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Preface to

When we wrote our 1988 book, Cooper
Oxide Superconductors, our aim was to
present an early survey of the experimen-
tal aspects of the field of high temperature
superconductivity as an aid to researchers
who were then involved in the worldwide
effort to (a) understand the phenomenon of
cuprate superconductivity and (b) search for
ways to raise the critical temperature and
produce materials suitable for the fabrication
of magnets and other devices. A great deal of
experimental data are now available on the
cuprates, and their superconducting proper-
ties have been well characterized using high
quality untwinned monocrystals and epitax-
ial thin films. Despite this enormous research
effort, the underlying mechanisms respon-
sible for the superconducting properties of
the cuprates are still open to question. Nev-
ertheless, we believe that the overall pic-
ture is now clear enough to warrant the
writing of a text-book that presents our
present-day understanding of the nature of

the First
Edition

the phenomenon of superconductivity, sur-
veys the properties of various known super-
conductors, and shows how these properties
fit into various theoretical frameworks. The
aim is to present this material in a format
suitable for use in a graduate-level course.

An introduction to superconductivity
must be based on a background of funda-
mental principles found in standard solid
state physics texts, and a brief introductory
chapter provides this background. This initial
chapter on the properties of normal conduc-
tors is limited to topics that are often referred
to throughout the remainder of the text: elec-
trical conductivity, magnetism, specific heat,
etc. Other background material specific to
particular topics is provided in the appro-
priate chapters. The presence of the initial
normal state chapter makes the remainder of
the book more coherent.

The second chapter presents the essen-
tial features of the superconducting state—
the phenomena of zero resistance and

xvil



xviii

perfect diamagnetism. Super current flow,
the accompanying magnetic fields, and the
transition to this ordered state that occurs at
the transition temperature 7, are described.
The third chapter surveys the properties
of the various classes of superconductors,
including the organics, the buckminister-
fullerenes, and the precursors to the cuprates,
but not the high temperature superconduc-
tors themselves. Numerous tables and figures
summarize the properties of these materials.

Having acquired a qualitative under-
standing of the nature of superconductivity,
we now proceed, in five subsequent chapters,
to describe various theoretical frameworks
which aid in understanding the facts about
superconductors. Chapter 4 discusses super-
conductivity from the view-point of ther-
modynamics and provides expressions for
the free energy—the thermodynamic func-
tion that constitutes the starting point for the
formulations of both the Ginzburg—Landau
(GL) and the BCS theories. The GL the-
ory is developed in Chapter 5 and the BCS
theory in Chapter 6. GL is a readily under-
standable phenomenological theory that pro-
vides results that are widely used in the
interpretation of experimental data, and BCS
in a more fundamental, and mathematically
challenging, theory that makes predictions
that are often checked against experimen-
tal results. Most of Chapter 5 is essential
reading, whereas much of the formalism of
Chapter 6 can be skimmed during a first
reading.

The theoretical treatment is interrupted
by Chapter 7, which presents the details of
the structures of the high temperature super-
conductors. This constitutes important back-
ground material for the band theory sections
of Chapter 8, which also presents the Hub-
bard and related models, such as RVB and
t—J. In addition, Chapter 8 covers other
theoretical approaches involving, for exam-
ple, spinons, holons, slave bosons, anyons,
semions, Fermi liquids, charge and spin den-
sity waves, spin bags, and the Anderson

PREFACE TO THE FIRST EDITION

interlayer tunneling scheme. This completes
the theoretical aspects of the field, except
for the additional description of critical state
models such as the Bean model in Chapter
12. The Bean model is widely used for the
interpretation of experimental results.

The remainder of the text covers the
magnetic, transport, and other properties of
superconductors. Most of the examples in
these chapters are from the literature on
the cuprates. Chapter 9 introduces Type 11
superconductivity and describes magnetic
properties, Chapter 10 continues the dis-
cussion of magnetic properties, Chapter 11
covers the intermediate and mixed states,
and Chapter 12, on critical state models,
completes the treatment of magnetic proper-
ties. The next two chapters are devoted to
transport properties. Chapter 13 covers var-
ious types of tunneling and the Josephson
effect, and Chapter 14 presents the remain-
ing transport properties involving the Peltier,
Seebeck, Hall, and other effects.

When the literature was surveyed in
preparation for writing this text, it became
apparent that a very significant percentage
of current research on superconductivity is
being carried out by spectroscopists, and
to accommodate this, Chapter 15 on spec-
troscopy was added. This chapter lets the
reader know what the individual branches of
spectroscopy can reveal about the properties
of superconductors, and in addition, it pro-
vides an entrée to the vast literature on the
subject.

This book contains extensive tabulations
of experimental data on various supercon-
ductors, classical as well as high T, types.
Figures from research articles were gener-
ally chosen because they exemplify princi-
ples described in the text. Some other figures,
particularly those in Chapter 3, provide cor-
relations of extensive data on many samples.
There are many cross-references between the
chapters to show how the different topics fit
together as on unified subject.

Most chapters end with sets of problems
that exemplify the material presented and
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sets of references for additional reading on
the subject. Other literature citations are scat-
tered throughout the body of each chapter.
Occasional reference is made to our earlier
work, Copper Oxide Superconductors, for
supplementary material.

One of us (C.P.P.) taught a graduate-level
superconductivity course three times using
lecture notes which eventually evolved into
the present text. It was exciting to learn with
the students while teaching the course and
simultaneously doing research on the subject.

We thank the following individuals
for their helpful discussions and comments
on the manuscript: C. Almasan, S. Aktas,
D. Castellanos, T. Datta, N. Fazyleev,
J. B. Goodenough, K. E. Gray, D. U. Gubser,
D. R. Harshman, A. M. Herman, Z. Igbal,
E. R. Jones, A. B. Kaiser, D. Kirvin,

XiX

O. Lopez, M. B. Maple, A. P. Mills,
Jr., S. Misra, F. J. Owens, M. Pencarinha,
A. Petrile, W. E. Pickett, S. J. Poon,
A. W. Sleight, O. F. Schuette, C. Sisson,
David B. Tanner, H. Testardi, C. Ubher,
T. Usher, and S. A. Wolf. We also thank
the graduate students of the superconductiv-
ity classes for their input, which improved
the book’s presentation. We appreciate the
assistance given by the University of South
Carolina (USC) Physics Department; our
chairman, F. T. Avignone; the secretaries,
Lynn Waters and Cheryl Stocker; and espe-
cially by Gloria Phillips, who is thanked
for her typing and multiple emendations of
the BCS chapter and the long list of refer-
ences. Eddie Josie of the USC Instructional
Services Department ably prepared many
of the figures.
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Preface to

It has been an exciting two decades
spending most of my time playing a rela-
tively minor role in the exciting world-wide
Superconductivity Endeavor. My involve-
ment began on March 18™, 1987, when I
attended what became known later as the
“Woodstock of Physics”, the “Special Panel
Discussion on Novel High Temperature
Superconductivity” held at the New York
meeting of the American Physical Society.
I came a half hour early and found the main
meeting room already full, so several hun-
dred physicists and I watched the proceed-
ings at one of the many TV monitors set up in
the corridors of the hotel. That evening in the
hotel room my colleague Timir Datta said to
me “Why don’t we try to write the first book
on high temperature superconductivity?”
When we arrived back in Columbia I enlisted
the aid of Horacio, my main collaborator
for two prior decades, and the work began.
Timir and I spent many nights working
until two or three in the morning gathering

the Second
Edition

together material, collating, and writing. We
had help from two of our USC students
M. M. Rigney and C. R. Sanders. In this work
Copper Oxide Superconductors we managed
to comment on, summarize, and collate the
data by July of 1988, and the book appeared
in print toward the end of that year.

By the mid 1990’s the properties of
the cuprates had become well delineated by
measurements carried out with high quality
untwinned single crystals and epitaxial thin
films. There seemed to be a need to assem-
ble and characterize the enormous amount of
accumulated experimental data on a multi-
tude of superconducting types. To undertake
this task and acquire an understanding of the
then current status of the field, during 1993
and 1994 I mailed postcards to researchers
all over the world requesting copies of their
work on the subject. This was supplemented
by xerox copies of additional articles made
in our library, and provided a collection
of over 2000 articles on superconductivity.

xxi



XXii

These reprints and xeroxes were sorted into
categories which became chapters and sec-
tions of the first edition of this present book.
For several months the floor of my study at
home remained covered with piles of reprints
as I proceeded to sort, peruse, and transpose
data and information from them. This was a
tedious, but nonetheless very exciting task.

There were some surprises, such as the
relatively large number of articles on spec-
troscopy, most of which were very informa-
tive, and they became Chap. 15. This chapter
contained material that most closely matched
my pre-superconductivity era research
endeavors, and I was pleased to learn how
much spectroscopy had contributed to an
understanding of the nature of superconduc-
tors. There were also many articles on mag-
netic properties, critical states, tunneling, and
transport properties, which became Chapters
10, 12, 13, and 14, respectively. Most of
the relatively large number of articles on the
Hubbard Model did not, in my opinion, add
very much to our understanding of super-
conductivity. Some of them were combined
with more informative articles on band struc-
ture to form Chap. 8. There was a plethora
of articles on the crystallographic structures
of various cuprates, with a great deal of
redundancy, and the information culled from
them constituted Chap. 7. Chapter 9, Type 11
Superconductivity, summarized information
from a large number of reprints.

The Intermediate and Mixed States
Chapter 11 depended much less on informa-
tion garnered from the reprints, and much
more on classical sources. The same was
true of Chap. 3 Classical Superconductors,
Chap. 4 Thermodynamic Properties, Chap. 5
Ginzburg-Landau Theory, and Chap. 6 BCS
Theory written by Rick. Finally the begin-
ning of the First Edition text, namely Chap. 1
Properties of the Normal State, and Chap. 2
The Phenomenon of Superconductivity, were
introductory in nature, and relied very little
on material garnered from the reprint col-
lection. Thus our first edition provided an
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overall coverage of the field as it existed at
the end of 1994.

In 1996 and 1999, respectively, the
books The New Superconductors and Elec-
tromagnetic Absorption in Superconductors
were written in collaboration with Frank
J. Owens as the principal author.

The next project was the Handbook of
Superconductivity, published during the mil-
lennial year 2000. It assembled the experi-
mental data that had accumulated up to that
time. Chapters in this volume were written
by various researchers in the field. Of partic-
ular importance in this work were Chapters
6 and 8 by Roman Gladyshevski and his two
coworkers which tabulated and explicated
extensive data on, respectively, the Classical
and the Cuprate Superconductors. His classi-
fication of the cuprate materials is especially
incisive.

Seven years have now passed since the
appearance of the Handbook, and our under-
standing of the phenomenon of Supercon-
ductivity is now more complete. Much of the
research advances during this period have
been in the area of magnetism so I enlisted
Ruslan Prozorov, who was then a member
of our Physics Department at USC, and an
expert on the magnetic properties of super-
conductors, to join Horacio, Rick, and myself
in preparing a second edition of our 1995
book. In the preparation of this edition some
of the chapters have remained close to the
original, some have been shortened, some
have been extensively updated, and some are
entirely new. The former Chap. 10, Mag-
netic Properties, has been moved earlier and
becomes Chap. 5. Aside from this change,
the first six chapters are close to what they
were in the original edition. Chapter 7,
BCS Theory, has been rewritten to take into
account advances in some topics of recent
interest such as d-wave and multiband super-
conductivity. Chapter 8, on the Structures of
the Cuprates, has material added to it on the
superconductor Sr,RuQ,, layerng schemes,
and infinite layer phases.
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Chapter 9 on Nonclassical Supercon-
ductors describes superconducting materi-
als which do not fit the categories of
Chap. 3. It discusses the properties of the
relatively recently discovered superconduc-
tor magnesium diboride, MgB,, as well as
borocarbides, boronitrides, perovskites such
as MgCNi;,, charge transfer organics, heavy
electron systems, and Buckminsterfullerenes.
The chapter ends with a discussion of the
symmetry of the order parameter, and a
section that treats magnetic superconductors
and the coexistence of superconductivity and
magnetism. The coverage of the Hubbard
Model and Band Structure in Chap. 10 is sig-
nificantly shorter than it was in the first edi-
tion. Chapter 11, Type I Superconductors and
the Intermediate State, includes some recent
developments in addition to what was cov-
ered in the first edition. Chapter 12 describes
the nature and properties of Type II Super-
conductors, and is similar to its counterpart
in the first edition. Chapter 13, Irreversible
Properties, discusses critical states and the
Bean model, the treatment of the latter
being much shorter than it was in the first
edition. In addition there are sections on
current-magnetic moment conversion formu-
lae, and susceptibility measurements of a
perfect superconductor.

Chapter 14, Magnetic Penetration
Depth, written by Ruslau is entirely new.
It covers the topics of isotropic London
electrodynamics, the superconductivity gap
and Fermi surfaces, the semiclassical model
for superfluid density, mixed gaps, s- and
d-wave pairing, the effect of disorder on
the penetration depth, surface Andreev
bound states, nonlocal electrodynamics of

XXIii

nodal superconductors, the nonlinear Meiss-
ner Effect, the Campbell penetration depth,
and proximity effect identification. Chapter
15, Energy Gap and Tunneling, includes a
new section on tunneling in unconventional
superconductors. Finally Chapters 16 and
17 discuss, respectively, transport properties
and spectroscopic properties of superconduc-
tors, and are similar in content to their coun-
terparts in the first edition. Recent data on
superconducting materials have been added
to the tables that appeared in various chapters
of the first edition, and there are some new
tables of data. References to the literature
have been somewhat updated.

Two of us (Horacio and I) are now octo-
genarians, but we continue to work. Over the
decades Horacio has been a great friend and
collaborator. It is no longer “publish or per-
ish” but “stay active or perish.” We intend
to remain active, deo volente.

Professor Prozorov would like to
acknowledge partial support of NSF grants
numbered DMR-06-03841 and DMR-
05-53285, and also the Alfred P. Sloan
Foundation. He wishes to thank his wife
Tanya for her support, and for pushing him
to finish his chapters. He also affirms that:
“In my short time with the USC Department
of Physics, one of the best things that
happened was to get to know Charles Poole
Jr., Horacio Farach, Rick Creswick, and
Frank Avignone III whose enthusiasm was
contagious, and I will always cherish the
memory of our discussions.”

Charles P. Poole, Jr.
June 2007
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1

Properties of

the Normal State

I. INTRODUCTION

This text is concerned with the
phenomenon of superconductivity, a phe-
nomenon characterized by certain electri-
cal, magnetic, and other properties, many
of which will be introduced in the follow-
ing chapter. A material becomes supercon-
ducting below a characteristic temperature,
called the superconducting transition tem-
perature T,, which varies from very small
values (millidegrees or microdegrees) to val-
ues above 100 K. The material is called nor-
mal above T,, which merely means that it
is not superconducting. Elements and com-
pounds that become superconductors are
conductors—but not good conductors—in
their normal state. The good conductors,
such as copper, silver, and gold, do not
superconduct.

It will be helpful to survey some proper-
ties of normal conductors before discussing
the superconductors. This will permit us to
review some background material and to
define some of the terms that will be used
throughout the text. Many of the normal state
properties that will be discussed here are
modified in the superconducting state. Much
of the material in this introductory chapter
will be referred to later in the text.

I1l. CONDUCTING ELECTRON
TRANSPORT

The electrical conductivity of a metal
may be described most simply in terms of the
constituent atoms of the metal. The atoms,
in this representation, lose their valence
electrons, causing a background lattice of

1
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Table 1.1 Characteristics of Selected Metallic Elements?

Radius Xtal
Z Element Valence (A) type

p. 77K p.273K 7,77K 7,273k K,

ad) 1 (25) @A) Q) ) @) @) (o)

o
11Na 1 097 bec 423 2.65
19K 1 133 bec 523 1.40
29 Cu 1 096 fec 3.6l 8.47
47 Ag 1 126  fec  4.09 5.86
41Nb 1 10 bec 330 5.56
20Ca 2 099 fec 558 461
38Sr 2 112 fec  6.08 355
56Ba 2 134 bec  5.02 351
13 Al 3 051 fec 405  18.1
81Tl 3 095 bec 388 105
50Sn(W) 4 071 tetrg a=5.82 14.8
c=3.17
82Pb 4 084 fec 495 132
51Sb 5 0.62 rthomb4.51 165
83 Bi 5 074 rhomb4.75  14.1

2.57

1.73

2.08 0.8 4.2 170 32 1.38
1.38 6.1 180 41 1.0
1.41 0.2 1.56 210 27 4.01
1.60 0.3 1.51 200 40 4.28
1.63 3.0 15.2 21 4.2 0.52
3.43 22 2.06
1.89 7 23 14 4.4 ~ 0.36
196 17 60 66 19 ~ 0.19
1.10 0.3 2.45 65 8.0 2.36
1.31 3.7 15 9.1 22 0.5
1.17 2.1 10.6 11 2.3 0.64
1.22 4.7 19.0 57 14 0.38
1.19 8 39 2.7 0.55 0.18
1.13 35 107 0.72 0.23 0.09

“ Notation: a, lattice constant; n,, conduction electron density; r, = (3/4mn,)'/?; p, resistivity; 7, Drude relaxation
time; Ky,, thermal conductivity; L = pK,/T is the Lorentz number; v, electronic specific heat parameter; m*,
effective mass; Ry, Hall constant; ®p, Debye temperature; w,, plasma frequency in radians per femtosecond
(10_15 s); IP, first ionization potential; WF, work function; Eg, Fermi energy; T, Fermi temperature in kilokelvins;
kg, Fermi wavenumber in mega reciprocal centimeters; and vg, Fermi velocity in centimeters per microsecond.

positive ions, called cations, to form, and the
now delocalized conduction electrons move
between these ions. The number density n
(electrons/cm®) of conduction electrons in
a metallic element of density p,(g/cm?),
atomic mass number A (g/mole), and valence
Z is given by

NAme
n—-—

s (1.1)

where N, is Avogadro’s number. The typi-
cal values listed in Table 1.1 are a thousand
times greater than those of a gas at room
temperature and atmospheric pressure.

The simplest approximation that we can
adopt as a way of explaining conductivity is
the Drude model. In this model it is assumed
that the conduction electrons

1. do not interact with the cations (“free-
electron approximation”) except when
one of them collides elastically with
a cation which happens, on average,
1/7 times per second, with the result

that the velocity v of the electron
abruptly and randomly changes its direc-
tion (“relaxation-time approximation”);

2. maintain thermal equilibrium through col-
lisions, in accordance with Maxwell—
Boltzmann statistics (“classical-statistics
approximation”);

3. do not interact with each other
(“independent-electron approximation”).

This model predicts many of the general fea-
tures of electrical conduction phenomena, as
we shall see later in the chapter, but it fails
to account for many others, such as tunnel-
ing, band gaps, and the Bloch 7° law. More
satisfactory explanations of electron trans-
port relax or discard one or more of these
approximations.

Ordinarily, one abandons the free-
electron approximation by having the elec-
trons move in a periodic potential arising
from the background lattice of positive ions.
Figure 1.1 gives an example of a simple
potential that is negative near the positive
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w, 12
(FEm) e LR (F e e de e ()
K2 mole K>/ m, Ryne fs € € € em ms
0.021 1.5 1.3 —1.1 150 898 514 275 3.24 37.7 92 107
0.022 2.0 1.2 —1.1 100 598 434 23 2.12 24.6 75 86
0.023 0.67 1.3 —14 310 385 772 46 7.0 81.6 136 157
0.023 0.67 1.1 —1.2 220 757 43 5.49 63.8 120 139
0.029 8.4 12 265 6.87 43 5.32 61.8 118 137
0.026 2.7 1.8 —0.76 230 6.11 29 4.69 544 111 128
0.030 3.6 2.0 150 569 2.6 3.93 457 102 118
0.042 2.7 1.4 110 521 2.7 3.64 423 98 113
0.021 1.26 1.4 +1.0 394 14.5 599 43 11.7 136 175 203
0.028 1.5 1.1 96 6.11 3.8 8.15 94.6 146 169
0.025 1.8 1.3 170 734 44 10.2 118 164 190
0.026 2.9 1.9 88 741 43 947 110 158 183
0.026 0.63 0.38 200 8.64 4.6 10.9 127 170 196
0.035 0.084 0.047 120 729 42 990 115 161 187
V=0 4@ ® @ @ ® the distribution function
LU |
folv) = . (12)

Figure 1.1 Muffin tin potential has a constant nega-
tive value —V,, near each positive ion and is zero in the
region between the ions.

ions and zero between them. An electron
moving through the lattice interacts with the
surrounding positive ions, which are oscillat-
ing about their equilibrium positions, and the
charge distortions resulting from this inter-
action propagate along the lattice, causing
distortions in the periodic potential. These
distortions can influence the motion of yet
another electron some distance away that
is also interacting with the oscillating lat-
tice. Propagating lattice vibrations are called
phonons, so that this interaction is called
the electron-phonon interaction. We will
see later that two electrons interacting with
each other through the intermediary phonon
can form bound states and that the result-
ing bound electrons, called Cooper pairs,
become the carriers of the super current.
The classical statistics assumption is
generally replaced by the Sommerfeld
approach. In this approach the electrons are
assumed to obey Fermi-Dirac statistics with

exp[(mv?/2 —u)/keT]+1

(see the discussion in Section IX), where kg
is Boltzmann’s constant, and the constant u
is called the chemical potential. In Fermi—
Dirac statistics, noninteracting conduction
electrons are said to constitute a Fermi gas.
The chemical potential is the energy required
to remove one electron from this gas under
conditions of constant volume and constant
entropy.

The relaxation time approximation
assumes that the distribution function f(v, r)
is time dependent and that when f(v, 1) is
disturbed to a nonequilibration configuration
£, collisions return it back to its equilib-
rium state f° with time constant 7 in accor-
dance with the expression

ﬁ _ fcol _ fO

dt T

— . (1.3)
Ordinarily, the relaxation time 7 is assumed
to be independent of the velocity, resulting in
a simple exponential return to equilibrium:

fo 0 =)+ ) = fW)]e .
(1.4)
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In systems of interest f(v, f) always remains
close to its equilibrium configuration (1.2).
A more sophisticated approach to collision
dynamics makes use of the Boltzmann equa-
tion, and this is discussed in texts in solid
state physics (e.g., Ashcroft and Mermin,
1976; Burns, 1985; Kittel, 1976) and statis-
tical mechanics (e.g., Reif, 1965).

It is more realistic to waive the
independent-electron approximation by rec-
ognizing that there is Coulomb repulsion
between the electrons. In the following
section, we will show that electron screen-
ing makes electron—electron interaction neg-
ligibly small in good conductors. The use
of the Hartree—Fock method to calculate the
effects of this interaction is too complex to
describe here; it will be briefly discussed in
Chapter 10, Section VIIL.

When a method developed by Landau
(1957a, b) is employed to take into account
electron—electron interactions so as to ensure
a one-to-one correspondence between the
states of the free electron gas and those of the
interacting electron system, the conduction
electrons are said to form a Fermi liquid. Due
to the Pauli exclusion principle, momentum-
changing collisions occur only in the case of
electrons at the Fermi surface. In what are
called marginal Fermi liquids the one-to-one
correspondence condition breaks down at the
Fermi surface. Chapter 10, Section VII pro-
vides a brief discussion of the Fermi liquid
and the marginal Fermi liquid approaches to
superconductivity.

I1l. CHEMICAL POTENTIAL
AND SCREENING

Ordinarily, the chemical potential u is
close to the Fermi energy Ep and the con-

duction electrons move at speeds vg corre-
sponding to kinetic energies %mvé close to
Ep = kg T.. Typically, vg &~ 10°m/s for good

conductors, which is 1/300 the speed of light;

1 PROPERTIES OF THE NORMAL STATE

perhaps one-tenth as great in the case of high-
temperature superconductors and A15 com-
pounds in their normal state. If we take 7 as
the time between collisions, the mean free
path [, or average distance traveled between
collisions, is

(1.5)

For aluminum the mean free path is 1.5 x
10®m at 300K, 1.3 x 107"m at 77K, and
6.7 x 10~ m at 4.2K.

To see that the interactions between con-
duction electrons can be negligible in a good
conductor, consider the situation of a point
charge O embedded in a free electron gas
with unperturbed density n,. This negative
charge is compensated for by a rigid back-
ground of positive charge, and the delocal-
ized electrons rearrange themselves until a
static situation is reached in which the total
force density vanishes everywhere. In the
presence of this weak electrostatic interac-
tion the electrons constitute a Fermi liquid.

The free energy F in the presence of an
external potential is a function of the local
density n(r) of the form

| =vpT.

F[n]:Fo[n]—e/ n(N®(d’r, (1.6)

where @(r) is the electric potential due to
both the charge Q and the induced screening
charge and F[n] is the free energy of a non-
interacting electron gas with local density n.
Taking the functional derivative of F[n] we
have

SF[n]
on(r)

— po(N —e®(n)  (L7)

(1.8)

where w,(r) is the local chemical potential of
the free electron gas in the absence of charge
QO and u is a constant. At zero temperature,
which is a good approximation because T <
Tk, the local chemical potential is

:IJ,’

(1.9)

h2
po = o (3mn).
2m
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Solving this for the density of the electron
gas, we have

n(r) = 1

32
_ {2'" [,LL-l-e(IJ(r)]} . (1.10)
37

2

Typically the Fermi energy is much greater
than the electrostatic energy so Eq. (1.10)
can be expanded about ® = 0 to give

= (143-7).

> (1.11)

where n, = [2mu/h??/37*. The total
induced charge density is then

pi(r) = e[ny —n(r)]
3 nyed(r)
—_ _5 N T. (1.12)

Poisson’s equation for the electric potential
can be written as

VED(r) — A2 ®(r) = —4mQ58(r), (1.13)
where the characteristic distance A, called
the screening length, is given by

1
A= (1.14)
6T nye?

Equation (1.13) has the well-known Yukawa
solution

b=,
;

(1.15)

Note that at large distances the poten-
tial of the charge falls off exponentially,
and that the characteristic distance A, over
which the potential is appreciable decreases
with the electron density. In good conductors
the screening length can be quite short, and
this helps to explain why electron—electron
interaction is negligible. Screening causes
the Fermi liquid of conduction electrons to
act like a Fermi gas.

IV. ELECTRICAL CONDUCTIVITY

When a potential difference exists
between two points along a conducting wire,
a uniform electric field E is established along
the axis of the wire. This field exerts a force
F = —eE that accelerates the electrons:

()
—eE=m|— ),
dt

and during a time ¢ that is on the order of the
collision time 7 the electrons attain a velocity

()

The electron motion consists of successive
periods of acceleration interrupted by colli-
sions, and, on average, each collision reduces
the electron velocity to zero before the start
of the next acceleration.

To obtain an expression for the current
density J,

(1.16)

(1.17)

J=nev,, (1.18)

we assume that the average velocity v,, of
the electrons is given by Eq. (1.17), so we

obtain
ne*r
J= E.
m

The dc electrical conductivity o, is defined
by Ohm’s law,

(1.19)

J=o,E (1.20)
_E (1.21)
Po

where p, = 1/0, is the resistivity, so from
Eq. (1.19) we have

ne’r

(1.22)

0y =
m

We infer from the data in Table 1.1 that
metals typically have room temperature
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Figure 1.2 Typical temperature dependence of the
conduction electron relaxation time 7.

resistivities between 1 and 100 u() cm.
Semiconductor resistivities have values from
10* to 10" wQ cm, and for insulators the
resistivities are in the range from 10%° to
102 1 Q cm.

Collisions can arise in a number of ways,
for example, from the motion of atoms away
from their regular lattice positions due to
thermal vibrational motion—the dominant
process in pure metals at high temperatures
(e.g., 300K), or from the presence of impu-
rities or lattice imperfections, which is the
dominant scattering process at low tempera-
tures (e.g., 4 K). We see from a comparison
of the data in columns 11 and 12 of Tablel.1
that for metallic elements the collision time
decreases with temperature so that the elec-
trical conductivity also decreases with tem-
perature, the latter in an approximately linear
fashion. The relaxation time 7 has the limit-
ing temperature dependences

T73
w{T

T < 0

T> 0’ (1.23)

as shown in Figure 1.2; here ®y, is the Debye
temperature. We will see in Section VI that,
for T <« Op, an additional phonon scattering
correction factor must be taken into account
in the temperature dependence of o,.

V. FREQUENCY DEPENDENT
ELECTRICAL CONDUCTIVITY

When a harmonically varying electric
field E = Eyje™™" acts on the conduction

1 PROPERTIES OF THE NORMAL STATE

electrons, they are periodically accelerated
in the forward and backward directions as
E reverses sign every cycle. The conduc-
tion electrons also undergo random collisions
with an average time 7 between the col-
lisions. The collisions, which interrupt the
regular oscillations of the electrons, may be
taken into account by adding a frictional
damping term p/7 to Eq. (1.16),

d
PP__ g, (1.24)
dt 7

where p = mv is the momentum. The

momentum has the same harmonic time vari-
ation, p = mv,e~'*', If we substitute this into
Eq. (1.24) and solve for the velocity v,, we
obtain

—eE, T

Vo= (1.25)

m l—iwt
Comparing this with Eqgs. (1.18) and (1.22)
with v, playing the role of v,, gives us the
ac frequency dependent conductivity:

Jy

(1.26)

o= .

l-iwT
This reduces to the dc case of Eq. (1.22)
when the frequency is zero.

When w7 < 1, many collisions occur
during each cycle of the E field, and the aver-
age electron motion follows the oscillations.
When ot > 1, E oscillates more rapidly
than the collision frequency, Eq. (1.24) no
longer applies, and the electrical conductiv-
ity becomes predominately imaginary, corre-
sponding to a reactive impedance. For very
high frequencies, the collision rate becomes
unimportant and the electron gas behaves
like a plasma, an electrically neutral ionized
gas in which the negative charges are mobile
electrons and the positive charges are fixed in
position. Electromagnetic wave phenomena
can be described in terms of the frequency-
dependent dielectric constant €(w),

€(w) =€, (1—2—]3) ,

(1.27)
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where w), is the plasma frequency,

n6‘2 1/2

“= <fom> .
Thus w, is the characteristic frequency of
the conduction electron plasma below which
the dielectric constant is negative—so elec-
tromagnetic waves cannot propagate—and
above which € is positive and propagation is
possible. As a result metals are opaque when
® < w, and transparent when @ > w,. Some
typical plasma frequencies w, /27 are listed
in Tablel.1. The plasma wavelength can also
be defined by setting A, = 27c/w,,.

(1.28)

VI. ELECTRON-PHONON
INTERACTION

We will see later in the text that
for most superconductors the mechanism
responsible for the formation of Cooper pairs
of electrons, which carry the supercurrent,
is electron—phonon interaction. In the case
of normal metals, thermal vibrations dis-
turb the periodicity of the lattice and pro-
duce phonons, and the interactions of these
phonons with the conduction electrons cause
the latter to scatter. In the high-temperature
region (T > Op), the number of phonons
in the normal mode is proportional to the
temperature (cf. Problem 6). Because of the
disturbance of the conduction electron flow
caused by the phonons being scattered, the
electrical conductivity is inversely propor-
tional to the temperature, as was mentioned
in Section IV.

At absolute zero the electrical conduc-
tivity of metals is due to the presence of
impurities, defects, and deviations of the
background lattice of positive ions from the
condition of perfect periodicity. At finite but
low temperatures, 7 < Op, we know from
Eq. (1.23) that the scattering rate 1/7 is pro-
portional to T3. The lower the temperature,

7

the more scattering in the forward direc-
tion tends to dominate, and this introduces
another T? factor, giving the Bloch T° law,

oxT? TKOp, (1.29)
which has been observed experimentally for
many metals.

Standard solid-state physics texts dis-
cuss Umklapp processes, phonon drag, and
other factors that cause deviations from the
Bloch T° law, but these will not concern
us here. The texts mentioned at the end of
the chapter should be consulted for further
details.

VII. RESISTIVITY

Electrons moving through a metallic
conductor are scattered not only by phonons
but also by lattice defects, impurity atoms,
and other imperfections in an otherwise
perfect lattice. These impurities produce
a temperature-independent contribution that
places an upper limit on the overall electrical
conductivity of the metal.

According to Matthiessen’s rule, the
conductivities arising from the impurity and
phonon contributions add as reciprocals; that
is, their respective individual resistivities, p,
and p;,, add to give the total resistivity

p(T) = po+ pp(T). (1.30)
We noted earlier that the phonon term p ;, (T')
is proportional to the temperature 7 at high
temperatures and to 7° via the Bloch law
(1.29) at low temperatures. This means that,
above room temperature, the impurity con-
tribution is negligible, so that the resistivity
of metallic elements is roughly proportional
to the temperature:

p(T) =~ p(300K) [%} 300K < T.
(1.31)
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Figure 1.3 Temperature dependence of the resistiv-
ity p of a pure (p,) and a less pure conductor. Impurities
limit the zero temperature resistivity (p;) in the latter
case.

At low temperatures far below the Debye
temperature, the Bloch 77 law applies to give

p(T)=p,+AT> T KO,  (132)
Figure 1.3 shows the temperature depen-
dence of the resistivity of a high-purity (low
po) and a lower-purity (larger p;) good con-
ductor.

Typical resistivities at room temperature
are 1.5 to 2 Q) cm for very good conductors
(e.g., Cu), 10 to 100 for poor conductors,
300 to 10,000 for high-temperature super-
conducting materials, 10* to 10" for semi-
conductors, and 10% to 10%® for insulators.
We see from Eqgs. (1.31) and (1.32) that met-
als have a positive temperature coefficient
of resistivity, which is why metals become
better conductors at low temperature. In con-
trast, the resistivity of a semiconductor has
a negative temperature coefficient, so that it
increases with decreasing temperature. This
occurs because of the decrease in the number
of mobile charge carriers that results from the
return of thermally excited conduction elec-
trons to their ground states on donor atoms
or in the valence band.

VIII. THERMAL CONDUCTIVITY

When a temperature gradient exists in a
metal, the motion of the conduction electrons
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provides the transport of heat (in the form
of kinetic energy) from hotter to cooler
regions. In good conductors such as copper
and silver this transport involves the same
phonon collision processes that are responsi-
ble for the transport of electric charge. Hence
these metals tend to have the same thermal
and electrical relaxation times at room tem-
perature. The ratio K /0T, in which both
thermal (K, Jcm™!'s™!K™') and electri-
cal (o, O 'cm™!) conductivities occur (see
Tablel.1 for various metallic elements), has
a value which is about twice that predicted
by the law of Wiedermann and Franz,

Ky 3 (ks
oT 2\ e

=1.11 x 10* WQ/K?,

(1.33)

(1.34)

where the universal constant %(kB/e)2 is
called the Lorenz number.

IX. FERMI SURFACE

Conduction electrons obey Fermi—Dirac
statistics. The corresponding F-D distribu-
tion function (1.2), written in terms of the
energy E,

1

M) = O E = kT 11

(1.35)

is plotted in Fig 1.4a for T =0 and in
Fig 1.4b for T > 0. The chemical potential
corresponds, by virtue of the expression
=~ Ep=kgTy, (1.36)
to the Fermi temperature 7g, which is typ-
ically in the neighborhood of 105 K. This
means that the distribution function f(F) is 1
for energies below E}; and zero above Eg, and

assumes intermediate values only in a region
kg T wide near Ep, as shown in Fig. 1.4b.
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K(E)
1
T=0
Ee E
(a)
f(E) kT
4 > b
T>0
Er E

(b)
Figure 1.4 Fermi-Dirac distribution function f(E)

for electrons (a) at 7 = 0K, and (b) above 0 K.

The electron kinetic energy can be writ-
ten in several ways, for example,

2 2m 2m
ﬁz
= ﬁ(k§+k§+k§), (1.37)

where p = hk, and the quantization in k-
space, sometimes called reciprocal space,
means that each Cartesian component of k
can assume discrete values, namely 27n, /L,
in the x direction of length L, and likewise
for the y and z directions of length L, and L _,
respectively. Here n, is an integer ‘between
1 and L,/a, where a is the lattice constant;
n, and n_ are defined analogously. The one-
dimensional case is sketched in Fig. 1.5. At
absolute zero these k-space levels are doubly
occupied by electrons of opposite spin up to
the Fermi energy Ef,

2k
Ep=—F

: 1.38
o (1.38)

as indicated in the figure. Partial occupancy
occurs in a narrow region of width kT
at Eg, as shown in Fig. 1.4b. For simplic-
ity we will assume a cubic shape, so that

ol -
my -

0
k

Figure 1.5 One-dimensional free electron energy
band shown occupied out to the first Brillouin zone
boundaries at k = +/a.

L,=L,=L_ =L. Hence the total number
of electrons N is given as

occupied k-space volume

k-space volume per electron
4wk} /3

=2 Qm/Ly

(1.39)

The electron density n = N/V = N/L? at the
energy E = Eg is

k3 1 [2mEg\""?

and the density of states D(F) per unit vol-
ume, which is obtained from evaluating the
derivative dn/dE of this expression (with Ep
replaced by E), is

d 1 /2m\*?
DE)=—nE)=— =) EY
(E) dEn() 2772<h2)

ZD(EF)(E/EF)I/Z’ (1.41)
and this is shown sketched in Fig. 1.6. Using
Eqgs. (1.36) and (1.38), respectively, the den-
sity of states at the Fermi level can be written
in two equivalent ways,
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D(E)

1
E, E

Figure 1.6 Density of states D(E) of a free electron
energy band E = h%k?/2m.

g
@
(=]
EF E
(@
kgT
—»| |
g
)
a T>0
lF
E
{b)

Figure 1.7 Energy dependence of occupation of a
free electron energy band by electrons (a) at 0K and
(b) for T > OK. The products D(E)f(E) are calculated
from Figs. 1.4 and 1.6.

3n
2k T
mkg
h2r?

D(E;) = (1.42)

for this isotropic case in which energy
is independent of direction in k-space (so
that the Fermi surface is spherical). In
many actual conductors, including the high-
temperature superconductors in their normal

1 PROPERTIES OF THE NORMAL STATE

states above T, this is not the case, and D(E)
has a more complicated expression.

It is convenient to express the electron
density n and the total electron energy E; in
terms of integrals over the density of states:

n= / D(E) f(E)dE, (1.43)

E; = f D(E) f(E)EdE. (1.44)

The product D(E) f(E) that appears in these
integrands is shown plotted versus energy in
Fig. 1.7afor T =0 and in Fig. 1.7b for T > 0.

X. ENERGY GAP AND EFFECTIVE MASS

The free electron kinetic energy of
Equation (1.37) is obtained from the plane
wave solution ¢ = ¢~'¥T of the Schrodinger
equation,

_ (;_m) V2 (r) + V(r)¢(r) = Ed(r),
(1.45)

with the potential V(r) set equal to zero.
When a potential, such as that shown in
Fig. 1.1, is included in the Schrédinger equa-
tion, the free-electron energy parabola of
Fig. 1.5 develops energy gaps, as shown in
Fig 1.8. These gaps appear at boundaries
k = £nm/a of the unit cell in k-space, called
the first Brillouin zone, and of successively
higher Brillouin zones, as shown. The ener-
gies levels are closer near the gap, which
means that the density of states D(E) is
larger there (see Figs. 1.9 and 1.10). For
weak potentials, |V| < Eg, the density of
states is close to its free-electron form away
from the gap, as indicated in the figures.
The number of points in k-space remains
the same, that is, it is conserved, when
the gap forms; it is the density D(E) that
changes.
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[
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Figure 1.8 A one-dimensional free electron energy
band shown perturbed by the presence of a weak peri-
odic potential V(x) <« h%r?/2ma®. The gaps open up at
the zone boundaries k = £nm/a, where n=1,2,3,....
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Figure 1.9 Spacing of free electron energy levels in
the absence of a gap (left) and in the presence of a small
gap (right) of the type shown in Fig. 1.8. The increase
of D(E) near the gap is indicated.

If the kinetic energy near an energy gap
is written in the form,

R

E =
K7 omx

, (1.46)

the effective mass m*(k), which is different
from the free-electron value m, becomes a

11

T

Digy

E

Figure 1.10 Energy dependence of the density of
states D(E) corresponding to the case of Fig. 1.9 in the
presence of a gap.

function of k, which takes into account bend-
ing of the free-electron parabola near the gap.
It can be evaluated from the second deriva-
tive of E, with respect to k:

1 1 (d°E,

m* k2 ( dk? )EF'
This differentiation can be carried out if the
shapes of the energy bands near the Fermi
level are known. The density of states D(Ey)
also deviates from the free-electron value

near the gap, being proportional to the effec-
tive mass m*,

(1.47)

*
m*kg
h2m?’

D(Ep) = (1.48)
as may be inferred from Eq. (1.42).

There is a class of materials called heavy
fermion compounds whose effective conduc-
tion electron mass can exceed 100 free elec-
tron masses. Superconductors of this type are
discussed in Sect. 9.11.

XI. ELECTRONIC SPECIFIC HEAT

The specific heat C of a material is
defined as the change in internal energy U
brought about by a change in temperature

d
T )y

(1.49)
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We will not make a distinction between the
specific heat at constant volume and the spe-
cific heat at constant pressure because for
solids these two properties are virtually indis-
tinguishable. Ordinarily, the specific heat is
measured by determining the heat input dQ
needed to raise the temperature of the mate-
rial by an amount d7T,

dQ = CdT. (1.50)
In this section, we will deduce the contribu-
tion of the conduction electrons to the spe-
cific heat, and in the next section we will
provide the lattice vibration or phonon par-
ticipation. The former is only appreciable at
low temperatures while the latter dominates
at room temperature.

The conduction electron contribution C,
to the specific heat is given by the deriva-
tive dE,/dT. The integrand of Eq. (1.44)
is somewhat complicated, so differentiation
is not easily done. Solid-state physics texts
carry out an approximate evaluation of this
integral, to give

C, =T, (1.51)

where the normal-state electron specific

heat constant 7y, sometimes called the
Sommerfeld constant, is given as
a? 5
Y= 3 D(Ep)kg. (1.52)

This provides a way to experimentally evalu-
ate the density of states at the Fermi level. To
estimate the electronic specific heat per mole
we set n = N, and make use of Eq. (1.42) to
obtain the free-electron expression

TR

— 1.53
2T, (1.53)

Yo=
where R = N, kg is the gas constant. This
result agrees (within a factor of 2) with
experiment for many metallic elements.

A more general expression for 7y is
obtained by applying D(Ey) from Eq. (1.48)
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instead of the free-electron value of (1.42).

This gives
m*
Y=\—") Y-
m

where 7, is the Sommerfeld factor (1.53) for
a free electron mass. This expression will be
discussed further in Chapter 9, Section II,
which treats heavy fermion compounds that
have very large effective masses.

(1.54)

XIl. PHONON SPECIFIC HEAT

The atoms in a solid are in a state of con-
tinuous vibration. These vibrations, called
phonon modes, constitute the main contri-
bution to the specific heat. In models of a
vibrating solid nearby atoms are depicted as
being bonded together by springs. For the
one-dimensional diatomic case of alternating
small and large atoms, of masses m, and m,,
respectively, there are low-frequency modes
called acoustic (A) modes, in which the two
types of atoms vibrate in phase, and high-
frequency modes, called optical (O) modes,
in which they vibrate out of phase. The vibra-
tions can also be longitudinal, i.e., along the
line of atoms, or transverse, i.e., perpendicu-
lar to this line, as explained in typical solid-
state physics texts. In practice, crystals are
three-dimensional and the situation is more
complicated, but these four types of modes
are observed. Figure 1.11 presents a typical
wave vector dependence of their frequencies.

It is convenient to describe these vibra-
tions in k-space, with each vibrational mode
having energy E = hw. The Planck distribu-
tion function applies,

1
exp(E/kyT) — 1"
where the minus one in the denominator indi-
cates that only the ground vibrational level is

occupied at absolute zero. There is no chem-
ical potential because the number of phonons

AE) = (1.55)
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Figure 1.11 Typical dependence of energy E on the
wave vector k for transverse (T), longitudinal (L), opti-
cal (O), and acoustic (A) vibrational modes of a crystal.

is not conserved. The total number of acous-
tic vibrational modes per unit volume N is
calculated as in Eq. (1.39) with the factor 2
omitted since there is no spin,

occupied k-space volume

" k-space volume per atom
47kl /3

_ Amkp/3 (1.56)
(2m/L)?

where L* is the volume of the crystal and

kp is the maximum permissible value of k.

In the Debye model, the sound velocity v is

assumed to be isotropic (v, = v, = v,) and

independent of frequency,

(1.57)

Writing wp = vkp and substituting this
expression in Eq. (1.56) gives, for the density
of modes n = N/L?,

@D

" e

(1.58)

where the maximum permissible frequency
wy, is called the Debye frequency.

13

The vibration density of states per unit
volume D, (w) = dn/dw is

2

Dn(@) =52

(1.59)
and the total vibrational energy E, is
obtained by integrating the phonon mode
energy ho times the density of states (1.59)
over the distribution function (1.55) (cf. de
Wette et al., 1990)

o wp [ @’ hodw
ph_/o 2203 ) efiw/ksT —1°

The vibrational or phonon specific heat
C,n = dE,,/dT is found by differentiating
Eq. (1.60) with respect to the temperature,

C. —9R T 3/(”’13 x*e*dx
T e o (e 1)

and Fig. 1.12 compares this temperature
dependence with experimental data for Cu
and Pb. The molar specific heat has the
respective low- and high-temperature limits

127 T\
Cphz ? R @—D T<< ®D
(1.62a)
(1.62b)

(1.60)

(1.61)

Cyp=3R T> 0,

far below and far above the Debye tempera-
ture

hwp
kg

Op = —2, (1.63)

and the former limiting behavior is shown by
the dashed curve in Fig. 1.12. We also see
from the figure that at their superconduct-
ing transition temperatures 7, the element
Pb and the compound LaSrCuO are in the
T3 region, while the compound YBaCuO is
significantly above it.

Since at low temperatures a metal has an
electronic specific heat term (1.51) that is lin-
ear in temperature and a phonon term (1.62a)
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Figure 1.12 Temperature dependence of the phonon-specific heat
in the Debye model compared with experimental data for Cu and Pb.
The low-temperature 7% approximation is indicated by a dashed curve.
The locations of the three superconductors Pb, (Lag ¢y5S1 o75),CuOy,
and YBa,Cu30,_; at their transition temperature 7, on the Debye
curve are indicated (it is assumed that they satisfy Eq. (1.61)).

that is cubic in 7', the two can be experimen-
tally distinguished by plotting C,,,/T versus
T2, where

Cowp 2
=vy+AT", (1.64)
T
as shown in Fig. 1.13. The slope gives the
phonon part A and the intercept at 7 =0
gives the electronic coefficient y
Materials with a two-level system in
which both the ground state and the excited

T2

Figure 1.13 Typical plot of C,,/T versus T? for
a conductor. The phonon contribution is given by the
slope of the line, and the free electron contribution 7y
is given by the intercept obtained by the extrapolation
T—0.

state are degenerate can exhibit an extra
contribution to the specific heat, called the
Schottky term. This contribution depends on
the energy spacing Eg, between the ground
and excited states. When Eg, < kg7, the
Schottky term has the form a7~ (Crow
and Ong, 1990). The resulting upturn in the
observed specific heat at low temperatures,
sometimes called the Schottky anomaly, has
been observed in some superconductors.

