high-purity samples, so that its appear­
ance indicates the presence of a nonsuper­
conducting fraction, such as the green-phase 
Y2BaCuO5 admixed with YBa2Cu3O7−�. We  
say that the high-temperature superconduc­
tors are ESR silent so far as the Cu2+ signal 
is concerned (McKinnon et al., 1987, 1988; 
Simon et al., 1993). 

The magnetic field inside a supercon­
ducting sample was probed by placing one 
free radical marker on the face of a sam­
ple normal to the magnetic field direction 
and another free radical marker on the face 
of the sample parallel to the external mag­
netic field (Bontemps et al., 1991; Davidov 
et al., 1992; Farach et al., 1990; Frait et al., 
1988a, b; Koshta et al., 1993; Maniwa et al., 
1990; Poole et al., 1988; Rakvin et al., 
1989; Shvachko et al., 1991). In the super­
conducting state the two markers experience 
different local magnetic fields, so that the 
resonant positions of the lines shift in the 
manner shown in Fig. 17.61. The observed 
shift occurs because the free radicals respond 
to the surface field, which differs from the 
applied field in accordance with Eq. (5.35). 
Thus the observed shift in line position is 
a measure of the magnitude of the inter­
nal field Bin within the sample. With this 
result we are able to determine the temper­
ature dependence of the susceptibility, with 
the results presented in Fig. 17.62. A related 
NMR method of probing the surface mea­
sures proton signals in a silicone oil coating 
(Maniwa et al., 1991a). 

The ESR spectrum of the compound 
LaC82, illustrated in Fig. 17.63, consists of 
an unresolved hyperfine octet. This is well 
resolved by dissolving the LaC82 in degassed 
1,1,2,2-tetrachloroethane, as shown. The 
spectrum is interpreted as arising from 
an unpaired electron delocalized in the 
�-electron system of the triply negative 
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Figure 17.61 Shift of the ESR signals of para­
magnetic markers located on the side and end of a 
YBa2Cu3O7−� sample from their superposed position 
(a) above Tc to different field positions (b,c) below Tc. 
The separation of the lines is proportional to the sus­
ceptibility (Farach et al., 1990). 

fullerene anion �C82�
3− and interacting with 

the La3+ inside (i.e. endohedral). The 99.9%­
abundant 139La nucleus has spin I = 7/2, 
which gives the 2I +1 = 8 observed hyper­

fine multiplet. The hyperfine coupling is only 
0.125mT, indicating that the interaction with 
the La nucleus is very weak. 

Acrivos et al. (1994) used ESR dynamic 
measurements to compare the paramagnetic 
and antiferromagnetic properties of various 
superconducting oxides. 

D. Nonresonant Microwave 
Absorption 

Below the transition temperature a 
superconductor has a microwave absorption 
signal that increases in amplitude as the tem­
perature is lowered. There are often super­
imposed fluctuations that exhibit regulari­
ties, as shown in Fig. 17.64. These closely 
spaced oscillations have been attributed to 
Josephson junctions in the sample. Irradiat­
ing a Josephson junction with microwaves 
induces an oscillating voltage that depends 
on the microwave power and frequency. This 
phenomenon, called the inverse Josephson 
effect, was explained in Chapter 15, 
Section VII.E. If the magnetic field is 
scanned through zero to negative fields, the 
absorption exhibits a hysteresis, as shown in 
Fig. 17.65. The absorption is called nonres­
onant because it does not involve transitions 

Figure 17.62 Temperature dependence of the susceptibility of 
YBa2Cu3O7−� determined by the ESR method of Fig. 17.61 (Farach 
et al., 1990). 
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Figure 17.63 Electron-spin resonance spectrum of 
LaC82 mixed with C60 and C70 with the La inside the 
C82 fullerene cage. The poorly resolved octet (a) in 
the solid-state spectrum becomes well resolved (b) after 
the compound has been dissolved in degassed 1,1,2,2­
tetrachloroethane solution. The linewidth is 12�5�T and 
g = 2�0010 in the latter case (R. D. Johnson et al., 1992). 

17 SPECTROSCOPIC PROPERTIES 

between the Zeeman energy levels such as 
those which are characteristic of NMR and 
ESR absorption lines. 

Xia and Stroud (1989) suggested that 
the absorption takes place in supercon­
ducting grains whose dimensions are small 
compared with the penetration depth and 
which are coupled together in closed loops. 
Imperfect monocrystalline sample could also 
contain weakly linked loops. These loops 
support screening currents in response to 
an external magnetic field. The presence 
of a dc field perpendicular to the plane 
of the loop and an incident microwave 
field can cause phase slips via jumps from 
one energy state into another as the flux 
through the loop changes with time. The 
phase slip generates a voltage difference 
between neighboring grains, and hence leads 
to energy absorption. 

Blazey et al. (1987) identified the field 
Bmax in which the low-field absorption 
reaches a maximum as the field where flux 
slippage starts to occur. This phenomenon 

Figure 17.64 Low-field microwave absorption of La2�8Sr0�2Cu2O7 after field cooling at several temperatures 
in the range 4.5–45K. Reprinted with permission from Blazey et al., 1987. Copyright (1987) American Chemical 
Society. 
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Figure 17.65 Hysteresis loops for microwave 
absorption of YBa2Cu3O7−� single crystals at 56K 
cycled through zero field for four different modu­
lation amplitudes (MA). Higher receiver gain (RG) 
settings were needed for the lower modulation ampli­
tudes due to cicthe decrease in sensitivity (Dul˘
et al., 1989). 

was used to estimate the average radius rL of 
the superconducting loops, 

�rL
2 = �0 � (17.30) 

2Bmax 

Various samples gave loop radii in the 
range 0�6–2�5�m. Zero field cooled sam­
ples exhibit a minimum absorption at 
zero field; stored flux shifts this mini­
mum in field cooled samples (Mzoughi 
et al., 1992). 

E. Microwave Energy Gap 

Energy gaps of superconductorswith low 
transition temperatures,Tc < 1K, occur in the 
microwave region. Since a temperature of 1K 
is equivalent to 20.8GHz, we can estimate 

from the BCS result Eg/kBTc = 3�53 that 1K 
corresponds to an energy gap of ≈ 74GHz, 
which is in the upper range of readily avail­
ablemicrowave frequencies.Mostmicrowave 
absorption studies of the type described in the 
previous section were carried out at≈ 9GHz, 
which is almost three orders of magnitude 
below the energy gap frequency of a high­
temperature superconductor. 

A study made of the temperature depen­
dence of the normalized microwave resistiv­
ity of aluminum �Tc = 1�2K� for a range 
of microwave frequencies of 12–80GHz, 
shown in Fig. 17.66a, illustrates how the 
gap can be estimated (Biondi and Garfunkel, 
1959). Each curve is labeled with its equiva­
lent kBTc value. The curves for photon ener­
gies less than 3kBTc extrapolate to zero, 

Figure 17.66 Temperature dependence of the nor­
malized microwave resistivity �/�n of aluminum (top) 
for a range of microwave frequencies, where �n is 
the normal-state resistivity. Each curve is labeled with 
its equivalent kBTc value. The plot of the normalized 
resistivity versus kBTc (bottom) exhibits a break in the 
curve at the temperature T = 0�7Tc corresponding to the 
energy gap Eg ≈ 2�6kBTc (Biondi and Garfunkel, 1959). 
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which indicates that super electrons are not 
excited above the gap for microwave ener­
gies less than 3kBTc. Above this energy 
the curves extrapolate to a finite resistivity, 
indicative of the presence of excited quasi­
particles. In carrying out this experiment the 
lowest temperatures, ≈ 0�3K, were reached 
with the aid of a He3 refrigerator. 

To determine the gap energy a plot was 
made of the microwave resistivity of each 
frequency at the temperature T = 0�7Tc ver­
sus the energy, as shown in Fig. 17.66b. We 
see from the plot that the resistivity has a 
small slope up to the energy 2�6kBTc and a 
larger slope beyond this point, indicating that 
the gap energy is Eg ≈ 2�6kBTc. The more 
rapid rise in resistivity beyond this point 
arises from super electrons that have become 
excited to the quasiparticle state. 

F. Muon-Spin Relaxation 

The negative muon �− acts in all 
respects like an electron and the positive 
muon �+ like a positron except for each 
having a mass 206.77 times larger (Poole, 
1983). In this experiment positive polarized 
muons are implanted into a sample that had 
been placed in a magnetic field. The preces­
sion of the muons at ��/2� = 135�5MHz/T 
provides a microscopic probe of the distri­
bution of the local magnetic fields (Budnick 
et al., 1987). In particular, the width of the 
muon spin relaxation ��SR� signal from a 
superconductor provides an estimate of this 
field distribution and of the penetration depth 
� (Ansaldo et al., 1991a; Pümpin et al., 
1990). The measurements are carried out in 
an external field that is significantly larger 
than the lower-critical field, so that the sep­
aration between the vortices is smaller than 
�, and the �SR signal represents a simple 
average over the internal field in different 
parts of the sample. 

As an example of a penetration depth 
determination we present in Fig. 17.67 the 
temperature dependence measured using a 

17 SPECTROSCOPIC PROPERTIES 

Figure 17.67 Temperature dependence of the pene­
tration depth � in a single crystal of YBa2Cu3O7−� for a 
1. 1-T magnetic field aligned along the c-axis, showing 
measured data points and fits to the data (dashed curves). 
The inset shows the average field squared ��	B�2� for 
two data points and several calculated mass anisotropy 
curves m ∗/m ∗ as a function of the angle � of the mag-c ab 

netic field relative to the c-axis. The data were obtained 
from muon spin relaxation (Harshman et al., 1989). 

single crystal of YBa2Cu3O7−� with an 11­
T applied magnetic field aligned parallel to 
the c-axis �� = 0�. The distribution of the 
internal magnetic field Bin depends on the 
anisotropy in the fall-off of the magnetic 
field in various directions around a vortex. 
The fall-off is, in turn, governed by the corre­
sponding penetration depth in the plane per­
pendicular to the field direction. Figure 17.67 
compares the temperature dependence of the 
measured values �ab with the dependence 
expected from Eq. (2.57), 

� � �4 
�−1/2 

T 
� = ��0� 1− (17.31)

Tc 

with ��0� = 141�5nm. We see that the fit to 
the data is good. 

We saw in Chapter 12 Section IV.A, 
that for a high-temperature superconductor 
mab 

∗ < mc
∗, and hence that �ab < �c. We can 

conclude from a comparison of Eqs. (12.59) 
and (12.61) that the area enclosed by a vor­
tex within a distance from the origin that 
satisfies Eq. (12.49) and makes the modi­
fied Bessel function assume the value K0�1� 
is larger when the magnetic field is aligned 
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in the a, b-plane than when Bapp is along c 
(see Fig. 12.23). This means that the vortices 
overlap more when the applied field is in the 
a, b-plane than when it is along the c direc­
tion; the variation in space of the internal 
field 	B about its average value, shown plot­
ted in Fig. 12.19, is also less for the former 
case. An intermediate amount of overlap, 
and hence of 	B, will occur for intermediate 
angular orientations. 

To check the anisotropy, Harshman et al. 
(1989) oriented the applied magnetic field at 
an angle �/4 relative to the c direction and 
found that the measured variation in the aver­
age field squared ��	B�2� had decreased. The 
result is compared in the inset of Fig. 17.67 
with representative curves calculated for var­
ious rations m ∗/m∗ that show the existence c ab 

of strong anisotropy, since m ∗/m∗ > 25. c ab 

This means that �c/�ab > 5; in other words, 
� > 700nm. The effective mass m ∗ relativec c 

to the electron rest mass m0 was also deter­
mined and it was found that m ∗ 

c ≈ 10m0. 

G. Mössbauer Resonance 

Mössbauer resonance measures gamma 
rays emitted by a recoilless nucleus when it 

undergoes a transition from a nuclear ground 
state to a nuclear excited state. For 57Fe the 
emitted gamma ray has an energy of 14.4KeV 
and a linewidth typically of 5× 10−9 eV. The 
gamma ray can shift in energy, called an iso­
mer shift, or its spectrum can split into a 
multiplet by hyperfine interaction from the 
nuclear spin, by crystal field effects, or by 
the quadrupole interaction. Line broadening 
and relaxation provide additional informa­
tion. These factors are sensitive to the chem­
ical environment of the nucleus in the lattice. 
Mössbauer workers frequently quote energy 
shifts in velocity units, mm/s. 

In a typical experiment, one of the atoms 
of a superconductor such as Cu, Y, or Tl, 
is partially replaced by a small concentra­
tion of a nucleus, such as 57Co� 57Fe� 151Eu, 
or 119Sn, any one of which is favor­
able for Mössbauer studies. Sometimes, the 
replacement is 100%, as in the compound 
EuBa2Cu3O7−�. The partial substitution can 
have the effect of lowering the transition 
temperature, particularly when Cu is being 
replaced, as shown in Fig. 17.68. The spectra 
provide information on the valence state of 
the nucleus (e.g., Fe2+ or Fe3+), for example, 
whether it is high spin (e.g., S = 5/2) or low 

Figure 17.68 Dependence of the zero-resistance midpoint transi­
tion temperature Tc on the concentration x of the transition ion dopant 
M in YBa2�Cu1−xMx�3O7−� for: (a) Fe (�) (Bottán et al., 1988), (b) 
Fe �	� (Oda et al., 1987), (c) Fe �♦� (Tarascon et al., 1988a), and (d) 
Co (×) (Langen et al., 1988) (figure from Bottayán et al., 1988). 
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spin (e.g., S = 1/2), which is the dominant 
substitutional site (e.g., Cu(1) or Cu(2)), etc. 
Perhaps of greater interest is the information 
that Mössbauer gives us about the magnetic 
changes that occur. 

Mössbauer data from YBa2Cu3O7−� 

with 57Fe substituted for 10% of the Cu are 
shown in Fig. 17.69. The Fe is magnetically 

Figure 17.69 Comparison of Mössbauer absorption 
spectra of YBa2�Cu0�9Fe0�1�3O7 in zero field below Tc 

at (a) 4.2K, (c) 15K, and (d) 19K, and above Tc at (e) 
100K. Spectra are also shown in a 5-T magnetic field 
at (b) 4.2K, and (f) 100K (Bottyán et al., 1988). 

17 SPECTROSCOPIC PROPERTIES 

ordered at low temperature, with the ordering 
identified as antiferromagnetic since turning 
on a magnetic field of 5 T has the effect of 
broadening and producing a small inside shift 
of the outer lines of the spectrum, as shown 
in the figure. Increasing the temperature pro­
duces a decrease in the magnetic splitting 
accompanied by relaxation-time broadening. 
The onset of magnetic splitting occurs at 
50K; it appears in the wings in Figs. 17.69c 
and 17.69d, and is resolved in Figs. 17.69a 
and 17.69b. Below Tc, which from Fig. 17.69 
is about 25K for 10% Fe, the spectra of 
Fig. 15.69 appear more spread out. Bottyan 
et al. (1988) conclude that there are four Fe 
species that appear as the oxygen content ��� 
and the Fe/Cu ratio of Fe varies, with three 
high-spin Fe4+ and one high-spin Fe3+, with 
a preference for the Cu(1) sites. Pissas et al. 
(1992) found Fe equally distributed between 
the chain and plane Cu sites, being high-spin 
�S = 5/2� at the latter site. 

Shinjo and Nasu (1989) reviewed mag­
netic order at very low temperatures in the 
superconductors 

YbBa2Cu3O7 and GdBa2Cu3O7� 

The isomer shift values indicate that the 
conduction-electron densities in the rare-
earth ions are close to zero (Smit et al., 
1987), and suggest that they do not con­
tribute to the electrical conductivity. The pro­
nounced change in the spectrum with the 
temperature, shown in Figs. 17.70 and 17.71 
for the two compounds, indicates the change 
from a low-temperature ordered state into 
a high-temperature paramagnetic-type state 
with the respective Néel temperatures TN of 
0.35K and 2.5K, both of which are far below 
the superconducting transition temperature 
T ≈ 90K. The authors suggest that the rare c 

earth sheets sandwiched by superconducting 
layers may be an ideal two-dimensional mag­
netic lattice. 

Relevant Mössbauer articles on several 
isotopes are, for 119Sn (Kuzmann et al., 
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Figure 17.70 Mössbauer spectra of 170Yb in 
YbBa2Cu3O7 at four temperatures showing resolution of 
structure in the millidegree region (Hodges et al., 1987). 

Figure 17.71 Mössbauer spectra of 155Gd in 
GdBa2Cu3O7 at 1.6K and 4.2K, showing resolved 
structure at the lower temperature (van den Berg et al., 
1987; Smit et al., 1987). 

1989; Matsumoto et al., 1991; Nishida 
et al., 1990a,b; Shiujo et al., 1989; Shinjo 
and Nasu, 1989; Smith et al., 1992), for 

121Sb (Smith et al., 1992), for 151Eu (Kuz­
mann et al., 1989; Malik et al., 1988; 
Shinjo and Nasu, 1989; Stadnik et al., 1989, 
1991; Yoshimoto et al., 1991), for 155Gd 
(Bornemann et al., 1991; Shinjo and Nasu, 
1989), and for 170Yb (Shinjo and Nasu, 1989). 
The literature on 57Fe studies is extensive. 

PROBLEMS 

1. What are the real and imaginary parts of √ 
� if � = 2+3j? 

2. A metal is opaque for incident radiation 
below 2 eV and transparent for higher 
incident energies. Find the plasma fre­
quency and the density of conduction 
electrons. 

3. An ionically bonded molecule A+B− 

with the bond length 0.17 nm has 
polarizability 2×10−16 cm2/V. It is irra­
diated with light with the power den­
sity 3W/m2. Find the permanent and 
induced dipole moments. 

4. Calculate the frequency and the energy 
of the n = 1 to  n = 4 transition of Cu. 
Find the Moseley law constant for this 
transition. 

5. A neutron moving through a lattice at 
the velocity v = 2×105 m/sec creates a 
phonon of frequency 5× 1011 Hz. Find 
its new velocity v′ . 

6. Show	 that Eq. (17.16) reduces to 
Eq. (17.17) in the limit �i
i 	 1. Show 
that 1/
i is the linewidth for the real and 
imaginary parts of the expression. 

7. A molecule with the vibrational fre­
quency �0 = 1012 Hz is irradiated with 
visible light of wavelength 600�m. 
What are the first five Stokes line fre­
quencies in the Raman spectrum? 

8. What is the gyromagnetic ratio � for a 
Cu2+ ion with g = 2�17? What will be 
its ESR frequency in a magnetic field of 
0.3 T? 

9. Derive an expression for the depen­
dence of the shift in the resonant lines 
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of Fig. 17.62 on the applied field 
for the sample geometry of Fig. 5.17, 
taking into account the demagnetization 
factor. 

10. A material has a characteristic vibra­
tional frequency �0 = 3×1012 Hz and an 
index of refraction n = 2. Find the ener­
gies E of the three lowest vibrational 

17 SPECTROSCOPIC PROPERTIES 

transitions, the frequency � of the funda­
mental vibrational band, the spring con­
stant k and the reflection coefficient R 
for normal incidence. 

11. Sketch the energy level diagram and 
indicate all of the transitions appearing 
on the 139La nuclear quadrupole reso­
nance spectrum of Fig. 17.57. 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:583 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

M. Abramowitz and I. A. Stegun, Eds., “Handbook 
of Mathematical Functions,” NBS, U. S. Gov. 
Printing Off., Washington, DC, 1964. 

A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 35, 1442 
(1957); Sov. Phys. JETP 5, 1174 (1957). 

A. A. Abrikosov, Fundamentals of the Theory of 
Metals, Pt. 2: Elsevier (1988). 

D. Achkir, D. Poirier, C. Bourbonnais, G. Quirion, 
C. Lenoir, P. Batail, and D. Jerome, Phys. Rev. 
B 47, 11595 (1993). 

S.	 Adachi, A. Tokiwa-Yamamoto, M. Itoh, 
K. Isawa, and H. Yamauchi, Physica C 214, 
313 (1993). 

F. J. Adrian, Phys. Rev. Lett. 61, 2148 (1988); 
see also 63, 688, 690 (1989). 

F. J. Adrian, Chem. Eng. News Dec. 21, 24 
(1992). 

G. Aeppli, S. M. Hayden, H. A. Mook, Z. Fisk, 
S.-W.Cheong, D. Rytz, J. P. Remeika, G. P. 
Espinosa, and A. S. Cooper, Phys. Rev. Lett. 
62, 2052 (1989). 

N. Agrait, J. G. Rodrigo, and S. Vieira, Phys. Rev. 
B46, 5814 (1992). 

References


N. Agrait, J. G. Rodrigo, and S. Vieira, Phys. Rev. 
B47, 12345 (1993). 

M. Akera and T. Andu, in “Proc. 8th Int. Conf. 
on Elect. Prop, of 2-Dimensional Systems,” 
Grenoble, France, 1989. 

J.	 Akimitsu, S. Suzuki, M. Wantanabe, and 
H. Sawa, Jpn. J. Appl. Phys. 27, L1857 (1988). 

S. Aktas, “A Numerical Study of Magnetic Vor­
tices in High Kappa Superconductors,” Ph.D. 
thesis, University of South Carolina, 1993. 

S. Aktas, C. P. Poole, Jr., and H. A. Farach, 
J. Phys. Condens. Matter 6, 7373 (1994). 

N. E. Alekseevskii, N. M. Dobrovolskii, 
D. Ekkert, and V. I. Tsebro, JETP 72, 
1145 (1977). 

L.	 Alff, S. Meyer, S. Kleefisch, U. Schoop, 
A. Marx, H. Sato, M. Naito, and R. Gross, 
Phys. Rev. Lett. 83 2644 (1999). 

E. Alleno, Z. Hossain, C. Godart, R. Narajan and 
L. C. Gupta, Phys. Rev. B 52, 7428 (1995). 

A. A. Aligia, Phys. Rev. B 39, 6700 (1989). 
K.	 Allan, A. Campion, J. Zhou, and J. B. 

Goodenough, Phys. Rev. B 41, 11572 (1990). 

583 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:584 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

584 

P. B. Alien, in “High-Temperature Superconduc­
tivity” (J. W. Lynn, Ed.), Chap. 9, Springer-
Verlag, Berlin, (1990). 

H. Alloul, T. Ohno, and P. Mendels, Phys. Rev. 
Lett. 63, 1700 (1989). 

H. Alloul, A. Mahajan, H. Casalta, and O. Klein, 
Phys. Rev. Lett. 70, 1171 (1993). 

C.	 C. Almasan, J. Estrada, C. P. Poole, Jr., 
T. Datta, H. A. Farach, D. U. Gubser, S. A. 
Wolf, and L. E. Toth, Mater. Res. Soc. Symp. 
Proc. 99, 451 (1987). 

C. C. Almasan and M. B. Maple, in “Chem­
istry of High Temperature Superconductors” 
(C. N. R. Rao, Ed.), World Scientific, 
Singapore, 1991. 

C. C. Almasan, S. H. Han, E. A. Early, B. W. 
Lee, C. L. Seaman, and M. B. Maple, Phys. 
Rev. B 45, 1056 (1992). 

E. E. Alp, J. C. Campuzano, G. Jennings, J. Guo, 
D. E. Ellis, L. Beaulaigue, S. Mini, M. Faiz, 
Y. Zhou, B. W. Veal, and J. Z. Liu, Phys. Rev. 
B 40, 9385 (1989). 

V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 
10,468 (1963a); 11, 104 (1963b). 

V. Ambegaokar and U. Eckern, Phys. Rev. B 44, 
10358 (1991). 

J.	 R. Anderson, D. A. Papaconstantopoulis, 
J. W. McCaffrey, and J. E. Schirber, Phys. 
Rev. B 7, 5115 (1973). 

P. W. Anderson, Phys. Rev. 112, 1900 (1958). 
P. W. Anderson, Phys. Rev. B 115, 2 (1959). 
P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962). 
P. W. Anderson and J. M. Rowell, Phys. Rev. 

Lett. 10, 230 (1963). 
P. W. Anderson and Y. B. Kirn, Rev. Mod. Phys. 

36, 39 (1964). 
P. W. Anderson, Science 235, 1196 (1987a); Phys. 

Rev. Lett. 59, 2497 (1987b). P. 
P.	 W. Anderson, in “Frontiers and Border­

lines of Many Particle Physics,” Int. School 
of Physics “Enrico Fermi,” North-Holland, 
Varenna, 1987. 

P. W. Anderson and Z. Zou, Phys. Rev. Lett. 60, 
132 (1988). (Reprinted in Halley, 1988). 

P.	 W. Anderson, Phys. Rev. Lett. 64, 1839 
(1990a); 65, 2306 (1990b). 

P. W. Anderson, Physica C 185–189, 11 (1991). 
P. W. Anderson and R. Schrieffer, Physics Today, 

June 1991, p. 54. 
P. W. Anderson, Science 256, 1526 (1992). 
P.	 W. Anderson, “A Career in Theoretical 

Physics,” World Scientific, Singapore, 1994a. 

REFERENCES 

P. W. Anderson, Amer. Scientist 82, 379 (1994b). 
M. Andersson and O. Rapp, Phys. Rev. B 44, 

7722 (1991). 
Y. Ando, N. Motohira, K. Kitazawa, J. Takeya, 

and S. Akita, Jpn. J. Appl. Phys. 30, LI 635 
(1991a); Phys.Rev. Lett. 67, 2737 (1991b). 

B. Andraka, J. S. Kirn, G. R. Stewart, K. D. 
Carlson.H. H. Wang, and J. M. Williams, 
Phys. Rev. B 40, 11345 (1989). 

M. Angst, R. Puzniak, A. Winiewski, J. Roos, 
H. Keller, P. Miranovic, J. Jun, S. M. Kazarov, 
J. Karpinski, Physica C 385, 143, (2003). 

O. A. Anikeenok, M. V. Eremin, Sh. Zhdanov. 
V. V. Naletov, M. P. Rodionova, and M. A. 
Teplov, JETP Lett. 54, 149 (1991). 

V. I. Anisimov, M. A. Korotin, J. Zaanen, and 
P. L. Andersen, Phys. Rev. Lett. 68, 345 (1992). 

S. M. Anlage, M. Pambianchi, A. T. Findikoglu, 
C. Doughty, D.-H. Wu, J. Mao, S.-N. Mao, 
X. X. Xi, T. Venkstesan, J. L. Peng, and R. L. 
Greene, Proc. SPIE Conf. on Oxide Supercon­
ductivity, Vol 2158 (D. Pavuna, Ed.), 1994. 

S. Anlage, D-H Wu, J. Mao, S. N. Mao, X. X. Xi, 
T. Venkatesan, J. L. Peng, and R. L. Greene, 
Phys. Rev. B 50 523 (1994). 

J. F. Annett, NATO ASI Ser., Ser., 332405 (1997). 
J. F. Annett, N. Goldenfeld, and S. R. Renn. 

“Temperature Superconductors” (D. M. 
Ginsberg, Ed.), Vol. 2, Chap.9, World Scien­
tific, Singapore, 1990. 

J. F. Annett, N. Goldenfeld, and S. R. Renn, Phys. 
Rev. B 43, 2778 (1991). 

J. F. Annett, Physica C 317 1–8 (1999). 
J. F. Annett, G. Litak, B. L. Gyorffy, and K. Li. 

Wysokinski, Phys. Rev. B 66, 134514 (2002) 
J. F. Annett, B. L. Gyorffy, G. Litak, and K. I. 

Wysokinski, Eur. Phys. J. B 36, 301 (2003). 
E.	 J. Ansaldo, C. Niedermayer, H. Gliick­

ler, C E-Stronach, T. M. Riseman, R. S. 
Gary, D. R. Noakes, X. Obradors, A. Fuetes, 
J. M. Navarro. P. Gomez, N. Casan, B. Mar­
tinez, F. Perez, J. Rodriguez-Carvajal, and K. 
Chow, Physica C 735–189, 1213 (1991a). 

E. J. Ansaldo, C. Niedermayer, and C. E. Stronact 
Nature 353, 121 (1991b). 

V. P. Antropov, I. I. Mazin, O. K. Andersen, 
A. I. Liechtenstein, and O. Jepsen, Phys. Rev. 
B 47 12373 (1993). 

J.	 Aponte, H. C. Abache, A. Sa-Neto, and 
M. Octavio, Phys. Rev. B 39, 2233 (1989). 

M. Aprili, E. Badica, and L. H. Greene, Phys. 
Rev. Lett. 83, 4630 (1999). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:585 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

585 REFERENCES 

T. Arai, K. Ichimura, K. Nomura, S. Takasaki, 
J. Yamada, S. Nakatsuji, and H. Anzai, Phys. 
Rev. B 63 104518 (2001). 

T. Arai, K. Ichimura, K. Nomura, S. Takasaki, 
J. Yamada, S. Nakatsuji, and H. Anzai, Phys. 
Rev. B 63 104518 (2001). 

B. Arfi, Phys. Rev. B 45, 2352 (1992). 
G. Arfken, “Mathematical Methods for Physicists 

3rd ed., Wiley, New York, 1985. 
T. A. Arias and J. D. Joannopoulos, Phys. Rev. 

B 39, 4071 (1989). 
D.	 N. Aristov, S. V. Maleyev, and A. G. 

Yashenkin. Phys. Rev. B 48, 3527 (1993). 
A. J. Arko, R. S. List, R. J. Bartlett, S.-W. Che 

Z. Fisk, J. D. Thompson, C. G. Olson, A.-B. 
Yang, R. Liu, C. Gu, B. W. Veal, J. Z. Liu, 
A. P. Plaulikas, K. Vandervoort, H. Claus, J. 
C. Campuzano, L J. E. Schirber, and N. D. 
Shinn, Phys. Rev. B 40, 2268 (1989). 

N. P. Armitage, D. H, Lu, D. L. Feng, C. Kirn, 
A. Damascelli, K. M. KShen, F. Ronning, 
Z-X., Shen, Y. Onose, Y. Taguchi, and Y. 
Tokura, Phys. Rev. Lett. 86 1126 (2001). 

G. B. Arnold, F. M. Mueller, and J. C. Swihart. 
Phys. Rev. Lett. 67, 2569 (1991). 

A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. 
Rev. Lett. 62, 965, 2236(E), (1989). 

D. Arovas, J. R. Schrieffer, and F. Wilczek. Phys. 
Rev. Lett. 53, 722 (1984). 

E. Arrigoni, G. Strinati, and C. Castellani, Phys. 
Rev. B 41, 4838 (1990). 

K. Asayama, G.-Q. Zheng, Y. Kitaoka, K. Ishida, 
and K. Fujiwara, Physica C 178, 281 (1991). 

N. W. Ashcroft and N. D. Mermin, “Solid State 
Physics,” Saunders, Philadelphia, 1976. 

M. Ashida, S. Aoyama, J. Hara, and K. Nagai, 
Phys. Rev. B 40, 8673 (1989). 

J. Ashkenazi, S. E. Barnes, F. Zuo, G. C. Vezzoli, 
and B. M. Klein, Eds., “High Temperature 
Superconductivity,” Plenum, New York, 1991. 

T. R. Askew, R. B. Flippen, K. J. Leary, M. N. 
Kunchur, J. Mater. Res. 6, 1135 (1991). 

L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. 
Tela 10, 1104 (1968) [Sov. Phys. Solid State 
10, 875(1968)]. 

W. Assmus, M. Herrmann, U. Rauchschwalbe, 
S. Riegel, W. Lieke, H. Spille, S. Horn, G. 
Weber, F. Steglich, and G. Cordier, Phys. Rev. 
Lett. 52, 469 (1984). 

K. S. Athreya, O. B. Hyun, J. E. Ostenson, J. R. 
Clem, and D. K. Finnemore, Phys. Rev. B 38, 
11846 (1988). 

A. Auerbach, “Interacting Electrons and Quantum 
Magnetism,” Springer-Verlag, Berlin, 1994. 

B. Aurivillus, Ark. Kemi 1, 463, 499 (1950). 
B. Aurivillus, Ark. Kemi 2, 519 (1951). 
B. Aurivillus, Ark. Kemi 5, 39 (1952). 
C. Ayache, I. L. Chaplygin, A. I. Kirilyuk, N. 

M. Kreines, and V. I. Kudinov, Solid State 
Commun. 81, 41 (1992). 

J. Azoulay, Phys. Rev. B 44, 7018 (1991). 
E. Babic, M. Prester, D. Drobac, Z. Marohnic, 

and N. Biskup, Phys. Rev. B 43, 1162 (1991). 
E. Babic, M. Prester, D. Drobac, Z. Marohnic, 

P. Nozar, P. Stastny, F. C. Matacotta, and S. 
Bernik, Phys. Rev. B 45, 913 (1992). 

P. K. Babu and J. Ramakrishna, Supercond. Rev. 
1, 75 (1992). 

E. M. Baggio-Saitovitch, D. R. Sanchez, and H. 
Micklitz, (K. H. Muller and V. Narozhnyi, 
Eds.), Rare Earth Transition Metal Borocar­
bides (Nitrides); Superconducting Magnetic 
and Normal State Properties, p. 51, Kluwer 
Acad. Publ. Dordrecht, (2001) 

D. C. Baird and B. K. Mukherjee, Phys. Rev. Lett. 
21, 996 (1968). 

D. C. Baird and B. K. Mukherjee, Phys. Rev. 3, 
1043 (1971). 

C. K. Bak and N. F. Pedersen, Appl. Phys. Lett. 
22, 149 (1973). 

O. N. Bakharev, A. V. Dooglav, A. V. Egorov, V. 
V. Naletov, M. P. Rodionova, M. S. Tagirov, 
and M. A. Teplov, Appl. Magn. Reson. 2, 
559 (1991). 

J. Bala and A. M. Oles, Phys. Rev. B 47, 515 
(1993). 

C. J. Ballhausen, “Introduction to Ligand Field 
Theory,” McGraw-Hill, New York, 1962. 

M. Ban, T. Ichiguchi, and T. Onogi, Phys. Rev. 
B 40, 4419 (1989). 

A. Bansil, P. E. Mijnarends, and L. C. Smedskjaer, 
Phys. Rev. B 43, 3667 (1991). 

A. Bansil and S. Kaprzyk, Phys. Rev. B 43, 10335 
(1991). 

Y. S. Barash, M. S. Kalenkov, and J. Kurkijarvi, 
Phys. Rev. B 62, 6665 (2000). 

A. Baratoff and G. Binnig, Physica B 188, 1335 
(1981). 

B.	 Barbiellini, P. Genoud, J. Y. Henry, L. 
Hoffmann, T. Jarlborg, A. A. Manuel, S. 
Massidda, M. Peter, W. Sadowski, H. J. 
Scheel, A. Shukla, A. K. Singh, and E. Walker, 
Phys. Rev. B 43, 7810 (1991). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:586 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

586 

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, 
Phys. Rev. 108, 1175 (1957). 

J. Bardeen and M. P. Stephen, Phys. Rev. A 140, 
1197 (1965). 

J. Bardeen, L. N. Cooper and J. R. Schrieffer, 
Phys. Rev. B 62, 6665 (2000). 

R.	 Bar-Deroma, J. Felsteiner, R. Brener, J. 
Ashkenazi, and D. van der Marel, Phys. Rev. 
B 45, 2361 (1992). 

C. Barlingay, V. Garcia-Vazquez, C. M. Falco, 
S.Mazumdar, and S. H. Risbud, Phys. Rev. 
B 41, 4797 (1990). 

A. Barone and G. Paterno, “Physics and Appli­
cations of the Josephson Effect,” Wiley, 
New York, 1982. 

S. E. Barrett, D. J. Durand, C. H. Pennington, C. 
P. Slichter, T. A. Friedmann, J. P. Rice, and D. 
M. Ginsberg, Phys. Rev. B 41, 6283 (1990). 

S. E. Barrett, J. A. Martindale, D. J. Durand, C. H. 
Pennington, C. P. Slichter, T. A. Friedmann, J. 
P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 
66, 108 (1991). 

J. C. Barry, Z. Iqbal, B. L. Ramakrishna, H. 
Eck-hardt, F. Reidinger, and R. Sharma, Appl. 
Phys.Lett. No. 71.70-b (1989). 

K.	 Bartkowski, R. Horyn, A. J. Zaleski, Z. 
Bukowski, M. Horobiowski, C. Marucha, 
J. Rafalowicz, K. Rogacki, A. Stepien-Damm, 
C. Sulkowski, E. Trojnar, and J. Klamut, Phys. 
Status Solidi 103, K 37 (1987). 

D. N. Basov, R. Liang, D. A. Bonn, W. N. Hardy, 
B. Dabrowski, M. Quijada, D. B. tanner, J. P. 
Rice, D. M. Grinsberg and T. Timusk, Phys. 
Rev. Lett. 74, 598 (1995). 

F. E. Bates, Phys. Rev. B 39, 322 (1989). 
B. Batlogg, A. P. Ramirez, R. J. Cava, R. B. van 

Dover, and E. A. Reitman, Phys. Rev. B 35, 
5340 (1987). 

B. Batlogg, R. J. Cava, L. W. Rupp, Jr., A. M. 
Mujsce, J. J. Krajewski, J. P. Remeika, W. F. 
Peck, Jr., A. S. Cooper, and G. P. Espinosa, 
Phys. Rev. Lett. 61, 1670 (1988). 

B. W. Batterman and C. S. Barrett, Phys. Rev. 
Lett. 13, 390 (1964). 

G. Baym and C. Pethick, “Landau Fermi–Liquid 
Theory,” Wiley, New York, 1991. 

C. P. Bean, Phys. Rev. Lett. 8, 250 (1962). 
C. P. Bean, Rev. Mod. Phys. 36, 31 (1964). 
M. R. Beasley, R. Labusch, and W. W. Webb, 

Phys. Rev. 181, 682 (1969). 
J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 

189 (1986). 

REFERENCES 

J. G. Bednorz and K. A. Muller (Eds.), “Ear­
lier and Recent Aspects of Superconductivity,” 
Springer-Verlag, Berlin, 1990. 

C. W. J. Beenakker and H. van Houten, Phys. 
Rev.Lett. 66, 3056 (1991). 

V. P. Belash, E. Z. Kurmaev, and S. A. Nemnonov, 
Fiz. Met. Metalloved 37, 659 (1974). 

S. Behnia, K. Behnia, and A. Deluzet, Phys. Rev. 
Lett. 81 4728 (1998) 

D. Belitz, in “High Temperature Superconduc­
tivity” (J. W. Lynn, Ed.), Chap. 2, Springer-
Verlag, Berlin, 1990. 

R. Benedek and H.-B. Schuttler, Phys. Rev. B 41, 
1789 (1990). 

M. A. Beno, L. Soderholm, D. W. Capone II, D. 
G. Hinks, J. D. Jorgensen, J. D. Grace, I. K. 
Schuller, C. U. Segre, and K. Zhang, Appl. 
Phys. Lett. 51,57 (1987). 

V.	 L. Berezinskii, Sov. Phys. JETP 34, 610 
(1972). 

D. D. Berkley, E. F. Skelton, N. E. Moulton, M. 
S. Osofsky, W. T. Lechter, V. M. Browning, 
and D. H. Liebenberg, Phys. Rev. B 47, 
5524 (1993). 

A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, 
Phys. Rev. B 48, 4074 (1993). 

R. Berman and D. K. C. MacDonald, Proc. R. 
Soc. London Ser. A 211, 122 (1952). 

R. Beyers and T. M. Shaw, Solid State Phys. 42, 
135 (1989). 

R. Beyers and B. T. Ahn, Annu. Rev. Mater. Sci. 
21, 335 (1991). 

R. Bhagavatula, C. Ebner, and C. Jayaprakash, 
Phys. Rev. B 45, 4774 (1992). 

K. V. Bhagwat and P. Chaddah, Physica C 166, 
1 (1990). 

K. V. Bhagwat and P. Chaddah, Physica C 190C, 
444 (1992). 

A. Bharathi, C. S. Sundar, W. Y. Ching, Y. C. 
Jean, P. H. Hor, Y. Y. Xue, and C. W. Chu, 
Phys. Rev. B 42, 10199 (1990). 

A. K. Bhatnagar, R. Pan, D. G. Naugle, P. J. Sqat­
trito, A. Clearfleld, Z. Z. Sheng, Q. A. Shams, 
and A. M. Hermann, Solid State Commun. 73, 
53 (1990). 

R. N. Bhatt, Phys. Rev. B 16, 1915 (1977). 
R. N. Bhatt, Phys. Rev. B 17, 2947 (1978). 
A. Bhattacharya and C. S. Wang, Phys. Rev. B. 

45, 10826 (1992). 
A. Bhattacharya, I. Zutic, O. T. Valls, A. M. 

Goldman. U. Welp, and B. Veal, Phys. Rev. 
Lett. 82, 3132 (1999). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:587 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

587 REFERENCES 

C. P. Bidinosti, W. N. Hardy, A. D. Bonn, and R. 
Liang, Phys. Rev. Lett. 83, 3277 (1999). 

J. B. Bieri and K. Maki, Phys. Rev. B 42, 4854 
(1990). 

B. D. Biggs, M. N. Kunchur, J. J. Lin, S. J. 
Poon, T. R. Askew, R. B. Flippen, M. A. 
Subramanian, J. Gopalakrishnan, and A. W. 
Sleight, Phys. Rev. B39, 7309 (1989). 

S. J. L. Billinge, G. H. Kwei, and J. D. Thompson, 
in “Strongly Correlated Electronic Materi­
als” (K. S. Bedell, Ed.) Addison-Wesley, 
New York, 1994. 

K. Binder and A. P. Young, Rev. Mod. Phys. 58, 
801 (1986). 

B.	 Binnig, A. C. Castellano, M. De Santis, 
P.	 Rudolf, P. Lagarde, A. M. Frank, and 
A. Marcelli, Solid State Commun. 63, 
1009 (1980). 

M. A. Biondi and M. P. Garfunkel, Phys. Rev. 
116,853 (1959). 

R. J. Birgeneau, C. Y. Chen, D. R. Gabbe, H. 
P. Jenssen, M. A. Kastner, C. J. Peters, P. J. 
Picone, T. Thio, T. R. Thurston, H. L. Tuller, 
A. D. Axe, P. Boni, and G. Shirane, Phys. Rev. 
Lett. 59, 1329 (1987). 

P. Birrer, F. N. Gygax, B. Hitti, E. Lippelt, A. 
Schenck, M. Weber, D. Cattani, J. Cors, M. 
Decroux, and O. Fischer, Phys. Rev. B 48, 
15689 (1993). 

D. Bishop, C. M. Varma, B. Batlogg, E. Bucher, 
Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 53, 
1009 (1984). 

A. Biswas, P. Fournier, M. M. Qazilbash, V. N. 
Smolyaninova, H. Balci, and R. L. Greene, 
Phys. Rev. Lett. 88 207004 (2002). 

F. Bitter, Phys. Rev. 38, 1903 (1931). 
B. L. Blackford and R. H. March, Canad. J. Phys. 

46, 141 (1968). 
H. A. Blackstead, J. Supercond. 5, 67 (1992). 
H. A. Blackstead, Phys. Rev. B 47, 11411 (1993). 
G. Blatter, J. Rhyner, and V. M. Vinokur, Phys. 

Rev.B 43, 7826 (1991a). 
G.	 Blatter, V. B. Geshkenbein, and V. M. 

Vinokur, Phys. Rev. Lett. 66, 3297 (1991b). 
G. Blatter, B. I. Ivlev, and J. Rhyner, Phys. 
Rev. Lett. 66, 2392 (1991c). 

G. Blatter and B. Ivlev, Phys. Rev. Lett. 70, 2621 
(1993). 

K. W. Blazey, K. A. Miiller, J. G. Bednorz, 
W. Berlinger, G. Amoretti, E. Buluggiu, A. 
Vera, and F. C. Matacotta, Phys. Rev. B 36, 
7241 (1987). 

J. E. BJendell, C. K. Chiang, D. C. Cranmer, 
S. W. Freiman, E. R. Fuller, Jr., E. Drescher-
Krasicka, W. L. Johnson, H. M. Ledbetter, 
L. H. Bennett, L. J. Swartzendruber, R. B. 
Marinenko, R. L. Mykleburst, D. S. Bright, 
and D. E. Newbury, ACS Symp. Ser. 557, 
240 (1987). 

N. Bluzer, Phys. Rev. B 44, 10222 (1991). 
G. S. Boebinger, T. T. M. Palstra, A. Passner, M. 

J. Rosseinsky, D. W. Murphy, and I. I. Mazin, 
Phys. Rev. B 46, 5876 (1992). 

C. A. Bolle, P. I. Gammel, D. G. Grier, C. A. 
Murray, D. J. Bishop, D. B. Mitzi, and A. 
Kapitulnik, Phys. Rev. Lett. 66, 112 (1991). 

I. Bonalde, B. D. Yanoff, M. B. Salamon, D. J. 
Van Harlingen, E. M. E. Chia, Z. Q. Mao, 
and Y. Maeno, Physical Review Letters 85 
4775 (2000). 

I. Bonalde, B. D. Yanoff, D. J. Van Harlingen, 
M. B. Salamon, and Y. Maeno, Physica C 
341–348, 1695 (2000). 

I. Bonalde, B. D. Yanoff, D. J. Van Harlingen, 
M. B. Salamon, and Y. Maeno, Superconduc­
tivity and its Applications (Amsterdam) 341, 
1695 (2000) 

J. E. Bonevich, K. Harada, T. Matsuda, H. Kasai, 
T. Yoshida, G. Pozzi, and A. Tonomura, Phys. 
Rev. Lett. 70, 2952 (1993). 

P. Boni, J. D. Axe, G. Shirane, R. J. Birgeneau, 
D. R. Gabbe, H. P. Jenssen, M. A. Kastner, 
C. J. Peters, P. J. Picone, and T. R. Thurston, 
Phys. Rev. B 38, 185 (1988). 

E. Bonjour, R. Calemczuk, J. Y. Henry, and A. 
F. Khoder, Phys. Rev. B 43, 106 (1991). 

D. A. Bonn, A. H. O’Reilly, J. E. Greedan, C. 
V. Stager, T. Timusk, K. Kamaras, and D. B. 
Tanner, Phys. Rev. B 37, 1574 (1988). 

D. A. Bonn, S. Kamal, K. Zhang, R. Liang, D. J. 
Baar, E. Klein, and W. N. Hardy, Phys. Rev. 
B 50, 4051 (1994). 

N. Bontemps, D. Davidov, P. Monod, and R. 
Even, Phys. Rev. B 43, 11512 (1991). 

P. Boolchand, C. Blue, K. Elgaid, I. Zitkovsky, D. 
McDaniel, W. Huff, B. Goodman, G. Lemon, 
D. E. Farrell, and B. S. Chandrasekhar, Phys. 
Rev. B 38, 11313 (1988). 

P. Boolchand, S. Pradhan, Y. Wu, M. Abdelgadir, 
W. Huff, D. Farrell, R. Coussement, and D. 
McDaniel, Phys. Rev. B 45, 921 (1992). 

P. Bordet, C. Chaillout, J. Chenavas, J. L. Hodeau, 
M. Marezio, J. Karpinski, and E. Kaldis, 
Nature (London) 334, 596 (1988). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:588 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

588 

H. J. Bornemann, D. E. Morris, C. Steinleitner, 
and G. Czjzek, Phys. Rev. B 44, 12567 (1991). 

F. Borsa, A. Rigamonti, M. Corti, J. Ziolo, O. 
Hyun, and D. R. Torgeson, Phys. Rev. Lett. 
68, 698 (1992). 

I. Bose, Phys. Rev. B 43, 13602 (1991). 
R. Bottner, N. Schroeder, E. Dietz, U. Gerhardt, 

W. Assmus, and J. Kowalewski, Phys. Rev. 
B 41, 8679 (1990). 

L. Bottyan, B. Molnar, D. L. Nagy, I. S. Sziics, 
J. Toth, J. Dengler, G. Ritter, and J. Schober, 
Phys. Rev. B 38, 11373 (1988). 

F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, 
J. D. Jorgensen, A. Junot, and N. E. Phillips, 
Europhys. Lett. 56, 856 (2001). 

R. Boyn, K. Lobe, H.-U. Habermeier, and N. 
PruB, Physica C 181, 75 (1991). 

I. Bozovic, J. Supercond. 4, 193 (1991). 
A. I. Braginski, Physica C 780, 642 (1991). 
B. H. Brandow, J. Solid State Chem. 88, 28 

(1990). 
B.	 Brandow, International Journal of Modern 

Physics B 13 3482 (1999). 
E. H. Brandt, Physica C 162C–164C, 1167 (1989). 
E. H. Brandt, Physica B 165–166, 1129 (1990); 

Int. Conf. Low Temperature Phys., Brighton, 
U. K., August 1990. 

E. H. Brandt, Phys. Rev. Lett. 67, 2219 (1991). 
E. H. Brandt, Phys. Rev. Lett. 69, 1105 (1992). 
E. H. Brandt, Rep. on Prog. in Phys. 58, 1465 

(1995). 
A. Brass, H. J. Jensen, and A. J. Berlinsky, Phys. 

Rev.B 39, 102 (1989). 
A. Brass and H. J. Jensen, Phys. Rev. B 39, 9587 

(1989). 
D. A. Brawner, A. Schilling, H. R. Ott, R. J. Haug, 

K. Ploog, and K. von Klitzing, Phys. Rev. Lett. 
71, 785 (1993). 

Y. J. M. Brechet, B. Doucot, H. J. Jensen, and 
A.-C. Shi, Phys. Rev. B 42, 2116 (1990). 

E. Brezin, A. Fujita, and S. Hikami, Phys. Rev. 
Lett.65, 1949 (1990). 

G. Briceno, M. F. Crommie, and A. Zettl, Phys. 
Rev. Lett. 66, 2164 (1991). 

M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. 
L. Tuller (Eds.), “High Temperature Supercon­
ductors,” Vol. 99, Materials Research Society, 
Pittsburgh, (1988). 

C. Broholm, G. Aeppli, R. N. Kleiman, D. R. 
Harshman, D. J. Bishop, E. Bucher, D. LI. 
Williams, E. J. Ansaldo, and R. H. Heffner, 
Phys. Rev. Lett. 65, 2062 (1990). 

REFERENCES 

N. B. Brookes, A. J. Viescas, P. D. Johnson, J. 
P. Remeika, A. S. Cooper, and N. V. Smith, 
Phys. Rev. B 39, 2736 (1989). 

J. S. Brooks, C. C. Agosta, S. J. Klepper, M. 
Tokumoto, N. Kinoshita, H. Anzai, S. Uji, H. 
Aoki, A. S. Perel, G. J. Athas, and D. A. Howe, 
Phys. Rev. Lett. 69, 156 (1992). 

S. D. Brorson, A. Kazeroonian, J. S. Moodera, 
D. W. Face, T. K. Cheng, E. P. Ippen, M. S. 
Dresselhaus, and G. Dresselhaus, Phys. Rev. 
Lett. 64, 2172 (1990). 

P. R. Broussard, Phys. Rev. B 43, 2783 (1991). 
P. Brull, D. Kirchgassner, and P. Liederer, Phys­

ica C 182, 339 (1991). 
T. Brun, M. Grimsditch, K. E. Gray, R. Bhadra, 

V. Maroni, and C. K. Loong, Phys. Rev. B 55, 
8837 (1987). 

L. C. Brunei, S. G. Louie, G. Martinez, S. Labdi, 
and H. Raffy, Phys. Rev. Lett. 66, 1346 (1991). 

L. J. Bucholtz, and G. Zwicknagl, Phys. Rev. 
B 23, 5788 (1981). 

W.	 Buckel, “Superconductivity, Fundamen­
tals and Applications,” VCH, Weinheim, 
Germany, (1991). 

J. I. Budnick, A. Golnik, Ch. Niedermayer, E. 
Recknagel, M. Rossmanith, A. Weidinger, 
B. Chamber-land, M. Filipkowski, and D. P. 
Yang, Phys. Lett. A 124, 103 (1987). 

L. N. Bulaevskii, Zh. Eksp. Teor. Fiz. 64, 2241 
(1973); Sov. Phys. JETP (Engl. Trans.) 37, 
1133 (1988). 

L. N. Bulaevskii, O. V. Dolgov, and M. O. Ptitsyn, 
Phys. Rev. B 38, 11290 (1988). 

L. N. Bulaevskii and M. V. Zyskin, Phys. Rev. 
B 42, 10230 (1990). 

L. N. Bulaevskii, M. Ledvij, and V. G. Kogan, 
Phys. Rev. B 46, 366, 11807 (1992). 

N. Bulut and D. J. Scalapino, Phys. Rev. B 45, 
2371 (1992). 

G. Burns, P. Strobel, G. V. Chandrashekhar, F. H. 
Dacol, F. Holtzberg, and M. W. Shafer, Phys. 
Rev. B 39, 2245 (1989). 

G. Burns and A. M. Glazer, “Space Groups for 
Solid State Scientists,” Academic Press, San 
Diego, 1990. 

G. Burns, “High Temperature Superconductivity: 
An Introduction,” Academic Press, Boston, 
1992. 

M. J. Burns, Phys. Rev. B 40, 5473 (1989). 
R. Busch, G. Ries, H. Werthner, G. Kreiselmeyer, 

and G. Saemann-Ischenko, Phys. Rev. Lett. 
69, 522 (1992). 

http:Lett.65


Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:589 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

589 REFERENCES 

A. Bussmann-Holder and A. R. Bishop, Phys. 
Rev. B44, 2853 (1991). 

A. I. Buzdin, Phys. Rev. B 47, 11416 (1993). 
B. Cabrera, C. E. Cunningham, and D. Saroff, 

Phys. Rev. Lett. 62, 2040 (1989). 
Z.-X. Cai and D. O. Welch, Phys. Rev. B 45, 

2385 (1992). 
J. Callaway, “Energy Band Theory,” New York, 

1964. 
H. B. Callen, “Thermodynamics and Introduction 

to Thermostatics,” Wiley, New York, 1964. 
I. A. Campbell, L. Fruchter, and R. Cabanel, Phys. 

Rev. Lett. 64, 1561 (1990). 
J.	 C. Campuzano, G. Jennings, M. Faiz, L. 

Beaulaigue, B. W. Veal, J. Z. Liu, A. P. 
Paulikas. K. Vandervoort, H. Claus, R. S. List, 
A. J. Arko and R. L. Bartlett, Phys. Rev. Lett. 
64, 2308 (1990). 

J.	 C. Campuzano, L. C. Smedskjaer, R. S. 
Benedek, G. Jennings, and A. J. Bansil. Phys. 
Rev. B 43, 2788 (1991). 

P. C. Canfield, S. L. Bud’ko, and B. K. Cho, 
Physica C, 262, (1996). 

P. C. Canfield, S. L. Bud’ko, B. K. Cho, A. 
Lacerda, D. Farrell, E. Johnston-Halperin, V. 
A. Kalasky, and V. L. Prokosky, Phys. Rev. B 
55, 970 (1997). 

P.	 C. Canfield, S. L. Bud’ko, and D. K. 
Finnemore, Physica C385, 1, (2003) 

P. C. Canfield, Chap. 5, Section G in Handbook 
of Superconductivity, C. P. Poole, Jr., Editor, 
Academic Press, Boston, (2000). 

J. J. Capponi, C. Chaillout, A. W. Hewat, P. 
LeJay, M. Marezio, N. Nguyen, B. Raveau, 
J. L. Soubeyroux, J. L. Tholence, and R. 
Tournier Europhys. Lett. 3, 1301 (1987). 

J. P. Carbote, Rev. of Mod. Phys. 62, 1027 (1990). 
J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990) 
J. P. Carbotte, Reviews of Modern Physics 62 

1027 (1990). 
J. R. Carbotte and C. Jiang, Phys. Rev. B 48, 4231 

(1993). 
J. P. Carbotte, and F. Marsiglio, Phys. of Super­

conductors 1 233 (2003). 
G. Carneiro, Phys. Rev. B 45, 2391 (1992) 
P. Carretta and M. Corti, Phys. Rev. Lett. 68, 

1236 (1992). 
P.	 Carretta, M. Corti, A. Rigamonti, R. De 

Renzi, F. Licci, C. Paris, L. Bonoldi, M. 
Sparpaglione, and L. Zini, Physica C 191C, 
97 (1992). 

A. Carrington, I. J. Bonalde, R. Prozorov, R. W. 
Giannetta, A. M. Kini., J. Schlueter, H. H. 
Wang, U. Geiser, and J. M. Williams, Phys. 
Rev. Lett. 83, 4172 (1999). 

A. Carrington, R. W. Giannetta, J. T. Kim, and J. 
Giapintzakis, Phys. Rev. B: Condens. Matter 
Mater. Phys. 59 R14173 (1999). 

A. Carrington, F. Manzano, R. Prozorov, R. W. 
Giannetta, N. Kameda, and T. Tamegai, Phys. 
Rev. Lett. 86 1074 (2001) 

R. J. Cava, B. Batlogg, T. Siegrist, J. J. Krajewski, 
W. F. Peck Jr., S. Carter, R. J. Felder, H. 
Takagi and R. B. van Dover, Phys. Rev. B 49, 
12384 (1994) 

R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, 
L. W. Rupp, Jr., A. E. White, K. Short, W. F. 
Pick, and T. Kometani, Nature 332,814 (1988). 

R. J. Cava, A. Santoro, D. W. Johnson, Jr. and 
W. W. Rhodes, Phys. Rev. B 35, 6716 (1987) 

R. J. Cava, Nature 367, 252 (1994). 
M.-C. Cha, M. P. A. Fisher, S. M. Girvin, M. 

Wallin, and A. P. Young, Phys. Rev. B 44, 
6883 (1991). 

P. Chaddah, K. V. Bhagwat, and G. Raulkumaer, 
Physica C 159C, 570 (1989). 

P. Chaddah and K. Bhagwat, in “High Tempera­
ture Superconductivity” (S. K. Mali and S.S. 
Shah, Eds.), Nova Science, New York, 1992. 

C. Chaillout, J. P. Remeika, A. Santoro, and 
M. Marezio, Solid State. Commun. 36, 829 
(1985). 

T. K. Chaki and M. Rubinstein, Phys. Rev. B 36, 
7259 (1987). 

B. Chakraborty, Phys. Rev. B 43. 378 (1991). 
S. Chakravarty, B. I. Halperin, and D. R. Nelson, 

Phys. Rev. Lett. 60, 1057 (1988). 
S. Chakravarty, B. I. Ivlev, and Y. N. Ovchinnkov, 

Phys. Rev. B 42, 2143 (1990). 
S. Chakravarty, A. Sudbo, P. W. Anderson, and 

S. Strong, Science 261, 337 (1993). 
L. P. Chan, D. R. Harshman, K. G. Lynn, S. 

Massidda, and B. D. Mitzi, Phys. Rev. Lett. 
67, 1350 (1991). 

B. S. Chandrasekhar, and D. Einzel, Annalen der 
Physik (Berlin, Germany) 2 535 (1993). 

B. S. Chandrasekhar, Appl. Phys. Lett. 1, 1 (1962). 
C. L. Chang, A. Kleinhammes, W. G. Moulton, 

and L. R. Testardi, Phys. Rev. B 41, 11564 
(1990). 

C. L. Chang, C. V. Tomy, D. McK Paul and C. 
Ritter, Phys. Rev. B 54, 9031, (1996). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:590 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

590 

M. Charalambous, J. Chaussy, and P. Lejay, Phys. 
Rev. B 45, 5091 (1992). 

T. Chattopadhyay, P. J. Brown, B. C. Sales, L. A. 
Boatner, H. A. Mook, and H. Maletta, Phys. 
Rev. B 40, 2624 (1989). 

P. Chaudhari, R. T. Collins, P. Freitas, R. J. 
Gambino, J. R. Kirtley, R. H. Koch, R. B. 
Laibowitz, F. K. LeGoues, T. R. McGuire, T. 
Penney, Z. Schlesinger, A. P. Segmiiller, S. 
Foner, and E. J. McNiff, Jr., Phys. Rev. B 36, 
8903 (1987). 

S.	 V. Chekalin, V. M. Farztdinov, V. V. 
Golovlyov, V. S. Letokhov, Yu. E. Lozovlk, 
Yu. A. Matveets, and A. G. Stepanov, Phys. 
Rev. Lett. 67, 3860 (1991). 

D.-X. Chen, R. B. Goldfarb, J. Nogues, and K. V. 
Rao, J. Appl. Phys. 63, 980 (1988). 

G. H. Chen, J. H. Wang, D. N. Zheng, Y. F. Yan, 
S. L. Jia, Q. S. Yang, Y. M. Ni, and Z. X. 
Zhao, Mod. Phys. Lett. B 3, 295 (1989). 

H. Chen and J. Callaway, Phys. Rev. B 40, 8800 
(1989). 

C. H. Chen, in “Physical Properties of High Tem­
perature Superconductors” (D. M. Ginsberg, 
Ed.), Vol. 2, Chap. 4, World Scientific, 
Singapore, 1990. 

J. H. Chen, Solid State Commun. 75, 557, 563, 
567, 573 (1990a); Phys. Rev. B 42, 3952, 3957 
(1990b). 

Q. Chen, I. Kosztin, and K. Levin, Phys. Rev. 
Lett. 85 2801 (2000). 

D.-X. Chen, A. Sanchez, J. Nogues, and J. S. 
Munoz, Phys. Rev. B 41, 9510 (1990a). 

D.-X. Chen, A. Sanchez, and J. Munoz, J. Appl. 
Phys. 67, 3430 (1990b). 

D.-X. Chen, A. Sanchez, T. Puig, L. M. Martinez, 
and J. S. Munoz, Physica C 168C, 652 (1990c). 

C. Y. Chen, R. J. Birgeneau, M. A. Kastner, N. 
W. Preyer, and T. Thio, Phys. Rev. B 43, 392 
(1991). 

D.-X. Chen, J. A. Brug, and R. B. Goldfarb, IEEE 
Trans. Magn. 27, 3601 (1991). 

D.-X. Chen and A. Sanchez, J. Appl. Phys. 70, 
5463 (1991). 

C.-C. Chen, S. P. Kelty, and C. M. Lieber, Science 
253, 886 (1991). 

B. Chen and J. Dong, Phys. Rev. B 44, 10206 
(1991). 

C. T. Chen, L. H. Tjeng, J. Kwo, H. L. Kao, P. 
Rudolf, F. Sette, and R. M. Fleming, Phys. 
Rev. Lett. 68, 2543 (1992). 

REFERENCES 

T.-P. Chen, Z. X. Zhao, H. D. Yang, E. L. Wolf, 
R. N. Shelton, and P. Klavins, Phys. Rev. 45, 
7945 (1992). 

Q. Y. Chen, in “Magnetic Susceptibility of Super­
conductors and other Spin Systems” (R. A. 
Hein, T. L. Francavilla, and D. H. Liebenberg, 
Eds.), Plenum, New York, (1992). 

L. Chengren and D. C. Larbalestier, Cryogenics 
27,171 (1987). 

S.-W. Cheong, S. E. Brown, Z. Fisk, R. S. Kwok, 
J. D. Thompson, E. Zirngiebl, G. Gruner, D. 
E. Peterson, G. L. Wells, R. B. Schwarz, and 
J. R. Cooper, Phys. Rev. B 36, 3913 (1987). 

S.-W. Cheong, M. F. Hundley, J. D. Thompson, 
and Z. Fisk, Phys. Rev. B 39, 6567 (1989a). 

S.-W. Cheong, Z. Fisk, J. D. Thompson, and R. 
B. Schwarz, Physica C 159C, 407 (1989b). 

H.-F. Cheung, Y. Gefen, E. K. Riedel, and W.-H. 
Shih, Phys. Rev. B 37, 6050 (1988). 

X.-F. Chen, M. J. Marone, G. X. Tessema, M. J. 
Skove, M. V. Nevitt, D. J. Miller, and B. W. 
Veal, Phys. Rev. B 48, 1254 (1993). 

C. C. Chi and C. Vanneste, Phys. Rev. B 42, 9875 
(1990). 

E. E. M. Chia, I. Bonalde, B. D. Yanoff, D. J. Van 
Harlingen, M. B. Salamon, S. I. Lee, and H. 
J. Kirn, Journal of Magnetism and Magnetic 
Materials 226; 230 (2001) 

E. E. M. Chia, D. J. Van Harlingen, M. B. 
Salamon, B. D. Yanoff, I. Bonalde, and J. L. 
Sarrao, Phys. Rev. B 67 14527 (2003) 

E.	 E. M. Chia, W. Cheong, T. Park, M. B. 
Salamon, E-M. Choi, and S. Lee, Phys. Rev. 
B 72 214505 (2005) 

T. R. Chien, T. W. Jing, N. P. Ong, and Z. Z. 
Wang, Phys. Rev. Lett. 66, 3075 (1991). 

B. K. Cho, P. C. Canfield, and D. C. Johnston, 
Phys. Rev. B 52 3676 (1995). 

B. K. Cho, P. C. Canfield, and D. C. Johnston, 
Phys. Rev. B 52 R3844 (1995). 

B. K. Cho, P. C. Canfield, and D. C. Johnston, 
Phys. Rev. B 53 8499 (1996). 

J. H. Cho, F. Borsa, D. C. Johnston, and D. R. 
Torgeson, Phys. Rev. B 46, 3179 (1992). 

H. J. Choi, D. Roundy, H. Sun M. L. Cohen, and 
S. G. Louie, Nature 418, 758, (2002). 

M. Y. Choi and S. Kirn, Phys. Rev. B 44, 10411 
(1991). 

M. Y. Choi, C. Lee, and J. Lee, Phys. Rev. B 46, 
1489 (1992). 

C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, and 
Z. J. Huang, Science 255, 567 (1987). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:591 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

591 REFERENCES 

C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. 
Huang, and Y. Q. Wang, Phys. Rev. Lett. 58, 
405 (1987). 

C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, 
Z. J. Huang, J. Bechtold, M. K. Wu, and C. 
Y. Huang, Mater. Res. Soc. Symp. Proc. 99, 
15 (1987). 

C. W. Chu, J. Bechtold, L. Gao, P. H. Hor, Z. 
J. Huang, R. L. Meng, Y. Y. Sun, Y. Q. 
Wang, and Y. Y. Xue, Phys. Rev. Lett. 60, 
941 (1988). 

C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. 
L. Meng, and Y. Y. Xue, Nature 565, 323 
(1993b). 

C. W. Chu, J. Superconductivity 7, 1 (1994). 
C. W. Chu, “Unusual High Temperature Super­

conductors,” Proc. Symp. Quantum Theory 
of Real Materials, Berkeley, California, Aug. 
(1994). 

E. M. Chudnovsky, Phys. Rev. B 40, 11355 
(1989). 

E. M. Chudnovsky, Phys. Rev. Lett. 65, 3060 
(1990). 

E. M. Chudnovsky, Phys. Rev. B 43, 7831 (1991). 
F. Chung and S. Sternberg, Amer. Scientist 81, 

56 (1993). 
L. Civale, A. D. Marwick, M. W. McElfresh, 

T. K. Worthington, A. P. Malozemoff, F. H. 
Holtzberg, J. R. Thompson, and M. A. Kirk, 
Phys. Rev. Lett. 65, 1164 (1990). 

L. Civale, T. K. Worthington, and A. Gupta, Phys. 
Rev. B 43, 5425 (1991). 

L. Civale, A. D. Marwick, T. K. Worthington, M. 
A. Kirk, J. R. Thompson, L. Krusin-Elbaum, 
Y. Sun, J. R. Clem, and F. Holtzberg, Phys. 
Rev. Lett. 67, 648 (1991). 

J. H. Claassen, J. F. Evetts, R. E. Somekh, and Z. 
H. Barber, Phys. Rev. B 44, 9605 (1991). 

J. Clarke, Phys. Rev. Lett. 28, 1363 (1972). 
J. Clarke and J. L. Paterson, J. Low Temp. Phys. 

15, 491 (1974). 
J. Clayhold, N. P. Ong, P. H. Hor and C. W. Chu, 

Phys. Rev. B 38, 7016 (1988). 
J. R. Clem, Physica C 162–164, 1137 (1989). 
J. R. Clem and M. W. Coffey, Phys. Rev. B 42, 

6209 (1990). 
J. R. Clem and M. W. Coffey, Physica C185–189, 

1915 (1991). 
J. R. Clem, Phys. Rev. B 43, 7837 (1991). 
J. Clem, “A. C. Losses in Type-II Supercon­

ductors, Chap, in Magnetic Susceptibility of 
Superconductors and Other Spin Systems,” 

(R. A. Hein, T. L. Francavilla, and D. H. 
Liebenberg, Eds.), Plenum, New York, 1992. 

J. R. Clem and Z. Hao, Phys. Rev. B 48, 13774 
(1993). 

A. M. Clogston and J. Jaccarino, Phys. Rev. 121, 
1357 (1961). 

A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962). 
M. W. Coffey and J. R. Clem, Phys. Rev. B 44, 

6903 (1991). 
M. W. Coffey and J. R. Clem, Phys. Rev. B 45, 

9872 (1992) 
M. W. Coffey, Phys. Rev. B 46, 567 (1992). 
M. W. Coffey and J. R. Clem, Phys. Rev. Lett. 

67, 386 (1991); Phys. Rev. B 44, 6903 (1991). 
M. W. Coffey, Phys. Rev. B 47, 12284 (1993). 
M. W. Coffey, Phys. Rev. B 49, 9774 (1994). 
T.	 Coffey, Z. Bayindir, J. F. DeCarolis, M. 

Bennett, G. Esper, and C. C. Agosta Rev. Sci. 
Inst. 71 4600 (2000). 

R. W. Cohen, G. D. Cody, and L. J. Vieland, in 
Electronic Density of States, NBS Spec. Publ. 
(U.S.) 323, 767 (1971). 

M. L. Cohen, in “Novel Superconductivity” (S. 
A.Wolf and V. Z. Kresin, Eds.), p. 1095. 
Plenum, New York, 1987. M. L. Cohen and 
D. R. Penn, Phys. Rev. B 42, 8702 (1990). 

J. L. Cohn, S. A. Wolf, V. Selvamanickam, and 
K. Salama, Phys. Rev. Lett. 66, 1098 (1991). 

M. B. Cohn, M. S. Rzchowski, S. P. Benz, and 
C. J. Lobb, Phys. Rev. B 43, 12823 (1991). 

J. L. Cohn, S. A. Wolf, and T. A. Vanderah, Phys. 
Rev. B 45, 511 (1992). 

J. L. Cohn, E. F. Skelton, S. A. Wolf, J. Z. Liu, 
and R. N. Shelton, Phys. Rev. B 45, 13144 
(1992). 

J. L. Cohn, E. F. Skelton, S. A. Wolf, J. Z. Liu, and 
R. N. Shelton, Phys. Rev. B 45, 13140 (1992). 

B. R. Coles, Cont. Phys. 28, 143 (1987). 
G. Collin and R. Comes, C. R. Acad. Sci. Paris 

304, 1159 (1987). 
R. T. Collins, Z. Schlesinger, F. Holtzberg, and 

C. Feild, Phys. Rev. Lett. 63, 422 (1989). 
R.	 T. Collins, Z. Schlesinger, G. V. 

Chandrasehekhar, and M. W. Shafer, Phys. 
Rev. B 39, 2251 (1989). 

R. T. Collins, Z. Schlesinger, F. Holtzberg, P. 
Chaudhari, and C. Feild, Phys. Rev. B 39, 
6571 (1989). 

R. T. Collins, Z. Schlesinger, F. Holtzberg, C. 
Feild, U. Welp, G. W. Crabtree, J. Z. Liu, and 
Y. Fang, Phys. Rev. B, 43, 8701 (1991). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:592 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

592 

S. J. Collocott, R. Driver, and E. R. Vance, Phys. 
Rev.B 41, 6329 (1990a). 

S. J. Collocott, N. Sawides, and E. R. Vance, 
Phys. Rev. B 42, 4794 (1990b). 

S. Collocott, R. Driver, and C. Andrikidis, Phys. 
Rev. B 45, 945 (1992). 

R. Combescot, Phys. Rev. Lett. 67, 148 (1991a); 
Phys. Rev. B 42, 7810 (1991b). 

E. Compans and F. Baumann, Jpn. J. Appl. Phys. 
26 Suppl. 3, 805 (1987). 

L. D. Cooley, G. Stejic, and D. C. Labalestier, 
Phys. Rev. B 46, 2964 (1992). 

J. R. Cooper, A. Carrington, P.J. Meeson, E. A. 
Yelland, N. E. Hussey, L. Balicas, S. Tajima, 
S. Lee, S. M. Kazakov, and J. Karpinski, 
Physiva C 385, 75 (2003). 

L. N. Cooper, Phys. Rev. 104, 1189 (1956). 
J. R. Cooper, Phys. Rev. B: Cond. Matt. 54 R3753 

(1996). 
C. Coretsopoulos, H. C. Lee, E. Ramli, L. Ravea, 

T. B. Rauchfuss, and E. Oldfield, Phys. Rev. 
B 39.781 (1989). 

D. L. Cox and M. B. Maple, Phys. Today, Febru­
ary 1955. p. 32. 

L. A. Curtiss and S. W. Tarn, J. Mater. Res. 3, 
1209 (1988). 

J. Costa-Quintana, F. Lopez-Aguilar, S. Balle, and 
R. Salvador, Phys. Rev. B 39, 9675 (1989). 

L.	 Cota, L. Morales de la Garza, G. Hirata, 
L. Martinez, E. Orozco, E. Carrillo, A. 
MendooLJ. L. Albarran, J. Fuentes-Maya, J. L. 
Boldu, J. G. Perez-Ramirez, R. Perez, J. Reyes 
Gasga, M. An-los, and M. Jose-Yacaman, J. 
Mater. Res. 3, 417 (1988). 

R. Cote and A. Griffin, Phys. Rev. B 48, 10404 
(1993). 

F. A. Cotton, “Chemical Applications of Group 
Theory.” Wiley, New York, 1963. 

D. E. Cox and A. W. Sleight, Solid State Com­
mun. 19, 969 (1976). 

D. E. Cox and A. W. Sleight, Acta Cryst. B 35, 
1 (1979). 

D.	 L. Cox and M. B. Maple, Phys. Today, 
February 1995, p. 32. 

G. W. Crabtree, J. Z. Liu, A. Umezawa, W. K. 
Kwok, C. H. Sowers, S. K. Malik, B. 

W. Veal, D. J. Lam, M. B. Brodsky, and J. W. 
Downey, Phys. Rev. B36, 4021 (1987). 

M. K. Crawford, G. Burns, G. V. Chandrashekhar, 
F. H. Dacol, W. E. Farneth, E. M. McCarron 
III, and R. J. Smalley, Phys. Rev. B 41, 8933 
(1990a). 

REFERENCES 

M. K. Crawford, G. Burns, G. V. Chandrashekhar, 
F. H. Dacol, W. E. Farneth, E. M. McCarron 
III, and R. J. Smalley, Solid State Commun. 
73, 507 (1990b). 

R.	 J. Creswick, H. A. Farach, C. P. Poole, 
Jr., “Introduction to Renormalization Group 
Methods in Physics,” Wiley, New York, 1992. 

M. Crisan, Phys. Lett. A 124, 195 (1987). 
M. F. Crommie, A. Zettl, T. W. Barbee, III, and 

M. L. Cohen, Phys. Rev. B 37, 9734 (1988). 
M. F. Crommie, G. Briceno, and A. Zettl, Physica 

C 162–164, 1397 (1989). 
M. F. Crommie and A. Zettl, Phys. Rev. B 43, 

408 (1991). 
R. W. Cross and R. B. Goldfab, Appl. Phys. Lett. 

58, 415 (1991). 
J. E. Crow and N.-P. Ong, in “High Temperature 

Superconductivity” (J. W. Lynn, Ed.), Chap. 
7, Springer-Verlag, Berlin, 1990. 

M. A. Crusellas, J. Fontcuberta, S. Pinol, 
T. Grenet, and J. Beille, Physica C 180, 
313 (1991). 

A. M. Cucolo, R. Di Leo, P. Romano, L. F. 
Schneemeyer, and J. V. Waszczak, Phys. Rev. 
B 44, 2857 (1991). 

S.-M. Cui and C.-H. Tsai, Phys. Rev. B 44, 12500 
(1991). 

J. C. Culbertson, U. Strom, S. A. Wolf, P. Skeath, 
E. J. West, and W. K. Burns, Phys. Rev. B 39, 
12359 (1989). 

J. C. Culbertson, U. Strom, S. A. Wolf, and W. 
W. Fuller, Phys. Rev. B 44, 9609 (1991). 

L. A. Curtiss and S. W. Tarn, J. Mater. Res. 3, 
1269 (1988). 

L. L. Daeman, L. J. Campbell, and V. G. Kogan, 
Phys. Rev. B 46, 3631 (1992). 

L. L. Daemen, L. J. Campbell, A. Yu Simonov, 
and V. G. Kogan, Phys. Rev. Lett. 70, 
2948 (1993). 

L. L. Daemen and A. W. Overhauser, Phys. Rev. 
B40, 10778 (1989). 

D. Daguero, R. S. Gonnelli, G. A. Ummarino, 
V. A. Stepanov, J. Jun, S. M. Kazakov and J. 
Karpinski, Physica C 385, 255 (2003). 

E. Dagotto, A. Moreo, R. Joynt, S. Bacci, and E. 
Gagliano, Phys. Rev. B 41, 2585, (1990). 

E. Dagotto, Rev. Mod. Phys. 66, 763 (1994). 
E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, 

and J. Riera, Phys. Rev. B 45, 10741 (1992). 
T. Dahm, and D. J. Scalapino, Phys. Rev. B 60 

13125 (1999) 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:593 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

593 REFERENCES 

Y. Dalichaouch, M. B. Maple, J. Y. Chen, T. 
Kohara, C. Rossel, M. S. Torikachvili, and A. 
L. Giorgi, Phys. Rev. 41, 1829 (1990a). 

Y. Dalichaouch, B, W. Lee, C. L. Seaman, J. T. 
Markert, and M. B. Maple, Phys. Rev. Lett. 
64, 599 (1990b). 

Y. Dalichaouch, B. W. Lee, S. E, Lambert, M. P. 
Maple, J. L. Smith, and Z. Fisk, Phys. Rev. B 
43, 299 (1991). 

C. Dasgupta and T. V. Ramakrishnan, Physica C 
183C, 62 (1991). 

T. Datta, C. P. Poole, Jr., H. A. Farach, C. 
Almasan, J. Estrada, D. U. Gubser, and S. A. 
Wolf, Phys. Rev. B 37, 7843 (1988). 

M. Daumling and G. V. Chandrashekhar, Phys. 
Rev. B 46, 6422 (1992). 

D. Davidov, P. Monod, and N. Bontemps, Phys. 
Rev. B 45, 8036 (1992). 

M.	 C. de Andrade, C. C. Almasan, Y. 
Dalichaouch, and M. B. Maple, Physica C 
184C, 378 (1991). 

P. G. De Gennes, C. R. Acad. Sci. Paris, 247 
1836, (1958). 

P. G. De Gennes, Rev. Mod. Phys. 36, 225 (1964). 
P. G. De Gennes, “Superconductivity of Metals 

and Alloys,” Benjamin, New York, 1966. 
L. Degiorgi, P. Wachter, G. Griiner, S.-M. Huang, 

J. Wiley, and R. B. Kaner, Phys. Rev. Lett. 
69, 2987 (1992). 

S.	 K. Dhar, R. Naragajan, Z. Hossain, B. 
Tominez, C. Godart, L. C. Gupta, and R. 
Vijayaraghavan, Solid State Commun. 98 985 
(1996). 

C. V. DeGrift, Rev. Sci. Instrum. 46 599 [25] 
(1975) 

C. Dekker, W. Eidelloth, and R. H. Koch, Phys. 
Rev. Lett. 68, 3347 (1992). 

O. L. de Lange and V. V. Gridin, Phys. Rev. B 
46, 5735 (1992). 

P. Delsing, K. K. Likharev, L. S. Kuzmin, and 
T. Claeson, Phys. Rev. Lett. 63, 1180, 1861 
(1989). 

P.	 Derrenagas, J. Stassis, A. I. Goldman, P. 
C. Canfield, and B. K. Cho, Physica, B212, 
(1995); Phys. Rev. B 53 8506, (1996). 

H. Dersch and G. Blatter, Phys. Rev. B 38, 11391 
(1988). 

M. Desirant, and D. Shoenberg, Proceedings of 
the Physical Society, London 60 413 (1948). 

S. M. DeSoto, C. P. Slichter, H. H. Wang, U. 
Geiser, and J. M. Williams, Phys. Rev. Lett. 
70, 2956 (1993). 

D.	 S. Dessau, B. O. Wells, Z.-X. Shen, W. 
E. Spicer, A. J. Arko, R. S. List, D. B. 
Mitzi, and A. Kapitul-nik, Phys. Rev. Lett. 66, 
2160 (1991). 

D.	 S. Dessau, Z.-X. Shen, B. O. Wells, D. 
M. King, W. E. Spicer, A. J. Arko, L. W. 
Lombardo, D. B. Mitzi, and A. Kapitulnik, 
Phys. Rev. B 45, 5095 (1992). 

C. Detlefs, A. I. Goldman, C. Stassis, P. C. 
Canfield, B. K. Cho, J. P. Hill, and D. Gibbs, 
Phys. Rev. B 53 6355, (1996). 

C. Detlefs, A. H. M. Z. Islam, A. I. Goldman, 
C. Stassis, P. C. Canfield, J. P. Hill, and D. 
Gibbs, Phys. Rev. B 55 R680, (1997). 

C. Detlefs, F. Bourdarot, P. Burlet, P. Dervenagas, 
S. L. Bud’ko, and P. c. Canfield, Phys. Rev. 
B 61, 14916 (2000). 

G. Deutscher and P. Chaudhari, Phys. Rev. B 44, 
4664 (1991). 

F. Devaux, A. Manthiram, and J. B. Goodenough, 
Phys. Rev. B 41, 8723 (1990). 

F. W. de Wette, A. D. Kulkarni, J. Prade, U. 
Schroder, and W. Kress, Phys. Rev. B 42, 
6707 (1990). 

M. J. DeWeert, D. A. Papaconstantopoulos, and 
W. E. Pickett, Phys. Rev. B 39, 4235 (1989). 

C.	 D. Dewhurst, S. S. James, N. Saha, R. 
Surdeanu, Y. Paltiel, E. Zeldov, and D. McK 
Paul; K. H. Muller and V. Narozhnyi (eds.) 
Rare Earth Transition Borocarbides (Nitrides): 
Superconducting, Magnetic and Normal State 
Properties, 347, Kluwer, (2001). 

L. M. Dezaneti, Y. Y. Xue, Y. Y. Sun, K. Ross 
and C. W. Chu, Physica, C334, 123 (2002). 

A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, 
Phys. Rev. B 44, 12026 (1991). 

A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, 
Phys. Rev. B 48, 6695 (1993). 

F. Diederich and R. L. Whetten, Ace. Chem. Res. 
25, 119 (1992). 

H.-Q. Ding, Phys. Rev. Lett. 68, 1927 (1992). 
T. R. Dinger, T. K. Worthington, W. J. Gallagher, 

and R. L. Sandstrom, Phys. Rev. Lett. 58, 
2687 (1987). 

M. Divis, K. Schawrz, P. Blaha, G. Hilscher, M. 
Michor, and S. Khmelevski, Phys. Rev. B 62 
6774, (2000). 

M. Divis, M. Michor, S. Khmelevski, P. Blaha, 
G. Hilscher, and K. Schwarz, K. H. Muller 
and V. Narozhnyi (eds.) Rare Earth Transition 
Borocarbides (Nitrides): Superconducting, 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:594 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

594 

Magnetic and Normal State Properties, 83, 
Kluwer, (2001). 

M. Divis, unpublisd, (2001). 
M. I. Dobroliubov and S. Yu. Khlebnikov, Phys. 

Rev.Lett. 67, 2084 (1991). 
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. 

Morris, “Solitons and Nonlinear Wave Equa­
tions.”, Academic Press, New York, 1982. 

I. Doi, K. Sano, and K. Takano, Phys. Rev. B 45, 
274 (1992). 

G. J. Dolan, G. V. Chandrashekhar, T. R. Dinger, 
C. Feild, and F. Holtzberg, Phys. Rev. Lett. 
62, 827 (1989a). 

G. J. Dolan, F. Holtzberg, C. Feild, and T. R. 
Dinger, Phys. Rev. Lett. 62, 2184 (1989b). 

S. Doniach, in “Proceedings Los Alamos Sym­
posium, High Temp. Supercond.,” p. 406. 
Addison-Wesley, New York, 1989. 

S. Doniach and M. Inui, Phys. Rev. B 41, 6668 
(1990). 

G. Dopf, A. Muramatsu, and W. Hanke, Phys. 
Rev. Lett. 68, 353 (1992). 

S. V. Dordevic, D. N. Basov, R. C. Dynes, and 
E. Bucher, Phys. Rev. B 64, 161103 (2001). 

M. M. Doria, J. E. Gubernatis, and D. Rainer, 
Phys. Rev. B 41, 6335 (1990). 

A. T. Dorsey, M. Huang, and M. P. A. Fisher, 
Phys. Rev. B 45, 523 (1992). 

S. X. Dou, H. K. Liu, A. J. Bourdillon, M. Kviz, 
N. X. Tan, and C. C. Sorrell, Phys. Rev. B 40, 
5266 (1989). 

R. A. Doyle, O. L. deLange, and V. V. Gridin, 
Phys. Rev. B 45, 12580 (1992). 

T. B. Doyle and R. A. Doyle, Phys. Rev. B 47, 
8111 (1993). 

P.	 G. Drazin and R. S. Johnson, “Solitons: 
An Introduction” Cambridge Univ. Press 
Cambridge, U.K., 1989. 

S. L. Drechsler, S. V. Shulga, R. H. Muller, G. 
Fuchs, J. Freudenberger, G. Behr, H. Eschrig, 
L. M. Schultz, M. S. Golden, H. V. Lips, J. 
Fink, V. N. Narozhnyi, H. Rosner, P. Zahn, 
A. Gladun, D. Lipp, A. Kreyssig, M. Loewen­
haupt, K. Koepernik, K. Winzer and K. Krug, 
Physica, C 317, 117 (1999). 

S. L. Drechsler, H. Rosner, S. V. Shulga, I. 
Opahle, and H. Eschrig, L. Dresner, Cryo­
genics, May, p. 285, 1978. K. H. Muller 
and V. Narozhnyi (eds.) Rare Earth Tran­
sition Borocarbides (Nitrides): Superconduct­
ing, Magnetic and Normal State Properties, 83, 
Kluwer, (2001). 

REFERENCES 

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, 
in “Physical Properties of High Temperature 
Superconductors” (D. M. Ginsberg, Ed.), Vol. 
4, Chap. 7, World Scientific, Singapore, 1994. 

H. Drulis, Z. G. Xu, J. W. Brill, L. E. De Long, 
and J.-C. Hou, Phys. Rev. Lett. 44, 4731 
(1991). 

Q. Du, M. D. Gunzberger, and J. S. Peterson, 
Phys. Rev. B 46, 9027 (1992). 

L. Dubeck, P. Lindenfeld, E. A. Lynten, and H. 
Rohrer, Rev. Mod. Phys. 36, 110 (1964). 

A. Dulcic, R. H. Crepeau, and J. H. Freed, Phys. 
Rev. B 39, 4249 (1989). 

A. C. Dumar, K. D. D. Rathnayaka, D. G. Naugle, 
and P. C. Canfield, Int. J. Mod. Phys. B 12 
3264, (1998). 

B. D. Dunlap, L. N. Hall, F. Behroozi, G. H. 
Crabtree, and D. G. Niarchos, Phys. Rev. B 29, 
6244, (1984). 

B. D. Dunlap, M. Slaski, Z. Sungaila, D. G. Hinks, 
K. Zhang, C. Segre, S. K. Malik, and E. E. 
Alp, Phys. Rev. B 37, 592 (1988). 

C. Duran, J. Yazyi, F. de la Cruz, D. J. Bishop, D. 
B. Mitzi, and A. Kapitulnik, Phys. Rev. B 44, 
7737 (1991). 

D. E. Eastman, Solid State Commun. 7, 1697 
(1969). 

C. Ebner and D. Stroud, Phys. Rev. B 31, 165 
(1985). 

C. Ebner and D. Stroud, Phys. Rev. B 39, 789 
(1989). 

U. Eckern and E. B. Sonin, Phys. Rev. B 47, 505 
(1993). 

G. L. Eesley, J. Heremans, M. S. Meyer, G. 
L. Dol and S. H. Liou, Phys. Rev. Lett. 65, 
3445 (1990). 

H. Eikmans and J. E. van Himbergen, Phys. Rev. 
B 44, 6937 (1991). 

H. Eisaki, H. Takagi, R. J. Cava, B. Batlog, J. 
J. Krajewski, W. F. Peck Jr., K. Mizuhashi, 
J. O. Lee, and S. Uchida, Phys. Rev. B 50, 
647 (1994). 

R. Eisberg and R. Resnick, “Quantum Physics,” 
Wiley, New York, 1974. 

J. W. Ekin, H. R. Hart, and A. R. Gaddipati, J. 
Appl. Phys. 68, 2285 (1990). 

J. W. Ekin, K. Salama, and V. Selvamanickam, 
Appl. Phys. Lett. 59, 360 (1991). 

T. Ekino and J. Akimitsu, Phys. Rev. B 40, 6902, 
7364 (1989a). 

T. Ekino and J. Akimitsu, J. Phys. Soc. Jpn. 58, 
2135 (1989b). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:595 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

595 REFERENCES 

T. Ekino and J. Akimitsu, Phys. Rev. B 42, 8049 
(1990). 

T. Ekino, H. Fujii, M. Kosugi, Y. Zenitani and J. 
Akimitsu, Phys. Rev. B 53, 5640 (1996). 

G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 
(1960a) G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 
39, 1437 (1960b). 

B. Ellman, J. Yang, T. F. Rosenbaum, and E. 
Bucher.Phys. Rev. Lett. 64, 1569 (1990). 

M. El Massalami, S. L. Bud’ko, B. Giordanengo, 
and E. M. Baggio-Saitovitch, Physica C 244 
41 (1995). 

M.	 El Massalami, R. E. Rapp and G. J. 
Nieuwenhuys Physica C 304 184 (1998). 

E. Elsinger, J. Wosnitza, S. Wanka, J. Hagel, D. 
Schweitzer, and W. Strunz, Phys. Rev. Lett. 
84 6098 (2000). 

V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987) 
(reprinted in Halley, 1988, p. 227). 

V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 
(1988). 