XHI. ELECTROMAGNETIC FIELDS

Before discussing the magnetic proper-
ties of conductors it will be helpful to say a
few words about electromagnetic fields, and
to write down for later reference several of
the basic equations of electromagnetism.

These equations include the two homo-
geneous Maxwell’s equations

V.-B=0, (1.65)
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B
VxE+ — =0,

- (1.66)

and the two inhomogeneous equations

V.D=p, (1.67)

oD
VxH=J+—,
ot

(1.68)
where p and J are referred to as the free
charge density and the free current density,
respectively. The two densities are said to
be ‘free’ because neither of them arises from
the reaction of the medium to the presence
of externally applied fields, charges, or cur-
rents. The B and H fields and the E and D
fields, respectively, are related through the
expressions

B=pH=p,(H+M),
D=¢cE=¢E+P,

(1.69)
(1.70)

where the medium is characterized by its per-
meability u and its permittivity €, and u, and
€, are the corresponding free space values.
These, of course, are SI formulae. When cgs
units are used, w, = €, = 1 and the factor 47
must be inserted in front of M and P.

The fundamental electric (E) and mag-
netic (B) fields are the fields that enter into
the Lorentz force law

F=¢gE+vxB) (1.71)
for the force F acting on a charge ¢ moving
at velocity v in a region containing the fields
E and B. Thus B and E are the macroscopi-
cally measured magnetic and electric fields,
respectively. Sometimes B is called the mag-
netic induction or the magnetic flux density.

It is convenient to write Eq. (1.68)

in terms of the fundamental field B using
Eq. (1.69)

D
VxB=py(@+Vx M)+, (172)

15

where the displacement current term dD/dt
is ordinarily negligible for conductors and
superconductors and so is often omitted. The
reaction of the medium to an applied mag-
netic field produces the magnetization cur-
rent density V x M which can be quite large
in superconductors.

XIV. BOUNDARY CONDITIONS

We have been discussing the relation-
ship between the B and H fields within a
medium or sample of permeability w. If the
medium is homogeneous, both © and M can
be constant throughout, and Eq. (1.69), with
B = uH, applies. But what happens to the
fields when two media of respective perme-
abilities u’ and p” are in contact? At the
interface between the media the B’ and H'
fields in one medium will be related to the B”
and H” fields in the other medium through
the two boundary conditions illustrated in
Fig. 1.14, namely:

1. The components of B normal to the inter-

face are continuous across the boundary:

B, =B . (1.73)

2. The components of H tangential to

the interface are continuous across the
boundary:

H, = H].

= (1.74)

B

Figure 1.14 Boundary conditions for the compo-
nents of the B and H magnetic field vectors perpendicu-
lar to and parallel to the interface between regions with
different permeabilities. The figure is drawn for the case

/-L” — 2“/
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If there is a surface current density Jg,.
present at the interface, the second condition
must be modified to take this into account,
fi x (H/ - H”) = Jsurf’ (175)
where n is a unit vector pointing from the
double primed (”) to the primed region, as
indicated in Fig. 1.14, and the surface current
density J,, which has the units ampere per
meter, is perpendicular to the field direction.
When H' and H” are measured along the
surface parallel to each other, Eq. (1.75) can
be written in scalar form:
H—H =1

surf *

(1.76)

In like manner, for the electric field case the
normal components of D and the tangential
components of E are continuous across an
interface, and the condition on D must be
modified when surface charges are present.

XV. MAGNETIC SUSCEPTIBILITY
It is convenient to express Eq. (1.69) in
terms of the dimensionless magnetic suscep-

tibility x,

(1.77)
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to give
B = pu H(1+ x5) SI units (1.78a)
B =H(l+4my,) cgsunits. (1.78b)

The susceptibility x is slightly nega-
tive for diamagnets, slightly positive for
paramagnets, and strongly positive for
ferromagnets. Elements that are good
conductors have small susceptibilities, some-
times slightly negative (e.g., Cu) and some-
times slightly positive (e.g., Na), as may be
seen from Table 1.2. Nonmagnetic inorganic
compounds are weakly diamagnetic (e.g.,
NaCl), while magnetic compounds con-
taining transition ions can be much more
strongly paramagnetic (e.g., CuCl,).

The magnetization in Eq. (1.77) is the
magnetic moment per unit volume, and
the susceptibility defined by this expres-
sion is dimensionless. The susceptibility of a
material doped with magnetic ions is propor-
tional to the concentration of the ions in the
material. In general, researchers who study
the properties of these materials are more
interested in the properties of the ions them-
selves than in the properties of the material
containing the ions. To take this into account
it is customary to use molar susceptibilities
xM, which in the SI system have the units
m? per mole.

Table 1.2 cgs Molar Susceptibility (x,,) and Dimensionless S
Volume Susceptibility (x) of Several Materials

MW Density Xegs X
Material g/mole g/cm?® cm?®/mole —
Free space — 0.0 0 0
Na 22.99 0.97 1.6 x 1073 8.48 x 107°
NaCl 58.52 2.165 —3.03x 1073 —1.41x 1073
Cu 63.54 8.92 —5.46 x 107° —9.63 x 107¢
CuCl, 134.6 3.386 1.08 x 1073 3.41x107*
Fe alloy ~ 60 7-8 103-10* 103-10*

Perfect SC — —

— -1
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It is shown in solid-state physics texts
(e.g., Ashcroft and Mermin, 1976; Burns,
1985; Kittel, 1976) that a material containing
paramagnetic ions with magnetic moments
w that become magnetically ordered at low
temperatures has a high-temperature mag-
netic susceptibility that obeys the Curie—
Weiss Law:

2

M _ ny
X = ey (1.79)
C
- (1.79b)

where n is the concentration of paramag-
netic ions and C is the Curie constant.
The Curie—Weiss temperature ® has a pos-
itive sign when the low-temperature align-
ment is ferromagnetic and a negative sign
when it is antiferromagnetic. Figure 1.15
shows the temperature dependence of yM
for the latter case, in which the denom-
inator becomes T + |®|. The temperature
Ty at which antiferromagnetic alignment
occurs is referred to as the Néel tempera-
ture, and typically Ty # ©. When © =0,
Eq. (1.79) is called the Curie law.

)
Y
b
)
X

T
Xy

1
-8 o Tu T

Figure 1.15 Magnetic susceptibility of a material
that is paramagnetic above the Néel transition temper-
ature 7Ty and antiferromagnetic with axial symmetry
below the transition. The extrapolation of the param-
agnetic curve below 7 = 0 provides the Curie-Weiss
temperature ©.
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For a rare earth ion with angular momen-
tum Jh we can write
w =g ugJ(J +1), (1.80)
where J = L+ S is the sum of the orbital
(L) and spin (S) contributions, uy = eh/2m
is the Bohr magneton, and the dimensionless
Landé g factor is

3 S(S+1)—L(L+1)

=2t orn (1.81)

For a first transition series ion, the orbital
angular momentum L#% is quenched, which
means that it is uncoupled from the spin
angular momentum and becomes quantized
along the crystalline electric field direction.
Only the spin part of the angular momentum
contributes appreciably to the susceptibility,
to give the so-called spin-only result

p =g ugS(S+1), (1.82)
where for most of these ions g ~ 2.

For conduction electrons the only con-
tribution to the susceptibility comes from
the electrons at the Fermi surface. Using an
argument similar to that which we employed
for the electronic specific heat in Section XI
we can obtain the temperature-independent
expression for the susceptibility in terms of
the electronic density of states,

X = AD(Ey), (1.83)
which is known as the Pauli susceptibility.
For a free electron gas of density n we sub-

stitute the first expression for D(Eg) from
Eq. (1.42) in Eq. (1.83) to obtain, for a mole,

M _ 3”/“"%;
2k Ty

(1.84)

For alkali metals the measured Pauli sus-
ceptibility decreases with increasing atomic
number from Li to Cs with a typical value
~ 1x 107°. The corresponding free-electron
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values from Eq. (1.84) are about twice
as high as their experimental counterparts,
and come much closer to experiment when
electron—electron interactions are taken into
account. For very low temperatures, high
magnetic fields, and very pure materials
there is an additional dia-magnetic correction
term Xp.ndae» called Landau diamagnetism,
which arise from the orbital electronic inter-
action with the magnetic field. For the free-
electron this correction has the value
XLandau = _%XPauli' (185)
In preparing Table 1.2 the dimensionless
SI values of y listed in column 5 were cal-
culated from known values of the molar cgs
susceptibility ngs’ which has the units cm?
per mole, using the expression

Pm

(1.86)

where p,, is the density in g per cm® and MW
is the molecular mass in g per mole. Some
authors report per unit mass susceptibility
data in emu/g, which we are calling xg.
The latter is related to the dimension-less y
through the expression

X =47p, X (1.87)
The ratio of Eq. (1.52) to Eq. (1.83) gives
the free-electron expression

0 1 (7TkB )2

XM 3\ g )
where M is the susceptibility arising from
the conduction electrons. An experimen-
tal determination of this ratio provides a
test of the applicability of the free-electron
approximation.

This section has been concerned with
dc susceptibility. Important information can
also be obtained by using an ac applied field
B, cos wt to determine y,. = ¥’ +ix”, which
has real part x’, called dispersion, in phase

(1.88)
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with the applied field, and an imaginary lossy
part x”, called absorption, which is out of
phase with the field (Khode and Couach,
1992). D. C. Johnston (1991) reviewed nor-
mal state magnetization of the cuprates.

XVI. HALL EFFECT

The Hall effect employs crossed electric
and magnetic fields to obtain information on
the sign and mobility of the charge carriers.
The experimental arrangement illustrated in
Fig. 1.16 shows a magnetic field B, applied
in the z direction perpendicular to a slab and
a battery that establishes an electric field E|
in the y direction that causes a current / = JA
to flow, where J = nev is the current density.
The Lorentz force

F=gvxB, (1.89)
of the magnetic field on each moving charge
q is in the positive x direction for both posi-
tive and negative charge carriers, as shown
in Figs. 1.17a and 1.17b, respectively. This
causes a charge separation to build up on the
sides of the plate, which produces an elec-
tric field E, perpendicular to the directions
of the current (y) and magnetic (z) fields.
The induced electric field is in the negative
x direction for positive ¢, and in the posi-
tive x direction for negative g, as shown
in Figs. 1.17c and 1.17d, respectively. After
the charge separation has built up, the elec-
tric force gE, balances the magnetic force
qv x B,

gE, = qv x B, (1.90)
and the charge carriers g proceed along the
wire undeflected.

The Hall coefficient Ry is defined as a
ratio,

Ry=—.

(1.91)
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+ o

Figure 1.16 Experimental arrangement for Hall effect measurements showing an
electrical current / passing through a flat plate of width d and thickness a in a uniform
transverse magnetic field B,. The voltage drop V, —V; along the plate, the voltage
difference AV, across the plate, and the electric field E, across the plate are indicated.
The figure is drawn for negative charge carriers (electrons).

¢} {d)

Figure 1.17 Charge carrier motion and transverse electric field direction for
the Hall effect experimental arrangement of Fig. 1.16. Positive charge carriers
deflect as indicated in (a) and produce the transverse electric field E, shown in
(c). The corresponding deflection and resulting electric field for negative charge
carriers are sketched in (b) and (d), respectively.
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Substituting the expressions for J and E,
from Eqgs. (1.18) and (1.90) in Eq. (1.91) we
obtain for holes (¢ = ¢) and electrons (g =
—e), respectively,

(holes) (1.92a)

1
Ry =——(electrons), (1.92b)
ne
where the sign of Ry is determined by the
sign of the charges. The Hall angle ® is

defined by
E
tan @, = —. 1.93
an Yy E, (1.93)

Sometimes the dimensionless Hall number is
reported,

V,
Hall# = —2,
Rye

(1.94)

where V) is the volume per chemical formula
unit. Thus the Hall effect distinguishes elec-
trons from holes, and when all of the charge
carriers are the same this experiment pro-
vides the charge density n. When both posi-
tive and negative charge carriers are present,
partial (or total) cancellation of their Hall
effects occurs.

The mobility w is the charge carrier drift
velocity per unit electric field,

|v'dV|
= Warl 1.95
p=r (1.95)
and with the aid of Egs. (1.18), (1.21), and

(1.92) we can write

R (1.96)
p

where the Hall mobility wy is the mobility

determined by a Hall effect measurement. It

is a valid measure of the mobility (1.95) if

only one type of charge carrier is present.
By Ohm’s law (1.21) the resistivity is

the ratio of the applied electric field in

1 PROPERTIES OF THE NORMAL STATE

the direction of current flow to the current
density,

=2 1.97

pP=- (1.97)

In the presence of a magnetic field, this
expression is written

i (1.98)

where p,, is called the transverse magneto-
resistivity. There is also a longitudinal mag-
netoresistivity defined when E and B, are
parallel. For the present case the resistiv-
ity does not depend on the applied field,
so p,, = p. For very high magnetic fields
p,, and p can be different. In the supercon-
ducting state p,, arises from the movement
of quantized magnetic flux lines, called vor-
tices, so that it can be called the flux flow
resistivity pg. Finally, the Hall effect resis-
tivity p,, (Ong, 1991) is defined by

Py = 2. (1.99)

FURTHER READING

Most of the material in this chapter may be
found in standard textbooks on solid state physics (e.g.,
Ashcroft and Mermin, 1976; Burns, 1985; Kittel, 1996).

PROBLEMS

1. Show that Eq. (1.61) for the phonon
specific heat has the low- and high-
temperature limits (1.62a) and (1.62b),
respectively.

2. Aluminum has a magnetic susceptibil-
ity +16.5 x 10~® cgs, and niobium, 195 x
10~®cgs. Express these in dimensionless
SI units. From these values estimate the
density of states and the electronic spe-
cific heat constant vy for each element.



PROBLEMS

. Copper at room temperature has 8.47 x
102 conduction electrons/cm®, a Fermi
energy of 7.0eV, and 7 = 2.7 x 1075,
Calculate its Hall coefficient, average
conduction electron velocity in an electric
field of 200 V/cm, electrical resistivity,
and mean free path.

. Calculate the London penetration depth,
resistivity, plasma frequency, and density
of states of copper at room temperature.

. It was mentioned in Section 1. II that
the chemical potential u is the energy
required to remove one electron from a
Fermi gas under the conditions of con-
stant volume and constant entropy. Use
a thermodynamic argument to prove this
assertion, and also show that u equals the
change in the Gibbs free energy when one

21

electron is removed from the Fermi gas
under the conditions of constant tempera-
ture and constant pressure.

. Show that well above the Debye temper-

ature the number of phonons in a normal
mode of vibration is proportional to the
temperature.

. For the two-dimensional square lattice

draw the third Brillouin zone in (a) the
extended zone scheme and (b) the reduced
zone scheme in which the third zone is
mapped into the first zone. Show where
each segment in the extended scheme
goes in the first zone. Draw constant
energy lines for € = 2¢,, 3€,, 4€,, S¢,.
Sketch the Fermi surface for ep = 4.5¢,.
Indicate the electron-like and hole-like
regions.
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Phenomenon of
Superconductivity

I. INTRODUCTION

A perfect superconductor is a material
that exhibits two characteristic properties,
namely zero electrical resistance and perfect
diamagnetism, when it is cooled below a
particular temperature T, called the critical
temperature. At higher temperatures it is a
normal metal, and ordinarily is not a very
good conductor. For example, lead, tantalum,
and tin become superconductors, while cop-
per, silver, and gold, which are much better
conductors, do not super-conduct. In the nor-
mal state some super-conducting metals are
weakly diamagnetic and some are paramag-
netic. Below T, they exhibit perfect electrical
conductivity and also perfect or quite pro-
nounced diamagnetism.

Perfect diamagnetism, the second charac-
teristic property, means that a superconduct-
ing material does not permit an externally
applied magnetic field to penetrate into its
interior. Those superconductors that totally
exclude an applied magnetic flux are known
as Type I superconductors, and they constitute
the subject matter of this chapter. Other super-
conductors, called Type II superconductors,
are also perfect conductors of electricity, but
their magnetic properties are more complex.
They totally exclude magnetic flux when
the applied magnetic field is low, but only
partially exclude it when the applied field
is higher. In the region of higher magnetic
fields their diamagnetism is not perfect, but
rather of a mixed type. The basic properties
of these mixed magnetism superconductors
are described in Chapters 5 and 12.

23
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Il. BRIEF HISTORY

In 1908, H. Kamerlingh Onnes initi-
ated the field of low-temperature physics by
liquifying helium in his laboratory at Leiden.
Three years later he found that below 4.15K
of the dc resistance of mercury dropped to
zero (Onnes, 1911). With that finding the
field of superconductivity was born. The next
year Onnes discovered that the application
of a sufficiently strong axial magnetic field
restored the resistance to its normal value.
One year later, in 1913, the element lead
was found to be superconducting at 7.2K
(Onnes, 1913). Another 17 years were to pass
before this record was surpassed, by the ele-
ment niobium (7, = 9.2K) (vide Ginzburg
and Kitzhnits, 1977, p. 2).

A considerable amount of time went
by before physicists became aware of the
second distinguishing characteristic of a
superconductor—namely, its perfect diamag-
netism. In 1933, Meissner and Ochsen-
feld found that when a sphere is cooled
below its transition temperature in a
magnetic field, it excludes the magnetic
flux.

The report of the Meissner effect led
the London brothers, Fritz and Heinz, to
propose equations that explain this effect
and predict how far a static external
magnetic field can penetrate into a super-
conductor. The next theoretical advance
came in 1950 with the theory of Ginzburg
and Landau, which described superconduc-
tity in terms of an order parameter and
provided a derivation for the London equa-
tions. Both of these theories are macro-
scopic in character and will be described in
Chapter 6.

In the same year it was predicted
theoretically by H. Frohlich (1950) that
the transition temperature would decrease
as the average isotopic mass increased.
This effect, called the isotope effect, was
observed experimentally the same year
(Maxwell, 1950; Reynolds et al., 1950).

2 PHENOMENON OF SUPERCONDUCTIVITY

The isotope effect provided support for the
electron—phonon interaction mechanism of
superconductivity.

Our present theoretical understanding of
the nature of superconductivity is based on
the BCS microscopic theory proposed by
J. Bardeen, L. Cooper, and J. R. Schrieffer
in 1957 (we will describe it in Chapter 7).
In this theory it is assumed that bound elec-
tron pairs that carry the super current are
formed and that an energy gap between the
normal and superconductive states is cre-
ated. The Ginzburg—Landau (1950) and Lon-
don (1950) results fit well into the BCS
formalism. Much of the present theoretical
debate centers around how well the BCS the-
ory explains the properties of the new high-
temperature superconductors.

Alloys and compounds have been exten-
sively studied, especially the so-called
A15 compounds, such as Nb;Sn, Nb;Ga,
and Nb;Ge, which held the record for
the highest transition temperatures from
1954 to 1986, as shown in Table 2.1.

Table 2.1 Superconducting Transition
Temperature Records through the Years?

Material T, (K) Year
Hg 4.1 1911
Pb 7.2 1913
Nb 9.2 1930
NbN o6 15.2 1950
Nb; Sn 18.1 1954
Nb; (Al 3 Ge%) 20-21 1966
Nb;Ga 20.3 1971
Nb;Ge 23.2 1973
Ba,Las_,Cus0O, 30-35 1986
(Lag¢Bag),CuO,_s at 1 GPa 52 1986
YBa,Cu;0,_5 95 1987
Bi,Sr,Ca,Cu;0 110 1988
Tl,Ba,Ca,Cu;0, 125 1988
Tl,Ba,Ca,Cu;0,, at 7 GPa 131 1993
HgBa,Ca,Cu;04, 5 133 1993
HgBa,Ca,Cu;0g, 5 at 25 GPa 155 1993
Hg, sPb,,Ba,Ca,Cu;0, 133 1994
HgBa,Ca,Cu;0g, 5 at 30 GPa 164 1994

¢ cf. Ginzburg and Kirzhnits, 1977.
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Many other types of compounds have been
studied in recent years, particularly the so-
called heavy fermion systems in which the
superconducting electrons have high effec-
tive masses of 100m, or more. Organic
superconductors have shown a dramatic rise
in transition temperatures during the past
decade.

On April 17, 1986, a brief article, enti-
tled “Possible High 7, Superconductivity in
the Ba—La—Cu—O System,” written by J. G.
Bednorz and K. A. Miiller was received
by the Zeitschrift fiir Physik, initiating the
era of high-temperature superconductivity.
When the article appeared in print later that
year, it met with initial skepticism. Sharp
drops in resistance attributed to “high-7,”
superconductivity had appeared from time
to time over the years, but when exam-
ined they had always failed to show the
required diamagnetic response or were oth-
erwise unsubstantiated. It was only when
a Japanese group (Uchida er al, 1987)
and Chu’s group in the United States (Chu
et al., 1987b) reproduced the original results
that the results found by Bednorz and
Miiller began to be taken seriously. Soon
many other researchers became active, and
the recorded transition temperature began a
rapid rise.

By the beginning of 1987, scientists had
fabricated the lanthanum compound, which
went superconducting at close to 40K at
atmospheric pressure (Cava et al, 1987,
Tarascon et al.,, 1987c) and at up to 52K
under high pressure (Chu et al., 1987a). Soon
thereafter, the yttrium—barium system, which
went superconducting in the low 90s (Chu
et al., 1988a; Zhao et al., 1987), was dis-
covered. Early in 1988, superconductivity
reached 110K with the discovery of BiSr-
CaCuO (Chu et al., 1988b; Maeda et al.,
1988; Michel et al., 1987), and then the
120-125K range with TIBaCaCuO (Hazen
et al., 1988; Sheng and Herman, 1988; Sheng
et al., 1988). More recently, Berkley et al.
(1993) reported
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T, =131.8K for Tl,Ba,Ca,Cu;0,,_,

at a pressure of 7GPa. Several researchers
have reported T, above 130K for the Hg
series of compounds HgBa,Ca,Cu, 0, 4
with n =1, 2, sometimes with Pb doping for
Hg (Chu et al., 1993a; Igbal et al., 1994;
Schilling et al., 1993, 1994a). The transition
temperature of the Hg compounds increases
with pressure (Chu, 1994; Klehe et al., 1992,
1994; Rabinowitz and McMullen, 1994)
in the manner shown in Fig. 2.1a (Gao ef al.,
1994) and onset T, values in the 150K
range are found for pressures above 10 GPa
(Chu et al., 1993b, Thara et al., 1993).
We see from Fig. 2.1b that the transitions
are broad, with midpoint 7, located 7 or
8K below the onset, and the zero
resistivity point comes much lower still
(Gao et al., 1994).

This rapid pace of change and improve-
ment in superconductors exceeds that of ear-
lier decades, as the data listed in Table 2.1
and plotted in Fig. 2.2 demonstrate. For
56 years the element niobium and its com-
pounds had dominated the field of supercon-
ductivity. In addition to providing the highest
T, values, niobium compounds such as NbTi
and Nb;Sn are also optimal magnet mate-
rials: for NbTi, B, = 10T and for Nb;Sn,
B, =22T at 42K, where B, is the upper-
critical field of a Type II superconductor, in
the sense that it sets a limit on the magnetic
field attainable by a magnet; thus applica-
tion of an applied magnetic field in excess
of B, drives a superconductor normal. The
period from 1930 to 1986 can be called the
Niobium Era of superconductivity. The new
period that began in 1986 might become the
Copper Oxide Era because, thus far, the pres-
ence of copper and oxygen has, with rare
exceptions, been found essential for 7, above
40K. It is also interesting to observe that
Hg was the first known superconductor, and
now a century later mercury compounds have
become the best!
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(a)
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Figure 2.1 Effect of pressure on the transition temperature of the
superconductor HgBa,Ca,Cu;0g, 5 showing (a) pressure dependence
of the onset (upper curve), midpoint (middle curve), and final off-set
(lower curve) values of T, and (b) temperature dependence of the
resistivity derivative dp/dT at 1.5 (1), 4 (2), 7 (3), and 18.5 GPa (6).
Definitions of T, onset, T, midpoint, and T final offset that are
plotted in (a) are given in (b) (Gao et al., 1993).
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Figure 2.2 Increase in the superconducting transition
temperature with time. A linear extrapolation of the data
before 1986 predicts that room temperature would be
reached in about 1000 years. From left to right X =
Sn, Al 75Geg 5. Ga, and Ge for the data points of the
Al15 compound Nb;X (Adapted from Fig. I-1, Poole
et al., 1988).

. RESISTIVITY

Before beginning the discussion of super
currents, we will examine the resistivity of
superconducting materials in their normal
state above the transition temperature 7;
we will then make some comments on the
drop to zero resistance at 7,; finally, we
will describe the measurements that have set
upper limits on resistivity below T.

(@)
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A. Resistivity above T,

In Chapter 1, Section VII, we explained,
and now we illustrate in Figs. 2.3-2.6, how
the resistivity of a typical conductor depends
linearly on temperature at high temperatures
and obeys the 7° Bloch law at low temper-
atures. Classical or low-temperature super-
conductors are in the Bloch law region if
the transition temperature is low enough,
as illustrated in Fig. 2.3a. High-temperature
superconductors have transition temperatures
that are in the linear region, corresponding
to the resistivity plot of Fig. 2.3b. However,
the situation is actually more complicated
because the resistivity of single crystals of
high-temperature superconductors is strongly
anisotropic, as we will show later. Several
theoretical treatments of the resistivity of
cuprates have appeared (e.g., Griessen, 1990;
Micnas et al., 1987; Song and Gaines, 1991;
Wu et al., 1989; Zeyhe, 1991).

Good conductors such as copper and
silver have room temperature resistivities
of about 1.5uQcm, whereas at liquid
nitrogen temperatures the resistivity typ-
ically decreases by a factor in the range
3-8, as shown by the data in Table 1.1.
The elemental superconductors, such as
Nd, Pb, and Sn, have room temperature
resistivities a factor of 10 greater than good
conductors. The metallic elements Ba, Bi,

(b)

|
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T

0 100
T
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Figure 2.3 Abrupt drop of the resistivity to zero at the superconducting transition
temperature 7, (a) for a low-temperature superconductor in the Bloch T° region and
(b) for a high-temperature superconductor in the linear region.
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La, Sr, T, and Y, which are also present in
oxide superconductors, have room temper-
ature resistivities 10 to 70 times that of Cu.
The copper-oxide superconductors have
even higher room temperature resistivities,
more than three orders of magnitude greater
than that of metallic copper, which puts them
within a factor of 3 or 4 of the semiconduc-
tor range, as shown by the data in Table 2.2.
The resistivity of these materials above T,
decreases more or less linearly with decreas-
ing temperature down to the neighborhood
of T,, with a drop by a factor of 2 or 3 from
room temperature to this point, as shown
in Fig. B. and by the data in Table 2.2.
Figure 2.5 shows that the linearity extends far
above room temperature, especially for the
lanthanum compound (Gurvitch and Fiory,
1987a, b, c; Gurvitch er al., 1988). It has
been linked to the two-dimensional character
of electron transport (Micnas et al., 1990).
We see from the figure that

YBaZCU3O7_5

begins to deviate from linearity at about 600—
700K, near the orthorhombic-to-tetragonal
phase transformation (cf. Chapter 8,
Section IV.D) where it changes from a metal-
lic material below the transition to a semi-
conductor above. Heating causes a loss of
oxygen, as shown in Fig. 2.6 which presents
the dependence of resistivity on the oxy-
gen partial pressure (Grader et al., 1987).
The temperature dependence of resistivity
has been related to the loss of oxygen [cf.
Eq. (X-1) from Poole et al., 1988; cf. Chaki
and Rubinstein, 1987; Fiory et al., 1987].
The resistivity of poor metals at
high temperatures tends to saturate to a
temperature-independent value when the
mean free path [ approaches the wavelength
Ap = 27/ kg associated with the Fermi level,
where kp is the Fermi wave vector. The
Ioffe—Regel criterion for the onset of this
saturation is kgl ~ 1. The quantity kp/ for
YBa,Cu;0,_s has been estimated to have a
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value of 30 for T = 100K (Hagen et al.,
1988) and 3 for T = 1000K (Crow and
Ong, 1990). These considerations, together
with the curves in Fig. 2.5, indicate that,
in practice, the loffe-Regel criterion does
not cause the resistivity to saturate in high-
temperature superconductors. The A15 com-
pound V,Si, whose crystal structure is stable
up to 1950°C, does exhibit saturation in its
resistivity-versus-temperature plot.

B. Resistivity Anisotropy

The resistivity of YBa,Cu;0,_5 is
around two orders of magnitude greater
along the c-axis than parallel to the a,
b-plane; thus p./p,, ~ 100 and for

Biy, Sr, ,CuOg, 5.

P./Pap ~ 10° (Fiory et al., 1989). The tem-
perature dependence of these resistivities,
measured by the method described in the fol-
lowing section, exhibits a peak near 7, in
the case of p,, and this is shown in Fig. 2.7.
When the data are fitted to the expressions
(Anderson and Zou, 1988)

A
P =7 +BuT, (2.1)
A,
pe=—+B.T, (2.2)

by plotting p,,T and p,T from the data of
Fig. 2.7 versus T2, a good fit is obtained, as
shown in Fig. 2.8. The angular dependence of
the resistivity is found to obey the expression
(Wu et al., 1991b)

p(®) =p,,sin’* O+ p_cos’ O (2.3)
where O is the angle of the current direction
relative to the c¢ axis.

Typical measured resistivities of poly-
crystalline samples are much closer to the in-
plane values. The anisotropy ratio p./p,, ~
100 is so large that the current encounters
less resistance when it follows a longer path
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Table 2.2 Resistivity Data on Superconducting Single Crystals Slightly above 7. and near Room Temperature. The Slopes Ap/AT
Are Averages for the Typical Range from 150K to 290 K. (Earlier data on mostly polycrystalline samples are given in Table X-1 of
Poole et al. (1988)?)

T Pap P Ap,, /AT Ap, /AT
Material K pnQcm mQ cm P./Pay pQem/K mQ cm/K Reference
Re 50 0.8 0.0005 0.6 0.075 0.055 Volkenshteyn et al. (1978)
Re 275 17.5 0.013 0.7 Volkenshteyn et al. (1978)
TaS, 450 Wattamaniuk et al. (1975)
2H-TaSe, 4 1200 Martin et al. (1990)
Pfalzgraf and Spreckels (1987)
K;Cg thin film* 290 [2.5mQcm] Palstra et al. (1992)
19
(Lag 995S10 975)2CuOy 50 2500 13 Preyer et al. (1991)
(Lag 995510 975)2CuOy 290 5000 Preyer et al. (1991)
(Ndg 9»5Ce 75),CuO, 30 1700 500 300 19 3.7 Crusellas et al. (1991)
(Ndg 9»5Ceg 75),CuO, 273 4800 1300 270 2.0 Crusellas ez al. (1991)
YBa,Cu;0,_5 290 ~ 380 ~ 15 ~ 45 averages
YBa,Cu;0,_4 100 ~ 180 ~ 15 ~90 ~ 08 ~ 02 averages
Bi,Sr,CuOg 5 25 90 14,000 1.6 x 10° 0.9 -6 Martin ef al. (1990)
Bi,Sr,CuOg 5 290 275 6000 22x 10 Martin ef al. (1990)
Bi,Sr, ,CaCu, Oy 100 55b 5200 9.5 x 10* 0.46 15 Martin et al. (1998)
Bi,Sr, ,CaCu, O 300 150° 8880 59x 104 Martin ef al. (1998)
T1,Ba,CuOy 110 900 Mukaida et al. (1990)
T1,Ba,CaCu, 04 110 3500 Mukaida et al. (1990)

“ Typical semiconductors range from 10* to 10" wQ cm and insulators from 10% to 10?® uQ cm.
b Averages of p, =60, p, =50 uQcm at 100K, and p, = 180, p, = 120 uQ cm at 300K.
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Figure 2.4 Temperature dependence of resistivity for various rare
earth substituted RBa,Cu;0, compounds. For these compounds 7, is in
the linear region (Tarascon et al., 1987b).
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Figure 2.5 Comparison of the resistivities of
(Lag 9125510 0825),Cu0O,4 and YBa,Cu30,_s5 with those
of the Al5 compound V;Si(7, = 17.1K), and
with nonsuperconducting copper (Gurvitch and Fiory,
1987a, b, c).

in the planes than when it takes the shorter
path perpendicular to the planes, so it tends
to flow mainly along the crystallite planes.
Each individual current zigzags from one
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Figure 2.6 Temperature dependence of the resistiv-
ity of YBa,Cu;0,_s for various oxygen partial pres-
sures (Grader et al., 1987).

crystallite to the next, so that its total path is
longer than it would be if all of the crystal-
lites were aligned with their planes parallel
to the direction of the current. The increase
in the resistivity of a polycrystalline sample
beyond p,, can be a measure of how much
the average path length increases.
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Figure 2.7 Resistivity for current flow parallel
(pa) and perpendicular (p,.) to the CuO planes of
YBa,Cu;0;. Data are given for three samples A, B, and
C. Note from the change in scale that p,, < p. (Hagen
et al., 1988).
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Figure 2.8 Plot of p.T versus T? to test the validity
of Eq. (2.2) for five single crystals of YBa,Cu;0,_s
(Hagen et al., 1988).

Polycrystalline samples should be com-
pacted or pressed into pellets before resis-
tivity measurements are made, in order to
reduce the number of voids in the sample
and minimize intergrain contact problems.
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Such compacted samples require appropri-
ate heat treatments to maintain the proper
oxygen content. Uniaxial compression tends
to align the grains with their c-axes parallel
so that the resulting compressed pellets have
different resistivities when measured paral-
lel to the compression direction compared to
when they are measured perpendicular to this
direction.

Hysteresis effects have been seen in
the resistance-versus-temperature curves, as
illustrated in Fig. X-1 of the monograph by
Poole et al. (1988), for

(Yo.875Bag 125),Cu0,_s

(Tarascon et al., 1987a). These hysteresis
effects occur in the presence of both mag-
netic fields and transport currents, with the
latter illustrated in Figure X-1.

C. Anisotropy Determination

The most common way of measuring
the resistivity of a sample is the four-probe
method sketched in Fig. 2.9. Two leads or
probes carry a known current into and out of
the ends of the sample, and two other leads
separated by a distance L measure the volt-
age drop at points nearer the center where the
current approximates uniform, steady-state
flow. The resistance R between measurement
points 3 and 4 is given by the ratio V/I of
the measured voltage to the input current,

Figure 2.9 Experimental arrangement for the four-probe resistivity determination.
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and the resistivity p is calculated from the
expression

_prL

R s
A

24)
where A is the cross-sectional area. This
four-probe technique is superior to a two-
probe method in which uniform, steady-state
current flow is not assured, and errors from
lead and contact resistance are greater.

The four-probe method is satisfactory
for use with an anisotropic sample if the
sample is cut with one of its principal direc-
tions along the direction of current flow
and if the condition L > +/A is satisfied.
For a high-temperature superconductor, this
requires two samples for the resistivity deter-
mination, one with the c-axis along the cur-
rent flow direction and one with the c-axis
perpendicular to this direction.

Transverse and longitudinal resistance
determinations, R, and R, respectively, can
both be made on a sample cut in the shape
of a rectangular solid with a = b, with the
shorter c-axis along the current direction, as
shown in Fig. 2.10 (Hagen et al., 1988).
These resistances R, and R, are used to cal-
culate the resistivity p,, in the a, b-plane
and the resistivity and p, perpendicular to
this plane, i.e., along c¢. The expressions

Ri

axis

L

C

Figure 2.10 Experimental arrangement for measur-
ing anisotropic resistivities (see explanation in text)
(Hagen et al., 1988).
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that relate the resistances depend on the
parameter x,

c ( pe )1/ ’
x=—|— ,
a \Pap
where p./p,, =~ 100 for YBa,Cu;0,_s. For

the limiting case x < 1, the measured resis-
tances are given by (Montgomery, 1971):

(2.5)

a 41In2
R.=—pu [l — —:| xk1l, (2.6)
bc T
16 exp(—1
Rlzipc[M] x<K1.
ab X
(2.7)

and for the opposite limit x > 1 we have

a 16x exp(—mx
e
bc T
(2.8)
4In?2
Rlzip[[l—i} x>1. (29
ab X

Both the resistance with the exponential fac-
tor and the correction term containing the
factor 4In2 /7 are small.

Contributions to the electrical conduc-
tivity in the normal state near 7, arising
from fluctuations of regions of the sample
into the superconducting state, sometimes
called paraconductivity, have been observed
and discussed theoretically (X. F. Chem
et al., 1993; Friedman et al., 1989; Lawrence
and Doniach, 1971; Shier and Ginsberg,
1966). Several more theoretical articles treat-
ing resistivity have appeared (e.g., Gijs et al.,
1990a; Hopfengirtner et al., 1991; Kumar
and Jayannavar, 1992; Sanborn et al., 1989;
Yel et al., 1991).

D. Sheet Resistance of Films:
Resistance Quantum

When a current flows along a film of
thickness d through a region of surface with
dimensions a x a, as shown in Fig. 2.11,
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Figure 2.11 Geometrical arrangement and current
flow direction for sheet resistance determination.

it encounters the resistance R, which, from
Eq. (2.4), is given by
R=PL_P (2.10)
ad d
The resistance p/d is called the sheet resis-
tance, or the resistance per square, because it
applies to a square section of film, as shown
in Fig. 2.11, and is independent of the length
of the side a. It is analogous to the sur-
face resistance R, = p/0 of a metallic surface
interacting with an incident high-frequency
electromagnetic wave, where 6 is the skin
depth of the material at the frequency of the
wave.
There is a quantum of resistance h/4¢”
with the value
h

— =6.45k ),

i (2.11)

where the charge is 2e per pair. When
the films are thin enough so that their
sheet resistance in the normal state just
above T, exceeds this value, they no
longer become superconducting (Hebard and
Paalanen, 1990; Jaeger et al., 1989; Lee
and Ketterson, 1990; Li et al, 1990; Pyun
and Lemberger, 1991; Seidler et al., 1992;
Tanda et al., 1991; Valles et al, 1989;
T. Wang et al., 1991). It has been found
experimentally (Haviland et al., 1989) that
bismuth and lead films deposited on ger-
manium substrates become superconducting
only when they have thicknesses greater than
0.673nm and 0.328 nm, respectively. The
variation in 7, with the sheet resistance for
these two thin films is shown in Fig. 2.12.
Figure 2.13 shows the sharp drop in resis-
tivity at 7, for bismuth films with a range
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Figure 2.12 Dependence of the transition temper-
ature 7, of Bi and Pb films on the sheet resistance
(Haviland et al., 1989).

of thickness greater than 0.673 nm. Thinner
films exhibit resistivity increases down to
the lowest measured temperatures, as shown
in the figure. The ordinary transition tem-
peratures, which occur for the limit p/d <
h/4e?, are 6.1K for Bi films and 7.2K
for Pb.

Copper-oxide  planes in high-
temperature  superconductors can  be
considered thin conducting layers, with

thickness ¢ for YBa,Cu;0,_s corresponding
to a sheet resistance p,;,/ %c. Using this layer
approximation, the Ioffe-Regel parameter
kpl mentioned in Section A can be estimated
from the expression

conductance per square

kel = (2.12)
conductance quantum
h/4e?
L (2.13)
2pah/§c

where the conductances are the reciprocals
of the resistances. Note that the two reported
kgl values for YBa,Cu;0,_g calculated by
this method and referred to earlier assumed
kp=4.6x10"cm™".

It is of interest that metallic con-
tacts of atomic size exhibit conduction
jumps at integral multiples of 2¢?/h (Agrait
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Figure 2.13 Temperature dependence of the sheet
resistance of films of Bi deposited on Ge as a function
of film thickness in the range from 4.36 A to 74.27 A
(Haviland et al., 1989).

et al., 1993), and that the Hall effect resis-
tance in one-dimensional objects, so-called
quantum wires, is quantized to h/2Ne?,
where N =1,2,3,... (Akera and Andu,

1989).

IV. ZERO RESISTANCE

In 1911, when Onnes was measuring the
electrical resistance of mercury, he expected
to find a temperature dependence of the type
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Figure 2.14 Resistivity-versus-temperature ~ plot
obtained by Kamerlingh Onnes when he discovered
superconductivity in Leiden in 1911.

given by Eq. (1.30). Instead, to his sur-
prise, he found that below 4.2 K the electri-
cal resistance dropped to zero, as shown in
Fig. 2.14. He had discovered superconductiv-
ity! At this temperature mercury transforms
from the normal metallic state to that of a
superconductor. Figure 2.3a shows the abrupt
change to zero resistance for the case of an
old superconductor, where T, is in the low-
temperature Bloch 73 region, while Fig. 2.3b
shows what happens in the case of a high-
temperature superconductor where 7, is in
the linear region.

A. Resistivity Drop at T,

Figures 2.3a, 2.3b, 2.7, and 2.8 show the
sharp drop in resistance that occurs at 7,. We
will see later in the chapter that there is an
analogous drop in susceptibility at 7.



IV ZERO RESISTANCE

A susceptibility measurement is a more
typical thermodynamic indicator of the
superconducting state because magnetization
is a thermodynamic state variable. Resistiv-
ity, on the other hand, is easier to mea-
sure, and can be a better guide for appli-
cations. Generally, the 7, value determined
from the resisitivity drop to zero occurs
at a somewhat higher temperature than its
susceptibility counterpart. This is because
any tiny part of the material going super-
conductive loses its resistance, and R =0
when one or more continuous superconduct-
ing paths are in place between the mea-
suring electrodes. In contrast, diamagnetism
measurements depend on macroscopic cur-
rent loops to shield the B field from an
appreciable fraction of the sample material,
and this happens when full superconduct-
ing current paths become available. There-
fore, filamentary paths can produce sharp
drops in resistivity at temperatures higher
than the temperatures at which there are
pronounced drops in diamagnetism, which
also require extensive regions of supercon-
ductivity. Such filamentary behavior can be
described in terms of percolation thresholds
(Gingold and Lobb 1990; Lin, 1991; Phillips,
1989b; Tolédano et al., 1990; Zeng et al.,
1991).

Batte
Switc?l’

Variable
Rasistance
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B. Persistent Currents below T,

To establish a transport current in a loop
of superconducting wire, the ends of the wire
may be connected to a battery in series with a
resistor, thus limiting the current, as shown in
Fig. 2.15. When switch S, is closed, current
commences to flow in the loop. When switch
S, is closed in order to bypass the battery
and S, opened in order to disconnect the
battery, the loop resistance drops to zero and
the current flow enters the persistent mode.
The zero resistance property implies that the
current will continue flowing indefinitely.

Many investigators have established cur-
rents in loops of superconducting wire and
have monitored the strength of the associated
magnetic field through the loop over pro-
longed periods of time using, for example, a
magnetometer with a pickup coil, as shown
in Fig. 2.15. In experiments it was found that
there is no detectable decay of the current for
periods of time on the order of several years.
The experiments established lower limits on
the life-time of the current and upper limits
on the possible resistivity of superconducting
materials. Currents in copper oxide super-
conductors persist for many months or in
excess of a year, and resistivity limits have
been reported as low as 107'® (Yeh et al.,

Pickup
Cell
I \ Magnetometer
Super-
Cosn‘m?ng Coriducting
Battery Shunt o0p
Swilch
8y

Figure 2.15 Experimental arrangement for establishing and measuring a persistent current. Switch S, is closed
to send current through the loop and S, is closed to confine the current flow to the loop. The magnetometer
measures the magnetic field through the loop and thereby determines the current.



36

1987) and 10722 Q cm (Kedve et al., 1987).
Super current lifetimes of low-temperature
superconductors are also greater than a
year for p < 1072 Qcm (Chandrasekhar,
1969). Persistent current flow has also been
treated theoretically (e.g., Ambegaokar and
Eckern, 1991; Cheun et al., 1988; Kopietz,
1993; Riedel et al., 1989; von Oppen and
Riedel, 1991).

It will be instructive to estimate the min-
imum resistivity of a simple loop of super-
conducting wire of loop radius r and wire
radius a. The inductance L of the loop is
given by

L~ pyrIn(8r/a) —2]. (2.14)
The loop has
sectional area 7ra
is

‘length® 27r and cross-
2 so that its resistance R

2rp

(2.15)
This gives it a time constant 7 = L/R. Com-
bining Eqs. (2.14) and (2.15) gives the prod-
uct

pT R %M0a2[0.0794+ln(r/a)]. (2.16)
Using u, =47 x 107" H/m and typical loop
dimensions of a = 1.5mm and r = 15cm
gives

pT 6.6 x107°Q cms (2.17)

for the product pT.

A super current /; can be made to flow
in the loop by subjecting it to a changing
magnetic field below T, in accordance with
Faraday’s and Lenz’ laws. The magnitude of
the current that is flowing can be determined
by measuring the induced magnetic field. At
a point P along the axis a distance z above
the loop, as shown in Fig. 2.16, this magnetic
field has the following value, as given in
standard general physics texts:

I‘LOISV2

B(z)= ——2>
(Z) 2(r2+Z2)3/2

(2.18)
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Figure 2.16 Magnetic field B, along the axis of a
circular loop of wire of radius r carrying the current L.
The wire itself has radius a.

and once B(z) is measured, I, can be
calculated.

If the super current persists unchanged
for over a year (7> 3.16 x 107 s) without any
appreciable decrease (we are assuming that a
1% decrease is easily detectable), Eq. (2.17)
can be used to place an upper limit on the
resistivity:

p<21x10""Qcm, (2.19)

which is in the range mentioned earlier, and
is 11 orders of magnitude less than the resis-
tivity of copper (p = 1.56 w ) cm). A similar
loop of copper wire at room temperature has
7~ (0.42ms, so that the current will be gone
after several milli-seconds.

We will see in Section XIV that the drop
to zero resistance can be explained in terms
of a two—fluid model in which some of the
normal electrons turn into super electrons
which move through the material without
resistance. The current carried by the flow
of super electrons is then assumed to short
circuit the current arising from the flow of
normal electrons, causing the measured resis-
tance to vanish.

V. TRANSITION TEMPERATURE

Before proceeding to the discussion of
magnetic and transport properties of super-
conductors, it will be helpful to say a few
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words about the transition temperature. We
will discuss it from the viewpoint of the resis-
tivity change even though the onset of the
energy gap and pronounced diamagnetism
are more fundamental indices of 7. Pechan
and Horvath (1990) described a fast and
inexpensive method for accurate determina-
tion of transition temperatures above 77 K.
Although the theoretical transition from
the normal to the superconducting state
is very sharp, experimentally it sometimes
occurs gradually and sometimes abruptly.
Figure 2.17 shows the gradual decrease in
resistivity near 7, that was reported by
Bednorz and Miiller (1986) in the first pub-
lished article on the new superconductors.
We see from this figure that the range
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of temperatures over which the resistivity
changes from its normal-state value to zero
is comparable with the transition tempera-
ture itself. An example of a narrow transition
centered at 90K with width of ~0.3K is
shown in Fig. 2.18. These two cases corre-
spond to AT/T,~ 1/2 and AT/T, ~ 0.003,
respectively.

The sharpness of the drop to zero resis-
tance is a measure of the goodness or purity
of the sample. Figure 2.19 shows how the
drop to zero in pure tin becomes broader and
shifts to a higher temperature in an impure
specimen. In a sense impure tin is a better
superconductor because it has a higher 7,
but worse because it has a broader transition.
When high-temperature superconductors are
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Figure 2.17  First reported drop to zero resistance for a high-temperature
superconductor (Bednorz and Miiller, 1986).
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Figure 2.18 Sharp drop to zero resistance of a YBa,Cu;0; epi-
taxial film (Hopfengirtner et al., 1991).

Pure
r
8
5
8i2
al8
% L
E] Impure
& E i
Z
! 1 | | 1
370 372 374 376 378
Temperature {(K) ——=

Figure 2.19 Narrow and broad superconducting
resistivity drop in pure and impure tin, respectively.
Reprinted from Rose Innes and Rhoderick (1978), p. 7,
with kind permission of Pergamon Press, Headington
Hill Hall, Oxford OX3 0BW, UK.

doped with paramagnetic ions at copper sites,
the transition temperature both shifts to lower
values and broadens, whereas doping at the
yttrium sites of YBaCuO has very little effect
on T,, as may be seen by comparing the data
plotted in Figs. 2.20 and 2.4, respectively.
This can be explained in terms of delocal-
ization of the super electrons on the copper
oxide planes.

There are various ways of defining the
position and sharpness, or width, of the
superconducting transition temperature, and
the literature is far from consistent on this
point. Authors talk in terms of the onset, 5%,
10%, midpoint, 90%, 95%, and zero resis-
tance points, and Fig. 2.21 shows some of
these on an experimental resistivity curve.
The onset, or 0% point, is where the exper-
imental curve begins to drop below the
extrapolated high-temperature linear behav-
ior of Eq. (1.30), indicated by the dashed line
in the figure. The T, values that we cite or list
in the tables are ordinarily midpoint values
at which p(7) has decreased by 50% below
the onset. Many of the published reports of
unusually high transition temperatures actu-
ally cited onset values, which can make them
suspect. The current density can influence
the resistive transition (Goldschmidt, 1989).

The point at which the first derivative
of the resistivity curve, shown in Fig. 2.22b,
reaches its maximum value could be selected
as defining T, since it is the inflection point
on the original curve (Azoulay, 1991; Datta
et al., 1988; Nkum and Datars, 1992; Poole
and Farach, 1988). The width AT between
the half-amplitude points of the first deriva-
tive curve, or the peak-to-peak width ATPp
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Figure 2.20  Influence of doping YBa, (CuggM, )30, with the first

transition series ions M = Ti, Cr, Fe, Co, Ni, and Zn on the resistivity
transition near T, (Xiao et al., 1987a).
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Figure 2.21 Temperature dependence of the
resistivity and zero-field-cooled magnetization of
HoBa,Cu;0;. The 10%-drop, midpoint, and 90%-drop
points are indicated on the resistivity curve (Ku e al.,
1987).

of the second derivative curve sketched in
Fig. 2.22c¢, are both good quantitative mea-
sures of the width of the transition. An asym-
metry parameter, equal to [(A— B)/(A+ B)],
may also be evaluated from Fig. 2.22c.

There appear to be enough data points
near the midpoint of Fig. 2.22a to accurately
define the transition, but the first and second
derivative curves of Figs. 2.22b and 2.22c,
respectively, show that this is not the case.
This need for additional data points demon-
strates the greater precision of the derivative
method.

Phase transitions in general have finite
widths, and a typical approach is to define
T, in terms of the point of most rapid change
from the old to the new phase. Critical expo-
nents are evaluated in this region near 7.
Ordinarily, less account is taken of the more
gradual changes that take place at the onset
or during the final approach to the new
equilibrium state. The onset of supercon-
ductivity is important from a physics view-
point because it suggests that superconduct-
ing regions are being formed, whereas the
zero point is important from an engineering
viewpoint because it is where the material
can finally carry a super current.
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Figure 2.22  Zero-field-susceptibility of YBa,Cu;0; as a function of temperature in a magnetic field
of 0.1 mT: (a) usual susceptibility plot x; (b) first derivative plot d,/dT; and (c) second derivative plot
d’x/d*T (Almasan et al., 1988).

V1. PERFECT DIAMAGNETISM B=u,H(1+y), (2.20)
. . =po(H+M), (2.21)

The property of perfect diamagnetism,
which means that the susceptibility x = —1  js equivalent to the assertion that there can be

in Eq. (1.78a),

no B field inside a perfect diamagnet because
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the magnetization M is directed opposite to
the H field and thereby cancels it:

M=-H (2.22)
When a superconductor is placed between
the pole pieces of a magnet, the B field
lines from the magnet go around it instead of
entering, and its own internal field remains
zero, as shown in Fig. 2.23. This field dis-
tribution is the result of the super-position
of the uniform applied field and a dipole
field from the reversely magnetized super-
conducting sphere, as illustrated in Fig. 2.24
(Jackson, 1975; cf. Section 5-10).

There are two aspects to perfect diamag-
netism in superconductors. The first is flux
exclusion: If a material in the normal state
is zero field cooled (ZFC), that is, cooled
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below T, to the superconducting state with-
out any magnetic field present, and is then
placed in an external magnetic field, the field
will be excluded from the superconductor.
The second aspect is flux expulsion: If the
same material in its normal state is placed in
a magnetic field, the field will penetrate and
have almost the same value inside and out-
side because the permeability w is so close
to the free-space value u,,. If this material is
then field cooled (FC), that is, cooled below
T, in the presence of this field, the field
will be expelled from the material, a phe-
nomenon called the Meissner effect. These
two processes are sketched on the left side of
Fig. 2.25. Although ZFC and FC lead to the
same result (absence of magnetic flux inside
the sample below T,), nevertheless the two

Bapp

Figure 2.23 Curvature of magnetic field lines around a superconducting sphere in

a constant applied field.

(a)

Y

Y IYIY|Y|Y!]Y

Figure 2.24  Sketch of constant applied magnetic field (a) and dipole field
(b) that superimpose to provide the magnetic field lines shown in Fig. 2.23

(Jackson, 1975).
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Figure 2.25 Effect of zero field cooling (ZFC) and field cooling (FC) of a solid
superconducting cylinder (left), a superconducting cylinder with an axial hole (center), and

a perfect conductor (right).

processes are not equivalent, as we will see
in Section IX.

Thompson et al. (1991) found that for
a “defect-free” high-purity niobium sphere
the ZFC and FC susceptibilities are almost
identical. A second high-purity sphere of
similar composition that exhibited strong
pinning was also examined and the same

ZFC results were obtained, except that no
Meissner flux expulsion following field cool-
ing was observed. The pinning was so strong
that the vortices could not move out of the
sample. Figure 2.25 is drawn for the case of
very weak pinning, in which virtually all of
the flux is expelled from the superconducting
material following field cooling.
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VII. MAGNETIC FIELDS INSIDE A
SUPERCONDUCTOR

To further clarify the magnetic field
configurations inside a superconductor, con-
sider a long cylindrical sample placed in
a uniform applied magnetic field with its
axis in the field direction, as indicated in
Fig. 2.26. Since there are no applied currents,
the boundary condition at the surface given
in Chapter 1, Section XIV,

Hy=H|, (2.23)
shows that the H field is uniform inside with
the same value as the applied field:

H,,, = H, (2.24)
The B field has only a z component with
value B,,, = uoH,,, outside and zero inside,
B,, = 0. There is, however, a transition layer
of thickness A, called the penetration depth,

-« B ——»

Dy

Bin =0

L
{(—-

|
=~

Figure 2.26 Boundary region and internal fields for
a superconducting cylinder in an axial external magnetic

field B,p.

Bapp

Happ
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at the surface of the superconductor where
the B field drops exponentially from its value
Bapp on the outside to zero inside, in accor-
dance with the expression

B(r) & B,,,exp[—(R —1)/A], (2.25)
as shown in Fig. 2.27. Thus the B field exists
only in the surface layer, and not in the bulk.

Since

By, (r) = u[H,;, +M(r)] (2.26)
with H,, = = H,,,, we have for M(r)
M) =~y [ 1-exp | -2 ||
(2.27)

again subject to the assumption that A < R,
and this is also sketched in Fig. 2.27.

We will show later in Chapter 6,
Sections VII and VIII, that this expo-
nential decay process arises naturally in
the Ginzburg-Landau and London theories,
and that these theories provide an explicit

B BHy Bogp =
Bm apy
T A
2
a O
=
pe
Bugp i
0 iR R

r

Figure 2.27 Plot of the fields B and uyH and of the
magnetization uy,M outside (r > R) and inside (r < R) a
superconducting cylinder of radius R in an axial applied

field B,,,. At the center of the sphere r=0.
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formula for what is called the London pene-
tration depth A, namely

1/2
m
()"
Montge

where n, is the density of superconducting
electrons.

(2.28)

VII. SHIELDING CURRENT

In the absence of any applied transport
current we set J =0 (also dD/dt = 0) in
Maxwell’s equation, Eq. (1.72), to obtain

VxB, =u,VxM (2.29a)

=Modn (2.29b)
where J, is called the shielding or demag-
netization current density:

Ju=V xM. (2.30)
Since B;, has only a z or axial component, the
curl, expressed in terms of cylindrical coor-
dinates, gives the following shielding current
density flowing around the cylinder in the
negative ¢ direction:

1 dB
Jo()=—— — (2.31)
Mo dr
B (R—r)
~ _ | %P _
()] 557] o
~—J,exp |:— (R—r)] , (2.33)
A
where
Bapp = /‘LOAJO? (234)

again with A <« R, and this circular current
flow is sketched in Fig. 2.28 and graphed in
Fig. 2.29. In other words, the vectors B and
Ja do not exist in the bulk of the supercon-
ductor but only in the surface layer where

2 PHENOMENON OF SUPERCONDUCTIVITY

Jsh

Figure 2.28 Shielding current flow Jy, in a surface
layer of thickness A around a superconducting cylinder

in an axial applied magnetic field B,

they are perpendicular to each other, with
B oriented vertically and J, flowing around
the cylinder in horizontal circles. It may be
looked upon as a circulating demagnetizing
current that shields or screens the interior
of the superconductor by producing a nega-
tive B field that cancels B,,, so that B,, =0
inside.

Thus we see that the superconducting
medium reacts to the presence of the applied
field by generating shielding currents that
cancel the interior B field. The reaction of the
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R

R
r

Figure 2.29 Dependence of the shielding current density Jy, on
the position inside a superconducting cylinder of radius R in an

applied axial field B,
surface.

pp*

medium may also be looked upon as generat-
ing a magnetization M that cancels the inte-
rior B field, as was explained above. These
are two views of the same phenomenon,
since the shielding current density J, and the
compensating magnetization M are directly
related through Eq. (2.30). The negative B
field that cancels B, is really a magnetiza-
tion in the negative z direction.

It is instructive to see how Eq. (2.34) is
equivalent to the well-known formula

_ MM

B
0 L

(2.35)
for the magnetic field B, of an N-turn
solenoid of length L. Since each turn carries
the current I, the total current is NI. This
total current also equals the current density
J, times the area AL, corresponding to

NI = ALJ,. (2.36)
Substituting NI from this expression in
Eq. (2.35) gives Eq. (2.34). Thus the circu-
lating shielding current is equivalent to the
effect of a solenoid that cancels the applied
B field inside the superconductor.

The dipole field of the superconducting
sphere sketched in Fig. 2.24 may be consid-
ered as arising from demagnetizing currents
circulating in its surface layers, as shown in
Fig. 2.30. These demagnetizing currents pro-
vide the reverse magnetization that cancels

Note that Jg, has the value H,,,/A at the

app

Figure 2.30 Shielding current flow around the sur-
face of a superconducting sphere in an applied magnetic
field B,p.
the applied field to make B = 0 inside, just
as in the case of a cylinder.

IX. HOLE IN SUPERCONDUCTOR

As an example of how ZFC and FC can
lead to two different final states of mag-
netism let us examine the case of a hole
inside a superconductor.

Consider a cylindrical superconducting
sample of length L and radius R with a con-
centric axial hole through it of radius 7, as
shown in Fig. 2.31. This will be referred to as
an “open hole” because it is open to the out-
side at both ends. If this sample is zero-field-
cooled in the manner described in Section VI,
an axial magnetic field applied after cooling
below T, will be excluded from the super-
conductor and also from the open axial hole.
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Figure 2.31 Superconducting tube of radius R with
an axial hole of radius r.

Surface currents shield the superconducting
regions from the external field and bring
about the flux exclusion shown in Fig. 2.25.
These same surface currents also shield the
hole from the applied field. This means that
the superconductor plus the hole act like a
perfect diamagnet under zero-field cooling.
The entire volume 7R?L, including the open
hole volume 7r2L, has an effective suscep-
tibility of —1,
Xegt = — 1. (2.37)
If this same sample, still with an open
hole, is field cooled, once it attains the super-
conducting state the magnetic flux will be
expelled from the superconducting material,
but will remain in the hole. The same outer
surface currents flow to shield the supercon-
ductor from the applied field, but the sur-
face currents flowing in the reverse direction
around the inside surface of the cylinder,
i.e., around the hole periphery as indicated
in Fig. 2.32, cancel the effect of the out-
side surface currents and sustain the original
magnetic flux in the hole. The volume of
the superconducting material, (wR? — 7r?)L,
has a susceptibility of —1, but the space in

2 PHENOMENON OF SUPERCONDUCTIVITY

BaPP

Bapp

Figure 2.32 Magnetic field lines, shielding current
flow Jg, on the outside surface, and reverse-direction
shielding current flow J; on the inside surface of a
superconducting tube in an applied axial magnetic field.
The magnetic field lines pass through the hole because
the cylinder has been field cooled.

the open hole, 7L, does not exhibit dia-
magnetism, so that for the hole y = 0. The
effective susceptibility of the cylinder with
the hole is the average of —1 for the super-
conducting material and O for the hole, cor-
responding to

w=-[1-(%)]

which reduces to —1 for no hole (r = 0) and
to O for r = R. This experimentally measur-
able result is different from the ZFC open
hole case (2.37). Experimentally, it is found
that the magnetic susceptibility is less nega-
tive for field-cooled samples than for zero-
field-cooled samples, as shown by the data
in Fig. 2.33. Mohamed et al. (1990) give
plots of the ZFC and FC magnetic field dis-
tributions of a 16-mm diameter, 2-mm thick
superconducting disk with a 3-mm diameter
axial hole.

(2.38)
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Figure 2.33  Zero-field-cooled (closed symbols) and field-cooled (open symbols) mag-
netic susceptibility of YBa,Cu;0; nonaligned powder (circles) and grain-aligned samples
with the applied field parallel to the c-axis (triangles) and perpendicular to the c-axis
(squares). Results are shown in an applied field of (a) 5mT and (b) 0.3 T. Note the change
in abscissa and ordinate scales between the two figures (Lee and Johnston, 1990).

Another important case to consider is
that of a totally enclosed hole of the type
shown in Fig. 2.34, which we call a closed
hole or cavity. It is clear that for ZFC the
closed hole behaves the same as the open

hole, that is, flux is excluded from it, with
Xeit = —1, as shown in the fifth column of
Fig. 2.25. Flux is also excluded for field
cooling. To see this, we recall that the B
field lines must be continuous and can only
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Figure 2.34  Superconducting cylinder with a totally
enclosed hole.

begin or end at the poles of a magnet. In
the open hole case, the B field lines in the
hole either join to the externally applied field
lines or form loops that close outside the
sample, as shown at the bottom of column 4
of Fig. 2.25. The B field lines have no way
of leaving a closed hole to connect with the
external field or to form closed loops out-
side, so such lines cannot exist inside a cavity
completely surrounded by a superconducting
material. Therefore, flux is expelled during
field cooling, so again y.s = —1. Thus a
superconductor with a cavity behaves like a
solid superconductor with the difference that
magnetization can exist only in the super-
conductor, not in the cavity.

In this section we have discussed
the cases of open and closed holes in
superconductors. We showed in Table 1.2
that the susceptibility of typical diamagnetic
and paramagnetic samples is quite close to
zero, so that the empty hole results also apply
to holes filled with typical nonsuper con-
ducting materials. Experimentally, we deal
with samples with a known overall or exter-
nal volume, but with an unknown fraction of
this volume taken up by holes, intergranular

2 PHENOMENON OF SUPERCONDUCTIVITY

spaces, and nonsuperconducting material that
could respond to ZFC and FC precondition-
ing the same way as a hole.

If a sample is a mixture of a supercon-
ducting material and a non-superconducting
material with the nonsuperconducting part
on the outside so that the applied magnetic
field can penetrate it under both ZFC and
FC conditions, the average sample suscepti-
bility will be the average of y =0 for the
normal material and y = —1 for the super-
conducting part. Thus both the ZFC and the
FC measurement will give values of x.;
that are less negative than —1. A granular
superconducting sample can have an admix-
ture of normal material on the outside or
inside and space between the grains that pro-
duce ZFC and FC susceptibilities of the type
shown in Fig. 2.33, where, typically, the
measured susceptibilities are y,, =~ —0.7 and
Xi. ~ —0.3.

X. PERFECT CONDUCTIVITY

We started this chapter by describ-
ing the perfect conductivity property of
a superconductor—namely, the fact that it
has zero resistance. Then we proceeded to
explain the property of perfect diamagnetism
exhibited by a superconductor. In this section
we will treat the case of a perfect conduc-
tor, i.e., a conductor that has zero resistivity
but the susceptibility of a normal conduc-
tor, i.e., Y & 0. We will examine its response
to an applied magnetic field and see that it
excludes magnetic flux, but does not expel
flux, as does a superconductor. We will start
with a good conductor and then take the
limit, i.e., letting its resistance fall to zero
so that it becomes a hypothetical perfect
conductor.

A static magnetic field penetrates a good
conductor undisturbed because its magnetic
permeability u is quite close to the magnetic
permeability of free space w,, as the suscep-
tibility data of Table 1.2 indicate. Therefore,
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a good conductor placed in a magnetic field
leaves the field unchanged, except perhaps for
current transients that arise while the field is
turned on and die out rapidly. In Section IV we
estimated the decay time constant for a loop of
copper wire 15 cm in diameter to be 0.42 ms.
Consider a closed current path within
the conductor. When the magnetic field B,
is applied, the magnetic flux through this
circuit & = A -B,,, changes, so that by Lenz’
law a voltage —A-dB,,,/dt is induced in the
circuit and a current / flows, as indicated in
Fig. 2.35, in accordance with the expression

dB, dI
A R4 L-
dt

dt
The current rapidly dies out with time con-
stant L/R. For a perfect conductor the resis-
tance term in Eq. (2.39) vanishes. Solving
the resultant equation,
dB dl

A
dt dt’

(2.39)

(2.40)
gives

LI+A-B,,, = Pryys (241)
which means that the total flux LI +A-B,,,
remains constant when the field is applied. If
no fields or currents are present and the field
B,,, is applied, the flux LI will be induced to
cancel that from the applied field and main-
tain the B = 0 state inside the perfect conduc-

tor. In real conductors the induced currents

Flux Change

Induced
Current

Figure 2.35 Magnetic field B rapidly established
through a loop of wire and induced current /. which, by
Lenz’ law, flows in a direction to oppose the establish-
ment of this field.
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die out so rapidly that the internal B field
builds up immediately to the applied field
value. Hence a perfect conductor exhibits
flux exclusion since a magnetic field turned
on in its presence does not penetrate it. It
will, however, not expel flux already present
because flux that is already there will remain
forever. In other words, an FC-perfect con-
ductor retains magnetic flux.

Thus we find that a ZFC-perfect conduc-
tor excludes magnetic flux just like a ZFC
superconductor. The two, however, differ in
their field-cooled properties, the perfect con-
ductor retaining flux and a superconductor
excluding flux after FC. A perfect conductor
acts like an open hole in a superconductor!

We do not know of any examples of per-
fect conductors in nature. The phenomenon
has been discussed because it provides some
insight into the nature of superconductivity.

XI. TRANSPORT CURRENT

In the previous section we discussed the
shielding currents induced by the presence
of applied magnetic fields. We saw how a
field applied along the cylinder axis gives
rise to currents circulating around this axis.
When a current is applied from the outside
and made to flow through a superconduc-
tor, it induces magnetic fields near it. An
applied current is called transport current,
and the applied current density constitutes
the so-called “free” current density term on
the right side of Maxwell’s inhomogeneous
equation (1.68).

Suppose that an external current source
causes current / to flow in the direction of the
axis of a superconducting cylinder of radius
R, in the manner sketched in Fig. 2.36. We
know from general physics that the wire has
a circular B field around it, as indicated in
the figure, and that this field decreases with
distance r from the wire in accordance with
the expression

Kol

B=—

= r>R,
2y

(2.42)
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Figure 2.36 Magnetic field lines B around a wire
carrying a current /.

as shown sketched in Fig. 2.37, with the fol-
lowing value on the surface:

ol

=, 2.43
surf 2@R ( )

We also know that if the current density were
uniform across the cross section of the wire,
the B field inside would be proportional to
the distance from the axis, B = B,,;(7/R), as
shown in Fig. 2.37.

Since magnetic flux is excluded from
inside a superconducting wire, the current
density cannot be uniform, and instead the
transport current must flow in a surface layer
of thickness A, as shown in Fig. 2.38, to
maintain the B field equal to zero inside.
This current density J(r) must have the same

B{n
Bar

[
4R

0 1
o R ;| 3R

Figure 2.37 Dependence of the internal (r < R) and
external (r > R) magnetic field on distance from the
center of a normal conductor wire carrying a current of
uniform density.
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1"“L
f (O

Figure 2.38 Transport current flow in a surface layer
of thickness A of a Type I superconducting wire of
radius R.

exponential dependence on distance as given
by Eq. (2.31) for the case of the shielding
current:

Bsurf (R B r)
10 =2 e -0 )
1 (R—r)

Figure 2.39 shows how the current distribu-
tion changes at the junction between a nor-
mal wire and a superconducting wire from
uniform density flow in the normal conduc-
tor to surface flow in the superconductor.
The total current / is the integral of the cur-
rent density J(r) from Eq. (2.45) over the
cross section of the superconducting wire,
with value

I =2mRAJ, (2.46)
where J = J(R) is the maximum value of
J(r), which is attained at the surface, and
the quantity 27RA is the effective cross-
sectional area of the surface layer. Substitut-
ing the expression for I from Eq. (2.46) in
Eq. (2.43) gives

Bt = moAJ, (2.47)
which is the same form as Eq. (2.34) for the
shielding current.

Comparing Egs. (2.32) and (2.44) we

obtain for the magnetic field inside the wire

(2.48)

B(V) = Bsurf €Xp [_
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| 7 |
| : .
Normal Conductor Superconductor

Figure 2.39  Current flow through a wire that is normal on the left
and Type I superconducting on the right. Note that the penetration
depth A determines the thickness of both the transition region at the
interface and that of the surface layer.

as shown sketched in Fig 2.40. In Chapter 5,
Sections VII and IX, we show how to derive
these various exponential decay expressions
from the Ginzburg-Landau and London the-
ories. Outside the wire the magnetic field
exhibits the same decline with distance in
both the normal and superconducting cases,
as can be seen by comparing Figs. 2.37
and 2.40.

There is really no fundamental differ-
ence between the demagnetizing current and

the transport current, except that in the
present case of a wire their directions are
orthogonal to each other. When a current is
impressed into a superconductor it is called
a transport current, and it induces a magnetic
field. When a superconductor is placed in an
external magnetic field, the current induced
by this field is called demagnetization cur-
rent or shielding current. The current—field
relationship is the same in both cases. This
is why Eqgs. (2.25) and (2.48) are the same.

o

0O

2R, 3R

Figure 2.40 Dependence of the internal (r < R) and external (r > R)
magnetic field on distance from the center of a superconducting wire carrying
a current that is confined to the surface layer. This figure should be compared

with Fig. 2.37.
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XIl. CRITICAL FIELD AND CURRENT

We noted in Section II that application
of a sufficiently strong magnetic field to a
superconductor causes its resistance to return
to the normal state value, and each supercon-
ductor has a critical magnetic field B, above
which it returns to normal. There is also a
critical transport current density J, that will
induce this critical field at the surface and
drive the superconductor normal. Compar-
ing Egs. (2.34) and (2.47), respectively, we
have for both the demagnetizing and trans-
port cases
B(T) = poM(D)J(T), (2.49)
where all three quantities are temperature
dependent in a way that will be described in
the following section. Either an applied field
or an applied current can destroy the super-
conductivity if either exceeds its respective
critical value. At absolute zero, we have

B.(0) = oA (0)J.(0), (2.50)
and this is often written
B, = pyAJ,, (2.51)

where T = 0 is understood.

A particular superconducting wire of
radius R has a maximum current, called the
critical current I, which, by Eq. (2.46), has
the value

I, =27RAJ.. (2.52)

Using Eq. (2.51), the value of the critical
current may be written as

27RB,
I, = (2.53a)
Mo
=5x 10°RH,. (2.53b)

The transformation of a superconducting wire
to the normal state when the current passing

2 PHENOMENON OF SUPERCONDUCTIVITY

through it exceeds the critical value is called
the Silsbee effect.

In Type I superconductors with thick-
nesses much greater than the penetration
depth A, internal magnetic fields, shielding
currents, and transport currents are able to
exist only in a surface layer of thickness A.
The average current carried by a supercon-
ducting wire is not very high when most
of the wire carries zero current. To achieve
high average super current densities, the wire
must have a diameter less than the penetra-
tion depth, which is typically about 50 nm
for Type I superconductors. The fabrication
of such filamentary wires is not practical,
and Type II superconductors are used for this
application.

XIl. TEMPERATURE DEPENDENCES

In the normal region above the tran-
sition temperature there is no critical field
(B.=0) and there is total magnetic field
penetration (A = c0). As a superconductor is
cooled down through the transition tempera-
ture T, the critical field gradually increases
to its maximum value B,(0) at absolute
zero (T =0), while the penetration depth
decreases from infinity to its minimum value
A(0) at absolute zero. The explicit temper-
ature dependences of B.(T) and A(T) are
given by the Ginzburg-Landau theory that
will be presented in Chapter 6, where A(0) =
A as given by Eq. (2.28),

m 12
M®=< 2),
I"L()nse

which assumes that all of the conduction
electrons are super electrons at 7 = 0. The
critical current density may be written as the
ratio

(2.54)

B.(T)

LD = XD

(2.55)
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given in Eq. (2.49) in order to obtain the
temperature dependence of J, (7). These tem-
perature dependences have the form

s3]
ol (@)] e
o= (][ ()]

and are sketched in Figs. 2.41, 2.42, and

2.43. Also shown by dashed lines in the
figures are the asymptotic behaviors near
the transition temperature 7 &~ T, (Nicol and
Carbotte, 1991):

(2.56)

2Bc(o)

%Bc(‘))

Be(o)

Be(m

%Bc(o)

0 iTe Te
Temperature

Figure 2.41 Temperature dependence of the critical
field B.(T) corresponding to the behavior expressed by
Eq. (2.56). The asymptotic behaviors near 7 =0 and
T =T, are indicated by dashed lines.
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Figure 2.42 Temperature dependence of the pen-
etration depth A(7) corresponding to Eq. (2.57). The
asymptotic behaviors near 7 =0 and 7 = T, are indi-
cated by dashed lines.

Jelo)

0 3T Te
Temperature

Figure 2.43 Temperature dependence of the critical
current density J,(7) in accordance with Eq. (2.58). The
asymptotic behavior near 7 =0 and T = T, is indicated
by dashed lines.

B.~2B.(0) [ T} , (2.59)

——
T,

C

1 712
A~ 1A(0) [1 - T] , (2.60)

c
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T 132
J. ~ 4J,(0) [1—7] . (2.61)

Jiang and Carbotte (1992) give plots of
A(0)/A(T) for various theoretical models
and anisotropies. The asymptotic behav-
iors near absolute zero, T — 0, are as
follows:

B, = B,(0) [1 - (;)2} , (2.62)
A~ A(0) [1 + % (%)4] . (2.63)
J.~ 1,(0) [1 - (%)2} , (2.64)

which are proven in Problems 5 and 6,
respectively. Note that Eq. (2.62) is iden-
tical to Eq. (2.56). Some authors report
other values of the exponents or expressions
related to Egs. (2.56)—(2.64) for B, (Miu,
1992; Miu et al., 1990), A (Diumling and
Chandrashekhar, 1992; Hebard et al., 1989;
Kanoda er al., 1990; Kogan et al., 1988),
and J, (Askew et al, 1991; Freltoft et al.,
1991).

For later reference we give here the tem-
perature dependence of the superconducting
energy gap E, in the neighborhood of 7:

172

E, ~3.52kgT, |:1 — E:| (2.65)
(cf. Section VI, Chapter 7 for an explana-
tion of the energy gap and a plot (Fig. 7.7)
of this expression). Another length param-
eter that is characteristic of the supercon-
ducting state is the coherence length &; this
parameter will be introduced in Chapter 6
and referred to frequently throughout the
remainder of the text. It is reported to have
a [1—T/T,]™" dependence, with n = 1/2
expected; the penetration depth also depends
on [l —(T/T,)]™" near T, (Chakravarty
et al., 1990; Duran et al., 1991; Schneider,
1992).
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XIV. TWO FLUID MODEL

Many properties of superconductors can
be described in terms of a two-fluid model
that postulates a fluid of normal electrons
mixed with a fluid of superconducting elec-
trons. The two fluids interpenetrate but do
not interact. A similar model of interpene-
trating fluids consisting of normal and super-
fluid atoms is used to explain the properties
of He* below its lambda point. When a
superconductor is cooled below T, normal
electrons begin to transform to the super
electron state. The densities of the normal
and the super electrons, n, and ng, respec-
tively, are temperature dependent, and sum
to the total density n of the conduction
electrons,

n,(T)+n(T) =n, (2.66)
where at T =0 we have n,(0) =0 and
ny(0) = n.

If we assume that Eq. (2.54) is valid for

any temperature below T,

M) = (uonsTT)eZ)l/z’

then A(0) = (m/uyne*)"/?, and we can write

sl

(2.67)

(2.68)

which becomes, with the aid of Eq. (2.57),

T\*
ns%n|:1—(—> :|
TC
Figure 2.44 shows a sketch of n, versus tem-

perature. Substituting the latter in Eq. (2.66)
gives for the normal electron density

T\*
n,~n|l—1» .
(%)

Equation (2.68) is useful for estimating super
electron densities.

(2.69)

(2.70)
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Figure 2.44 Temperature dependence of the density
of superconducting electrons ng as given by Eq. (2.69).
The dashed lines show the slope dn,/dT =0 at T =0
and —4 at T,.

XV. CRITICAL MAGNETIC
FIELD SLOPE

We showed in the previous section
that the critical magnetic field has the
parabolic dependence on temperature given
by Eq. (2.56), and this is plotted in Fig. 2.41.
The slope of the curve near T, is given by
Eq. (2.59) and may also be written

dB.(T)  2B.(0)
T~ T.

C

(2.71)

For most Type I superconductors this ratio
varies between —15 and —50mT/K; for
example, it has a value of —22.3mT/K
for lead.

A Type II superconductor has two crit-
ical fields, a lower-critical field B,, and an
upper-critical field B, where B, < B, as
we will see in Chapter 12. These critical
fields have temperature dependences similar
to that of Eq. (2.71). Typical values of these
two slopes for a high-temperature supercon-
ductor are (see Fig. 12.8, Table 12.5)

dBcl ZBCI(O)
=— ~ —1mT/K,
dT T

C

(2.72)

55

dB 2B, (0
2 _ 28200 —1.83T/K.
dT T

C

(2.73)

For high-temperature superconductors the
slopes of Egs. (2.72) and (2.73) near T, can
be quite anisotropic.

XVI. CRITICAL SURFACE

The critical behavior of a superconduc-
tor may be described in terms of a critical
surface in three-dimensional space formed
by the applied magnetic field B,,,, applied
transport current J,., and temperature 7', and
this is shown in Fig. 2.45. The surface is
bounded on the left by the B, (7) versus
T curve (d—c-b-a) drawn for J, = 0; this
curve also appears in Figs. 2.41 and 2.46.
The surface is bounded on the right by the
J.(T) versus T curve (g—h—i—a) drawn for
B,,, = 0, which also appears in Figs. 2.43
and 2.47. Figure 2.46 shows three B_(7)
versus T curves projected onto the J, =0
plane, while Fig. 2.47 presents three J_(7)
versus 1" curves projected onto the B,,, =0
plane. Finally, Fig. 2.48 gives projections of

Jrr 7 Je(0)
Bapp / Be{o}

Figure 2.45 Critical surface of a superconductor.
Values of applied field B, transport current J;, and
temperature 7 corresponding to points below the critical
surface, which are in the superconducting region, and
points above the critical surface, which are in the normal
region. The points on the surface labeled A, B , ..., L
also appear in Figs. 2.46-2.49.
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Figure 2.46 Projection of constant current curves of
the critical surface of Fig. 2.45 on the B,,,, T-plane.
Projections are shown for J, =0, J, < J,, and J, ~ J..
The J, =0 curve is calculated from Eq. (2.56). The
other two curves are drawn so as to have the same shape
as the curve for J;, =0.

JTr (T)
Je(0)

Figure 2.47 Projection of constant applied field
curves of the critical surface of Fig. 2.45 onto the J,
T plane. Projections are shown for B,,, =0, B,,, < B,,
and B,,, ~ B.. The B,,, =0 curve is calculated from
Eq. (2.58). The other two curves are drawn to have the
same shape as the curve for B,,, = 0.

three J,(7T) versus B,(T) curves onto the T =
0 plane. The points a, b ,. . ., 1 in the various
figures are meant to clarify how the projec-
tions are made. The notation B,(0) = B, and
J.(0) = J, is used in these figures.
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Jn (1
Je(0)

Bap (T
B.(0)

Figure 2.48 Projection of constant-temperature
curves of the critical surface of Fig. 2.45 onto the
Jies Bypp plane. Projection isotherms are shown for 7 =
0, TKT, and T =~ T,. The shapes given for these
curves are guesses.

The x- and y-coordinates of this surface
are, respectively, the applied magnetic field
B,,, and the applied transport current J;.. The
former does not include the magnetic fields
that are induced by the presence of transport
currents, while the latter does not include
shielding currents arising from the applied
fields. What the critical surface means is
that at a particular temperature 7 there is
a characteristic critical field B,(T) that will
drive the superconductor normal if applied
in the absence of a transport current. Simi-
larly there is a critical current density J,(7)
that will drive the superconductor normal if
it is applied in zero field. In the presence of
an applied field a smaller transport current
will drive the superconductor normal, and if
a transport current is already passing through
a superconductor, a smaller applied magnetic
field will drive it normal. This is evident
from the three constant temperature B, (T)
versus J,(T) curves shown in Fig. 2.48. One
of these (h-l1-k—c) is redrawn in Fig. 2.49.

It will be instructive to illustrate the
significance of Figs. 2.48 and 2.49 by an
example. Consider the case of a long, cylin-
drical superconductor of radius R < L with
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Figure 2.49 Projection of the h-l-k-c curve of
Fig. 2.45 onto the J.(T) versus B,,, plane showing the
critical fields and current densities at the points k and 1.
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Figure 2.50 Type I superconducting cylinder (a) car-
rying a transport current /. of density J. in an applied
magnetic field B,,,, and (b) flow of this transport current
in a surface layer of thickness A.

an applied transport current /;, flowing along
its axis and located in a magnetic field B,
along its axis, as indicated in Fig. 2.50.
This situation is analyzed by taking into
account the magnetic field produced at the
surface by the transport current, assum-
ing that J_(7)/J.(0) = B.(T)/B.(0) and that
the normalized J_(T)-versus-B,(T) curve of
Fig. 2.49 is an arc of a circle.

We can see from Eq. (2.43) that the
transport current produces the magnetic
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Figure 2.51 Net magnetic field B, on the surface of
a superconducting cylinder resulting from vector addi-
tion of the applied field B,,, and the field B, produced
by the transport current.

PP

field B

tr>

/‘L()Itr
=5 g (2.74)
at the surface of the cylinder. This magnetic
field is at right angles to B,,, at the surface,
as shown in Fig. 2.51, so that the net field
B, at the surface is the square root of the
sum of the squares of B,,, and B:

Bnet = (Bipp-’_Btzr)l/z' (275)
Using Eq. (2.74) this equation can be written

explicitly in terms of the transport current:

ol \

The superconductor will go normal when the
combination of B,,, and I is high enough to
make B, equal B (7), the critical field for
this temperature in the absence of transport
currents:

172

(2.76)

172

2
Mol
B.(T)=|B,+ (27‘;R) (2.77)

If we consider the case of the superconductor
going normal at the point k of Fig. 2.49 then,
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Figure 2.52 Net current density J,, flowing on the
surface of a superconducting cylinder resulting from
vector addition of the transport current density J,, and
the shielding current density Jg,.

in the notation of that figure, we have at this
point,

(2.78)
(2.79)

Bypp = By,
I, = 2mRAJ,,

where in a typical experimental situation
the applied quantities B,,, and I, are often
known.

This analysis was carried out by equat-
ing the vector sum of the applied field and
the field arising from the transport current to
the critical field B.(T). An alternate way of
analyzing this situation is to equate the vector
sum of the transport current density and the
shielding current density to the critical cur-
rent density J_(7T') at the same temperature.
This can be done with the aid of Fig. 2.52 to
give the expression

P

) ,71/2
n=[ (=) + (5]
MoA 2@RA

(2.80)

which is the counterpart of Eq. (2.77).
In this section we assumed axially
applied fields and currents and neglected
demagnetizing effects that depend on the

shape of the sample. More general cases are
far more difficult to analyze.

2 PHENOMENON OF SUPERCONDUCTIVITY
FURTHER READING

Several superconductivity texts cover the material
found in this chapter. Five of them may be cited: Kresin
and Wolf, 1990; Orlando and Delin, 1991; Rose-Innes
and Rhoderick, 1994; Tilley and Tilley, 1986; Tinkham,
1985. Ott (1993) surveyed the progress in superconduc-
tivity from 1980 to 1990 and provided a collection of
reprinted articles. Other sources of introductory material
are Hettinger and Steel (1994), Sheahan (1994), and Shi
(1994). There are Landolt-Bornstein data tabulations
on the classic superconductors by Fliikiger and Klose
(1993) and on the cuprates and related compounds by
Kazei and Krynetskii (1993). The book by Hermann
and Yakhmi (1993) is devoted to the thallium com-
pounds. The Handbook of superconductivity edited by
Poole (2000) contains much pertinent information.

PROBLEMS

1. A wire with a radius of 1 cm is produced
from a superconductor with a transition
temperature of 120 K. It is in a longitudi-
nal magnetic field of 40 T at 60K, and it
is found that increasing the applied cur-
rent to 10° A drives it normal. What are
the values of the upper critical field, the
critical current, and the critical current
density for the wire at 60K and in the
limit 7 — 0K? Assume that B, and B,
exhibit the same temperature behavior.

2. A cylindrical superconductor of radius
200cm with an axial hole in the cen-
ter of radius 100 cm is located in a par-
allel magnetic field of 2T at 300K. It
has a penetration depth of 2000 A. What
amount of flux is stored in the super-
conducting material and in the hole if
the sample is cooled to 40 K, well below
T, =90K. If the applied field is reduced
to 0.5T, how will these stored fluxes
change? What is the value of the current
density on the outside surface and on the
inside surface for these two cases?

3. What is the resistance of a 50-cm length
of niobium wire of diameter 3 mm at
300 K? How much longer would a wire
made of copper have to be in order to
have the same resistance?



PROBLEMS

4.

10.

11.

A superconducting wire 4 mm in diame-
ter is formed into a loop of radius 7 cm. If
a super current persists unchanged in this
wire for 12 years, what is the approxi-
mate upper limit on the resistivity?

. Show that Egs. (2.59)—(2.61) provide the

limiting behaviors of Egs. (2.56)—(2.58),
respectively, in the limit 7 — T.

. Show that Egs. (2.62)—(2.64) provide

the limiting behaviors of Egs. (2.56)-
(2.58), respectively, as the temperature
approaches absolute zero.

. Explain how the analysis of Fig. 2.49

that is given in Section XVI is based
on the assumptions that were made con-
cerning J,(7T), B.(T), and the shape of
the curve in the figure.

. Derive Eq. (2.80).
. Give the location of point £ in Fig. 2.46,

of point k in Fig. 2.47, and of point j in
Fig. 2.48.

What is the concentration of super elec-
trons at T=0K,T =1T., T =1T,, and
T =1.1T, in a superconductor with a
penetration depth of 150nm? What is
the concentration of normal conduction
electrons at these temperatures?

A Type I superconductor has a critical

field B, =0.3T and a critical current

12.

13.

14.

15.

16.

59

density J, =2 x 10* A/cm?* at 0K. Find
B.,J., A and n at T =1T,.

If a transport current density of
9000A/cm” is flowing through the
super-conductor of Problem 11 at 0K,
what magnetic field will drive it
normal?

A Type I superconducting wire 3 mm in
diameter has a critical field B, =0.4T
and a critical current density J, = 3 x
10*A/cm? at 0K. What is the max-
imum transport current that can flow
through it at 0K in an applied field
of 0.35T?

A Type I superconductor with 7, = 7K
has slope dB./dT = 25mT/K at T..
Estimate its critical field at T = 6K.
Show that for a particular temperature 7

a plot of the critical surface B,,, versus
WoAJ, is an arc of a circle a' distance

B.(T) from the origin.

If it is assumed that the a direction
electrical conductivity arises from the
planes and that the b direction con-
ductivity is the sum of the contribu-
tions from the planes and chains (as
explained in Section 7.VI), find 0y,
and o, for YBa,Cu;0, at 100K

chain

and 275 K.
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3

Classical

Superconductors

I. INTRODUCTION

In this chapter we will survey the prop-
erties of various classes of elements and
compounds that are superconductors below
about 25K. We will begin with the sim-
plest group, namely the elements, and will
proceed to discuss the binary, ternary, and
larger compounds. Then we will treat the
A15 compounds such as Nb;Sn that, until
the discovery of the high 7, types, produced
the highest transition temperatures of all.
Following this discussion we will review the
Laves phases, the Chevrel phases, the chalco-
genides, and the oxides.

Il. ELEMENTS

Superconductivity was first observed in
1911 in the element mercury with 7, =4.1K,

as shown in Fig. 2.2. Two years later lead
surpassed mercury with 7, = 7.2 K. Niobium
with 7, = 9.25K held the record for high-
est T, for the longest period of time, from
1930 to 1954 when the A15 compounds came
to prominence. Other relatively high-T, ele-
ments are Tl (2.4K), In (3.4K), Sn (3.7K),
Ta (4.5K), V (5.4K), La (6.3K), and Tc
(7.8 K), as shown in Table 3.1. Figure 3.1
shows how the super-conducting elements
are clustered in two regions of the peri-
odic table, with the transition metals on
the left and the nontransition metals on the
right. Some elements become superconduct-
ing only as thin films, only under pressure,
or only after irradiation, as indicated in the
figure.

We see from Table 3.1 that the great
majority of the superconducting elements

61



62

3 CLASSICAL SUPERCONDUCTORS

Table 3.1 Properties of the Superconducting Elements?

, Crystal T, 0O, B, 2B,/T, mJ sz 10°
Z Element’ N, Structure’ (K) (K) (mT) (mT/K) (m> (cm”/mole) A [T
4 Be 2 hep 0.026 940 0.21
13 Al 3 fec 1.18 420 10.5 18 1.4
21 Sc 3 hep 0.01 470 10.9
22 Ti 4 hep 040 415 56 28 3.3 155 0.38  0.17
23V 5 bee 540 383 141.0 52 9.82 300 0.60 0.17
30 Zn 12 hep 0.85 316 5.4 12 0.66
31 Ga 3 orthr 1.08 325 583 11 0.60
40 Zr 4 hep 0.61 290 4.7 15 2.77 129 041  0.15
41 Nb 5 bec 9.25 276 206.0 45 7.80 212 0.82  0.15
42 Mo 6 bce 0.92 460 9.6 21 1.83 89 0.41 0.10
43 Tc 7 hep 7.8 411 1410 36 6.28 270
44 Ru 8 hcp 049 580 69 28 2.8 39 038 0.14
48 Cd 12 hep 0.517 210 2.8 11 0.69
49 In 3 tetrg 3.41 108 28.2 17 1.67
50 Sn(w) 4 tetrg 372 195 30.5 16 1.78
57 La(a) 3 hep 488 152 80.0 33 9.8
57 La(B) 3 fec 6.3 140 110.0 37 11.3
71 Lu 3 hcp 0.1 <35.0
72 Hf 4 hep 0.13 252 1.27 20 22 70 0.14
73 Ta 5 bce 4.47 258 82.9 37 6.15 162 0.75
74 W 6 bce 0.015 383 0.12 16 0.90 53 0.25
75 Re 7 hcep 1.70 415 20.0 24 2.35 68 0.37 0.10
76 Os 8 hcp 0.66 500 70 21 2.35 13 044  0.12
77 Ir 9 fecc 0.11 425 1.6 29 32 24 0.35
80 Hg(a) 12 trig 4.15 88 41.1 20 1.81
80 Hg(B) 12 tetrg 3.9 93 33.9 17 1.37
81 TI 3 hep 2.38 79 17.8 15 1.47 0.80
82 Pb 4 fcc 7.20 96 80.3 22 3.1 1.55
90 Th 4 fec 1.38 165 16.0 23 4.32
91 Pa 5 1.4
95 Am 9 fcc 1.0

¢ N, is as defined in Fig. 3.1; ®p, Debye temperature; B, critical field; vy, electronic specific heat parameter;
X, susceptibility; A, electron—-phonon coupling constant; u;, Coulomb pseudopotential; P, pressure; WF, work
function Eg, energy gap; and D(Ey), density of states at the Fermi level.
Most of the data in the table come from Roberts (1976), Vonsovsky et al. (1982), and Handbook of Chemistry as

Physics, 70th edition (1989-1990).

b Sn is the gray diamond structure a form below 13.2°C,

and the white tetragonal 8 form above; La is the fcc 8

form above 310°C, and the hcp a form at lower temperatures.

have crystallographic structures of very high
symmetry, either face-centered cubic (10,
fcc), hexagonal close-packed (15, hep), or
body-centered cubic (11, bee), with the unit
cells sketched in Fig. 3.2. The fcc and hcp
structures provide the densest possible crys-
tallographic packing, with each atom sur-

rounded by 12 equidistant nearest neighbors.
Other cases include trigonal Hg, tetragonal
In, tetragonal (white) Sn, and orthorhom-
bic Ga.