J. W. Emsley, J. Feeney, and L. H. Sutcliffe, 
“High Resolution Nuclear Magnetic Reso­
nance Spectroscopy, Pergamon, New York, 
Vol. 1. (1965) 

D. Emin, Phys. Rev. B 49, 9157 (1994). 
P. Entel and J. Zielinski, Phys. Rev. B 42, 307 

(1990) 
O. Entin-Wohlman and Y. Imry, Phys. Rev. B 

40.6731 (1989). 
L. E. Erickson, Phys. Rev. B 43, 12723 (1991). 
R. Escudero, E. Guarner, and F. Morales, Physica 

C 162–164, 1059 (1989). 
R. Escudero, F. Morales, and E. Guarner, Physica 

C 166C, 15 (1990). 
D. Esteve, J. M. Martinis, C. Urbina, M. H. 

Devoret G. Collin, P. Monod, M. Ribault, 
and A. Revcolevschi, Europhys. Lett. 3, 
1237 (1987). 

J. P. Estrera and G. B. Arnold, Phys. Rev. B 39, 
2094 (1989). 

L. M. Falicov and C. R. Proetto, Phys. Rev. B 47, 
14407 (1993). 

M. M. Fang, J. E. Ostenson, D. K. Finnemore, D. 
E. Farrell, and N. P. Bansal, Phys. Rev. B 39, 
222 (1989). 

H. A. Farach, E. Quagliata, T. Mzoughi, M. A. 
Mesa, C. P. Poole, Jr., and R. Creswick, Phys. 
Rev. B 41, 2046 (1990). 

D.	 E. Farrell, B. S. Chandrasekhar, M. R. 
DeGuire, M. M. Fang, V. G. Kogan, J. R. 

Clem, and D. K. Finnemore, Phys. Rev. B 36, 
4025 (1987). 

D. E. Farrell, C. M. Williams, S. A. Wolf, N. P. 
Bansal, and V. G. Kogan, Phys. Rev. Lett. 61, 
2805 (1988). 

D. E. Farrell, M. M. Fang, and N. P. Bansal, Phys. 
Rev. B 39, 718 (1989a). 

D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, 
P. Z. Jiang, K. G. Vandervoort, D. J. Lam, and 
V. G. Kogan, Phys. Rev. Lett. 63, 782 (1989b). 

D. E. Farrell, R. G. Beck, M. F. Booth, C. J. Alien, 
E. D. Bukowski, and D. M. Ginsberg, Phys. 
Rev. B42, 6758 (1990a). 

D. E. Farrell, C. J. Alien, R. C. Haddon, and S. 
V. Chichester, Phys. Rev. B 42, 8694 (1990b). 

D. E. Farrell, J. P. Rice, D. M. Ginsberg, and J. 
Z. Liu, Phys. Rev. Lett. 64, 1573 (1990c). 

D. E. Farrell, J. P. Rice, and D. M. Ginsberg, 
Phys. Rev. Letts. 67, 1165 (1991). 

A. L. Fauchere and G. Blatter, Phys. Rev. B 56, 
14102 (1997). 

R. Fazio and G. Schon, Phys. Rev. B 43, 5307 
(1991). 

J. F. Federici, B. I. Greene, H. Hartford, and E. 
S. Hellman, Phys. Rev. B 42, 923 (1990). 

R. Feenstra, D. K. Christen, C. Klabunde, and J. 
D. Budai, Phys. Rev. B 45, 7555 (1992). 

R. Fehrenbacher, V. B. Geshkenbein, and G. 
Blatter, Phys. Rev. B 45, 5450 (1992). 

D. Feinberg and C. Villard, Phys. Rev. Lett. 65, 
919 (1990). 

L. F. Feiner, M. Grilli, and C. DiCastro, Phys. 
Rev. B 45, 10647 (1992). 

L. F. Feiner, Phys. Rev. B 48, 16857 (1993). 
I.	 Feiner, U. Yaron, Y. Yeshurun, G. V. 

Chandrashekhar, and F. Holtzberg, Phys. Rev. 
B 40, 5329 (1989). 

J. C. Fernandez, R. Grauer, K. Pinnow, and G. 
Reinisch, Phys. Rev. B 42, 9987 (1990). 

M. J. Ferrari, M. Johnson, F. C. Wellstood, J. 
Clarke, D. Mitzi, P. A. Rosenthal, C. B. Eom, 
T. H. Geballe, A. Kapitulnik, and M. R. 
Beasley, Phys. Rev. Lett. 64, 72 (1989). 

M. J. Ferrari, F. C. Wellstood, J. J. Kingston, and 
J. Clarke, Phys. Rev. Lett. 67, 1346 (1991). 

K. Fesser, U. Sum, and H. Biittner, Phys. Rev. 
B 44, 421 (1991). 

A. L. Fetter and J. D. Walecka, “Quantum The­
ory of Many Particle Systems.” McGraw-Hill, 
New York, 1971. 

R. P. Feynman, “Lectures on Physics,” Vol. 3, 
Chap.21. Addison-Wesley, New York, 1965. 

http:Chap.21


Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:596 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

596 

W. A. Fietz, M. R. Beasley, J. Silcox, and W. W. 
Webb, Phys. Rev. 136, A 335 (1964). 

A. T. Fiory, M. Gurvitch, R. J. Cava, and G. P. 
Espinosa, Phys. Rev. B 36, 7262 (1987). 

A. T. Fiory, G. P. Espinosa, R. M. Fleming, 
G. S. Grader, M. Gurvitch, A. F. Hebard, 
R. E. Howard, J. R. Kwo, A. F. J. Levi, 
P. M. Mankiewich, S. Martin, C. E. Rice, 
L. F. Schneemeyer, and A. E. White, Inter­
national Conference on Electronic Materials, 
Tokyo, 1988. 

A. T. Fiory, A. F. Hebard, P. M. Mankiewich, 
and R. E. Howard, App. Phys. Lett. 52 
2165 (1988). 

A. T. Fiory, S. Martin, R. M. Fleming, L. F. 
Schneemeyer, J. V. Waszczak, A. F. Hebard, 
and S. A. Sunshine, Physica C 162C–164C, 
1195 (1989). 

A. T. Fiory, M. A. Paalanen, R. R. Ruel, L. F. 
Schneemeyer, and J. V. Waszczak, Phys. Rev. 
B 41, 4805 (1990). 

O. Fischer, Appl. Phys. 16, 1 (1978). 
O. Fischer, in “Earlier and Recent Aspects of 

Superconductivity” (J. G. Bednorz and K. A. 
Miiller,Eds.), p. 96, Springer, Berlin, 1990. 

P.	 Fischer, K. Kakurai, M. Steiner, K. N. 
Clausen, B. Lebech, F. Hulliger, H. R. Ott, P. 
Briiesch, and P. Unternahrer, Physica C 152C, 
145 (1988). 

J.	 E. Fischer, P. A. Heiney, A. R. McGhie, 
W. J. Romanow, A. M. Denenstein, J. P. 
McCauley, Jr., and A. B. Smith, III, Science 
252, 1288 (1991). 

J. E. Fischer, P. A. Heiney, and A. B. Smith, III, 
Acc. Chem. Res. 25, 97 (1992). 

K. H. Fischer, Physica C 178C, 161 (1991). 
D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 

373 (1988). 
M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989). 
R.	 A. Fisher, S. Kirn, B. F. Woodfield, N. 

E. Phillips, L. Taillefer, K. Hasselbach, J. 
Flouquet, A. L.Giorgi, and J. L. Smith, Phys. 
Rev. Lett. 62, 1411 (1989). 

M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990). 
D. S. Fisher, M. P. A. Fisher, and D. A. Huse, 

Phys. Rev. B 43, 130 (1991). 
R. S. Fishman, Phys. Rev. B 38, 11996 (1988). 
R. S. Fishman, Phys. Rev. Lett. 63, 89 (1989). 
Z. Fisk, P. C. Canfield, W. P. Beyermann, J. 

D. Thompson, M. F. Hundley, H. R. Ott, E. 
Felder, M. B. Maple, M. A. Lopez de la Torre, 

REFERENCES 

P. Visani, and C. L. Seaman, Phys. Rev. Lett. 
67, 3310 (1991). 

M. D. Fiske, Rev. Mod. Phys. 36, 221 (1964). 
R. L. Fleisher, H. R. Hart, Jr., K. W. Lay, and F. 

E. Luborsky, Phys. Rev. B 40, 2163 (1989). 
J. D. Fletcher, A. Carrington, O. J. Taylor, S. M. 

Kazakov, and J. Karpinski, Phys. Rev. Lett. 95 
97005 (2005) 

J.	 D. Fletcher, A. Carrington, P. Piener, P. 
Rodiuere, J. P. Brison, R. Prozorov, T. 
Olheiser, and R. W. Giannetta, Cond. Matt. 
(2006) 

R. B. Flippen, Phys. Rev. B 44, 7708 (1991). 
M. Florjanczyk and M. Jaworski, Phys. Rev. B 

40, 2128 (1989). 
R. Fliikiger and W. Klose, “Landolt-Bornstein, 

Group III Solid State Physics,” Vol. 21, Super­
conductors. Springer-Verlag, Berlin/New 
York, 1993. 

M.	 Foldeaki, M. E. McHenry, and R. C. 
O’Handley, Phys. Rev. B 39, 2883 (1989). 

S. Foner, E. J. McNiff, Jr., D. Heiman, S.-M. 
Huang, and R. B. Kaner, Phys. Rev. B 46, 
14936 (1992). 

A. Forkl, T. Dragon, and H. Kronmiiller, J. Appl. 
Phys. 67, 3047 (1990). 

A.	 Forkl, H. U. Habermeier, B. Liebold, T. 
Dragon, and H. Kronraiiller, Physica C 180C, 
155 (1991). 

M. Forsthuber and G. Hilscher, Phys. Rev. B 45, 
7996 (1992). 

N. A.	 Fortune, K. Murata, K. Ikeda, and T. 
Takahashi, Phys. Rev. Lett. 68, 2933 (1992). 

C. M. Foster, K. F. Voss, T. W. Hagler, D. 
Mihailovic, A. S. Heeger, M. M. Eddy, W. L. 
Olsen, and E. J. Smith, Solid State Commun. 
76, 651 (1990). 

H. Frahm, S. Ullah, and A. T. Dorsey, Phys. Rev. 
B 43 3067 (1991). 

Z. Frait, D. Fraitova, and L. Pust, J. Phys. Col­
loque C 8, 2235 (1988a) 

Z. Frait, D. Fraitova, E. Pollert, and L. Pust, Phys. 
Status Solidi 746, K119 (1988b). 

J. P. Franck, in “Physical Properties of High Tem­
perature Superconductors,” (D. M. Ginsberg, 
Ed.), Vol. 4, Chap. 4, World Scientific, 
Singapore (1994). 

G. Frank, Ch. Ziegler and W. Gopel, Phys. Rev. 
B 43,2828 (1991). 

A. Freimuth, C. Hohn, and M. Galffy, Phys. Rev. 
B 44, 10396 (1991). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:597 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

597 REFERENCES 

T. Freltoft, G. Shirane, S. Mitsuda, J. P. Remeika, 
and A. S. Cooper, Phys. Rev. B 37, 137 (1988). 

T. Freltoft, H. J. Jensen, and P. Minnhagen, Solid-
State Commun. 78, 635 (1991). 

T. A. Friedmann, J. P. Rice, J. Giapintzakis, and 
D. M. Ginsberg, Phys. Rev. B 39, 4258 (1989). 

J. Freudenberger, G. Fuchs, K. Nenkov, S. L. 
Drescheler, K. H. Muller, L. Schultz, A. 
Kreyssig, and M. Loewenhaupt, K. H. Muller 
and V. Narozhnyi (eds.) Rare Earth Tran­
sition Borocarbides (Nitrides): Superconduct­
ing, Magnetic and Normal State Properties, 
275, Kluwer, (2001). 

T. A. Friedmann, M. W. Rabin, J. Giapintzakis, 
J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 
42, 6217 (1990). 

B. Friedl, C. Thomsen, and M. Cardona, Phys. 
Rev. Lett. 65, 915 (1990). 

H. Frohlich, Phys. Rev. 79, 845 (1950). 
L. Fruchter and I. A. Campbell, Phys. Rev. B 40, 

5158 (1989). 
A.	 Fujimori, S. Takekawa, E. Takayama-

Muromachi, Y. Uchida, A. Ono, T. Takahashi, 
Y. Okabe and H. Katayama-Yoshida, Phys. 
Rev. B 39, 2255 (1989). 

H. Fujishita, M. Sera, and M. Sato, Physica C 
175, 165 (1991). 

K. Fujiwara, Y. Kitaoka, K. Ishida, K. Asayama, 
Y. Shimakawa, T. Manako, and Y. Kubo, 
Physica C 184. 207 (1991). 

T. Fukami, T. Kamura, A. A. Youssef, Y. Hori, 
and S. Mase, Physica C 759, 427 (1989). 

T.	 Fukami, K. Hayashi, T. Yamamoto, T. 
Nishizaki, Y. Horie, F. Ichikawa, T. Aomine, 
V. Scares, and L. Rinderer, Physica C 184, 
65 (1991a). 

T.	 Fukami, T. Yamamoto, K. Hayashi, T. 
Nishizaki, Y. Hori, F. Ichikawa, and T. 
Aomine, Physica C 185. 2255 (1991b). 

T. A. Fulton, P. L. Gammel, D. J. Bishop, L. 
N. Dunkleberger, and G. J. Dolan, Phys. Rev. 
Lett. 63, 1307 (1989). 

A. Furusaki, H. Takayanagi, and M. Tsukada, 
Phys. Rev. Lett. 67, 132 (1991). 

A. Furusaki and M. Tsukada, Phys. Rev. B 43, 
10164 (1991). 

A. Furusaki and M. Ueda, Phys. Rev. B 45, 10576 
(1992). 

A. Furusaki, H. Takayanagi, and M. Tsukada, 
Phys. Rev. B 45, 10563 (1992). 

M. Furuyama, N. Kobayashi, and Y. Muto, Phys. 
Rev. B 40, 4344 (1989). 

E. Gagliano and S. Bacci, Phys. Rev. B 42, 8772 
(1990). 

M. C. Gallagher, J. G. Adler, J. Jung, and J. P. 
Franck, Phys. Rev. B 37, 7846 (1988). 

W. J. Gallagher, J. Appl. Phys. 63, 4216 (1988). 
C. F. Gallo, L. R. Whitney, and P. J. Walsh, 

in “Novel Superconductivity” (S. A. Wolf 
and V. Z. Kresin, Eds.), p. 385, Plenum, 
New York, 1987. 

C. F. Gallo, L. R. Whitney, and P. J. Walsh, Mater. 
Res. Soc. Symp. Proc. 99, 165 (1988). 

P. L. Gammel, D. J. Bishop, G. J. Dolan, J. 
R. Kwo. C. A. Murray, L. F. Schneemeyer, 
and J. V. Waszczak, Phys. Rev. Lett. 59, 
2592 (1987). 

P.	 L. Gammel, L. F. Schneemeyer, J. K. 
Waszczak, and A. J. Bishop, Phys. Rev. Lett. 
61, 1666 (19881 

P. L. Gammel, A. Hebard, and D. J. Bishop, Phys. 
Rev. B 40, 7354 (1989). 

J. T. Gammel, R. J. Donohoe, A. R. Bishop, and 
B. I. Swanson, Phys. Rev. B 42, 10566 (1990). 

P. L. Gammel, L. F. Schneemeyer, and D. J. 
Bishop. Phys. Rev. Lett. 66, 953 (1991). 

P. L. Gammel, D. J. Bishop, T. P. Rice, and D. M. 
Ginsberg, Phys. Rev. Lett. 68, 3343 (1992). 

F.	 Gao, G. L. Carr, C. D. Porter, D. B. 
Tanner. S.Etemad, T. Venkatesan, A. Inam, B. 
Dutta, X. D. Wu, G. P. Williams, and C. J. 
Hirschmugl, Phys. Rev. B 43, 10383 (1991). 

L Gao, R. L. Meng, Y. Y. Xue, P. H. Hor and C. 
W. Chu, Appl. Phys. Lett. 58, 92 (1991). 

U Gao. Z. J. Huang, R. L. Menag, J. G. Lin, F. 
Chen, L. Beauvais, Y. Y. Sun, Y. Y. Xue, and 
C. W. Chu, Physica C 213, 261 (1993). 

M. M. Garland, J. Mater. Res. 3, 830 (1988). 
P.	 Garoche, R. Brusett, D. Jerome, and K. 

Bech-gaard, J. Physique Lett. 43, L147 (1982). 
L. J. Geerligs, M. Peters, L. E. M. de Groot, A. 

Verbruggen, and J. E. Mooij, Phys. Rev. Lett. 
63, 326 (1989). 

L	 L Geguzin, I. Ya. Nikiforov, and G. I. 
Alperovitch, Fiz. Tverd. Tela. 75, 931 (1973). 

C. Geibel, S. Thies, D. Kaczorowski, A. Mehner, 
A. Grauel, B. Seidel, U. Ahlheim, R. Helfrich, 
K. Petersen, C. D. Bredl, and F. Steglich, Z. 
Phys. B, Cond. Matt. 83, 305 (1991a). 

C. Geibel, C. Schank, S. Thies, H. Kitzawa, C. 
D. Bredl, A. Bohm, M. Rau, A. Grauel, R. 
Caspary, R. Helfrich, U. Anlheim, G. Weber, 
and F. Steglich, Z. Phys. B, Cond. Matt. 
84, 1 (1991b). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:598 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

598 

C. Geibel, U. Ahlheim, C. D. Bredl, J. Diehl, A. 
Grauel, R. Helfrich, H. Kitazawa, R. Kohler, 
R. Modler, M. Lang, C. Schank, S. Thies, F. 
Steglich, N. Sato, and T. Komatsubara, Phys­
ica C 185, 2651 (1991c). 

A. K- Geim, I. V. Grigorieva, and S. V. Dubonos, 
Phys. Rev. B 46, 324 (1992). 

R. Y. Gelfand and B. I. Halperin, Phys. Rev. B 
45, 5517 (1992). 

A. Geiber, Th. Grenet, M. Cyrot, and J. Beille, 
Phys. Rev. B 45, 5099 (1992). 

W. Gerhauser, G. Ries, H. W. Neumuller, 
W. Schmidt, O. Eibl, G. Saemann–Ischenko, 
and S. Klaumfinzer, Phys. Rev. Lett. 68, 
879 (1992). 

V.	 B. Geshkenbein, V. M. Vinokur, and R. 
Fehrenbacher, Phys. Rev. B 43, 3748 (1991). 

J. Ghijscn, L. H. Tjeng, H. Eskes, G. A. Sawatzky, 
and R. L. Johnson, Phys. Rev. B 42, 2268 
(1990). 

P.	 K. Ghosh, N. M. Krishna, and K. N. 
Shrivastava, Journal of Physics: Condensed 
Matter 9, L 663 (1997). 

L Giaever and H. R. Zeller, Phys. Rev. Lett. 20, 
1504 (1968). 

J. Giapintzaiis, W. C. Lee, J. P. Rice, D. M. 
Ginsbeig, L M. Robertson, R. Wheeler, M. 
Kirk, and M.-Q. Ruault, Phys. Rev. B 45, 
10677 (1992). 

M. A. M. Gijs, D. Scholten, Th. van Rooy, and 
A. M.Genits, Phys. Rev. B 41, 11627 (1990a). 

M. A. M. Gijs, A. M. Gerrits, and C. W. J. 
Beenakker, Phys. Rev. B 42, 10789 (1990b). 

L R. Gilbert, R. Messier, and R. Roy, Thin Solid 
Filns 54, 129 (1978). 

D. B. Gingol and C. J. Lobb, Phys. Rev. B 42, 
8220 (1990). 

M. J. P. Gingras, Phys. Rev. B 45, 7547 (1992). 
D. M. Ginsberg (Ed.), “Physical Properties of 

High Temperature Superconductors,” Vol. 1, 
1989; Vol. 2, 1990; Vol. 3, 1992; Vol. 4, 1994, 
World Scientific, Singapore. 

V. L. Ginzburg and L. Landau, Zh. Eksp. Teor. 
Fiz.20, 1064 (1950). 

V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 23 326 
(1952). 

V. L. Ginzburg and D. A. Kirzhnits, “High Tem­
perature Superconductivity,” Nauka, Moscow, 
1977 [Engl. Transl. Consultants Bureau, 
New York, 1982]. 

J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett. 
16, 734 (1966). 

REFERENCES 

J. I. Gittleman and B. Rosenblum, J. Appl. Phys. 
39, 2617 (1968). 

S. H. Glarum, L. F. Schneemeyer, and J. V. 
Waszczak, Phys. Rev. B 41, 1837 (1990). 

R. Gladyshevskii, and K. Cenzual, Handbook of 
Superconductivity, C. P. Poole Jr. (Edt.) Aca­
demic Oress (2000). 

N. E. Glass and D. Rogovin, Phys. Rev. B 39, 
11327 (1989). 

D.	 Glatzer, A. Forkl, H. Theuss, H. U. 
Habermeier, and Kronmiiller, Phys. Status 
Solidi 170, 549 (1992). 

L. I. Glazman and A. E. Koshelev, Phys. Rev. 
B 43, 2835 (1991a); Physica C 173, 180 
(1991b). 

H. R. Glyde, L. K. Moleko, and P. Findeisen, 
Phys. Rev. B 45, 2409 (1992). 

C. Godart, L. C. Gupta, R Nagarajan, S. K. 
Dhar, H. Noel, M. Potel, C. Mazundar, Z. 
Hossain, C. Levy-Clement, G. Schiffmacher, 
B. D. Padalia, R. Vijayaraghavan, Phys. Rev. 
B 51 489 (1995). 

A. Gold and A. Ghazali, Phys. Rev. B 43, 12952 
(1991). 

R. B. Goldfarb, A. F. Clark, A. I. Braginski, and 
A. J. Panson, Cryogenics 27, 475 (1987a). 

R. B. Goldfarb, A. F. Clark, A. I. Braginski, 
and A. J. Panson, in “High Temperature 
Superconductors” (D. U. Grubser and M. 
Schluter, Eds.), p. 261, Mater. Res. Soc., 
Pittsburgh (1987b). 

D. Goldschmidt, Phys. Rev. B 39, 2372 (1989). 
M. J. Goldstein and W. G. Moulton, Phys. Rev. 

B 40, 8714 (1989). 
M.	 Golosovsky, D. Davidov, E. Farber, T. 

Tsach, and M. Schieber, Phys. Rev. B 43, 
10390 (1991). 

M. Golosovsky, Y. Naveh, and D. Davidov, Phys. 
Rev. B 45, 7495 (1992). 

R. S. Gonnelli, D. Daghero, G. A. Ummarino, 
V. A. Stepanov, J. Jun, S. M. Kazalkov, and 
Karpinski, Phys. Rev. Lett. 89, 247004 (2002). 

J. B. Goodenough and J.-S. Zhou, Phys. Rev. B 
42, 4276 (1990). 

J. B. Goodenough, J.-S. Zhou, and J. Chan, Phys. 
Rev. B 47, 5275 (1993). 

L. F. Goodrich, A. N. Srivastava, and T. C. 
Stauffer, J. Res. NIST 96, 703 (1991). 

L. F. Goodrich and A. N. Srivastava, Supercond. 
Industry, Spring, 28 (1992). 

L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 36, 1918. 
[Sov. Phys. JETP 36, 1364] (1959). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:599 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

599 REFERENCES 

L. P. Gor’kov, Sov. Phys. JETP 38, 830 (1973). 
L. P. Gor’kov, Sov. Phys. JETP Lett. 20, 260 

(1974). 
C. J. Gorter, and H. Casimir, Physica, 1 306 

(1934). 
C. J. Gorter, and H. Casimir, Zeitschrift fuer 

Technische Physik, 15 539 (1934). 
C. J. Gorter, and H. Casimir, Phys. Z., 35 963 

(1934). 
U. Gottwick, R. Held, G. Sparn, F. Steglich, H. 

Rietschel, D. Ewert, B. Renker, W. Bauhofer, 
S. von Molnar, M. Wilhelm, and H. E. Hoenig, 
Europhys. Lett. 4, 1183 (1987). 

C. E. Gough, M. S. Colclough, E. M. Forgan, R. 
G. Jordan, M. Keene, C. M. Muirhead, A. I. 
M. Rae, N. Thomas, J. S. Abell, and S. Sutton, 
Nature 326, 855 (1987). 

M. E. Gouvea, G. M. Wysin, A. R. Bishop, and 
F. G. Mertens, Phys. Rev. B 39, 11840 (1989). 

G. S. Grader, P. K. Gallagher, and E. M. Gyorgy, 
Appl. Phys. Lett. 51, 1115 (1987). 

J. E. Gaebner, R. C. Haddon, S. V. Chichester, and 
S. M. Glarum, Phys. Rev. B 41, 4808 (1990). 

M. J. Graf, M. Palumbo, D. Rainer, and J. A. 
Sauls, Phys. Rev. B 52, 10588 (1995). 

R.	 Graham, M. Schlautmann, and D. L. 
Shepelyansky, Phys. Rev. Lett. 67, 255 (1991). 

C. M. Granada, C. M. da Silva, and A. A. Gomes 
Solid State Commun 122, 269 (2002). 

K. E. Gray, R. T. Kampwirth, and D. E. Farrell, 
Phys. Rev. B 41, 819 (1990). 

K. E. Gray, D. H. Kirn, B. W. Veal, G. T. Seidler, 
T. F. Rosenbaum, and D. E. Farrell, Phys. Rev. 
B 45, 10071 (1992). 

R. L. Greene, in “Organic Superconductivity” (V. 
Z. Kresin and W. A. Little, Eds.), p. 7. Plenum, 
New York, 1990. 

E.	 Gregory, T. S. Kreilick, J. Wong, A. K. 
Ghosh, and W. B. Sampson, Cryogenics 27, 
178 (1987). 

V.	 V. Gridin, P. Pernambuco-Wise, C. G. 
Trendall, W. R. Datars, and J. D. Garrett, Phys. 
Rev. B 40, 8814 (1989). 

D. G. Grier, C. A. Murray, C. A. Bolle, P. L. 
Gammel, D. J. Bishop, D. B. Mitzi, and A. 
Kapitulnik, Phys. Rev. Lett. 66, 2770 (1991). 

R. Griessen, Phys. Rev. Lett. 64, 1674 (1990). 
M.	 Grilli, R. Raimondi, C. Castellani, C. 

DiCastro, and G. Kotliar, Phys. Rev. Lett. 67, 
259 (1991). 

N.	 Gronbech-Jensen, Phys. Rev. B 45, 7315 
(1992). 

N.	 Gronbech-Jensen, N. F. Pedersen, A. 
Davidson, and R. D. Parmentier, Phys. Rev. B 
42, 6035 (1990). 

N. Gronbech-Jensen, S. A. Hattel, and M. R. 
Samuelsen, Phys. Rev. 45, 12457 (1991). 

R. Gross, P. Chaudhari, M. Kawasaki, and A. 
Gupta, Phys. Rev. B 42, 10735 (1990a). 

R. Gross, P. Chaudhari, M. Kawasaki, M. B. 
Ketchen, and A. Gupta, Appl. Phys. Lett. 57, 
727 (1990b). 

F. Gross-Alltag, B. S. Chandrasekhar, D. Einzel, 
P. J. Hirschfeld, and K. Andres, Zeitschrift fuer 
Physik B: Condensed Matter 82, 243 (1991). 

F. Gross, B. S. Chandrasekhar, D. Einzel, K. 
Andres, P. J. Hirschfeld, H. R. Ott, J. Beuers, 
Z. Fisk, and J. L. Smith, Zeitschrift fuer Physik 
B: Condensed Matter 64, 175 (1986). 

D.	 Y. Gubser and M. Schluter, Eds., “High 
Temperature Superconductors,” Proc. Symp., 
Spring Meet., Anaheim, CA, Apr. 1987, 
Mater. Res. Soc., Pittsburgh, 1987. 

F. Guinea and G. Zimanyi, Phys. Rev. B 47, 501 
(1993). 

B. Gumhalter and V. Zlatic, Phys. Rev. B 42, 
6446 (1990). 

J. Guo, D. E. Ellis, E. E. Alp, and G. L. Goodman, 
Phys. Rev. B 42, 251 (1990). 

R. P. Gupta and M. Gupta, Phys. Rev. B 47, 11635 
(1993a); Phys. Rev. B 48, 16068 (1993b). 

L.	 C. Gupta, R. Ngarajan, Z. Hossain, Ch. 
Mazundar, S. K. Dhar, C. Godart, C Levy-
Clement B. D. Padalia, and R Vijayaraghavan, 
J. Magn. Mater. 140 2053 (1995). 

A. Gurevich and H. Kiipfer, Phys. Rev. B 48, 
6477 (1993). 

M. Gurvitch and A. T. Fiory, Phys. Rev. Lett. 
59, 1337 (1987a); Appl. Phys. Lett. 51, 1027 
(1987b) in “Novel Superconductivity” (S. A. 
Wolf and V. Z. Kresin, Eds.), p. 663, Plenum, 
New York.1987c. 

M. Gurvitch, A. T. Fiory, L. F. Schneemeyer, R. 
J. Cava, G. P. Espinosa, and J. V. Waszczak, 
Physica C. 153–155, 1369 (1988). 

H.	 Gutfreund and W. A. Little, in “Highly 
Conducting One Dimensional Solids” (J. T. 
Devreese, R. P. Evrard, and V. E. van Doren, 
Eds.), Chap. 7, Plenum, New York, 1979. 

F. Gygi and M. Schluter, Phys. Rev. Lett. 65, 
1820 (1990a); Phys. Rev. B 41, 822 (1990b); 
B 43, 7609 (1991). 

R. C. Haddon, Ace. Chem. Res. 25, 127 (1992). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:600 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

600 

S. J. Hagen, T. W. Jing, Z. Z. Wang, J. Horvath, 
and N. P. Ong, Phys. Rev. B 37, 7928 (1988). 

S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. 
Forrester and J. H. Kang, Phys. Rev. B 41, 
11630 (1990a). 

S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. 
Forrester and J. Talvacchio, Phys. Rev. B 42, 
6777 (1990b). 

R. R. Hake, Phys. Rev. 166, 471 (1968). 
J. W. Halley, (Ed.), “Theories of High Tem­

perature Superconductivity,” Addison Wesley, 
Reading MA, 1988. 

B. I. Halperin, Phys. Rev. Lett. 52, 1583, 2390 
(1984). 

N. Hamada, S. Massidda, A. J. Freeman, and J. 
L. Redinger, Phys. Rev. B 40, 4442 (1989). 

D. R. Hamann and L. F. Mattheiss, Phys. Rev. B 
38, 5138 (1988). 

P. D. Hambourger and F. J. Di Salvo, Physica B 
99, 173 (1980). 

C. A. Hamilton, Phys. Rev. B 5, 912 (1972). 
P. C. Hammel, M. Takigawa, R. H. Heffner, Z. 

Fis, and K. C. Ott, Phys. Rev. Lett. 63, 1992 
(19891 

P.	 C. Hammel, A. P. Reyes, Z. Fisk, M. 
Takigawa J. D. Thompson, R. H. Heffner, W. 
-W.Cheong, and J. E. Schirber, Phys. Rev. B 
42, 6781 (1990) 

D. P. Hampshire, X. Cai, J. Seuntjens, and D. C. 
Larbalestler, Supercond. Sci. Technol. 1, 12 
(1988). 

S. Han, L. F. Cohen, and E. L. Wolf, Phys. Rev. 
B 42, 8682 (1990a). 

S. G. Han, Z. V. Vardeny, K. S. Wong, and O. 
G. Symko, Phys. Rev. Lett. 65, 2708 (1990b). 

Z. P. Han, R. Dupree, D. McK Paul, A. P. Howes, 
and L. W. J. Caves, Physica C 181, 355 (1991). 

Z. P. Han, R. Dupree, A. Gencten, R. S. Liu, 
and P. P. Edwards, Phys. Rev. Lett. 69, 
1256 (1992). 

S. H. Han, C. C. Almasan, M. C. de Andrade, Y. 
Dalichaouch, and M. B. Maple, Phys. Rev. B 
46, 14290 (1992). 

T. Hanaguri, T. Fukase, I. Tanaka, and H. Kojima, 
Phys. Rev. B 48, 9772 (1993). 

Z. Hao, J. R. Clem, M. W. McElfresh, L. Civale, 
A. P. Malozemoff, and F. Holtzberg, Phys. 
Rev. B 43, 2844 (1991). 

Z. Hao, and J. R. Clem, Phys. Rev. Lett. 67, 2371 
(1991) 

J. Hara, M. Ashida, and K. Nagai, Phys. Rev. B 
47, 11263 (1993). 

REFERENCES 

W. N. Hardy, D. A. Bonn, D. C. Morgan, R. 
Liang, and K. Zhang, Physical Review Letters 
70, 3999 (1993). 

W. N. Hardy, S. Kamal, and D. A. Bonn, NATO 
AS1Series, Series B: Physics 371, 373 (1998). 

A. B. Harris and R. V. Lange, Phys. Rev. 157, 
295 (1967). 

R. K. Harris, “Nuclear Magnetic Resonance Spec­
troscopy,” Halsted, 1986. 

D. C. Harris, S. T. Herbert, D. Stroud, and J. C. 
Garland, Phys. Rev. Lett. 67, 3606 (1991). 

D.	 R. Harshman, L. F. Schneemeyer, J. V. 
Waszczak, G. Aeppli, R. J. Cava, B. Batlogg, 
L. W. Rupp, E. J. Ansaldo, and D. LI. 
Williams, Phys. Rev. B 39, 851 (1989). 

D. R. Harshman, R. N. Kleiman, R. C. Haddon, 
S. V. Chichester-Hicks, M. L. Kaplan, L. W. 
Rupp, Jr., T. Pfiz, D. LI. Williams, D. B. Mitzi, 
Phys. Rev. Lett. 64, 1293 (1990). 

D. R. Harshman and A. P. Mills, Jr., Phys. Rev. 
B 45, 10684 (1992). 

M. Hase, I. Terasaki, A. Maeda, K. Uchinokura, 
T. Kimura, K. Kishio, I. Tanaka, and H. 
Kojima, Physica C 185–189, 1855 (1991). 

T.	 Hasegawa, H. Ikuta, and K. Kitazawa, in 
“Physical Properties of High Temperature 
Superconductors” (D. M. Ginsberg, Ed.), Vol. 
3, Chap. 7, World Scientific, Singapore, 1992. 

S. Hasegawa, T. Matsuda, J. Endo, N. Osakabe, 
M. Igarashi, T. Kobayashi, M. Naito, A. 
Tonomura, and R. Aoki, Phys. Rev. B 43, 
7631 (1991). 

N. Hatakenaka, S. Kurihara, and H. Takayanagi, 
Phys. Rev. B 42, 3987 (1990). 

J. Hauck, S. Denker, H. Hindriks, S. Ipta, and K. 
Mika, Z. Phys. B 84, 31 (1991). 

D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. 
Rev. Lett. 62, 2180 (1989). 

R. M. Hazen, L. W. Finger, R. J. Angel, C. 
T. Prewitt, N. L. Ross, H. K. Mao, C. G. 
Hadidiacos, P. H. Hor, A. L. Meng, and C. W. 
Chu, Phys. Rev. B 35, 7238 (1987). 

R. M. Hazen, L. W. Finger, R. J. Angel, C. T. 
Prewitt, N. L. Ross, C. G. Hadidiacos, P. J. 
Heaney, D. R. Veblen, Z. Z. Sheng, A. El Ali, 
and A. M. Hermann, Phys. Rev. Lett. 60, 
1657 (1988). 

R.	 M. Hazen, in “Physical Properties of 
High Temperature Superconductors” (D. M. 
Ginsberg, Ed.), Vol. 2, Chap. 3, World Scien­
tific, Singapore, 1990. 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:601 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

601 REFERENCES 

T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. 
A. Regan, N. Rogado, M. A. Hayward, M. 
K. Haas, J. S. Slusky, K. Inumaru, H. W. 
Zandbergen, N. P. Ong, and R. J. Cava, Nature 
411, 54 (2001). 

A. F. Hebard, P. L. Gammel, C. E. Rice, and A. 
F. J. Levi, Phys. Rev. B 40, 5243 (1989). 

A. F. Hebard and M. A. Paalanen, Phys. Rev. 
Lett. 65, 927 (1990). 

A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. 
W. Murphy, S. H. Glarum, T. T. M. Palstra, 
A. P. Ramirez, and A. R. Kortan, Nature, 350, 
600 (1991). 

A. F. Hebard, in “Proc. R. L. Orbach Symp. Ran­
dom Magnetism and High Tc Supercond.,” 
World Scientific, Singapore, 1994. 

A.	 F. Hebard, in “Strongly Correlated Elec­
tronic Materials” (K. S. Bedell, Ed.), Addison-
Wesley, New York, 1994. 

S. E. Hebboul and J. C. Garland, Phys. Rev. B 
43, 13703 (1991). 

R. Heid, Phys. Rev. B 45, 5052 (1992). 
R.	 A. Hein, T. L. Francavilla, and D. H. 

Liebenberg (Eds.), “Magnetic Susceptibility 
of Superconductors and Other Spin Systems,” 
Plenum, New York, 1991. 

M. Heinecke, and K. Winzer Phys. B 98, 147 
(1995). 

C. S. Hellberg and E. J. Mele, Phys. Rev. B 48, 
646 (1993). 

F. Hellman and T. H. Geballe, Phys. Rev. B 36, 
107 (1987). 

N. F. M. Henry and K. Lonsdale, “International 
Tables for X-Ray Crystallography,” Kynboh, 
Birmingham, England, 1965. 

J. Heremans, D. T. Morelli, G. W. Smith, and S. 
C. Strite III, Phys. Rev. B 37, 1604 (1988). 

F. Herman, R. V. Kasowski, and W. Y. Hsu, Phys. 
Rev. B 36, 6904 (1987). 

A. M. Hermann and J. V. Yakhmi, “Thallium 
Based High Temperature Superconductors,” 
Dekker, Basel, 1993. 

S. L. Herr, K. Kamaras, D. B. Tanner, S.-W. 
Cheong, G. R. Stewart, and Z. Fisk, Phys. Rev. 
B 43, 7847 (1991). 

D. W. Hess, T. A. Tokuyasu, and J. A. Sauls, 
Phys. Condens. Matt. 1, 8135 (1989). 

H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. 
Valles, Jr., and J. V. Waszczak, Phys. Rev. 
Lett. 62, 214 (1989). 

H. F. Hess, R. B. Robinson, and J. V. Waszczak, 
Phys. Rev. Lett. 64, 2711 (1990). 

H. F. Hess, R. B. Robinson, and J. V. Waszczak, 
Physica B 769, 422 (1991). 

J. D. Hettinger and D. G. Steel, in “High Temper­
ature Superconducting Science” (D. Shi, Ed.), 
Pergamon, New York, 1994. 

R. E. Hetzel, A. SudbO, and D. Huse, Phys. Rev. 
Lett. 69, 518 (1992). 

E. T. Heyen, R. Liu, C. Thomsen, R. Kremer, 
M. Cardona, J. Karpinski, E. Kaldis, and S. 
Rusiecki, Phys. Rev. B 41, 11058 (1990a). 

E.	 Heyen, M. Cardona, J. Karpinski, E. 
Kaldis, and S. Rusiecki, Phys. Rev. B 43, 
12958 (1991). 

Y. Hidaka, Y. Enomoto, M. Suzuki, M. Oda, 
and T. Murakami, Jpn. J. Appl. Phys. 26, 
L377 (1987). 

S. Hikami and A. I. Larkin, Mod. Phys. Lett. B 
2, 693 (1988). 

M. Hikita, Y. Tajima, A. Katsui, Y. Hidaka, 
T. Iwata, and S. Tsurumi, Phys. Rev. B 36, 
7199 (1987). 

M. Hikita and M. Suzuki, Phys. Rev. B 39, 4756 
(1989). 

G. Hilscher, H. Michor, N. M. Hong, T. Holubar, 
W. Perthold, M. Vybornov, and P. Rogl, in Int. 
Conf. Strongly Correlated Electron Systems, 
Amsterdam, Netherlands, Aug. (1994). 

G. Hilscher, H. Michor, and M. Divis, K. H. 
Muller and V. Narozhnyi (eds.) Rare Earth 
Transition Borocarbides (Nitrides): Supercon­
ducting, Magnetic and Normal State Proper­
ties, p. 347, Kluwer, (2001). 

G. Hilscher, and H. Michor, Superconductivity 
and Magnetism in Quatemary Borocarbides, 
Studies on High Temperature Superconduc­
tors, vol 28, p. 241, A. V. Narlikar (ed.), New 
York: Nova Science (1999). 

D. G. Hinks, D. R. Richards, B. Dabrowski, D. 
T. Marx, and A. W. Mitchell, Nature 335, 
419 (1988). 

D. G. Hinks, B. Dabrowski, D. R. Richards, J. D. 
Jorgensen, S. Pel, and J. F. Zasadzinski, Mat. 
Res. Soc. Symp. Proc. 756, 357 (1989). 

J. E. Hirsch, Phys. Rev. B 31, 4403 (1985a); Phys. 
Rev. Lett. 54, 1317 (1985b). 

J. E. Hirsch, Phys. Rev. Lett. 59, 228 (1987). 
P. J. Hirschfeld, and N. Goldenfeld, Phys. Rev. B 

48, 4219 (1993). 
P.	 J. Hirschfeld, S. M. Quinlan, and D. J. 

Scalapino, Phys. Rev. B 55, 12742 (1997). 
T. Hocquet, P. Mathieu, and Y. Simon, Phys. Rev. 

B 46, 1061 (1992). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:602 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

602 

J. A. Hodges, P. Imbert, and G. Jehanno, Solid 
State Commun. 64, 1209 (1987). 

U. Hofmann and J. Keller, Z. Phys. B. Cond. 
Matter 74, 499 (1989). 

C. Hohn, M. Galffy, A. Dascoulidou, A. Freimuth, 
H. Soltner, and U. Poppe, Z. Phys. B 85, 
161 (1991). 

K. Holczer, O. Klein, G. Gruner, J. D. Thompson, 
F. Deiderich, and R. L. Whetten, Phys. Rev. 
Lett.67, 271 (1991). 

T. Holst, J. B. Hansen, N. Gronbech-Jensen, and 
J. A. Blackburn, Phys. Rev. B 42, 127 (1990). 

T. Hoist and J. B. Hansen, Phys. Rev. B 44, 2238 
(1991). 

X. Q. Hong and J. E. Hirsch, Phys. Rev. B 46, 
14702 (1992). 

T.	 Honma, K. Yamaya, F. Minami, and S. 
Takekawa, Physica C 776, 209 (1991). 

B. Hopfengartner, B. Hensel, and G. Saemann-
Ischenko, Phys. Rev. B 44, 741 (1991). 

M. L. Horbach, F. L. J. Vos, and W. van Saarloos, 
Phys. Rev. B 48, 4061 (1993). 

M. L. Horbach, F. L. J. Vos, and W. van Saarloos, 
Phys. Rev. B 49, 3539 (1994). 

M. Horvatic, T. Auler, C. Berthier, Y. Berthier, 
P. Butaud, W. G. Clark, J. A. Gillet, P. 
Segransan, and J. Y. Henry, Phys. Rev. B 47, 
3461 (1993). 

Z. Hossain, S. K. Dhar, R. Nagarajan, L. C. Gupta, 
C. Godart, and R Vijayaraghavan, IEEE trans. 
Mag. 31, 4133 (1995). 

Z. Hossain, R. Nagarajan, S. K. Dhar, L. C. Gupta, 
Physica B 259–261 606 (1999). 

A. Houghton, R. A. Pelcovits, and A. SudbO, 
Phys. Rev. B 40, 6763 (1989); 41, 4785 
(E) (1990). 

A. P. Howes, R. Dupree, D. McK Paul, and S. 
Male, Physica C 185–189, 1137 (1991). 

T.	 C. Hsu and P. W. Anderson, Physica C 
162–164, 1445 (1989). 

Y. Y. Hsu H. C. Chang, and H. C. Ku, J. Appl. 
Phys. 83, 6789 (1998). 

C-R. Hu, Phys. Rev. Lett. 72 1526 (1994). 
Q. Hu and M. Tinkham, Phys. Rev. B 39, 11358 

(1989). 
Q. Hu, C. A. Mears, P. L. Richards, and F. L. 

Lloyd, Phys. Rev. Lett. 64, 2945 (1990). 
G. Y. Hu and R. F. O’Connell, Phys. Rev. B 47, 

8823 (1993). 
W. F. Huang, P. J. Ouseph, K. Fang, and Z. J. 

Xu, Solid State Commun. 66, 283 (1988). 

REFERENCES 

Z. J. Huang, Y. Y. Xue, P. H. Hor, and C. W. 
Chu, Physica C 776, 195 (1991a). 

Z. J. Huang, H. H. Fang, Y. Y. Xue, P. H. Hor, 
C. W. Chu, M. L. Norton, and H. Y. Tang, 
Physica C 180, 331 (1991b). 

M.-Z. Huang, Y.-N. Xu, and W. Y. Ching, Phys. 
Rev. B 46, 6572 (1992). 

Z. J. Huang, Y. Y. Xue, R. L. Meng, and C. W. 
Chu, Phys. Rev. B 49, 4218 (1994). 

J, Hubbard, Proc. Royal Soc. London A 276, 238 
(1963). 