Slightly more than half of the ele-
ments that are superconducting are mem-
bers of different transition series, for exam-
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dT,/dP E,=2A D(Ey)

(K/GPa) P (GPa) @ WF (eV) (meV) E,/kT, (states, atom eV) VA

5.0 4

4.3 0.35 34 13

5.9 21

0.6 0-1.4 4.33 ~1.4 22

6.3 0-2.5 4.3 1.6 3.4 ~2.1 23

0.45 4.3 0.23 3.2 30

0.33 3.5 31

15.0 0-2.0 0 4.05 ~0.8 40

—-2.0 0-2.5 4.3 3.0 3.8 ~2.1 41

—1.4 0-2.5 0.37 4.6 0.26 34 0.65 42

—12.5 0-1.5 5.0 2.4 3.6 43

—-2.3 0-1.8 0 4.7 0.15 3.5 0.91 44

0.5 4.2 0.14 3.2 48

3.8 1.05 3.6 49

0.47 4.38 1.4 4.4 50

190 0-2.3 1.5 3.5 57

110 57

0.028 3.3 71

—2.6 0-1.0 0.044 3.9 0.83 72

—2.6 ~1.7 ~3.5 ~1.7 73

4.5 ~0.006 ~4.5 ~0.5 74

—-2.3 0-1.8 0.23 0.78 3.4 0.76 75

—1.8 0.20 0.29 4.8 0.70 76

0.048 5.6 77

0.50 4.52 1.7 4.6 80

80

0.50 3.7 0.79 3.8 81

0.48 4.3 2.7 4.3 82

0.41 3.4 90

91

95

ple, the first transition series from scandium
to zinc (5), which has an incomplete 3d”
electron shell; the second transition series
from yttrium to cadmium (8), with 4d"
electrons; the third such series from lute-
cium to mercury (8), with 5d" electrons; the
rare earths from lanthanum to ytterbium (3),
which have an incomplete 41" electron shell;
and the actinides from actinium to lawren-
cium (4), with 5f" electrons (the number
of superconductors in each class is given in
parenthesis).

Among the elements niobium has the
highest transition temperature, and perhaps
not coincidentally it is also a constituent of

higher 7, compounds such as Nb;Ge. Nio-
bium has not appeared prominently in the
newer copper oxide superconductors.

Of the transition elements most com-
monly found in the newer ceramic-type
superconductors, lanthanum is superconduct-
ing with a moderately high 7, (4.88K for
the o or hep form and 6.3K for the 8 or
fcc form), yttrium becomes superconducting
only under pressure (7, ~ 2K for pressure P
in the range 110 < P < 160kbar), and cop-
per is not known to super conduct. Studies of
the transition temperature of copper alloys as
a function of copper content have provided
an extrapolated value of 7, =6 x 107'°K for
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Figure 3.1 Periodic table showing the superconducting elements together with their transition temperatures T,

and some of their properties (Poole ef al., 1988).

FCC

HCP

Figure 3.2 Body-centered cubic, face-centered cubic, and hexagonal close-packed unit cells.

Cu which, while nonzero, cannot be achieved
experimentally. The nontransition elements
oxygen and strontium present in these com-
pounds do not superconduct, barium does
so only under pressure (7, = 1K to 54K
under pressures from 55 to 190kbar), bis-
muth likewise superconducts under pressure,
and thallium is a superconductor with 7, =
2.4K. Lead, added in low concentrations to
stabilize the bismuth and thallium high-T7,
compounds, is also a well-known elemen-
tal superconductor. Thus the superconduct-
ing properties of the elements are not always
indicative of the properties of their com-

pounds, although niobium seems to be an
exception.

l1l. PHYSICAL PROPERTIES OF
SUPERCONDUCTING ELEMENTS

Figure 3.1 gives the transition tempera-
ture T, Debye temperature ®p, Sommerfeld
constant, or normal-state electronic spe-
cific heat constant y from Eq. (1.51),
C, = yT, dimensionless electron—phonon
coupling constant A (cf. Chapter 6), and den-
sity of states D(Ey) at the Fermi level (1.42)
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for different elemental superconductors.
The columns of the periodic table are
labeled with the number of (valence) elec-
trons N, outside the closed shells. Table 3.1
lists various properties of some of these
elements.

When an element has more than one
isotope, the transition temperature often
decreases with increasing isotopic mass M
in accordance with the relation

M®T, = constant, (3.1)
where a = 1/2 for the simplified BCS model
described in Chapter 7. This is to be expected
for a simple metal because the phonon fre-
quency is proportional to the square root
of the atom’s mass. However electron—
phonon coupling can also be mass depen-
dent, and deviations from Eq. (3.1) are not
unusual.

Some elemental superconductors have
isotope effect coefficients o close to 1/2,
such as Hg (0.50), Pb (0.48), Sn (0.47),
and Zn (0.45). Most values of « listed in
Table 3.1 for the transition metal supercon-
ductors are less than this BCS-theory esti-
mate. For the two metals zirconium and
ruthenium, both with 7, < 0.1K, « is zero
to within experimental error.

The BCS theory predicts that twice
the energy gap 2A of a superconductor is
3.52 times kg T, (cf. Chapter 7, Section VI)
and from the data in Table 3.1 it is clear
that this prediction is fairly well satisfied
for the elements. In rhenium the energy
gap is anisotropic, varying between 2.9
and 3.9 kg T,, depending upon the direction.
The anisotropies found for molybdenum and
vanadium are half as large and almost within
the experimental accuracy.

It has been found that some of the
properties of an element correlate with the
number N, of its valence electrons in the
same manner as the transition temperature
(Vonsovsky et al., 1982). Here N, is the
number of electrons outside the filled shells

corresponding to the configuration of the
next lower noble gas. Figure 3.3 shows that
T, is a maximum for transition metals with
five and seven valence electrons; Figs. 3.4,
3.5, 3.6, and 3.7 show that the Sommer-
feld factor y of the conduction-electron
heat capacity C, = y7T, the magnetic sus-
ceptibility y = M/uyH, the square of the

i
B o34
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4 5 6 7 8 4HNplen]
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ZIr Nb Mo Tc Ru
Hf Ta W Re 0Os Ir

Figure 3.3 Dependence of transition temperature
on the number of valence electrons N, in the super-
conducting transition elements (Vonsovsky et al., 1982,
p. 184).
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Figure 3.4 Dependence of electronic specific heat y
on N, as in Fig. 3.3 (Vonsovsky et al., 1982, p. 184).
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Figure 3.5 Dependence of magnetic susceptibility y
on N, as in Fig. 3.3 (Vonsovsky e al., 1982, p. 185).

inverse of the Debye temperature ®p, and
the electron—phonon coupling constant A
defined by Eq. (7.96) all exhibit similar
behavior. These quantities, together with the
dimensionless screened Coulomb interaction
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Figure 3.6 Dependence of inverse Debye tempera-
ture squared 1/®3 on N,, as in Fig. 3.3 (Vonsovsky
et al., 1982, p. 185).
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Figure 3.7 Dependence of electron-phonon coupling
constant A on N,, as in Fig. 3.3 (Vonsovsky ez al., 1982,
p- 211).

parameter i (cf. Chapter 6), are tabulated in
Table 3.1 for the superconducting elements.
The correlation of the melting points of the
transition metals, as plotted in Fig. 3.8, with
the number of valence electrons N, tends to
be opposite to the correlation of T, with N,—
thus the highest melting points occur for six
valence electrons for which 7, is the lowest
in each series.

The chemical bonding of the transition
metals is mainly ionic, but there can also
be contributions of a covalent type. The
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Figure 3.8 Dependence of melting temperature on
N, as in Fig. 3.3 (Vonsovsky e al., 1982, p. 186).
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amount of covalency is particularly strong
in the two metals molybdenum and tung-
sten, each of which has five valence elec-
trons. This fact has been used to account for
the low- transition temperatures of these tw
elements.

Another important electronic parameter
of a metal is its density of states D(Ey) at
the Fermi level, and Table 3.1 lists values
of D(Eg) for different elements. In several
cases the value in the table is an average of
several determinations with a large amount
of scatter. For example, four reported values
for niobium of 1.6, 1.8, 2.1, and 2.7 are given
by Vonsovsky et al. (1982, p. 202) along
with a rounded-off average of 2.1 states/atom
eV. These large scatters lead one to sus-
pect the accuracy of cases in which only one
determination is available. The d electrons
dominate this density of states, with small
contributions from the remaining valence
electrons. For example, in vanadium the per-
centage contributions to D(E) from the s,
p, d, and f electrons are 1%, 14%, 84%, and
1%, respectively, while for niobium the cor-
responding percentages are 3%, 14%, 81%,
and 2%.

When a metal is subjected to high pres-
sure, the density of states at the Fermi level
changes. This change may be detected by
the change in the conduction-electron heat
capacity factor vy, since from Eq. (1.52)
v is proportional to D(Ey). Sometimes the
derivative dT,/dP is positive, as in the case
of vanadium (see curve for vanadium plot-
ted in Fig. 3.9), so that here T, increases
with increasing pressure, and sometimes it
is negative, as with tantalum (cf. Fig. 3.9),
where high pressures lead to lower val-
ues of 7,. With some elements the situa-
tion is more complicated. For example, when
niobium is subjected to high pressure T,
decreases until about 40 kbar is reached, then
it begins to increase with increasing pressure
and, eventually, above 150 kbar, surpasses its
atmospheric value, as indicated in Fig. 3.9.
Finally some elements, such as P, As, Se, Y,
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Figure 3.9 Dependence of transition temperature 7,

on pressure for the elements Nb, Ta, and V (Vonsovsky
et al., 1982, p. 188).
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Sb, Te, Ba, Ce, and U, become superconduct-
ing only when subjected to high pressure.

T, of some transition metals rises dra-
matically when the metal is in the form of
thin films made by ion sputtering on var-
ious substrates. For example, the transition
temperature of tungsten (bulk value 0.015 K)
rises to 5.5K in a film, that for molybde-
num (bulk value 0.915K) rises to 7.2 K, and
that for titanium (bulk value 0.40K) rises to
2.52 K. Chromium and lithium only super-
conduct in the thin-film state, while other
nonsuperconductors such as Bi, Cs, Ge, and
Si can be made to superconduct either by
applying pressure or by preparing them as
thin films. Figure 3.1 summarizes this infor-
mation.

IV. COMPOUNDS

Superconductivity workers sometimes
use the old Strukturbericht notation which
uses the letter A to denote elements, B
for AB compounds, C for AB, com-
pounds, and D for A,,B, binary compounds,
with additional letters assigned to com-
pounds containing three or more dissimilar
atoms. Superconductors of the class Nb;Sn
were originally assigned to the 8-W struc-
ture (Wyckoff, 1963, p. 42), which has
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two types of tungsten atoms, one type in the
center and the other six on the faces of the
cubic unit cell; these A;B compounds came
to be called the A15 compounds. The nota-
tion has endured despite the fact that other
compounds such as UH; and Cr;Si had been
assigned to this structure (Wyckoff, 1964,
p. 119) before Pearson described the nota-
tion in the 1958 Handbook. This notation is
no longer widely used outside the supercon-
ducting community.

Several structures contain a large num-
ber of superconductors. Table 3.2 presents

3 CLASSICAL SUPERCONDUCTORS

data on the principal superconductors,
together with the transition temperature of a
representative compound from each group.
The table provides the Strukturbericht sym-
bol, T, of a prototype compound, and the
number of superconducting compounds that
are found in the listings of Phillips (1989a)
and Vonsovsky et al. (1982) for each group.

All of the known nonradioactive elements
are constituents of at least one superconduct-
ing compound, as Table 3.3 shows. The table
catalogs the structure types with binary super-
conducting compounds, and gives the value of

Table 3.2 Structure Types and Transition Temperatures of Representative

Compounds of each Type?

Structure and Type Example T, (K) Nbr Type Reference®

B1, NaCl, fc cubic MoC 14.3 26 a Ph, 336, 369; Vo, 393
B2, CsCl, bc cubic VRu 5.0 10 b Ph, 362; Vo, 385
B13, MnP, ortho Gelr 4.7 10 C Ph, 341

Al12, a-Mn, bc cubic Nb, ;sRe g 10 15 d Ph, 368; Vo, 388
B8,, NiAs, hex Pd, Te 4.1 18 e Ph, 354

D10,, Fe;Th,, hex, 3-7

compound B;Ru, 2.6 12 Ph, 359
DS, CrFe, tetrag, o-phase Moy 3 Tc, 5 12.0 27 Ph, 347, Vo, 388
C15, MgCu,, fc cubic,

Laves HfV, 9.4 40 h Ph, 370; Vo, 375
Cl14, MgZn,, hex, Laves ZrRe, 6.8 19 i Ph, 357; Vo, 375
C16, Al,Cu, bc tetrag RhZr, 11.3 16 j Ph, 350
A15, UH,”, cubic Nb;Sn 18 60 k Ph, 336, 363; Vo, 259
LI,, AuCu;, cubic La;Tl 8.9 24 1 Ph, 362
Binary heavy fermions UBe; 0.9 9 m Table 3.10
Miscellaneous binary

compounds MoN 14.8 170 n Ph, Appendix C
C22, Fe,P, Trig HfPRu 9.9 11 0 Ph, 357
E2,, CaTiO;, cubic,

perovskite S1TiO4 0.3 p
HI;, MgAl,O,, cubic,

spinel LiTi,0, 13.7 3 q Ph, 339; Vo, 431
B,CeCo,, tetrag, ternary

boride YRh,B, 11.9 10 r Ph, 347; Vo, 415
PbMogSg, trig, Chevrel LaMogSeq 11.4 88 S Ph, 361; Vo, 418
Co,ScsSi,, tetrag Ge gAs, Y 9.1 11 t Ph, 348
fce, buckminsterfullerene CgoRb,Cs 31 12 u

“ The at one time important but now antiquated Pearson (1958) symbols (e.g., A15) are given for most of the
structures. The numbers of compounds listed in column 4 were deduced from data given in the references of

column 6.

b A15 is sometimes called the 8-Mn or the Cr;Si structure.
“Ph and Vo followed by page numbers denote the references Phillips (1989a) and Vonsovsky et al. (1982),

respectively. Additional data may be found in Roberts (1976).
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Table 3.3 Number of Superconducting Binary Compounds A,,B,, of the Elements
Discussed in the Literature, and 7. of a Representative Compound of each Element
among the Classical Superconductors (see column 5 of Table 3.2 for key to the

compound types)

Element Binary Compounds Representative Compound
z Symbol T, (K)* Number Types Compound T, (K) Type
1 H — 1 n HNb, 7.3 n
2 Li — 2 n LiTi, O, 13.7 q
11 Na — 3 nu Na,Mog Sy 8.6 s
19 K — 2 hu Bi,K 3.58 h
37  Rb — 2 hu CgRb,K 24 u
55 Cs 1.5° 2 hu Bi,Cs 4.8 h
4 Be 8.6F 1 n BeTc 5.2 n
12 Mg — 7 bn HgMg 1.4 b
20 Ca 0.52 6 hln AusCa 0.38 n
38 Sr — 2 h Rh,Sr 6.2 h
56 Ba 5.0° 3 n BaBi, ,0;Pb, ¢ 45 p
5 B — 12 afjrn B,LuRh, 11.7 r
13 Al 1.18 17 dghjklmn Nb;Al 19 k
31 Ga 1.08 13 cjkln Nb;Ga 21 k
49 In 3.41 9 ackln V;In 13.9 k
81 Tl 2.38 6 In TIMogSeg 12.2 s
6 C — 14 anu CeoRb,Cs 32 u
14 Si 6.7 14 chkn Nb;Si 19 k
32 Ge 53 18 ackmn Nb;Ge 232 k
50 Sn 3.7 16 acklmn Nb;S, 18 k
82 Pb 7.20 13 hjkln Ta;Pb 17 k
7 N — 11 an NbN 17.3 a
5 P 5.8° 6 n PbP 7.8 n
33 As 0.57 9 ckn Ge,yAs,Ys 9.1 t
51 Sb 2.7° 8 kn Ti;Sb 5.8 k
83 Bi 6.1F 25 cehln BaBi,0;Pb 5 4.5 p
8 (e} — 4 an LiTi, O, 13.7 q
16 S — 7 an Sny ¢MogS, 14.2 s
34 Se 6.9 7 an TIMogSeg 12.2 s
52 Te 3.97 12 aein MogS, s Tes » 2.5 s
9 F - 0 - Fo.12Ko 1 Lig 209 85 W 11 n
17 Cl — 0 — Cl3MogSeg 9.1 s
35 Br — 0 — Br,MogS¢ 13.8 s
53 I — 0 — 1,MogSe 14.0 s
21 Sc 0.01 10 bdhin ScMogSg 3.6 s
22 Ti 0.40 10 abdkn LiTi,0, 13.7 q
23 \Y 5.40 21 abghk V;Si 17.2 k
24 Cr — 7 ghk Cr,0s 4.68 k
25 Mn — 9 bcjkmn Mn; Si 12.5 k
26 Fe — 5 fgn Fe;Re, 6.6 g
27 Co — 12 dfgjn CoZr, 6.3 j
28 Ni — 5 fjkn Ni; Th, 1.98 f
29 Cu — 8 bjmn Cu; sMogSg 10.8 s
30 Zn 0.85 5 n Mog ¢SgZny; 3.6 S
39 Y 2.5° 20 abfhiln B, YRh, 11.3 r

(Continued)
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Table 3.3 (Continued)

Element Binary Compounds Representative Compound
V7 Symbol T, (K)* Number Types Compound T, (K) Type
40 Zr 0.61 25 adghijkln ZrN 10.7 a
41 Nb 9.25 41 acdghjkn Nb;Ge 23.2 k
42 Mo 0.92 24 adghkmn Tc;Mo 15.8 g
43 Tc 7.8 6 dgkn Tc;Mo 15.8 g
44 Ru 0.49 18 bfghikn HfPRu 9.9 o
45 Rh — 32 cfghjkn B,LuRh, 11.7 r
46 Pd — 28 cdegjkn Bi,Pd; 4.0 e
47 Ag — 6 n Ag; ¢Mog 4Sg 9.1 S
48 Cd 0.517 1 n CdHg 1.77 n
71 Lu 1.0 6 bhiln B,LuRh, 11.7 r
72 Hf 0.13 10 adhin HfV, 9.4 h
73 Ta 4.47 18 acdgjkn Ta;Pb 17 k
74 w 0.015 12 adgkn W;Re 11.4 k
75 Re 1.7 24 adfghikn MosRe 15 k
76 Os 0.66 20 bdfghijk LaOs, 6.5 i
77 Ir 0.11 30 dfghikmn Irg 4Nbg 6 10 d
78 Pt — 23 bcefghkmn Nb;Au 11.5 k
79 Au — 17 bchjkn Ta;Au 16 k
80 Hg 4.15 10 n Hg,Mg 4.0 n
57 La 4.9 21 ahn LaMogSg 7.1 s
58 Ce 1.7° 4 hmn B,LuRh, 11.7 r
59 Pr — 0 PrMogSg 4.0 S
60 Nd — 0 NdMogSeg 8.2 s
61 Pm — 0
62 Sm — 0 B,SmRh, 2.7 r
63 Eu — 1 n Eug 1oLag g8 0.2 n
64 Gd — 0 GdMogSeg 5.6 s
65 Tb — 0 TbMogSeg 5.7 s
66 Dy — 0 Dy, ,MogSeg 8.2 s
67 Ho — 0 Ho, ,MogSeg 6.1 S
68 Er — 0 B,ErRh, 8.7 T
69 Tm — 0 B,TmRh, 9.8 r
70 Yb — 0 Yb, ,MogSeg 6.2 s
90 Th 1.38 27 afhijln Pb;Th 5.55 1
91 Pa 1.4 0
92 U 1.0 9 Imn UPt, 0.43 m

¢ P denotes T, measured under pressure, and F indicates measurement on thin film.

T, for arepresentative superconductor of each
element. Itis clear that transition temperatures
above 10K are widely distributed among the
elements and compounds.

On the whole, there is a tendency for
the superconducting materials to be stoichio-
metric, i.e., with ratios of the constituent
elements generally integral. Even some of

the solid solutions, such as Nby ;5Zr;,s and
Nb, ;5Ti, 55, have atom ratios that are easily
expressed in terms of integers (NbyZr and
Nb;Ti), though others, such as Mo sRe .
do not fit this format. Indeed, 7, is often
sensitive to stoichiometry, and experiments
in which Nb;Ge gradually approached stoi-
chiometry raised its measured 7, from 6K
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to 17K and, finally, to the previous record
value of 23.2 K. Other materials have under-
gone the same evolution with the approach
to ideal stoichiometry, such as Nb;Ga (7,
going from 14.9 to 20.3K), V;Sn (7, from
3.8 to 17.9K), and V,Ge (7. increasing
from 6.0 to 11.2K). In contrast, there are
compounds, such as Cr;O0s, Mo,Ir, Mo,Pt,
and V;Ir, in which the highest 7, does not
occur at the ideal stoichiometric composition
and in which 7, is generally less dependent
on composition. For example 7, = 0.16K
in stoichiometric CryIr but 7, = 0.75K in
Cry Iy 5. Although less prevalent among
the older superconducting types, this phe-
nomenon is not unusual among the newer
superconductors (cf. Vonsovsky et al., 1982,
for more details).

V. ALLOYS

An alloy is a solid solution or mixture
in which the constituent atoms are randomly
distributed on the lattice sites. An intermetal-
lic compound, on the other hand, contains
definite ratios of atoms that are crystallo-
graphically ordered in the sense that there
is a unit cell that replicates itself through-
out space to generate the lattice. Some
alloys become ordered for particular ratios of
atoms. Both random and ordered materials
can become superconducting.

First we will consider the random binary
alloys. In these types of alloys two transi-
tion elements are mixed in all proportions.
There are several possibilities for the transi-
tion temperature of such an alloy: it can be
higher than that of both elements, between
the T, values of the constituents, or lower
than either constituent taken by itself. The
curve of T, versus binary alloy concentration
can be close to a straight line, concave down-
wards with a minimum, or concave upwards
with an intermediate maximum value. These
three alternatives are illustrated in Fig. 3.10.
The figure shows how T, varies with Nb con-
tent when niobium is alloyed with any one of
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the transition elements V, Zr, Mo, Ta, or W,
with the plots arranged in the order in which
the five transition elements are distributed
around niobium in the periodic table. We see
from Fig. 3.10 that the transition temperature
reaches a maximum with an alloy containing
25 at-% zirconium. The figure also shows
that it can be very small for alloys with Zr,
Mo, or W.

To gain some understanding of the
shapes of these curves systematic studies
involving sequences of transition metals that
are adjacent to each other in the periodic
table have been carried out. (See Vonsovsky
et al., 1982.) The results indicate that T,
varies with the number of valence electrons
N, in the manner illustrated in Fig. 3.11.
The curves have two maxima of 7, one near
N, =4.7 and one near N, = 6.5. The peak
in the Nb versus Zr plot of Fig. 3.10 occurs
close to N, =4.7. Amorphous alloys exhibit
only one maximum for each series, as indi-
cated in Fig. 3.12. Other properties, such as
the electronic specific-heat factor y that was
defined in Eq. (1.51), magnetic susceptibility
X, and pressure derivative d7,/dP have the
dependences on electron concentration that
are illustrated in Figs. 3.13, 3.14, and 3.15,
respectively. The specific heat and suscep-
tibility plots are similar to the 7, versus N,
graph of Fig. 3.11.

In addition to the correlation of the tran-
sition temperature with the valence elec-
tron concentration, there is also a correlation
with the lattice properties. The body-centered
cubic structure is the stable one for Ne in the
range from 4.5-6.5, with hcp the stable struc-
ture outside this range, as shown in Fig. 3.16.
The peaks in the plot of T, versus N, occur
at the boundaries of instability—i.e., where
a lattice rearrangement transition can occur
between the two structure types. The lowest
T, occurs (Fig. 3.11) for N, =~ 5.5-6, which
is also where the bcc structure is most stable.

The alloy types listed in Table 3.2 are
binary; most of them having their compo-
nent elements in an atom ratio of 1:1,1:2,
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Figure 3.10 Dependence of transition temperature 7, on concentration for binary alloys of Nb
with adjacent transition elements in the periodic table. The abscissae are expressed in percentages
(adapted from Vonsovsky et al., 1982, pp. 234, 235).

or 1:3. In most cases at least one con-
stituent is an elemental superconductor, and
sometimes (e.g., NbTc;, VRu) both elements
superconduct. Occasionally, more than one
intermetallic stoichiometry (e.g., RhZr, and
RhZr;, Nb;Ge and NbGe,) is superconduct-
ing. The binary superconductors in Table 3.2
have T, values higher than the highest 7, of
their constituents, although even here VRu
is an exception. The high-7, semiconduct-
ing and layered compounds tend to be binary
also. Some of the compounds in Table 3.2

are ternary types and even Lu, ,5Th, ,sRh,B,
is really the ternary compound MRh,B, with
Lu occupying three-quarters and Th one-
quarter of the M sites.

V1. MIEDEMA’S EMPIRICAL RULES

Matthias (1953, 1955) interpreted the
shape of the curve of T, versus N, as indi-
cating the presence of favorable and unfa-
vorable regions of N, and suggested rules
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Figure 3.11

Dependence of transition temperature 7, on the number of

valence electrons N, in solid solutions of adjacent 3d(Q), 4d(A), and 5d(0)
elements in the periodic table. Dark symbols are for pure elements (Vonsovsky

et al., 1982, p. 239).

for explaining the T_-versus-concentration
curves. One rule, for example, explains the
increase of T, in terms of the shift of N, toward
more favorable values; thus N, = 5(V, T, =
5.4K; Nb, T. = 9.3K; Ta, T, = 4.5K) and
N, =17(Tc, T, = 7.8K, Re, T, = 1.7K).

Miedema (1973, 1974) proposed an
empirical method of correlating the con-
centration dependence of the transition
temperature and other physical characteris-
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Figure 3.12 Dependence of transition temperature
T, on the number of valence electrons N, in amorphous
alloys of 3d, 4d, and 5d elements, using the notation
of Fig. 3.11 (Vonsovsky et al., 1982, p. 241).

tics of alloys. The method assumes that the
density of states D(Eg) s = D 45 at the Fermi
level of an alloy AB is an additive function
of its constituents,

D,p= fADA(NA) +fBDB(NB)7

where f, and f are the mole fractions of
the components A and B, and the densities
of states D, and D depend on the num-
ber of valence electrons N, and N, of atoms
A and B, respectively (cf. Vonsovsky et al.
(1982, Section 5.4) for evaluation of the

(3.2)
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Figure 3.13 Dependence of electronic specific heat
yon N,, as in Fig. 3.11 (Vonsovsky et al., 1982, p. 237).
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Figure 3.14 Dependence of magnetic susceptibility
x on N,, as in Fig. 3.11. Points are plotted for Mo—
Ru instead of Tc—Ru, and for Ta—Re instead of Ta-W
for the same N,, since data were not available for the
preferred adjacent elements (Vonsovsky er al., 1982,
p. 242).
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Yap = faYa(Na) + fpYp(Np)- (3.3)

The density of states and y depend upon the
number of valence electrons per atom N, in a
similar manner for the 3d, 4d, and 5d tran-
sition ion series. Some electron concentra-
tion is transferred between the atoms during
alloying, so that the number of valence elec-
trons of the ith component N, differs from
its free atom value N,; by the factor

N; =Ny +KAp(1-f), (34

where A¢ is the difference between the work
functions (cf. Chapter 15, Section II, A) of
the two pure metals involved in the alloy.
Table 3.1 lists the work functions of the
superconducting elements. Empirical expres-
sions similar to Egs. (3.2) and (3.3) have
been written for the electron—phonon cou-
pling constant A g,

)\AB :fA/\A(NA)+fB)\B(NB)7 (3'5)

and for the quantity [In(7,/®p)]~! for the
binary alloys,

1 fa
N, dependences of the functions D; and vy, =
i ! i In(7,/0 In(T,/0
in Eq. (3.2)). Equation (1.52) permits us to [(In(7e/Op)las  [In(7e/Op)]4
write a similar expression for the electronic fs 3.6
+ . (3.6)
heat capacity factor y: [In(7./Op)]s
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Figure 3.15 Dependence of pressure derivative dT,/dP on N, in alloys of
adjacent 4d and 5d elements, following Fig. 3.11 (Vonsovsky et al., 1982,

p. 238).
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Figure 3.16 Sketch of the structure dependence of

the transition temperature for alloys of adjacent transi-

tion elements, showing how T, peaks at the boundaries
between structure types (Vonsovsky er al., 1982, p. 245).
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Figure 3.17 shows that the agreement of
Egs. (3.3) and (3.6) with experiment is good
for four isoelectronic alloy systems over the
entire solid solution range. We see from this
figure that the linear approximation obtained
by setting K = 0 in Eq. (3.4), hence replacing
N, by N,; in Egs. (3.2)—(3.6), does not agree
with experiment.
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VII. COMPOUNDS WITH THE NaCl
STRUCTURE

The B1 class of AB superconductors has
the metallic atoms A and nonmetallic atoms
B arranged on a sodium chloride-type lat-
tice that consists of two interpenetrating fcc
lattices with each atom of one type in the
center of an octahedron whose vertices are
occupied by atoms of the other type, as indi-
cated in Fig. 3.18. As of 1981, 26 Bl com-
pounds (out of the 40 Bl compounds that
had been tested) had been found to be super-
conducting. The carbides AC and nitrides
AN, such as NbN with 7, = 17K (Kim
and Riseborough, 1990), had the 12 high-
est transition temperatures, while the metallic
A atoms with 7, values above 10K were Nb,
Mo, Ta, W, and Zr. Niobium always seems
to be the best! Three examples of supercon-
ducting NaCl-type compounds are given in
Tables 3.2 and 3.3.

The NaCl-type superconductors are
compositionally stoichiometric but not struc-
turally so. In other words, these compounds
have a small to moderate concentration of
vacancies in the lattice, as indicated in
Table 3.4. We see from the table that YS has

T
o
g
£ ] S ——
E §u5‘ ————————————————— 3
> Bkl Y-Ta ’
7} N T NS SN D G S S G
2
Ti-Ir
i Ik gV vvv
I/ 1 ] ] i 01 P i il WS ST S WY S |
A 4 4« & & W

Figure 3.17 Comparison of calculated (—) and experimental (symbols) values of
the specific heat coefficient 7y and the transition temperature 7, for four isoelectronic
binary alloys. The linear approximation (- - - -), which is obtained by setting N; = N,
in Egs. (3.3) and (3.6), does not fit the data very well (Vonsovsky et al., 1982, p. 250).
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Figure 3.18 Structure of NaCl in which each atom
of one type (O or @) is in the center of an octahedron
whose vertices are occupied by atoms of the other type

(@ or O).

10% vacancies, which means that its chem-
ical formulae should properly be written
Y 4S,,. Nonstoichiometric NaCl-type com-
pounds, such as Ta, ,C 4, also exist.
Ordinarily the vacancies are random,
but sometimes they are ordered on the met-
alloid (e.g., Nb,,C,,s) or on the metal-
lic (e.g., V7630, ,) sublattice, and can also
produce a larger unit cell in, for example,
Ti, ,O, ;. The vacancies can also be ordered
on both sublattices in stoichiometric com-
pounds, such as Nby ;50 5. Table 3.5 lists
several NaCl-type compounds with ordering

Table 3.4 Percentage of Vacancy
Concentration 100(1 —x) in
Stoichiometric Compounds A,B, with
NaCl Structure?

Nxc N (0] S Se

Ti 2 4.0 15

v 8.5 1.0 11-15

Y 10

Zr 3.5 3.5 20 16
Nb 0.5-3.0 1.3 25

Hf 4

Ta 0.5 2.0

¢ After Vonsovsky et al., 1982.

3 CLASSICAL SUPERCONDUCTORS

Table 3.5 Nonstoichiometric
Compounds A,B, with NaCl Structure
with Vacancy Ordering on One
Sublattice and Stoichiometric
Compounds A B, with this Structure
(shown in square brackets) with Vacancy
Ordering on Two Sublattices?

Nxc N o

Ti Ti; Oy ;

[Tip.8500.85]
\ Vi1.0Co.ss Vi.0No7s Vo76301.0
Nb Nb, ,Cy 75 [Nbg 7500 75]
Ta Ta,; yCo76

¢ After Vonsovsky et al., 1982, p. 394.

of the vacancies. It has been found that the
metallic and nonmetallic atoms can be absent
over broad composition ranges.

VIII. TYPE A15 COMPOUNDS

The highest transition temperatures for
the older superconductors were obtained with
the A15 intermetallic compounds A;B, and
extensive data are available on these com-
pounds. Nb;Sn can be considered the proto-
type of this class. These compounds have the
(simple) cubic structure (Pm3n, O;) sketched
in Fig. 3.19 with the two B atoms in the
unit cell at the body center (%, % %
and apical (0, 0, 0) positions, and the six
A atoms paired on each face at the sites
©. 5. p: 0.3 D G305 (G
2,00 (3. 0, 1) (3, 0, 1), a configura-
tion that amounts to the presence of chains
of A atoms with spacing of one-half the lat-
tice constant a. The A atom is any one of
the transition elements (but not Hf) shown
in the center of Fig. 3.10. The B element is
either a transition element or is in row III
(Al, Ga, In, T1), row IV (Si, Ge, Sn, Pb),
row V (P, As, Sb, Bi), or row VI (Te) of the
periodic table. High transition temperatures
occur when B is either a metal (Al, Ga, Sn)
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Figure 3.19 The unit cell of the A15 compound A; B
showing B atoms at the apical and body center positions
and A atoms in pairs on the faces of the cube (Vonsovsky
et al., 1982, p. 260; see also Wyckoff, 1964, p. 119).

or a nonmetal (Si, Ge), but not a transition
element. Table 3.6 shows seven A elements
and 20 B elements for a total of 140 possibil-
ities, 60 of which superconduct. Two addi-
tional A15 superconductors are V;Ni with
T,=0.3K and W,;0s with 7, = 11.4K.
Stoichiometry is important, and paying
attention to it has produced higher transition
temperatures, as was explained in Section I'V.
Typical A15 compounds A3, B, _ have nar-
row ranges of homogeneity. They are homo-
geneous toward A, with deviations from
stoichiometry, x > 0, that tend to main-
tain the chains intact. Some atypical com-
pounds, such as A;_ B, ., are homoge-
neous toward B so that the chains are
affected, and can have their highest 7, val-
ues when they deviate from ideal stoichiom-
etry. Figure 3.20 shows that there is a close
correlation between the transition tempera-
ture and the valence electron concentration
N,. We see that high values of T, occur
for N, = 4.5 (Nb;Ga, T, = 20.3K), N, =
475 (NbsGe, T, = 23.2K), N, =
6.25 (NbsPt, T, = 10.9K), and N, = 6.5
(TaAu, T, = 13K). The specific-heat fac-
tor y plotted in Fig. 3.21 and the magnetic
susceptibility y (Vonsovsky et al., 1982)
show the same correlation (cf. Hellman
and Geballe, 1987). The Villars—Phillips
approach (1988, Phillips 1989a, p. 324) adds
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Table 3.6 Superconducting transition
temperatures T. of some A15 compounds
A;B. The number of valence electrons is
given for each element. Data are from
Phillips (1989a) and Vonsovsky et al.
(1982).

B A; Ti Zr V Nb Ta Cr Mo
4 4 5 5 5 6 6

Al3 11.8 188 0.6

Ga3 16.8 203 0.8

In3 139 92

T13 9

Si4 17.1 19 1.7

Ge 4 11.2 232 8.0 1.2 1.8

Sn4 58 09 70 180 84

Pb 4 0.8 8.0 17

As 5 0.2

Sb 5 5.8 08 22 07

Bi5 34 4.5

Tc 7 15.0

Re 7 15.0

Ru 8 34 10.6

Os 8 5.7 1.1 47 12.7

Rh 9 1.0 26 100 03

Ir 9 5.4 1.7 32 66 08 96

Pd 10 0.08

Pt10 0.5 37 109 04 8.8

Au 11 09 32 115 16.0

two additional parameters for high-7, values.
For further details see Sect. XIII of Chap. 7
of the first edition of this work.

The superconducting energy gap data
vary over a wide range, with 2A/kg7T, in
the range 0.2-4.8, low values probably rep-
resenting poor junctions. The AlS5 group
has some weak-coupled, BCS-like com-
pounds, such as V;Si with 2A/k,T.~3.5,
and some strong coupled compounds, such
as Nb;Sn with 2A/kgT,~4.3 and Nb;Ge
with 2A/kgT, ~ 4.3. The electron—phonon
coupling constant N\ has been reported to
vary between the weak coupling value of 0.1
and the strong coupling value of 2.0 (see
Table 7.3).
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Figure 3.20 Dependence of transition temperature 7, on the number of
valence electrons N, in A ;5B ,5 compounds with the A15 structure. The A
element is specified by the symbol at the top right, and the B element (see
Fig. 3.19) is indicated at the experimental points (Vonsovsky et al., 1982, p. 269).

Some Al5 compounds undergo a
reversible structural phase transformation
above 7T, from a high-temperature cubic
phase to a low-temperature tetragonal phase
that deviates very little from cubic (|c —
al/a~3x1073). At the transformation each
atom remains close to its original site and
the volume of the unit cell remains the same.
Table 3.7 lists some transformation temper-
atures and (¢ — a)/a ratios.

There is no isotope effect in this class of
compounds, meaning that « =0 in Eq. (3.1).
In addition there is a large scatter in the data

on the change of 7, with pressure, dT./dP,
as Fig. 3.22 indicates (cf. Ota, 1987).

IX. LAVES PHASES

There are several dozen metallic AB,
compounds called Laves phases which are
superconducting; the transition temperatures
of some of these compounds are listed in
Table 3.8. The C15 Laves phases have
the cubic (Fd3m, O]) structure sketched in
Fig. 3.23, and the C14 phases are hexagonal,
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Figure 3.21 Dependence of electronic specific heat y on N, in A15 compounds,
using the notation of Fig. 3.20 (Vonsovsky et al., 1982, p. 271). The dependence
of the magnetic susceptibility y on N, produces a similar plot (Vonsovsky et al.,

1982, p. 271).

Table 3.7 Structural Transformation Temperature T, and Anisotropy (c —a)/a in the
Low-Temperature Tetragonal Phase of Several A15 type Superconductors?

Ty T, Anisotropy
Compound (K) (K) (c—a)/a Reference
V;Si 21 17 0.0024 Batterman and Barrett (1964)
Nb;Sn 43 18 —0.0061 Mailfert et al. (1967)
V;Ga >50 14.5 — Nembach et al. (1970)
Nb;Al 80 17.9 — Kodess (1973, 1982)
Nb;(Alj 75Gey »s) 105 18.5 —0.003 Kodess (1973, 1982)
Nbs ; (Aly,Gey 5) 130 17.4 — Kodess (1973, 1982)

@ cf. Vonsovsky et al., 1982, p. 278.
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Figure 3.22 Dependence of pressure derivative dT,/dP on N, in Al5 compounds, following Fig. 3.20

(Vonsovsky et al., 1982, p. 288).

Table 3.8 Superconducting transition temperatures Tc of selected Laves phase (AB,)
compounds. Those labeled with an asterisk () are hexagonal, and the remaining ones
are cubic. The data are from Phillips (1989a) and Vonsovsky et al. (1982).

A B, A\ Mo Te Re Ru Os Rh Ir Pt
6 6 6 7 8 8 9 9 16

Ca2 6.4 6.2

Sr2 6.2 5.7

Sc 3 4.2* 2.3* 4.6 6.2 2.5 0.7

Y3 1.8* 2.4* 4.7* 2.1 0.5

La3 4.4 8.9 0.5

714 9.6 0.13 7.6* 6.8* 1.8* 3.0* 4.1

Hf 4 9.4 0.07* 5.6* 5.6* 2.7*

Th 4 5.0* 3.5 6.5

Lu - 0.9* 3.5* 1.3 2.9

as noted in Table 3.2. One additional X. CHEVREL PHASES

Laves superconductor HfMo, has the C36

hexagonal structure with a larger unit The Chevrel phases A ,MogX; are

cell. Some have critical temperatures above
10K and high critical fields. For example,
Zr%Hf%V2 has T, = 10.1K, B, =24T, and
a compound with a different Zr/Hf ratio has
similar 7, and B, values with J, &~ 4 x
10° A/cm?. These materials also have the
advantage of not being as hard and brittle
as some other intermetallics and alloys with
comparable transition temperatures.

mostly ternary transition metal chalco-
genides, where X is S, Se, or Te and A can be
almost any element (Fischer, 1978). These
compounds have relatively high transition
temperatures and critical fields B, of several
teslas. However, the critical currents, typi-
cally 2 to 500 A/cm?, are rather low. Sub-
stituting oxygen for sulphur in Cu, {MogS
raises T, (Wright et al., 1987). Table 3.9
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Figure 3.23 Crystal structure of the Laves phase
(Vonsovsky et al., 1982, p. 376).

lists several dozens of these superconductors
and their transition temperatures. Figure 3.24
compares the critical currents (see Fig. 5.26
for a comparison of the critical fields for
several superconductors).

The trigonal structure sketched in
Fig. 3.25, with space group R3, C3, is
a simple cubic arrangement slightly dis-
torted along the (111) axis of the MogyX,-
group building blocks, each consisting of a
deformed cube with large X atoms at the
vertices and small Mo atoms at the cen-
ters of the faces. The Moy Xy group may be
looked on as an Mo, octahedron inscribed in
an X; cube. MogX,,-group building blocks
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H[kOs]

Figure
current

3.24 Comparison of the critical
densities on the applied field for a,

SnGa, ,sMo4Sg, b, V3Ga, and ¢, Nb;Sn (Alekseevskii
et al., 1977).

Figure 3.25 Structure of the Chevrel phase A, MogXg
(Vonsovsky et al., 1982, p. 431).

Table 3.9 Superconducting Transition Temperatures of some Chevrel compounds?

A, MogSg T.(K) A, MogSeg T.(K) Misc. Compounds T.(K)
Moy Sg 1.85 MogSeg 6.5 Pby ¢Mog S 5 15.2
Cu,MogSg 10.7 Cu,MogSeyq 5.9 PbGd,, ,MogSg 14.3
LaMogSg 7.0 La,MogSeg 11.7 PbMogSg 12.6
PrMogSg 2.6 PrMogSeg 9.2 Sn; ,Mog S 14.2
NdMogSg 35 NdMogSeg 8.4 SnMogSg 11.8
Sm,; ,MogSg 24 Sm, ,MogSeyq 6.8 LiMog4Sg 4.0
Tb, ,MogSg 1.4 Tb, ,MogSeq 5.7 NaMogSg 8.6
Dy, ,MogSg 1.7 Dy, ,MogSeg 5.8 KMogSg 2.9
Ho, ,Mo4Sg 2.0 Ho, ,MogSeg 6.1 Br,MogSe 13.8
Er, ,MogSg 2.0 Er, ,MogSeq 6.2 I,Mo¢Se, 14.0
Tm, ,MogSg 2.0 Tm, ,MogSeg 6.3 BrMogSe, 7.1
Yb, ,MogSg ~ 8.7 Yb, ;MogSeg 5.8 IMogSe; 7.6
Lu, ,MogSg 2.0 Lu; ,MogSeq 6.2 I,MogTeg 2.6

¢ See Phillips (1989a, pp. 339, 361) and Vonsovsky et al. (1982, p. 419) for more complete listings.
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are also found. The distortions are not shown
in the figure. The parameter x in the for-
mula A Moy X, assumes various values such
as x =1 (e.g., YMogSg, LaMogS;), x = 1.2
(e.g., V,, MosSes), x=1.6 (e.g., Pbg
MogSg), and x =2 (e.g., Cu,MogSeg). This
parameter can vary because of the large num-
ber of available sites between the cubes for
the A cations. Most of the space is occu-
pied by the large chalcogenide anions, which
have radii of 0.184nm (S), 0.191 nm (Se),
and 0.211 nm (Te).

The electronic and superconducting
properties depend mainly on the MoyXg
group. No correlations are evident between
the type of A ion and the superconducting
properties. Magnetic order and superconduc-
tivity are known to coexist in Chevrel phase
compounds. When A is a rare earth its mag-
netic state does not influence the supercon-
ducting properties, but when A is a transition
metal ion the magnetic properties suppress
the superconductivity. This may be explained
on structural grounds by pointing out that the
large rare earths occupy sites between the
Mog X5 groups, as shown in Fig. 3.25, where
they are remote from the molybdenums with
only X as nearest neighbors. The smaller
transition ions, on the other hand, can fit into
octahedral sites with six Mo as their nearest
neighbors (@. Fischer, 1990).

XI. CHALCOGENIDES AND OXIDES

Many of the classical superconductors
(for example, the Chevrel phases discussed
in Section X) contain an element of row VI
in the periodic table, namely O, S, Se, or
Te, with oxygen by far the least represented
among the group. The newer superconduc-
tors in contrast, are oxides. Since the pres-
ence of lighter atoms tends to raise the Debye
temperature, oxides are expected to have
higher Debye temperatures than the other
chalcogenides (Gallo et al., 1987, 1988).
Thus the presence of group VI elements is

3 CLASSICAL SUPERCONDUCTORS

a commonality that links the older and the
newer superconductors.

The two oxide compounds listed in
Table 3.2 are cubic and ternary. One is the
well-known ferroelectric perovskite SrTiO;,
which has a very low transition temperature
(0.03-0.35K). Nb-doped SrTiO,, with its
small carrier concentration N, ~ 2 x 10% and
high electron—phonon coupling, has 7, =
0.7K (Baratoff and Binnig, 1981; Binnig
et al., 1980). The other cubic ternary oxide is
the spinel LiTi,0, with moderately high T, =
13.7K (Johnston et al., 1973). The system
Li Ti;_,O, is superconducting in the range
0.8 < x < 1.33 with 7, in the range 7-13 K.
It is interesting to note that the stoichiomet-
ric compound with x = 1 is near the com-
position where the metal-to-insulator transi-
tion occurs. A band structure calculation of
this Li-Ti spinel (Satpathy and Martin, 1987)
is consistent with resonance valence bond
superconductivity (Chapter 10, Section III,
F) and a large electron—phonon coupling
constant (A~ 1.8). Only three more of the
200 known spinels superconduct—namely,
CuRh,Se, with T, = 3.5K, CuV,S, with
T. = 4.5, and CuRh,S, with T, = 4.8—so
LiTi,O, turns out to be the only spinel oxide
superconductor.

PROBLEMS

1 Show why the alloys of Fig. 3.17 contain
isoelectronic elements.

2 Consider the following expression as an
alternate to Eq. (3.3) for describing the
electronic specific heat of alloys:

Yag = fa¥Ya(Nea) + f5Y5(Nep) + fuf.

Evaluate the constant « for the three cases
of Fig. 3.17, and compare the goodness
of fit to the data with the results obtained
from Eq. (3.3), as plotted in Fig. 3.17.



Thermodynamic

I. INTRODUCTION

The first three chapters surveyed normal
state conductivity, properties characteristic
of superconductivity, and the principal types
of superconducting materials. But none of
the theoretical ideas that have been proposed
to account for these phenomena were devel-
oped. In the present chapter we will refer
to certain principles of thermodynamics as
a way of providing some coherence to our
understanding of the material that has been
covered so far. In Chapters 6, 7 and 10 we
will deepen our understanding by examin-
ing in succession the London approach, the
Ginzburg—Landau phenomenological theory,
the microscopic theory of Bardeen, Cooper,
and Schrieffer (BCS), the Hubbard model,
and the band structure. Then, after having

Properties

acquired some understanding of the theory,
we will proceed to examine other aspects of
superconductivity from the perspective of the
theoretical background, with an emphasis on
the high-transition temperature cuprates.

The overall behavior of the heat absorp-
tion process that will be examined in this
chapter can be understood by deriving
the thermodynamic functions of the nor-
mal state from the known specific heat—
temperature dependence. The corresponding
superconducting-state thermodynamic func-
tions can then be deduced from the critical
field dependence of the Gibbs free energy.
We will begin by presenting experimental
results on specific heat, following that with
a derivation of the different thermodynamic
functions associated with specific heat in the
normal and superconducting states.
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A specific heat determination is of inter-
est because it provides a good measure of the
range of applicability of the phonon-mediated
BCS theory (cf. Chapter 7, Section VI, E).
This theory predicts characteristics of the
discontinuity in specific heat at T .

Il. SPECIFIC HEAT ABOVE T,

One of the most extensively studied
properties of superconductors is the specific
heat. It represents a “bulk” measurement that
sees the entire sample since all of the sample
responds. Many other measurements are sen-
sitive to only part of the sample, for exam-
ple, microscopy in which only the surface is
observed.

Above the transition temperature 7, the
specific heat C, of high-temperature super-
conductors tends to follow the Debye theory
described in Chapter 1, Section XII (cf.

4 THERMODYNAMIC PROPERTIES

O is the sum of a linear term C, = yT
arising from the conduction electrons, a lat-
tice vibration or phonon term C;, = AT?,
and sometimes an additional Schottky con-
tribution a7~2 (Crow and Ong, 1990) (cf.
Chapter 1, Section XII).

C,=aT >+ yT +AT". 4.1)

For the present we will ignore the Schottky
term aT*. The C,,/T versus T* plot of
Fig. 4.1 shows how the yttrium compound
obeys Eq. (4.1) at low temperatures and then
deviates from it at higher temperatures, as
expected for the Debye approximation. The
normalized specific heat plots of Fig. 4.2
compare for the case of several metals the
electronic and photon contributions to the
specific heat at low temperatures.

In the free-electron approximation the
electronic contribution to the specific heat
per mole of conduction electrons is given by
Egs. (1.51) and (1.53), which we combine as

. . .. follows:
Fig. 1.12, which shows the positions of the T
lanthanum and yttrium compounds on the C.=yT=37R (—)
Debye plot at their transition temperatures). Ty
. (1. - T
We know from Eq. (1.64) that C, of a nor _a0r( L) 4.2)
mal metal far below the Debye temperature T
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Figure 4.1 Plot of C,,,/T versus T? for YBa,Cu;0,_ showing how the devi-
ation from linearity begins far below the transition temperature 7, = 90K (Zhaojia

et al., 1987).
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Figure 4.2 Comparison of the electronic specific
heat C, = yT of several conductors and superconduc-
tors at low temperature. The low-temperature Debye
approximation Cy, ~ AT3, multiplied by 10, is shown
for comparison. The specific heats are normalized rel-
ative to the gas constant R and are expressed in terms
of gram atoms. The heavy fermions are off scale on the
upper left.

In the Debye approximation the phonon con-
tribution to the specific heat per gram atom
is given by Eq. (1.62a),

(4.3)

where R = kz N, is the gas constant and Tg
the Fermi temperature. For a typical high-
temperature superconductor we see from
Table 4.1 that y ~ 10mJ/mole Cu K?, and
Eq. (4.2) gives Ty ~ 4.0 x 10°K. This is
much smaller than typical good conductor
values, such as 8.2 x 10* K for Cu, as listed in
Table 1.1. This discrepancy can be accounted
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for in terms of effective masses, as will be
explained subsequently.

The vibrational and electronic contribu-
tions to the specific heat at 7 = T, may
be compared with the aid of Egs. (4.2)
and (4.3),

(& AT?
e (4.4)
C. By
475 T,
z(_._g) T2, (45)
B ©;

where the factor 8, which is the ratio
of the number of conduction electrons to
the number of atoms in the compound, is
needed when C, is expressed in terms of
moles of conduction electrons and Cp, in
terms of moles of atoms. When both spe-
cific heats are in the same units, 8 is set
equal to 1. Typical values of the Fermi and
Debye temperatures are 10K and 350K,
respectively.

For most low-temperature superconduc-
tors the transition temperature 7, is suffi-
ciently below @ so that the electronic term
in the specific heat is appreciable in magni-
tude, and sometimes dominates. This is not
the case for high-temperature superconduc-
tors, however. Using measured values of vy
and A we have shown in our earlier work
(Poole et al., 1988), that AT? > vy for

(Lay ¢Sty 1),Cu0,_5 and YBa,Cu,0,_;,

so for oxide superconductors the vibrational
term dominates at 7, in agreement with the
data plotted in Figs. 4.1 and 4.3.

If the conduction electrons have effec-
tive masses m* that differ from the free-
electron mass m, the conduction-electron
specific heat coefficient y is given by

Eq. (1.54),
y= (%) Yor (4.6)
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Table 4.1 Debye temperature ®,, Density of States D(E;), and Specific Heat Data?

Vn

T, 0, mJ A D(Ey)
Material (K) (K) (m) (C,—Cy)/yT, (mJ/moleK*)  (states/eV) Reference
Cd 0.55 252 0.67 1.36
Al 1.2 423 1.36 1.45
Sn, white 3.72 196 1.78 1.60
Pb 7.19 102 3.14 2.71 1.55
Nb 9.26 277 7.66 1.93 2.0
Zry;Nig 3 2.3 203 4.04 ~1.65 0.23 Siirgers el al. (1989)
V;Ge(Al5) 11.2 7 Vonsovsky et al. (1982, pp. 269ff.)
V;Si(Al15) 17.1 17 Vonsovsky ef al. (1982, pp. 269ff.)
Nb;Sn(A15) 18.0 13 Vonsovsky et al. (1982, pp. 269ff.)
HfV, (laves) 9.2 187 21.7 2.30 Vonsovsky et al. (1982, p. 379)
(Hfy5Zry5)V,

(laves) 10.1 197 28.3 2.97 Vonsovsky et al. (1982, p. 379)
ZrV, (laves) 8.5 219 16.5 1.86 Vonsovsky et al. (1982, p. 379)
PbMogS; (chevrel) 12.6 79 Vonsovsky et al. (1982, p. 420)
PbMogSeg (chevrel) 3.8 28 Vonsovsky et al. (1982, p. 420)
SnMogSg (chevrel) 11.8 105 Vonsovsky et al. (1982, p. 420)
YMogS; (chevrel) 6.3 34 Vonsovsky et al. (1982, p. 420)
UPt; (heavy fermion) 0.46 460 ~0.9 1525 Ellman et al. (1990); Fisher et al.

(1989); Schuberth et al. (1992)

UCd,; (heavy fermion) 200 290 115 deAndrade et al. (1991)
URu,Si, (heavy fermion) 1.1 31 0.42 Ramirez et al. (1991)
CeRu,Si, (heavy fermion) ~0.8 340 35 van de Meulen et al. (1991)
(TMTSF),ClO,

(organic) 1.2 213 10.5 1.67 11.4 Garohce et al. (1982)
K-(ET), Cu(NCS),

(organic) 9.3 34 Graebner et al. (1990)
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K;Cgo (buckyball)

Rb;Cy, (buckyball)

Cs;3Cy (buckyball)

BaPb,_,Bi,O;
(perovskite)

(Lag 95510,075)2,Cu0y4

(Lag 9p5Bag g75),CuO,
YBa,Cu;0,
(orthorhombic)
YBa,Cu,Oq 5
Bi, Sr,CaCu,Og
Bi,Sr,Ca,Cu;0,,
T1,Ba,CaCu,Og
Tl,Ba,Ca,Cu;0,,

HgBa,Ca,Cu; 04

30.5
47.4

10
37

27

92

80

95

110

110

125

133

70

360

370

410

350

250

260

260
280

0.6
4.5

1.1

3.6

>2.8

0.035

2.1

2.0

9.3

10.9
12.7

0.24
1.9

2.0

2.1

Ramir et al. (1992b);
Novikov et al. (1992)

Novikov er al. (1992)

Novikov et al. (1992)

Junod (1990)
Junod (1990);

Sun et al. (1991)
Junod (1990)

Collocott ef al. (1990a);
Junod (1990);

Stupp et al. (1991)

Junod (1990); Junod
et al. (1991)

Junod (1990); Fisher
and Huse (1988);
Urbach et al. (1989)

Junod (1990)

Junod (1990)

Junod (1990);

Urbach et al. (1989)

Schilling et al. (1994a, b)

¢ Some of the high-temperature superconductor values are averages from Junod (1990), in many cases with a wide scatter of the data. The density of states is expressed per
atom for the elements and per copper atom for the high-temperature superconductors. For the latter vy, is the electronic specific heat factor determined from normal state

measurements, and y; is the value obtained from the limit 7 — 0, as explained by Junod. The BCS theory predicts (C; — C,)/y,T. = 1.43.
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Figure 4.3 Discontinuity in the specific heat of (LaySr,),CuO,
near 40 K. The inset shows the magnitude of the jump. The AT> behavior
indicated by the dashed curve shows that the transition occurs beyond
the region where the T° approximation is valid (Nieva et al., 1987).

where v, is the ordinary electron counterpart
of y from Eq. (1.51). In the free-electron
approximation we have from Eq. (4.2)

7R

Tx

1
2

Yo = > 4.7)

which gives for the effective mass ratio

*

m

m

YTr
%WZR'

(4.8)

Table 1.1 lists effective mass ratios for the
elemental superconductors calculated from
this expression. The unusually low estimate
of T given following Eq. (4.3) for a high-
temperature superconductor can be explained
in terms of a large effective mass. We see
from Table 9.1 and Fig. 4.2 that large effec-
tive masses make the electronic term y very
large for the heavy fermions. The plot of T,
versus y in Fig. 4.4 shows that the points for
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Figure 4.4 Comparison of the electronic specific-heat factor y
for a selection of superconductors and superconducting types over
a wide range of T, values. The dashed lines delimit the region of
phonon-mediated superconductivity (Crow and Ong, 1990, p. 239).
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BCS phonon-mediated superconductors clus-
ter in a region delimited by the dashed lines.
The heavy fermions lie far to the right, as
expected, while the oxide and cuprate com-
pounds lie somewhat above those in the main
group. A diagram similar to Fig. 4.4 may be
found in Batlogg et al. (1987).

We have seen that the specific heat is
a measure of how effectively the introduc-
tion of heat into a material, and it raises its
temperature. A related quantity is the ther-
mal conductivity which is a measure of how
easily heat flows through a material from a
region at a high temperature to a region at
a low temperature. Thermal conduction and
the flow of heat through materials will be
discussed in Sect. VII of Chap. 16.

I1l. DISCONTINUITY AT T,

The transition from the normal to the
superconducting state in the absence of
an applied magnetic field is a second-
order phase transition, as we will show in
Section XIV. This means that there is no
latent heat, but nevertheless a discontinuity
in the specific heat. The BCS theory, which
will be explained in Chapter 7, predicts that
the electronic specific heat jumps abruptly
at T, from the normal state value YT, to
the superconducting state value C, with
ratio

C.—T
STV a3,
T,

C

(4.9

Figure 4.5, as well as Fig. IX-12 of our ear-
lier work (Poole et al., 1988) show details
of this jump for an element and for a high-
temperature superconductor, respectively.
For the latter case the magnitude of the jump
is small compared to the magnitude of the
total specific heat because it is superim-
posed on the much larger AT? vibrational
term, as indicated in Fig. 4.3. This is seen
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Figure 4.5 Specific heat jump in superconducting Al
compared with the normal-state specific heat (Phillips,
1959; see Crow and Ong, 1990, p. 225).

if Eq. (4.9) is used to express Eq. (4.5) in
the form

3
AL, _ (67'9 : E) T2 (4.10)
Cc - ch B ®]3) ¢
Figure 4.6 illustrates how the small change
at T, is resolved by superimposing curves of
C/T versus T? obtained in zero field and in
a magnetic field large enough (B,,, > B,)
to destroy the superconductivity. It is clear
from the figure that the data in the supercon-
ducting state extrapolate to zero, and that the
normal state data extrapolate to y at 0 K.
Many researchers have observed the
jump in the specific heat at 7, (cf. Table 4.1
for results from a number of studies).
Table 4.1 also lists experimental values of
T., ©p, and v, together with the ratios
(C,—C,)/T, and (C,— C,)/yT,, for sev-
eral elements and a number of copper oxide
superconductors. Some of the elements are
close to the BCS value of 1.43, but the
strongly coupled ones, Pb and Nb, which
have large electron—phonon coupling con-
stants A, are higher. Several experimental
results for YBaCuO are close to 1.43, as
indicated in the table. Some researchers have
failed to observe a specific heat discontinu-
ity, however.
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Figure 4.6 Plot of Cexp/T versus T? for monocrystals of the organic
superconductor K—(ET),Cu(NCS), in the superconducting state with no
applied magnetic field, and also in the presence of applied fields that
destroy the superconductivity. The superconducting state data extrapo-
late to a value y = 0, while the normal-state extrapolation indicates y &

25mJ/mole K* (Andraka er al., 1989).

IV. SPECIFIC HEAT BELOW T,

For T <« T, BCS theory predicts that the
electronic contribution to the specific heat C,
will depend exponentially on temperature,

A
C,~ a exp <_ﬁ>’ (4.11)
B

where 2A is the energy gap in the super-
conducting density of states. We see from
Fig. 4.5 that the fit of this equation to the
data for aluminum is good, with the spe-
cific heat falling rapidly to zero far below T,
as predicted. The vibrational term AT also
becomes negligible as 0K is approached,
and other mechanisms become important,
for example, antiferromagnetic ordering and
nuclear hyperfine effects, two mechanisms
that are utilized in cryogenic experiments to
obtain temperatures down to the microdegree
region.

V. DENSITY OF STATES AND
DEBYE TEMPERATURE

The density of states at the Fermi level
D(Eg) can be estimated from Eq. (1.52):

3 vy 1

D(E)= 52 (4.12)

For a typical high-temperature superconduc-
tor with y &~ 0.01J/mole Cu K we obtain

4.5 states

D(E,) ~ ——.
(Er) eV Cu atom

(4.13)

The Debye temperature may be esti-
mated from the slope of the normal state
C,/T-versus-T? curve sketched in Fig. 1.13,
since with the aid of Eq. (1.62a) we can write

127*R
{5[slope]}”

Typical values for ®p are from 200 to 350 K.

0) = (4.14)
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We have been using formulae that
involve the free-electron approximation. To
estimate the validity of this approximation
we can make use of Eq. (1.88), which gives
the ratio of 7y to the magnetic susceptibility
x arising from the conduction electrons,

y 1 (77/’(13)2
x 3\ /)’

in terms of well-known physical constants.

(4.15)

VI. THERMODYNAMIC VARIABLES

We have been discussing the specific
heat of a superconductor in its normal and
superconducting states in the absence of an
applied magnetic field. When a magnetic
field is present the situation is more com-
plicated, and we must be more careful in
describing the specific heat as the result of
a thermodynamic process. In this section we
will develop some of the necessary back-
ground material required for such a descrip-
tion, and in the following sections we will
apply the description to several cases.

Later on, in Chapter 5, Section X, we
will learn why the magnetic energy of a
superconducting sample in a magnetic field
depends on its shape and orientation. In the
present chapter we will not be concerned
with these demagnetization effects and will
instead assume that the sample is in the shape
of a cylinder and that the internal magnetiza-
tion M is directed along the axis of the cylin-
der, as illustrated in Fig. 2.26. If an external
field B,,, is applied, it will also be directed
along this axis. This means that the applied
B field is related to the internal H field by
means of the expression

Bapp = /‘LOHin' (416)
This geometry simplifies the mathematical
expressions for the free energy, enthalpy, and
other properties of a superconductor in the

91

presence of a magnetic field. In the next
few sections we will simplify the notation by
using the symbol B instead of B,,, for the
applied magnetic field, but throughout the
remainder of the text the symbol B, will
be used.

In treating the superconducting state
it is convenient to make use of the free
energy because (1) the superconductivity
state is always the state of lowest free
energy at a particular temperature, and (2)
the free energies of the normal and super-
conducting states are equal at the transi-
tion temperature. We will use the Gibbs free
energy G(T, P, B) = G(T, B) rather than the
Helmbholtz free energy

F(T,V, M) = F(T, M),

where the variables P and V are omit-
ted because pressure—volume effects are
negligible for superconductors. The Gibbs
free energy G(T, B) is selected because the
experimenter has control over the applied
magnetic field B, whereas the magnetization
M(T, B) is produced by the presence of the
field. The remaining thermodynamic func-
tions will be expressed in terms of the two
independent variables T and B.

In the treatment that follows we will be
dealing with thermodynamic quantities on a
per-unit-volume basis, so that G will denote
the Gibbs free energy density and S the
entropy density. For simplicity, we will gen-
erally omit the term density by, for example,
calling G the Gibbs free energy.

The first law of thermodynamics for a
reversible process expresses the conservation
of energy. For a magnetic material the dif-
ferential of the internal energy dU may be
written in terms of the temperature 7T, the
entropy S, the applied magnetic field B, and
the magnetization M of the material as

dU =TdS+B-dM, (4.17)

where the usual —PdV term for the mechan-
ical work is negligible and hence omitted,
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while the +B-dM term for the magnetic
work is included. (Work is done when an
applied pressure P decreases the volume of
a sample or an applied magnetic field B
increases its magnetization.) So these two
work terms are opposite in sign. The work
term w,H-dM that appears in Eq. (4.17) is
positive. This equation does not include the
term d(B?/2u,) = py'B-dB for the work
involved in building up the energy density
of the applied field itself since we are only
interested in the work associated with the
superconductor.

We will be concerned with a constant
applied field rather than a constant magne-
tization, so it is convenient to work with
the enthalpy H’ rather than the internal
energy U,

H =U-B-M, (4.18)
with differential form
dH' =TdS —M.dB. (4.19)

The second law of thermodynamics permits
us to replace 7dS by CdT for a reversible
process, where C is specific heat,

CdT =14S, (4.20)
which gives for the differential enthalpy
dH' = CdT —M-dB. (4.21)

Finally we will be making use of the Gibbs
free energy

G=H -T8, (4.22)
and its differential form
dG =—-SdT —M - dB. (4.23)

Note the prime in the symbol H’ for enthalpy
to distinguish it from the symbol H for the
magnetic field. For the balance of the chapter
we will also be assuming that the vectors B,

4 THERMODYNAMIC PROPERTIES

H, and M are parallel and write, for example,
MdB instead of M - dB.

The  fundamental  thermodynamic
expressions (4.17)—(4.23) provide a starting
point for discussing the thermodynamics of
the superconducting state. Two procedures
will be followed in applying these expres-
sions to superconductors. For the normal
state we will assume a known specific
heat (4.1) and then determine the enthalpy
by integrating Eq. (4.21), determine the
entropy by integrating Eq. (4.20), and
finally find the Gibbs free energy from
Eq. (4.22). For the superconducting case
we will assume a known magnetization and
critical field, and determine the Gibbs free
energy by integrating Eq. (4.23), the entropy
by differentiating Eq. (4.23), the enthalpy
from Eq. (4.22), and finally the specific
heat by differentiating Eq. (4.21). The first
procedure, called the specific heat-to-free
energy procedure, goes in the direction
C — H — S — G and the second, called the
free energy-to-specific heat procedure, goes
in the opposite direction G - S — H — C.
The former procedure will be presented
in the following section and the latter in
the succeeding three sections. We will
assume specific expressions for C and
M, respectively, to obtain closed-form
expressions for the temperature dependences
of the difference thermodynamic variables.
This will give us considerable physical
insight into the thermodynamics of the
superconducting state. These assumptions
also happen to approximate the behavior of
many real superconductors.

VIl. THERMODYNAMICS OF
A NORMAL CONDUCTOR

In this section we will use the specific
heat-to-free energy procedure. We deduce in
succession the enthalpy, entropy, and Gibbs
free energy of a normal conductor by assum-
ing that its low-temperature specific heat C,
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is given by Eq. (4.1) with the Schottky term A similar calculation for the entropy involves

omitted: integrating Eq. (4.20),
3 T 3, dT
C, =T + AT, (4.24) / ds, = / YT +AT =, (428)
0
The enthalpy at zero magnetic field is Su(T) =T+ % AT?, (4.29)

obtained by setting MdB =0,
where §,(0) = 0. The normal-state Gibbs
MdB = M(;l Y.,BdB ~0, (4.25) flTee energy at zero field may be Qetermir}ed
either from Eq. (4.22) or by integrating
Eq. (4.23) with MdB set equal to zero. It has

where , = uoM/B. Integrating Eq. (4.21), the following temperature dependence:

we find that

T G, (T)=—1yT* — LAT. (4.30)
/ dH, = / [YT +AT*]dT,  (4.26)

0 The normal-state specific heat, entropy,

H(T) = 5yT* + AT, (427)  enthalpy, and Gibbs free energy from

Eqgs. (4.24), (4.29), (4.27), and (4.30) are

where it is assumed that v and A are inde- plotted in Figs. 4.7, 4.8, 4.9, and 4.10, respec-

pendent of temperature, and that H,(0) =0. tively, for the very-low-temperature region.

39T,

’ l l

Specific Heat C
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0 3T _;Tc {%Tc T, 1.5T,
T

Figure 4.7 Temperature dependence of the normal-state C, (- - -) and superconducting-state
C, (—) specific heats. The figure shows the specific heat jump 1.43yT, of Eq. (4.9) that is
predicted by the BCS theory, the crossover point at 7' = T,/ /3, and the maximum negative
jump 0.44ayT, at T =T,/3. In this and the following 12 figures it is assumed that only the
linear electronic term 7 exists in the normal state (i.e, AT> = 0).
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Figure 4.8 Temperature dependence of the normal-state S, (---) and
superconducting-state S, (—) entropies. The transition is second order so there

is no discontinuity in entropy at 7.
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Figure 4.9 Temperature dependence of the normal state H, (---) and super-
conducting state H, (—) enthalpies. The transition is second order so there is no
discontinuity in enthalpy, and hence no latent heat at 7.

Here the AT? term is negligible, and only
the yT term is appreciable in magnitude.

In this section we have derived sev-
eral thermodynamic expressions for a normal
conductor in the absence of a magnetic field.
The permeability u of such a conductor is so
close to that of free space w, (cf. Chapter 1,
Section XV, and Table 1.2), that the mag-
netic susceptibility y, is negligibly small and

M = 0. Therefore, the thermodynamic quan-
tities (4.24), (4.27), (4.29), and (4.30) are not
appreciably influenced by a magnetic field,
and we will assume that they are valid even
when there is a magnetic field present. For
example, we assume that

G, (T, B) ~ G,(T,0) (4.31)
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Figure 4.10 Temperatre dependence of the normal-state G, (---) and
superconducting-state G, (—) Gibbs free energies. Since the transition is second
order, both G and its first derivative are continuous at 7.

and it is convenient to simplify the notation
by writing

G(T.B)~G(T). (432
Thus all of the equations derived in this
section are applicable when a magnetic field
is also present.

VIlIl. THERMODYNAMICS OF
A SUPERCONDUCTOR

If we had a well-established expression
for the specific heat C, of a superconduc-
tor below T, it would be easy to follow
the same C - H' — S — G procedure to
obtain the quantities H., S, and G, as in
the case of a normal conductor. Unfortu-
nately, there is no such expression, although
many experimental data far below 7, have
been found to follow the BCS expression
(4.11). Equation (4.11) does not cover the
entire temperature range of the superconduct-
ing region, however, and, in addition it does

not integrate in closed form. Another compli-
cation is that the thermodynamic properties
of the superconducting state are intimately
related to its magnetic properties, as we will
demonstrate below, and the specific heat
relation (4.11) does not take magnetism into
account.

Because of the close relationship
between superconductivity and magnetism
we will adopt the free energy-to-specific heat
procedure and examine the Gibbs free energy
of a superconductor in the presence of an
applied magnetic field B. We will not resort
to any model for the temperature dependence
of the specific heat or that of the critical
field, so the results that will be obtained will
be general. Then in the following two sec-
tions we will return to the specific model
based on Eq. (4.24) to obtain more practical
results.

We begin by seeking an expression
for the free-energy difference G (T, B) —
G, (T, B) between the superconducting and
normal states to allow us to deduce S, and
H{ by differentiation. To accomplish this we
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write down the differential of the Gibbs free
energy from Eq. (4.23) assuming isothermal
conditions (dT = 0),
dG = —MdB, (4.33)

and examine its magnetic field dependence
in the superconducting and normal states.

We treat the case of a Type I supercon-
ductor that has the magnetization given by
Eq. (2.22), M = —H = —B/u,, and assume
that surface effects involving the penetra-
tion depth are negligible. Demagnetization
effects are also inconsequential, as explained
in Section VI, so Eq. (4.33) becomes

dG, = u,'BdB. (4.34)

If this expression is integrated from B =0 to
a field B we obtain

G(T,B)=G(T,0)+iu,' B>, (4.35)
where, of course, the magnetic energy den-
sity B?/2u, is independent of temperature.
When the applied field B equals the criti-
cal field B,(T) for a particular temperature
T < T, the free energy becomes

G.(T, B.T)) = G,(T,0) + Ly B.(T)?
T =T,(B), (4.36)

and recalling that this is a phase transition
for which G, = G,, we have

G,(T) = G,(T.0) + L' B.(T?
T =T,(B), (4.37)

where 1ug'B.(T)* is the magnetic-energy
density associated with the critical field, and,
from Eq. (4.32), G,(T) does not depend
on the field. Subtracting Eq. (4.35) from

Eq. (4.37) gives

G(T, B) = G,(T) — 3y (B.(T)* — B?),
(4.38)

4 THERMODYNAMIC PROPERTIES

where, of course, B < B,(T). In the absence
of an applied field Eq. (4.38) becomes

G,(T.0) = G,(T) — Lug ' B.(T) (B=0),
(4.39)

so the Gibbs free energy in the super-
conducting state depends on the value of
the critical field at that temperature. This
confirms that there is indeed a close relation-
ship between superconductivity and mag-
netism. Figure 4.11 shows that the curves
for G,(T,0) and G,(T) intersect at the tem-
perature T,, while those for G,(T, B) and
G,(T) intersect at the temperature 7,(B).
The figure also shows that 1ug'B? is the
spacing between the curves of G(T7,0)
and G,(7), and that 1ug'B? is the spac-
ing between the curves of G (T, B) and
G(T,0). The figure is drawn for a particu-
lar value of the applied field corresponding
to 7,(B) = 1 T..

Since we know that the Gibbs free
energy of the superconducting state depends
only on the applied magnetic field and the
temperature, we can proceed to write down
general expressions for the other thermody-
namic functions that can be obtained through
differentiation of G (T) with respect to the
temperature when the applied field B is kept
constant. The value of B, of course, does not

depend on 7.
For the entropy we have, using
Eq. (4.23),
S,—S, = d [G,—G,] (4.40)
S n dT N nl» *

and for the free energy, from Eq. (4.38),

(M

B.(T) d
S(T) = S,(T) + M—Od—TBC(T). (4.41)

The entropy S, (7, B) does not depend explic-
itly on the applied field, so it is denoted
S.(T). From this expression, together with
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Figure 4.11  Effect of an applied magnetic field B

Te 3T

.pp = 0-75B; on the Gibbs free

energy G(T, B) in the superconducting state. In this and the succeeding figures
dashed curves are used to indicate both the normal-state extrapolation below 77
and the zero-field superconducting state behavior, where T denotes the transition

temperature when there is a field present.

Egs. (4.22) and (4.39), we can write down
the enthalpy at constant field,

H{(T, B) = H,(T) — 3, ' [B.(T)* — B’]
TB.(T) d

—B.(T),
o B

(4.42)

which shows that the enthalpy does depend
on the magnetic energy B2/2u,. We see from
Eq. (4.21) that the enthalpy can be differen-
tiated to provide the specific heat at constant
field:

CT) = €, (1) + 1y TB(T) - BU(T)
T |d ?
f TR )

The specific heat does not depend explic-
itly on the applied field, so we write C,(T)
instead of C,(7, B). We will see below that
the terms in this expression that depend on
B.(T) become negative at the lowest tem-
peratures, making C,(7) less than C,(T).

At zero field (B = 0) the transition temper-
ature is T, itself, and we know (e.g., from
Eq. (4.45) in Section IX) that B.(T,) =0, so
that only the second term on the right exists
under this condition:

T|d ?

T=T, (444)

This is known as Rutger’s formula. It pro-
vides the jump in the specific heat at T,
that is observed experimentally, as shown
in Figs. 4.3, 4.5, and 4.6. We will show
in Section XIII how this expression can be
used to evaluate the electronic specific-heat
factor y.

IX. SUPERCONDUCTOR IN
ZERO FIELD

We will develop the thermodynamics of
a Type I superconductor in the absence of
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a magnetic field using the free energy-to-
specific heat procedure G — S - H — C.
We apply the general expression (4.39) to
the particular case in which the free energy
of the normal state is given by Eq. (4.30)
and the critical magnetic field B.(7) has a
parabolic dependence on temperature,

B.(T) = B,(0) {1 - (%ﬂ . (4.45)

given by Eq. (2.56). Substituting these
expressions in Eq. (4.39) gives

GS(T’ 0) = _%YTZ - éATzl - %IM;IBC(O)Z

-]
x| 1=\ = ,

()]
which is plotted in Fig. 4.10 with A set equal
to zero.

The difference between the entropies
in the normal and superconducting states is
obtained by substituting the expressions from
Eqgs. (4.29) and (4.45) in Eq. (4.41) and car-
rying out the differentiation:

(4.46)

S(T) =T+ 1AT* —2u;'B.(0)

x (%) [1 - ;—i} (4.47)

The last term on the right is zero for both
T=0and T=T, so S,=S, for both lim-
its. The former result is expected from the
third law of thermodynamics. Differentiation
shows that the last term on the right is a
maximum when 7' =T,/ V/3, so that the dif-
ference S, — S, is a maximum for this tem-
perature. The entropy S, with A =0 is plotted
in Fig. 4.8.

The enthalpy H!(T,0) of the super-
conducting state in zero field is obtained
from Eq. (4.22),

H((T,0) = 3yT° 4+ }AT* — {5 B.(0)*

T2 72
x [1 —ﬁ} [1+3ﬁ}, (4.48)

C
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and the specific heat of the superconducting
state from Eq. (4.20),

ds,
C,=T ,
‘ dT ),

by differentiating Eq. (4.47) at constant field,
to give

(4.49)

C(T) = yT + AT® +2u," B.(0)*

x <%) [3;—2 - 1}. (4.50)

The last term on the right changes sign at
T = T,/+/3. Expressions (4.48) and (4.50)
are plotted in Figs. 4.9 and 4.7, respectively,
with the AT? term set equal to zero.

The results given in this section are for
a Type I superconductor in zero field with
electronic specific heat given by Eq. (4.24)
and a critical field with the temperature
dependence of Eq. (4.45). Figures 4.7, 4.8,
4.9, and 4.10 show plots of the tempera-
ture dependence of the thermodynamic func-
tions C,, S, H,, and G, under the additional
assumption A = 0.

X. SUPERCONDUCTOR IN
A MAGNETIC FIELD

In the previous section we derived
Eq. (4.38) for the Gibbs free energy G, (T, B)
of the superconducting state in the absence
of an applied magnetic field B. With the aid
of Egs. (4.30), (4.38), and (4.45) this can be
written in the following form for the case of
an applied field:

G(T,B) = —5yT° — SAT* — juy!
T2\’
X [BC(O)Z (1 — ﬁ> —BZ]
(4.51)

Since the applied field B does not depend on
the temperature, the entropy obtained from
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Eq. (4.40) by differentiating the Gibbs free
energy (4.51) assuming the presence of a
field is the same as in the case where there
is no magnetic field present,

S(T) = yT + 1AT* — 2" B.(0)?
T T?

The enthalpy obtained from Eq. (4.22) does
depend explicitly on this field,

(4.52)

H/(T, B) = }yT* + 1 AT*

. T’
— 3k B.(0)? (1 - T—)

T2
X (1 +4ﬁ) + 1y B,
(4.53)

but the specific heat from Eq. (4.20) does
not,

C(T) = yT + AT* + 2" B.(0)
T T?
< (7).

where Eqgs. (4.52) and (4.54) are the same
as their zero-field counterparts (4.47) and
(4.50), respectively. The field-dependent G,
and H/ terms of Eqgs. (4.51) and (4.53), on
the other hand, differ from their zero-field
counterparts (4.46) and (4.48) by the addition
of the magnetic-energy density B?/2u,.

In a magnetic field the sample goes nor-
mal at a lower temperature than in zero
field. We denote this magnetic-field transi-
tion temperature by 7,(B) = T, where, of
course, 7.(0) =T, and T, < T.. This transi-
tion from the superconducting to the normal
state occurs when the applied field H equals
the critical field B.(7) given by Eq. (4.45)

at that temperature. Equation (4.45) may be
rewritten in the form

rerfi--8 1"
e B.(0)

(4.54)

(4.55)
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to provide an explicit expression for the tran-
sition temperature 7. in an applied field B.
We show in Problem 7 that this same expres-
sion is obtained by equating the Gibbs free
energies G,(T, B) and G,(T) for the super-
conducting and normal states at the transition
point,

G(T,B)y=G,(T) T=T, (4.56)

At the transition temperature 7, =
T.(B) the superconducting and normal state
entropies (4.52) and (4.29), respectively, dif-
fer. Their difference gives the latent heat L
of the transition by means of the standard
thermodynamic expression

L=(S,—S,)T.(B) (4.57)
L [TBT
[ ]
X {1— [@} } (4.58)

We show in Problem 9 that this same result
can be obtained from the enthalpy differ-
ence L = H, — H,. The latent heat is a maxi-
mum at the particular transition temperature
T.(B) = T,/~/2, as may be shown by setting
the derivative of Eq. (4.58) with respect to
temperature equal to zero. We see from this
equation that there is no latent heat when
the transition occurs in zero field, i.e., when
T =T, or at absolute zero, 7 = 0. In addi-
tion to the latent heat, there is also a jump
in the specific heat at T,(B) which will be
discussed in the following section.

Figures 4.12, 4.13, 4.14, and 4.15 show
the temperature dependences of the thermo-
dynamic functions C, S, H’, and G, respec-
tively, for high applied fields in which 7,(B)
is far below T,. Figures 4.16, 4.17, 4.18, and
4.19 show these same plots for low applied
fields in which T, (B) is slightly below T,. All
of these plots are for the case A =0. We see
from Figs. 4.12, 4.16, 4.13, and 4.17, respec-
tively, that the specific heat C, and entropy S,
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Figure 4.12 Temoerature dependence of the specific heat in the normal and
superconducting states in the presence of a strong applied magnetic field. The
downward jump in specific heat AC at T is indicated.
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Figure 4.13  Temperature dependence of the entropy in the normal and super-
conducting states in the presence of a strong applied magnetic field. The latent
heat factor L/T, of the jump in entropy at 7 is indicated.

curves (assuming the presence of a magnetic
field) coincide with their zero-field counter-
parts below T, (B) and with their normal-state
counterparts above T,(B). In contrast, from
Figs. 4.14, 4.18, 4.15, and 4.19 it is clear that
the enthalpy H; and Gibbs free energy G,
curves in a magnetic field lie between their

normal-state and zero-field superconducting
state counterparts below the transition point
T.(B), and coincide with the normal-state
curves above the transition. These plots also
show the jumps associated with the specific
heat and the latent heat as well as the continu-
ity of the Gibbs free energy at the transition.
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Figure 4.14 Temperature dependence of the enthalpy in the normal and super-
conducting states in the presence of a strong applied magnetic field. The jump in
entropy at the transition temperature 7, is equal to the latent heat L, as indicated.
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Figure 4.15 Temperature dependence of Gibbs free energy in the normal and
superconducting states in the presence of a strong applied magnetic field. The
transition is first order so that there is no discontinuity in free energy at the transition
temperature 7, but there is a discontinuity in the derivative. The normal (G,) and
superconducting (G) branches of the upper curve are indicated. The lower dashed
(- - -) curve shows the Gibbs free energy in the superconducting state at zero field

(B,pp = 0) for comparison.
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Figure 4.20 shows the experimentally
determined Gibbs free-energy surface of
YBa,Cu,0, obtained by plotting G(T, B) —
G(T,0) versus temperature and the applied
field close to the superconducting transi-
tion temperature (Athreya et al, 1988).
The free-energy differences are obtained by

integrating Eq. (4.33) using measured mag-
netization data for M(T, B):

G(T,0)— G(T, B) = MdB'.  (4.59)

This procedure is possible because close
to the transition temperature magnetic flux
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Figure 4.16 Temperature dependence of specific heat in the normal and super-
conducting states in the presence of a weak applied magnetic field. The jump in
specific heat AC at T, is upward, in contrast to the downward jump shown in
Fig. 4.12 for the high-field case.
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Figure 4.17 Temperature dependence of entropy in the normal and supercon-
ducting states in the presence of a weak applied magnetic field showing the jump
in entropy L/T, at T, as expected for a first-order transition.

moves easily and reversibly into and out free-energy surface varies with the magnetic
of the material, which makes the magneti- field all the way up to 92K. Fang et al
zation a thermodynamic variable. Magneti- (1989) determined free-energy surfaces for
zation is linear in (7, — T)? near T,. The thallium-based superconductors.
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Figure 4.18 Temperature dependence of enthalpy in the normal and super-
conducting states in the presence of a weak applied magnetic field, showing the
presence of a latent heat jump L at the transition temperature 77, indicating a
first-order transition.
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Figure 4.19 Temperature dependence of Gibbs free energy in the normal and
superconducting states in the presence of a weak applied magnetic field using the
notation of Fig. 4.15. The transition is first order so that the change in G at 7 is
continuous, but the change in its derivative is discontinuous (cf. Athreya et al., 1988).

XI. NORMALIZED
THERMODYNAMIC EQUATIONS

T B
The equations for G,(7T, B), S,(T), and ¢ c
C,(T) given in the previous section, together and two dimensionless parameters,
with H(T, B) of Problem 9, can be written
in normalized form by defining two dimen- g AT? N B? (4.61)

sionless independent variables, 07 - o yT2
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Figure 4.20 Free-energy surface for YBa,Cu;0,
close to the transition temperature (Athreya ez al., 1988).

The resulting normalized expressions for g,
s,, and A are given in Table 4.2. Also given

4 THERMODYNAMIC PROPERTIES

in the table are the normalized specific heat
jump AC/~vT, and the normalized latent heat
L/yT?. These expressions are valid under
the condition

?+b<l. (4.62)

The sample becomes normal when either ¢
or b are increased to the point where 1>+
b =1, and the value of ¢ that satisfies this
expression is called ¢

2 +b=1. (4.63)

Thisis the normalized equivalentof Eq. (4.55),
where t' = T/T, is the normalized transition
temperature in a magnetic field.

The normalized specific heat jump has
the following special values:

AC
— =2af(3*—1)
YT,

Table 4.2 Normalized Equations for the Thermodynamic Functions
of a Superconductor in an Applied Magnetic Field B?

G
Gibbs Free Energy g = yTS? =—12—Lart—la[(1-1*)* 1]
S 1.3 2
Entropy 5= =t+zat’ —2at(l—1*)
¥T. '
o Cs 3 2
Specific Heat ¢, = T = t+at’ +2at(3t° —1)
y C
’
Enthalpy hy = y]j? =12+ tart — La[(1- ) (14383 - b?)]
AC
Specific Heat Jump =2ar' (3% —1)
YTe
L 2 2
Latent Heat — =2ar*(1—-17)
Ve
Definitions of normalized variables (7, b) and parameters:
T b B AT?
= —_— = a= ——
T. B.(0) Y
o7 y BT L BOFP
Tc Bc (0) MO’yTCZ

“ The first four expressions are valid under the condition 7> + b < 1 of Eq. (4.62), and the last two
are valid at the transition point given by > +5b =1 from Eq. (4.63).
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0 =0
4o L
=19 r= 51 (max), (4.64)
0 = 7
da =1

where 4a/9 is its maximum magnitude of
AC/vT, for reduced temperatures in the range
0<t < 1/\/§, as indicated in Fig. 4.12. The
normalized latent heat has the special values

L
— =2at*(1-1?)
yTe

Cc

/

o
Il
o

‘=2 (max),

@ 2

(4.65)

~ O~ o~
|

!/

(e RIS TEN
Il
—

where its maximum Ja is at ¢ = 1/+/2.

XII. SPECIFIC HEAT IN A
MAGNETIC FIELD

A number of authors have measured
or calculated the specific heat of high-
temperature superconductors in a magnetic
field (Hikami and Fujita, 1990a,b; Riecke
et al., 1989; Quade and Abrahams, 1988;
Watson et al., 1989). Reeves et al., (1989)
found that the quantity C/T of YBa,Cu;0,_s
in an applied magnetic field is linear in T? in
the range 4K < T < 6K in accordance with
the expression

C=[y+Y(BIT+[A-A(B)]T°, (4.60)

which is compared in Fig. 4.21 with exper-
imental data for applied fields up to 3T.
It was also found that y = 4.38 mJ/mole K*
and A = 0.478 mJ/mole K*, with the coef-
ficients y/(B) and A’(B) increasing as the
applied magnetic field was increased.

At the highest measured field of 3T, it
turned out that

Y o054,
Y

4.67
Y (4.67)
Z o011

I

b

S
b H = 3T
19 + «H=2T -
L H=1T
= “H=o0T
£
S 15
.
iy |
E
S 11
7
3
0 5 10 15 20 25 30 35
12 (k%)

Figure 4.21 Low-temperature specific heat of
YBa,Cu;0,_; in a magnetic field. The straight lines are
fits of Eq. (4.66) to the data for each field value (Reeves
et al., 1989).

Reeves et al., also mention that other workers
have obtained results that differ from those
described by Eq. (4.66).

Bonjour et al. (1991), Inderhees et al.
(1991), and Ota er al (1991) mea-
sured the magnetic-field dependence of the
anisotropies in the specific heat near T..
The results obtained by Inderhees et al.
for untwinned YBa,Cu;0,_s, which are pre-
sented in Fig. 4.22, turned out to be similar
to those obtained by the other two groups.
We see that increasing the magnetic field
shifts the specific-heat jump to lower tem-
peratures and broadens it, especially for an
applied field parallel to the c-axis. Ebner and
Stroud (1989) obtained a good approxima-
tion to the specific heat curves of Fig. 4.22
with B | ¢ by including fluctuations in the
Ginzburg-Landau free energy (cf. Chapter 6,
Section III) and carrying out Monte—Carlo
simulations. Figure 4.23 shows how the dif-
ference between the specific heat measured
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Figure 4.22 Specific heat jump of untwinned YBa,Cu;0;_4
near T, for different applied magnetic fields aligned parallel (top)
and perpendicular (bottom) to the c-axis (Inderhees er al., 1991).

at zero field C, and that measured in the field
Cy depends on the value of the applied field
at a temperature of 88 K, which is close to
T,. The difference is about five times larger
in the parallel field orientation than in the
perpendicular field orientation.

Bonjour et al. (1991) used their own
specific heat data to determine the depen-
dence of the entropy difference S, — Sy on
the applied field, where S,(7) is the entropy
in the absence of the field and Sy (7, B) the
entropy assuming the presence of a field;
their results are given in Fig. 4.24. They
were aided by recent magnetic data of Welp
et al. (1989; cf. Hake, 1968) in deducing the
experimental entropy. Bonjour et al. com-
pared their measured entropies with the fol-
lowing generalization of Eq. (4.41) to the
mixed state of a Type II superconductor:

Su(T, B) = $,(T) + x'(T)

B —B d
x L._Bcz(]),
Mo ar

(4.68)

where ' = u,dM/dB is called the ‘differ-
ential susceptibility.” This gives

So(Ti) = Su(Ti, B) = X' (T})

B d
X —

—B,(T)),
o dT L2( 1)

(4.69)

where T; = 80K is the temperature at
which all the specific heat curves are still
superimposed. The values for B=5T calcu-
lated from Eq. (4.68) using the data of Welp
et al. are reasonably close to the measured

values, as indicated in the figure.
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Figure 4.23 Magnetic field dependence of the spe-
cific heat difference for parallel and perpendicular fields
(Athreya et al., 1988).
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Figure 4.24 Magnetic field dependence of the
entropy difference of parallel and perpendicular fields
showing measured (o) and calculated (e) values for
YBa,Cu; O, (Bonjour et al., 1991).
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XHI. FURTHER DISCUSSION OF THE
SPECIFIC HEAT

Earlier in the chapter we mentioned the
jump in the specific heat in zero field (4.44),
in a magnetic field (4.43), and as predicted by
the BCS theory (4.9). We also gave expres-
sions for the temperature dependence of the
specific heat in the superconducting state,
one of which (Eq. (4.11)) appeared to be
incompatible with the other two expressions
(Egs. (4.50) and (4.54)). In this section we
compare these results and use them to evalu-
ate the electronic specific-heat coefficient y
for zero field, after which we will write down
an expression for the jump in the specific
heat in a magnetic field.

At the transition temperature 7 = T, in
zero field, Eq. (4.50), with A = 0, simpli-
fies to

2

c.(r) - c,(r) = 12OL

Mo Tc

(4.70)

where C,(T,) = yT.. If the BCS prediction
(4.9) is substituted in Eq. (4.70), we obtain
for the normalized specific heat factor a of
Eq. (4.61)

a =0.357. (4.71)
The curves of Figs. 4.7-4.9 were drawn for
this value. Since B2/2u, is an energy den-
sity expressed in units J/m® and 7y is given
in units mJ/mole K, it is necessary to multi-
ply v by the density p and divide it by the
molecular weight (MW) in Eq. (4.71), giving
us the BCS dimensionless ratio

[B.(0)*(MW)

Rpes = — 2 — 449,

(4.72)
moTepy

where B. is expressed in units mT, y in
mJ/mole K2, p in g/cm?, and T, in degrees
Kelvin. It is reasonable to assume that this
expression will be a good approximation for
Type I superconductors, and we see from the
last column of Table 4.3 that this is indeed
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Table 4.3 Variation of the
Dimensionless

Ratio R = B2 (MW)/u,T2py of Several
Elemental Superconductors®

BX(MW)
roTZpy
T, mT2 cm?
Element K mJ R/Rgcs
w 0.015 676 1.51
Ir 0.11 569 1.27
Ru 0.49 577 1.29
Zr 0.61 300 0.67
Os 0.66 403 0.90
Re 1.7 522 1.16
Sn 3.72 615 1.37
\% 5.4 571 1.27
Pb 7.20 733 1.63
Tc 7.80 443 0.99
Nb 9.25 697 1.55
BCS theory — 449 1.00

4B, = B.(0), MW is molecular weight, p density, and
7y electronic specific heat.

the case for the elemental superconductors.
Equation (4.72) was derived for materials in
which the number density of the conduction
electrons is the same as the number density
of the atoms. For materials in which this is
not the case, the effective electron density Bp
can be used, where @ is the factor introduced
in Eq. (4.4), to give

B.(0)]* (MW
[B. (O] (MW) )]2( ) = 449. (4.73)
roTEBpY
Equations (4.54) and (4.11) constitute

entirely different dependences of C,(7) on
temperature, and it is of interest to compare
them. In normalized form, with A set equal
to zero, they are

C. T T\?
(N _T 0.285+2.145( —) |,
’ch TC TC
(4.74)
C. T
(D =14 exp <—1.76—°> , (4.75)
YT, T
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where « has the BCS value 0.357 and the
coefficient 1.76 in the exponential expression
is chosen because the BCS theory predicts
A =1.76kT, in Eq. (4.11). The coefficient
14 is selected to normalize Eq. (4.75) to the
BCS value (4.11); i.e., C(T,) = 2.43vT, at
the transition point. Figure 4.25 compares
the temperature dependence of (4.74) and
(4.75), and shows that they are close at all
but the lowest temperatures. Equation (4.74)
is slightly lower for T near T, and Eq. (4.75)
is significantly lower for 7 < T,.