J. Hubbard, Proc. Royal Soc. London A 281, 401 
(1964). 

R. P. Huebener, R. T. Kampwirth, and A. Seher, 
J. Low Temp. Phys. 2, 113 (1970). 

R. P. Huebener, Physica C 168, 605 (1990). 
N. H. Hur, H.-G. Lee, J.-H. Park, H.-S. Shin, and 

I-S. Yang, Physica C 218, 365 (1993). 
N. H. Hur, N. H. Kirn, S. H. Kim, Y. K. Park, 

and J. C. Park, Physica C, 231, 227 (1994). 
M.	 S. Hybertsen, E. B. Stechel, W. M. C. 

Foulkes,and M. Schliiter, Phys. Rev. B 45, 
10032 (1992). 

T. L. Hylton and M. R. Beasley, Phys. Rev. B 41, 
11669 (1990). 

O. B. Hyun, D. K. Finnemore, L. Schwartzkopf, 
and J. R. Clem, Phys. Rev. Lett. 58, 599 
(1987). 

O. B. Hyun, J. R. Clem, and D. K. Finnemore, 
Phys.Rev. B 40, 175 (1989). 

M. lansiti, M. Tinkham, A. T. Johnson, W. F. 
Smith, and C. J. Lobb, Phys. Rev. B 39, 
6465 (1989). 

M.	 Iavarone, A. Andreone, A. Cassinese, R. 
Dicapua, L. Gianni, R. Vaglio, Y. De Wilde, 
and G. W. Crabtree, K. H. Muller and V. 
Narozhnyi (eds.) Rare Earth Transition Boro­
carbides (Nitrides): Superconducting, Mag­
netic and Normal State Properties, 347, 
Kluwer, (2001). 

M. Iavarone, G. Karapetrov, A. E. Koshelev, W. 
K. Kwok, G. W. Crabtree, D. G. Hinks, R. 
Cook, W. N. Kang, E. M. Choi, H. J. Kim, 
and S. I. Lee, Physica C 385, 215 (2003). 

H. Ihara, R. Sugise, K. Hayashi, N. Terada, M. 
Jo, M. Hirabayashi, A. Negishi, N. Atoda, H. 
Oyanagi, T. Shimomura, and S. Ohashi, Phys. 
Rev. B 38, 11952 (1988). 

H. Ihara, M. Hirabayashi, H. Tanino, K. Tokiwa, 
H. Ozawa, Y. Akahama, and H. Kawamura, 
Jpn. J. Appl. Phys. 32, L1732 (1993). 

J. Ihm and B. D Yu, Phys. Rev. B 39, 4760 (1989). 

http:Lett.67


Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:603 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

603 REFERENCES 

S. Ikegawa, T. Wada, A. Ichinose, T. Yamashita, 
T. Sakurai, Y. Yaegashi, T. Kaneko, M. 
Kosuge, H. Yamauchi, and S. Tanaka, Phys. 
Rev. B 41, 11673 (1990). 

S.	 Ikegawa, T. Wada, T. Yamashita, H. 
Yamauchi, and S. Tanaka, Phys. Rev. B 45, 
5659 (1992). 

J.-M.	 Imer, F. Patthey, B. Dardel, W. D. 
Schneider, Y. Baer, Y. Petroff, and A. Zettl, 
Phys. Rev. Lett. 62, 336 (1989). 

T. Inabe, H. Ogata, Y. Maruyama, Y. Achiba, S. 
Suzuki, K. Kikuchi, and I. Ikemoto, Phys. Rev. 
Lett. 69, 3797 (1992). 

S. E. Inderhees, M. B. Salamon, J. P. Rice, and D. 
M.Ginsberg, Phys. Rev. Lett. 66, 232 (1991). 

Y.	 Inoue, Y. Shichi, F. Munakata, and M. 
Yamanaka, Phys. Rev. B 40, 7307 (1989). 

M. Inui, P. B. Littlewood, and S. N. Coppersmith, 
Phys. Rev. Lett. 63, 2421 (1989). 

Z. Iqbal, J. C. Barry, and B. L. Ramakrishna, 
in “Studies in High Temperature Supercon­
ductors” (A. V. Narlikar, Ed.), Nova Sci., 
New York, 1989. 

Z. Iqbal, G. H. Kwei, B. L. Ramakrishna, and E. 
W. Ong, Physica C 767, 369 (1990). 

Z. Iqbal, R. H. Baughman, B. L. Ramakrishna, 
S.Khare, N. S. Murthy, H. J. Bornemann, and 
D. E.Morris, Science 254, 826 (1991). 

Z. Iqbal, Supercond. Rev. 1, 49 (1992). 
Z.	 Iqbal, T. Datta, D. Kirven, A. Longu, J. 

C. Barry, F. J. Owens, A. G. Rinzler, D. 
Yang, and F. Reidinger, Phys. Rev. B 49, 
12322 (1994). 

F. Irie and K. Yamafuji, J. Phys. Soc. Jpn. 23, 
255 (1976). 

E. D. Isaacs, D. B. McWhan, R. N. Kleiman, D. 
J.Bishop, G. E. Ice, P. Zschack, B. D. Gaulin, 
T. E.Mason, J. D. Garrett, and W. J. L. Buyers, 
Phys. Rev. Lett. 65, 3185 (1990). 

K. Isawa, A. Tokiwa-Yamamoto, M. Itoh, S. 
Adachi, and H. Yamauchi, Physica C 217, 
11 (1993). 

K. Isawa, A. Tokiwa-Yamamoto, M. Itoh, S. 
Adachi, and H. Yamauchi, Physica C 222, 33 
(1994a). 

K. Isawa, T. Higuchi, T. Machi, A. Tokiwa-
Yamamoto, S. Adachi, M. Murakami, and H. 
Yamauchi, Appl. Phys. Lett. 64, 1301 (1994b). 

T. Ishida and R. B. Goldfarb, Phys. Rev. B 41, 
8937 (1990). 

T. Ishida, R. B. Goldfarb, S. Okayasu, and Y. 
Kazu-mata, Physica C 185–189, 2515 (1991). 

T. Ishiguro and K. Yamaji, “Organic Supercon­
ductors,” Springer-Verlag, Berlin, 1990. 

A. Isihara, “Statistical Physics,” Academic Press, 
New York, 1971. 

Y. Ishii and J. Ruvalds, Phys. Rev. B 48, 3455 
(1993). 

T. Itoh and H. Uchikawa, Phys. Rev. B 39, 4690 
(1989). 

M. Itoh, A. Tokiwa-Yamamoto, S. Adachi, and 
H. Yayauchi, Physica C 212, 271 (1993). 

R. Itti, F. Munakata, K. Ikeda, H. Yamauchi, N. 
Koshizuka, and S. Tanaka, Phys. Rev. B 43, 
6249 (1991). 

B. I. Ivlev and N. B. Kopnin, Phys. Rev. Lett. 64, 
1828 (1990). 

B. I. Ivlev, N. B. Kopnin, and M. M. Salomaa, 
Phys. Rev. B 43, 2896 (1991a). 

B.	 I. Ivlev, Yu. N. Ovchinnikov, and R. S. 
Thompson, Phys. Rev. B 44, 7023 (1991b). 

B. I. Ivlev and R. S. Thompson, Phys. Rev. B 45, 
875 (1992). 

Y. lye, T. Tamegai, T. Sakakibara, T. Goto, and 
N. Miura, Physica C 153–155, 26 (1988). 

Y. lye, S. Nakamura, T. Tamegai, T. Terashima, 
K. Yamamoto, and Y. Bundo, “High-
Temperature Superconductors: Fundamental 
Properties and Novel Materials Process­
ing” (D. Christen, J. Narayan, and L. 
Schneemeyer, Eds.), MRS Symposia Proceed­
ings, No. 169, p. 871. Material Research Soc., 
Pittsburgh, 1990. 

Y. lye, in “Physical Properties of High Tem­
perature Superconductors” (D. M. Ginsberg, 
Ed.), Vol. 3, Chap. 4, World Scientific, 
Singapore, 1992. 

J. D. Jackson, “Classical Electrodynamics,” 3rd 
Ed. Wiley, New York, 1999. 

H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. 
M. Goldman, Phys. Rev. 40, 182 (1989). 

T. Jacobs, S. Sridhar, Q. Li, G. D. Gu, and N. 
Koshizuka, Phys. Rev. Lett. 75 4516 (1995). 

R. C. Jaklevic, J. Lambe, J. E. Mercereau, and A. 
H. Silver, Phys. Rev. A 140, 1628 (1965). 

G.	 M. Japiassu, M. A. Continentino, and A. 
Troper, Phys. Rev. B 45, 2986 (1992). 

M. Jarrell, H. R. Krishnamurthy, and D. L. Cox, 
Phys. Rev. B 38, 4584 (1988). 

B. Jeanneret, Ph. Fliickiger, J. L. Gavilano, Ch. 
Leemann, and P. Martinoli, Phys. Rev. B 40, 
11374 (1989). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:604 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

604 

C. S. Jee, B. Andraka, J. S. Kirn, H. Li, M. W. 
Meisel, and G. R. Stewart, Phys. Rev. B 42, 
8630 (1990). 

J. H. Jefferson, H. Eskes, and L. F. Feiner, Phys. 
Rev. B 45, 7959 (1992). 

C. D. Jeffries, Q. H. Lam, Y. Kirn, C. M. Kirn, A. 
Zettl and M. P. Klein, Phys. Rev. B 39, 11526 
(1989). 

H. J. Jensen, A. Brass, An-C. Shi, and A. J. 
Berlinsky, Phys. Rev. B 41, 6394 (1990). 

H. J. Jensen and P. Minnhagen, Phys. Rev. Lett. 
66, 1630 (1991). 

Y. Jeon, G. Liang, J. Chen, M. Croft, M. W. 
Ruck-man, D. Di Marizo, and M. S. Hegde, 
Phys. Rev. B 41, 4066 (1990). 

Y. X. Jia, J. Z. Liu, M. D. Lan, P. Klavins, R. 
N. Shelton, and H. B. Radousky, Phys. Rev. 
B 45, 10609 (1992). 

C. Jiang and J. P. Carbotte, Phys. Rev. B 45, 
10670 (1992a). 

C. Jiang and J. P. Carbotte, Phys. Rev. B 45, 7368 
(1992b). 

H.	 Jiang, Y. Huang, H. How, S. Zhang, C. 
Vittoria, A. Widom, D. B. Chrisey, J. S. 
Horwitz, and R. Lee, Phys. Rev. Lett. 66, 
1785 (1991). 

P. J. Jiang, M. S. Lin, J. H. Shieh, Y. B. You, H. 
C. Ku, and J. C. Ho, Phys. Rev. B 51 16436 
(1995). 

W. Jin, C. K. Loong, D. G. Hinks, P. Vashishta, 
R. K. Kalia, M. H. Degani, D. L. Price, J. D. 
Jorgensen, and B. Dabrowski, Mat. Res. Soc. 
Symp. Proc. 209, 895 (1991). 

S. Jin, G. W. Kammlott, S. Nakahara, T. H. Tiefel, 
and J. Graebner, Science 253, 427 (1991). 

S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, 
R. B. van Dover, G. W. Kammlott, R. A. 
Fastnacht, and H. D. Keith, Appl. Phys. Lett. 
52, 2074 (1988). 

W.	 Jin, M. H. Dagani, R. K. Kalia, and P. 
Vashishta, Phys. Rev. B 45, 5535 (1992). 

T. W. Jing and N. P. Ong, Phys. Rev. B 42, 10781 
(1990). 

R. Job and M. Rosenberg, Supercond. Sci. Tech­
nol. 5, 7 (1992). 

R. D. Johnson, D.S. Bethune, and C. S. Yannoni, 
Acc. Chem. Res. 25, 169 (1992). 

C. E. Johnson, H. W. Jiang, K. Holczer, R. B. 
Kaner, R. L. Whetten, and F. Diederich, Phys. 
Rev. B 46, 5880 (1992). 

REFERENCES 

D. C. Johnston, H. Prakash, W. H. Zachariasen, 
and R. Viswanathan, Mat. Res. Bull. 8, 
111 (1973). 

D. C. Johnston and J. H. Cho, Phys. Rev. B 42, 
8710 (1990). 

Th. Jolicoeur and J. C. LeGuillou, Phys. Rev. B 
44, 2403 (1991). 

M. L. Jones, D. W. Shortt, and A. L. Schawlow, 
Phys. Rev. B 42, 132 (1990). 

J. D. Jorgensen, M. A. Beno, D. G. Hinks, L. 
Soderholm, K. J. Volin, R. L. Hitterman, J. D. 
Grace, I. K. Schuller, C. U. Segre, K. Zhang, 
and M. S. Kleefisch, Phys. Rev. B 36, 3608 
(1987a); see also Schuller et al. (1987). 

J. D. Jorgensen, B. W. Veal, W. K. Kwok, G. W. 
Crabtree, A. Umezawa, L. J. Nowicki, and A. 
P. Paulikas, Phys. Rev. B 36, 5731 (1987b). 

J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. 
J.Nowicki, G. W. Crabtree, H. Claus, and W. 
K.Kwok, Phys. Rev. B 41, 1863 (1990). 

B. D. Josephson, Phys. Lett. 1, 251 (1962). 
J. Jung, M. A.-K. Mohamed, S. C. Cheng, and J. 

P. Franck, Phys. Rev. B 42, 6181 (1990). 
A. Junod, A. Bezinge, and J. Muller, Physica C 

752, 50 (1988). 
A. Junod, in “Physical Properties of High Tem­

perature Superconductors” (D. M. Ginsberg, 
Ed.), Vol. 2, Chap. 2, World Scientific, 
Singapore, 1990. 

A. Junod, D. Sanchez, J.-Y. Genoud, T. Graf, 
G. Triscone, and J. Muller, Physica C 
185–189, 1399 (1991). 

V. V. Kabanov and O. Yu. Mashtakov, Phys. Rev. 
B47, 6060 (1993). 

K. K. Kadish and R. S. Ruoff, (Eds.), “Recent 
Advances in the Chemistry and Physics of 
Fullerenes and Related Materials,” Electro­
chemical Society, Pennington, N. J., 1994. 

A. Kadin, Phys. Rev. B 41, 4072 (1990). 
A. Kahan, Phys. Rev. B 43, 2678 (1991). 
A. B. Kaiser, Phys. Rev. B 35, 4677 (1987). 
A. B. Kaiser and C. Uher, Aust. J. Phys. 41, 597 

(1988). 
A. B. Kaiser, Phys. Rev. B 37, 5924 (1988). 
A. B. Kaiser and G. Mountjoy, Phys. Rev. B 43, 

6266 (1991). 
E. Kaldis, P. Fischer, A. W. Hewat, E. A. Hewat, 

J. Karpinski, and S. Rusiecki, Physica C 159, 
668 (1989). 

C. Kallin, A. J. Berlinsky, and W.-K. Wu, Phys. 
Rev. B 39, 4267 (1989). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:605 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

605 REFERENCES 

V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 
59, 2095 (1987). 

A. Kampf and J. R. Schrieffer, Phys. Rev. B 41, 
6399 (1990). 

K. Kanoda, H. Mazaki, T. Mizutani, H. Hosoito, 
and T. Shinjo, Phys. Rev. B 40, 4321 (1989). 

S. G. Kaplan, T. W. Noh, A. J. Sievers, S.-W. 
Cheongand, and Z. Fisk, Phys. Rev. B 40, 
5190 (1989). 

V. R. Karasik, N. G. Vasil’ev, and V. G. Ershov, 
Zh. Eksp. Teor. Fiz. 59, 790 (1970); Sov Phys– 
JETP 32, 433 (1971). 

K. Karlsson, O. Gunnarsson, and O. Jepsen, Phys. 
Rev. B 45, 7559 (1992). 

K. Karra’i, E. J. Choi, F. Dunmore, S. Liu, H. D. 
Drew, Q. Li, D. B. Fenner, Y. D. Zhu, and 
F.-C. Zhang, Phys. Rev. Lett. 69, 152 (1992). 

H. Kasatani, H. Terauchi, Y. Hamanaka, and S. 
Nakashima, Phys. Rev. B 47, 4022 (1993). 

A. Kastalsky, A. W. Kleinsasser, L. H. Greene, R. 
Bhat, F. P. Milliken, and J. P. Harbison, Phys. 
Rev. Lett. 67, 3026 (1991). 

K.	 D. D. Kathnayaka, D. G. Naugle, B. K. 
Cho, and P. C. Canfield, Phys. Rev. B 53, 
5688 (1996). 

R. Kato, Y. Enomoto, and S. Maekawa, Phys. 
Rev. B44, 6916 (1991). 

R. Kato, Y. Enomoto, and S. Maekawa, Phys. 
Rev. B47, 8016 (1993). 

K. Katti and S. H. Risbud, Phys. Rev. B 45, 10155 
(1992). 

R. L. Kautz and J. M. Martinis, Phys. Rev. B 42, 
9903 (1990). 

H. Kawano, H. Takeya, H. Yoshizawa, and 
K. Kadowaki, J. Phys. Chem. Sol. 60 1053 
(1999). 

Z.	 A. Kazei and I. B. Krynetskii, “Landolt-
Bornstein, Group III”, Solid State 
Physics, Vol. 27, Subvol. f2, Springer, 
Heidelberg, 1992. 

A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, 
T. Mihalisin, G. H. Myer, R. E. Salomon, P. 
Schlottmann, M. V. Kuric, S. H. Bloom, and 
R. P.Guertin, Phys. Rev. B 40, 4453 (1989). 

F. J. Kedves, S. Meszaros, K. Vad, G. Halasz, B. 
Keszei, and L. Mihaly, Solid State Commun. 
63, 991 (1987). 

O. Keller, Phys. Rev. B 43, 10293 (1991). 
P. H. Kes, C. J. van der Beek, M. P. Maley, M. 

E. McHenry, D. A. Huse, M. J. V. Menken, 
and A.A. Menovsky, Phys. Rev. Lett. 67, 
2383 (1991). 

I. B. Khalfin and B. Ya. Shapiro, Phys. Rev. B 46, 
5593 (1992). 

A. F. Khoder, M. Couach, and J. L. Jorda, Phys. 
Rev. B 42, 8714 (1990). 

A.	 F. Khoder and M. Couach, in “Magnetic 
Susceptibility of Superconductors and Other 
Spin Systems” (R. A. Hein, T. L. Francavilla, 
and D. H. Liebenberg, Eds.), Plenum, New 
York, 1992. 

Y. B. Kim, C. F. Hempstead, and A. R. Strnad, 
Phys. Rev. Lett. 9, 306 (1962). 

Y. B. Kim, C. F. Hempstead, and A. R. Strand, 
Phys. Rev. 729, 528 (1963). B. Kim and 
M. J. Stephan, in “Superconductivity” (R. D. 
Parks, Ed.), Vol. 2, p. 1107, Dekker, New 
York, 1969. 

D. H. Kim, K. E. Gray, R. T. Kampwirth, K. C. 
Woo, D. M. McKay, and J. Stein, Phys. Rev. 
B 41, 11642 (1990). 

D. H. Kim, K. E. Gray, R. T. Kampwirth, and D. 
M.McKay, Phys. Rev. B 42, 6249 (1990); 43, 
2910 (1991a). 

D. H. Kim, D. J. Miller, J. C. Smith, R. A. 
Holoboff, J. H. Kang, and J. Talvacchio, Phys. 
Rev. B 44, 7607 (1991b). 

J.-J. Kim, H.-K. Lee, J. Chung, H. J. Shin, H. 
J. Lee, and J. K. Ku, Phys. Rev. B 43, 2962 
(1991). 

D. M. King, Z.-X. Shen, D. S. Dessau, B. 
O. Wells, W. E. Spicer, A. J. Arko, D. S. 
Marshall, J. Di-Carlo, A. G. Loeser, C. H. 
Park, E. R. Ratner, J. L. Peng, Z. Y. Li, and R. 
L. Greene, Phys. Rev. Lett. 70, 3159 (1993). 

K. Kinoshita, F. Izumi, T. Yamada, and H. Asano, 
Phys. Rev. B 45, 5558 (1992). 

W. P. Kirk, P. S. Kobiela, R. N. Tsumura, and R. 
K. Pandey, Ferroelectrics 92, 151 (1989). 

T. R. Kirkpatrick and D. Belitz, Phys. Rev. Lett. 
68, 3232 (1992). 

J. R. Kirtley, R. T. Collins, Z. Schlesinger, W. J. 
Gallagher, R. L. Sandstrom, T. R. Dinger and 
D. A. Chance, Phys. Rev. B 55, 8846 (1987). 

J. R. Kirtley, Phys. Rev. 41, 7201 (1990a); Int. J. 
Mod. Phys. B 4, 201 (1990b). 

T. J. Kistenmacher, Phys. Rev. B 39, 12279 
(1989). 

Y.	 Kitaoka, S. Hiramatsu, T. Kohara, K. 
Asayama, K. Ohishi, M. Kikuchi, and 
N. Kobayashi, Jpn. J. Appl. Phys. 26, 
L397 (1987a). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:606 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

606 

Y. Kitaoka, S. Hiramatsu, K. Ishida, T. Kohara, 
and K. Asayama, J. Phys. Soc. Jpn. 56, 
3024 (1987b). 

Y. Kitaoka, K. Fujiwara, K. Ishida, K. Asayama, 
Y. Shimakawa, T. Manako, and Y. Kubo, 
Physica C779, 107 (1991). 

K. Kitazawa and S. Tajima, in “Some Aspects of 
Superconductivity,” (L. C. Gupta, Ed.), Nova 
Sci., New York, 1990. 

C. Kittel, “Introduction to Solid State Physics,” 
8th Ed. Wiley, New York, 2004. 

S. Kivelson, Phys. Rev. B 39, 259 (1989). 
Y. S. Kivshar and T. K. Soboleva, Phys. Rev. 

B 42, 2655 (1990). 
Y. S. Kivshar, B. A. Malomed, Z. Fei, and L. 

Vazquez, Phys. Rev. B 43, 1098 (1991). 
A. K. Klehe, A. K. Gangopadhyay, J. Diederichs, 

and J. S. Schilling, Physica C 213, 266 (1992). 
K. Klehe, J. S. Schilling, J. L. Wagner, and D. G. 

Hinks, Physica C 223, 313 (1994). 
B.	 M. Klein, L. L. Boyer, D. A. 

Papaconsantopoulos, and L. F. Mattheiss, 
Phys. Rev. B 18, 6411 (1978). 

B.	 M. Klein, L. L. Boyer, and D. A. 
Papaconstantopoulos, Phys. Rev. Lett. 42, 530 
(1979). 

U. Klein, Phys. Rev. B 40, 6601 (1989); 41, 4819 
(1990). 

D. J. Klein, T. G. Schmalz, M. A. Garcfa-Bach, 
R. Valenti, and T. P. Zivkovic, Phys. Rev. B 
43, 719 (1991). 

L. Kleion and A. Aharony, Phys. Rev. B 45, 9926 
(1992). 

R. Kleiner, F. Steinmeyer, G. Kunkel, and P. 
Muller, Phys. Rev. Lett. 68, 2394 (1992). 

A. Kleinhammes, C. L. Chang, W. G. Moulton, 
and L. R. Testardi, Phys. Rev. B 44, 2313 
(1991). 

A. W. Kleinsasser and T. N. Jackson, Phys. Rev. 
B 42, 8716 (1990). 

R. A. Klemm and S. H. Liu, Phys. Rev. B 44, 
7526 (1991). 

R. A. Klemm, Phys. Rev. B 47, 14630 (1993). 
F. Kober, H.-C. Ri, R. Gross, D. Koelle, R. P. 

Huebener, and A. Gupta, Phys. Rev. B 44, 
11951 (1991). 

J. Kober, A. Gupta, P. Esquinazi, H. F. Braun, E. 
H. Brandt, Phys. Rev. Lett. 66, 2507 (1991). 

R. H. Koch, V. Foglietti, W. J. Gallagher, G. 
Koren, A. Gupta, and M. P. A. Fisher, Phys. 
Rev. Lett. 63, 1511 (1989). 

REFERENCES 

B. N. Kodess, Ph. D. thesis, Penn State University, 
Penn. Cited as Ref. 6. 130 of Vonsovsky et al. 
(1982). 

V. G. Kogan, Phys. Rev. B 24 1572 (1981). 
V. G. Kogan, M. M. Fang, and S. Mitra, Phys. 

Rev. B38, 11958 (1988). 
V. G. Kogan, Phys. Rev. B 38, 7049 (1988). 
V. G. Kogan and L. J. Campbell, Phys. Rev. Lett. 

62, 1552 (1989). 
V. G. Kogan, N. Nakagawa, and S. L. Thiemann, 

Phys. Rev. B 42, 2631 (1990). 
V. G. Kogan, and S. L. Bud’ko, Physica C 385 

131 (2003) 
V. G. Kogan, R. Prozorov, S. L. Bud’ko, P. C. 

Canfield, J. R. Thompson, and J. Karpinsky, 
to be published. 

S. Kohiki, S.-I. Hatta, K. Setsune, K. Wasa, Y. 
Higashi, S. Fukushima, and Y. Gohshi, Appl. 
Phys. Lett. 56, 298 (1990). 

S. Koka and K. Shrivastava, Physica B 165–166, 
1097 (1990). 

S. Kolesnik, T. Skoskiewicz, J. Igalson, and Z. 
Korczak, Phys. Rev. B 45, 10158 (1992). 

T. Komeda, G. D. Waddill, P. J. Benning, and J. 
H. Weaver, Phys. Rev. B 43, 8713 (1991). 

M. Konczykowski, F. Rullier-Albenque, E. R. 
Yacoby, A. Shaulov, Y. Yeshurun, and P. 
Lejay, Phys. Rev. B 44, 7167 (1991). 

J. Konior, Phys. Rev. B 47, 14425 (1993). 
R. Konno and K. Ueda, Phys. Rev. B 40, 4329 

(1989). 
P. Koorevaar, J. Aarts, P. Berghuis, and P. H. 

Kes, Phys. Rev. B 42, 1004 (1990). 
Y. Kopelevich, A. Gupta, P. Esquinazi, C.-P. 

Heidmann, and H. Miiller, Physica C 183, 
345 (1991). 

P. Kopietz, Phys. Rev. Lett. 70, 3123 (1993). 
A. E. Koshelev, G. Yu. Logvenov, V. A. Larkin, 

V. V. Ryazanov, and K. Ya. Soifer, Physica C 
177, 129 (1991). 

A.	 A. Koshta, Yu. N. Shvachko, A. A. 
Romanyukha, and V. V. Ustinov, Zh. Eksp. 
Teor. Fiz. 103, 629 (1993); Transl. Sov. Phys. 
JETP 76, 314 (1993). 

I. Z. Kostadinov, V. G. Hadjiev, J. Tihov, M. 
Mateev, M. Mikhov, O. Petrov, V. Popov, 
E. Dinolova, Ts. Zheleva, G. Tyuliev, and 
V. Kojouharov, Physica C 156, 427 (1988). 

J. M. Kosterlitz and D. Thouless, J. Phys. C 5, 
L124 (1972); 6, 1181 (1973). 

N. Kosugi, Y. Tokura, H. Takagi and S. Uchida, 
Phys. Rev. B 41, 131 (1990). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:607 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

607 REFERENCES 

I. Kosztin, and A. J. Leggett, Phys. Rev. Lett. 79 
135 (1997). 

Y. Koyama and M. Ishimaru, Phys. Rev. B 45, 
9966 (1992). 

H.	 Krakauer, W. E. Pickett, D. A. 
Papaconstantopoulos, and L. L. Boyer, Jpn. J. 
Appl. Phys. 26, Suppl. 26-3. (1987) 

H. Krakauer, W. E. Pickett and R. E. Cohen, J. 
Supercond. 1, 111 (1988). 

H. Krakauer and W. E. Pickett, Phys. Rev. Lett. 
60, 1665 (1988). 

V.	 M. Krasnov, V. A. Larkin, and V. V. 
Ryazanov, Physica C 174, 440 (1991). 

V. M. Krasnov, Physica C 190, 357 (1992). 
N. M. Kreines and V. I. Kudinov, Mod. Phys. 

Lett. B 6, 6 (1992). 
V. Z. Kresin and S. A. Wolf, in “Novel Super­

conductivity” (S. A. Wolf and V. Z. Kresin, 
Eds.), p. 287, Plenum, New York, 1987. 

V. Z. Kresin, and S. A. Wolf, “Fundamentals of 
Superconductivity,” Plenum, New York, 1990. 

V. Z. Kresin and W. A. Little (Eds.), “Organic 
Superconductivity,” Plenum, New York, 1990. 

V. Z. Kresin, H. Morawitz, and S. A. Wolf, 
“Mechanisms of Conventional and High 
Tc Superconductivity,” Oxford Univ. Press, 
Oxford, 1993. 

A. Krimmel, P. Fischer, B. Roessli, H. Maletta, 
C. Geibel, C. Schank, A. Grauel, A. Loidl, and 
F. Steglich, Z. Phys. B 86, 161 (1992). 

G.	 Kriza, G. Quirion, O. Traetteberg, W. 
Kang, and D. Jerome, Phys. Rev. Lett. 66, 
1922 (1991). 

E. Kriiger, Phys. Stat. Sol. B 756, 345 (1989). 
L.	 Krusin-Elbaum, A. P. Malozemoff, Y. 

Yeshurun, D. C. Cronemeyer and F. 
Holtzberg, Phys. Rev. B39, 2936 (1989). 

H. C. Ku, H. D. Yang, R. W. McCallum, 
M. A. Noack, P. Klavins, R. N. Shelton, 
and A. R. Moodenbaugh, in “High Temper­
ature Superconductors” (U. Gubser and M. 
Schluter, Eds.), p. 177, Mater. Res. Soc., 
Pittsburgh, (1987). 

H. C. Ku, C. C. Lai, Y. B. You, J. H. Shieh and 
W. Y. Guan, Phys. Rev. B 50 351 (1994). 

R.	 Kuentzler, C. Hornick, Y. Dossmann, S. 
Wegner, R. El Farsi, and M. Drillon, Physica 
C 184, 316 (1991). 

M. L. Kulic and R. Zeyher, Phys. Rev. B 49, 4395 
(1994). 

J. Kulik, Y. Y. Xue, Y. Y. Sun, and M. Bonvalot, 
J. Mater. Res. 5, 1625 (1990). 

A. D. Kulkarni, J. Prade, F. W. de Wette, W. 
Kress, and U. Schroder, Phys. Rev. B 40, 
2642 (1989). 

A. D. Kulkarni, F. W. de Wette, J. Prade, U. 
Schroder, and W. Kress, Phys. Rev. B 41, 
6409 (1990). 

A. D. Kulkarni, F. W. de Wette, J. Prade, U. 
Schroder, and W. Kress, Phys. Rev. B 43, 
5451 (1991). 

H. Kumakura, M. Uehara, and K. Togano, Appl. 
Phys. Lett. 51, 1557 (1987). 

G. R. Kumar and P. Chaddah, Phys. Rev. B 39, 
4704 (1989). 

N. Kumar and A. M. Jayannavar, Phys. Rev. B 45, 
5001 (1992). 

M. N. Kunchur and S. J. Poon, Phys. Rev. B 43, 
2916 (1991). 

P. J. Kung, M. P. Maley, M. E. McHenry, J. O. 
Willis, J. Y. Coulter, M. Murakami, and S. 
Tanaka, Phys. Rev. B 46, 6427 (1992). 

E. Z. Kurmaev, V. P. Belash, S. A. Nemnonov, 
and A. S. Shulakov, Phys. Stat. Solid B 61, 
365 (1974). 

H. Kuroda, K. Yakushi, H. Tasima, A. Ugawa, Y. 
Okawa, A. Kobayashi, R. Kato, H. Kobayashi, 
and G. Saito, Synth. Metals A 27, 491 (1988). 

A. Kussmaul, J. S. Moodera, G. M. Roesler, 
Jr., and P. M. Tedrow, Phys. Rev. B 41, 
842 (1990). 

A. Kussmaul, J. S. Moodera, P. M. Tedrow, and 
A. Gupta, Physica C 177, 415 (1991). 

A. L. Kuzemsky, in Int. Conf. Supercond. and 
Strongly Correlated Electron Systems, Amalfi, 
Italy, (1993). 

E. Kuzmann, Z. Homonnay, A. Vertes, M. Gal, 
K. Torkos, B. Csakvari, G. K. Solymos, G. 
Horvath, J. Bankuti, I. Kirschner, and L. 
Korecz, Phys. Rev. B39, 328 (1989). 

L. S. Kuzmin, P. Delsing, T. Claeson, and K. 
Likharev, Phys. Rev. Lett. 62, 2539 (1989). 

L. S. Kuzmin, Yu. V. Nazarov, D. B. Haviland, 
P. Delsing, and T. Claeson, Phys. Rev. Lett. 
67, 1161 (1991). 

L. S. Kuzmin and D. Haviland, Phys. Rev. Lett. 
67, 2890 (1991). 

M. Kvale and S. E. Hebboul, Phys. Rev. B 43, 
3720 (1991). 

G. H. Kwei, J. A. Goldstone, A. C. Lawson, Jr., 
J. D. Thompson, and A. Williams, Phys. Rev. 
B 39, 7378 (1989). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:608 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

608 

G. H. Kwei, R. B. Von Dreele, S.-W. Cheong, 
Z. Fisk, and J. D. Thompson, Phys. B 41, 
1889 (1990). 

W. K. Kwok, U. Welp, G. W. Crabtree, K. 
G. Vandervoort, R. Hulscher, Y. Zheng, B. 
Dabroski, and D. G. Hinks, Phys. Rev. B 40, 
9400 (1989). 

W. K. Kwok, U. Welp, G. W. Crabtree, K. G. 
Vandervoort, R. Hulscher, and J. Z. Liu, Phys. 
Rev. Lett. 64, 966 (1990a). 

W. K. Kwok, U. Welp, K. D. Carlson, G. W. 
Crabtree, K. G. Vandervoort, H. H. Wang, A. 
M. Kini, J. M. Williams, D. L. Stupka, L. K. 
Montgomery, and J. E. Thompson, Phys. Rev. 
B 42, 8686 (1990b). 

H. S. Kwok, J. P. Zheng, and S. Y. Dong, Phys. 
Rev. B 43, 6270 (1991). 

Y. K. Kwong, K. Lin, M. Park, M. S. Isaacson, 
and J. M. Parpia, Phys. Rev. B 45, 9850 
(1992). 

J. Labbe, Phys. Rev. 158, 647, 655 (1967a). 
J. Labbe, S. Barisic, and J. Friedel, Phys, Rev. 

Lett. 19, 1039 (1967b). 
C. C. Lai, M. S. Lin, Y. B. You and H. C. Ku, 

Phys. Rev. B 51, 420 (1994). 
B. M. Lairson, S. K. Streiffer, and J. C. Bravman, 

Phys. Rev. B 42, 10067 (1990a). 
B. M. Lairson, J. Z. Sun, J. C. Bravman, and T. 

H. Geballe, Phys. Rev. B 42, 1008 (1990b). 
B. M. Lairson, J. Z. Sun, T. H. Geballe, M. R. 

Beasley, and J. C. Bravman, Phys. Rev. B 43, 
10405 (1991). 

R. Lal and S. K. Joshi, Phys. Rev. B 45, 361 
(1992). 

Q. H. Lam, Y. Kim, and C. D. Jeffries, Phys. Rev. 
B42, 4846 (1990). 

M. D. Lan, J. Z. Liu, and R. N. Shelton, Phys. 
Rev. B44, 233 (1991). 

L. D. Landau, Sov. Phys. JETP 3, 920 (1957a); 
5, 101 (1957b). 

C.	 T. Lane, “Superfluid Physics,” Chap. 9, 
McGraw-Hill, New York, 1962. 

M. Lang, N. Toyota, T. Sasaki, and H. Sato, Phys. 
Rev. Lett. 69, 1443 (1992a); Phys. Rev. B 46, 
5822 (1992b). 

J. Langen, M. Veit, M. Galffy, H. D. Jostarndt, 
A. Erie, S. Blumenroder, H. Schmidt, and 
E. Zirngiebl, Solid State Commun. 65, 
973 (1988). 

D. N. Langenberg, D. J. Scalapino, and B. N. 
Taylor, Sci. Amer. 274, 30 (May 1966). 

REFERENCES 

W. Lanping, H. Jian, and W. Guowen, Phys. Rev. 
B 40, 10954 (1989). 

D. C. Larbalestier, M. Daeumling, X. Cai, J. 
Suentjens, J. McKinnell, D. Hampshire, P. 
Lee, C. Meingast, T. Willis, H. Muller, R. D. 
Ray, R. G. Dillenburg, E. E. Hellstrom, and 
R. Joynt, J. Appl. Phys. 62, 3308 (1987a). 

D. C. Larbalestier, M. Daeumling, P. J. Lee, T. 
F. Kelly, J. Seuntjens, C. Meingast, X. Cai, J. 
McKinnell, R. D. Ray, R. G. Dillenburg, and 
E. E. Hellstrom, Cryogenics 27, 411 (1987b). 

A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. 
JETP 38, 854 (1974). 

A. Larsen, H. D. Jensen, and J. Mygind, Phys. 
Rev. B 43, 10179 (1991). 

R. B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988a). 
R. B. Laughlin, Science 242, 525 (1988b). 
W. E. Lawrence and S. Doniach, in “Proc. 12th 

Int. Conf. Low Temp. Phys. Kyoto, 1970” (E. 
Kanda, Ed.), p. 361. Keigaku, Tokyo, (1971). 

M. A. R. LeBlanc, D. LeBlanc, A. Golebiowski, 
and G. Pillion, Phys. Rev. Lett. 66, 3309 
(1991). 

D. LeBlanc and M. A. R. LeBlanc, Phys. Rev. 
B 45, 5443 (1992). 

K. Le Dang, J. P. Renard, P. Veillet, E. Velu, J. 
P. Burger, J. N. Daou, and Y. Loreaux, Phys. 
Rev. B 40, 11291 (1989). 

E. Lederman, L. Wu, M. L. denBoer, P. A. van 
Aken, W. F. Muller, and S. Horn, Phys. Rev. 
B 44, 2320 (1991). 

J. Y. Lee, K. M. Paget, T. R. Lemberger, S. R. 
Foltyn, and X. Wu, Phys. Rev. B 50, 3337 
(1994). 

T.-K. Lee, J. L. Birman, and S. J. Williamson, 
Phys. Rev. Lett. 39, 839 (1977a); Phys. Lett. 
A 64, 89 (1977b). 

T.-K. Lee and J. L. Birman, Phys. Rev. B 17, 
4931 (1978). 

M. Lee, M. Yudkowsky, W. P. Halperin, J. Thiel, 
S.-J. Hwu, and K. R. Poeppelmeier, Phys. Rev. 
B 36, 2378 (1987). 

M. Lee, Y.-Q. Song, W. P. Halperin, L. M. 
Tonge, T. J. Marks, H. O. Marcy, and C. R. 
Kannewurf, Phys. Rev. B 40, 817 (1989). 

S.	 Lee, H. Mori, T. Masui, Yu. Rlsev, A. 
Yamamoto, S. Tajima, J. Phys. Soc. Jpn. 70, 
2255 (2001). 

S. Lee, Physica C 385, 31 (2003). 
S. J. Lee and J. B. Ketterson, Phys. Rev. Lett. 64, 

3078 (1990). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:609 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

609 REFERENCES 

S.-I. Lee, Y. H. Jeong, K. H. Han, Z. S. Lim, Y. 
S. Song, and Y. W. Park, Phys. Rev. B 41, 
2623 (1990). 

W. C. Lee and D. C. Johnston, Phys. Rev. B 41, 
1904 (1990). 

H. C. Lee, R. S. Newrock, D. B. Mast, S. E. 
Hebboul, J. C. Garland, and C. J. Lobb, Phys. 
Rev. 44, 921 (1991). 

W. C. Lee and D. M. Ginsberg, Phys. Rev. B 44, 
2815 (1991). 

W. C. Lee, J. H. Cho, and D. C. Johnston, Phys. 
Rev. B 43, 457 (1991). 

S. Lenck, S. Wermbter, and L. Tewordt, J. Low 
Temp. Phys. 80, 269 (1990). 

S. Lenck and J. P. Carbotte, Phys. Rev. B 49, 
4176 (1994). 

H. Lengfellner, A. Schnellbogl, J. Betz, W. Prettl, 
and K. F. Renk, Phys. Rev. B 42, 6264 (1990). 

H. Lengfellner, A. Schnelbogl, J. Betz, K. Renk, 
and W. Prettl, Appl. Phys. Lett. 60, 1991 
(1991a). 

H.	 Lengfellner and A. Schnellbogl, Physica 
C 174, 373 (1991). 

H. Lengfellner, G. Kremb, A. Schnellbogl, J. 
Betz, K. F. Renk, and W. Prettl, Appl. Phys. 
Lett. 60 501 (1992). 

Y. Le Page, T. Siegrist, S. A. Sunshine, L. F. 
Schneemeyer, D. W. Murphy, S. M. Zahurak, 
J. V.Waszczak, W. R. McKinnon, J. M. 
Tarascon, G. W. Hull, and L. H. Greene, Phys. 
Rev. B 36, 3617 (1987). 

Ph.	 Lerch, Ch. Leemann, R. Theron, and P. 
Martinoli, Phys. Rev. B 41, 11579 (1990). 

J. Lesueur, L. H. Greene, W. Feldmann, and A. 
Inam, Physica C 191, 325 (1992). 

B. G. Levi, Phys. Today 19 (May 1988), p. 19. 
G. Levin, Phys. Rev. B 47, 14634 (1993). 
L. Levitov, Phys. Rev. Lett. 66, 224 (1991). 
J. A. Lewis, C. E. Platt, M. Wegmann, M. Teepe, 

J. L. Wagner, and D. G. Hinks, Phys. Rev. 
B 48, 7739 (1993). 

H. W. Lewis, Phys. Rev. 102, 1508 (1956). 
C. Li, M. Pompa, S. D. Longa, and A. Bianconi, 

Physica C 778, 421 (1991). 
J. Q. Li, C. Chen, D. Y. Yang, F. H. Li, Y. S. 

Yao, Z. Y. Ran, W. K. Wang, and Z. X. Zhao, 
Z. Phys. B. 74, 165 (1989). 

J. Q. Li, X. X. Xi, X. D. Wu, A. Inam, S. 
Vadlamannati, W. L. McLean, T. Venkatesan, 
R. Ramesh,D. M. Hwang, J. A. Martinez, and 
L. Nazar, Phys. Rev. Lett. 64, 3086 (1990). 

M. R. Li, P. J. Hirschfeld, and P. Wolfle, Phys. 
Rev. Lett. 81, 5640 (1998). 

Q. Li, M. Suenaga, T. Hikata, and K. Sato, Phys. 
Rev. B 46, 5857 (1992). 

Q. Li, M. Suenaga, T. Kimura, and K. Kishio, 
Phys. Rev. 47, 11384 (1993). 

Y.-H. Li and S. Teitel, Phys. Rev. Lett. 66, 3301 
(1991). 

Z.-Z. Li and Y. Qiu, Phys. Rev. B 43, 12906 
(1991). 

A. I. Liechtenstein, I. I. Mazin, C. O. Rodriguez, 
O. Jepsen, O. K. Andersen, and M. Methfessel, 
Phys. Rev. B 44, 5388 (1991). 

L. Lilly, A. Muramatsu, and W. Hanke, Phys. 
Rev. Lett. 65, 1379 (1990). 

Z. S. Lim, K. H. Han, S.-I. Lee, Y. H. Jeong, S. 
H. Salk, Y. S. Song, and Y. W. Park, Phys. 
Rev. B 40, 7310 (1989). 

S.-Y. Lin, L. Lu, H.-M. Duan, B.-H. Ma, and D. 
-L. Zhang, Int. J. Mod. Phys. B 3, 409 (1989). 

J. J. Lin, Phys. Rev. B 44, 789 (1991). 
F. Lindemann, Phys. Z. 11, 609 (1910). 
D.	 Lipp, M. Schneider, A. Gladun, S.-L. 

Drechesler, J. Freudenberger, G. Fucks, K. 
Nenkov, K.-H. Muller, T. Cichorek, P. 
Gegenwart, (K. H. Muller and V. Narozhnuy, 
Eds.), Rare Earth Transition Metal Borocar­
bides (Nitrides); Superconducting Magnetic 
and Normal State Properties, p. 89, Kluwer 
Acad. Publ. Dordrecht, (2001) 

G. Litak, J. F. Annett, B. L. Gyorffy, and K. I. 
Wysokinski, (K. H. Muller and V. Narozhnuy, 
Eds.), Rare Earth Transition Metal Borocar­
bides (Nitrides); Superconducting Magnetic 
and Normal State Properties, p. 307, Kluwer 
Acad. Publ. Dordrecht, (2001) 

G. Litak, J. F. Annett, B. L. Gyorffy, and K. I. 
Wysokinski, Phys. Stat. Sol. (b) 241, No. 5 
983 (2004). 

W. A. Little and R. D. Parks, Phys. Rev. Lett. 9, 
9 (1962). 

J.-X. Liu, J.-C. Wan, A. M. Goldman, Y. C. 
Chang, and P. Z. Jiang, Phys. Rev. Lett. 67, 
2195 (1991). 

J.-Z. Liu, Y. X. Jia, R. N. Shelton, and M. J. Fluss, 
Phys. Rev. Lett. 66, 1354 (1991). 