The first of these expressions for C,(7),
i.e., Eq. (4.74), is based on Eq. (4.45), which
is a good approximation to the tempera-
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Figure 4.25 Comparison of the thermodynamic and
BCS expressions (4.74) and (4.75), respectively, for the
specific heat ratio C,/y7, normalized to the same value
atT=T,..
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ture dependence of the critical field B.(7)
near the critical temperature. However, the
temperature derivatives of Eq. (4.45) that
enter into the C,(7T) expression (4.43) are not
expected to be valid quantitatively far below
T,. The second expression, Eq. (4.75), on the
other hand, is based on excitation of quasi-
particles to energies above the superconduct-
ing ground state, and is valid at temperatures
far below T, where most of the electrons that
contribute to the superconductivity are con-
densed as Cooper pairs in the ground-energy
state. Therefore, we might expect an experi-
mental C(7)-versus-T curve to approximate
Eq. (4.75) far below T, as in the case of the
superconducting Al data shown in Fig. 4.5.

Now that we have found explicit expres-
sions for the specific heat in the supercon-
ducting state in the absence of a magnetic
field, let us examine the case when there is
a field present. We will continue to assume
that y7 = C,(7) and A =0, and that the BCS
expression (4.10) is valid in zero field at 7.
Thus, in a magnetic field Eq. (4.74) can be
written

C

C.(T) — C,(T) = 0.715yT [3 <%)2 - 1},
(4.76)

and the jump in specific heat at the transition
temperature 7, in a magnetic field is given by

Cc

C.(T)) = C,(T)) =0.175yT [3 (;) - 1} .
(4.77)

This change in specific heat C, — C, is neg-
ative for T/ < T,/+/3 and positive for T/ >
T,/ /3. This means that with increasing tem-
perature there is an upward jump in the spe-
cific heat for T/ < T./+/3 and a downward
jump for T > T,/~/3, as shown in Figs. 4.12,
and 4.16, respectively. We also see that no
jump at all occurs at the crossover point of
the normal-state and superconducting curves,
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where T, =T,/ /3. In addition to the jump in
specific heat, there is also latent heat present,
Eq. (4.57), in the presence of a magnetic
field.

XIV. ORDER OF THE TRANSITION

We mentioned in Section III that the
transition from the normal to the super-
conducting state in the absence of a mag-
netic field is a second-order phase transition,
which means that the Gibbs free energy and
its temperature derivative are continuous at
the transition:

G(T) = G,(T), (4.78)
dG, dG

t= 1t 4.79

dT — dT (479)

This can be seen from Eq. (4.39), using the
condition B,(T,) = 0 from Eq. (4.45). There-
fore, there is no latent heat, but there is a
discontinuity in the specific heat given, for
example, by Egs. (4.44) and (4.70).

We showed in Section X that the transi-
tion from the superconducting to the normal
state in the presence of a magnetic field does
have a latent heat given by Eq. (4.58) and,
therefore, is a first-order phase transition.

XV. THERMODYNAMIC
CONVENTIONS

There are several conventions in vogue
for formulating the thermodynamic approach
to superconductivity. Some of these conven-
tions make use of the total internal energy
U,> which includes the energy of the mag-
netic field B?/2u, = 3pH” that would be
present in the absence of the superconductor,
whereas others, including the one adopted
in the present work, use the internal energy
U, which excludes this field energy. The
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total internal energy and internal energy are
related through the expressions

BZ
Upy=U+—, (4.80)
2
dUy =TdS+H-dB, (4.81)
BZ
=dU+d <—) (4.82)
2

Some authors, including ourselves, deduce
the properties of superconductors with the
aid of the Gibbs free energy G defined in
Eq. (4.22), while others resort to G,,,, where

G,,=H  —TS.

tot

(4.83)

Still other authors instead employ the
Helmbholtz free energy F or F,,, where

F=U-TS, (4.84)

Foo=Un—TS (4~85)
B2

=Ft—. (4.86)
2

An added complication in making compar-
ison between results arrived at by different
authors arises because some authors use the
cgs system instead of SI units.

XVI. CONCLUDING REMARKS

In the beginning of this chapter we
discussed the experimental results of spe-
cific heat measurements, and then proceeded
to develop the thermodynamic approach to
superconductivity, an approach in which the
specific heat plays a major role. Some of
the expressions that were derived are fairly
general. Others, however, are for the partic-
ular model in which the specific heat (4.24)
in the normal state obeys the linear low-
temperature relation y7 and the critical field
(4.45) has a simple parabolic dependence
[1—(T/T.)*] on temperature. Some expres-
sions make use of the additional assumption

4 THERMODYNAMIC PROPERTIES

that the BCS expression C,(7.) = 2.43~T.,
of Eq. (4.9) is also valid. It is believed that
these models provide a good physical picture
of the thermodynamics of the superconduct-
ing state. A more appropriate description for
the high-temperature superconductors would
include the AT? term in the specific heat. It
is, of course, also true that real superconduc-
tors have more complex temperature depen-
dences than is implied by these simple mod-
els. The theoretical approaches presented in
the following two chapters are needed to
achieve a more basic understanding of the
nature of superconductivity.

PROBLEMS

1. Consider a metallic element such as cop-
per that contributes one electron per
atom to the conduction band. Show that
in the free-electron approximation the
electronic and phonon contributions to
the specific heat will be equal at the
temperature

o 1/2
T = Oy (5/24m%)" (TD)

F

2. Show that the factor B8 in Eq. (4.5) has
the value 1 for an element, 1/7 for the
LaSrCuO compound, and 3/13 for the
YBaCuO compound.

3. A superconductor has a Fermi energy of
3eV. What is the density of states at the
Fermi level and the electronic specific-
heat factor 7. If this superconductor has
an effective mass m* of 81, what will
be the value of these quantities? What
other measurable quantities depend on
the effective mass?

4. Consider a BCS-type superconductor
with transition temperature 7, = 20K
and a critical field B.(0) = 0.2T. What
is its electronic specific-heat factor y?
What are the values of its specific heat,
entropy, Gibbs free energy, and enthalpy
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in the superconducting state at 10 K, both
in zero field and in an applied magnetic
field of 0.1 T? (Ignore the vibrational
contribution to the specific heat.)

. With the initial conditions of the pre-
vious problem, what applied magnetic
field will drive the superconductor nor-
mal at 10 K? What will be the latent
heat? What will be the change in the spe-
cific heat at the transition? (Ignore the
vibrational contribution to the specific
heat.)

. Show that the following expressions for
the enthalpy are valid:

Hy=Ux—H-B
=H' — i H’
dH,, = TdS — B-dH

tot

=dH' —d (3u,H?).

. Show that equating the superconducting-
and normal-state Gibbs free energies
G (T, H) = G,(T) at the critical temper-
ature leads to Eq. (4.55):

/ B 1
n—np &@]'

. Calculate the transition temperature 77,
jump in specific heat, jump in entropy,
jump in enthalpy, and the values of the
Gibbs and Helmbholtz free energies at the
temperature 7 = 7, of a Type I super-
conductor in an applied magnetic field

_ 1 i
B,,, = 7B.. Express your answers in

10.

11.

12.

13.

14.
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terms of vy and 7, assuming that « =4.0
and A = vy/3T2.

. We know from thermodynamics that at

the transition temperature 7 = 7,(B) in
an applied magnetic field B, the latent
heat equals the difference in enthalpy,
L = H] — H]. Show that this difference
gives Eq. (4.57).

Derive the expression for the enthalpy
of a superconductor in a magnetic field,
and show that in its normalized form it
agrees with the expression H./yT? in
Table 4.2.

Show that the specific heat jump in
a magnetic field has the maximum
4ayT,/9 in the range 0 < T. < 1/+/3,
and that the latent heat has the maximum
layT?.

Show that the following normalized ther-
modynamic expressions are valid,

du=tds+b-dm,

cdt = tds,
W=u—>b-m,
g=h —ts,

and write down expressions for the nor-
malized internal energy u and magneti-
zation m.

Derive Eq. (4.70) from Rutger’s for-
mula.

Sketch a three-dimensional Gibbs free
energy surface analogous to the surface
presented in Fig. 4.20 using the equa-
tions in Section X.
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5

Magnetic Properties

I. INTRODUCTION

Superconductivity can be defined as
the state of perfect diamagnetism, and con-
sequently researchers have always been
interested in the magnetic properties of
superconductors. In the second chapter we
explained how magnetic fields are excluded
from and expelled from superconductors.
Then in the previous chapter we examined
the thermodynamics of the interactions of a
superconductor with a magnetic field. The
present chapter will extend the discourse to
a number of additional magnetic properties.

We begin with a discussion of magne-
tization, zero field cooling, and field cool-
ing, with comments on the granularity and
porosity of high-temperature superconduc-
tors. Next we will explain how magnetiza-

tion depends on the shape of the material
and how this shape dependence affects the
measured susceptibility. Both ac and dc sus-
ceptibilities will be treated. Finally, we will
show how samples can be categorized in
terms of traditional magnetic behavior, such
as diamagnetism, paramagnetism, and anti-
ferromagnetism. The chapter will conclude
with remarks on ideal Type II superconduc-
tors and on magnets.

In the present chapter we do not always
distinguish between Type I and Type II
superconductors since many of the results
that will be obtained here apply to both types
of superconductors.

In later chapters we will discuss addi-
tional magnetic properties of superconduc-
tors, such as, in Chapter 11, the intermediate
and mixed states of Type I and Type II
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superconductors, respectively. In Chapter 13
we will present the Bean model which pro-
vides a good description of some magnetic
properties, especially hysteresis loops.

Il. SUSCEPTIBILITY

A material in the mixed state of a Type
IT superconductor contains magnetic flux
in vortices that are embedded in a super-
conducting matrix with y = —1. From a
Macroscopic perspective we average over
this structure and consider the material to
be homogeneous with a uniform susceptibil-
ity having a value that is constant through-
out the volume. The internal fields B,,, H,,,
and M are also averages that are uniform at
this level of observation. In this chapter we
will be working with these average quantities
and ignore the underlying mesoscopic vortex
structure.

We saw in Chapter 1 how the B and
H fields within a homogeneous medium are
related to the magnetization M and the sus-
ceptibility y through Egs. (1.69), (1.77), and
(1.78a),

By, = wo(H;, + M) (5.1)
= o, (1+x) (5.2)
X= (53)

where u, is the permeability of free space
and y is an intrinsic property of the medium.

In the general case the susceptibility
is a symmetric tensor with components
Xi; because of the off-diagonal components
(i # j) the vector fields B,,, H;,, and M
are in different directions. In the principal
coordinate system the susceptibility tensor
is diagonal with components y,, x,, and X,
along the three orthogonal principle direc-
tions. High-temperature superconductors are
planar with values y, & x, in the plane of
the CuO, layers different from y,, which is

5 MAGNETIC PROPERTIES

measured along the ¢ direction perpendicular
to the layers. This axial anisotropy manifests
itself in the large difference in the critical
fields of single crystals when measured par-
allel to and perpendicular to the CuO, layers,
as shown in Table 12.5. Several figures in the
present chapter will illustrate this anisotropy.
However, for the present we will restrict our
attention to the isotropic case, for which y =

Xx =Xy = Xz-

I1l. MAGNETIZATION AND
MAGNETIC MOMENT

The magnetization M is the magnetic
moment per unit volume. This means that
the overall magnetic moment p of a sample
is the volume integral of M throughout it,

p= / Mav. (5.4)
Many magnetic studies of superconductors
are carried out using samples with shapes
that can be approximated by ellipsoids.
When the magnetic field B,,, = uoH,,, is
applied along or perpendicular to the symme-
try axis of such a sample, the internal fields
B,, and H, , and the magnetization M as well,
are uniform and parallel to the applied field,
with M given by

mM=E,

= (5.5)

where V is the sample volume. Long thin
cylinders and thin films are limiting cases of
this general ellipsoidal geometry.

We begin by analyzing the parallel
geometry case of a superconductor in the
shape of a long cylinder located in an applied
field directed along its axis, as shown in
Fig. 12.1. For this case the fields can be
written as scalars. We wish to express the
internal fields in terms of the known applied
field B,

Bapp = IU'OH (56)

app*
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For this particular geometry the boundary
condition (1.74) shows that the internal field
H;, equals H,,. From Egs. (5.2) and (5.3)
the internal fields are given by

Bin = Bapp(l +X)v (57)
B
Hy= -2, (58)
Mo
B
M= (5.9)
Mo

Experimentally, it is the magnetic moment
M, given by

= XVBapp,
Mo

(5.10)

which is measured, for example, by a Super-
conducting Quantum Interference Device
(SQUID) magnetometer. Since V and B,,,
are known, Egs. (5.10) and (5.9) can be used
to determine the susceptibility and magneti-
zation, respectively. In these expressions y
is the volume susceptibility corresponding to
the magnetic moment per unit field per unit
volume. We assume that y is independent of
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the applied field B,,,, and that M is propor-
tional to B,,, through Eq. (5.9).

For an ideal superconductor the property
of perfect diamagnetism means that y = —1,
so that Egs. (5.7)—(5.10) become, respec-
tively,

B,, =0, (5.11)
H, = ljzzp, (5.12)
M BML‘(’JP, (5.13)

mw=— Bagy , (5.14)

0

and we see that the internal field B;, vanishes.
This is the case illustrated in Fig. 12.1. The
fact that B;, vanishes can also be explained in
terms of the shielding currents (see Fig. 6.19)
which flow on the surface and act like a
solenoid to produce a field B,, which can-
cels B,,,. This was discussed at length in
Chapter 2, Section VIII.

Figure 5.1 shows the experimentally
measured magnetization curve for

(Lay ¢St 1),CuO,

12 § L T T L) T
!
!
L ]
1
- /
E 8 7
° I
s |/ & ]
g / E 8
= 4| 3 ]
y é"
i 0 o]
"0 1 2 5
BM
no 40 an 120
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Figure 5.1 Zero-field magnetization of annealed (Lay Sty ;),CuOy
in applied magnetic fields up to 100 mT at a temperature of 5 K. The
maximum of the curve occurs near the lower-critical field B, ~ 30 mT.
The dashed line is the low-field asymptote for perfect diamagnetic
shielding (Maletta et al., 1987). The inset shows the magnetization in

applied fields up to 4.5T.
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Figure 5.2  Typical magnetization curve for T =0.1T, (cf. Fig. 5.3, which is drawn

to the same scale).
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Figure 5.3 Typical magnetization curve for T = 0.7 T, drawn to the same scale as

Fig. 5.2.

plotted against the applied field. The applied
field reaches a maximum at 30 mT, which
is approximately the lower critical field B,
(Maletta et al., 1987; see Miiller et al., 1987).
The upper critical field is well beyond the
highest field used, 4.5T, as shown in the
inset to the figure. Note that the abscissa
scale is in terms of milliteslas for the main
figure, and in terms of teslas for the inset.

We see in Fig. 12.36 that the critical
fields B,, and B, are highest at 0K and
that they decrease continuously with increas-
ing temperature until they become zero at
the transition temperature 7,. Thus, a mag-
netization curve, such as that presented in
Fig. 10.1, contracts as temperature increases.
This situation is illustrated graphically by
Figs. 10.2 and 10.3, which show sketches
of magnetization curves at two temperatures
T=0.17,and T =0.7T..

IV. MAGNETIZATION HYSTERESIS
Many authors have reported hystere-

sis in the magnetization of superconduc-
tors, meaning that the magnetization depends

on the previous history of how magnetic
fields were applied. Hysteresis is observed
when the magnetic field is increased from
zero to a particular field, then scanned back
through zero to the negative of this field, and
finally brought back to zero again. Figure 5.4
sketches a low-field hysteresis loop show-
ing the coercive field B, or value of the
applied field that reduces the magnetiza-
tion to zero, and the remanent magnetiza-
tion M., or magnitude of the magnetization
when the applied field passes through zero.

Figures 5.5 and 5.6, respectively, show
how low-field hysteresis loops vary with
changes in the scanning-field range and tem-
perature. It is clear from these figures that
the hysteresis loop is thin and close to linear
when the scan range is much less than the
lower-critical field and when the temperature
is close to T,. Decreasing the temperature
broadens the loop. The larger the magnetic
field excursion, the more the loop becomes
elongated horizontally, which increases the
ratio B,/ M., between the coercive field
and the remanent magnetization.

Figure 5.7 shows how hysteresis loops
traversed over a broad field range vary with
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Figure 5.4 Typical low-field hysteresis loop showing the coercive field B

coer>

where magnetization is zero, and the remanent magnetization M,., which remains

when the applied field is reduced to zero.
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Figure 5.5 Low-field hysteresis loops of

(Lag ¢Sy 1),Cu0, at 4.5K cycled over different ranges
of field up to 2mT (Marcus et al., 1987).

the temperature. Each loop has a peak near
the lower-critical field B,,. Beyond this point
flux penetrates and the magnetization begins
to decrease gradually. Ideally, no flux pene-
trates below B, but in practice some of it
does, as Fig. 5.1 suggests. The large hystere-
sis is indicative of flux pinning. It is observed
that as the temperatures is lowered, the loop
increases in area, as shown in the figures.
Paranthaman et al. (1993) obtained similar
results with the superconductor

HgBaCuO,_;.

Chapter 13 will present a model, called
the critical-state model, which provides an
explanation for the shapes of many hysteresis
loops.

V. ZERO FIELD COOLING AND
FIELD COOLING

In Chapter 2 we discussed the magnetic
properties of a perfectly diamagnetic material
with a hole that is either open or closed to the
outside. We examined these two cases for the
conditions of (a) zero field cooling (ZFC),
a condition characterized by flux exclusion
from both the open hole and the enclosed
cavity, a phenomenon called diamagnetic
shielding, and (b) field cooling (FC), a condi-
tion characterized by flux expulsion from the
cavity but not from the hole, a phenomenon
called the Meissner effect. For both cases,
the flux is absent from the superconduct-
ing portion. Hence, the overall sample can
exclude more flux when it is zero field cooled
than it expels when it is is field cooled. The
difference between the amount of excluded
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Figure 5.6 Low-field hysteresis loops of YBa,Cu;0; cycled over

the same field scan, —3mT < B,

wpp < 3mT, over a range of tempera-

tures. The loops gradually collapse as the temperature increases. The
virgin curve for the initial rise in magnetization is given for each loop

(Senoussi et al., 1988).

flux and the amount of expelled flux is the
trapped flux.

To clarify some of the principles
involved in ZFC and FC experiments, we
will examine the rather idealized case of a
cylindrical sample of total volume Vi that
contains a volume V, of perfectly supercon-
ducting material (y = —1), a cylindrical hole
of volume V, open at the top and bottom,
and a totally enclosed cylindrical cavity of

volume V,
Vi=V.+V,+V,, (5.15)

as shown in Fig. 5.8. The hole and cav-
ity could either be empty or contain normal

material; since the effect in the two cases
is the same, we will consider them empty.
The magnetic field B,,, is applied parallel
to the cylinder axis, as indicated in Fig. 5.9;
demagnetizing effects arising from the lack
of cylindrical symmetry will not be taken
into account.

For this composite sample the mea-
sured or effective magnetic moment g can
receive contributions from three individual
components,

MeffZ/‘Ls+l1’h +l~Lc’ (516)

with u, due to the superconducting mate-
rial itself, u, resulting from the presence of
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Figure 5.7 High-field hysteresis loops of
YBa,Cu;0; cycled over the same field scan,

3T < Bapp < 3T, over a range of temperatures. The
loops gradually collapse as the temperature increases.
The deviation of the virgin curve from linearity occurs
near the lower-critical field B,;, which increases as the
temperature is lowered (Senoussi et al., 1988).
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Figure 5.8 Cylindrical superconducting sample with
hole of volume V; open at the top and bottom, and a
totally enclosed cavity of volume V..
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Figure 5.9 The superconducting cylinder sketched
in Fig. 5.10 after field cooling in an axial applied field,
showing the shielding currents flowing around the out-
side, the reverse-direction current flow around the walls
of the open hole, and the absence of currents in the
enclosed cavity.

the open hole, and u, due to the enclosed
cavity. In the case of zero field cooling, the
circulating surface currents shield the super-
conductor, hole, and cavity, so Eq. (5.10),
with y = —1, becomes

Bapp
Mzge = _(V5+Vh+vc) .
Mo

(5.17)

For field cooling, the magnetic field is
trapped in the open hole, while surface cur-
rents shield the superconductor itself and the
enclosed cavity from this field, which gives
for the magnetic moment

Ba
M = _(Vs+vc) PP.
Mo

(5.18)

Associated with the effective magnetic
moment (5.16) there is an effective magneti-
zation M, defined by Eq. (5.5) in terms of
the total volume (5.15)

M —M—X Bapp'

eff — VT — Aeff (519)

0

which can be employed to write down the
ZFC and FC magnetization, respectively.
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The corresponding susceptibilities Y,; and
Xi. are determined in Problem 1. We know
from Egs. (5.9) and (5.10) and the above
expressions that the ratios between the FC
and ZFC moments, magnetizations, and sus-
ceptibilities all have the same value,
P _ M Xie
Mozte szc Xafe
VitV
B ‘/s + Vh + Vc |

and that this value is independent of the units
used.

If field cooling is carried out in an
applied field By, = uyHj, that differs from
the field B,,, which is applied to measure
the magnetic moment, we obtain, neglecting

hysteresis (see Problem 3),

Mo = _(Vs + Vc)Bapp + (ch - Bapp)Vh?

(5.21)
which reduces to Eq. (5.18) when B,,, = By.
Thus, the field trapped in the hole acts like a
magnetization with the same magnitude and
direction as the quantity (By, — B,,,). Ordi-
narily, field cooling is carried out in the same
field as the susceptibility measurements, so
that B, = By, and Eq. (5.18) applies.

As long as the sample is kept below 7,
the field B;, remains in the open hole irre-
spective of whether the outside field is turned
off or another applied field is turned on. By,
is maintained in the hole by surface currents
circulating in opposite directions around the
inside of the superconducting tube, as shown
in Fig. 5.9 and explained in Chapter 2, Sec-
tions VIII and IX. This trapped flux sub-
tracts from the diamagnetic response to make
the measured susceptibility and magnetiza-
tion less negative for the Meissner effect
(FC) than for diamagnetic shielding (ZFC).
This is shown in Fig. 5.10 for the rubidium
fullerene compound (C.-C. Chen et al., 1991;
Politis et al., 1992), where the ZFC data
points are far below the corresponding FC
data, as expected from Eq. (5.20). The ear-
liest HgBaCaCuO compound samples pro-
duced FC susceptibilities that were far above

(5.20)
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Figure 5.10 Rb;Cg, powder sample showing that the
zero-field-cooled magnetic susceptibility is more nega-
tive than its field-cooled counterpart (C.-C. Chen et al.,
1991).

ZFC ones (Adachi et al., 1993; Gao et al.,
1993; Meng et al., 1993b, Schilling et al.,
1993).

Clem and Hao (1993) examined the four
cases of ZFC, FC with data collected on cool-
ing (FCC), FC with data collected on warm-
ing (FCW), and remanence. In the fourth
case the applied field is turned off after the
specimen has been FC, and the remanent
magnetization is measured as a function of
increasing temperature.

V1. GRANULAR SAMPLES
AND POROSITY

The analysis of the previous section can
help us understand experimental suscepti-
bility data on granular samples. The grains
sometimes consist of a mixture of super-
conducting and normal material of about
the same density, with empty space between
and perhaps within the material. The two
densities can be comparable when the sam-
ple preparation procedure does not com-
pletely transform the starting materials into
the superconducting phase. A well-made
granular superconductor does not contain any
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normal material, but it does have intergran-
ular and perhaps intragranular spaces, either
of which can trap flux. The field-cooled
moment can be significantly less than the
zero-field-cooled moment, as shown by the
data in Table VIII.1 of previous work (Poole
et al., 1988).

A quantitative measure of the degree of
granularity of a sample is its porosity P,
which is defined by

P= (l_p/px—ray)7 (522)
where the density p of the sample is
m
= — 5.23
= (5.23)

and the x-ray density is calculated from the
expression

[MW]

— 5.24
VoM, (5:24)

px-ray =
where N, is Avogadro’s number and Vj, is
the volume of the sample per formula unit,
with the value

V, = abc (YBa,Cu;0,_;), (5.25)

Vo= %abc
(LaSrCuO, BiSrCaCuO, TIBaCaCuO),
(5.26)

where a, b, and c are the lattice constants and
the La, Bi, and Tl compounds have assigned
to them two formula units per unit cell, as
explained in Chapter 8.

Porosity is a measure of the proportion
of empty spaces or voids within and between
the solid material or grains of a sample. Prob-
lem 4 shows how V,, V,, and V, can be deter-
mined from measurements of p, x,¢ and xy.
The x-ray density calculated from the unit
cell dimensions of

YBa,Cu;0,

is 6.383g/cm’. Typical densities of granu-
lar samples vary from 4.3 to 5.6g/cm’, cor-
responding to porosities between 33% and
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12%, respectively (Blendell et al., 1987;
Mathias et al., 1987).

Porosity can be reduced by applying
pressure to the material. For example, a sam-
ple of YBa,Cu;0, with a 5:1 ratio between
flux exclusion and flux expulsion was com-
pressed at 20-30kbar to a claimed 100%
of theoretical density, p = p,.,,, bringing
the measure flux expulsion to within about
11% of the theoretical value (Venturini ef al.,
1987). Researchers have also found 100%
flux shielding and 95% flux expulsion in
YBa,Cu;0, at 4.2K (Larbalestier er al.,
1987a). Good single crystals, of course, have
a porosity of zero.

VII. MAGNETIZATION

ANISOTROPY
The magnetic properties of high-
temperature superconductors are highly

anisotropic, with magnetization and suscep-
tibility depending on the angle which the
applied field makes with the c-axis. We will
see in Chapter 12, Section IV, that anisotropy
here is a result of the difference in the values
of the coherence length, penetration depth,
and effective mass measured along the ¢
direction as opposed to values obtained from
measurements in the a, b-plane. Particles of
anisotropic superconductors in a magnetic
field experience a torque which tends to
align them with the field (Kogan, 1988).
Anisotropy effects can be determined by
employing single crystals, epitaxial films, or
grain-aligned powders. Epitaxial films are
generally single-crystal films with the c-axis
perpendicular to the plane. It is, of course,
preferable to work with untwinned single
crystals or epitaxial films. However, these
are not always available, and much good
research has been carried out with aligned
granular samples.

Grain alignment is a technique that con-
verts a collection of randomly oriented grains
into a set of grains with their c-axes preferen-
tially pointing in a particular direction. This
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alignment can be brought about by uniaxial
compression, by application of a strong mag-
netic field to grains embedded in, for exam-
ple, epoxy, or by melting a random powder
sample and reforming it in the presence of
a temperature gradient (Farrell er al., 1987).
It is much easier to fabricate grain-aligned
samples than single crystals. Grain-aligned
samples, however, cannot compete with sin-
gle crystals in terms of degree of alignment.
Untwinned monocrystals are needed for per-
fect alignment.

Another technique for preparing sam-
ples with monocrystal characteristics is melt-
textured growth (L. Gao et al, 1991; Jin
et al., 1988; Murakami et al., 1991). In
melt-textured growth a granular material is
melted and then slowly cooled in a ther-
mal gradient to produce a high degree of
texturing. The effect is to reduce weak-
link grain boundaries and increase critical
currents.

Figure 5.11a shows that both the ZFC
and FC susceptibilities of YBa,Cu;0, are
greater in magnitude (i.e., more negative) for
the applied field aligned parallel to the c-axis
than they are for B,,, aligned perpendicular
to ¢ (i.e., along the copper-oxide planes);
these measurements were made with grain-
aligned samples. The figure shows that the
susceptibility data for a nonaligned power
are between the results for BappHC and B, | .
Figure 5.11c shows that the susceptibility is
much less for field cooling in the field B;, =
0.3T, again with the data for B, lying

below the data for B,,, .

VIHI. MEASUREMENT TECHNIQUES

Experimentally, susceptibility, a dimen-
sionless quantity, is determined from the
measured magnetic moment w of the sample
with the aid of Eq. (5.10),

_ MM

— 5.27
X V.B (5.27)

app
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For a small sample the overall vol-
ume Vi can be estimated by viewing it
under a microscope. This is sometimes
called the volume susceptibility, although
in actuality the parameter is dimension-
less. Many investigators determine sample
size by weighting and report what is some-
times called the mass susceptibility X,
defined by

X_ MM

; B (pVT)Bapp (528)

Xmass =

where pV; is the mass of the sample. This
quantity has the dimensions m?/kg in the SI
system and cm?/g in the cgs system.

Many susceptibility and magnetism
measurements are carried out with a SQUID,
a dc measuring instrument (see Section III).
In this device, which is sketched in Fig. 5.12,
a magnetized sample that has been moved
into a sensor coil causes the flux through
the coil to change. The current produced by
this flux change is passed to the multiturn
coil on the left side of the figure where it is
amplified by the increase in the number of
turns. The SQUID ring with its weak links
detects this flux change in a manner that will
be discussed in Chapter 15, Section VIIL.1.
The change in flux provides the magnetic
moment by the expression

o =AD, (5.29)
and from Eq. (5.27) we have for the suscep-
tibility,

x=AdD/VB (5.30)

app-
The data presented in Figs. 5.10 and 5.11
were obtained with a SQUID magnetome-
ter. More classical techniques, such as the
vibrating sample magnetometer or perhaps
the Gouy or Faraday balance, are less fre-
quently employed. One can make ac suscep-
tibility measurements using a low-frequency
mutual inductance bridge operating at, for
example, 200 Hz.
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Figure 5.11 (a) Zero-field-cooled (closed symbols) and field-cooled (open symbols) susceptibility versus
temperature for nonaligned powder (circles) and grain-aligned samples of YBa,Cu;0; in a field of SmT with

B (triangles) and By,

(squares), (b) normalized susceptibilities for the zero-field-cooled samples of (a),

(c) field-cooled measurements in 0.3 T, plotted with the same symbol convention (Lee and Johnston, 1990).
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Figure 5.12 The change of magnetic flux in a sensor coil loop that has been
produced by raising or lowering a sample induces a current which is transferred to
a multiloop coil where it is measured by a Superconducting Quantum Interference

Device (SQUID).
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IX. COMPARISON OF
SUSCEPTIBILITY AND
RESISTIVITY RESULTS

We saw in Section V that the suscep-
tibility of a composite sample is a linear
combination of the contributions from its
component parts. Thus, susceptibility mea-
surements determine the magnetic state of
an entire sample, and also give a better
indication of the degree to which the sam-
ple has transformed to the super-conducting
state. Resistivity measurements, on the other
hand, merely show whether or not continu-
ous superconducting paths are in place. In
addition, while a dc susceptibility measure-
ment provides a better experimental indicator
of the overall superconducting state, a resis-
tivity measurement is a better practical guide
for application purposes. We should also
note that magnetization is a thermodynamic
state variable (cf. Chapter 4, Section VI),
whereas resistivity is not. The properties of
zero resistance and perfect diamagnetism are
the two classic ways of defining supercon-
ductivity. In an ideal homogeneous material
both measurements should provide the same
transition temperature.

The transition temperatures determined
by magnetic susceptibility and resistivity
measurements sometimes differ somewhat.
When the transition is sharp, resistivity can
drop sharply to zero at a temperature slightly
above the onset of the susceptibility or mag-
netization transition, as shown in Fig. 2.21.
When the transition is broad, the y-versus-T
and p-versus-T curves often overlap consid-
erably. Many articles provide susceptibility
and resistivity curves for the same sample.
Figure III-5 from our previous work (Poole
et al., 1988) compares the resistivity, Meiss-
ner magnetization, ac susceptibility, and spe-
cific heat transitions for the same

YBa,Cu,0,

sample (Junod et al., 1988).
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X. ELLIPSOIDS IN MAGNETIC
FIELDS

In Section III we treated the case of
a cylindrically shaped sample in a paral-
lel magnetic field, noting that this geom-
etry was chosen to avoid demagnetization
effects that could complicate the calculation
of the internal magnetic field and magnetiza-
tion. Some commonly used superconductor
arrangements in magnetic fields, such as thin
films in perpendicular fields, have very pro-
nounced demagnetization effects. In practice,
these arrangements constitute limiting cases
of ellipsoids, so that in the present section
we will analyze the case of an ellipsoid in
an applied field. Then we will show how
some common geometries are good approxi-
mations to elongated and flattened ellipsoids.
Many of the results of this and the following
few sections are applicable to both Type I
and Type II superconductors.

When an ellipsoid with permeability u is
placed in a uniform externally applied mag-
netic field B, ,, oriented along one of its prin-
cipal directions, its internal fields B;, and H;,
will be parallel to the applied field, and hence
all of the fields can be treated as scalars.
Their values will be determined by applying
Egs. (5.1) and (5.2) to the internal fields

B, = pH,, = po(H,, + M)

= (14 X)mo Hiy (5.31)
and the applied fields
By = o Hypps My =0 (5.32)

and utilizing the demagnetization expression

NBin + (1 _N)Hin _
B H -

app app

1, (5.33)

where N is the demagnetization factor, to
relate the internal and applied fields. The
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demagnetization factors along the three prin-
cipal directions of the ellipsoid are geomet-
rical coefficients that obey the normalization
condition

N, +N,+N, =1, (5.34)
with the largest value along the shortest prin-
cipal axis and the smallest value along the
longest principal axis. We will confine our
attention to situations in which the exter-
nal field is oriented along a principal direc-
tion since all the other orientations are much
more complicated to analyze. In the follow-
ing section we will give explicit expressions
for the demagnetization factors associated
with a sphere, a disk, and a rod.

Solving for B;,, H;,,, and M in
Eqgs. (5.31) and (5.33) gives
1
B, =B, X (5.35)
PP 1+ xN
B,
= App/lu’O , (536)
14+ xN
B
_ Zwp X (5.37)
Mo 1+xN

for the internal fields and magnetization
expressed in terms of the applied fields. We
should bear in mind that the susceptibil-
ity x is negative for a superconductor, so
that the denominators in these expressions
become small when y approaches —1 and N
approaches 1.

For an ideal superconducting mate-
rial y = —1. Equations (5.35)—(5.37) now
assume a simpler form:

B, =0, (5.38)
B/ Mo
H =" 5.39
= (5:39)
Bpp/ 1o
= 5.40
TN (5.40)

These expressions are applicable to Type I
superconductors subject to the condition
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B, < (1 —=N)B, as will be explained
in Chapter 11, Section IV. They apply
to Type II superconductors when B,,, <
(1 — N)B,;, but for higher applied fields
Eqgs. (5.35)—(5.37) must be used since —1 <
x < 0. Sometimes the transition from the
Meissner to the vortex state is not sharply
defined and a precise value of B, cannot be
determined.

XI. DEMAGNETIZATION FACTORS

It will be helpful to write down formulae
for the demagnetization factors for sample
shapes that are often encountered in practice.
For a sphere all three factors are the same,
a=b=cand N,=N,=N_, so that from
the normalization condition (5.34) we obtain

N = % (sphere). (5.41)
For an ellipsoid of revolution with the z
direction selected as the symmetry axis, the
semi-major axes a = b # c along the x-, y-,
and z-axes, and the demagnetization factors
are Ny =N, and N, = N, = N,, subject to
the normalization condition

N +2N, =1 (5.42)

of Eq. (5.34). An oblate ellipsoid, i.e., one
flattened in the x, y-plane, has ¢ < a with
N, > N,, and von Hippel (1954) gives (cf.
Osborn, 1945; Stone, 1945; Stratton, 1941),

1 [1—e€]?

-
=—————s8In € c<a
I €2 &3 ’

(5.43)
where the oblate eccentricity € is

e=[1-(?/a*)]"* c<a.

(5.44)

For a prolate ellipsoid, i.e., one elongated
along its symmetry axis so that ¢ > a and
N, < N,, we have again from von Hippel
(1954)

1—-€1 1+e€
N”=— —In —1 c>a,
€2 2€ 1—€

(5.45)
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where the prolate eccentricity € is

e=[1-(a*/A]"* c¢>a. (5.46)
Of especial interest are samples in the shape
of a disk, which may be considered the
limiting case of a very flattened oblate
ellipsoid, ¢ <« a, with the demagnetization
factors
Ny~1, N, =0, (flatdisk), (5.47)
or in the shape of a rod, which is the limit of
an elongated prolate ellipsoid, ¢ > a, with

the values

(long cylinder).
(5.48)
Correction factors 0, to the limiting val-
ues of N; given in Egs. (5.47) and (5.48)
are shown in Figs. 5.13 and 5.14, respec-
tively, and listed in Table 5.1. Problems 6
and 7 give explicit expressions for these fac-
tors. Figure 5.15 shows how the parallel and
perpendicular components of N depend on

1
Ny=0, N =~
I )

Oblate
Ellipsoid
a=bs»»c

Figure 5.13 Demagnetization factors N, = N, =
%31 < 1 and N, =1—6, of an oblate ellipsoid with
semi-major axes a = b > ¢ along the x, y, and z direc-
tions, respectively.

5 MAGNETIC PROPERTIES

b4

Nz = 84

c
y
Ny =7 (1-8,)
X,
Ny =7 (1-8,)

Prolate

Ellipseid
a=b<<c

Figure 5.14 Demagnetization factors N, = N, =
%(1 —&8,) and N, = 6, < 1 of a prolate ellipsoid with
a = b K c, using the notation of Fig. 5.13.

Table 5.1 Demagnetization Factors
for Ellipsoids of Revolution with
Semi-axes a = b and c for the Case of
a Disk (oblate, c < a), Sphere (c = a),
or Rod (prolate, ¢ > a)?

Shape Condition N, N,
disk limit c—0 0 1

flat disk cka 18, 1-8,
oblate cra % — %52 % + 6,
sphere c=a % %
prolate cxa % + %63 % — 05
long rod c>a % - %84 I

rod limit c— o0 1 0

“ Values of the correction factors §; are given in
Problems 6 and 7.

the length-to-diameter ratio of the ellipsoid.
D.-X. Chen et al. (1991) reviewed demagne-
tization factors for cylinders; other pertinent
articles are Bhagwat and Chaddah (1992),
Kunchur and Poon (1991), and Trofimov
et al. (1991). The electric case of depolar-
ization factors is mathematically equivalent
(Stratton, 1941).
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Figure 5.15 Dependence on the ratio c¢/a of the demagnetization factors N, = N, = N, perpendicular to the
axis of an ellipsoid with semi-major axes a = b # ¢ and Ny = N, along the axis. The solid lines were calculated
using the exact expressions (5.42) to (5.46), and the dashed lines from the approximation formulae of Table 5.1

and Problems 6 and 7.

XIl. MEASURED SUSCEPTIBILITIES

From the theoretical viewpoint the mag-
netic susceptibility y is a fundamental prop-
erty of a material. It can be anisotropic, but
for the present we will treat the isotropic
case. It is defined by Eq. (5.3) as the ratio
between the two quantities M and H,, in the
interior of a superconductor,

X=M/H,. (5.49)
In practice, research workers often report an
experimentally determined susceptibility X,
that has been calculated from measured val-
ues of the magnetization and the applied field
Bapp, as follows:

Xexp = /‘LOM/Bapp' (550)

This is the definition of susceptibility that
often appears in solid state physics books.
Equations (5.49) and (5.50) are only equiv-
alent for the case of “parallel geometry,” in
which the applied field is along the axis of
a cylinder and the demagnetization factor N
is zero: Hy, = B,/ to-

When N is not zero, Eq. (5.49) is still
valid because y is a property of the mate-
rial independent of its shape. Substituting
Eq. (5.37) in Eq. (5.50) gives the expression

Xexp =X/(1+NX)’ (551)

which may be solved for the intrinsic suscep-
tibility in terms of the experimentally mea-
sured value

X= Xexp/(l - NXexp)' (552)
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The susceptibility must be in dimension-
less units (SI units) to apply this expression.
Equation (10.52) shows that [x| < |Xexls
where both y and yx.,, are negative. Some
authors set N, = —N in Eq. (5.52) so as to
write the approximate expression

X%Xexp(l_N)’ (553)

which, however, underestimates the magni-
tude of y, especially when N is appreciable
and |y| is small.

XII. SPHERE IN A MAGNETIC FIELD

In this section we will examine a case
that is commonly treated in electromagnetic
theory and solid-state physics texts—that of
a sphere in a magnetic field. This will pro-
vide us with closed-form expressions for the
fields and the magnetization, both inside and
outside the sphere as well as on its surface.

We mentioned in the previous section
that for a sphere N = 1/3, so that using
Egs. (5.35)-(5.37) and (5.52) we have,
respectively, for the two internal fields, mag-
netization, and susceptibility,

3(1+y)

B,=B,,—/——, 5.54
in app 3+X ( )
H, = M, (5.55)
3+x
B, 3
— P _X’ (5.56)
Ko 3+Xx
3
y = —Xee_ (5.57)
3_Xexp

The B field immediately outside a super-
conducting sphere of radius a placed in a
uniform external magnetic field B,,, may
be calculated from the standard formula for
the magnetic scalar potential ®_,, given in

5 MAGNETIC PROPERTIES

electrodynamics texts (e.g., Jackson, 1975,
p- 150),

3
D, =— |:r __X f_} B,,,cos O,
(5.58)
where O is the angle of the position vector
r relative to the applied field direction. This
is the solution to Laplace’s equation
Vb =0, (5.59)

which for the case of axial symmetry in
spherical coordinates has the form

1 d [ ,d®
—_—— r —_—
rrdr dr
1 d Ao
% (sn0Z) =0,
tdne 0 (Sm d@)
(5.60)

where the potential &, (r, @) depends on the
polar angle ®, but not on the azimuthal angle
¢. This solution is subject to two boundary
conditions, first, that B, and Hg are contin-
uous across the surface at r = a, and sec-
ond, that B = B, far from the sphere where
r>a.
The first term of Eq. (10.58),

IBypp €08 O = 2B, ,
corresponds to the potential of the uniform
applied field. The second term is known to
be the magnetic field produced by a magnetic
dipole of moment p = a3HaplD x/(x+3). The
radial component B, of the field outside,

B — aq')out
T or

(5.61)

2 3
= |:1 + X_—I)-(3 . %i| B,,,c0s0, (5.62)

has a value at the surface r = a of

PECESS

i 3 } B,,,c0s 0. (5.63)
X
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Setting y = —1 shows that this radial field
vanishes at the surface for a perfect diamag-
net. The polar angle component Bg outside,

1 i,
0=""" 8®t (5.64)
3
X a .
= |:1 i3 F] B,,,sin®, (5.65)
has a value at the surface of
3 .
By = 3 B, sin O. (5.66)

This field reaches a maximum along the
equator, i.e., when ® = 77/2. The magnetic
field lines around the sphere, which are
sketched in Fig. 2.23, are closest together
at this maximum field position along the

equator.
Equations (5.63) and (5.66) show that
for the case y = —1 of perfect diamagnetism,

the external field is parallel to the surface
with no radial component. This field may be
looked upon as inducing a current density
in the surface of the sphere that circulates
along circles of longitude that are oriented
perpendicular to the z-axis, as illustrated in
Fig. 2.30. These currents serve to cancel
the B field that would otherwise be present
inside the sphere. The presence of the factor
sin® in Eq. (5.66) means that the current
density along a particular longitude circle at
the latitude © is proportional to the radius
p of the circle on which it flows, where
p = rsin O, as indicated in Fig. 5.16. This
causes each such current element to produce
the same magnitude of magnetic field within
the sphere, as expected.

We will see in Chapter 11, Section XI,
that the results of this section apply directly
to a sphere in the mixed state of a Type
IT superconductor for applied fields in the
range %Bcl <B,,, <B,,. For applied fields
below %Bcl the Meissner state exists with
x = —1. For a Type I superconductor in
the applied field range 3B, <B,,, <B., the
formalism applies with y chosen so that
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Figure 5.16 Coordinates for describing current flow
along the surface of a sphere in a magnetic field applied
along the z direction.

H,, = B./m,. For the condition B,,, < %Bc
we have y = —1, as will be clear from the
discussion in Chapter 11, Section IV.

XIV. CYLINDER IN A MAGNETIC
FIELD

On several occasions we have discussed
the case of a long diamagnetic cylinder in
an axially applied magnetic field, as shown
in Fig. 12.1. In this “parallel geometry” the
demagnetization factor N is zero. Inserting
N =01in Egs. (5.35)-(5.37) gives Egs. (5.7)-
(5.9), which we have already obtained for
this case. These reduce to Egs. (5.11)—(5.13),
respectively, for the ideal Type I supercon-
ductor with y = —1. Since N =0, the bound-
ary condition—i.e., that H is continuous

Hin = Happ

across the interface—leaves the H field
undisturbed by the presence of the
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Figure 5.17 Magnetization M (a) and shielding cur-
rent flow J (c) of a superconducting rod located in an
applied magnetic field with the perpendicular geometry
arrangement (b).

superconductor. The fields outside the
cylinder are then
BOUI = Bapp (5’67)
Hout = Bapp//‘LO’ (568)

independent of position.

An alternate arrangement that some-
times occurs in practice is the perpendicu-
lar geometry sketched in Fig. 5.17, whereby
the cylinder axis remains in the z direction
but the magnetic field is applied along x.
For this case we see from Table 5.1 that

N = % so that the fields inside are, from
Eqgs. (5.35)-(5.37),
2(14+x)
B =B ——2°, 5.69
in app 2+X ( )
B, 2
H, =-*_—_ (5.70)
Mo 2+ X
B, 2
M= X (5.71)
Mo 2+ X
_ 2XoX!
Z_Xexp

The calculation of the fields outside for
this geometry is more complicated. There is
no z dependence, so this is a two-dimensional
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problem in which Laplace’s equation is
solved in cylindrical coordinates with the
9?/0dz* term omitted,

1 d odb n 1 PP _o
p ap\"op ) T e T
subject to two boundary conditions—first
that H parallel to the surface and B per-
pendicular to the surface are both continu-
ous; second, that far from the sample B is

in the x direction with the magnitude B,,,.
The solution for the magnetic scalar potential

D(p, @) is

(5.72)

(5.73)

which is similar to the case of the sphere
given in Eq. (5.58). The differences arise
from the particular forms of the differential
operators in Egs. (5.60) and (5.72). The first
term in this potential,

pB,,,cos ¢ = xB,,,,

corresponds to the potential of the uniform
applied field, where x = pcos ¢.

The radial component B, of the field
outside,

B, =-——* 5.74
=g (5:74)
=14+ X @ B, ,cos¢, (5.75)

Tl T x+2 p2 T

has a value at the surface of

g =[2D

12 :| B, cos &, (5.76)

which vanishes for the perfect superconduc-
tor case of y = —1. The azimuthal compo-
nent B, outside,

1 00
By=— gt (5.77)
2

— [1 . ﬁ : %} B,,sing, (5.78)
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becomes at the surface

2

B, = [m} B,,,sin ¢. (5.79)
This surface field is zero along x and
reaches a maximum value along the y direc-
tion, where ¢ = 7/2 and B,/p, = H,, (cf.
Eq. (5.70)). A sketch of the magnetic field
lines around the cylinder would resemble that
of Fig. 2.23. This case is equivalent to a
two-dimensional problem with all of the field
lines lying in the x, y-plane.

For perfect diamagnetism, y = —1, we
see from Egs. (5.76) and (5.79) that immedi-
ately outside the cylinder the external mag-
netic field is parallel to the surface with no
radial component. Longitudinal surface cur-
rents J, flow along the surface in the +z
direction on one side and in the —z direc-
tion on the other, forming closed loops at the
ends that sustain the magnetization inside, as
indicated in Fig. 5.17. These currents serve
to cancel the B field that would otherwise be
present inside the cylinder. The factor sin ¢
in Eq. (5.78) causes the surface-current den-
sity to produce the uniform magnetic field of
Eq. (5.69) inside the cylinder.

XV. ac SUSCEPTIBILITY

Earlier in the chapter we discussed sus-
ceptibilities determined in constant magnetic
fields. Now let us consider what happens
when the external field varies harmonically
in time (D.-X. Chen et al, 1990c; vide
Q. Y. Chen, 1992; Hein et al., 1992; Khode
and Couach, 1992). An ac field Bcoswt
applied to the sample causes the magnetiza-
tion M(t) to trace out a magnetic hystere-
sis loop in the course of every cycle of the
applied field. The initial loop for the first
cycle will be different from all the other
cycles, as suggested by the initial curves
starting from the middle of the loops of
Figs. 5.6 and 5.7, but after several cycles
a state of dynamic equilibrium is attained
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in which the magnetization M(¢) repeatedly
traces out the same curve, perhaps of the
types shown in Figs. 5.5 or 5.6, during every
period of oscillation.

If the magnetization were to change lin-
early with the applied field, the response
would be M(f) = M, cos wt in phase with the
applied field, with M, = xB,/u,. The shape
of the loop causes M(t) to become distorted
in shape and shift in phase relative to the
applied field, causing it to acquire an out-of-
phase component that varies as sin wt. We
can define the inphase dispersion ' and the
out-of-phase (quadrature) absorption y” sus-
ceptibilities (Matsumoto et al., 1991):

X = &fM(t) coswtdwt, (5.80a)
7B,

¥ =t / M(H)sinwrdwt.  (5.80b)
7B,

Higher harmonic responses x, and x, at
the frequencies nwt have also been studied
(Ghatak et al., 1992; Ishida and Gold-
farb, 1990; Ishida et al., 1991; Jeffries
et al., 1989; Ji et al., 1989; Johnson et al.,
1991; Yamamoto et al, 1992). Note that
the absorption susceptibility is proportional
to the energy dissipation. Unfortunately,
in practice it is not practical to measure
M(1), so that a different approach must be
followed.

The usual mutual inductance method for
determining y’ and )” involves placing the
sample in the coil of an LC tuned circuit
to establish an alternating magnetic field
B, cos wt in the superconductor and to detect
the voltage induced in a detector pickup coil
coupled to the coil of the LC circuit. The
presence of the sample changes the effec-
tive inductance and resistance of the LC
circuit, and this change is reflected in the
form of the current induced in the detec-
tor coil. The component of the induced sig-
nal which is in phase with the applied field
is proportional to the dispersion y’, while
the out-of-phase component is proportional
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to the absorption y”. These two responses
can be separated instrumentally by a lock-in
detector that compares the phase of the out-
put signal with that of the reference signal
Bjcoswt.

Figures 5.18 and 5.19 present the tem-
perature dependence of the dispersion ' and
absorption y” components of the ac suscep-
tibility determined for applied fields of the
form

B, = By + Bycoswt (5.81)
at the frequency w/27 = 73 Hz. Figure 5.18
shows the results for three alternating field
amplitudes B, with By, =0, and Fig. 5.19
illustrates the effect of simultaneously apply-
ing a dc field. We see from the figures that
for a particular applied field, x’ decreases
continuously as the temperature is lowered,
also that the drop in Y’ is sharper and
occurs closer to 7, for lower values of
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B, and B,. The peak in the x”-versus-
temperature curve is near the center of the
sharp diamagnetic change in Y’, as expected,
inasmuch as magnetic susceptibilities, like
dielectric constants, obey Kramers—Kronig
relations (cf. Chapter 15, Section IL.E; Poole
and Farach, 1971, Chapter 20). Recent
data on HgBa,CuO, ; at high pressure
exhibit this behavior (Klehe er al., 1992).
These K-K relations permit ' to be cal-
culated from knowledge of the frequency
dependence of x”(w), and vice versa.
Increasing the applied field shifts the y” peak
to lower temperatures and broadens it (D.-X.
Chen et al., 1988; Goldfarb et al., 1987a, b;
Ishida and Goldfarb, 1990; Puig et al., 1990;
K. V. Rao et al., 1987). These y,. response
curves depend only slightly on frequency
below 1kHz so that the magnetization is
able to follow the variation in the applied
field.

Fundamental Susceptibility (SI units)

1 A L L

76 78 80

82 84 a8 88 80

Temperature (K)

Figure 5.18 Real (x') and imaginary (x”) components of the
susceptibility of YBa,Cu;0,_s measured in the applied ac magnetic
fields with uH,. =0.0424, 0.424, and 2.12mT as a function of the
temperature below T, for a frequency of 73 Hz. For this experiment
moHy. = 0; the data were not corrected for the demagnetization
factor (Ishida and Goldfarb, 1990).
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Figure 5.19 Real (x') and imaginary (x”') components of the
susceptibility of YBa,Cu;0,_s measured in superimposed ac and
dc magnetic fields as a function of the temperature below 7, for
a frequency of 73 Hz. The conditions were w,H,. = 0.424mT,
woHy. =0, 0.424, 0.993, 2.98, and 8.48 mT; the data were not cor-
rected for the demagnetization factor (Ishida and Goldfarb, 1990).

The ac susceptibility results can be
thought of in terms of the temperature depen-
dence of the lower-critical field B, (T) (cf.
Figs. 12.36 and 5.28). A low applied field
at low temperature will be far below B, (7),
thus in Fig. 5.18 the y’ curve for B, = 0.0424
approaches total dia-magnetic shielding. A
high applied field near but still below T,
will exceed B, (T) so that x’, will be smaller
in magnitude and closer to its normal state
value, as shown in Fig. 5.19.

It is more customary to interpret ac
susceptibility data in terms of one of the
critical-state models that will be introduced
in Chapter 13 (Chen and Sanchez, 1991)
with a temperature-dependent critical current
(Ishida and Goldfarb, 1990; Johnson et al.,
1991; LeBlanc and LeBlanc, 1992). Ji ef al.
(1989) assumed the two-fluid model temper-
ature dependence of Eq. (2.56). Here mag-
netic flux in the form of vortices alternately
enters and leaves the sample as the mag-
netization cycles around the hysteresis loop.

The maximum of " can be interpreted as
occurring near the applied field B,,, = B,
where the critical current and internal field
just reach the center of the sample. Sample
geometry (Forsthuber and Hilscher, 1992)
and size effects (Skumryev et al., 1991) have
also been reported.

Clem (1992) suggested that there are
three main mechanisms responsible for ac
susceptibility losses: (a) flux flow losses,
which can also be called eddy current losses
or viscous losses, arising in the absence of
pinning centers, when time-varying currents
arising from the oscillating applied magnetic
field induce fluxons to move, (b) hystere-
sis losses occuring near pinning centers that
impede the flux motion, as well as wherever
vortices of opposite sense annihilate each
other, and (c) surface pinning losses aris-
ing from a surface barrier to vortex entry
and exit (Hocquet et al., 1992; Mathieu and
Simon, 1988). An additional complication in
granular superconductors is the presence of
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both intergranular and intragranular shield-
ing currents.

In a granular superconductor the ac sus-
ceptibility is expected to receive contribu-
tions from intergranular current flow in loops
through Josephson junctions at the bound-
aries between grains as well as from intra-
granular shielding current flow within the
individual grains (J. H. Chen, 1990a, b; Lam
et al., 1990; Lera et al., 1992; Miiller and
Pauza, 1989). The x”-versus-T curves can
exhibit both intergranular and intragranular
peaks. Coreless Josephson vortices at the
junctions and the more common Abrikosov
vortices inside the grains alternately sweep
in and out of the sample during each cycle
around the hysteresis loop.

XVI. TEMPERATURE-DEPENDENT
MAGNETIZATION

Diamagnetism is an intrinsic character-
istic of a superconductor. Superconductors
exhibit other types of magnetic behavior as
well, due to, for example, the presence of
paramagnetic rare earth and transition ions
in their structure.

Susceptibility above 7, can have
a temperature-independent contribution Y,
arising from the conduction electrons along
with a temperature-dependent Curie—Weiss
term due to the presence of para-magnetic
ions,

Ku?
= _— 5.82
X=X+ 3 (T—©) (5.82)
= yo+ ——, 5.83
Xo+ 7T—-60 ( )

where u is the magnetic moment of the para-
magnetic ions, K is a parameter that incor-
porates the concentration of para-magnetic
ions and the conversion factor (1.86) for
volume susceptibility, and C is the Curie
constant. The Curie-Weiss temperature O is
negative for ferromagnetic coupling between
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the magnetic ions and positive for antiferro-
magnetic coupling. Below T, the large dia-
magnetism generally overwhelms the much
smaller terms of Eq. (5.82), and they become
difficult to detect.

A. Pauli Paramagnetism

The constant term ), in Eq. (5.82) is
often Pauli-like, arising from the conduc-
tion electrons (cf. Eq. (1.84)). We see from
Eq. (1.83) that xp,,; provides an estimate
of the density of states D(Eg) at the Fermi
level.

B. Paramagnetism

Most superconductors are paramagnetic
above T,.. For example, it has been found
(Tarascon et al., 1987b) that the susceptibil-
ity of YBa,Cu;0,_s above T has a tempera-
ture dependence that obeys the Curie—Weiss
law 1.79, with pu ~ 0.3 uz/mole of Cu and
® ~ —20 to —30K for oxygen contents &
in the range 0-0.6. Removing more oxygen
increases u and decreases O, but the sam-
ples no longer superconduct. These measured
moments are less than the Cu®" spin-only
value of 1.9uy given by Eq. (1.82),

p=g[S(S+ )] up =191z,  (5.84)
where S =1 and g ~2.2.

Oxide materials in which magnetic rare
earths replace lanthanum or yttrium pro-
vide linear plots of 1/yx versus T above
T, as shown by the solid curves in
Fig. 5.20, indicating paramagnetic behav-
ior. For some compounds the temperature-
independent term Y, of Eq. (5.82) is zero.
Vacuum annealing of the samples destroyed
the superconductivity and gave linear Curie—
Weiss plots below T, shown by the dashed
curves in the figure, which provide ® from
the extrapolated intercept at 7 = 0. The mag-
netic moments u were very close to the val-
ues g(J(J +1))'/? expected from Eq. (1.80)
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Figure 5.20 Temperature dependence of the reciprocal susceptibility (1/x) for a series
of rare earth (R) substituted RBa,Cu;O,_s superconductors over the temperature range
100-300K in a field of 1 T (solid lines). Data for the corresponding nonsuperconducting vacuum-
annealed compounds (dashed lines) are shown for comparison. The linear behavior is indicative

of paramagnetism (Tarascon et al., 1987b).

for rare earth ions. The positive sign for ®
indicates that these ions interact antiferro-
magnetically, with the susceptibility behav-
ior above T, corresponding to Fig. 1.15. The
results suggest nearly complete decoupling
of the Cu—O planes responsible for the super-
conducting properties from the planes con-
taining the rare earth ions responsible for
the magnetic properties. Such decoupling of
the magnetic and superconducting properties
was observed in Chapter 3, Section X, for
the Chevrel phases; it also occurs with the
heavy fermions (Jee et al., 1990; Konno and
Veda, 1989).

The paramagnetic contribution to y aris-
ing from the Curie-Weiss law below T,
should appear as arise in y or M near T = O.
Such a rise is indeed noticeable at tem-
peratures low enough for the diamagnetic
contribution to have already come close to
the asymptotic value x(0) expected experi-
mentally at absolute zero. In practice, this
paramagnetism is often too weak to observe.
However, we see from that data shown in

Fig. 5.21 that it is enhanced at high applied
fields. In fact, the highest fields used, Bapp >
1.5T, are strong enough to overwhelm the
diamagnetic contribution and drive the mag-
netization positive. This rise in M is also
partly due to the decrease in the diamag-
netism as B,,, is increased. The inset to
this figure shows how the Meissner frac-
tion, which is the value of y;. expressed
as a percentage of its value (—1) for per-
fect diamagnetism, depends on the applied
field.

The susceptibility above 7, of the series
of compounds YBa,(Cu,yA4,);0,_s, where
A is a first transition series element, is an
average of the contributions from the A and
Cu ions. It has been found to obey Eq. (5.82)
with an effective magnetic moment given by
(Xiao et al., 1987a, b),

2 = 0.1 +0.9u2, (5.85)

where u, and u., are the moments of the
A and Cu atoms, respectively. We see from
Fig. 5.22 that the depression of T, correlates
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Figure 5.21 Appearance of a paramagnetic contribution at the
low-temperature end of a field-cooled magnetization determination.
The contribution becomes dominant as the field By, was increased
from 0.5 to 4T (i.e., from 5 to 40kG), as shown. The inset gives
the Meissner fraction (MF) as a function of the applied field from
0 to 0.5T (Wolfus er al., 1989).
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Figure 5.22 Dependence of the transition tem-

perature 7, (—) and magnetic susceptibility at
100K (- — -) on the number of valence electrons for the
series of compounds YBa,(Cug A, ;)30;_35, Where A is
a 3d transition element, as shown (Xiao et al., 1987a).

with the size of the magnetic moment of
the substituted transition ion—the larger the

moment, the lower the T, value. Others have
reported similar results (e.g., Maeno et al.,
1987; Oseroff et al., 1987).

C. Antiferromagnetism

Cuprate  superconductors  generally
have a negative Curie—-Weiss temperature
O indicative of antiferromagnetic coupling
(Chapter 1, Section XV). The undoped com-
pound La,CuO, is an antiferromagnet below
the Néel temperature Ty ~ 245K, which
is considerably lower than the tetragonal-
to-orthorhombic  transition  temperature
T,_, = 525K. The copper spins are ordered
in the CuO, planes in the manner shown in
Fig. VIII-18 of our earlier book (1988; cf.
also Freltoft ez al., 1988; Kaplan et al., 1989;
Thio et al., 1988; Yamada et al., 1989).
Antiferromagnetic spin fluctuations in these
CuO, planes, called antiparamagnons, have
also been discussed (Statt and Griffin,
1993).

Compounds formed by replacing the
yttrium in YBa,Cu;0,_s by a rare-earth ion
tend to align antiferromagnetically at low
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temperature (Lynn, 1992). For example, the
Er moments u = 4.8uy in ErBa,Cu;0,_;
order in the a,b-plane with antiferromag-
netic coupling along a and ferromagnetic
coupling along b and c, in the manner shown
in Fig. 5.23. The neutron-magnetic reflection
intensity plotted in Fig. 5.24 versus temper-
ature provided the Néel temperature Ty =~
0.5K (Chattopadhyay et al., 1989; Lynn
et al., 1989; Paul et al., 1989). Below Ty ~

A
TP 4

b

Figure 5.23 Magnetic spin structure of ordered Er
ions in antiferromagnetic ErBa,Cu;0,_g determined by
neutron diffraction (Chattopadhyay et al., 1989)
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Figure 5.24 Temperature dependence of the inten-
sity of reflected neutrons from the ErBa,Cu;0,_s sam-
ple of Fig. 5.23 showing the Néel temperature Ty ~
0.5K far below T, = 88 K (Chattopadhyay et al., 1989).
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2.2K, the Gd moments in GdBa,Cu;0,_;
align along the c-axis with antiferromagnetic
coupling to all Gd nearest neighbors, as illus-
trated in Fig. VIII-19 of our earlier work
(1988; cf. also Dunlap et al., 1988; Mook
et al., 1988; Niedermayer et al., 1993; Paul
et al., 1988; Watson et al., 1989). Other mag-
netic ions, such as Dy, Ho, Nd, Pr, and Sm,
when substituted for Y, also produce anti-
ferromagnetic ordering (Dy: Fischer et al.,
1988; Zhang et al., 1992; Ho: Fischer et al.,
1988; Nd: Yang et al., 1989; Pr: Kebede
et al., 1989; Sm: Yang et al., 1989). For
x < 6.4 the undoped compound YBa,Cu;0,
is an antiferromagnetic non-superconductor
with aligned Cu ions, and Ty ~ 500K for
x ~ 6 (Miceli et al., 1988; Rossat-Mignod
et al., 1988; Tranquada, 1990; Tranquada
et al., 1992).

XVII. PAULI LIMIT AND UPPER
CRITICAL FIELD

An electron spin in a magnetic field has
the Zeeman energy

E=guB,,, S, (5.86)

app ’

1
Ej: :izgl‘LBBapp (587)

shown in Fig. 5.25, where u = gugS is the
spin magnetic moment, g = 2.0023 for a free
electron, and uy is the Bohr magneton. We
will approximate the g-factor by 2, and, of
course, S = % If the Zeeman energy level
splitting (Poole and Farach, 1987) indicated
in the figure,

E,—E =2uyB (5.88)

app?

becomes comparable with the energy gap
E,, the field will be strong enough to break
up the Cooper pairs and destroy the super-
conductivity. The magnetic field By,,; that
brings this about is called the Pauli limiting
field. It has the value

By = —2—, 5.89
Paul 2\/§MB ( )
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Bapp

Figure 5.25 Zeeman energy level splitting E, — E_
of electrons resulting in the breakup of Cooper pairs by
becoming comparable to the energy gap 2A when B,
reaches the value B,,.

app

where the factor +/2 comes from a more
detailed calculation. Inserting the BCS gap
ratio E, = 3.53ky T, this becomes

By, = 1.83T.. (5.90)
The data in Table 5.2 demonstrate that this
provides an approximation to experimentally
determined upper-critical fields B,. This
limiting field has also been called the param-
agnetic limit or the Clogston—Chandrasekhar

limit (Chandrasekhar, 1962; Clogston, 1962;
Pérez-Gonzdlez and Carbotte, 1992).
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dB,/dT at T, are close to the Pauli value
1.83T/K, as shown by the data listed on
Table 5.2 and plotted in Fig. 5.26. The zero-
temperature upper-critical fields B,,(0) of
high-temperature superconductors are gener-
ally too high to measure directly, but they can
be estimated from the Pauli limit or from the
empirical expression B, ~ (27,/3)dB,,/dT,
which can be deduced from the data in
Table 5.2.

Upper critical fields B, (7) and their
temperature derivatives dB,,/dT often
depend on the orientation of the applied mag-
netic field. This is especially true for the
high-temperature superconductors because
of their planar structures. These types of
critical fields and their temperature deriva-
tives at T, are larger when the external field
is applied perpendicular to the c-axis (i.e.,
parallel to the Cu—O planes) than when it
is applied parallel to this axis, as shown in
Fig. 5.27. This order is reversed for the lower
critical field, as shown in Fig. 5.28; in other
words, B, < B K Byje < By -

This reversal is associated with the
reversal in the order of sizes of the penetra-
tion depths and coherence lengths given by
Eq. (12.46), §, < &, € A, < A,. Therefore,
we have, from Egs. (12.51) and (12.52), the
lower critical field ratio

For many Type II superconductors B Ay _Ink, -1 (5.91)
both the ratio B,(0)/7, and the slope By A, Ink, ’
Table 5.2 Comparison of Upper-Crititcal Feild B, (0), Slope dB,/dT at T,
and Pauli Limiting Fields Bp,,; = 1.83 7. of Selected Type Il Superconductors

Tc BcZ BcZ/Tc 7dBc2/dT BPauIi 2 T (dBCZ )
Material (X) (T) (T/K) (T/K) (T) 3 <\ar
CeCu,Si, (heavy fermion) 0.5 2.4 4.8 23 0.9 7.67
UBe,; (heavy fermion) 0.9 6 6.7 44 1.7 26.4
Nb(44%)-Ti (alloy) 9.3 15 L6 24 17 14.9
Gd,,PbMoSg (Chevrel) 14 61 44 6.8 26 634
Nb;Sn (A15) 18 28 1.6 2.5 33 30.0
Nbs (Aly+5Gegas) (A15) 207 435 2.1 3.0 38 414
Nb;Ge (A15) 23.1 38 17 2.3 42 354
YBa,Cu;0, (HTSC) 92 120-200 1.3-2.2 0.7-4.6 168 42.9-282
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Figure 5.26 Relation between upper-critical field B., and temperature for the best
classical superconductors, some of which are used for fabricating commercial magnets. In
the high-temperature limit (2/37, < T < T,,) many of the curves have a slope that is close
to the value 1.83 T/K of the Pauli limit (dashed curve) (Wilson, 1983, p. 302).

and its upper critical field counterpart

BCZLC _ fab

S TS

Bc2\|c é‘:c

where k,, and k, are given by Egs. (12.48)
and k,, > k.. These inequalities may be ver-
ified from the data in Tables 12.4 and 12.5.

Tesanovic (1991), Tesanovic and Rasolt
(1989), and Tesanovic et al. (1991) discussed
the possibility of reentrant superconducting
behavior in applied fields far exceeding B,,.

(5.92)

XVII. IDEAL TYPE 1l
SUPERCONDUCTOR

A Type II superconductor has sev-
eral characteristic parameters, such as its

Ginzburg—Landau parameter k, transition
temperature 7, energy gap £FE,, coher-
ence length £, penetration depth A, upper-
critical field B, lower critical field
B,,, thermodynamic critical field B,, and
critical current density J.. We have seen
how these various parameters are related
by simple theoretical expressions, so that if
any two of them are specified, the others
can be estimated. This suggests defining an
ideal isotropic Type II superconductor as one
whose parameters have “ideal” relationships
with each other.

Consider such a Type II superconductor
with k = 100 and 7, = 90K. Its energy gap
is obtained from the BCS relation (7.79)

E,=3.528k,T, =27.5meV.  (5.93)
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Figure 5.27  Anisotropy in the upper-critical fields of YBa,Cu;0,.
The initial slope dBy./dT at T, (- — -) is —0.96 T/K, while its
counterpart dB,,./dT at T, is —4 T/K (Moodera et al., 1988).
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Figure 5.28 Anisotropy in the lower-critical fields of
YBa,Cu;0;. The initial slope dB,,./dT at T, is —1.4mT/K, and
that of dB,,,./dT at T, is —0.40mT/K. The low-temperature
extrapolations give 53 £5mT for the applied field parallel to ¢
and 18 £2mT for B,,, perpendicular to c. Yeshuran et al. (1988)
obtained the 6K values, By =904 10mT (not shown) and
B . =25+5mT (shown as x with vertical error bar). The dashed
curves are BCS fits to the data (Krusin-Elbaum et al., 1989). Recall
that 10G = 1 mT.
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The Pauli limit (5.90) provides an estimate
of the upper-critical field,
B, =1.83T.=165T. (5.94)

Equation (12.9) gives the coherence length &,

® 1/2
g:( 0 ) =1.26nm,  (5.95)
2wB,,

and from the definition (12.6) of the
Ginzburg—Landau parameter we obtain the
penetration depth A,

\ = k& = 126nm. (5.96)

Equations (12.10) and (12.11), respectively,
give the thermodynamic and lower critical
fields,

B

B,=—2% =1.16T, 5.97
V2k ( )
B, = 2K 37 9mT (5.98)
=== Jml. .

1 ﬁK

The critical current density J, at 0K is given
by Eq. (2.51):

J.=B,/uyA=6.95x 10°A/cm*. (5.99)

This approximates what has been called the
depairing current density.

Jdepair = 10Bc/47T)\I"LO
=5.53x 10°A/cm?

(5.100)
(5.101)

where for YBaCuO the thermodynamic field
B, ~ 1T, penetration depth A =~ (0.2 um, and
T, ~ 92K. These “ideal” values are good
approximations to the experimentally deter-
mined values for typical high-temperature
superconductors.

XIX. MAGNETS

Superconducting magnet design requires
simultaneously achieving high critical fields,
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high critical currents, and suitably mal-
leable wire. The slope dB,,/dT ~ —2T/K of
YBaCuO is typical, and gives a critical field
of 30T at the temperature of liquid nitro-
gen, as shown in Fig. 12.8, and in Table 1-2
of our previous work (Poole er al., 1988).
This high critical field is for the case of the
externally applied field B aligned perpendi-
cular to the c-axis, i.e., parallel to the crys-
tallographic conducting planes. When B,
is parallel to the c-axis, the critical field is
four or five times lower, as already noted in
Section XVII.

The standard magnet materials Nb;Sn
and Nb-Ti have critical fields of about 24 T
and 10T, respectively, at 4.2 K, which are
not much lower than that of YBaCuO at
77K. Operating YBaCuO at temperatures
much below 77K will, of course, provide
higher critical fields, and TIBaCaCuO, with
its much higher 7, (125K), is even better
at 77K. The problem is to obtain high-7,
superconductors that can carry large trans-
port currents and in addition, have the proper
ductility and possess the appropriate mechan-
ical properties. This, however, has yet to be
achieved. Vortex pinning must also be opti-
mized to control flux creep.

A better approximation than Eq. (5.99)
to the upper limit of the critical current
density is given by the Ginzburg—Landau
expression

2 T\ 717
Jcmax = |:§ <1 - F):| Jdepair' (5102)

C

This gives J, ~ 3 x 108 A/cm? at 0K and
J,~ 1.2 x 107 at 77K, respectively. Jiang
et al. (1991) reported J, ~ 1.3 x 10° A/cm®
for microbridges of

YBa,Cu;0,_s

films. Achievable critical currents are typi-
cally one-tenth the limiting values calculated
from Eq. (5.102), as indicated by the data in
Table 1-2 of our earlier work (Poole et al.,
1988).
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PROBLEMS

1.

LA

. Show

Show that a superconductor containing a
volume V,, of voids which cannot store
any flux has the following ZFC and FC
susceptibilities and porosity:

_ Vs + Vh + Vc
Aote = V<+Vh+vc+vex’
‘/S + VC
Xie = — 4
Vs+Vh+Vc+ch
_ Vh + Vc + Vex
B V5+Vh+vc+vex.
granular, 10-mg sample of
YBa,Cu;O0,_s has a density of
3.19g/cm® and the susceptibilities

Xoie = —0.8 and x;, = —0.4. Find the
porosity and the volumes of the purely
superconducting, normal material, open
hole-like, enclosed cavity-like and
non-flux storing portions of the sample.
Assume that there is no normal material
present.

that the measured magnetic
moment is given by Eq. (5.21),

Mo Mge = — (Vs + Vc)Bapp
+ (ch - Bapp)Vh5

when field cooling is carried out in a
magnetic field By, that differs from the

field B,,, applied for the measurement.

. Show that the sample of Problem 1 has

the following superconducting, open-
hole, closed-cavity, and non-flux storing
volumes given by, respectively,

V,=(1-P)Vy,

Vi = —=Xate — Xe) Vi

Vc = (P_ 1 _Xfc)VT’

Vex = (1 +Xzfc)VT’

10.

11.
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where, of course, X, and ;. are both
negative.

. Show that Egs. (5.43) and (5.45) both

have the limiting behavior Ny — 1/3 as
€e— 0.

. Show that 6, and 0, of Table 5.1 are

given by
1
6, = —772,
2 a
4
5, = — (1 - E) .
15 a

. Show that 6; and o, of Table 5.1 are

equal to

03

4 a
=—(1—-).
15( c)
1 c? a?

. Show that the expressions that were

deduced in this chapter for the mag-
netic fields inside and outside a sphere
obey the boundary conditions (1.73) and
(1.74) at the surface r = a.

. Show that the expressions that were

deduced in this chapter for the magnetic
fields inside and outside a cylinder in
a perpendicular magnetic field obey the
boundary conditions (1.73) and (1.74) at
the surface.

Show that the Curie law, which
is based on the assumption that
gup B, /kgT K 1, is still applicable
for the highest-field, lowest-temperature
data of Fig. 5.26. What is the value of the
ratio B,,,/T for which gugB,,,/kyT =1
for g =2.0?

Show that for the condition y, =0, a
plot of x” versus x’ over the frequency
range w, < w < co is a semicircle of
radius % Xo- ldentify the five points at
which (w — w,)7 is equal to 0, %, 1, 4,
and oo on the semicircle. How would the
plot change for x., = 1 x,?



Ginzburg-Landau

I. INTRODUCTION

In Chapter 4 we presented the thermo-
dynamic approach to the phenomenon of
superconductivity. We used the Gibbs free
energy since in the absence of a magnetic
field the Gibbs free energy is continuous
across the superconducting-to-normal-state
transition. The situation below the transi-
tion temperature 7, was handled by assum-
ing a known magnetization and a known
critical field, which were then used to cal-
culate the various thermodynamic functions.
This approach cannot really be called a the-
ory because it simply incorporates known
properties of superconductors into a standard
treatment of thermodynamics in the presence
of an applied magnetic field.

Theory

To gain more understanding of the
phenomenon of superconductivity let us
examine some simple but powerful theories
that have been developed in efforts to explain
it. In the present chapter we will consider
the phenomenological approach proposed by
Ginzburg and Landau (GL) in 1950. This
approach begins by adopting certain simple
assumptions that are later justified by their
successful prediction of many properties of
superconducting materials. The assumptions
describe superconductivity in terms of a
complex order parameter ¢ the physical sig-
nificance of which is that |¢|* is proportional
to the density of super electrons. The order
parameter is minimally coupled to the elec-
tromagnetic field, and in the presence of a
magnetic field B = V x A the momentum
operator —iAV¢ becomes [—iAVp + e*A],
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where e* is the charge associated with the
“super electrons.” The free energy is a mini-
mum with respect to variations of both ¢ and
A. The London equations, dating from 1935,
follow as a natural consequence of the GL
theory, as we show in Section IX (London
and London, 1935).

In the next chapter we will exam-
ine the more fundamental Bardeen—Cooper—
Schrieffer (BCS) microscopic theory that
first appeared in 1957. Soon after this the-
ory was published, its correct prediction of
many observable properties of superconduc-
tors was recognized. The earlier GL the-
ory, on the other hand, was not widely
accepted outside the Soviet Union until
Gor’kov showed in 1959 that it is derivable
from the BCS theory.

This chapter will concentrate on the
case of isotropic superconductors. Formula-
tions of the GL theory and of the London
Model are also available for the anisotropic
case (e.g., Coffey, 1993; Doria et al., 1990;
Du et al., 1992; Klemm, 1993, 1994; Wang
and Hu, 1991), and more specifically for the
cuprates (Horbach et al., 1994; Schneider,
et al., 1991; Wilkin and Moore, 1993). Time
dependent processes have also been treated
(Malomed and Weber, 1991; Stoof, 1993).

Il. ORDER PARAMETER

Many phenomena in nature, such as
the boiling of liquids and ferromagnetism,
involve a transition from an ordered to a
disordered phase. Each of these transitions
can be characterized by an appropriate order
parameter that has one value in the high-
temperature disordered state and another in
the low-temperature ordered state. The order
parameter may be thought of as charac-
terizing the extent to which the system is
“aligned.”

In the case of boiling, the order param-
eter might be the density, which is high in
the liquid state and low in the gaseous state.

6 GINZBURG-LANDAU THEORY

The magnetic order parameter is often taken
as the magnetization; it is zero in the high-
temperature paramagnetic region, where the
spins are randomly oriented, and nonzero at
low temperatures, where the spins are ferro-
magnetically aligned.

In the normal conduction state the elec-
tric current is carried by a Fermi gas of
conduction electrons, as was explained in
Chapter 1. The GL theory assumes that in
the superconducting state the current is car-
ried by super electrons of mass m*, charge
e*, and density n* which are connected by
the relationships

m*=2m, (6.1a)

e* = =+2e, (6.1b)
= (6.10)

n'=—n, dc
N 2 s

with their electron counterparts m, e, and n,
respectively. The actual “mass” here is the
effective mass, and it need not be twice the
mass of a free electron. The charge is neg-
ative for electron-type charge carriers, as is
the case with many classical superconduc-
tors, and positive for hole conduction, as with
most of the high-temperature superconduc-
tors. The super electrons begin to form at
the transition temperature and become more
numerous as the temperature falls. Therefore,
their density n} is a measure of the order
that exists in the superconducting state. This
order disappears above T,, where n! =0,
although fluctuations in n} can occur above
T.. More generally n} < %ns, and Eq. (6.1¢)
gives us the limiting value of n} for T =0.

The Ginzburg-Landau theory, to be
described in the following section, is formu-
lated in terms of the complex order parameter
¢(r), which may be written in the form of
a product involving a phase factor ® and a
modulus |¢(r)],

d(r) =|¢(r)]e” (6.2)
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Fp
—T
|

Figure 6.1 Temperature dependence of the order
parameter |¢|* showing its value |¢|? at T = 0, and
the linear behavior (---) near 7,, which extrapolates to
the ordinate value a,/b,. This figure is drawn under the
assumption |¢|* = 1a,/b, to agree with Fig. 2.44.

whose square, |@|?, is the super electron
density,

n = 4P 63)
The parameter ¢ is zero above 7, and

increases continuously as the temperature
falls below T, as shown in Fig. 6.1.

Il. GINZBURG-LANDAU
EQUATIONS

We saw in the previous chapter that the
thermodynamic properties of the supercon-
ducting state can be described in terms of the
Gibbs free energy density G. Ginzburg and
Landau assumed that, close to the transition
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temperature below 7, the Gibbs free energy
per unit volume G,[¢] may be expanded as
a local functional of the order parameter,

1,1
G,[4] =Gn+V/d~r[2m*

X (—ihV +e*A)d* - (ihV +e*A)d
+ <2%L0> B*(r)
— uoH(r) - M(r) +adpd”

+ b |

(6.4)

where G, is the free-energy density of the
normal state, A is the magnetic vector poten-
tial, and a and b are functions of the tem-
perature only. If the material is normal, B =
uoH, M =0, and the magnetic contribu-
tion is %,uo H?. In regions of perfect super-
conductivity B =0 and M = —H, and the
magnetic contribution is w, H>. In equilib-
rium the superconductor distributes currents
in such a way as to minimize the total free
energy.

The assumption is made that over a
small range of temperatures near 7, the
parameters a and b have the approximate
values

a(T) =~ a, |:1 — 1i| , (6.5a)
TC

b(T) = by, (6.5b)

where a, and b, are both defined as positive,

so that a(T") vanishes at 7, and is negative

below T..

To determine ¢(r) we require that the
free energy be a minimum with respect
to variations in the order parameter. Tak-
ing the variational derivative (Arfken, 1985,
Chapter 17) of the integrand in (6.4) with
respect to ¢* with ¢ held constant gives the
first GL equation:

#(ﬂiV +e*A)’p+ad+b|p|*d =0.
(6.6)
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In the London-Landau gauge (sometimes
called the Coulomb or radiation gauge)
V-A=0, (6.7)

the first GL equation can be expanded into
the form

L(ﬁzvzqs —2itie*A -V — e2A2p)
2m*
—adp—Db|p|PPp=0. (6.8)

The free energy is also a minimum with
respect to variations in the vector potential
A, where

B=VxA. (6.9)
Taking the variational derivative of G with

respect to A we obtain the second GL equa-
tion:

1

he*
VX (VX A)+5 (¢ Vh— $Ve)
8*2
+—A|q§|2 =0. (6.10)
m*
In Cartesian coordinates this equation,

expressed in terms of the London-Landau
gauge (6.7), can be simplified by writing
—V?A in place of V x (V x A) (see Prob-
lem 7). If we substitute the expression for B
from Eq. (6.9) into the Maxwell expression
(Ampere’s law),

V xB = puyl, (6.11)
and compare the result with Eq. (6.10), we
find the following proper gauge-invariant
expression for the current density:

ihe*
2m*

ol =~ 5 (' V=V §) — < AlG.

(6.12)
Thus the Ginzburg-Landau theory gives

us two coupled differential equations, (6.8)
and (6.10), involving the order parameter
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and vector potential, which can be solved to
determine the properties of the superconduct-
ing state. For most applications the equations
must be solved numerically. However, there
are some simple cases in which exact closed-
form solutions can be found, and others in
which useful approximate solutions can be
obtained. We will examine some of these
cases, and then transform the GL equations
to a normalized form and discuss the solu-
tion for more complex cases. When these
equations are written in a normalized form,
the coherence length, penetration depth, and
quantum of magnetic flux, called the fluxoid,
appear as natural parameters in the theory.

IV. ZERO-FIELD CASE DEEP INSIDE
SUPERCONDUCTOR

To get a feeling for the behavior of ¢,
let us first consider the zero-field case (A =
0) with homogeneous boundary conditions
(zero gradients, V>¢ = 0). The absence of
gradients corresponds to a region deep inside
a superconductor where the super electron
density does not vary with position. Integra-
tion of Eq. (6.4) can be carried out directly
for this zero field—zero gradient case, to give
for the Gibbs free energy density G, of the
superconductor

G, = Gn+a|¢|2+%b|d)|“, (6.13)
where from Egs. (6.5) b is positive and a
negative below T,. The GL equation (6.8)
provides the minimum for this free energy,

ad+bldLb =0,

and all of the terms of the second GL
equation (6.10) vanish. The phase of ¢ is
arbitrary, so we can take ¢ to be real. Equa-
tion (6.14) has one solution, ¢ = 0, corre-
sponding to the normal state and one solution
for a <0 at T < T,, with lower free energy:

(6.14)

|a]

24 _d
P =—=" (6.15)
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Using the approximations (6.5a) and (6.5b)
for a and b, respectively, we have

,  qg T
=9(1-=
4] bo( T>,

C

(6.16)

and this linear temperature dependence is
shown in Fig. 6.1 for the region near T ~ T..
For lower temperatures |¢|? is expected to
deviate from linearity on its approach to its
0K value, |¢|*> < ay/by, as shown in the
figure. From Eq. (6.3) we have for the super
electron density

* a0|: T:|
n,=—|1-—=—|,
* 7 b, T,

C

(6.17)

which agrees with Eq. (2.69) in the super-
conducting region near 7.

When the expressions for ¢ from
Egs. (6.15) and (6.16) are substituted into

(a) 0.02

0.01 —

Gs- Gy
ag/h,

001 -

-0.02

¢

Jao/bg
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Eq. (6.13), we obtain for the minimum Gibbs
free energy density

1 /d*
G.=G,—- (L
’ 2\ b

1 (a} T7
=G,—=|—)|1l—-= 6.18
ws()l-z] o

where %(az/b), called the condensation
energy per unit volume of the super
electrons, is the energy released by trans-
formation of normal electrons to the super
electron state. The condensation energy can
be expressed in terms of the thermodynamic
critical field B, as follows:

1 (a? _ B?
2\ b ) 2u,
Figure 6.2 presents a plot of G, — G,

from Eq. (6.13) versus ¢ for the three
ratios of temperatures 7/7T, =1, 0.9, and 0.8.

(6.19)

(b)

Gs' Gn

22  Bim

2b lzua
2

| | |
0

om

Figure 6.2 Dependence of the difference G, — G, between the Gibbs free energy in the normal and super-
conducting states on the order parameter ¢. (a) Normalized plots for 7/T, = 1, 0.9, and 0.8, and (b) Plot for

T/T, = 0.85 showing the minimum free-energy difference G, — G, = a*/2b, which occurs for ¢ = (|a|/b)

the zero, G, — G, =0, at ¢ = (2|a|/b)"/*.

172 and
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The minimum for each curve occurs at ¢ =
(la]/b)"/? given by Eq. (6.15), and G,— G, =
0 at ¢ = (2|a|/b)'/. These coordinates for
the minimum and crossover points of the
T/T,=0.8 curve are indicated in the figure.
The equilibrium superconducting state exists
at the minimum of each curve. The minimum
gets deeper, and the order parameter ¢ for
the minimum increases, as the temperature
is lowered, as shown. The magnitude of the
free-energy minimum at 0 K cannot be writ-
ten down because the temperature depen-
dence of Eq. (6.16) can only be a good
approximation near 7.

V. ZERO-FIELD CASE NEAR
SUPERCONDUCTOR BOUNDARY

Next we consider the case of zero field
with inhomogeneous boundary conditions,
which means that gradients can exist. Setting
A =0 in the second GL equation (6.10) gives

¢*Vo =V, (6.20)
which means, from Eq. (6.2), that the phase
O of the order parameter is independent of
position. The first GL equation, Eq. (6.8),
with A set equal to zero, provides us with a
differential equation for the order parameter:

ﬁz
—5—=V¢+ad+blol’¢=0.

2m*

(6.21)

/ or Vacuum
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Since the phase of the order parameter is
constant we select ¢ to be real.

We assume that the right half-space,
x>0, is filled with a superconductor and
that the left half-space, x < 0, is a vacuum or
normal material, as shown in Fig. 6.3. There-
fore, ¢ is a function of x, the gradient oper-
ator V only has an x component, and we can
write Eq. (6.21) in one-dimensional form:

K d*¢ )
S s +ad+b|ol’d =0,

When we change variables by letting

{lal 12
o= (") s

the normalized order parameter f satisfies
the “nonlinear Schrodinger equation”

h d*f
2m*|a| dx?

(6.22)

(6.23)

+f1=f)=0. (6.24)

If we define the dimensionless variable 7 as
X

=, 6.25
=3 (6.25)
where
ﬁz
F=—) (6.26)
2m*|al

Eq. (6.24) assumes the simplified dimension-
less form

@ 1 =0 6.27
Gt f=M=0. 62D

NN

Conductor

Figure 6.3

x

Interface between a normal material on the left (x < 0)

and a superconductor on the right (x > 0).
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It may be easily verified by direct substitu-
tion that Eq. (6.27) has the solution

f:tanhi.

V2

This can be written in terms of the original
variable ¢,

(6.28)

X
_’

V2¢

e\
¢>m—(7) ,

with¢p - 0asx— O0and p — ¢ as x — .
Therefore, ¢ is the characteristic length over
which ¢ can vary appreciably. The param-
eter &, called the coherence length, is one
of the two fundamental length scales associ-
ated with superconductivity. Its significance
is shown graphically in Fig. 6.4, in which we
see that ¢ is close to ¢, far inside the super-
conductor, is zero at the interface with the
normal material, and has intermediate values
in a transition layer near the interface with a
width on the order of &.

Substituting Eq. (6.20) in Eq. (6.12)
shows that for A =0 the current density J

¢ = ¢, tanh (6.29)
where

(6.30)

T T T
1.—
o
)
——
=
® o5t 4
i I 1
% 1 2 3 2

x/€

Figure 6.4 Dependence of the order parameter ¢(x)
on distance x inside a superconductor. The order param-
eter is large for x > &, where £ is the coherence length.
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vanishes. This is to be expected since from
the Maxwell expression (6.11) we know that
electric currents cannot exist if there are no
associated magnetic fields present.

The BCS theory presented in the next
chapter gives an alternate expression

hY,
&p= A

_ 01804V,
 kyTe

For what is called the BCS or Pippard coher-
ence length, where 2A = Eg is the super-
conducting energy gap, and V is the Fermi,
velocity. The second equation comes from
the BCS dimensionless ratio.

=3.528

kT

VI. FLUXOID QUANTIZATION

Now that we have determined the order
parameter ¢ for the case B =0, we will pro-
ceed to investigate the situation when there is
an applied magnetic field. In the presence of
such a field an interesting result follows from
Eq. (6.12). If we write ¢(r) as the product of
a modulus and a phase factor, as in Eq. (6.2),
the gradient of ¢ will have the form

Vo =ipVO+ OV |p(r)], (6.31)
and the total current from Eq. (6.12) will be
given by

he*

m*

8*2
Mol = —|BFVO——|gPA.  (632)
Dividing Eq. (6.32) by #fe*|¢|?/m* and tak-
ing the line integral around a closed con-
tour gives
m* o pod

eﬁ W'dl

_hfve.a1—fa-ar (6.33)
e*% %
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For the order parameter to be single valued
the line integral over the phase ® around a
closed path must be a multiple of 2,

yﬁ VO.dl=2mn, (6.34)

where n is an integer. Equation (6.33) can
now be written

gl
D

where the quantum of flux ®, has the value

-d1 +7§A “d1=nd,, (635)

6*2

h
D, = —,

e*

(6.36)

in agreement with experiment (e.g., Cabrera
et al., 1989; Gough et al., 1987; S. Hasegawa
et al., 1992).

It is convenient to express the line inte-
gral of A in Eq. (6.35) in terms of the mag-
netic flux ® through the closed contour.
Applying Stokes’ theorem we find

fA.cn:/B.ds (6.37)
—® (6.38)
and Eq. (6.35) becomes
m—: M—OJod1+<D=nCI>0. (6.39)
e ] o)

This expression is valid for all superconduc-
tors, and can be applied to the intermediate
and mixed states described in Chapter 11.
Equation (6.39) expresses the condition
whereby the sum of the enclosed flux ® and
the line integral involving the current density
J is quantized.

We will see later that for Type II super-
conductors quantized flux occurs in vortices,
which have a core region of very high field,
and a field outside which decreases with dis-
tance in an approximately exponential man-
ner far from the core. Figure 6.5 sketches
two such vortices. When a contour is taken

6 GINZBURG-LANDAU THEORY

n=1

n=2

Figure 6.5 Integration paths for Eq. (6.35) encir-
cling no cores (n = 0), encircling one core (n = 1), and
encircling two cores (n =2).

in a region of space that contains vortices,
the integer n in Eq. (6.39) corresponds to
the number of cores included within the path
of integration. Figure 6.5 shows contours
enclosing n =0, 1, and 2 core regions. Here
we are assuming that all the vortices have
the same polarity, i.e., the magnetic field
points in the same direction in all the vor-
tices. Equation (6.39) is easily generalized to
include the presence of positively and nega-
tively directed vortices.

The Little-Parks (1962, 1964) experi-
ment demonstrated this flux quantization by
measuring the magnetic field dependence of
the shift in 7, of a thin-walled superconduct-
ing cylinder in an axial applied field.

VII. PENETRATION DEPTH

In Section V we found how the order
parameter changes with distance in the
neighborhood of the boundary of a super-
conductor, and this provided us with the
first fundamental length scale—the coher-
ence length £. In this section we will inves-
tigate the behavior of the internal magnetic
field in the neighborhood of a boundary
when there is an applied field outside. This
will give us the penetration depth A;, the
second of the two fundamental length scales
of superconductivity.

We begin by returning to the semi-
infinite geometry of Fig. 6.3 with a uniform
magnetic field oriented in the z direction.
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In the London-Landau gauge (6.7) the vec-
tor potential for a constant magnetic field B,
outside the superconductor (x < 0) is

A=A,(0)] (6.40)

with

A (x) =xBy+4, x<O0, (6.41)
where the constant A, is selected for con-
tinuity with the solution A,(x) inside the
superconductor, as shown in Fig. 6.6. This
constant does not affect the field B(x).