J. Z. Liu, L. Zhang, M. D. Lan, R. N. Shelton, and 
M. J. Fluss, Phys. Rev. B 46, 9123 (1992). 

L. Liu, J. S. Kouvel, and T. O. Brun, Phys. Rev. 
B 43, 7859 (1991). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:610 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

610 

R. Liu, B. W. Veal, A. P. Paulikas, J. W. Downey, 
H. Shi, C. G. Olson, C. Gu, A. J. Arko, and J. 
J. Joyce, Phys. Rev. B 45, 5614 (1992). 

R. Liu, M. V. Klein, P. D. Han, and D. A. Payne, 
Phys. Rev. B 45, 7392 (1992). 

L. Liu, J. S. Kouvel, and T. O. Brun, Phys. Rev. 
B 45, 3054 (1992). 

G. Yu. Logvenov, V. V. Ryazanov, A. V. Ustinov, 
and R. P. Huebener, Physica C 175, 179 
(1991). 

L. W. Lombardo, D. B. Mitzi, A. Kapitulnik, and 
A. Leone, Phys. Rev. B 46, 5615 (1992). 

F.	 London and H. London, Proc. Roy. Soc. 
(London) A 141, 71 (1935). 

F. London, and H. London Proc. R Soc. London, 
Ser. A 149, 71 (1935). 

P.	 London, “Une Conception Nouvelle de la 
Superconductibilite,” Hermann, Paris, 1937. 

F. London, “Superfluids,” Wiley, New York, Vol. 
1, 1950; Vol. 2, 1954, Dover, New York, 1961. 

J. M. Longo and P. M. Raccah, J. Solid State 
Chem. 6, 526 (1973). 

C.-K. Loong, P. Vashishta, R. K. Kalia, M. H. 
Degani, D. L. Price, D. J. Jorgensen, D. G. 
Hinks, B. Dabrowski, A. W. Mitchell, D. R. 
Richards, and Y. Zheng, Phys. Rev. Lett. 62, 
2628 (1989). 

C.-K. Loong, D. G. Hinks, P. Vashishta, W. Jin, 
R. K. Kalia, M. H. Degani, D. L. Price, J. D. 
Jorgensen, B. Dabrowski, A. W. Mitchell, D. 
R. Richards, and Y. Zheng, Phys. Rev. Lett. 
66, 3217 (1991). 

C.-K. Loong, P. Vashishta, R. K. Kalia, W. Jin, 
M. H.Degani, D. G. Hinks, D. L. Price, J. D. 
Jorgensen, B. Dabrowski, A. W. Mitchell, D. 
R. Richards, and Y. Zheng, Phys. Rev. B 45, 
8052 (1992). 

Y. Lou, X. Lu, G. H. Dai, W. Y. Ching, Y.-N. 
Xu, M.-Z. Huang, P. K. Tseng, Y. C. Jean, 
R. L.Meng, P. H. Hor, and C. W. Chu, Phys. 
Rev. B 46, 2644 (1992). 

A. J. Lowe, S. Regan, and M. A. Howson, Phys. 
Rev. B 44, 9757 (1991). 

D. H. Lowndes, D. P. Norton, and J. D. Budai, 
Phys. Rev. Lett. 65, 1160 (1990). 

J. P. Lu, K. Arya, and J. L. Birman, Phys. Rev. B 
40, 7372 (1989). 

J.-T. Lue and J. S. Sheng, Phys. Rev. B 47, 5469 
(1993). 

G. M. Luke, L. P. Le, B. J. Sternlieb, Y. J. 
Uemura, J. H. Brewer, R. Kadono, R. F. 
Kiefi, S. R. Kreitzman, T. M. Riseman, C. 

REFERENCES 

E. Stronach, M. R. Davis, S. Uchida, H. 
Takagi, Y. Tokura, Y. Hidaka, T. Murakami, 
J. Gopalakrishnan, A. W. Sleight, M. A. 
Subramanian, E. A. Early, J. T. Markert, M. 
B. Maple, and C. L. Seaman, Phys. Rev. B 42, 
7981 (1990). 

G. M. Luke et al., Nature 394, 558 (1998). 
J. Luzuriaga, M.-O. Andre, and W. Benoit, Phys. 

Rev. B 45, 12492 (1992). 
J. W. Lynn, T. W. Clinton, W.-H. Li, R. W. Erwin, 

J. Z. Liu, K. Vandervoort, and R. N. Shelton, 
Phys. Rev. Lett. 63, 2606 (1989). 

J. W. Lynn, (Ed.), “High Temperature Supercon­
ductivity,” Springer-Verlag, Berlin, 1990a. 

J. W. Lynn, “High Temperature Superconductiv­
ity,” Chap. 8, Springer-Verlag, Berlin, 1990b. 

J. W. Lynn, J. Alloys Compd. 181, 419 (1992). 
J. W. Lynn, S. Skanthakumar, Q. Huang, S. K. 

Sinha, Z. Hossain, L. C. Gupta, R. Nagarajan, 
And C. Godart, Phys. Rev. B 55, 6584 (1997). 

E.	 A. Lynton, “Superconductivity,” Methuen, 
London, 1962. 

D.	 K. C. MacDonald, “Thermoelectricity, An 
Introduction to the Principles,” Wiley, New 
York, 1962. 

H.	 Maeda, Y. Tanaka, M. Fukutomi, and T. 
Asano, Jpn. J. Appl. Phys. Lett. 27, 209 (1988). 

A.	 Maeda, T. Shibauchi, N. Kondo, K. 
Uchinokura, and M. Kobayashi, Phys. Rev. B 
46, 14234 (1992). 

Y. Maeno, T. Tomita, M. Kyogoku, S. Awaji, Y. 
Aoki, K. Hoshino, A. Minami, and T. Fujita, 
Nature 328, 512 (1987). 

A. Maeda, and T. Hanaguri, Supercond. Rev. 3, 
1 (1998). 

Y.	 Maeno, H. Hashimoto, K. Yoshida, S. 
NishiZaki, T. Fujuta, J. G. Bednorz, and 
F Lichtenberg, Nature 372, 532 (1994). 

S.	 Magalo, M. Michor, M. El-Hagarty, G. 
Hilscher and E. Schachinger, Phys. Rev. B 63, 
104508 (2001). 

G. D. Mahan, Phys. Rev. B 40, 11317 (1989). 
G. D. Mahan, Phys. Rev. B 48, 16557 (1993). 
R. Mailfert, R. W. Batterman, and J. J. Hanak, 

Phys. Lett. A 24, 315 (1967). 
A.	 Majhofer, L. Mankiewicz, and J. Skalski, 

Phys.Rev. B 42, 1022 (1990). 
K. Maki, Prog. Theoret. Phys. 39, 897 (1968). 
K. Maki, Phys. Rev. B 43, 1252 (1991); erratum, 

B 43, 13685 (1991). 
K.	 Maki, E. Puchkaryov and G. F. Wang, 

(S.-L. Dreschsler and T. Mishonov, eds.), 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:611 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

REFERENCES 

High-Tc Superconductors and Related Materi­
als, 199, Kluwer Academic Publishers. Printed 
in the Netherlands (2001). 

H. Maletta, A. P. Malozemoff, D. C. Cronemeyer, 
C. C. Tsuei, R. L. Greene, J. G. Bednorz, 
and K. A. Miiller, Solid State Commun. 62, 
323 (1987). 

M. P. Maley, J. Appl. Phys. 70, 6189 (1991). 
M. P. Maley, P. J. Kung, J. Y. Coulter, W. L. 

Carter, G. N. Riley, and M. E. McHenry, Phys. 
Rev. B 45, 7566 (1992). 

M. Mali, D. Brinkmann, L. Pauli, J. Roos, H. 
Zimmermann, and J. Hulliger, Phys. Lett. A 
124, 112 (1987). 

S. K. Malik, C. V. Tomy, D. T. Adroja, R. 
Nagarajan, R. Prasad, and N. C. Soni, Solid 
State Commun. 66 (10), 1097 (1988). 

B. A. Malomed, Phys. Rev. B 39, 8018 (1989). 
B. A. Malomed, Phys. Rev. B 41, 2616 (1990). 
B. A. Malomed and A. Weber, Phys. Rev. B 44, 

875 (1991). 
B. A. Malomed and A. A. Nepomnyashchy, Phys. 

Rev. B 45, 12435 (1992). 
V. Manivannan, J. Gopalakrishnan, and C. N. R. 

Rao, Phys. Rev. B 43, 8686 (1991). 
Y. Maniwa, H. Sato, K. Mizoguchi, and K. Kune, 

Jpn.J. Appl. Phys. 29, 268 (1990). 
Y. Maniwa, T. Mituhashi, K. Mizoguchi, and K. 

Kume, Physica C 775, 401 (1991a). 
Y. Maniwa, S. Sato, T. Mituhaski, K. Mizoguchi, 

and K. Kume, Physica C 185–189, 1761 
(1991b). 

P. A. Mansky, P. M. Chaikin, and R. C. Haddon, 
Phys. Rev. B 50, 15929 (1994). 

F. Manzano, A. Carrington, N. E. Hussey, S. Lee, 
A. Yamamoto, and S. Tajima Phys. Rev. Lett. 
88 47002 (2002). 

J. Mao, D. H. Wu, J. L. Peng, R. L. Greene, and 
S. M. Anlage, Phys. Rev. B 51, 3316 (1995). 

Z. Q. Mao, M. M. Rosario, K. D. Nelson, K. Wu, 
I. G. Deac, P Schiffer, and Y. Liu, Phys. Rev. 
B 67, 94502 (2003). 

M. B. Maple, J. W. Chen, S. E. Lambert, Z. Fisk, 
J. L. Smith, and H. R. Ott, cited in Stewart 
(1984). 

M. C. Marchetti and D. R. Nelson, Phys. Rev. 
B 41, 1910 (1990). 

M. C. Marchetti, Phys. Rev. B 43, 8012 (1991). 
R. Marcon, R. Fastampa, M. Giura, C. Matacotta, 

Phys. Rev. B 39, 2796 (1989). 
R. Marcon, E. Silva, R. Fastampa, and M. Giura, 

Phys. Rev. B 46, 3612 (1992). 

611 

J. Marcus, C. Escribe-Filippini, C. Schlenker, R. 
Buder, J. Devenyi, and P. L. Reydet, Solid 
State Commun. 63, 129 (1987). 

M. Marder, N. Papanicolaou, and G. C. Psaltakis, 
Phys. Rev. B 41, 6920 (1990). 

J. T. Markert, T. W. Noh, S. E. Russek, and R. M. 
Cotts, Solid State Commun. 63, 847 (1987). 

R. S. Markiewicz, Physica C 777, 171 (1991). 
R. S. Markiewicz, Int. J. Mod. Phys. B 5, 2037 

(1991). 
P. Marsh, R. M. Fleming, M. L. Mandich, A. 

M. DeSantolo, J. Kwo, M. Hong, and L. J. 
Martinez-Miranda, Nature 334, 141 (1988). 

C. D. Marshall, I. M. Fishman, R. C. Dorfman, 
C. B. Eom, and M. D. Payer, Phys. Rev. B 45, 
10009 (1992). 

F. Marsiglio and J. E. Hirsch, Phys. Rev. B 44, 
11960 (1991). 

F. Marsiglio, Phys. Rev. B 44, 5373 (1991). 
F. Marsiglio and J. E. Hirsch, Phys. Rev. B 49, 

1366 (1994). 
S. Martin, A. T. Fiory, R. M. Fleming, L. F. 

Schneemeyer, and J. V. Waszczak, Phys. Rev. 
Lett. 60, 2194 (1988). 

S. Martin, A. T. Fiory, R. M. Fleming, G. P. 
Espinosa, and A. S. Copper, Phys. Rev. Lett. 
62, 677, (1989); see 63, 582 (1989) for com­
ment by P. C. E. Stampand a reply by the 
authors. S. Martin, A. T. Fiory, R. M. Fleming, 
L. F. Schneemeyer, and J. V. Waszczak, Phys. 
Rev. B 41, 846 (1990). 

S. Martin and A. F. Hebard, Phys. Rev. B 43, 
6253 (1991). 

M. Martin, C. Kendziora, L. Mihaly, and R. 
Lefferts, Phys. Rev. B 46, 5760 (1992). 

M. C. Martin, D. Roller, and L. Mihaly, Phys. 
Rev. B 47, 14607 (1993). 

T.	 P. Martin, U. Naher, H. Schaber, and U. 
Zimmermann, Phys. Rev. Lett. 70, 3079 
(1993). 

C. Martin, M. Hervieu, M. Huve, C. Michel, A. 
Maignan, G. van Tendeloo, and B. Raveau, 
Physica C 222, 19 (1994). 

J. A. Martindale, S. E. Barrett, C. A. Klug, K. E. 
O’Hara, S. M. DeSoto, C. P. Slichter, T. A. 
Friedmann, and D. M. Ginsberg, Phys. Rev. 
Lett. 68, 702 (1992). 

P. Marinez-Samper, J. G. Rodrigo, G. Rubio-
Bolinger, H. Suderw, S. Viera, S. Lee, and S. 
Tajima, Physica C 385 233 (2003). 

J. L. Martins and N. Troullier, Phys. Rev. B 46, 
1766 (1992). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:612 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

612 

A. Masaki, H. Sato, S. -I. Uchida, K. Kitazawa, 
S. Tanaka, and K. Inoue, Jpn. J. Appl. Phys. 
26, 405 (1987). 

H. Mathias, W. Moulton, H. K. Ng, S. J. Pan, K. 
K. Pan, L. H. Peirce, L. R. Testardi, and R. J. 
Kennedy, Phys. Rev. B 36, 2411 (1987). 

P. Mathieu and Y. Simon, Europhys. Lett. 5, 67 
(1988). 

I.	 Matsubara, H. Tanigawa, T. Ogura, H. 
Yamashita, M. Kinoshita, and T. Kawai, Phys. 
Rev. B 45, 7414 (1992). 

Y. Matsuda, N. P. Ong, Y. F. Yan, J. M. Harris, 
and J. B. Peterson, Phys. Rev. B 49, 4380 
(1994). 

Y. Matsumoto, M. Katada, and T. Nishida, Phys­
ica C 185, 1229 (1991). 

T. Matsuura and K. Miyake, Jpn. J. Appl. Phys. 
26, L 407 (1987). 

H.	 Matsuyama, T. Takahashi, H. Katayama-
Yoshida, Y. Okabe, H. Takagi, and S. Uchida, 
Phys. Rev. B 40, 2658 (1989). 

L. F. Mattheiss, Phys. Rev. B 1, 373 (1970). 
L. F. Mattheiss and D. R. Hamann, Phys. Rev. 

B 28, 4227 (1983). 
L. F. Mattheiss, Jpn. J. Appl. Phys. 24(2), 6 

(1985). 
L. F. Mattheiss and D. R. Hamann, Solid State 

Commun. 63, 395 (1987). 
L. F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987). 
L.	 F. Mattheiss, E. M. Gyrogy, and D. W. 

Johnson, Jr., Phys. Rev. B 37, 3745 (1988). 
L. F. Mattheiss and D. R. Hamann, Phys. Rev. 

Lett. 60, 2681 (1988). 
L. F. Mattheiss and D. R. Hamann, Phys. Rev. 

B 39, 4780 (1989). 
L. F. Mattheiss, Phys. Rev. B 42, 359 (1990). 
B. Matthias, Phys. Rev. 92, 874 (1953). 
B. Matthias, Phys. Rev. 97, 74 (1955). 
D. C. Mattis and M. Molina, Phys. Rev. B 44, 

12565 (1991). 
E. Maxwell, Phys. Rev. 78, 477 (1950). 
I. I. Mazin, O. Jepsen, O. K. Andersen, A. I. 

Liechtenstein, S. N. Rashkeev, and Y. A. 
Uspenskii, Phys. Rev. B 45, 5103 (1992). 

I. I. Mazin, and V. P. Antropov, Physica C 385, 
49 (2003). 

K. F. McCarty, D. S. Ginley, D. R. Boehme, R. J. 
Baughman, and B. Morosin, Solid State Com­
mun. 68, 77 (1988). 

K. F. McCarty, B. Morosin, D. S. Ginley, and D. 
R. Boehme, Physica C 757, 135 (1989). 

REFERENCES 

K. F. McCarty, J. Z. Liu, R. N. Shelton, and H. 
B. Radousky, Phys. Rev. B 41, 8792 (1990a); 
B 42, 9973 (1990b). 

K. F. McCarty, H. B. Radousky, J. Z. Liu, and R. 
N. Shelton, Phys. Rev. B 43, 13751 (1991). 

K. A. McGreer, J.-C. Wan, N. Anand, and A. M. 
Goldman, Phys. Rev. B 39, 12260 (1989). 

M. E. McHenry, S. Simizu, H. Lessure, M. 
P. Maley, J. Y. Coulter, I. Tanaka, and H. 
Kojima, Phys. Rev. B 44, 7614 (1991). 

W. R. McKinnon, J. R. Morton, K. F. Preston, 
and L. S. Selwyn, Solid State Commun. 65, 
855 (1988). 

W. L. McMillan, Phys. Rev. 167, 331 (1968). 
T. McMullen, Phys. Rev. B 41, 877 (1990). 
G. A. Medina and M. D. N. Regueiro, Phys. Rev. 

B 42, 8073 (1990). 
N.	 I. Medvedeva, S. A. Turzhevsky, V. A. 

Gubanov, and A. J. Freeman, Phys. Rev. B 48, 
16061 (1993). 

D.	 Mehl, A. R. Koymen, K. O. Jensen, F. 
Gotwald, and A. Weiss, Phys. Rev. B 41, 799 
(1990). 

W.	 Meissner, and R. Ochsenfeld, 
Naturwissenschaften 21 787 (1933). 

W. Meissner, and R. Ochsenfeld (English trans­
lation by A. M. Forrest) Eur. J. Phys. 4, 117 
(1983). 

K. Mendelssohn, “Cryophysics,” Chap. 6, Inter-
science, New York, 1960. 

R. L. Meng, Y. Y. Sun, J. Kulik, Z. J. Huang, F. 
Chen, Y. Y. Xue, and C. W. Chu, Physica C 
214, 307 (1993a). 

R. L. Meng, L. Beauvais, X. N. Zhang, Z. J. 
Huang, Y. Y. Sun, Y. Y. Zue, and C. W. Chu, 
Physica C 216, 21 (1993b). 

R. Meservey and B. B. Schwartz, in “Supercon­
ductivity” (R. D. Parks, Ed.), Vol. 1, Chap. 3, 
Dekker, New York, 1969. 

J. Metzger, T. Weber, W. H. Fietz, K. Grube, H. 
A. Ludwig, T. Wolf, and H. Wiihl, Physica C 
214, 371 (1993). 

H. M. Meyer III, D. M. Hill, T. J. Wagener, Y. 
Gao, J. H. Weaver, D. W. Capone II, and K. 
C. Goretta, Phys. Rev. B 38, 6500 (1988). 

P.	 F. Miceli, J. M. Tarascon, L. H. Greene, 
P.	 Barboux, M. Giroud, D. A. Neumann, 
J. J. Rhyne, L. F. Schneemeyer, and J. V. 
Waszczak, Phys. Rev. B 38, 9209 (1988). 

C. Michel and B. Raveau, Rev. Chim. Miner. 21, 
407 (1984). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:613 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

613 REFERENCES 

C. Michel, M. Hervieu, M. M. Borel, A. Grandin, 
F. Deslandes, J. Provost, and B. Raveau, Z. 
Phys. B. Cond. Matt. 68, 421 (1987). 

H. Michor, T. Holubar, C. Dusek, and G. Hilscher, 
Phys. Rev. B 52, 16165 (1995). 

H. Michor, R. Krendelsberger, P. Rogl, and H. W. 
Zandbergen, Phys. Rev. B 54, 9408 (1996). 

R. Micnas, J. Ranninger, and S. Robaszkiewicz, 
Phys. Rev. B 36, 4051 (1987). 

A. R. Miedema, J. Phys. (Paris) F3, 1803 (1973). 
A. R. Miedema, J. Phys. (Paris) F4, 120 (1974). 
F. Mila and T. M. Rice, Physica C 757, 561 

(1989). 
S. L. Miller, K. R. Biagi, J. R. Clem, and D. K. 

Finnemore, Phys. Rev. B 31, 2684 (1985). 
J. H. Miller, Jr., G. H. Gunaratne, J. Huang, and T. 

D. Golding, Appl. Phys. Lett. 59, 3330 (1991). 
A. J. Millis, H. Monien, and D. Pines, Phys. Rev. 

B 42, 167 (1990). 
A. J. Millis and H. Monien, Phys. Rev. B 45, 3059 

(1992). 
L. Mingzhu, T. Weihua, M. Xianren, L. Zhenjin, 

H. Wei, T. Qingyun, R. Yanru, and L. 
Zhenxing, Phys. Rev. B 41, 2517 (1990). 

P. Minnhagen and P. Olsson, Phys. Rev. Lett. 67, 
1039 (1991). 

P. Minnhagen and P. Olsson, Phys. Rev. B 45, 
5722 (1992). 

P. Miranovic, K. Machida, and V. G. Kogan, 
Cond. Mat. 0207146 

L. Miu, A. Crisan, S. Popa, V. Sandu, and L. 
Nistor, J. Supercond. 3, 391 (1990). 

L. Miu, Phys. Rev. B 45, 8142 (1992). 
P. Mocaer, L. Tessler, M. Lagues, F. Laher-

Lacour, C. Lacour, U. Dai, N. Hess, and G. 
Deutscher, Physica C 185–189, 2505 (1991). 

M. A. K. Mohamed, J. Jung, and J. P. Franck, 
Phys. Rev. B 39, 9614 (1989). 

M. A. K. Mohamed, J. Jung, and J. P. Franck, 
Phys. Rev. B 41, 4286, 6466 (1990). 

M. A.-K. Mohamed and J. Jung, Phys. Rev. B 44, 
4512 (1991). 

R. Monaco, Int. J. Infrared. Millimeter Waves II, 
533 (1990a); J. Appl. Phys. 68, 679 (1990b). 

H.	 C. Montgomery, J. Appl. Phys. 42, 2971 
(1971). 

P. Monthoux and D. Pines, Phys. Rev. B 49, 4261 
(1994). 

J. S. Moodera, R. Meservey, J. E. Tkaczyk, C. X. 
Hao, G. A. Gibson, and P. M. Tedrow, Phys. 
Rev. B 37, 619 (1988). 

H. A. Mook, D. McK Paul, B. C. Sales, L. A. 
Boatner, and L. Cussen, Phys. Rev. B 38, 
12008 (1988). 

J. Moreland, A. F. Clark, H. C. Ku, and R. N. 
Shelton, Cryogenics 27, 227 (1987). 

J. Moreland, J. W. Ekin, L. F. Goodrich, T. E. 
Capobianco, A. F. Clark, J. Kwo, M. Hong, 
and S. H.Liou, Phys. Rev. B 35, 8856 (1987). 

H. Mori, Phys. Rev. B 43, 5474 (1991). 
D. E. Morris, J. H. Nickel, J. Y. T. Wei, N. 

G. Asmar, J. S. Scott, U. M. Scheven, C. 
T. Hultgren, A. G.Markelz, J. E. Post, P. J. 
Heaney, D. R. Veblen, and R. M. Hazen, Phys. 
Rev. B 39, 7347 (1988). 

D. E. Morris, N. G. Asmar, J. Y. T. Wei, J. H. 
Nickel, R. L. Sid, J. S. Scott, and J. E. Post, 
Phys. Rev. B 40, 11406 (1989). 

A. Moser, H. J. Hug, I. Parashikov, B. Stiefel, 
O. Fritz, H. Thomas, A. Baratoff, H.-J. 
Guntherodt, and P. Chaudhari, Phys. Rev. Lett. 
74, 1847 (1995). 

M. Mostoller, J. Zhang, A. M. Rao, and P. C. 
Eklund, Phys. Rev. B 41, 6488 (1990). 

R. Movshovic, M. F. Hundley, J. D. Thompson, P. 
C. Canfield, B. K. Cho, and A. V. Chubukov, 
Physica C 227, 381 (1994). 

H.	 Mukaida, K. Kawaguchi, M. Nakao, H. 
Kumakura, D. Dietderich, and K. Togano, 
Phys. Rev. B 42, 2659 (1990). 

K. A. Miiller, M. Takashige, and J. G. Bednorz, 
Phys. Rev. Lett. 58, 1143 (1987). 

K.-H. Muller, Physica C 159, 717 (1989). 
K.-H. Muller and A. J. Pauza, Physica C 161, 319 

(1989). 
K.-H. Muller, IEE Trans. Magn. March (1991). 
K.-H. Muller, M. Nikolo, and R. Driver, Phys. 

Rev. B 43, 7976 (1991). 
K.-H. Muller, and V. N. Narozhnyi, Rep. Prog. 

Phys. 64, 943 (2001). 
K.-H. Muller, J. Freudenberger, G. Fuchs, K. 

Nenkov, A. Kreyssig, and M. Loewenhaupt, 
(K. H. Muller and V. Narozhnyi, Eds.), 
Rare Earth Transition Metal Borocarbides 
(Nitrides); Superconducting Magnetic and 
Normal State Properties, p. 255, Kluwer Acad. 
Publ. Dordrecht, (2001) 

H. Muller, M. Suenaga, and Y. Yokoyama, J. 
Appl. Phys. 70, 4409 (1991). 

M.	 Murakami, H. Fujimoto, S. Gotoh, K. 
Yamaguchi, N. Koshizuka, and S. Tanaka, 
Physica C 185–189, 321 (1991). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:614 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

614 

M. Murakami, in “Studies of High Temperature 
Superconductors” (A. V. Narlikar, Ed.), Vol. 
9, Nova Sci., New York, 1991. 

D. W. Murphy, S. Sunshine, R. B. van Dover, 
R. J. Cava, B. Batlogg, S. M. Zahurak, and 
L. F. Schneemeyer, Phys. Rev. Lett. 58, 
1888 (1987). 

P. Muzikar, D. Rainer, and J. A. Sauls, Proc. 
NATO Adv. Study Inst. Vortices in Super­
fluids, Cargese, Corsica (N. Bontemps, Ed.), 
Kluwer, Dordrecht, 1994. 

J. A. Mydosh, Phys. Scripta T19, 260 (1987). 
T. Mzoughi, H. A. Farach, E. Quagliata, M. A. 

Mesa, C. P. Poole, Jr., and R. Creswick, Phys. 
Rev. B 46, 1130 (1992). 

J.	 Nagamatsu, N. Nakagawa, T. Muranaka, 
Y. Zenitani, and J. Akimitsu, Nature 410, 
63 (2001). 

N. Nagaosa and P. Lee, Phys. Rev. B 43, 1233 
(1991). 

R. Nagarajan, L. C. Gupta, Ch. Mazumdar, Z. 
Hossain, S. K. Dhar, C. Godart, B. D. Padalia, 
and R. Vijayaraghavan, J. Alloys Compd. 225, 
571 (1995). 

R. Nagarajan, (K. H. Muller and V. Narozhnyi, 
Eds.), Rare Earth Transition Metal Borocar­
bides (Nitrides); Superconducting Magnetic 
and Normal State Properties, p. 1, Kluwer 
Acad. Publ. Dordrecht, (2001) 

M. Nagoshi, Y. Fukuda, T. Suzuki, K. Ueki, 
A. Tokiwa, M. Kikuchi, Y. Syono, and M. 
Tachiki, Physica C 185, 1051 (1991). 

M. Naito, A. Matsuda, K. Kitazawa, S. Kambe, 
I. Tanaka, and H. Kojima, Phys. Rev. B 41, 
4823 (1990). 

Y. Nakamura and S. Uchida, Phys. Rev. B 47, 
8369 (1993). 

K. Nakao, N. Miura, K. Tatsuhara, H. Takeya, 
and H. Takei, Phys. Rev. Lett. 63, 97 (1993). 

A.	 V. Narlikar, Ed., “Studies of High 
Temperature Superconductors,” Nova Sci., 
New York, 1989. 

K. Nasu, Phys. Rev. B 42, 6076 (1990). 
B.	 Nathanson, O. Entin-Wohlman, and B. 

Muhlschlegel, Phys. Rev. B 45, 3499 (1992). 
R. Navarro and L. J. Campbell, Phys. Rev. B 44, 

10146 (1991). 
D. R. Nelson, in “Fundamental Problems in Struc­

tural Mechanics V” (E. G. D. Cohen, Ed.), 
North-Holland, Amsterdam, 1980. 

D. L. Nelson, M. S. Whittingham, and T. 
F. George, Eds., “Chemistry of High-

REFERENCES 

Temperature Superconductors,” ACS Sympo­
sium Series No. 351, American Chemical 
Society, Washington, DC, 1987. 

D. R. Nelson and H. S. Seung, Phys. Rev. B 39, 
9153 (1989). 

D. R. Nelson and P. Le Doussal, Phys. Rev. B 42, 
10113 (1990). 

D. R. Nelson and V. M. Vinokur, Phys. Rev. Lett. 
68, 2398 (1992). 

E. Nembach, K. Tachikawa, and S. Takano, Phi­
los. Mag. 21, 869 (1970). 

S. A. Nemnonov, E. Z. Kurmaev, and V. I. Minin, 
IMF Akad. Nauk. USSR (Kiev) 1, 87 (1969). 

S. J. Nettel and R. K. MacCrone, Phys. Rev. B 47, 
11360 (1993). 

M. V. Nevitt, G. W. Crabtree, and T. E. Klippert, 
Phys. Rev. B 36, 2398 (1987). 

V. L. Newhouse, in “Superconductivity” (R. D. 
Parks, Ed.), Vol. 2, p. 1283, Dekker, New 
York, 1969. 

E. J. Nicol and J. P. Carbotte, Phys. Rev. B 43, 
10210 (1991). 

E. J. Nicol and J. P. Carbotte, Phys. Rev. B 47, 
8205 (1993). 

Ch. Niedermayer, H. Gluckler, A. Golnik, U. 
Binninger, M. Rauer, E. Recknagel, J. I. 
Budnick, and A. Weidinger, Phys. Rev. B 47, 
3427 (1993). 

L. Niel and J. E. Evetts, Supercond. Sci. Technol. 
5, S347 (1992). 

G. Nieva, E. N. Martinez, F. de la Cruz, D. 
A.Esparza, and C. A. D’Ovidio, Phys. Rev. B 
36, 8780 (1987). 

M. Nikolo and R. B. Goldfarb, Phys. Rev. B 39, 
6615 (1989). 

M. Nikolo, W. Kiehl, H. M. Duan, and A. M. 
Hermann, Phys. Rev. B 45, 5641 (1992). 

H. Ning, H. Duan, P. D. Kirven, A. M. Hermann, 
and T. Datta, J. Supercond. 5, 503 (1992). 

T. Nishida, M. Katada, and Y. Matsumoto, Phys­
ica B165–167, 1327 (1990a); Jpn. J. Appl. 
Phys. 29, 259 (1990b). 

H.	 Nishihara, T. Ohtani, Y. Sano, and Y. 
Nakamura, Physica C 185–189, 2733 (1991). 

T. Nitta, K. Nagase, S. Hayakawa, and Y. Iida, J. 
Am. Ceram. Soc. 48, 642 (1965). 

R. K. Nkum and W. R. Datars, Physica C 192, 
215 (1992). 

C. Noce and L. Maritato, Phys. Rev. B 40, 734 
(1989). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:615 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

615 REFERENCES 

H. Noel, P. Gougeon, J. Padiou, J. C. Level, M. 
Potel, O. Laborde, and P. Monceau, Solid State 
Commun. 63, 915 (1987). 

T. Nojima and T. Fujita, Physica C 178, 140 
(1991). 

F. Nori, E. Abrahams, and G. T. Zimanyi, Phys. 
Rev. B 41, 7277 (1990). 

M. R. Norman, Phys. Rev. B 42, 6762 (1990). 
D.	 L. Novikov, V. A. Gubanov, and A. J. 

Freeman, Physica C 191, 399 (1992). 
P. Nozieres and W. F. Vinen, Philos. Mag. 14, 

667 (1966). 
N. Niicker, H. Romberg, M. Alexander, and J. 

Fink, in “Studies of High Temperature Super­
conductors” (A. V. Narlika, Ed.), Nova Sci., 
New York, 1992. 

B.-H. O and J. T. Markert, Phys. Rev. B 47, 8373 
(1993). 

D. E. Oates, S. H. Park, and G. Koren, Phys. Rev. 
Lett. 93, 197001 (2004). 

S. D. Obertelli, J. R. Cooper, and J. L. Tallon, 
Phys. Rev. B 46, 14928 (1992). 

B. Obst, Phys. Status Solidi B 45, 467 (1971). 
S. P. Obukhov and M. Rubinstein, Phys. Rev. 

Lett. 65, 1279 (1990). 
Y. Oda, H. Fujita, H. Toyoda, T. Kaneko, T. 

Kohara, I. Nakada, and K. Asayama, Jpn. J. 
Appl. Phys. 26, L1660 (1987). 

T. Oguchi, Jpn. J. Appl. Phys. 26, L417 (1987). 
A. Oguri and S. Maekawa, Phys. Rev. B 41, 6977 

(1990). 
K. Ohbayashi, N. Ogita, M. Udagawa, Y. Aoki, 

Y. Maeno, and T. Fujita, Jpn. J. Appl. Phys. 
26, L423 (1987). 

F. J. Ohkawa, Phys. Rev. B 42, 4163 (1990). 
Y. Ohta and S. Maekawa, Phys. Rev. B 41, 6524 

(1990). 
T. Ohtani, Mater. Res. Bull. 24, 343 (1989). 
N.	 Okazaki, T. Hasegawa, K. Kishio, K. 

Kitazawa, A. Kishi, Y. Ikeda, M. Takano, K. 
Oda, H. Kitaguchi, J. Takada, and Y. Miura, 
Phys. Rev. B 41, 4296 (1990). 

E. Oldfield, C. Coretsopoulos, S. Yang, L. Reven, 
H. C. Lee, J. Shore, O. H. Han, E. Ramli, and 
D. Hicks, Phys. Rev. B 40, 6832 (1989). 

O. H. Olsen and M. R. Samuelsen, Phys. Rev. 
B 43, 10273 (1991). 

N.	 P. Ong, Z. Z. Wang, J. Clayhold, J. M. 
Tarascon, L. H. Greene, and W. R. McKinnon, 
Phys. Rev. B 55, 8807 (1987). 

N. P. Ong, Phys. Rev. B 43, 193 (1991). 

H. Kamerlingh Onnes, Leiden Commun., 120a, 
122b, 124c (1911). 

M. Onoda, S. Shamoto, M. Sato, and S. Hosoya, 
Jap. J. Appl. Phys. 26, L363 (1987). 

T. P. Orlando and K. A. Delin, “Foundations of 
Applied Superconductivity,” Addison-Wesley, 
Reading, MA, 1991. 

J. A. Osborn, Phys. Rev. 67, 351 (1945). 
S. B. Oseroff, D. C. Vier, J. F. Smyth, C. T. 

Sailing, S. Schultz, Y. Dalichaouch, B. W. 
Lee, M. B. Maple, Z. Fisk, J. D. Thompson, J. 
L. Smith, and E. Zirngiebl, in “Novel Super­
conductivity” (S. A. Wolf and V. Z. Kresin, 
Eds.), p. 679, Plenum, NewYork, 1987. 

M. S. Osofsky, H. Rakoto, J. C. Ousset, J. P. 
Ulmet, J. Leotin, S. Askenazy, D. B. Crisey, 
J. S. Horwitz, E. F. Skelton, and S. A. Wolf, 
Physica C 182, 257 (1991). 

J. G. Ossandon, J. R. Thompson, D. K. Christen, 
B. C. Sales, Y. Sun, and K. W. Lay, Phys. 
Rev. B 46, 3050 (1992). 

J. G. Ossandon, J. R. Thompson, D. K. Christen, 
B. C. Sales, H. R. Kerchner, J. O. Thomson, Y. 
R. Sun, K. W. Lay, and J. E. Tkaczyk, Phys. 
Rev. B 45, 12534 (1992). 

S. B. Ota, Phys. Rev. B 35, 8730 (1987). 
S. B. Ota, V. S. Sastry, E. Gmelin, P. Murugaraj, 

and J. Maier, Phys. Rev. B 43, 6147 (1991). 
C. E. Otis and R. W. Dreyfus, Phys. Rev. Lett. 

67, 2102 (1991). 
H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, 

Phys. Rev. Lett. 50, 1595 (1983). 
H. R. Ott, in “Novel Superconductivity” (S. A. 

Wolf, and V. Z. Kresin, Eds.), p. 187, Plenum, 
NewYork. H. R. Ott, “Ten Years of Supercon­
ductivity: 1980–1990,” Kluwer, 1993. 

M. Oussena, S. Senoussi, G. Collin, J. M. Broto, 
H. Rakoto, S. Askenazy, and J. C. Ousset, 
Phys. Rev. B 36, 4014 (1987). 

Yu. N. Ovchinnikov and B. I. Ivlev, Phys. Rev. 
B 43, 8024 (1991). 

A. W. Overhauser, Phys. Rev. Lett. 4, 462 (1960). 
A. W. Overhauser, Phys. Rev. 128, 1437 (1962). 
A. W. Overhauser and L. L. Daemen, Phys. Rev. 

Lett. 62, 1691 (1989). 
F. J. Owens, Physica C 178, 456 (1991). 
F. J. Owens, Physica C 195, 225 (1992). 
M.-A. Ozaki and K. Machida, Phys. Rev. B 39, 

4145 (1989). 
S. Ozcan, D. M. Broun, B. Morgan, R. K. W. 

Haselwimmer, J. L. Sarrao, S. Kamal, C. 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:616 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

616 

P. Bidinosti, and P. J. Turner M, Lett. 62, 
412 (2003). 

S. Pagano, B. Ruggiero, and E. Sarnelli, Phys. 
Rev. B 43, 5364 (1991). 

A. Paitskar, N. K. Budras, W. P. Beyemann, 
P. C. and S. L. Bud’ko, Phys. Rev. B 54, 
R3772 (1996). 

E. J. Pakulis, Phys. Rev. B 42, 10746 (1990). 
T. T. M. Palstra, A. A. Menovsky, and J. A. 

Mydosh; Coles (1987); Phys. Rev. B 33, 
6527 (1988). 

T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, 
and J. V. Waszczak, Phys. Rev. Lett. 61, 
1662 (1988). 

T. T. M. Palstra, B. Batlogg, R. B. Van Dover, 
L. F. Schneemeyer, and J. V. Waszczak, Appl. 
Phys. Lett. 54, 763 (1989). 

T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, 
J. V. Waszczak, Phys. Rev. Lett. 64, 
3090 (1990). 

T. T. M. Palstra, R. C. Haddon, A. F. Hebard, and 
J. Zaanen, Phys. Rev. Lett. 68, 1054 (1992). 

T. T. M. Palstra and R. C. Haddon, Solid State 
Commun., 92, 71 (1994). 

W. Pan and S. Doniach, Phys. Rev. B 49, 1192 
(1994). 

C. Panagopoulos, J. R. Cooper, T. Xiang, G. B. 
Peacock, I. Gameson, and P. P. Edwards, Phys. 
Rev. Lett. 79, 2320 (1997). 

D. A. Papaconstantopoulos, A. Pasturel, J. P. 
Julien, and F. Cyrot-Lackmann, Phys. Rev. 
B 40, 8844 (1989). 

M. Paranthaman, J. R. Thompson, Y. R. Sun, and 
J. Brynestad, Physica C 213, 271 (1993). 

M. Paranthaman, Physica C 222, 7 (1994). 
G. S. Park, C. E. Cunningham, B. Cabrera, and 

M. E. Huber, Phys. Rev. Lett. 68, 1920 (1992). 
R. D. Parks and W. A. Little, Phys. Rev. 133, 

A97 (1964). 
R. D. Parks, Ed. “Superconductivity,” Vols. 1 and 

2, Dekker, New York, 1969. 
P. C. Pattnaik, C. L. Kane, D. M. Newns, and C. 

C. Tsuei, Phys. Rev. B 45, 5714 (1992). 
D. McK Paul, H. A. Mook, A. W. Hewat, B. C. 

Sales, L. A. Boatner, J. R. Thompson, and M. 
Mostoller, Phys. Rev. B 37, 2341 (1988). 

D. McK Paul, H. A. Mook, L. A. Boatner, B. C. 
Sales, J. O. Ramey, and L. Cussen, Phys. Rev. 
B 39, 4291 (1989). 

L.	 Pauling and E. B. Wilson, “Introduc­
tion to Quantum Mechanics,” McGraw-Hill, 
New York, 1935. 

REFERENCES 

L. M. Paulius, C. C. Almasan, and M. B. Maple, 
Phys. Rev. B 47, 11627 (1993). 

S. D. Peacor and C. Uher, Phys. Rev. B 39, 11559 
(1989). 

S. D. Peacor, R. Richardson, J. Burm, C. Uher, 
and A. Kaiser, Phys. Rev. B 42, 2684 (1990). 

S. D. Peacor, J. L. Cohn, and C. Uher, Phys. Rev. 
B 43, 8721 (1991). 

S. D. Peacor, R. A. Richardson, F. Nori, and C. 
Uher, Phys. Rev. B 44, 9508 (1991). 

W. B. Pearson, “Handbook of Lattice Spacings 
and Structures of Metals,” p. 79, Pergamon, 
New York, 1958. 

M. J. Pechan and J. A. Horvath, Am. J. Phys. 58, 
642 (1990). 

N. F. Pedersen and A. Davidson, Phys. Rev. B 41, 
178 (1990). 

S. Pei, J. D. Jorgensen, B. Dabrowski, D. G. 
Hinks, D. R. Richards, A. W. Mitchell, J. M. 
Newsam, S. K. Sinha, D. Vaknin, and A. J. 
Jacobson, Phys. Rev. B 41, 4126 (1990). 

K. E. Peiponen and E. Vartiainen, Phys. Rev. 
B 44, 8301 (1991). 

M. Pekala, K. Pekala, and A. Pajaczkowska, Phys. 
Status Solidi B 152, Kl (1989). 

M. T. Pencarinha, C. P. Poole, Jr., H. A. Farach, 
and O. A. Lopez, J. Phys. Chem. Solids 56, 
301 (1995). 

D. R. Penn and M. L. Cohen, Phys. Rev. B 46, 
5466 (1992). 

T.	 Penney, S. von Molnar, D. Kaiser, F. 
Holtzberg, and A. W. Kleinsasser, Phys. Rev. 
B 38, 2918 (1988). 

C. H. Pennington, D. J. Durand, D. B. Zax, C. P. 
Slichter, J. P. Rice, and D. M. Ginsberg, Phys. 
Rev. B 37, 7944 (1988). 

C. H. Pennington, D. J. Durand, C. P. Slichter, J. 
P. Rice, E. D. Bukowski, and D. M. Ginsberg, 
Phys. Rev. B 39, 274, 2902 (1989). 

C. H. Pennington and C. P. Slichter, in “Physical 
Properties of High Temperature Superconduc­
tors” (D. M. Ginsberg, Ed.), Vol. 2 Chap. 5, 
World Scientific, Singapore, 1990. 

C. H. Pennington and C. P. Slichter, Phys. Rev. 
Lett. 66, 381 (1991). 

S. J. Pennycook, M. F. Chisholm, D. E. Jesson, 
D. P. Norton, D. H. Lowndes, R. Feenstra, H. 
R. Ker-chner, and J. O. Thomson, Phys. Rev. 
Lett. 67, 765 (1991). 

F. Perez, X. Obradors, J. Fontcuberta, M. Vallet, 
and J. Gonzalez-Calbet, Physica C 185–189, 
1843 (1991). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:617 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

617 REFERENCES 

A. Perez-Gonzalez and J. P. Carbotte, Phys. Rev. 
B 45, 9894 (1992). 

A. Perez-Gonzalez, E. J. Nicol, and J. P. Carbotte, 
Phys. Rev. B 45, 5055 (1992). 

R. L. Peterson and J. W. Ekin, Physica C 757, 
325 (1989). 

R. L. Peterson and J. W. Ekin, Phys. Rev. B 42, 
8014 (1990). 

M. F. Petras and J. E. Nordman, Phys. Rev. B 39, 
6492 (1989). 

B. W. Pfalzgraf and H. Spreckels, J. Phys. C 27, 
4359 (1987). 

J. C. Phillips, Phys. Rev. B 36, 861 (1987). 
J. C. Phillips, “Physics of High-Tc Superconduc­

tors,” Academic Press, New York, 1989a. 
J.	 C. Phillips, Phys. Rev. B 40, 7348, 8774 

(1989b). 
J. C. Phillips, Mater. Lett. 18, 106 (1993). 
N. E. Phillips, R. A. Fisher, and J. E. Gordon, 

Prog. Low Temp. Phys. 19 (1991). 
T. Pichler, M. Matus, J. Kiirti, and H. Kuzmany, 

Phys. Rev. B 45, 13841 (1992). 
W.	 E. Pickett, H. Krakauer, D. A. 

Papaconstantopoulos, and L. L. Boyer, Phys. 
Rev. B 35, 7252 (1987). 

W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989). 
W. E. Pickett, R. E. Cohen, and H. Krakauer, 

Phys. Rev. B 42, 8764 (1990). 
W. E. Pickett, H. Krakauer, R. E. Cohen, and D. 

J. Singh, Science 255, 46 (1992). 
M. W. Pieper, Physica C 190, 261 (1992). 
S. W. Pierson and O. T. Vails, Phys. Rev. B 45, 

2458 (1992). 
C. G. S. Pillai, Solid State Commun. 80, 277 

(1991). 
W. Pint and E. Schachinger, Phys. Rev. B 43, 

7664 (1991). 
L. Pintschovius, J. M. Bassat, P. Odier, F. Gervais, 

G. Chevrier, W. Reichardt, and F. Gompf, 
Phys. Rev. B 40, 2229 (1989). 

A. B. Pippard, Proc. R. Soc. London A 216, 547 
(1953). 

M.	 Pissas, G. Kallias, A. Simopoulos, D. 
Niarchos, and A. Kostikas, Phys. Rev. B 46, 
14119 (1992). 

F. Pistolesi and G. C. Strinati, Phys. Rev. B 49, 
6356 (1994). 

B. Plaqais and Y. Simon, Phys. Rev. B 39, 2151 
(1989). 

B. B. Plapp and A. W. Hubler, Phys. Rev. Lett. 
65, 2302 (1990). 

A. Poddar, P. Mandal, K. G. Ray, A. N. Das, B. 
Ghosh, P. Choudhury, and S. Lahiri, Physica 
C 759, 226 (1989). 

D. Poilblanc and E. Dagotto, Phys. Rev. B 42, 
4861 (1990). 

C. Politis, V. Buntar, W. Krauss, and A. Gurevich, 
Europhys. Lett. 17, 175 (1992). 

A. Pomar, A. Diaz, M. V. Ramallo, C. Torron, 
J. A. Veira, and F. Vidal, Physica C 218, 
257 (1993). 

C. P. Poole, Jr., and H. A. Farach, “Relaxation 
in Magnetic Resonance,” Academic Press, 
New York, 1971. 

C. P. Poole, Jr., “Electron Spin Resonance,” 2nd 
ed., Wiley, New York, 1983. 

C. P. Poole, Jr., and H.	 A. Farach, “Theory 
of Magnetic Resonance,” 2nd ed., Wiley, 
New York, 1987. 

C. P. Poole, Jr., T. Datta, and H. A. Farach, 
“Copper Oxide Superconductors,” Wiley, New 
York, 1988. 

C. P. Poole, Jr. and H. A. Farach, Magn. Reson. 
Relat. Phenom., Proc. 24th Ampere Congr., 
Poznan, p. 601 (1988). 

C. P. Poole, Jr., T. Datta, and H. A. Farach, J. 
Supercond. 2, 369 (1989). 

C. P. Poole, Jr., and H. A. Farach, Eds., “Hand­
book of Electron Spin Resonance,” Amer. Inst. 
Phys., New York, 1994. 

A.	 Poppl, L. Kevan, H. Kimura, and R. N. 
Schwartz, Phys. Rev. B 46, 8559 (1992). 

A. Porch, J. R. Cooper, D. N. Zheng, J. R. 
Waldram, A. M. Campbell, and P. A. Freeman, 
Physica C 214 350 (1953) 

A. M. Portis, K. W. Blazely, and F. Waldner, 
Physica C 153, 308 (1988). 

J. Prade, A. D. Kulkarni, and F. W. de Wette, 
U. Schroder, and W. Kress, Phys. Rev. B 39, 
2771 (1989). 

A. K. Pradhan, S. J. Hazell, J. W. Hodby, C. Chen, 
Y. Hu, and B. M. Wanklyn, Phys. Rev. B 47, 
11374 (1993). 

R. Prange and S. Girvin, Eds., “The Quantum Hall 
Effect,” Springer-Verlag, Heidelberg, 1987. 

K. Prassides, M. J. Rosseinsky, A. J. Dianoux, 
and P. Day, J. Phys. Condens. Matter 4, 
965 (1992). 

K. Prassides, A. Lappas, M. Buchgeister and P. 
Verges, Europhys. Lett. 29, 641 (1995). 

G. Preosti, H. Kim, and P. Muzikar, Phys. Rev. 
B 50, 1259 (1994). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:618 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

618 

N. W. Preyer, M. A. Kastner, C. Y. Chen, R. J. 
Birgeneau, and Y. Hidaka, Phys. Rev. B 44, 
407 (1991). 

D.	 Prost, L. Fruchter, I. A. Campbell, N. 
Motohira, and M. Konczykowski, Phys. Rev. 
B 47, 3457 (1993). 

R. Prozorov, E. R. Yakoby, I. Felner and Y. 
Yeshurun, Physica, C 233, 367 (1994). 

R. Prozorov, R. W. Giannetta, A. Carrington, 
and F. M. Araujo-Moreira, Phys. Rev. B 62 
115 (2000). 

R. Prozorov, R. W. Giannetta, A. Carrington, P. 
Fournier, R. L. Greene, P. Guptasarma, D. G. 
Hinks, and A. R. Banks, App. Phys. Lett. 77 
4202 (2000). 

R. Prozorov, R. W. Giannetta, S. L. Bud’ko and P. 
C. Canfield, Phys. Rev. B 64, 180501 (2001). 

R. Prozorov, A. Snezhko, T. He, and R. J. Cava, 
Phys. Rev. B 60, 180502 (2003). 

R. Prozorov, R. W. Giannetta, N. Kameda, T. 
Tamegai, J. A. Schlueter and P. Founier, Phys. 
Rev. B 67, 18450 (2003). 

W. Prusseit, H. Walter, R. Semerad, H. Kinder, 
W. Assmann, H. Huber, B. Kabius, H. 
Burkhardt, D. Rainer, and J. A. Sauls, Physica 
C 318, 396 (1999.) 

T. Puig, L. M. Martinez, M. T. Aurell, A. Sanchez, 
D.-X. Chen, and J. S. Munoz, in “Physics and 
Materials Science of High-Temperature Super­
conductivity” (R. Kossowsky, S. Methfessel, 
and D. Wohlbeben, Eds.), p. 467, Kluwer Aca­
demic, Dordrecht, 1990. 

B. Pumpin, H. Keller, W. Kundig, W. Odermatt, 
I. M. Savic, J. W. Schneider, H. Simmler, 
P. Zimmer-mann, E. Kaldis, S. Rusiecki, Y. 
Maeno, and C. Rossel, Phys. Rev. B 42, 
8019 (1990). 

P. Pureur and J. Schaf, Solid State Commun. 78, 
723 (1991). 

S. N. Putilin, I. Bryntse, and E. V. Antipov, Mater. 
Res. Bull. 26, 1299 (1991). 

S. N. Putilin, E. V. Antipov, E. V. Chmaissem, 
and M. Marezio, Nature 362, 266 (1993). 

D. S. Pyun and T. R. Lemberger, Phys. Rev. B 
44, 7555 (1991). 

K. F. Quader and E. Abrahams, Phys. Rev. B 38, 
11977 (1988). 

R. M. Quick, C. Esebbag, and M. de Llano, Phys. 
Rev. B 47, 11512 (1993). 

M. Rabinowitz and T. McMullen, Chem. Phys. 
Lett. 218, 437 (1994). 

H. B. Radousky, J. Mater. Res. 7, 1917 (1992). 

REFERENCES 

R. J. Radtke, K. Levin, H.-B. Shiittler, and M. R. 
Norman, Phys. Rev. B 48, 653 (1993). 

R. J. Radtke, V. N. Kostur, and K. Levin, Phys. 
Rev. B 53, R522 (1996). 

D. Rainer and J. A. Sauls, “Proc. 1992 Spring 
School on Cond. Matter Phys., Trieste, Italy,” 
World Scientific, Singapore, 1994. 

A. K. Rajagopal and S. D. Mahanti, Phys. Rev. 
B 44, 10210 (1991). 

P.	 F. Rajam, C. K. Subramaniam, S. 
Kasiviswanathan, and R. Srinivasan, Solid 
State Commun. 71, 475 (1989). 

R. Rajput and D. Kumar, Phys. Rev. B 42, 8634 
(1990). 

B. Rakvin, M. Pozek, and A. Dulcic, Solid State 
Commun. 72, 199 (1989). 

B. Rakvin, T. A. Mahl, A. S. Bhalla, Z. Z. Sheng, 
and N. S. Dalai, Phys. Rev. B 41, 769 (1990). 

K. S. Rails, D. C. Ralph, and R. A. Buhrman, 
Phys. Rev. B 40, 11561 (1989). 

S. Ramakrishnan, R. Kumar, P. L. Paulose, A. 
K. Grover, and P. Chaddah, Phys. Rev. B 44, 
9514 (1991). 

R. Ramakumar, R. Kumar, K. P. Jain, and C. C. 
Chancey, Phys. Rev. B 48, 6509 (1993). 

S. Ramasesha and C. N. R. Rao, Phys. Rev. B 44, 
7046 (1991). 

A. P. Ramirez, T. Siegrist, T. T. M. Palstra, J. D. 
Garrett, E. Bruck, A. A. Menovsky, and J. A. 
Mydosh, Phys. Rev. B 44, 5392 (1991). 

A. P. Ramirez, A. R. Kortan, M. J. Rosseinsky, S. 
J. Duclos, A. M. Mujsce, R. C. Haddon, D. W. 
Murphy, A. V. Makhija, S. M. Zahurak, and K. 
B. Lyons, Phys. Rev. Lett. 68, 1058 (1992a). 

A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, 
and R. C. Haddan, Phys. Rev. Lett. 69, 
1687 (1992b). 

J. Rammer, Phys. Rev. B 36, 5665 (1987). 
J. Rammer, Phys. Rev. B 43, 2983 (1991). 
C. N. R. Rao, P. Ganguly, A. K. Raychaudhuri, 

R. A. Mohan Ram, and K. Sreedhar, Nature 
326, 856 (1987). 

K. V. Rao, D.-X. Chen, J. Nogues, C. Politis, C. 
Gallo, and J. A. Gerber, in “High Temperature 
Superconductors” (D. U. Gubser and M. 
Schluter, Eds.), p. 133, Mater. Res. Soc., 
Pittsburgh, 1987. 

C. N. R. Rao, Philos. Trans. R. Soc. London Ser. 
A336, 595 (1991). 

C. N. R. Rao, A. K. Santra, and D. D. Sarma, 
Phys. Rev. B 45, 10814 (1992). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:619 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

619 REFERENCES 

U. Rauchschwalbe, F. Steglich, G. R. Stewart, A. 
L. Giorgi, P. Fulde, and K. Maki, Europhys. 
Lett. 3, 751 (1987). 

J.	 Redinger, A. J. Freeman, J. Yu, and S. 
Massidda, Phys. Lett. A 124, 469 (1987). 

M.	 Reedyk, C. V. Stager, T. Timusk, J. S. 
Xue, and J. E. Greedan, Phys. Rev. B 45, 
10057 (1992b). 

M. E. Reeves, S. E. Stupp, T. Friedmann, F. 
Slakey, D. M. Ginsberg, and M. V. Klein, 
Phys. Rev. B 40, 4573 (1989). 

J. D. Reger, T. A. Tokuyasu, A. P. Young, and M. 
P. A. Fisher, Phys. Rev. B 44, 7147 (1991). 

M. N. Regueiro, B. Salce, R. Calemczuk, C. 
Marin, and J. Y. Henry, Phys. Rev. B 44, 
9727 (1991). 

W. Rehwald, M. Rayl, R. W. Cohen, and G. D. 
Cody, Phys. Rev. B 6, 363 (1972). 

F. Reif, “Fundamentals of Statistical and Thermal 
Physics,” McGraw-Hill, New York, 1965. 

Y. T. Ren, J. Clayhold, F, Chen, Z. J. Huang, X. 
D. Qiu, Y. Y. Sun, R. L. Meng, Y. Y. Xue, 
and C. W. Chu, Physica C 217, 6 (1993). 

B. Renker, F. Gompf, E. Gering, D. Ewert, H. 
Rietschel, and A. Dianoux, Z. Phys. B 73, 
309 (1988). 

Ch. Renner, A. D. Kent, Ph. Niedermann, O. 
Fischer, and F. Levy, Phys. Rev. Lett. 67, 
1650 (1991). 

L. Reven, J. Shore, S. Yang, T. Duncan, D. 
Schwartz, J. Chung, and E. Oldfield, Phys. 
Rev. B 43, 10466 (1991). 

C. M. Rey and L. R. Testardi, Phys. Rev. B 44, 
765 (1991). 

A. P. Reyes, D. E. MacLaughlin, M. Takigawa, P. 
C. Hammel, R. H. Heffner, J. D. Thompson, 
J. E. Crow, A. Kebede, T. Mihalisin, and J. 
Schwegler, Phys. Rev. B 42, 2688 (1990). 

A. P. Reyes, D. E. MacLaughlin, M. Takigawa, P. 
C. Hammel, R. H. Heffner, J. D. Thompson, 
and J. E. Crow, Phys. Rev. B 43, 2989 (1991). 

C. A. Reynolds, B. Serin, W. H. Wright, and L. 
B. Nesbitt, Phys. Rev. 78, 487 (1950). 

H.-C. Ri, F. Kober, R. Gross, R. P. Huebener, and 
A. Gupta, Phys. Rev. B 43, 13739 (1991). 

H.-C. Ri, J. Kober, A. Beck, L. Alff, R. Gross, 
and R. P. Huebener, Phys. Rev. B 47, 
12312 (1993). 

J. K. Rice, S. W. McCauley, A. P. Baronavski, J. 
S. Horwitz, and D. B. Chrisey, Phys. Rev. B 
47, 6086 (1993). 

J. P. Rice, N. Rigakis, D. M. Ginsberg, and J. M. 
Mochel, Phys. Rev. B 46, 11050 (1992). 

T. M. Rice, and M. Sigrist J. Phys. : Condens. 
Matter 7, L643 (1995). 

P. L. Richards and M. Tinkham, Phys. Rev. 119, 
575 (1960). 

R. A. Richardson, S. D. Peacor, F. Nori, and C. 
Uher, Phys. Rev. Lett. 67, 3856 (1991). 

C.	 T. Riecke, Th. Wolkhausen, D. Fay, and 
L. Tewordt, Phys. Rev. B 39, 278 (1989). 

E. Riedel, Z. Naturforsch A. 790, 1634 (1964). 
E. K. Riedel, H.-F. Cheung, and Y. Gefen, Phys. 

Scr. T 25, 357 (1989). 
P. S. Riseborough, Phys. Rev. B 45, 13984 (1992). 
B. Roas, L. Schultz, and G. Saemann-Ischenko, 

Phys. Rev. Lett. 64, 479 (1990). 
B. W. Roberts, J. Phys. Chem. Ref. Data 5, 581 

(1976). 
C. O. Rodriguez, Phys. Rev. B 49, 1200 (1994). 
E. Rodriguez, J. Luzuriaga, C. D’Ovidio, and 

D. A. Esparza, Phys. Rev. B 42, 10796 (1990). 
J. P. Rodriguez, Phys. Rev. B 36, 168 (1987). 
J. P. Rodriguez and B. Doucot, Phys. Rev. B 42, 

8724 (1990). 
J. P. Rodriguez and B. Doucot, Phys. Rev. B 45, 

971 (1992). 
C. T. Rogers, K. E. Myers, J. N. Eckstein, and 

I. Bozovic, Phys. Rev. Lett. 69, 160 (1992). 
D. S. Rokhsar, Phys. Rev. Lett. 65, 1506 (1990). 
M. Rona, Phys. Rev. 42, 4183 (1990). 
A. C. Rose-Innes and E. H. Rhoderick, “Intro­

duction to Superconductivity,” Pergamon, 
Oxford, 1994. 

P. A. Rosenthal, M. R. Beasley, K. Char, M. 
S. Colclough, and G. Zaharchuk, Appl. Phys. 
Lett. 59, 3482 (1991). 

H.	 Rosner, S.-L. Drechsler, K. Koernik, I. 
Opahle, and H. Eschrig, (K. H. Muller and 
V. Narozhnyi, Eds.), Rare Earth Transition 
Metal Borocarbides (Nitrides); Superconduct­
ing Magnetic and Normal State Properties, 
p. 71, Kluwer Acad. Publ. Dordrecht, (2001) 

H. Rosner, R. Weht, M. D. Johannes, W. E. 
Pickett, and E. Tosatti, Phys. Rev. Lett. 88, 
27001 (2002). 

J. Rossat-Mignod, P. Burlet, M. J. G. M. Jurgens, 
J. Y. Henry, and C. Vettier, Physica C 152, 
19 (1988). 

M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, 
D. W. Murphy, R. C. Haddon, A. F. Hebard, 
T. T. M. Palstra, A. R. Kortan, S. M. Zahurak, 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:620 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

620 

and A. V. Makhija, Phys. Rev. Lett. 66, 
2830 (1991). 

C. Rossel, Y. Maeno, and I. Morgenstein, Phys. 
Rev. Lett. 62, 681 (1989a); C. Rossel, Y. 
Maeno, and F. H. Holtzberg, IBM J. Res. 
Dev. 33, 328 (1989b); C. Rossel, O. Pena, 
H. Schmitt, and M. Sargent, Physica C 181, 
363 (1991). 

C. S. J. Rothman, J. L. Routbort, U. Welp, and J. 
E. Baker, Phys. Rev. B 44, 2326 (1991). 

V. A. Rowe and R. P. Huebener, Phys. Rev. 785, 
666 (1969). 

J. M. Rowell and R. C. Dynes, in “Phonons” (M. 
A. Nusimovici, Ed.), Flammarion, Sciences, 
Paris, 1972. 

G. J. Rozing, P. E. Mijnarends, A. A. Menovsky, 
and P. F. de Chatel, Phys. Rev. B 43, 
9523 (1991). 

A. E. Ruckenstein, P. J. Hirschfeld, and J. Appel, 
Phys. Rev. B 36, 857 (1987); reprinted in 
“Theories of High Temperature Superconduc­
tivity” (J. W. Halley, Ed.), p. 137. Addison-
Wesley, Reading, MA, 1988. 

S.	 Ryu, S. Doniach, G. Deutscher, and A. 
Kapitulnik, Phys. Rev. Lett. 68, 710 (1992). 

M. S. Rzchowski, L. L. Sohn, and M. Tinkham, 
Phys. Rev. B 43, 8682 (1991). 

S. Sachdev and Z. Wang, Phys. Rev. B 43, 10229 
(1991). 

S. Sachdev, Phys. Rev. B 45, 389 (1992). 
E. Sacher and J. E. Klemberg-Sapieha, Phys. Rev. 

B 39, 1461 (1989). 
C. A. R. Sa de Melo, Z. Wang, and S. Doniach, 

Phys. Rev. Lett. 68, 2078 (1992). 
H. Safar, C. Duran, J. Guimpel, L. Civale, 

J. Luzuriaga, E. Rodriguez, F. de la Cruz, 
C. Fainstein, L. F. Schneemeyer, and J. V. 
Waszczak, Phys. Rev. B 40, 7380 (1989). 

H. Safar, H. Pastoriza, F. de la Cruz, D. J. Bishop, 
L. F. Schneemeyer, and J. Waszczak, Phys. 
Rev. B 43, 13610 (1991). 

H. Safar, P. L. Gammel, D. J. Bishop, D. B. 
Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 68, 
2672 (1992). 

H. Safar, P. L. Gammel,	 D. A. Huse, D. J. 
Bishop, W. C. Lee, J. Giapintzakis, and D. M. 
Ginsberg, Phys. Rev. Lett. 70, 3800 (1993). 

L.	 Sagdahl, S. Gjolmesli, T. Laegreid, K. 
Fossheim, and W. Assmus, Phys. Rev. B 42, 
6797 (1990). 

L. Sagdahl, T. Laegreid, K. Fossheim, 
M. Murkami, H. Fujimoto, S. Gotoh, 

REFERENCES 

K. Yamaguchi, H. Ya-mauchi, N. Koshizuka, 
and S. Tanaka, Physica C 172, 495 (1991). 

N.	 Sahoo, S. Markert, T. P. Das, and K. 
Nagamine, Phys. Rev. B 41, 220 (1990). 

D. Saint-James and P. D. de Gennes, Phys. Lett. 
7, 306 (1963). 

D. Saint-James, E. J. Thomas, and G. Sarma, 
“Type II Superconductivity,” Pergamon, 
Oxford, 1969. 

K. Saitoh and T. Nishino, Phys. Rev. B 44, 7070 
(1991). 

S. Saito and A. Oshiyama, Phys. Rev. Lett. 66, 
2637 (1991). 

M. B. Salamon and J. Bardeen, Phys. Rev. Lett. 
59, 2615 (1987). 

M.	 B. Salamon, in “Physical Properties of 
High Temperature Superconductors,” (D. M. 
Ginsberg, Ed.), Vol. 1, Chap. 2, World Scien­
tific, Singapore, 1989. 

S. Salem-Sugui, Jr., E. E. Alp, S. M. Mini, M. 
Ramanathan, J. C. Campuzano, G. Jennings, 
M. Faiz, S. Pei, B. Dabrowski, Y. Zheng, D. 
R. Richards, and D. G. Hinks, Phys. Rev. B 
43, 5511 (1991). 

A.	 V. Samoilov, A. A. Yurgens, and N. V. 
Zavaritsky, Phys. Rev. B 46, 6643 (1992). 

P. Samuely, P. Szabo, J. Kacmarcik, T. Klein, and 
A. G. M. Jansen, Physica C 385, 244 (2003). 
Ft 

B. A. Sanborn, P. B. Alien, and D. A. Papacon­
stantopoulos, Phys. Rev. B 40, 6037 (1989). 

A. Sanchez and D.-X. Chen, in “Susceptibility 
of Superconductors and Other Spin Systems” 
(T. Francavilla, R. A. Hein, and D. Leiberger, 
Eds.), Plenum, New York, 1991. 

A. Sanchez, D.-X. Chen, J. Munoz, and Y.-Z. Li, 
Physica C 175, 33 (1991). 

P. Santhanam and C. C. Chi, Phys. Rev. B 38, 
11843 (1988). 

A. Santoro, in “High Temperature Superconduc­
tivity” (J. W. Lynn, Ed.), Chap. 4, Springer-
Verlag, Berlin, 1990. 

E. Sardella, Phys. Rev. B 45, 3141 (1992). 
D. D. Sarma, P. Sen, C. Carbone, R. Cimino, and 

W. Gudat, Phys. Rev. B 39, 12387 (1989). 
J. L. Sarrao, M. C. de Andrade, J. Herrman, S. 

H. Han, Z. Fisk, M. B. Maple, and R. Cava, 
Physica C 229, 65 (1994). 

W. M. Saslow, Phys. Rev. B 39, 2710 (1989). 
J. S. Satchel), R. G. Humphreys, N. G. Chew, 

J. A. Edwards, and M. J. Kane, Nature 334, 
331 (1988). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:621 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

621 REFERENCES 

N. Sato, T. Sakon, N. Takeda, T. Komatsubara, 
C. Geibei, and F. Steglich, J. Phys. Soc. Jpn. 
61, 32 (1992). 

S. Satpathy and R. M. Martin, Phys. Rev. B 36, 
7269 (1987). 

C. B. Satterthwaite, Phys. Rev. 125, 873 (1962). 
A. Saul and M. Weissmann, Phys. Rev. B 42, 

4196 (1990). 
J. Schaf, P. Pureur, and J. V. Kunzler, Phys. Rev. 

B 40, 6948 (1989). 
S. Scheidl and G. Hackenbroich, Phys. Rev. B 46, 

14010 (1992). 
A. Schenstrom, M-F. Xu, Y. Hong, D. Bein, M. 

Levy, B. K. Sarma, S. Adenwalla, Z. Zhao, T. 
Tokuyasu, D. W. Hess, J. B. Ketterson, J. A. 
Sauls, and D. G. Hinks, Phys. Rev. Lett. 62, 
332 (1989). 

A. Schilling, M. Cantoni, J. D. Guo, and H. R. 
Ott, Nature 363, 56 (1993). 

A. Schilling, M. Catoni, O. Jeandupeux, J. D. 
Guo, and H. R. Ott, in “Advances in Supercon­
ductivity” (T. Fujita and Y. Shiohara, Eds.), 
Vol. 6, Springer-Verlag, Berlin, 1994a. 

A. Schilling, O. Jeandupeux, S. Biichi, H. R. Ott, 
and C. Rossel, Physica C 235, (1994b). 

J. E. Schirber, D. L. Overmyer, K. D. Carlsan, J. 
M. Williams, A. M. Kini, H. H. Wang, H. A. 
Charlier, B. J. Love, D. M. Watkins, and G. 
A. Yaconi, Phys. Rev. B 44, 4666 (1991). 

Z. Schlesinger, R. L. Greene, J. G. Bednorz, and 
K. A. Miiller, Phys. Rev. B 35, 5334 (1987). 

Z. Schlesinger, R. T. Collins, J. A. Calise, D. 
G. Hinks, A. W. Mitchell, Y. Zheng, B. 
Dabrowski, N. E. Bickers, and D. J. Scalapino, 
Phys. Rev. B 40, 6862 (1989). 

Z. Schlesinger, R. T. Collins, F. Holtzberg, C. 
Feild, G. Koren, and A. Gupta, Phys. Rev. 
B 41, 11237 (1990a). 

Z. Schlesinger, R. T. Collins, F. Holtzberg, C. 
Feild, S. H. Blanton, U. Welp, G. W. Crabtree, 
Y. Fang,and J. Z. Liu, Phys. Rev. Lett. 65, 
801 (1990b). 

D. Schmeltzer, Phys. Rev. B 49, 6944 (1994). 
A. Schmid, Phys. Kondens. Mat. 8, 129 (1968). 
J. M. Schmidt, A. N. Cleland and J. Clarke, Phys. 

Rev. B 43, 229 (1991). 
P. Schmitt, P. Kummeth, L. Schultz, and 

G. Saemann-Ischenko, Phys. Rev. Lett. 67, 
267 (1991). 

H. Schnack and R. Griessen, Phys. Rev. Lett. 68, 
2706 (1992). 

L. F. Schneemeyer, J. K. Thomas, T. Siegrist, B. 
Batlogg, L. W. Rupp, R. L. Opila, R. J. Cava, 
and D. W. Murphy, Nature 335, 421 (1988). 

T. Schneider, Z. Phys. B 85, 187 (1991). 
T. Schneider, Z. Gedik, and S. Ciraci, Z. Phys. 

B 83, 313 (1991). 
T. Schneider, Physica C 195, 82 (1992). 
T. Schneider and H. Keller, Phys. Rev. Lett. 69, 

3374 (1992). 
A. J. Schofield and Wheatley, Phys. Rev. B 47, 

11607 (1993). 
K. Schonhammer, Phys. Rev. B 42, 2591 (1990). 
J. R. Schrieffer, “Theory of Superconductivity,” 

Addison-Wesley, New York, 1964. 
J. R. Schrieffer, X.-G. Wen, and S.-C. Zhang, 

Phys.Rev. Lett. 60, 944 (1988). 
E. A. Schuberth, B. Strickler, and K. Andres, 

Phys.Rev. Lett. 68, 117 (1992). 
I. K. Schuller, D. G. Hinks, M. A. Beno, S. W. 

Capone II, L. Soderholm, J. P. Locquet, Y. 
Bruynseraede, C. U. Segre, and K. Zhang, 
Solid State Commun. 63, 385 (1987). 

J. Schwartz, S. Nakamae, G. W. Raban, Jr., J. K. 
Heuer, S. Wu, J. L. Wagner, and D. G. Hinks, 
Phys. Rev. B 48, 9932 (1994). 

H.	 Schwenk, F. Gross, C. P. Heidmann, K. 
Andres, D. Schweitzer, and H. Keller, Mol. 
Cryst. Liq. Cryst.119, 329 (1985); Phys. Rev. 
B 31, 3138 (1985). 

P.	 Seidel, E. Heinz, M. Siegel, F. Schmidl, 
K. J. Zach, and H.-J. Kohler, in “Proc. 4th 
Int. Conf. on Superconducting and Quan­
tum Effect Devices and Their Applications,” 
Berlin, June 1991. 

G. T. Seidler, T. F. Rosenbaum, D. L. Heinz, J. 
W. Downey, A. P. Paulikas, and B. W. Veal, 
Physica C 183, 333 (1991). 

G. T. Seidler, T. F. Rosenbaum, and B. W. Veal, 
Phys. Rev. B 45, 10162 (1992). 

K. Semba, T. Ishii, and A. Matsuda, Phys. Rev. 
Lett. 67, 769 (1991). 

S. Sengupta, C. Dasgupta, H. R. Krishnamurthy, 
G. I. Menon, and T. V. Ramakrishnan, Phys. 
Rev. Lett. 67, 3444 (1991). 

S. Senoussi, M. Oussena, and S. Hadjoudi, J. 
Appl. Phys. 63, 4176 (1988). 

A.	 Sequeira, H. Rajagopal, P. V. P. S. S. 
Sastry, J. V.Yakhmi, R. M. lyer, and 
B. A. Dasannacharya, Physica B 180–181, 
429 (1992). 

M. Sera, S. Shamoto, and M. Sato, Solid State 
Commun. 68, 649 (1988). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:622 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

622 

S. Sergeenkov and M. Ausloos, Phys. Rev. B 47, 
14476 (1993). 

R. D. Shannon and P. E. Bierstedt, J. Am. Ceram. 
Soc. 58, 635 (1970). 

C. Shao-Chun, Z. Dong-Ming, Z. Dian-Lin, H. M. 
Duan, and A. M. Hermann, Phys. Rev. B 44, 
12571 (1991). 

B. Ya. Shapiro, Phys. Rev. B 48, 16722 (1993). 
S. Shapiro, Phys. Rev. Lett. 80 (1963). 
R. P. Sharma, L. E. Rehn, and P. M. Baldo, 

Phys.Rev. B 43, 13711 (1991). 
T. P. Sheahen, “Introduction to High Tc Super­

conductivity,” Plenum, New York, 1994. 
D. E. Sheehy, T. P. Davis, and M. Franz Phys. 

Rev. B 70, 54510 (2004). 
S.-Q. Shen and W. Lu, Phys. Rev. B 48, 1105 

(1993). 
Z.-X. Shen, P. A. P. Lindberg, B. O. Wells, D. S. 

Dessau, A. Borg, I. Lindau, W. E. Spicer, W. 
P. Ellis, G. H. Kwei, K. C. Ott, J.-S. Kang, and 
J. W. Alien, Phys. Rev. B 40, 6912 (1989). 

Z.-X. Shen, R. S. List, D. S. Dessau, F. 
Parmigiani, A. J. Arko, R. Bartlett, B. O. 
Wells, I. Lindau, and W. E. Spicer, Phys. Rev. 
B 42, 8081 (1990). 

Z.-Y. Shen, “High Temperature Superconduct­
ing Microwave Circuits,” Artech House, 
Norwood, Massachusetts, 1994. 

Z. Z. Sheng, A. M. Hermann, A. El Ali, C. 
Almasan, J. Estrada, T. Datta, and R. J. 
Matson, Phys. Rev. Lett. 60, 937 (1988). 

Z. Z. Sheng and A. M. Hermann, Nature 332, 55 
(1988). 

D.-N. Sheng, Z.-B. Su, and L. Yu, Phys. Rev. B 
42, 8732 (1990). 

D. Shi, M. S. Boley, U. Welp, J. G. Chen, and Y. 
Liao, Phys. Rev. B 40, 5255 (1989). 

D. Shi, M. Xu, M. M. Fang, J. G. Chen, A. L. 
Cornelius, and S. G. Lanan, Phys. Rev. B 41, 
8833 (1990a). 

D. Shi, M. Xu, A. Umezawa, and R. F. Fox, 
Phys.Rev. B 42, 2062 (1990b). 

D. Shi, X. S. Ling, M. Xu, M. M. Fang, S. Luo, 
J. I. Budnick, B. Dabrowski, D. G. Hinks, D. 
R. Richards, and Y. Zheng, Phys. Rev. B 43, 
3684 (1991). 

D. Shi and M. Xu, Phys. Rev. B 44, 4548 (1991). 
D. Shi, Ed., “High Temperature Superconducting 

Materials Science and Engineering,” Elsevier, 
Oxford, 1994. 

J. S. Shier and D. M. Ginsberg, Phys. Rev. 147, 
384 (1966). 

REFERENCES 

E. Shimizu and D. Ito, Phys. Rev. B 39, 2921 
(1989). 

E. Shimshoni, Y. Gefen, and S. Levit, Phys. Rev. 
40, 2147 (1989). 

E. Shimshoni and E. Ben-Jacob, Phys. Rev. B 43, 
2705 (1991). 

S. L. Shinde, J. Morrill, D. Goland, D. A. Chance, 
and T. McGuire, Phys. Rev. B 41, 8838 (1990). 

T. Shinjo, T. Mizutani, N. Hosoito, T. Kusuda, 
T.Takabatake, K. Matsukuma, and H. Fujii, 
Physica C 759, 869 (1989). 

T.	 Shinjo and S. Nasu, in “Mechanisms of 
High Temperature Superconductivity” (H. 
Kamimura and A. Oshiyama, Eds.), p. 166, 
Springer Series in Material Science, Springer-
Verlag, Heidelberg, 1989. 

K. N. Shrivastava, Phys. Rev. B 41, 11168 (1990). 
J. D. Shore, M. Huang, A. T. Dorsey, and J. P. 

Sethna, Phys. Rev. Lett. 62, 3089 (1989). 
S. V. Shulga, S. -L. Drechsler, G. Fuchs, K.-H 

Muller, K. Winzer, M. Heinecke, and K. Krug, 
Phys. Rev. Lett. 80, 1730 (1998). 

L. Shu-yuan, L. Li, and Z. Dian-lin, H. M. Duan, 
W. Kiel, and A. M. Hermann, Phys. Rev. B 47, 
8324 (1993). 

Yu.	 N. Shvachko, A. A. Koshta, A. A. 
Romanyukha, V. V. Ustinov, and A. I. 
Akimov, Physica C 174, 447 (1991). 

Y. Sidis, M. Braden, P. Bourges, B. Hennion, S. 
NishiZaki, Y. Maeno, and Y. Mori, Phys. Rev. 
Lett. 83, 3323 (1999). 

M. Siegel, F. Schmdl, K. Zach, E. Heinz, J. Borck, 
W. Michalke, and P. Seidel, Physica C 180, 
288 (1991). 

T. Siegrist, S. Sunshine, D. W. Murphy, R. J. 
Cava, and S. M. Zahurak, Phys. Rev. B 35, 
7137 (1987). 

T. Siegrist, S. M. Zahurak, D. W. Murphy, and 
R. S. Roth, Nature 334, 231 (1988). 

P. J. C. Signore, B. Andraka, M. W. Meisel, S. 
E. Z. Brown, A. L. G. Fisk, J. L. Smith, F. 
Gross-Alltag, E. A. Schuberth, and A. A. Men­
ovsky, Phys. Rev. B 52, 4446 (1995). 

P. Simon, J. M. Bassat, S. B. Oseroff, Z. Fisk, 
S.-W. Cheong, A. Wattiaux, and S. Schultz, 
Phys. Rev.Lett. 48, 4216 (1993). 

R. R. P. Singh, P. A. Fleury, K. B. Lyons, and P. 
E. Sulewski, Phys. Rev. Lett. 62, 2736 (1989). 

D. Singh, W. E. Pickett, E. C. von Stetten, and S. 
Berko, Phys. Rev. B 42, 2696 (1990). 

D. J. Singh, Physica C 212, 228 (1993a). 
D. J. Singh, Phys. Rev. B 48, 3571 (1993b). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:623 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

623 REFERENCES 

D. J. Singh and W. E. Pickett, Phys. Rev. Lett., 
73, 476 (1994). 

K. Sinha, Ind. J. Phys. 66A, 1 (1992) in K. 
P. Sinha, “Magnetic Superconductors; Recent 
Developments,” Nova, New York, 1989. 

S. Skanthakumar, H. Zhang, T. W. Clinton, W. 
-H. Li, J. W. Lynn, Z. Fisk, and S.-W. Cheong, 
Physica C 160, 124 (1989). 

H. L. Shriver and I. Mertig, Phys. Rev. B 41, 6553 
(1990). 

V. Skumryev, R. Puzniak, N. Karpe, H. Zheng-he, 
M.Pout, H. Medelius, D.-X. Chen, and K. V. 
Rao, Physica C 152, 315 (1988). 

V.	 Skumryev, M. R. Koblischka, and H. 
Kronmiiller, Physica C 184, 332 (1991). 

A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, 
SolidState Commun. 17, 27 (1975). 

A. W. Sleight, Am. Chem. Soc. Symp. Ser. 351, 
2 (1987). 

L.	 C. Smedskjaer, A. Bansil, U. Welp, Y. 
Fang, and K. G. Bailey, Phys. Rev. B 46, 
5868 (1992). 

H. H. A. Smit, M. W. Dirken, R. C. Thiel, 
and L. J. de Jongh, Solid State Commun. 64, 
695 (1987). 

M.	 G. Smith, A. Manthiram, J. Zhou, J. B. 
Goode-nough, and J. T. Markert, Nature 351, 
549 (1991). 

M. G. Smith, J. B. Goodenough, A. Manthiram, 
R. Taylor, W. Peng, C. Kimball, J. Solid State 
Chem. 98, 181 (1992). 

J. O. Sofo, C. A. Balseiro, and H. E. Castillo, 
Phys. Rev. B 45, 9860 (1992). 

L. L. Sohn, M. S. Rzchowski, J. U. Free, S. P. 
Benz, M. Tinkham, and C. J. Lobb, Phys. Rev. 
B 44, 925 (1991). 

L. L. Sohn, M. S. Rzchowski, J. U. Free, M. 
Tinkham, and C. J. Lobb, Phys. Rev. 45, 
3003 (1992). 

P. R. Solomon and F. A. Otter, Phys. Rev. 164, 
608 (1967). 

S.	 N. Song, Q. Robinson, S.-J. Hwu, D. L. 
Johnson, K. R. Poeppelmeier, and J. B. 
Ketterson, Appl. Phys. Lett. 57, 1376 (1987). 

Y. S. Song, H. Park, Y. S. Choi, Y. W. Park, M. 
S. Jang, H. C. Lee, and S. I. Lee, J. Korean 
Phys. Soc. 23, 492 (1990). 

Y. Song and J. R. Gaines, J. Phys. Condens. 
Matter. 3, 7161 (1991). 

Y.-Q. Song, M. Lee, W. P. Halperin, L. M. Tonge, 
and T. J. Marks, Phys. Rev. B 44, 914 (1991a). 

Y.-Q. Song, M. A. Kennard, M. Lee, K. R. 
Poeppelmeier, and W. P. Halperin, Phys. Rev. 
B 44, 7159 (1991b). 

Y. Song, A. Misra, P. P. Crooker, and J. R. Gaines, 
Phys. Rev. B 45, 7574 (1992). 

Y.-Q. Song, W. P. Halperin, L. Tonge, T. J. Marks, 
M. Ledvij, V. G. Kogan, and L. N. Bulaevskii, 
Phys. Rev. Lett. 70, 3127 (1993). 

J. E. Sonier, J. H. Brewer, and R. F. Kiefl, Rev. 
Mod Phys. 72, 769 (2000). 

J. Spalek and W. Wojcik, Phys. Rev. B 45, 3799 
(1992). 

G.	 Sparn, J. D. Thompson, R. L. Whetten, 
S.-M. Huang, R. B. Kaner, F. Diederich, 
G. Griiner, and K. Holczer, Phys. Rev. Lett. 
68, 1228 (1992). 

P. N. Spathis, M. P. Soerensen, and N. Lazarides, 
Phys. Rev. B 45, 7360 (1992). 

S. Spielman, J. S. Dodge, L. W. Lombardo, C. 
B. Eom, M. M. Fejer, T. H. Geballe, and A. 
Kapitulnik, Phys. Rev. 68, 3472 (1992). 

S. Sridhar, D-H Wu, and W. Kennedy, Phys. Rev. 
Lett. 63, 1873 (1989). 

Z. M. Stadnik, G. Stroink and R. A. Dunlap, Phys. 
Rev. B 39, 9108 (1989). 

Z. M. Stadnik, G. Stroink, and T. Arakawa, Phys. 
Rev. B 44, 12552 (1991). 

B. W. Start and A. Griffin, Phys. Rev. B 48, 619 
(1993). 

D. G. Steel and J. M. Graybeal, Phys. Rev. B 45, 
12643 (1992). 

F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. 
Meschede, W. Franz, and H. Schafer, Phys. 
Rev. Lett. 43, 1892 (1979). 

P. Steiner, V. Kinsinger, I. Sander, B. Siegwart, 
S. Hufner, and C. Politis, Z. Phys. B Cond. 
Mat. 67, 19 (1987). 

B.	 Stemlieb, C. Stassis, A. I. Goldman, P. 
Canfield, and S. Shapiro, J. Appl. Phys. 81, 
4937 (1997). 

C. H. Stephan and B. W. Maxfield, J. Low Temp. 
Phys. 10, 185 (1973). 

W. Stephan and J. P. Carbotte, Phys. Rev. B 43, 
10236 (1991). 

G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984). 
G. R. Stewart, Z. Fisk, J. O. Willis, and T. J. 

Smith, Phys. Rev. Lett. B 52, 679 (1984). 
G. R. Stewart, J. O’Rourke, G. W. Crabtree, K. D. 

Carlson, H. H. Wang, J. M. Williams, F. Gross, 
and K. Andres, Phys. Rev. B 33, 2046 (1986). 

S. T. Stoddart, H. I. Mutlu, A. K. Geim, and S. J. 
Bending, Phys. Rev. B 47, 5146 (1993). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:624 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

624 

E. C. Stoner, Phil. Mag. 36, 803 (1945). 
H. T. C. Stoof, Phys. Rev. B 47, 7979 (1993). 
J.	 A. Stratton, “Electromagnetic Theory,” 

McGrawHill, New York, 1941. 
S. K. Streiffer, B. M. Lairson, C. B. Eom, B. M. 

Clemens, J. C. Bravman, and T. H. Geballe, 
Phys. Rev. B 43, 13007 (1991). 

A. R. Strnad, C. F. Hempstead, and Y. B. Kim, 
Phys. Rev. Lett. 13, 794 (1964). 

S. E. Stupp, M. E. Reeves, D. M. Ginsberg, D. G. 
Hinks, B. Dabrowski, and K. G. Vandervoort, 
Phys. Rev. B 40, 10878 (1989). 

S. E. Stupp, T. A. Friedmann, J. P. Rice, R. A. 
Schweinfurth, D. J. Van Harlingen, and D. M. 
Ginsberg, Phys. Rev. B 43, 13073 (1991). 

C. K. Subramanian, M. Paranthaman, and A. B. 
Kaiser, Physica C 222, 47 (1994). 

M.	 A. Subramanian, C. C. Torardi, J. C. 
Calabrese, J. Gopalakrishnan, K. J. Morrissey, 
T. R. Askew, R. B. Flippen, U. Chowdhry, and 
A. W. Sleight, Science 239, 1015 (1988a). 

M.	 A. Subramanian, J. C. Calabrese, C. C. 
Torardi, J. Gopalakrishnan, T. R. Askew, R. 
B. Flippen, K. J. Morrissey, U. Chowdhry, and 
A. W. Sleight, Nature 332, 420 (1988b). 

A.	 Sudbo and E. H. Brandt, Phys. Rev. B 
43, 10482 (1991a); Phys. Rev. Lett. 67, 
3176 (1991b). 

M. Suenaga, A. K. Ghosh, Y. Xu, and D. O. 
Welch, Phys. Rev. Lett. 66, 1777 (1991). 

R. Sugano, T. Onogi, and Y. Murayama, Phys. 
Rev. B 45, 10789 (1992). 

J. Sugiyama, S. Tokuono, S.-I. Koriyama, H. 
Yamauchi, and S. Tanaka, Phys. Rev. B 43, 
10489 (1991). 

J.	 Sugiyama, K. Matsuura, M. Kosuge, H. 
Yamauchi, and S. Tanaka, Phys. Rev. B 45, 
9951 (1992). 

S. B. Sulaiman, N. Sahoo, T. P. Das, O. Donzelli, 
E. Torikai, and K. Nagamine, Phys. Rev. B 44, 
7028 (1991). 

S. B. Sulaiman, N. Sahoo, T. P. Das and O. 
Donzelli, Phys. Rev. B 45, 7383 (1992). 

P. E. Sulewski, A. J. Sievers, R. A. Buhrman, J. 
M. Tarascon, L. H. Greene, and W. A. Curtin, 
Phys. Rev. B 35, 8829 (1987). 

P. E. Sulewski, P. A. Fleury, K. B. Lyons, S. 
-W. Cheong, and Z. Fisk, Phys. Rev. B 41, 
225 (1990). 

J. Z. Sun, D. J. Webb, M. Naito, K. Char, M. R. 
Hahn, J. W. P. Hsu, A. D. Kent, D. B. Mitzi, 

REFERENCES 

B. Oh, M. R. Beasley, T. H. Geballe, R. H. 
Hammond, and A. Kapitulnik, Phys. Rev. Lett. 
58, 1574 (1987). 

K. Sun, J. H. Cho, F. C. Chou, W. C. Lee, L. 
L. Miller, D. C. Johnston, Y. Hidaka and T. 
Mu-rakami, Phys. Rev. B 43, 239 (1991). 

C. S. Sundar, A. Bharathi, Y. C. Jean, P. H. Hor, 
R. L. Meng, Z. J. Huang, and C. W. Chu, Phys. 
Rev. B 42, 426 (1990a). 

C. S. Sundar, A. Bharathi, W. Y. Ching, Y. C. 
Jean, P. H. Hor, R. L. Meng, Z. J. Huang and 
C. W. Chu, Phys. Rev. B 42, 2193 (1990b). 

C. S. Sundar, A. Bharathi, W. Y. Ching, Y. C. 
Jean, P. H. Hor, R. L. Meng, Z. J. Huang, and 
C. W. Chu, Phys. Rev. B 43, 13019 (1991). 

C. Surgers, H. v. Lohneysen, and L. Schultz, Phys. 
Rev. B 40, 8787 (1989). 

M. Suzuki, Y. Enemoto, T. Murakami, and 
T. Inamura, “Proc. 3rd Meeting Ferro­
electric Materials and Their Applications,” 
Kyoto, 1981a. 

M. Suzuki, Y. Enemoto, T. Murakami, and 
T. Inamura, Jpn. J. Appl. Phys. 20, Suppl. 
20–24, 13 (1981b). 

M. Suzuki and M. Hikita, Jpn. J. Appl. Phys. 28, 
L1368 (1989). 

M. Suzuki and M. Hikita, Phys. Rev. B 41, 9566 
(1990). 

M. Suzuki and M. Hikita, Phys. Rev. B 44, 249 
(1991). 

H. Svensmark and L. M. Falicov, Phys. Rev. B 42, 
9957 (1990). 

A. Szasz, J. Hajdu, J. Kojnok, Z. Dankhazi, W. 
Krasser, T. Trager, and J. Bankuti, J. Super­
cond. 3, 425 (1990). 

B. Szpunar and V. Smith, Jr., Phys. Rev. B 45, 
10616 (1992). 

M. Tachiki and S. Takahashi, Solid State Com­
mun. 70, 291 (1989). 

A. Tagliacozzo, F. Ventriglia, and P. Apell, Phys. 
Rev. B 40, 10901 (1989). 

S. Tajima, S. Uchida, A. Masaki, H. Takaki, K. 
Kitazawa, S. Tanaka, and A. Katsui, Phys. 
Rev. B 32, 6302 (1985). 

S.	 Tajima, S. Uchida, H. Ishii, H. Takagi, 
S. Tanaka, U. Kawabe, H. Hasegawa, T. 
Aita, and T. Ishiba, Mod. Phys. Lett. B 1, 
353 (1988). 

Y.	 Tajima, M. Hikita, T. Ishii, H. Fuke, K. 
Sugiyama, M. Date, A. Yamagishi, A. Katsui, 
Y. Hidaka, T. Iwata, and S. Tsurumi, Phys. 
Rev. B 37, 7956 (1988). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:625 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

625 REFERENCES 

S. Tajima and K. Kitazawa, in “Some Aspects of 
Superconductivity” (L. C. Gupta, Ed.) Nova 
Scientific Publ., New York, 1990. 

J. Takada, T. Terashima, Y. Bando, H. Mazaki, 
K. Lijima, K. Yamamoto, and K. Hirata, Phys. 
Rev. B 40, 4478 (1989). 

Y. Takada, Phys. Rev. B 39, 11575 (1989). 
H. Takagi, H. Eisaki, S. Uchida, A. Maeda, S. 

Tajima, K. Uchinokura, and S. Tanaka, Nature 
332, 236 (1988). 

H. Takagi, R. J. Cava, H. Eisaki, J. O. Lee, K. 
Mizuhashi, B. Batlogg, S. Uchida, J. J. Kra­
jewski, and W. F Peck Jr., Physica C 228, 
389 (1994). 

T.	 Takahashi, H. Matsuyama, H. Katamaya-
Yoshida, Y. Okabe, S. Hosoya, K. Seki, H. 
Fujimoto, M. Sato, and H. Inokuchi, Phys. 
Rev. B 39, 6636 (1989). 

I. Takeuchi, J. S. Tsai, Y. Shimakawa, T. Manako, 
and Y. Kubo, Physica C 158, 83 (1989). 

M. Takigawa, A. P. Reyes, P. C. Hammel, J. D. 
Thompson, R. H. Heffner, Z. Fisk, and K. C. 
Ott, Phys. Rev. B 43, 247 (1991). 

M. Takigawa, J. L. Smith, and W. L. Hulls, Phys. 
Rev. B 44, 7764 (1991). 

T. Tamegai, K. Koga, K. Suzuki, M. Ichihara, F. 
Sadai, and Y. Iye, Jpn. J. Appl. Phys. Lett. 2, 
28, L112 (1989). 

Z. Tan, J. I. Budnick, W. Q. Chen, D. L. Brewe, 
S.-W. Cheong, A. S. Cooper, and L. W. Rupp, 
Jr., Phys. Rev. B 42, 4808 (1990). 

Z. Tan, J. I. Budnick, S. Luo, W. Q. Chen, S.-W. 
Cheong, A. S. Cooper, P. C. Canfield, and Z. 
Fisk, Phys. Rev. B 44, 7008 (1991). 

Y. Tanaka and M. Tsukada, Phys. Rev. B 40, 
4482 (1989a); Solid State Commun. 69, 195, 
491 (1989b). 

Y. Tanaka and M. Tsukada, Phys. Rev. B 42, 
2066 (1990). 

Y. Tanaka and M. Tsukada, Phys. Rev. B 44, 
7578 (1991). 

S. Tanda, M. Honma, and T. Nakayama, Phys. 
Rev. B 43, 8725 (1991). 

C. Q. Tang, B. R. Li, and A. Chen, Phys. Rev. 
B 42, 8078 (1990). 

X. X. Tang, D. E. Morris, and A. P. B. Sinha, 
Phys Rev. B 43, 7936 (1991). 

T. Tani, T. Itoh and S. Tanaka, J. Phys. Soc. Jpn. 
Suppl. A 49, 309 (1980). 

S. Tanigawa, Y. Mizuhara, Y. Hidaka, M. Oda, 
M. Suzuki, and T. Murakami, Mater. Res. Soc. 
Symp. Proc. 99, 57 (1988). 

D. B. Tanner and T. Timusk, in “Physical Prop­
erties of High Temperature Superconductors” 
(D. M. Ginsberg, Ed.), Vol. 3, Chap. 5, World 
Scientific, Singapore, 1992. 

H. J. Tao, A. Chang, F. Lu, and E. L. Wolf, Phys. 
Rev. B 45, 10622 (1992). 

J. M. Tarascon, L. H. Greene, W. R. McKinnon, 
and G. W. Hull, Phys. Rev. B 35, 
7115 (1987a). 

J. M. Tarascon, W. R. McKinnon, L. H. Greene, 
G. W. Hull, and E. M. Vogel, Phys. Rev. B 36, 
226 (1987b). 

J. M. Tarascon, L. H. Greene, W. R. McKinnon, 
G. W. Hull, and T. H. Geballe, Science 235, 
1373 (1987c). 

J. M. Tarascon, P. Barboux, P. F. Miceli, L. H. 
Greene, D. W. Hull, M. Eibschutz, and S. A. 
Sunshine, Phys. Rev. B 37, 7458 (1988a). 

J. M. Tarascon, Y. LePage, P. Barboux, B. G. 
Bagley, L. H. Greene, W. R. McKinnon, G. 
W. Hull, M. Giroud, and D. M. Hwang, Phys. 
Rev. 37, 9382 (1988b). 

J. M. Tarascon, E. Wang, L. H. Greene, B. G. 
Bagley, G. W. Hull, S. M. D’Egidio, P. F. 
Miceli, Z. Z. Wang, T. W. Jing, J. Clayhold, 
D. Brawner, and N. P. Ong, Phys. Rev. B 40, 
4494 (1989a). 

J. M. Tarascon, Y. LePage, W. R. McKinnon, E. 
Tselepis, P. Barboux, B. G. Bagley, and R. 
Ramesh, in “Proc. Mater. Res. Soc. Symp.,” 
San Diego, Apr. 23–28, 1989b. 

V. V. Tatarskii, M. Paranthaman, and A. M. 
Hermann, Phys. Rev. B 47, 14489 (1993). 

Y. Taur, P. L. Richards, and T. Auracher, Low 
Temp. Phys. 3, 276 (1974). 

W. M. Temmerman, G. M. Stocks, P. J. Durham, 
and P. A. Sterne, J. Phys. F 17, L135 (1987). 

M. A. Teplov, O. N. Bakharev, A. V. Dooglav, 
A. V. Egorov, M. V. Eremin, M. S. Tagirov, 
A. G. Volodin, and R. Sh. Zhdanov, Physica 
C 185–189, 1107 (1991). 

I. Terasaki, T. Nakahashi, S. Takebayashi, A. 
Maedaand K. Uchinokura, Physica C 765, 
152 (1990a). 

I. Terasaki, S. Tajima, H. Eisaki, H. Takigi, K. 
Uchinokura, and S. Uchida, Phys. Rev. B 41, 
865 (1990b). 

B. M. Terzijska, R. Wawryk, D. A. Dimitrov, Cz. 
Marucha, V. T. Kovachev, and J. Rafalowicz, 
Cryogenics 32, 53 (1992). 

Z. Tesanovic and M. Rasolt, Phys. Rev. B 39, 
2718 (1989). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:626 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

626 

Z. Tesanovic, M. Rasolt, and L. Xing, Phys. Rev. 
B 43, 288 (1991). 

Z. Tesanovic, Phys. Rev. B 44, 12635 (1991). 
L. R. Tessler, J. Provost, and A. Maignan, Appl. 

Phys. Lett. 58, 528 (1991). 
L. Tewordt, S. Wermbter, and Th. Wolkhausen, 

Phys. Rev. B 40, 6878 (1989). 
L. Tewordt and Th. Wolkhausen, Solid State 

Commun. 70, 839 (1989). 
T. D. Thanh, A. Koma, and S. Tanaka, Appl. 

Phys. 22, 205 (1980). 
S. Theodorakis and Z. Tesanovic, Phys. Rev. 

B 40, 6659 (1989). 
S. L. Thiemann, Z. Radovic, and V. G. Kogan, 

Phys. Rev. B 39, 11406 (1989). 
T. Thio, T. R. Thurston, N. W. Preyer, P. J. 

Picone, M. A. Kastner, H. P. Jenssen, D. R. 
Gabbe, C. Y. Chen, R. J. Birgeneau, and A. 
Aharony, Phys. Rev. B 38, 905 (1988). 

G. Thomas, M. Capizzi, J. Orenstein, D. Rapkine, 
A. Millis, P. Gammel, L. Gammel, L. F. 
Schneemeyer, and J. Waszczak, in “Proc. 
Int. Symposium on the Electronic Structure 
of High Tc Superconductors, ” p. 67, (A. 
Bianconi, Ed.) Pergamon Press, Oxford, 1988. 

R. S. Thompson, Phys. Rev. B 1, 327 (1970). 
J. R. Thompson, J. Brynestad, D. M. Kroeger, Y. 

C. Kirn, S. T. Sekula, D. K. Christen, and E. 
Specht, Phys. Rev. B 39, 6652 (1989). 

J. R. Thompson, D. K. Christen, H. A. Deeds, 
Y. C. Kim, J. Brynestad, S. T. Sekula, and J. 
Budai, Phys. Rev. B 41, 7293 (1990). 

J.	 R. Thompson, J. G. Ossandon, D. K. 
Christen, B. C. Chakoumakos, Y. R. Sun, M. 
Paranthaman, and J. Brynestad, Phys. Rev. B 
48, 14031 (1993). 

R. J. Thorn, ACS Symp. Ser. 351, Chap. 3, (1987). 
C. Tien and I. M. Jiang, Phys. Rev. B 40, 229 

(1989). 
T. S. Tighe, M. T. Tuominen, J. M. Hergenrother, 

and M. Tinkham, Phys. Rev. B 47, 
1145 (1993). 

D. R. Tilley and J. Tilley, “Superfluidity and 
Superconductivity,” Hilger, Boston (1986). 

M. Tinkham, Phys. Rev. Lett. 13, 804 (1964). 
M. Tinkham and J. Clarke, Phys. Rev. Lett. 28, 

1366 (1972). 
M. Tinkham, “Introduction to Superconductivity”, 

(New York: McGraw-Hill Book Co.) (1996). 
J. E. Tkaczyk, R. H. Arendt, M. F. Garbauskas, 

H. R. Hart, K. W. Lay, and F. E. Luborsky, 
Phys. Rev. B45, 12506 (1992). 

REFERENCES 

J. G. Tobin, C. G. Olson, C. Gu, J. Z. Liu, F. R. 
Solal, M. J. Fluss, R. H. Howell, J. C. O’Brien, 
H. B. Radousky, and P. A. Sterne, Phys. Rev. 
B 45, 5563 (1992). 

B. H. Toby, T. Egami, J. D. Jorgensen, and 
M. A. Subramanian, Phys. Rev. Lett. 64, 
2414 (1990). 

K. Togano, H. Kumakura, K. Fukutomi, and K. 
Tachikawa, Appl. Phys. Lett. 51, 136 (1987). 

A. Tokiwa, M. Nagoshi, and Y. Syono, Physica 
C 170, 437 (1990). 

A. Tokiwa, Y. Syono, T. Oku, and M. Nagoshi, 
Physica C 185–189, 619 (1991). 

A. Tokiwa-Yamamoto, K. Isawa, M. Itoh, S. 
Adachi, and H. Yamauchi, Physica C 216, 
250 (1993). 

A. Tokumitu, K. Miyake, and K. Yamada, Phys. 
Rev. B 47, 11988 (1993). 

M. Tokumoto, H. Bando, H. Anzai, G. Saito, K. 
Murata, K. Kajimura, and T. Ishiguro, J. Phys. 
Soc. Jpn. 54, 869 (1985). 

T. A. Tokuyasu, D. W. Hess, and J. A. Sauls, 
Phys. Rev. B 41, 8891 (1990); 

T. A. Tokuyasu and J. A. Sauls, Physica B 165– 
166, 347 (1990). 

J. C. Toledano, A. Litzler, J. Primot, J. Schneck, 
L. Pierre, D. Morin, and C. Daguet, Phys. Rev. 
B 42, 436 (1990). 

B. Tominez, P. Berger, E. Alleno, B. Decamps, 
G. Schiffmacher, M. Bohn and C. Godart, J. 
Alloys Compd 275–7123 (1998). 

C.	 V. Tomy, M. R. Lees, L. Afalfiz, G. 
Balakrishan, and D. D. McK Paul, Phys. Rev. 
B 52, 9186 (1995). 

J. Toner, Phys. Rev. Lett. 66, 2523 (1991a). 
J. Toner, Phys. Rev. Lett. 67, 2537 (1991b); see 

comment by T. Nattermann and I. Lyuksyutov, 
and reply 68, 3366 (1992). 

C.	 C. Torardi, M. A. Subramanian, J. C. 
Calabrese, J. Gopalakrishnan, K. J. Morrissey, 
T. R. Askew, R. B. Flippen, U. Chowdhry, and 
A. W. Sleight, Science 240, 631 (1988a). 

C. C. Torardi, M. A. Subramanian, J. 
C. Calabrese, J. Gopalakrishnan, E. M. 
McCarron, K. J. Morrissey, T. R. Askew, R. 
B. Flippen, U. Chowdhry, and A. W. Sleight, 
Phys. Rev. B 38, 225 (1988b). 

J. B. Torrance, J. Solid State Chem. 96, 59 (1992). 
H. Totsuji, Phys. Rev. B 43, 5287 (1991). 
M. Touminen, A. M. Goldman, Y. Z. Chang, and 

P. Z. Jiang, Phys. Rev. B 42, 412 (1990). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:627 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

627 REFERENCES 

S. W. Tozer, A. W. Kleinsasser, T. Penney, D. 
Kaiser, and F. Holtzberg, Phys. Rev. Lett. 59, 
1768 (1987). 

J. M. Tranquada, in “Early and Recent Aspects 
of Superconductivity” (J. G. Bednorz and K. 
A. Miiller, Eds.), p. 422, Springer-Verlag, 
Berlin, 1990. 

J. M. Tranquada, P. M. Gehring, G. Shirane, 
S. Shamoto, and M. Sato, Phys. Rev. B 46, 
5561 (1992). 

A.	 Tressaud, K. Amine, J. P. Chaminade, J. 
Etourneau, T. M. Due, and A. Sartre, J. Appl. 
Phys. 68, 248 (1990). 

J.-M.	 Triscone, O. Fischer, O. Brunner, L. 
Antognazza, A. D. Kent, and M. G. Karkut, 
Phys. Rev. Lett. 64, 804 (1990). 

V.	 N. Trofimov, A. V. Kuznetsov, P. V. 
Lepeschkin, K. A. Bolschinskov, A. A. 
Ivanov, and A. A. Mikhailov, Physica C 183, 
135 (1991). 

A. Trokiner, R. Mellet, A. M. Pougnet, D. Morin, 
Y. M. Gao, J. Primot, and J. Schneck, Phys. 
Rev. B 41, 9570 (1990). 

A.	 Trokiner, L. LeNoc, J. Schneck, A. M. 
Pougnet, R. Mellet, J. Primot, H. Savary, Y. 
M. Gao, and S. Aubry, Phys. Rev. B 44, 
2426 (1991). 

N. Troullier and J. L. Martins, Phys. Rev. B 46, 
1754 (1992). 

S. A. Trugman, Phys. Rev. Lett. 65, 500 (1990). 
J.-S. Tsai, A. K. Jain, and J. E. Lukens, Phys. 

Rev. Lett. 51, 316 (1983). 
S.-F. Tsay, S.-Y. Wang, and T. J. W. Yang, Phys. 

Rev. B 43, 13080 (1991). 
C. C. Tsuei, A. Gupta, and G. Koren, Physica 

C 767, 415 (1989). 
M. Touminen, A. M. Goldman, Y. Z. Chang, and 

P. Z. Jiang, Phys. Rev. B 42, 412 (1990). 
M.	 T. Tuominen, J. M. Hergenrother, T. S. 

Tighe, and M. Tinkham, Phys. Rev. B 47, 
11599 (1993). 

I. Tutto, L. M. Kahn and J. Ruvalds, Phys. Rev. 
B 20, 952 (1979). 

R. Tycko, G. Dabbagh, M. J. Rosseinsky, D. W. 
Murphy, R. M. Fleming, A. P. Ramirez, and 
J. C. Tully, Science 253, 884 (1991). 

R. Tycko, G. Dabbagh, M. J. Rosseinsky, D. W. 
Murphy, A. P. Ramirez, and R. M. Fleming, 
Phys. Rev. Lett. 68, 1912 (1992). 

S. Uchida, H. Takagi, K. Kitazawa and S. Tanaka, 
Jpn. J. Appl. Phys. 26, L1 (1987). 

S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura 
and S. Tajima, Phys. Rev. B 43, 7942 (1991). 

Y. J. Uemura, L. P. Le, G. M. Luke, B. J. 
Sternlieb, W. D. Wu, J. H. Brewer, T. M. 
Riseman, C. L. Seaman, M. B. Maple, M. 
Ishikawa, D. G. Hinks, J. D. Jorgensen, G. 
Saito and H. Yamochi, Phys. Rev. Lett. 66, 
2665 (1991). 

A. Ugawa, K. Iwasaki, A. Kawamoto, K. Yakushi, 
Y. Yamashita, and T. Suzuki, Phys. Rev. B 43, 
14718 (1991). 

C. Uher and W.-N. Huang, Phys. Rev. B 40, 2694 
(1989). 

C. Uher, in “Physical Properties of High Tem­
perature Superconductors” (D. M. Ginsberg, 
Ed.), Vol. 3, Chap. 3, World Scientific, 
Singapore, 1992. 

S. Ullah, A. T. Dorsey, and L. J. Buchholtz, Phys. 
Rev. B 42, 9950 (1990). 

S. Ullah and A. T. Dorsey, Phys. Rev. Lett. 65, 
2066 (1990). 

J. S. Urbach, D. B. Mitzi, A. Kapitulnik, J. Y. 
T. Wei, and D. E. Morris, Phys. Rev. B 39, 
12391 (1989). 

A. V. Ustinov, T. Doderer, R. P. Huebener, N. 
F. Pederson, B. Mayer, and V. A. Oboznov, 
Phys. Rev. Lett. 69, 1815 (1992). 

J. M. Valles, Jr., R. C. Dynes, and J. P. Garno, 
Phys. Rev. B 40, 6680 (1989). 

J. M. Valles, Jr., R. C. Dynes, A. M. Cucolo, 
M. Gurvitch, L. F. Schneemeyer, J. P. Garno, 
and J. V. Waszczak, Phys. Rev. B 44, 
11986 (1991). 

J.	 van den Berg, C. J. van der Beek, P. H. 
Kest, J. A. Mydosh, M. J. V. Menken, and 
A. A. Menovsky, Supercond. Sci. Tech. I, 
249 (1989). 

J. van den Berg, C. J. van der Beek, P. H. Kes, J. 
A. Mydosh, G. J. Nieuwenhuys, and L. J. de 
Jongh, Solid State Commun. 64, 699 (1987). 

A. M. van den Brink, G. Schon, and L. Geerligs, 
Phys. Rev. Lett. 67, 3030 (1991). 

D. Van Der Marel, Physica C 765, 35 (1990). 
H. P.	 van der Meulen, A. de Visser, J. J. M. 

Franse, T. T. J. M. Berendschot, J. A. A. 
J. Perenboom, H. van Kempen, A. Lacerda, 
P. Lejay, and J. Fouquet, Phys. Rev. B 44, 
814 (1991). 

H. S. J. van der Zant, F. C. Fritschy, T. P. Orlando, 
and J. E. Mooij, Phys. Rev. Lett. 66, 2531 
(1991). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:628 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

628 

K. G. Vandervoort, U. Welp, J. E. Kessler, H. 
Claus, G. W. Crabtree, W. K. Kwok, A. 
Umezawa, B. W. Veal, J. W. Downey, A. 
P. Paulikas, and J. Z. Liu, Phys. Rev. B 43, 
13042 (1991). 

H. S. J. van der Zant, F. C. Fritschy, T. P. Orlando, 
and J. E. Mooij, Phys. Rev. B 47, 295 (1993). 

R. B. VanDover, E. M. Gyorgy, A. E. White, 
L. F. Schneemeyer, R. J. Felder, and J. V. 
Waszczak, Appl. Phys. Lett. 56, 2681 (1990). 

T. Van Duzer and C. W. Turner, “Principles 
of Superconductive Devices and Circuits,” 
Elsevier, New York (1981). 

A. G. Van Vijfeijkenand and A. K. Niessen, 
Philips Res. Rep. 20, 505 (1965a); Phys. Lett. 
76, 23 (1965b). 

B. J. van Wees, K.-M. H. Lenssen, and C. J. P. 
M. Harmans, Phys. Rev. B 44, 470 (1991). 

C. M. Varma, S. Schmitt-Rink, and E. Abrahams, 
in “Theories of High Temperature Supercon­
ductivity” (J. W. Halley, Ed.), p. 211, Addison 
Wesley, Reading, MA, 1988. 

C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, 
E. Abrahams, and A. E. Ruckenstein, Phys. 
Rev. Lett. 63, 1996 (1989). 

V. Vasiliev, J. Supercond. 4, 271 (1991). 
D. R. Veblen, P. J. Heaney, R. J. Angel, L. W. 

Finger, R. M. Hazen, C. T. Prewitt, N. L. Ross, 
C. W. Chu, P. H. Hor, and R. L. Meng, Nature 
332, 334 (1988). 

A. J. Vega, W. E. Farneth, E. M. McCarron, and 
R. K. Bordia, Phys. Rev. B 39, 2322 (1989a). 

A. J. Vega, M. K. Crawford, E. M. McCarron, and 
W. E. Farneth, Phys. Rev. B 40, 8878 (1989b). 

E. L. Venturini, D. S. Ginley, J. F. Kwak, R. J. 
Baughman, J. E. Schirber, and B. Morosin, in 
“High Temperature Superconductors” (D. U. 
Gubser and M. Schluter, Eds.), p. 97, Mater. 
Res. Soc., Pittsburgh, 1987. 

R.	 Vijayaraghavan, A. K. Ganguli, N. Y. 
Vasanthacharya, M. K. Rajumon, G. U. 
Kulkarni, G. Sankar, D. D. Sarma, A. K. Sood, 
N. Chandrabhas, and C. N. R. Rao, Supercond. 
Sci. Technol. 2, 195 (1989). 

P. Villars and J. C. Phillips, Phys. Rev. B 37, 
2345 (1988). 

L. Ya. Vinnikov and I. V. Grigor’eva, JETP Lett. 
47, 106 (1988). 

V.	 M. Vinokur, M. V. Feigel’man, V. B. 
Geshkenbein, and A. I. Larkin, Phys. Rev. 
Lett. 65, 259 (1990). 

REFERENCES 

V. M. Vinokur, M. V. Feigel’man, and V. B. 
Geshkenbein, Phys. Rev. Lett. 67, 915 (1991). 

A. Virosztek and J. Ruvalds, Phys. Rev. Lett. 67, 
1657 (1991). 

J. P. Vithayathil, D. E. MacLaughlin, E. Koster, 
D. LI. Williams, and E. Bucher, Phys. Rev. B 
44, 4705 (1991). 

B.	 M. Vlcek, M. C. Frischherz, S. Fleshier, 
U. Welp, J. Z. Liu, J. Downey, K. G. 
Vandervoort, G. W. Crabtree, M. A. Kirk, J. 
Giapintzakis, and J. Farmer, Phys. Rev. Lett. 
46, 6441 (1992). 

N. V. Volkenshteyn et al., Fiz. Met. Metalloved 
45, 1187 (1978). 

A. R. von Hippel, “Dielectrics and Waves,” 
p. 255, MIT Press, Cambridge, MA, 1954. 

S.	 von Molnar, A. Torresson, D. Kaiser, F. 
Holtzberg, and T. Penney, Phys. Rev. B 37, 
3762 (1988). 

F. von Oppen and E. K. Riedel, Phys. Rev. Lett. 
66, 84 (1991). 

S. V. Vonsovsky, Yu. A. Izyumov, and E. Z. 
Kurmaev, “Superconductivity in Transition 
Metals,” Springer, New York (1982). 

A.	 Wadas, O. Fritz, H. J. Hug, and H.-J. 
Giintherodt, Z. Phys. B 88, 317 (1992). 

J. R. Waldram, A. Porch, and H. M. Cheah, Phys­
ica C 232 189 (1994). 

M. Wallin, Phys. Rev. B 41, 6575 (1990). 
R. E. Walstedt and W. W. Warren, Jr., Science 

248, 1082 (1990). 
R. E. Walstedt, W. W. Warren, Jr., R. F. Bell, R. 

J. Cava, G. P. Espinosa, L. F. Schneemeyer, 
and J. V. Waszczak, Phys. Rev. B 41, 9574 
(1990). 

R. E. Walstedt, R. F. Bell, L. F. Schneemeyer, J. 
V. Waszczak, and G. P. Espinosa, Phys. Rev. 
B 45, 8074 (1992). 

B. L. Walton, B. Rosenblum, and F. Bridges, 
Phys. Rev. Lett. 32, 1047 (1974). 

Z. Wang, N. Zou, J. Pang, and C. Gong, Solid 
State Commun. 64, 531 (1987). 

Z.	 Z. Wang, J. Clayhold, N. P. Ong, J. M. 
Tarascon, L. H. Greene, W. R. McKinnon, and 
G. W. Hull, Phys. Rev. 36, 7222 (1987). 

S. J. Wang, S. V. Naidu, S. C. Sharma, D. K. De, 
D. Y. Jeong, T. D. Black, S. Krichene, J. R. 
Reynolds, and J. M. Owens, Phys. Rev. B 37, 
603 (1988). 

Y. R. Wang, Phys. Rev. B 40, 2698 (1989). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:629 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

629 REFERENCES 

C-P. S. Wang, in “High Temperature Super­
conductivity” (J. W. Lynn, Ed.), Chap. 5, 
Springer-Verlag, Berlin, 1990. 

Y.-Y. Wang, G. Feng, and A. L. Ritter, Phys. Rev. 
B 42, 420 (1990). 

T. Wang, K. M. Beauchamp, D. D. Berkley, B. 
R. Johnson, J.-X. Liu, J. Zhang, and A. M. 
Goldman, Phys. Rev. B 43, 8623 (1991). 

Y. Wang, A. M. Rao, J. -G. Zhang, X. -X. Bi, P. 
C. Eklund, M. S. Dresselhaus, P. P. Nguyen, J. 
S. Moodera, G. Dresselhaus, H. B. Radousky, 
R. S. Glass, M. J. Fluss, and J. Z. Liu, Phys. 
Rev. B 45, 2523 (1992). 

Z. D. Wang and C. S. Ting, Phys. Rev. 46, 284 
(1992b). 

Z. D. Wang and C. -R. Hu, Phys. Rev. B 44, 
11918 (1991). 

C. A. Wang, R. L. Wang, H. C. Li, H. R. Yi, C. 
G. Cui, S. L. Li, X. N. Jing, J. Li, P. Xu, and 
L. Li, Physica C 191, 52 (1992). 

Z. H. Wang, A. W. P. Fung, G. Dresselhaus, M. 
S. Dresselhaus, K. A. Wang, P. Zhou, and P. 
C. Eklund, Phys. Rev. B 47, 15354 (1993). 

N. L. Wang, Y. Chong, C. Y. Wang, D. J. Huang, 
Z.Q. Mao, L. Z. Cao, and Z. J. Chen, Phys. 
Rev. B 47, 3347 (1993). 

Y. Watanabe, Z. Z. Wang, S. A. Lyon, D. C. Tsui, 
N. P. Ong, J. M. Tarascon, and P. Barboux, 
Phys. Rev. B 40, 6884 (1989). 

Y. Watanabe, D. C. Tsui, J. T. Birmingham, N. 
P. Ong, and J. M. Tarascon, Phys. Rev. B 43, 
3026 (1991). 

K.	 Watanabe, S. Awaji, N. Kobayashi, H. 
Yamane, T. Hirai, and Y. Muto, J. Appl. Phys. 
69, 1543 (1991). 

J. H. P. Watson, J. Appl. Phys. 39, 3406 (1968). 
H. L. Watson and R. P. Huebener, Phys. Rev. 

B 10, 4577 (1974). 
C. H. Watson, D. A. Browne, J.-C. Xu, and R. G. 

Goodrich, Phys. Rev. B 40, 8885 (1989). 
W. J. Wattamaniuk, J. P. Tidman, and R. F. Frindt, 

Phys. Rev. Lett. 35, 62 (1975). 
B. D. Weaver, J. M. Pond, D. B. Chrisey, J. S. 

Horwitz, H. S. Newman, and G. P. Summers, 
Appl. Phys. Lett. 58, 1563 (1991). 

W. Weber, Phys. Rev. Lett. 58, 1371 (1987). 
W. Weber, Z. Phys. B 70, 323 (1988). 
H. Weber and P. Minnhagen, Phys. Rev. B 38, 

8730 (1988). 
W. H. Weber, C. R. Peters, B. M. Wanklyn, C. 

Chen, and B. E. Watts, Phys. Rev. B 38, 917 
(1988). 

W. H. Weber, C. R. Peters, and E. M. Logothetis, 
J. Opt. Soc. Am. B 6, 455 (1989). 

H. Weber and H. J. Jensen, Phys. Rev. B 44, 454 
(1991). 

M. Weger, Rev. Mod. Phys. 36, 175 (1964). 
B.	 O. Wells, Z.-X. Shen, D. S. Dessau, W. 

E. Spicer, C. G. Olson, D. B. Mitzi, A. 
Kapitulnik, R. S. List, and A. Arko, Phys. Rev. 
Lett. 65, 3056 (1990). 

U. Welp, W. K. Kwok, G. W. Crabtree, K. G. 
Vandervoort, and J. Z. Liu, Phys. Rev. Lett. 
62, 1908(1989); Phys. Rev. B 40, 5263 (1989). 

U. Welp, S. Fleshier, W. K. Kwok, J. Downey, 
Y.Fang, G. W. Crabtree, and J. Z. Liu, Phys. 
Rev. B 42, 10189 (1990). 

Z. Y. Weng, C. S. Ting, and T. K. Lee, Phys. 
Rev. B 41, 1990 (1990). 

F. Wenger and S. Ostlund, Phys. Rev. B 47, 5977 
(1993). 

S. Wermbter and L. Tewordt, Phys. Rev. B 44, 
9524 (1991); Physica C 183, 365 (1991). 

N. R. Werthamer, Phys. Rev. 132, 2440 (1963). 
M.-H. Whangbo and C. C. Torardi, Acct. Chem. 

Res. 24, 127 (1991). 
J. M. Wheatley, T. C. Hsu, and P. W. Anderson, 

Phys. Rev. B 37, 5897 (1988). 
A. Widom, Y. N. Srivastava, C. Vittoria, H. How, 

R. Karim, and H. Jiang, Phys. Rev. B 46, 1102 
(1992). 

F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982a). 
F. Wilczek, Phys. Rev. Lett. 49, 957 (1982b). N. 

K. Wilkin and M. A. Moore, Phys. Rev. B 48, 
3464 (1993). 

P. J. Williams and J. P. Carbotte, Phys. Rev. B 43, 
7960 (1991). 

M.	 N. Wilson, “Superconducting Magnets,” 
Clarendon Press, Oxford, 1983. A. Wittlin, L. 
Genzel, M. Cardona, M. Bauer, W. Konig, 
E. Garcia, M. Barahona, and M. V. Cabanas, 
Phys. Rev. B 37, 652 (1988). 

K. Winzer, and K. Krug, (K. H. Muller and 
V. Narozhnyi, Eds.), Rare Earth Transition 
Metal Borocarbides (Nitrides); Superconduct­
ing Magnetic and Normal State Properties, 
p. 63, Kluwer Acad. Publ. Dordrecht, (2001) 

T. Wittmann and J. Stolze, Phys. Rev. B 48, 3479 
(1993). 

S. A. Wolf and V. Z. Kresin, Eds., “Novel Super­
conductivity,” Plenum, New York, 1987. 

Y.	 Wolfus, Y. Yeshurun, I. Felner, and H. 
Sompolinsky, Phys. Rev. B 40, 2701; see B 
39, 11690 (1989). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:630 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

630 

H. Won and K. Maki, Phys. Rev. B 49, 1397 
(1994). 

H. Won and K. Maki, Europhys. Lett., 52(4), 427 
(2000). Phys. Rev. B 49, 1397 (1994). 

R. F. Wood and J. F. Cooke, Phys. Rev. B 45, 
5585 (1992). 

F. Woolen, “Optical Properties of Solids,” p. 244, 
Academic Press, New York, 1972. 

R. Wordenweber, Phys. Rev. B 46, 3076 (1992). 
A. H. Worsham, N. G. Ugras, D. Winkler, D. E. 

Prober, N. R. Erickson, and P. F. Goldsmith, 
Phys. Rev. Lett. 67, 3034 (1991). 

T. K. Worthington, W. J. Gallagher, and T. R. 
Dinger, Phys. Rev. Lett. 59, 1160 (1987). 

M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. 
Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. 
Wang, and C. W. Chu, Phys. Rev. Lett. 58, 
908 (1987). 

J. Z. Wu, C. S. Ting, and D. Y. Xing, Phys. Rev. 
B 40, 9296 (1989). 

D.-H. Wu and S. Sridhar, Phys. Rev. Lett. 65, 
2074 (1990). 

J. Z. Wu, C. S. Ting, W. K. Chu, and X. X. Yao, 
Phys. Rev. B 44, 411 (1991a). 

J. Z. Wu, P. Y. Hsieh, A. V. McGuire, D. L. 
Schmidt, L. T. Wood, Y. Shen, and W. K. 
Chu, Phys. Rev. B 44, 12643 (1991b). 

D. H. Wu, J. Mao, S. N. Mao, J. L. Peng, X. X. 
Xi, T. Venkatesan, R. L. Greene, and S. M. 
Anlage, Phys. Rev., Lett. 70, 85 (1993). 

R. W. G. Wyckoff, “Crystal Structures,” Vol. 1, 
1963; Vol.2 1964; Vol.3 1965; Vol. 4; 1968; 
Wiley, New York. 

K. I. Wysokinski, G. Litak, J. F. Annett, and B. L. 
Gyorffy, Phys. Stat. Sol. (b) 236, No. 2, 325 
(2003). 

D. G. Xenikos and T. R. Lemberger, Phys. Rev. 
B 41, 869 (1990). 

T.-K. Xia and D. Stroud, Phys. Rev. B 39, 4792 
(1989). 

W. Xia and P. L. Leath, Phys. Rev. Lett. 63, 1428 
(1989). 

G. Xiao, F. H. Streitz, A. Gavrin, Y. W. Du, and 
C. L. Chien, Phys. Rev. B 35, 8782 (1987a). 

G. Xiao, F. H. Streitz, A. Gavrin, M. Z. Cieplak, 
J. Childress, M. Lu, A. Zwicker, and C. L. 
Chien, Phys. Rev. B 36, 2382 (1987b). 

G. Xiao, M. Z. Cieplak, and C. L. Chien, Phys. 
Rev. B 40, 4538 (1989). 

D. Y. Xing and M. Liu, Phys. Rev. B 43, 3744 
(1991). 

REFERENCES 

D. Xu, S. K. Yip, and J. A. Sauls, Phys. Rev. 551 
16233 (1995). 

Y. Xu, M. Suenaga, Y. Gao, J. E. Crow, and 
N. D. Spencer, Phys. Rev. B 42, 8756 (1990). 

M. Xu, D. Shi, and R. F. Fox, Phys. Rev. B 42, 
10773 (1990). 

Y. Xu and M. Suenaga, Phys. Rev. B 43, 5516 
(1991). 

Y.-N. Xu, M.-Z. Huang, and W. Y. Ching, Phys. 
Rev. B 44, 13171 (1991). 

X-Q. Xu, S. J. Hagen, W. Jiang, J. L. Peng, Z. 
Y. Li, and R. Greene, Phys. Rev. B 45, 7356 
(1992). 

J. V. Yakhmi and R. M. Iyer, in “High Tempera­
ture Superconductors” (S. K. Malik and S. S. 
Shah, Eds.), Nova Sci., New York, 1992. 

J.	 V. Yakhmi, “Chemistry and Physics of 
Fullerenes,” in “Atomic and Molecular 
Physics,” (S. A. Ahmad, Ed.) Narosa Publish­
ing, New Delhi, India, 1994. 

K.	 Yamada, K. Kakurai, Y. Endoh, T. R. 
Thurston, M. A. Kaster, R. J. Birgeneau, 
G. Shirane, Y. Hidaka, and T. Murakami, 
Phys. Rev. B 40, 4557 (1989). 

K.	 Yamamoto, H. Mazaki, H. Yasuoka, S. 
Katsuyama, and K. Kosuge, Phys. Rev. 46, 
1122 (1992). 

K. Yamamoto, H. Mazaki, and H. Yasuoka, Phys. 
Rev. B 47, 915 (1993). 

H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, 
S. Yoshida, and K. Kajimura, Phys. Rev. Lett. 
70, 3331 (1993). 

Y. Yan and M. G. Blanchin, Phys. Rev. B 43, 
13717 (1991). 

K. N. Yang, J. M. Ferreira, B. W. Lee, M. B. 
Maple, W.-H. Li, J. W. Lynn, and R. W. 
Erwin, Phys. Rev. B 40, 10963 (1989). 

C. Y. Yang, A. R. Moodenbaugh, Y. L. Wang, Y. 
Xu, S. M. Heald, D. O. Welch, D. A. Fischer, 
and J. E. Penner-Hahn, Phys. Rev. B 42, 2231 
(1990). 

A. Yatskar, N. K. Budraa, W. P. Beyermann, P. C. 
Canfield, and S. L. Phys. Rev. Lett. 78, 935 
(1996). 

Z. Ye, H. Umezawa, and R. Teshima, Phys. Rev. 
B 44, 351 (1991). 

W.-J. Yeh, L. Chen, F. Xu, B. Bi, and P. Yang, 
Phys. Rev. B 36, 2414 (1987). 

N.-C. Yeh and C. C. Tsuei, Phys. Rev. B 39, 9708 
(1989). 

N.-C. Yeh, Phys. Rev. B 40, 4566 (1989). 
N.-C. Yeh, Phys. Rev. B 42, 4850 (1990). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:631 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

631 REFERENCES 

N.-C. Yeh, Phys. Rev. B 43, 523 (1991). 
N.-C. Yeh, W. Jiang, D. S. Reed, A. Gupta, F. 

Holtzberg, and A. Kussmaul, Phys. Rev. B 45, 
5710 (1992b). 

N.-C. Yeh, D. S. Reed, W. Jinag, U. Kriplani, 
F. Holtzberg, A. Gupta, B. D. Hunt, R. P. 
Vasquez, M. C. Foote, and L. Bajuk, Phys. 
Rev. B 45, 5654 (1992a). 

Y. Yeshurun, A. P. Malozemoff, F. Holtzberg, and 
T. R. Dinger, Phys. Rev. B 38, 11828 (1988). 

S. K. Yip, and J. A. Sauls, Phys. Rev. Lett. 69 
2264 (1992). 

M. Yoshimoto, H. Koinuma, T. Hashimoto, 
J. Tanaka, S. Tanabe, and N. Soga, Physica 
C 181, 284 (1991). 

M. Yoshimura, H. Shigekawa, H. Nejoh, G. Saito, 
Y. Saito, and A. Kawazu, Phys. Rev. B 43, 
13590 (1991). 

J. Yu, A. J. Freeman, and S. Massidda, in “Novel 
Superconductivity” (S. A. Wolf and V. Z. 
Kresin, Eds.), p. 367, Plenum, New York, 
1987. 

R. C. Yu, M. J. Naughton, X. Yan, P. M. Chaikin, 
F. Holtzberg, R. L. Greene, J. Stuart, and 
P. Davies, Phys. Rev. B 37, 7963 (1988). 

G. Yu, C. H. Lee, A. J. Heegar, N. Herron, 
and E. M. McCarron, Phys. Rev. Lett. 67, 
2581 (1990). 

J. Yu, A. J. Freeman, R. Podloucky, P. Herzig, and 
P. Weinberger, Phys. Rev. B 43, 532 (1991). 

X.-J. Yu and M. Sayer, Phys. Rev. B 44, 2348 
(1991). 

R. C. Yu, J. M. Williams, H. H. Wang, J. E. 
Thompson, A. M. Kini, K. D. Carlson, J. Ren, 
M.-H. Whangbo, and P. M. Chaikin, Phys. 
Rev. B 44, 6932 (1991). 

W. Yu, E. B. Harris, S. E. Hebboul, J. C. Garland, 
and D. Stroud, Phys. Rev. B 45, 12624 (1992). 

B. D. Yu, H. Kirn, and J. Ihm, Phys. Rev. B 45, 
8007 (1992). 

G. Yu, C. H. Lee, A. J. Heeger, N. Herron, E. 
M. McCarron, L. Cong, G. C. Spalding, C. 
A. Nordman, and A. M. Goldman, Phys. Rev. 
B 45, 4964 (1992). 

R. C. Yu, M. B. Salamon, J. P. Lu, and W. C. 
Lee, Phys. Rev. Lett. 69, 1431 (1992). 

B. J. Yuan and J. P. Whitehead, Phys. Rev. B 44, 
6943 (1991). 

K. Yvon and M. Francois, Z. Phys. B 76, 413 
(1989). 

A.	 A. Zakhidov, A. Ugawa, K. Imaeda, K. 
Yakushi, H. Inokuchi, K. Kikuchi, I. Ikemoto, 

S. Suzuki, and Y. Achiba, Solid State Com­
mun. 79, 939 (1991). 

M. Zeh, H.-C. Ri, F. Kober, R. P. Huebener, 
J. Fischer, R. Gross, H. Muller, T. Sermet, A. 
V. Ustinov, and H.-G. Wener, Physica C 167, 
6 (1990). 

E. Zeldov, N. M. Amer, G. Koren, A. Gupta, R. 
J. Gambino, and M. W. McElfresh, Phys. Rev. 
Lett. 62, 3093 (1989). 

H. R. Zeller and I. Giaever, Phys. Rev. 181, 789 
(1969). 

X. C. Zeng, D. Stroud, and J. S. Chung, Phys. 
Rev. B 43, 3042 (1991). 

R. Zeyher, Phys. Rev. B 44, 10404 (1991). 
F. C. Zhang and T. M. Rice, Phys. Rev. B 57, 

3759 (1988). 
L. Zhang, M. Ma, and F. C. Zhang, Phys. Rev. 

B 42, 7894 (1990). 
Z. Zhang, C.-C. Chen, and C. M. Lieber, Science 

254, 1619 (1991). 
H. Zhang, J. W. Lynn and D. E. Morris, Phys. 

Rev. B 45, 10022 (1992). 
L. Zhang, J. Z. Liu, and R. N. Shelton, Phys. Rev. 

B 45, 4978 (1992). 
L. Zhang, J. K. Jain, and V. J. Emery, Phys. Rev. 

B 47, 3368 (1993). 
Z. Zhang and C. M. Lieber, Phys. Rev. B 47, 3423 

(1993). 
H. Zhang and H. Sato, Phys. Rev. Lett. 70, 1697 

(1993). 
Z.	 Zhao, L. Chen, Q. Yang, Y. Huang, G. 

Chen, R. Tang, G. Liu, C. Cui, L. Chen, L. 
Wang, S. Guo, S. Li, and J. Bi, in “Cooper 
Oxide Superconductors” (C. P. Poole, Jr., T. 
Datta, and H. A. Farach, Eds.), p. 274, Wiley, 
New York, 1987. 

B.-R.	 Zhao, S. -I. Kuroumaru, Y. Horie, E. 
Yanada, T. Aomine, X. -G. Qiu, Y.-Z. Zhang, 
Y. -Y. Zhao, P. Xu, L. Li, H. Ohkubo, and S. 
Mase, Physica C 179, 138 (1991). 

G. L. Zhao and J. Callaway, Phys. Rev. B 49, 
6424 (1994). 

C. Zhaojia, Z. Yong, Y. Hongshun, C. Zuyao, Z. 
Donquin, Q. Yitai, W. Baimei, and Z. Qinii, 
Solid State Commun. 64, 685 (1987). 

H. Zheng, M. Avignon, and K. H. Bennemann, 
Phys. Rev. B 49, 9763 (1994). 

X.	 Zhengping, J. Chunlin, and Z. Lian, J. 
Supercood. 3, 421 (1990). 

W. Zhi-Feng, C. Xiao-Long, C. Guang-Can, 
W. Fu-Ming, L. Wen-Chao, and H. Meng, 
Chinese Phys. Lett. 19, 249 (2002). 



Elsevier AMS Job code: SUP Reference-088761 22-6-2007 9:45a.m. Page:632 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

632 

J. Zhou and S. G. Chen, Phys. Rev. B 47, 8301 
(1993) 

D.-M. Zhu, A. C. Anderson, E. D. Bukowski, and 
D. M. Ginsberg, Phys. Rev. B 40, 841 (1989) 

D.-M. Zhu, A. C. Anderson, T. A. Friedmarm, 
and D. M. Ginzberg, Phys. Rev. B 41, 6605 
(1990). 

S. Zhu, D. K. Christen, C. E. Klabunde, J. R. 
Thompson, E. C. Jones, R. Feenstra, D. H. 
Lowndes, and D. P. Norton, Phys. Rev. B 46, 
5576 (1992). 

Y. Zhu in “High Temperature Superconducting 
Materials Science and Engineering,” (D. Shi, 
Ed.) Pergamon, New York, 1994. 

REFERENCES 

G. T. Zimanyi and K. S. Bedell, Phys. Rev. B 48, 
6575 (1993). 

P.	 Zolliker, D. E. Cox, J. B. Parise, E. M. 
McCarron III, and W. E. Farneth, Phys. Rev. 
B 42, 6332 (1990). 

X. Zotos, P. Prelovsek, and I. Sega, Phys. Rev. 
B 42, 8445 (1990). 

Z. Zou and P. W. Anderson, Phys. Rev. B 37, 627 
(1988); (reprinted in Halley, 1988, p. 163). 

V. E. Zubkus, E. E. Tornau, S. Lapinskas, and P. J. 
Kundrotas, Phys. Rev. B 43, 13112 (1991). 

I. Zutic, and O. T. Vails, Phys. Rev. B 58, 8738 
(1998). 

W. Zwerger, Phys. Rev. B 42, 2566 (1990). 



Elsevier AMS Job code: SUP Index-P088761 5-7-2007 12:24p.m. Page:633 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

A15 compounds, 4, 24, 61, 68, 77, 78, 195, 257 
Abrikosov lattice, 364 
Abrikosov vortices, 332, 363 
Absorption, 132, 536 

susceptibility, 131 
Ac Josephson effect, 463 
Acoustic (A) mode, 12 
Actinides, 63, 232 
Admittance ratio, 464 
Airy and Fraunhofer diffraction pattern, 475 
Aligned HgBaCaCuO, 208 
Aligned Ti-Ba compounds, 222 
Alignment of vortices, 364 
Alkaline earths, 198 
Alloy, 71, 73 
Alternating current impedance, 491 
Amorphous alloys, 71 
Ampère’s law, 190 
Analogues of Josephson junctions, 469 
Andreev bound states (ABS), 264, 270, 423, 424, 

425, 427, 451 
Andreev-reflected quasiparticles, 451 
Angle resolved photoemission, 554, 556 
Angular correlation, 565 

of annihilation radiation, 298, 562 
Anisotropic, 260 

elasticity theory, 355 
Type II superconductors, 362, 363, 366 

Anisotropies, 237, 292, 457 
Anisotropy ratio, 28, 358 
Annealing, 551 
Annihilation operator, 177 

Index


Antibonding, 277, 278 
Anticommutation 

relations, 174 
rule, 282 

Antiferromagnetic, 17, 213, 255 
alignment, 17 
insulator, 301, 304 
order, 272 

Antiferromagnetism, 136, 137, 249, 304 
Antikink, 477 
Antivortex, 381 
Asymptotic behaviors, 53 
Atomic orbitals, 277, 280 
Auger electron spectroscopy, 546 
Aurivillius, 196 
Axial hole, 42 
Azimuthal angle, 128 

Ba0�6K0�4BiO3, 457, 560, 563 
Ba1−xK BiO3−y , 256, 257 x

Backscattering, 558 
Balanced Josephson junction, 480 
Band gaps, 289 
Band structure, 288, 294 

calculations, 275, 295, 305 
Band theory, 196, 385 
BaPb1−xBixO3, 258 
BaPbO3, 258 
Bardeen, Cooper, and Schrieffer (BCS), 24, 65, 83, 

89, 109, 138, 140, 171, 420, 422, 577

coherence length, 410

equations, 410


633 



Elsevier AMS Job code: SUP Index-P088761 5-7-2007 12:24p.m. Page:634 Trim:165×240MM TS: Integra, India

Font: Times/Optima Size:10/12pt Margins:Top:3pc Gutter:4pc Width:31pc Depth: 47 lines COP: Recto 1 Color

634 

Bardeen, Cooper, and Schrieffer (BCS) (continued) 
ground state, 174 
Hamiltonian, 176, 177, 178, 179, 191 
order parameter, 174 
theory, 144, 149, 171, 187, 192, 275, 385 
type superconductor, 110 
value, 457 

Barium, 197 
Barium titanate, 196 
Barrier, 434, 435, 442 

penetration, 433 
potential, 434 

Bean model, 114, 381, 385, 386, 388, 389, 395, 
396, 406, 495 

Bean shielding current, 430 
Bechgaard salt, 217 
Bessel function, 159, 475 
Bi2Sr2CaCu2O8, 302, 496, 499, 518, 533 
Bi2Sr2CaCu2O8−�, 457 
Bi2Sr2CanCun+1O2n+6, 218, 220, 221, 244 
Bias voltage, 442, 445 
Bilinear, 177 
Binary alloys, 71, 72 
Binding energy, 551, 554 
Binding layer, 223, 224, 227 
Bipartite, 283 
Bismuth, 64, 196 
BiSrCaCuO, 218, 454 
Bloch 

law, 7, 27

operator, 191

oscillation, 484

state, 280

T5 law, 2, 7

T5 region, 27, 34

theorem, 279

wavevector, 174


Body-centered 
cubic, 62, 64 
plane, 210 
unit cell, 211 

Body centering, 210, 211 
Bogoliubov 

amplitudes, 177, 178, 180, 181, 189, 190 
parameter, 180 
quasiparticle, 426 
transformation, 177, 178, 179 

Bohr magneton, 17 
Boltzmann equation, 4 
Bond length, 540 
Bonding, 277, 278 

bands, 300

level, 279

overlap, 277


Borocarbide, 231, 243, 249, 252, 253, 
269, 272 

INDEX 

Bose–Einstein 
condensate, 174 
regime, 192 
statistics, 436 

Boson 
condensation representation, 436, 438, 440 
gas, 192 

Branch imbalance, 449, 450 
relaxation time, 449 

Breakup of Cooper pairs, 436 
Breather, 478 
Breathing mode, 258 
Bremsstrahlung isochromat spectroscopy, 546 
Bridging bond, 206 
Brillouin, 291 

zone, 10, 21, 180, 184, 290, 292, 299, 300, 306, 
499, 560 

�(k) = −��k −q0�, 184 
BSCCO-2212, 425 
Buckminsterfullerene, 260, 261 
Buckyball, 223 

c-number, 189 
Campbell penetration depth, 430 
Campbell regime, 332 
Capacitor charging energy, 483 
Carbide, 75 
Cation, 2 
CeCoIn5, 426 
CeCu2Si2, 232 
Chain, 204, 291, 292, 539 
Chain layer, 207 
Chalcogenide, 61, 82 

anion, 82 
Charge density, 206, 215, 221 

plots, 220 
wave, 303 

Charge distribution, 206, 277 
Charge reservois layers, 224 
Charge-transfer 

energy, 289, 290

insulator, 289, 290

organics, 231, 259


Chemical 
bonding, 66, 279, 281 
potential, 4, 21, 189, 282, 283 
shifts, 566 

Chevrel compounds� 81 
Chevrel phase, 61, 80, 81, 82, 195, 257 
Chromium, 67 
Classical-statistics approximation, 2 
Classical superconductors, 231 
Clean limit, 431 
Clogston–Chandrasekhar limit, 138 
Close-packed lattice, 228 
Closed contour, 150 
Closed shells, 65 
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Closed topology, 328 
Coexistence of superconductivity and 

magnetism, 270 
Coherence length, 54, 121, 138, 139, 149, 160, 

244, 337, 340, 343, 347, 352, 356, 357, 374, 
411, 458 

penetration depth, 146, 161 
Collective pinning, 372 
Commensurate, 221, 247, 255 
Commutation relation, 177 
Complex order parameter, 143 
Compositionally stoichiometric, 75 
Compound, 231 
Compressed pellet, 31 
Condensation energy, 313, 316 
Conduction 

band, 434 
electrons, 85 

heat capacity factor, 67 
layer, 223, 224, 225, 227 

Conductors, 1 
Confined flux, 363 
Contour plot, 184, 185, 186, 215 
Cooper pair, 173, 174, 435, 436, 439, 440, 449, 459, 

461, 484 
binding energy, 436 
tunneling, 448, 460, 461 

Cooper pairing, 3, 7, 109, 137, 196, 217, 224, 231, 
232, 237, 502, 509, 527 

Copper, 1 
Copper oxide 

layers, 227 
planes, 196, 204 
superconductors, 171 

Copper-oxygen plane, 180 
Core-level, 553 

photoemission, 556 
spectra, 551 

Core radius, 347 
Coulomb, 280 

blockade, 483, 484 
interaction, 188 
pseudopotential, 62, 244 
repulsion, 4, 282, 284, 285, 288, 289, 306 
staircase, 483, 484 

Coupling value, 77 
Covalent, 66 
Critical 

current density, 53, 139, 141, 154, 364, 392, 433, 
463, 496, 497, 504 

field, 53, 80, 96, 143, 309, 311, 322 
gradient, 519 
magnetic field, 52 
state model, 117, 386, 388, 389 
surface, 55 
temperature, 23 

transport current, 52 
state model, 433 

Crossover between 2D and 3D behavior, 374 
Crossover temperature, 374 
Crystal field effect, 579 
Crystallite planes, 30 
Crystallographic phase, 205 
Crystallographic structure, 195 
–Cu–O– Chains, 205 
Cu–O planes, 138, 272 
CuO2 

layer, 114, 200, 295, 373 
plane, 295 

Cuprates, 223, 224, 225, 256, 257, 277, 
281, 423 

superconductor, 224 
Curie 

constant, 17 
law, 17 

Curie-Weiss 
law, 17 
temperature, 17 

Current 
density, 15, 153, 158, 322, 323, 355, 387, 391, 394, 

395, 396, 442, 493 
density equilibration, 492 
flow contour, 494 
induced intermediate state, 326 
loop model, 330 
voltage characteristic, 440, 455, 456, 465 

Cylindrical hole, 118 

dc Josephson effect, 460, 484 
d orbital, 277 
d-wave, 179, 184, 192, 231, 268, 419, 

422, 451 
gap, 450 
order parameter, 184, 185 
pairing, 262, 265 
state, 428 

Damping factor, 364, 535 
Dark resistivity, 526 
de Gennes factor, 250, 251 
de Haas-van Alphen, 241 
Debye 

approximation effect, 85 
frequency, 13 
model, 13 
temperature, 21, 62, 64, 82, 85, 86, 

174, 244 
theory, 84 

Decouple, 363 
Demagnetization, 412 

current, 44, 45, 51 
effect, 91, 96, 333 
factor, 125, 126, 127, 308, 312, 314, 334, 340, 

411, 412 
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Density of states, 9, 10, 11, 62, 64, 86, 110, 173, 
183, 233, 244, 247, 289, 297, 299, 305, 440, 
442, 444, 447, 527 

modes, 13 
super electrons, 143 

Depairing current density, 141 
Depinning, 376 
Depolarization factor, 126 

derivative, 74 
Diamagnetic sample, 414 
Diamagnetic shielding, 117, 133 
Diamagnetism, 23, 35, 48, 134, 272, 431 
Diamagnet, 16 
Dielectric constant, 537 

dimensionless ratio, 107 
Dimensionless magnetization, 162 
Dingle temperature, 244 
Dipole, 434 
Direct lattice vector, 278 
Dirty d–wave, 422 
Dirty limit, 431 
Discontinuity in specific heat, 84, 89 
Disorder, 270 
Disordered phase, 144 
Dispersion, 536 
Displacement current, 463 
Disproportionation, 258 
Distortion distance, 321 
Distribution function, 440, 441 
Domain, 317, 318 

configurations, 311 
wall, 320 

Doppler 
broadening, 564 
field, 425 
shift, 426 

Dresner’s equations, 494 
Driven Junction, 463 
Driven pendulum, 469, 471 
Drude model, 2 
Drudelike terms, 535 
Dx2−y2 orbital, 279, 288, 291 

Effective magnetic moment, 118 
Effective mass, 121, 236, 369 
Elastic constant, 378 
Elastic modulus, 332 
Electric current density, 364 
Electric field gradient, 573 
Electrical conductivity, 1, 6 

anisotropy, 513 
Electron 

annihilation operator, 282 
density, 147 
electron interaction, 4, 187 

INDEX 

energy 
analyzer, 558 
loss spectroscopy, 558 

hole 
symmetry, 283 
transformation, 283 

micrograph, 452, 453 
operator, 174 
phonon 

coupling, 187, 242 
constant, 188, 244 
interaction, 3, 236, 518 

screening, 4 
spin resonance (ESR), 565, 574, 575 
beam lithography, 483 

Electronic configurations, 276 
Electronic heat capacity factor, 74 
Electronic specific heat, 65, 85 
Electron-phonon coupling, 82, 181, 192, 560 

constant, 62, 64, 66, 74, 77, 89 
Element, 61, 69, 74, 231 
Eliashberg 

equation, 419 
function, 560 
theory, 193 

Ellipses, 357, 360, 397 
Ellipsoid, 126, 127, 204, 308, 335 

revolution, 126 
Ellipsoidal gap, 268 
Ellipsoidal geometry, 114 
End-centering, 202 
Energy, 457 

bands, 275, 281, 299, 300, 553, 554 
gap, 11, 62, 183, 241, 248, 250, 426, 

433, 455, 541, 543, 577 
Energy-level diagram, 549, 582 
Enthalpy, 92, 93, 97, 103, 111 
Entropy, 21, 93, 102, 106, 521 

transport, 508 
Equilibrium 

current flow, 495 
topology, 331 

Equivalent circuit, 467 
ESR, 574 

silent, 574 
Ettingshausen effect, 514, 515, 522, 

523, 524 
expression, 108, 110 

Ettingshausen equation, 529 
Euler–Mascheroni constant, 349 
Exchange field, 304 
Exchange integral, 280 
Excited electron, 435 
Exotic spin structure, 272 
Exponential model, 389 
Extended X–ray absorption fine 

structure, 557 
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f electron, 232, 233 
f shells, 233 
f-wave, 420 
Face-centered cubic, 62, 64, 261 

factor, 71, 88 
Faraday balance, 122 
Faraday’s law, 376, 503 

and Lenz’ laws, 36 
Fe-garnet, 331 
Fermi 

energy, 5, 110, 288, 300, 436 
gas, 5 
Golden Rule, 443 
level, 12, 73, 90, 172, 232, 233, 239, 245, 

277, 288, 295, 297, 300, 305, 416, 431, 
441, 442 

liquid theory, 554 
liquid, 4, 5, 302 
momentum, 426 
sea, 172, 174 
statistics, 440 
surface, 4, 10, 17, 172, 173, 174, 181, 183, 

185, 217, 265, 266, 270, 288, 291, 300, 
301, 416, 417, 426, 427, 450, 565 

of YBa2Cu3O7−�, 294

surface nesting, 255, 303

temperature, 8, 518

velocity, 244, 417

wave vector, 28


Fermi-Dirac 
distribution function, 434, 441 
function, 181 
statistics, 3, 8, 302 

Fermion, 287 
Ferroelectric, 82 
Ferromagnetic, 17, 255, 271, 284 
Ferromagnetism, 249 
Field 

cooling, 7, 41, 42, 47, 49, 117, 119, 123, 
237, 239, 310, 577 

trapped, 120 
Filamentary path, 35 
Filled band, 439 
First London equation, 155 
First-order phase transition, 109 
Fixed pinning model, 386, 388, 389 
Fluctuations, 144, 176, 368, 502 

conductivity, 501 
Flux 

bundle, 371, 376 
creep, 141, 364, 372, 374, 406 
entry, 332 
exclusion, 41, 42, 46, 49, 117, 121, 308 
exit, 332 
flow, 364, 372, 374, 376, 429, 502, 519 
gradient, 376, 519 

lattice, 374, 378, 379, 381

liquid, 378

melting, 374

motion, 372

penetration, 308

pinning, 117

quantization, 150

quantum, 160, 431, 475

shielding, 121

solid phase, 377

trapped, 331, 392, 399


Flux-flow resistance, 503, 504, 528 
Fluxoid, 146 
Force between two vortices, 364 
Four-probe resistivity method, 31 
Fourier transform, 280 
Fraunhofer diffraction, 475, 483 
Free-electron, 518 

approximation, 18, 516

gas, 4


Free energy, 105 
density, 145 
surfaces, 102 

Free radical, 574 
Fullerene, 260, 569 

anion, 575 
Functional derivative, 4 
Fundamental band, 533 

g-factor, 137 
Gamma ray, 562, 579 
Gap, 457 

anisotropy, 450

equation, 179, 182

function, 176, 189, 266, 416, 417, 419


Generalized London equation, 411 
Gibbs free energy, 21, 83, 91, 92, 93, 95, 96, 98, 99, 

100, 101, 103, 110, 111, 143, 145, 146, 147, 169, 
313, 314, 315, 321, 342 

Ginzburg–Landau (GL) 
expression, 139, 141 
parameter, 144, 160, 192, 244, 275, 341, 343, 372, 

381, 385 
theory, 171, 314, 356 

Glass-liquid transition, 379 
Glass state, 379 
Global gauge symmetry, 178 
Gold, 1 
Grain, 134 

aligned, 122, 123

boundaries, 122

decoupling, 517


Granular superconductor, 134 
Granularity, 121 
Group theory, 222 
Gyromagnetic ratio, 566, 581 
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Half-filled band, 284 
Half filling, 285 
Half-full, 291 
Half-integral flux quantum, 263 
Hall 

angle, 371 
coefficient, 505, 507 
effect, 18, 19, 242, 264, 499, 504, 505, 507, 515, 

518, 524, 529

mobility, 20, 508, 509

number, 34, 506, 508

probe sensor, 254

resistance, 34, 508, 509

resistivity, 371

sensor, 252


Harmonic response, 131 
Hartree-Fock 

equations, 304 
method, 4 

Heat capacity, 65 
Heat conduction, 510 
Heaviside step function, 388 
Heavy boson superconductor, 232 
Heavy-electron, 233, 236 

superconductors, 217, 231, 235 
Heavy fermion, 11, 25, 88, 171, 232, 234, 257, 

268, 269, 271, 414

compounds, 12

superconductor, 179, 419, 421


Heisenberg 
antiferromagnet, 285 
term, 285 

Helicoidal rotation, 271 
Helmholtz 

equation, 155, 156, 157, 348 
free energy, 91 

Hermitian conjugate, 174 
Hexadic pattern, 350 
Hexagonal close-packed, 62, 64 
Hexagonal lattice, 350 
Hg2Ba4Ca3Cu5Ox, 210 
HgBa2Ca2Cu3O8+�, 298 
HgBa2CanCun+1O2n+4, 208, 244 
HgBa2CuO4, 295, 296 
HgBa2CuO4+�, 297, 368 
High anisotropy, 379 
High-field case, 389 
High-Kappa approximation, 349, 361 
High-spin, 580 
High-temperature superconductivity, 265, 305 
High-temperature superconductor, 195, 202, 284, 

457, 512, 517, 518 
Hikami-Larkin approach, 502 
Hole 

conduction, 144

in superconductor, 45


INDEX 

operator, 283 
type, 212, 216 

Holography, 350 
Holon, 287 
Homogeneous boundary conditions, 146 
Homogeneous phase, 161 
Hoppfield parameter, 246 
Hopping, 306, 367 

amplitude, 282, 288 
Hubbard 

band, 291 
Hamiltonian, 282, 285 
hypothesis, 283 
model, 196, 275, 278, 281, 282, 284, 285, 286, 290, 

300, 304, 305, 306, 385 
Hybrid band, 300 
Hybrid orbitals, 277 
Hybridization, 233, 279, 295 
Hydraulic systems, 327 
Hydrodynamics, 327, 369 

analogy, 320 
Hyperfine coupling, 575 
Hysteresis, 31, 116, 120, 332, 397, 470, 577 

effect, 385

loop, 114, 327, 328, 400, 401, 402


I versus V characteristic, 468 
Ideal relationship, 139 
Ideal stoichiometry, 71 
Ideal type II superconductor, 139 
Identity representation, 180, 254 
Image plane, 210 
Incommensurate, 304 

c* structure, 255 
charge-density wave, 268 

Independent-electron approximation, 2, 275, 276 
Inductance, 36, 413, 480, 491 
Inductor, 490 
Inelastic neutron scattering, 559 
Inelastic scattering, 561 
Infinite layer phases, 225 
Infrared-active, 534, 535 
Infrared 

spectroscopy, 532 
spectrum, 536 

Inhomogeneous boundary conditions, 148 
Insulating 

barrier, 434, 461, 472

layer, 202, 457

plane, 221


Interband scattering, 266, 268 
Interference equation, 482 
Intermediate state, 307, 309, 312, 315, 316, 317, 

322, 323, 324, 326, 327, 329, 331, 333, 495 
Intermetallic, 72, 80 

compound, 231 
Internal field, 115, 339 
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Internal magnetic field, 312, 340, 352, 391,

393, 394, 395


Intrinsic

pinning, 371

susceptibility, 127

vortex, 378, 381


Inverse ac Josephson effect, 466

Inverse Josephson effect, 575

Inverse photoelectron spectroscopy, 546

Ioffe-Regel


criterion, 28

parameter, 33


Ionic radii, 197, 231

Ionization energies of, 545, 549

Irradiation, 258

Irreversibility, 378, 379, 381


temperature, 381

Isoelectronic alloy, 75

Isotope effect, 24

Isotopic mass, 24, 537

Itinerant electron, 304


Josephson

angular frequency, 464

coupled, 363

current, 462, 467, 483

effect, 435

energy, 483

Fraunhofer diffraction pattern, 475

frequency, 463

junction, 460, 462, 464, 466, 467, 468, 472,


485, 575

circuit, 465

loop, 481

network, 517


loop

diffraction equation, 482

diffraction pattern, 482

interference equation, 479


penetration depth, 476, 478

relations, 461

vortex, 363, 475, 477, 478

weak link, 378


Junctions, 459

capacitance, 484


K-absorption edge, 556

K-space, 241

K–(BEDT–TTF)2Cu[N(CN)2 �Br, 518

Kamerlingh Onnes, 24

Kelvin relation, 522

Kinetic-energy, 280, 282, 370, 559

Kink, 477

Knight shift, 421, 568

Kosterlitz–Thouless


temperature, 381

transition, 363, 381


Kramers–Kronig

analysis, 535, 536, 540, 548

relations, 132


La2CuO4, 211, 216, 299, 301, 533, 544

Labusch parameter, 429, 430

Lamellae corrugation, 329

Laminar intermediate state, 328

Landau


diamagnetism, 18

laminar pattern, 329

laminar structure, 327, 331


Landé g factor, 17

Landolt–Börnstein, 58

Lanthanum, 63, 196

Laplace equation, 128

Larkin-Ovchinnikov-Fulde-Ferrell state (LOFF), 271

Latent heat, 105

Lattice of vortices, 376

Lattice vibrations, 512

Laves phase, 61, 78, 80, 81

Law of Wiedermann and Franz, 509, 510, 524

Layered compounds, 459

Layering scheme, 209, 212, 224

Leiden, 24

Lenz’ law, 49


level, 138

Light-beam polarization, 538

Lindemann criterion, 378

Line broadening, 579

Line integral, 346

Line shape, 537

Linear combinations of atomic orbitals (LCAO), 281

Linear model, 389

Local moment, 250

London


approach, 83

approximation, 416

electrodynamics, 410, 411

equation, 144, 190, 412

Landau gauge, 146, 151, 160

local electrodynamics, 417

model, 144, 325, 326, 429

penetration depth, 44, 21, 152, 159, 190, 235,


268, 270, 331, 332, 337, 409, 410,

422, 430


theories, 43, 51

Long Josephson Junction, 475

Long junction, 478

Loop, 36, 577

Lorentz


electron microscopy, 350

force, 364, 367, 368, 372, 388, 393, 428, 503, 519,


520, 523

force law, 15

number, 524
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Lorentzian line shape, 536 
Low-field 

absorption, 576 
case, 389 
hysteresis, 117 
loop, 118 
microwave absorption, 576 

Lower critical field, 139, 140, 162, 235, 244, 340, 
351, 373, 513 

LuNi2B2C, 250 
Luttinger liquid, 303 

Magnet, 141 
Magnetic 

energy, 320 
density, 320 
field lines, shielding current, 46 
flux, 113, 114, 341, 346 

density, 15 
line profile, 254 

force microscopy, 350 
induction, 15 
moment, 122, 396, 397, 567 
order temperature, 247 
permeability, 48 
phase diagram, 256, 377 
relaxation, 406 
resonance, 565 
susceptibility, 332 
transition temperature, 251, 252 

Magnetism, 270 
Magnetization, 16, 45, 91, 92, 114, 116, 120, 125, 

127, 130, 132, 143, 144, 163, 312, 318, 338, 
339, 340, 399, 400, 401, 402, 404, 405 

current, 402, 495, 497 
curve, 116 

Magneto-optical, 327, 330, 331 
Magnetogyric ratio, 566 
Magnetomechanical pressure, 372 
Magneton number, 251 
Magnetooptical Faraday effect, 354 
Magnetoresistance, 499, 500, 501 
Magnetoresistivity, 499 
Magnetothermopower, 519 
Magnus force, 364, 370, 503, 519, 528 
Many-electron state, 172 
Marginal Fermi liquid, 4, 302 
Mass susceptibility, 122 
Matrix element, 285 
Mattheissen’s rule, 7, 510 
Maxwell 

Boltzmann statistics, 2 
curl relation, 323, 386, 387 
equation, 14, 44, 155, 165, 348, 411 
expression, 146 
inhomogeneous equation, 49 
relation, 476 

INDEX 

McMillan formula, 187 
Mean free path, 244 
Meissner 

effect, 24, 41, 117, 155, 162, 165, 188, 427, 507 
fraction, 135 
screening, 424, 426, 431 
state, 129, 308, 333, 334, 377, 429, 524 

Melting line, 378 
Mercury, 34, 61 
Mesoscopic field, 354 
Mesoscopic structure, 114 
Metal-to-insulator phase diagram, 290 
Metal-to-insulator transition, 258 
Metamagnetic phase, 256 
Metamagnetic, 256 
MgB2, 236, 239, 242, 266, 431 
MgCNi3, 257 
Microbridge, 141 
Microwave, 575 

absorption, 565, 577 
cavity, 415 
energy gap, 577 
resistivity, 577 
surface impedance, 248, 249 

Miedema’s empirical rules, 72 
Mirror reflection plane, 228 
Mixed phase, 161 
Mixed state, 150, 161, 345, 386, 517, 524 
Modified Bessel functions, 348, 361, 382, 447 
Molar susceptibility, 16 
Molybdenum, 67 
Monoclinic, 258 
Monte Carlo, 378 

simulation, 105 
Moseley plot, 550 
Moseley’s law, 548, 549 
Mössbauer, 580 

resonance, 565, 579 
spectra, 580, 581 

Mott 
Hubbard insulator, 304 
insulator (MI), 289, 304 
transition, 304 

Multifilamentary wire, 381 
Multigap, 241 
Muon-spin 

relaxation, 578 
resonance, 565 
rotation, 415 

Muon, 578 
Mutual inductance, 131, 263, 490 

bridge, 122 

NaCl, 76 
type, 195 

Nanobridge, 483 
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Nanovolt meter, 516 
Nb3Ge, 24, 63, 70 
Nb3Sn, 61, 67, 76, 141 
NbSe2, 267 
Nb–Ti, 141 
Nd1�85Ce0�15CuO4−�, 214 
Nd2−xCexCuO4−y, 263 
Nd2CuO4, 216, 536, 537 
Nearest-neighbor, 199 

attractive force, 373 
Néel temperature, 137 
Nernst 

coefficient, 520 
effect, 515, 518, 519, 520, 521 
voltage, 520, 521 

Nesting, 303 
Neutron, 581 

diffraction, 221 
N–I–N tunneling, 435, 442, 444 
Niobium, 24, 42, 61, 67, 75, 505 

film, 508 
N–I–S tunneling, 438, 442, 444, 445, 

455, 457 
NMR, 264, 369, 421, 568 

relaxation, 378 
Nonbonding, 278 
Nonlinear penetration depth, 428 
Nonlinear Schrödinger equation, 148 
Nonlocal effects, 428 
Nonlocal electrodynamics, 425 
Nonlocality, 192, 265 
Nonstoichiometric compound, 76 
Normal, 1 

conductor, 92 
electron, 54 
metal, 7 

tunneling, 437, 438 
superconductor tunneling, 438 

mode, 533 
Nuclear 

hyperfine effects, 90 
magnetic resonance (NMR), 565, 566 
quadrupole, 574 

resonance (NQR), 565, 572, 582 

Oblate ellipsoid, 126 
Occupation number, 289, 290 
Octahedron, 75 
Ohm’s law, 5, 20, 410 
One-band approximation, 280 
Open hole, 45, 48 
Open topology, 328 
Optical 

conductivity, 548 
mode, 12 
reflectance, 539, 544 

reflectivity, 547 
transition, 545 

Orbitals, 279 
quantum number, 277 

Order of transition, 109 
Order parameter cuprates, symmetry of, 262 
Organic conductors, 259 
Organic superconductor, 25, 90, 257, 

264, 412 
Orthorhombic, 62, 199, 202, 203, 204, 205, 213, 

228, 231, 258 
distortion, 419 
phase, 198 
structure, 223 
superconductor, 228 
to-tetragonal transition, 215 

Oscillator strength, 535 
Overlap, 277, 279 

integral, 280 
Overlapping vortices, 342, 346 

p orbital, 289 
p-type, 288, 506 
p-wave, 232 

pairing, 420, 421 
Pair-breaking, 236, 273 
Pairing state, 420 
Pairing symmetry, 269, 420 
Pancake vortices, 363, 373 
Parallel field orientation, 106 
Paramagnetic, 23, 48, 56 

ion, 423 
parameter, 62 
phase, 255 

Parity, 287 
Partial densities of states, 301, 302 
Partial occupancy, 208 
Pauli 

exclusion principle, 4, 302, 436 
like, 134 
limit, 137, 138, 141 
limiting field, 137, 138 
susceptibility, 17 

Peierls instability, 304 
Peltier 

coefficient, 522 
effect, 514, 522, 529 

Pendulum, 469 
Penetration, 239 

depth, 53, 54, 121, 138, 139, 141, 152, 244, 258, 
262, 264, 266, 267, 269, 270, 272, 316, 341, 
343, 347, 356, 357, 360, 402, 410, 411, 413, 
414, 415, 416, 417, 419, 420, 421, 422, 424, 
427, 428, 475, 576, 578 

depth factor, 239 
depth shift, 250 

Percentage of anisotropy, 199 
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Perfect 
conductivity, 48 
conductor, 42, 48, 49, 490 
diamagnet, 46, 129 
diamagnetism, 23, 40, 115, 124, 129, 190, 338 
electrical conductivity, 23 
superconductivity, 145 
superconductor, 23, 130 

Perfectly superconducting, 310, 405 
Periodic table, 64, 549 
Permeability, 94, 422, 423 
Perovskite, 196, 198, 200, 256, 257 
Perpendicular field orientation, 106 
Persistent current, 35, 36 
Persistent photoconductivity, 527 
Perturbation Hamiltonian, 444 
Perturbation theory, 187, 284, 443 
Phase, 154, 560, 561 

diagram, 215 
difference, 461, 474 

Phonon, 7, 270, 511 
density of states, 560, 562 
drag, 518 
energy, 173 
scattering, 6 
spectrum, 561 

Photoconductive, 543 
Photoconductivity, 524 
Photoemission, 242, 545, 546, 551, 553 

spectroscopy, 545 
Photon-mediated BCS, 84 
Photoresponse, 525, 527 
Pi-(	-) bands, 242 
Piezoelectric transducer, 454 
Pinning, 311, 367, 370, 391, 395, 429 

barriers, 367 
center, 367, 368 
force, 141, 367, 368, 371, 372, 376, 386, 388, 

390, 392, 394, 519 
strength, 395, 396, 428 

Pippard 
coherence length, 149 
model, 411 

Planar oxygen, 292 
Planar, 227 
Planck distribution function, 12 
Plane wave, 275, 277 
Plasma 

frequency, 7, 260, 535 
phase, 378 
wavelength, 7 

Plasmons, 192 
Point-contact Josephson junction, 467 
Point contact tunneling, 456 
Point group, 180, 184, 185, 228 
Polar angle, 129 

INDEX 

Polaritons, 192 
Polarizability, 535 
Polarization, 543, 539 
Polarized 

infrared reflectance spectra, 547 
light, 539 
Raman spectra, 546 

Polycrystalline sample, 30, 31 
Porosity, 121 
Positron, 561, 563, 578 

annihilation, 561, 564 
density, 564 

Power dissipation, 492 
Power-law model, 388 
Pressure, 26, 63, 67, 68, 121 
Principal quantum number, 277 
Prolate eccentricity, 126 
Prolate ellipsoid, 126 
Proximity, 459 

effect, 430, 435, 458, 459 
junction, 435 

Puckered, 209, 227 
Puckering, 203, 204 
Pulsed NMR, 567 
Py orbital, 288 
Pyramid, 204, 208 
Pyramidal, 227 

coordination, 204 

Quadrature, 131 
Quadrupole resonance, 571 
Quality factor, 415 
Quantized flux, 150 
Quantum 

condition, 346 
interference, 460 
of flux, 150, 346, 378, 379, 463, 503 

Quasi-one-dimensional, 259 
Quasi-two-dimensionality, 239, 379 
Quasiholes, 302 
Quasiparticle, 183, 270, 302, 347, 424, 425, 427, 

428, 435, 440, 445, 449, 459, 515, 516, 527, 
529, 541 

bands, 447 
energy, 416, 450 
energy gap, 244 
operator, 177 
states, 421 
tunnel, 447, 455 

Quenched, 17 

Radiation damage, 574 
Radiation gauge, 146 
Radiationless transition, 546 
Raman 

active mode, 533, 534, 535, 538, 539, 540 
lines, 535 
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scattering, 242

spectra, 541, 542, 543, 544

spectroscopy, 264, 532, 538


Rare earth, 134, 135, 232, 545

Reaction-diffusion problem, 327

Reciprocal


centimeter, 532

space, 9


Recombination process, 527

Reentrant behavior, 255

Reentrant superconducting, 139

Reflectance, 535, 537, 547

Reflection plane, 202

Reflectivity, 535


edge, 544

Relaxation time, 535


approximation, 2

broadening, 580


Repetition length, 320

Rescaled order parameter, 186

Residual resistance ratio, 244

Resistanceless current, 395

Resistivity, 8, 32, 38, 323

Resonant-valence bond (RVB), 286

Response, 543

Restoring torque, 469

Reversed critical states, 397

Reversible magnetization, 413

rf SQUID, 486

Rhombus, 198

Righi–Leduc coefficient, 524

Righi–Leduc effect, 515, 524, 525

RKKY interaction, 252

RNi2B2C, 247

Rutherford back scattering, 558


Sandwich-tunnel junctions, 452

Scalar potential, 130

Scanning, 242


electron microscope, 347, 350, 453, 454

tunneling microscopy, 248


Schönflies notation, 222, 228

Schottky


anomaly, 14

term, 14, 84


Schrödinger equation, 10, 165, 172, 276, 461

Screened Coulomb interaction, 66

Screening


current, 386, 393

length, 5


Second critical field, 238

Second London equation, 155

Second-order perturbation theory, 285

Second-order phase transition, 109

Second quantization, 174

Seebeck effect, 514, 515, 518


Self-Induced flux, 480, 483

Semiconductor, 6


representation, 436, 439, 440

Shapiro step, 467, 478

Sheet resistance, 32, 33

Sheets of Fermi surface, 266

Shielded flux, 397, 399

Shielding, 272, 548


current, 44, 45, 51, 52, 115, 119, 130, 346, 386

super current, 157


Short Josephson junction, 472, 478

Short-range order, 373

Siegbahn notation, 549

Sigma (
-) bond, 242, 291

Silsbee effect, 322

Silver, 1

Sine Gordon equation, 476, 478

Single-electron tunneling, 459, 483

Singlet pairing states, 418

S–I–S


junction, 455

tunneling, 435, 439, 442, 444, 455, 459


Skin depth, 415

Slave


bosons, 287

boson representation, 287


Soft mode, 533

Soft phonon, 544

Solenoid, 45

Solitons, 287

Sommerfeld


constant, 64, 244, 248, 249

electronic term, 247

factor, 12, 65


sp2 hybridization, 240

Spanning k-vectors, 303

Specific heat, 11, 12, 84, 86, 93, 100, 102, 105, 109,


249, 255, 378, 511

jump in, 89, 100, 105, 106, 244


Spectra, 553

Spectroscopy, 531

Sphere, 309

Spin


bag, 303, 304

density wave, 215, 249, 304

glass, 374

singlet, 172

structure, 271

triplet, 217


Spinel, 82

Spinon, 287

Spin–spin coupling, 569

Spring constant, 540

Square, 227

SQUID, 122, 123, 268, 472, 485, 486


junction, 450

state, 125
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Sr2CuO3�1, 226

Sr2RuO4, 211, 217, 269, 426

SrCuO2, 228

Stacking, 211


rules, 205, 209

Steady-state vortex motion, 370, 378

Step function, 173

Steric effects, 205

Stochastic force, 368

Stoichiometric composition, 71, 76

Stokes’ theorem, 150

Strong coupling, 419

Strong pinning, 42


structure, 76

Structural modulation, 221

Structure of vortex, 164

Structure refinement, 207

Strukturbericht notation, 67

Subcell, 212

Sublattice, 76

Substitution, 537

Super, 147

Super current, 36


density, 154, 162, 316

Super electron, 36

Superconducting


cylinder, 119

electron, 54

energy gap, 54, 77

gap, 414, 450

island, 459

layers, 373

loop, 479, 577

phase, 161

quantum interference device, 115, 485

transition temperature, 1

wire, 50


Superconductive glass model, 517

Superconductor-to-superconductor tunneling, 439,


440, 445

Superfluid density, 263, 264, 265, 268, 269, 271, 417,


418, 419

Superfluidity, 327

Superposition of states, 280

Surface current density, 16


surface, 101

Surface field, 333

Surface superconductivity, 332

Susceptibility, 16, 18, 62, 74, 120, 127, 227, 234,


318, 414

tensor, 114


s-wave, 184, 192, 266, 270, 419, 428

gap, 450

pairing, 423


Symmetry, 222

breaking, 217

operation, 222, 228


INDEX 

t-J model, 285

t phase, 211, 217

TCNQ, 259

Temperature


dependence, 427

gradient, 8


Terminal velocity, 368, 369

Tetragonal, 62, 205, 211, 213, 231


structure, 198

to-orthorhombic, 258


Tetragonality, 199

Tetramethylsilane, 568

Thallium, 64, 102, 196


compounds, 210

Thermal


agitation, 363

conductivity, 235, 508, 511, 512, 513, 514, 516

current, 508, 514

effect, 516

energy, 508

fluctuation, 378

force, 515, 519

gradient, 519, 520

vibrations, 7


Thermodynamics, 83

approach, 109, 110

critical field, 139, 141, 147, 244, 340, 342, 343,


345, 381, 427

state variable, 124


Thermoelectric, 490, 518

power, 242


Thermomagnetic effects, 490, 513

Thermopower, 516, 517, 518, 529

Thin film, 317, 319, 380, 421

Thomson relation, 522

Three-state Hubbard model, 288

Tightbinding approximation, 282

Time reversal, 287

Tin particles, 453

Titanium, 67

Tl2Ba2CaCu2O8, 500, 533, 535

Tl2Ba2CanCun+1O2n+6, 218, 219, 244

Tl2Ba2CuO6, 302

TlBa2CanCun+1O2n+4, 208

TlBaCaCuO, 218

TlmBa2CanCun+1Ox, 219

Topological


hysteresis, 327, 405

soliton, 477


Total density of states, 301

Toy model for gap equation, 184

Transition


metal, 65, 195

series, 63

temperature, 37, 116, 253


Transmission spectrometer, 531
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Transport, 489 
current, 49, 52, 56, 156, 159, 308, 326, 375, 376, 

386, 393, 495

entropy, 515, 516, 527, 528

properties, 193, 433


Trapping of magnetic flux, 364 
Trigonal, 62 
Triplet pairing, 270 
Tubular structure, 333 
Tungsten, 67, 68 
Tunnel 

diode, 413, 414, 415 
junction, 443, 453, 454, 456, 469, 489, 495 

Tunneling, 424, 433, 434, 435, 437, 439, 440, 442, 
443, 453


barrier, 454

current, 444, 445, 446, 454, 462, 474

electron, 436

matrix, 443

measurement, 451

process, 436

spectroscopy, 242, 541


Twin-free YBa2Cu3O7, 542 
Two-band superconductor, 266 
Two-body 

interaction, 176 
problem, 172 

Two-dimensional fluid, 372, 373 
Two-dimensional gas, 373 
Two-fluid model, 36, 54, 133 
Two gap model, 242 
Two-level system, 14 
Type I superconductor, 23, 316, 317, 333, 337, 405 
Type II superconductor, 23, 76, 113, 114, 159, 338, 

339, 344, 345, 377, 406 

UBe13, 421 
Uemura scaling, 414 
Ultra-high vacuum, 551 
Ultrasmall Josephson junction, 483, 484 
Ultraviolet, 543 
Unconventional pairing, 192, 264, 420 
Unconventional superconductor, 231, 411, 423, 449 
Uniaxial compression, 31 
Unitary-limit, 421 
Unpaired electron, 574 
Untwinned, 105 

monocrystal, 122

YBa2Cu3O7−�, 371, 372


Upper critical field, 116, 137, 138, 139, 140, 141, 
162, 235, 240, 244, 260, 344, 345, 352, 
364, 513 

UPt3, 217, 232, 234, 421 

Vacuum annealing, 134 
Valence band, 277, 286 

photoemission, 557 

Valence bond, 286 
Valence electron, 65, 73, 77, 544 
van Hove singularity, 257, 289, 292, 300 
Vanadium, 67 
Vector potential, 151, 167, 473 
Vibrational frequency, 532, 581 
Vibrational spectroscopy, 532 
Virtual phonon, 173, 187 
Viscosity, 371 
Viscous drag, 375 
Viscous retarding force, 370 
Voltage characteristic, 469 
Voltage–current, 505 
Vortex, 113, 317, 337, 342, 361, 415, 503 

cores, 347, 504

density, 516

entanglement, 371

entry, 351

flow, 516

glass, 374

lattice, 309, 332, 350, 377, 415

motion, 370, 428, 513, 515, 516

pinning, 415

state, 317

unit cell, 353

velocity, 503, 429


Vortex-antivortex pair, 381 
Vortex-glass state, 374 

Wannier state, 281, 282 
Washboard analogue, 471, 487 
Wavefunctions electron configuration, 276 
Weak-coupling, 182, 268 

limit, 173, 182 
Weak ferromagnetic, 272 
Weak link, 452, 460, 479, 485, 486 

tunnel junction, 472 
Weak pinning, 375 
Weak tunneling, 448 
Weakly coupled, 240 
Weakly linked, 576 
Work function, 62 

X-ray 
absorption near-edge structure, 557 
absorption spectroscopy, 556 
absorption spectrum, 558 

XPS, 553 

YBa2Cu3O7−�, 207, 350, 354, 525, 537, 551, 543, 
567, 568, 574, 580 

YBa2Cu3O7, 202, 291, 454, 499, 500, 506, 508, 
513, 533, 538 

YBaCuO, 262, 263, 414, 416, 424, 427, 
451, 491 

YBaCuO Formula, 207 
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YNi2B2C, 245 Zero electrical resistance, 23 
Ytterbium, 63 Zero field cooled, 39, 42, 45, 46, 47, 117, 120, 
Yukawa solution, 5 123, 237, 239, 313, 329, 577 

Zero resistance, 38, 124 

Zeeman energy, 137 Zero-temperature gap, 182 

level, 574, 576 Zirconium, 71 

Zero-bias conductance peak, 451 Zone, 291 