In order to determine how the phase of
the order parameter varies throughout the
interior of the superconductor, let us evalu-
ate the line integrals of Eq. (6.35) along a
rectangular contour in the x,y- plane that is
closed at x = x;, and x; — oo, as indicated
in Fig. 6.7. This is done for a contour of
arbitrary width L, as shown. Since A is a

- Normal
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vector in the y direction, it is perpendicular
to the upper and lower horizontal parts of
the contour, which are along x, so that the
integral of A - dl vanishes along these paths.
We also observe that no current flows into
the superconductor, so that J. =0 and the
line integrals of J - dl along these same upper
and lower horizontal paths vanish. When we
take the limit x;, — oo the two line integrals
along this vertical x, path vanish because
A and J are zero far inside the supercon-
ductor. As a result only the line integrals
along the x, vertical path contribute, and they
may be written down immediately because
there is no y dependence for the fields and
currents:

L. |: m*‘]y(x())

eGP Ay(xo)} =nd,. (6.42)

Since the width L is arbitrary and n is quan-
tized, it follows that n = 0. Then, from the

I

Superconducting ———————»

Ay (x)

wps

x

Figure 6.6 Dependence of the vector potential A(x) on distance x for the case of Fig. 6.3.
A(x) depends linearly on x outside the superconductor (left), where there is a constant applied
magnetic field, and decays exponentially inside the superconductor (right), becoming very
small for x >3 N\, where A is the London penetration depth.
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Jx= O,Ax=0
A—>Q
Jx= O,Ax=0
| 1
Xg X
X

Figure 6.7 Integration path inside a superconductor
for determining the phase ® of the order parameter ¢.

quantization condition (6.34) and the arbitrari-
ness of the path, we conclude that the phase
O of the order parameter (6.2) is constant
everywhere throughout the superconductor,
and we set it equal to 0. Furthermore, since
X, in Eq. (6.42) is arbitrary, it follows that

100 = CIOL L ),

(6.43)
which tells us how J is related to A.

To determine the x dependence of A,,
note that Eq. (6.20) is valid for a constant
phase and that the second GL equation (6.10)
reduces to the expression

e 2 b(x) 2
54, = %Ay(x). (6.44)
We seek to solve this equation far enough
inside the superconductor, x > &, so that the
order parameter attains its asymptotic value,
¢ — ¢, independent of x. It is convenient
to define the London penetration depth A,
the second of the two fundamental length

scales of a superconductor:

*

m

Hoe? o>

This permits us to write Eq. (6.44) in the
form

A = (6.45)

& AW
wH="g

. (6.46)
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which has a simple exponential solution
inside the superconductor,

A, (x) = Agexp(—x/\,) x>0, (6.47)

for the case ¢ <« A, which is plotted in
Fig. 6.6. The preexponential factor A, makes
A, (x) from Egs. (6.41) and (6.47) match con-
tifluously across the boundary at x = 0.

In writing Eq. (6.46) we implicitly
assumed that the London penetration depth
N\, is greater than the coherence length £.
For distances from the surface x in the range
0 < x <« & we know from Eq. (6.29) and the
power series expansion of tanh(x/~/2¢) for
small values of the argument that

b(x) ~

0Kx<E  (6.48)

X
bz

V2§
so that ¢(x) is much less than ¢_. In this
range the effective penetration depth exceeds
the London value (6.45), so A (x) decays
more gradually there, as indicated in Fig. 6.6.

To obtain the fields from the potentials
we apply the curl operation B=V x A. Only
the z component exists, as assumed initially,
(6.49)

B.(x) =B, x <0,

—A
O exp(—x/\) €< x< oo,
A

= Byexp(—x/\,)

B.(x) =
(6.50)

where A, = —\ B, from the boundary con-
dition at the surface (x = 0). The dis-
tance dependences of Egs. (6.48) and (6.49),
together with the more gradual decay in the
range 0 < x < £, are shown in Fig. 6.8. We
conclude that for this case the applied field
has the constant value B, outside the super-
conductor, decays exponentially with dis-
tance inside, and becomes negligibly small
beyond several penetration depths within,
as shown.
From Eq. (6.43) we find that far inside
the superconductor
ML, () = —A,(x) £ <x<oo,
(6.51)
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«—— Normal —»«——— Supsrconducting —————»
T T T I
1

Bo

B, (x)

ma—
&
T

Figure 6.8 Exponential decay of a constant applied magnetic field
B_(x) inside a superconductor for the case | > &. Note the small devi-
ation from exponential behavior within a coherence length ¢ of the
surface.

as ¢(x) > ¢, and hence that J,(x) which is the same as A,(x) of Eq. (6.47).
also satisfies Eq. (6.46) with the distance In the range 0 < x < &, which is near the

dependence surface, we see from Eq. (6.43) that J (x) is
J,(x) = A02 exp(—x/\,) less than this value, as indicated in Fig. 6.9.
oA Thus, we see that B,(x) decays less and that

= Jyexp(—x/\.) &< x < oo, the current density J, (x) has a magnitude less

(6.52) than its value beyond the coherence length.

f— Normal —»——— Superconducting ————
I [ T

Jy(x)

X

Figure 6.9 Dependence of the current density J,(x) on distance x
inside a superconductor for the case A > £.
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In the remainder of the chapter we will ignore
these surface effects for x < ¢ and only take
into account the exponential decay in terms
of the penetration-depth distance parameter.

VIII. CRITICAL CURRENT DENSITY

An electric current is accompanied by
a magnetic field. To obtain an expression
for the current density independent of the
magnetic field, the vector potential can be
eliminated between the current density equa-
tion and the second GL equation. We will
do this deep inside the superconductor where
the order parameter ¢(r) depends on posi-
tion only through the phase ©(r).

For this situation the order parameter,
written in the form

B(r) = e, (6.53)
has the gradient
Vo(r) =ipVo(r), (6.54)
and the current density (6.12) is
J= %@% (V@ - fp—:A) , (6.55)

where @, is given by Eq. (6.36). Substituting
the expression for the order parameter from
(6.53) in Eq. (6.8) and multiplying on the left

by e~® gives
h? © 27 \* .
—i6 .V _A i®
e (T EA) ¢
b
+ ¢y — (m) (15(3) =0.

(6.56)

If the Laplacian V?¢ is negligible, this
becomes

2 2 2
" (ve_2Ta
2m*|a| D,

¢
— (Ial;b) =0. (6.57)

+1
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The factor [VO — (27/d,)A] can be elimi-
nated between Egs. (6.55) and (6.57) to give
for the current density

201 _ £2\172
= e (659)
where f is given by Eq. (6.23) (we have
used Egs. (6.26) and (6.45) here). Figure 6.10
shows how J, depends on f. The largest
possible current density shown in the figure,
called the critical current density J,, is
obtained by maximizing Eq. (6.58) through
differentiation with respect to f2. This gives
= %, and we obtain what is sometimes
called the Ginzburg-Landau critical current

density,
D,

= e E (6.59)

Cc

This can also be written in terms of the ther-
modynamic critical field (12.10).

2V2B
J = L. (6.60)
3\/§M0)\L
1 ] T T
Jg -
g
e
NS
T
0.25 0.5 0.75 10

)

Figure 6.10 Dependence of the super current density
J; on the normalized order parameter f. J (f) reaches
a maximum at f = (2/3)"/2.
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From Eq. (2.61) this has the following tem-
perature dependence near T,:

_ 8B (T
330\ (0) <1 ) - (66D

C

TC

Thus J, becomes zero at the critical temper-
ature, and we know from Eq. (2.58) that it is
a maximum at 7 =0.

IX. LONDON EQUATIONS

In 1935 the London brothers, Fritz and
Heinz, proposed a simple theory to explain
the Meissner effect, which had been discov-
ered two years earlier. They assumed that
the penetration depth \; is a constant inde-
pendent of position. The equations which
they derived, now called the first London
equation,

d
E= WQEJ, (6.62)

and the second London equation,

B=—p\[VxJ, (6.63)
were used to explain the properties of super-
conductors.

These two equations are easily obtained
from the GL theory with the aid of Eq. (6.51)
expressed in vector form:

Mo\ T = —A. (6.64)
If the vector potential expression (6.9) is
substituted in Maxwell’s equation (1.66), we

obtain
A
V x <E+ d—) =0,
dt

and with the aid of Eq. (6.51) we can then
write down the first London equation (6.62).
The second London equation (6.63) is
obtained by substituting the expression for

(6.65)
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A from Eq. (6.64) in Eq. (6.9). It should
be compared with Eq. (1.72), which, in the
absence of magnetization and displacement
currents, becomes Ampere’s law:

V xB = pu,J. (6.66)

Thus we see that Maxwell’s and London’s
equations link the magnetic field B and the
current density J in such a way that if one is
present in the surface layer so is the other.
If the expression for the current density
J from Eq. (6.66) is substituted in Eq. (6.63)
we obtain
VB = Ez, (6.67)
)\L
and eliminating B between these same two
expressions gives

V= ):'—2 (6.68)

L
Thus, recalling (6.46), we see that A, B, and
J all obey the same differential equation. In
Cartesian coordinates, Egs. (6.67) and (6.68)
correspond to the Helmholtz equation well
known from mathematical physics (Arfken,
1985). In the following section we will pro-
vide applications of these equations to the
phenomena of magnetic field penetration and
surface current flow.

X. EXPONENTIAL PENETRATION

In Section VII we deduced the expo-
nential decay of the magnetic field B and
the current density J, Egs. (6.50) and (6.52),
respectively, inside a superconductor in the
presence of an external magnetic field B,
and in the previous section we wrote down
the Helmholtz equations (6.67) and (6.68),
respectively, for these same two cases. In
the present section we will apply these equa-
tions to several practical situations involving
magnetic field penetration and surface cur-
rent flow in superconductors with rectangular
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£ '
€ ——— | ———————— |
4/4‘, ;
L~ - P — *———";’t - -4:-
————————— Rt -t
x
Y -a o a

X

Figure 6.11 Flat superconducting slab with thickness 2a much less than the two broad
dimensions L. The applied magnetic field B, and super current flow J, have the indicated
directions. The thickness parameter a should not be confused with the GL parameter a of

Eq. 6.4.

and cylindrical shapes. Both shielding and
transport currents will be discussed.
Consider a flat superconducting slab ori-
ented in the y, z-plane in the presence of
an applied magnetic field B, in the z direc-
tion, as illustrated in Fig. 6.11. The slab
is of length L, width L, and thickness 2a,
as indicated in the figure; we assume that

B h<x)
,cosh | —
AL

cosh (ﬁ) 669

This is sketched in Fig. 6.12 for \; <« a and
in Fig. 6.13 for A, > a. For the former case
we have

B (x) =

—a<x<a.

a < L. The solution to Helmholtz equa- N —(a—|x|)
tion (6.67) which satisfies the boundary con- B.(x) ~ Byexp A M <La.
ditions B,(—a) = B,(a) = B, at the edges is (6.70)
Agen > A, e
B, A B,
a-xl
xp -
sexp 252
T‘h. I .4+¢T
-a 0 a
x

Figure 6.12 Exponential decay of a magnetic field inside a superconductor for the case
A\; < a. Both this figure and Fig. 6.13 are symmetric about the midpoint x = 0.
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Figure 6.13 Decrease of the magnitude of a magnetic field inside a super-
conductor for the case A >> a. The field in the center is [1 — 1 (a/\;)?] times

the field B, outside.

We show in Problem 5 that in the latter case
the penetration is linear near each boundary,

a(a—x)
BZ(X) ~ BO [1 — )\—2]
L
AN>a, 0Lx<a, (6.71a)
and
ala+x)
BZ('X) ~ BO |:1 — Ti|
L
A >a, —-a<x<k0,

(6.71b)

with the value in the center

a2

B.(0)~B,|1——
O~ 1- 55

} x=0, (6.72)
as indicated in Fig. 6.13.

To derive the corresponding expres-
sions for the current density we find from

Eq. (6.11) that for this case J and B are
related through the expression

dB.

—=, 6.73
Tx (6.73)

M’O‘Iy =

and differentiating B,(x) in Eq. (6.69) gives

B sinh N
,u,o.]y(x)_)\—O~ aL —a<x<a.
L cosh —
AL

(6.74)

Thus the magnetic field B and the cur-
rent density J are mutually perpendicular, as
indicated in Fig. 6.11. The current density
flows around the slab in the manner shown
in Fig. 6.14, and is positive on one side
and negative on the other. It has the maxi-
mum magnitude J,(0) = J; on the surface,
Xx = %a, where )

Jo= -2 tanh & (6.75)
= anh —, .
‘ Mol AL
and this gives for J,(x)
. X
sinh <)\—>
Jy(x):JO—aL —a<x<a.
sinh <—>
A
(6.76)

This expression for the current density satis-
fies Helmholtz equation (6.68), as expected.

— :
__+
J

Figure 6.14 Cross section in the x, y-plane of the
slab of Fig. 6.11 showing the shielding super current
flow for an applied magnetic field B, in the z direction.
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For a > A\, the current density flows in that

a surface layer of thickness A;, while for

the opposite limit, a. < )\.L, it flows through J(x) ~ M Ca<x<al 6.77)
the entire cross section, in accordance with a

Figs. 6.15 and 6.16, respectively. In the latter

case the distance dependence is linear such as shown in Fig. 6.16.

A< @

Jy(x)

- lﬂ' : AMT g .

Figure 6.15 Current density J, (x) inside the superconducting slab for the case a > A .
This figure and Fig. 6.16 are antisymmetric about the origin x = 0.

Se<hy

Jyix)

Figure 6.16 Current density J, (x) inside the superconducting slab for the case
a < \;. Note that the magnitude of J(x) decreases linearly with distance x.
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Figure 6.17 Sketch of a Type I superconducting
cylinder in an external magnetic field B,,, = B, directed
along its axis, an arrangement referred to as parallel
geometry. The penetration of the magnetic field B into
the superconductor and the current flow J, near the
surface are shown. The London penetration depth A; is
also indicated.

The super current which flows in the sur-
face layer may be looked upon as generating
a magnetic field in the interior that cancels
the applied field there. Thus the encircling
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currents are called shielding currents in that
they shield the interior from the applied field.

The case of the long superconducting
cylinder shown in Fig. 6.17 in an external
axial magnetic field B, is best treated in
cylindrical coordinates, and, as we show in
Chapter 12; Section III.B, the solutions are
modified Bessel functions. In the limit A} <
R, the surface layer approximates a planar
layer, and the penetration is approximately
exponential,

(R—7)

B,(r) ~ B, exp [_h—}
L

M <KR O<r<R, (6.78)

as illustrated in Fig. 6.18, and expected on
intuitive grounds. Figure 6.17 presents three-
dimensional sketches of the fields and cur-
rents.

Another example to consider is a flow
of transport current moving in a surface layer
in the axial direction, as shown in Fig. 6.19.
Note the magnetic field lines encircling the
wire outside and decaying into the surface
layer. Figures 6.17 and 6.19 compare these
shielding and transport current cases. The
figures are drawn for the limit a >> A and
apply to Type I superconductors that exclude
the B field and current flow from the interior.
They also apply to Type II superconductors
in low applied fields below but near the tran-
sition temperature, 7' < T, since in this case

..B_Q— B,
> A A e
R 0 r R

Figure 6.18 Magnetic field B(r) inside the Type I superconducting cylinder of

Fig. 6.17 for the case N\ < R.
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Figure 6.19 Sketch of the current density J,, and
magnetic field B near the surface of a Type I supercon-
ducting cylinder carrying a transport current.

the internal field B;, is small and the behav-
ior approximates Type I.

XI. NORMALIZED GINZBURG-
LANDAU EQUATIONS

In Section IV we wrote down the one-
dimensional zero field GL equation normal-
ized in terms of a dimensionless coordinate
(6.25) and a dimensionless order parame-
ter (6.23), and this simplified the process
of finding a solution. Before proceeding to
more complex cases it will be helpful to write
down the general GL equations (Egs. (6.6)
and (6.10)) in fully normalized form in terms
of the coherence length (6.26), London pene-
tration depth (6.45), and flux quantum (6.36).

To accomplish this we express the coor-
dinates as dimensionless variables divided
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by the coherence length &. Thus we have,
for example, p/€, ¢, z/§ in cylindrical coor-
dinates, and use the differential operator
symbols V and V2,

V&V,
VZ — gZVz,

(6.79)
(6.80)

to designate differentiation with respect to
these normalized coordinates. The order
parameter ¢ is normalized as in Eq. (6.23),

{lal 12
o= (%) s

the vector potential A is normalized in terms
of the flux quantum P,

@,
A=|— |4,
2mé
and we make use of the Ginzburg—Landau

parameter k, which is defined as the ratio of
the penetration depth to the coherence length,

(6.81)

(6.82)

Ay
K= —].
3

Using this notation the GL equations (6.6)
and (6.10), respectively, expressed in the
London-Landau gauge (6.7), V-3 = 0,
assume the normalized forms

(6.83)

—(iV=s)’f+ f(1—f*) =0,

(6.84a)
KV x (V x sl) + 3i(f*Vf — fVf*)
+54f? =0. (6.84b)

We can also define a dimensionless current
density j from

@,
=—1j, 6.85
=g O®
which gives us
J=K*V x (V x ). (6.86)
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Equation (6.84a) can be expanded and
Eq. (6.84b) written as follows:
Vif —2id-Vf—si*f
+f(1-£*) =0,
i=—3i(f*Vf = fVf) —sif.

(6.87a)
(6.87b)

Thus the coherence length, penetration depth,
and flux quantum are the natural normal-
ization parameters for transforming the GL
equations into dimensionless form. In the fol-
lowing section we will use these normalized
equations to elucidate various properties of
superconductors.

XIl. TYPE I AND TYPE 1l
SUPERCONDUCTIVITY

In Chapter 11 we will discuss how bulk
normal and superconducting phases coex-
ist in equilibrium in an external magnetic
field B,,,. We now wish to investigate this
“mixed state” by considering a plane inter-
face between a normal phase filling the left
half-space z < 0 and a superconducting phase
in the right half-space z > 0, as indicated in
Fig. 6.3.

We expect the superconducting order
parameter to vanish at the interface and,
as we have seen, begin approaching its
bulk equilibrium value within a characteris-
tic length &. On the other hand, surface cur-
rents flow in a surface layer of width &~ A,
and full exclusion of magnetic flux occurs
only deep inside the superconductor. Here
we are interested in calculating the effect of
the interface on the free energy of the state.
This, in turn, leads naturally to the idea of a
“surface tension” between the superconduct-
ing and normal phases.

Deep within either of the homogeneous
phases the free-energy density at the critical
field B,,, = poH, is equal to G+ 3poHZ.
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The free-energy density of the associated
mixed state, including the interface, is

GnO + %/‘LOch < O
1
G(2) =1 Gy~ 3|0l + 5—
20
x(B*—2uiH.-M) z>0
(6.88)

where we have used Eq. (6.4) subject to
the minimization restriction (6.6) for the
half-space z > 0. The surface tension o,
is defined as the difference in free energy
per unit area between a homogeneous phase
(either all normal or all superconducting) and
a mixed phase. Therefore, we can write

1

= [ dz| -L1b|o|* + —

o= [ z[ blol'+ 5
x(B* —2ugH,-M) — L H?]

(6.89)

since the integrand vanishes for z < 0. With
the aid of the expression B = u,(H + M) this
becomes

a-ﬂg:/dz[—%b|d)|4+%,qu2]. (6.90)

Note that as z - oo, M — —H_, and by
Eq. (6.15), |¢|> = |a|/b, so from Eq. (6.19)
the integrand vanishes far inside the super-
conductor where z > A\, and the principal
contribution to the surface tension comes
from the region near the boundary.

If o,, > 0, the homogeneous phase has
a lower free energy than the mixed phase,
and therefore the system will remain super-
conducting until the external field exceeds
B., at which point it will turn completely
normal. Superconductors of this variety are
called Type I. However, if 0, <0, the super-
conductor can lower its free energy by spon-
taneously developing normal regions that
include some magnetic flux. Since the great-
est saving in free energy is achieved by max-
imizing the surface area: flux ratio, these
normal regions will be as small as possible
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consistent with the quantization of fluxoid.
Thus the flux enters in discrete flux quanta.

Returning to Eq. (6.90), the first term
represents the free energy gained by conden-
sation into the superconducting state, while
the second is the cost of excluding flux from
the boundary layer. Roughly speaking, the
order parameter attains its bulk value over a
characteristic length &, while the super cur-
rents and magnetic flux are confined to a
distance on the order of A; from the surface.
If we define the dimensionless magnetization

m by
M* = <a_2> m?
Mob
and make use of the dimensionless order
parameter (6.81), Eq. (6.90) becomes

(6.91)

2
0w =57 [de=f ). (692)

which can be written
2
_a AN (12
0w =57 [dzl(1=F) = (1 =m)]. (6.93)

Equation (6.28) gives f = tanh(z/v/2 ) (see
Problem 10 for an expression for the dis-
tance dependence of m). We can estimate o
by observing that f* = m?> =1 in the bulk,
that f* is small only over a distance on the
order of £, and that m? is small only over a
distance on the order of N\ . This gives the
approximate result

BZ
Oy 2_0(5 - )\L)’ (694)
Mo

where we have used Eq. (6.19). The value
of the integral is the difference between the
area under the two terms of the integrand,
as shown plotted in Fig. 6.20. If & > A\,
the surface tension is positive and we have
Type I behavior. On the other hand, for ¢ <
AL, O, is negative, and the superconduc-
tor is unstable with respect to the formation
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of a normal-superconducting interface, i.e.,
vortices form and Type II behavior appears.

We could also argue that A, is basi-
cally the width of an included vortex, i.e., the
radius within which most of the flux is con-
fined, and ¢ is the distance over which the
super electron density rises from n, =0 at the
center of the vortex to its full bulk value, i.e.,
the distance needed to “heal the wound.” A
long coherence length ¢ prevents the super-
conductor’s n, from rising quickly enough
to provide the shielding current required to
contain the flux, so no vortex can form.

Ginzburg and Landau (1950) showed
that o,, vanishes for k = N\ /§ = 1/4/2,
so as a convention we adopt the following
criterion:

=
A

Type 1

(6.95)

=
\

Sl- 6l

Type 1I.

For Type II superconductors in very weak
applied fields, B,,, < B, the Meissner effect
will be complete, but as B,,, is increased
above the lower critical field B,;, where
B., < B_, vortices will begin to penetrate
the sample. The magnetization of the sample
then increases until the upper critical field
B, is reached, at which point the vortex
cores almost overlap and the bulk supercon-
ductivity is extinguished. Superconductivity
may persist in a thin sheath up to an even
higher critical field B, where the sample
goes completely normal.

XIIl. UPPER CRITICAL FIELD B,

To calculate the upper critical field B,
of a Type II superconductor we will exam-
ine the behavior of the normalized GL equa-
tion (6.87a) in the neighborhood of this field.
For this case the order parameter is small
and we can assume B;, ~ B,,. This sug-
gests neglecting the nonlinear term f> in
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Figure 6.20 Order parameter |¢| and magnetization M inside a superconductor
which is Type I (k < 1, a) and inside a superconductor which is Type II (k > 1, b),
where k = N\ /€. The surface energy o, is positive for the Type I case and negative

for Type 1.

Eq. (6.87a) and following Eq. (6.41), taking
for the normalized vector potential

St = byu, (6.96)
where u is a dimensionless Cartesian coordi-
nate perpendicular to the directions of both

the applied field and the vector potential.
From Eq. (6.82) we have for the magnitude

of by,
27E?
(5

Deep inside the superconductor the normal-
ized order parameter f is independent of
position so that the term /- Vf in the GL
equation (6.87a) is zero.

(6.97)

The linearized GL equation now has the
form
Vif—st’f+f=0. (6.98)
This equation has bounded solutions only
for special values of b,. By analogy with
the harmonic-oscillator Schrodinger equation
from quantum mechanics, we can take f =~
e“"/2, which on substitution in (6.98) gives
o =2 = b,. Solutions can be found for larger
values of by, but these are not of physical
interest. Identifying the upper critical field
with the applied field of Eq. (6.97) for this
solution, we have

(6.99)
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This expression has an appealing physical
explanation. If we assume that in the upper
critical field the cores of the vortices are
nearly touching and that the flux contained
in each core is &~ ®, the average magnetic
field is B, ~ ®,/wE>.

Obviously, the existence of an upper
critical field requires that B, > B, the ther-
modynamic critical field. By Eq. (12.12) the
ratio of B, to B, is

Bc2 f
22 _ 2k
B K

C

(6.100)

Therefore, for k < 1/+/2, B, < B, and no
vortex state exists. In this way we can see
that the condition for a superconductor to be
Type I is k > 1/+/2.

XIV. STRUCTURE OF A VORTEX

For the case of a semi-infinite super-
conductor in a magnetic field it was found,
by the arguments of Section VII, that the
phase O of the order parameter remains fixed
throughout the superconductor. Here we will
consider a different geometry in which the
phase of the order parameter is nontrivial.

In Type II superconductors it is observed
that magnetic flux is completely excluded
only for external fields B < B.,. Above the
lower-critical field, B,,, flux penetrates in
discrete flux quanta in the form of flux
tubes, or vortices. In this section we will
obtain approximate expressions for the fields
associated with such a vortex, both in the
core region and far outside the core. We
assume that the external magnetic field B,
is applied along the z direction, parallel to the
surface, and that currents flow at the surface,
canceling the field inside. We are concerned
with a vortex that is far enough inside the
superconductor so that exponential decay of
the external fields, as given by Eq. (6.50),
drops essentially to zero.

States with more than one quantum of
flux are also possible (Sachdev, 1992), but
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the energy scales as n?, so single-flux quanta
are energetically favored. This is because,
according to Eq. (6.15), the parameter a
scales as n, from Eq. (6.12) J scales as n,
and from Eq. (6.11) B scales as n. Therefore
n noninteracting vortices have n times the
energy of a single vortex, but one multiquan-
tum vortex has a magnetic energy (nB)2,

which scales as n?.

A. Differential Equations

To treat this case we assume that there
is no flux far inside the superconductor. If
the applied field B,,, B, a single quantum
of flux @, enters in the form of a vortex
with axis parallel to the applied field. The
simplest assumption we could make about
the shape of the vortex is to assume that it is
cylindrically symmetric, so that in its vicinity
the order parameter (6.81) has the form of
Eq. (6.2), corresponding to

f(x, ©) = f(x)e,

where (x,0) = (p/&,®) are normalized
polar coordinates. The vector potential has
the form A = A(x)®, so that we can write
for its normalized counterpart (6.82)

(6.101)

st(x) = 4(x) 0. (6.102)
This is a two-dimensional problem since nei-
ther f(x) nor 4(x) have a z dependence. It
is easy to show that V x &f has only a z com-
ponent (this we do by working out the curl
operation in cylindrical coordinates), which
is to be expected, since the magnetic field
B = V x A is known to be parallel to z.

If we substitute these functions in the
two GL equations (6.84) and perform the
Laplacian and double curl operations in
cylindrical coordinates, we obtain

1d [ df f 250
[;a (7) et <—)

f—&dzf:|+f(l—f2)=0, (6.103)
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At o]

1, (1
+= =) =0,
K X

where x = p/¢ and the current density equa-
tion (6.87b) becomes

j:fz(i—&d)zo.

In constructing a solution to Egs. (6.103)
and (6.104) we must be guided by two
requirements, first that the magnetic field and
current density must be finite everywhere
and, second, that the solution must have a
finite free energy per unit length along the
z-axis. If the free energy per unit length were
infinite, the total free energy would diverge
and render the solution unphysical. Further,
we anticipate from the Meissner effect and
Eqgs. (6.50) and (6.52), that the magnetic field
and the current density will decay exponen-
tially far from the axis of the vortex.

(6.104)

(6.105)

B. Solutions for Short Distances

We seek to solve Eqgs. (6.103)
and (6.105) for the short-distance limit,
namely in the core where x < 1. Since the
first term in Eq. (6.105) has the factor 1/x, it
is necessary for the order parameter f to van-
ish as x — 0 in order for the current density
to remain finite in the core. By symmetry and
continuity, the current density must vanish
on the axis of the vortex, and it is expected to
be small everywhere in the core. Maxwell’s
equation, Eq. (6.11), tells us that in this sit-
uation the magnetic field B is approximately
constant in the core and we can write

A=1Byp0, (6.106)

or, in dimensionless units, with x = p/&

A

Sd == lxb()@,

—2

(6.107)
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recalling Eq. 6.82, and from Eq. (6.97),

27&?
b, =
0=,

B,. (6.108)

If we now use this approximate solu-
tion (6.107) for the vector potential in
Eq. (6.103) and neglect the f? term because
we expect f < 1 in the core, we will have

1d df
iy W
xdx \ dx
1
1222 _
+[(b0+1)—1b0 —;]f_o
(6.109)
This equation has exactly the form

of Schrodinger’s equation for the two-
dimensional harmonic oscillator. We know
from quantum mechanics texts (e.g., Pauling
and Wilson, 1935, p. 105) that the constant
term in the square brackets (b, + 1) is the
eigenvalue, the coefficient of the x~2 term is
the z component of the angular momentum,
i.e., m =1, and, for the lowest eigenvalue,
the coefficient of the x* term is related to the
other two terms by the expression

(bo+1)=2(m+1)(3b5)"*.  (6.110)
Solving this for b, gives
by=1. (6.111)

Substituting Eq. (6.111) in Eq. (6.108) gives

the magnetic field on the axis of the vortex:
CDO

B, = .

07 22

(6.112)

The solution to the ‘Schrodinger’ equa-
tion, Eq. (6.109), is
f=Cxe ™", (6.113)

where C is a constant. This function reaches
its maximum at x = «/5, which is outside the
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core, so, to a first approximation, f continu-
ously increases in magnitude with increasing
radial distance throughout the core region.
This behavior is shown by the dashed curve
in and near the core region of Fig. 6.21.

We can use the results of Problem 8
to obtain a better approximation to the vec-
tor potential and magnetic field in the core
region,

A(p) = 1B, [p —a (g)} 0, (6.114)

B(p) = B, [1 _3a <’—§’> } k,  (6.115)

where o < 1. These expressions are plot-
ted as dashed curves in the core regions of
Figs. 6.22 and 6.23, respectively.

C. Solution for Large Distances

To obtain a solution far from the vor-
tex core, x > 1, it is convenient to simplify
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Eqgs. (6.103) to (6.105) by means of a change
of variable,

1
oA =1 — —, (6.116)
X
which gives
&f 1 df
= J .2 &4/2
dx? + x dx f
+f(1—-f)=0. (6.117)
st 1 dst
dx?  x dx
&q/ fZ&Q/
2 e =0, (6.118)
j=—fsl, (6.119)

where the derivatives have been multiplied
out. It should be pointed out that the curl of
(1/x)© vanishes in the region under consid-
eration, so that V x &f' = V x o, and hence

1.0

o
n

1= 0y Via e

o ] I

0 E_, ?“L

2A, 3A,
p

Figure 6.21 Dependence of the order parameter |¢| on distance p from the core of a vortex. The asymptotic
behaviors near the core and far from the core are indicated by dashed lines.



XIV STRUCTURE OF A VORTEX

167

+Boh,

A(p)

TBod

o 1 1

|

e A

2k ak,

p

Figure 6.22 Distance dependence of the vector potential A(p) associated with

a vortex in the notation of Fig. 6.21.
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Figure 6.23 Distance dependence of the magnetic field B(p) encircling a

vortex in the notation of Fig. 6.21.

the 1/x term of Eq. (6.116) does not con-
tribute to the magnetic field (see, however,
Problem 9).

For the approximation f = 1, the change
of variable x = ky puts Eq. (6.118) into the
form of a first-order (n = 1) modified Bessel
equation:

,dst dst’
dy? +y dy

— (P + 1)’ =0.

y

(6.120)

The solution to this equation which satisfies
the boundary conditions ¢'(y) — 0 as y —
00 i8

A'(y) = ALK (v). (6.121)
where K, (y) is a modified first-order Bessel

function. For large distances, x > k, it has
the asymptotic form

—x/K

N

o' (x) = Ay, (6.122)



168

6 GINZBURG-LANDAU THEORY

L

I T
28,2, |
C
o
g
[aV]
Bk [
1 1
% & A

2, 3,
p

Figure 6.24 Distance dependence of the function 2mpB(p) in the notation
of Fig. 5.21. This function is proportional to the amount of magnetic flux at a
distance p from the origin, and the integrated area under the curve is one fluxoid,

h/2e.

where A/ = (2/mk)"?A.. Figure 6.22
shows the asymptotic long-distance behavior
of A(p).

Taking the curl B =V x A in cylindri-
cal coordinates (cf. Eq. (6.86)) provides the
corresponding magnetic field for x > k,

e P/\
(p/&)'?

where we have restored the original coordi-
nate p = x§ = y\,.. Figure 6.23 shows a plot
of B_(p) versus p for large p and indicates
the p = 0 value of Eq. (6.115).

To find the radial dependence of the
order parameter far from the core, where the
material is in the superconducting state, we
have f & 1, so we can write

B.(p) ~ P>\, (6.123)

f(x) =1—g(x), (6.124)

where g(x) < 1, and hence f(1 — f?) ~ 2g
As a result Eq. (6.117) assumes the form
d? 1 d
= - = of
a8+ g+

—2g(x) =0. (6.125)

Far from the core, x > k, the behavior of
g(x) for k > 1 is determined by that of ' (x),
and we have

—2x/K

e

g(x) ~ g, ,
X

(6.126)

where g, is positive.

Comparing Figs. 6.22 and 6.23 we see
that A increases in the core region, reaches
a maximum near the inflection point of the
B curve, and decreases outside the core.
The quantity 27rpB(p) is proportional to the
amount of magnetic flux at a particular dis-
tance from the vortex axis; it is shown plotted
against p in Fig. 6.24. The integrated area
under this curve equals one fluxoid, 4/2e.

FURTHER READING

The GL theory was first proposed by Ginzburg
and Landau in 1950. Its value became more apparent
after Gor’kov (1959) showed that it is a limiting case of
the BCS theory. The theory was extended to the limit
of high k by Abrikosov (1957) in the same year that
the BCS theory was proposed. The London and Lon-
don (1935), London (1950), and related Pippard (1953)
equations follow from the GL theory.



PROBLEMS

The first edition of this book mentions some

articles that apply GL theory to the cuprate super
conductors.

PROBLEMS

AN

. Derive the first GL equation, Eq. (6.6),

from the Gibbs free energy integral (6.4).

. Show that minimizing the term B?/2u,

with respect to the vector potential A in
Eq. (6.4) gives the expression V2A/u,
that is found in Eq. (6.10). Hint: write

d

T Lo [ 440034,005],

bring the partial differentiation inside the
integral, and integrate by parts.

. Show that f(n) = coth(n/~/2) is also a

solution to Eq. (6.27), and explain why
it is not used.

. Show that Eq. (6.17) is consistent with

Eq. (2.69) in the superconducting region
near T, and express the ratio a,/b, in
terms of the density n of conduction
electrons.

. Derive Eqgs. (6.71a) and (6.71b).
. Justify Eq. (6.97): by = (2w&?/®,)B
. Show that V x (Vx A) = —V°A in

app*

Cartesian coordinates, assuming the
London-Landau gauge. Why is this not
true when the coordinate system is non-
Cartesian?

. Assume the following power series solu-

tions to Egs. (6.103) and (6.104) in the
region of the core:

f) ~ 2a,x"
f) = Xf,x"

r L1,
r <L 1
(a) Show that the lowest-order terms

that exist are f, and a,, that the
even order terms vanish, and that

i
3 8k2’
fi= _i(al + %)fl

9.

10.

11.
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(b) Show that the distance depen-
dence of the order parame-
ter, vector potential, magnetic
field, and current density in the
neighborhood of the origin are
given by

2
X |:a1—2|a3| (g) :| pKLE.

(c) Show that the expression for
|d(p)| agrees with Eq. (6.113).

Show that ¢ s¢' - dl = 0, whereas § i -
dl = 27 for contours at infinity. What
is the significance of the 1/x term in
Eq. (6.116)?

Show that the dimensionless magnetiza-
tion m defined by Eq. (6.125) can be
written

and has the distance dependence

m=—(1—e M),

in Eq. (6.93) (assume zero demagnetiza-
tion factor).

Derive Eq. (6.123) for the magnetic field
far from a vortex. Find the first higher-
order term that is neglected in writing
out this expression.
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I. INTRODUCTION

Chapter 6 presents the Ginzburg—
Landau (GL) theory, which originated in
1950. Despite the fact that it is a phenomeno-
logical theory, it has had surprising success
in explaining many of the principal proper-
ties of superconductors. Nevertheless, it has
limitations because it does not explain the
microscopic origins of super-conductivity. In
1957 Bardeen, Cooper, and Schrieffer (BCS)
proposed a microscopic theory of supercon-
ductivity that predicts quantitatively many of
the properties of elemental superconductors.
In addition, the Landau—Ginzburg theory can
be derived from the BCS theory, with the
added bonus that the charge and mass of
the “particle” involved in the superconduct-
ing state emerge naturally as 2e and 2m,,
respectively.

BCS Theory

With the discovery of the heavy fermion
and copper-oxide superconductors it is no
longer clear whether the BCS theory is sat-
isfactory for all classes of superconductors.
The question remains open, although there is
no doubt that many of the properties of high-
temperature superconductors are consistent
with the BCS formalism.

To derive the BCS theory it is necessary
to use mathematics that is more advanced
than that which is employed elsewhere in this
book, and the reader is referred to standard
quantum mechanics texts for the details of
the associated derivations. If the chapter is
given a cursory initial reading without work-
ing out the intermediate steps in the devel-
opment, an overall picture of BCS can be
obtained. For didactic purposes we will end
the chapter by describing the simplified case
of a square well electron—electron interaction
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potential, which is also the case treated in
the original formulation of the theory.

Il. COOPER PAIRS

One year before publication of the BCS
theory, Cooper (1956) demonstrated that the
normal ground state of an electron gas is
unstable with respect to the formation of
“bound” electron pairs. We have used quota-
tion marks here because these electron pairs
are not bound in the ordinary sense, and the
presence of the filled Fermi sea is essential
for this state to exist. Therefore this is prop-
erly a many-electron state.

In the normal ground state all one-
electron orbitals with momenta k < kg are
occupied, and all the rest are empty. Now,
following Cooper, let us suppose that a weak
attractive interaction exists between the elec-
trons. The effect of the interaction will be
to scatter electrons from states with initial
momenta (k,, k,) to states with momenta
(K}, k). Since all states below the Fermi sur-
face are occupied, the final momenta (k/, k)
must be above k. Clearly, these scattering
processes tend to increase the kinetic energy
of the system. However, as we shall now
see, the increase in kinetic energy is more
than compensated by a decrease in the poten-
tial energy if we allow states above kj to be
occupied in the many-electron ground state.

We begin by considering the
Schrodinger equation for two electrons
interacting via the potential V,

|2 (4T V=) | W)

= (E4+2Ep)V(ry, 1p). (7.1)
In (7.1) the spin part of the wavefunction has
been factored out and the energy. eigenvalue
E is defined relative to the Fermi level (2Ey).
Most superconductors are spin-singlet so the
orbital part to the wavefunction, W(r, r,),
must be symmetric.

7 BCS THEORY

As with any two-body problem, we
begin by defining the center of mass
coordinate,

R= %(r1 +r), (7.2)
and the relative coordinate,
r=r —r,. (7.3)

In terms of these coordinates (7.1) becomes

h? h?

+V(DW(R, 1) = (E4+2E)W(R, ). (1.4)

The center of mass and relative coordinates
now separate and we can write

W(R, r) = ®(R)V(r). (7.5)
®(R) is simply a plane wave,
D(R) = K, (7.6)

while for the relative coordinate wavefunc-
tion W(r) we have

[—2%%2 + V(r)i| W(r)

hK?
= (E +2F, — o

) W(r). (1.7)

Since we are interested in the ground state,
we can set K = 0. There are solutions for
K # 0 that lie close to the K = 0 states and
are needed to describe states in which a per-
sistent current flows.

We now express W(r) as a sum over
states with momenta p > kg,

W(r) =

a(p)e". (7.8)

1 Z/
VV5
In (7.8) X/ denotes a summation over all
|p| > kg. Substitution of the expression for
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WY(r) from (7.8) in (7.7) then gives the
Schrodinger equation in momentum space,
[2(€, — Eg) — Ela(p)
+2_V(p. p)a(p) =0,

p

(7.9)

where
1 . !
V(p,p') = v f Pre PV, (7.10)

In order to simplify the solution of (7.9) we
assume that

V(p,p)
Vo 0<%¢,—Ex<h w,
= andOf%p,—EFSﬁwD
0 otherwise.

(7.11)

In (7.11), hwp is a typical phonon energy,
which reflects the idea that attraction
between electrons arises via exchange of vir-
tual phonons.

With the potential (7.11) the interaction
term in (7.9) becomes

S V(p, pa(p')
-
=—V,KO(hwp — Ex—€,), (7.12)

where @(x) is the ordinary step function and

K=Y "a(p) (7.13)
P
is a constant. Solving (7.9) for a(p), we have
) VoK
alp)= ————
b 2(%[) - EF) —E

x O(hwp — Ep —€,). (7.14)
Note that our Cooper pair involves momenta
only in the narrow region €,—Eg < fi oy, just
above the Fermi surface.
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We can now self-consistently evaluate
the constant K in (7.13),

1

K=V,KS ' ——
0 Z2(%5,,—EF)—E

P

xOh wp—Ep—%). (715

If we assume that K # 0, this leads to an
implicit equation for the eigenvalue E,

’ 1
1=V, —_—
0 Z 2(%])_EF)_E

p

x 0wy — Ex — €,). (7.16)

The sum over the momenta can be
expressed as an integral over the energies in
terms of the density of states D(€). Since
typically A wp < Eg, D(€) is well approx-
imated inside the integral by its value at the
Fermi surface, D(Eg). Thus we have

1
— 4%
20¢—E)—E

E-2
= LV,D(Eg)In (%) .

Epth o,
I= VOD(EF)/
Ex

(7.17)

Solving for E we have

2hwp
E=— . (7.18)
exp[2/VyD(Eg)] -1
In the weak-coupling limit V,D(Ep) <« 1 and
the exponential dominates the denominator
in (7.18) so that

E ~ —2hwpexp <— (7.19)

@)
VoD(Eg) )
This result is remarkable in several ways.
First, it tells us that the pair state we have
constructed will always have a lower energy
than the normal ground state no matter how
small the interaction V. This is why we
say the normal ground state is unstable with
respect to the formation of Cooper pairs. Sec-
ond, we see in (7.18) a hierarchy of very
different energy scales,

Eq > hop > |E|, (7.20)
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which, if we assume that kT, = | E|, explains
why the superconducting transition temper-
ature is so small compared with the Debye
temperature,

o, =
kB

If one Cooper pair lowers the ground
state by —|E|, then, clearly many pairs will
lower the energy even further, and one might
be tempted to conclude that all the electrons
should pair up in this fashion. Such a state
would then resemble a Bose—Einstein con-
densate of Cooper pairs. However, we must
keep in mind that if we do away entirely with
the normal Fermi sea the state we have con-
structed collapses. We can use these intuitive
ideas to guide our thinking, but to arrive at
the true BCS ground state we must go beyond
simple one- and even two-electron pictures
and realize that the superconducting state is
a highly correlated many-electron state.

Ill. THE BCS ORDER PARAMETER

In this section and those that follow we
will present the formal details of the BCS
theory. The most natural mathematical lan-
guage to use in this case is “second quanti-
zation”, where all observables are expressed
in terms of the electron operators a,,(k),
and their Hermitian conjugates. The opera-
tor a,,(k) annihilates an electron with band
index n, z-component of the spin o and
Bloch wavevector k. The electron operators
have the anticommutation relations,

{a,,(k), a},(K)} =38,,8,.6(k k)
{a,,(K), a,,(K)} =0 (7.21)

In order to reduce the complexity of the equa-
tions we will encounter, the band index, n,
and the spin index, o, will be combined into
a single discrete index, (o, n) — o.

7 BCS THEORY

As in any theory of a phase transition
the first task is to identify the “order parame-
ter”, which vanishes in the high temperature,
disordered phase and is non-zero in the low
temperature, ordered phase. We have seen
that the normal ground state is unstable with
respect to the formation of “Cooper pairs”
if there is an attractive interaction between
electrons at the Fermi surface. This leads us
to consider the BCS order parameter

q’aﬁ(kl’ k,) = <aa(kl)aﬁ(k2)> (7.22a)

The BCS order parameter is in general a
two-by two complex matrix. We will find it
useful to define the Hermitian conjugate of
the order parameter,

\IfaB(kl’ k,)" = <a1(k2)ai(k1)> (7.22b)

It is easy to see that the order parameter
vanishes in the normal state. The average in
(7.22a) is

(aq(kp)ag(ky))
=Z'Tr [e_BHaa(kl)aB(kz)]
(7.23)
where 3 = 1/kzT, H is the Hamiltonian for
the normal state, and Z is the partition func-

tion. This Hamiltonian is invariant under the
(unitary) global gauge transformation,

Ut (@)a,(K)U(p) = e “a, (k)
U'(¢)HU(¢) = H

(7.24a)
(7.24b)

If we apply this transformation inside the
trace in (7.23), we have

<aa(kl)aﬁ(k2)>
=Z'THU()U (@)e P a, (k,)ag(k,)]
=Z"'THU (@) P U()U' (¢)a, (k)
x U(@)U' (¢)ag(k,) U(e)]

= ¢ (a, (k) ag(k,)) (7.25)
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In the first and second lines of (7.25)
we have used the fact that U(@)U'(¢) =1,
and in the second line we have also used
the cyclic property of the trace, Tr[ABC] =
Tr[BCA]. Since ¢ is an arbitrary phase
angle, the only possible solution to (7.25) is
that (aa(kl)aﬁ(kz)) =0, as expected in the
normal state.

If the order parameter is to be differ-
ent from zero, it is clear from the above
argument that the statistical operator can-
not be invariant under a global gauge trans-
formation. In the general theory of phase
transitions this is called spontaneous sym-
metry breaking: the statistical operator has
a lower symmetry in the ordered state than
in the normal, or disordered, state. In the
case of a ferromagnet, the normal state is
rotationally invariant and the thermal aver-
age of the magnetization, which is a vec-
tor, vanishes. Below the Curie temperature,
however, there is a spontaneous magnetiza-
tion that clearly breaks the rotational sym-
metry of the high temperature phase. The
phenomenon of superconductivity is char-
acterized by the breaking of global gauge
symmetry.

The normal state may exhibit other sym-
metries that are characteristic of the crystal
structure of the solid. If the superconduct-
ing state breaks one of the symmetries of
the normal state in addition to global gauge
symmetry then we say the superconductor is
“unconventional”. For example, in “p-wave”
superconductors, the order parameter has a
vector character much like the magnetization
in a ferromagnet. We will assume that the
translational symmetry of the superconduct-
ing phase is the same as that of the normal
state. Under a translation by a lattice vector
R the electron operator transforms as

T"(R)a,(k)T(R) = ¢*Ra, (k)  (7.26)
Assuming the statistical operator for the
superconducting state is invariant under
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translations, it follows, (by an argument very
much like the preceding one) that

5k, k) = ef(kl+kz>»R\1faB(kl .ky) (7.27)

From this we conclude that the order param-
eter vanishes unless k;, = —k,. We can use
this fact to simplify things somewhat and
define an order parameter that is a function
of only one wavevector,
V,5(k) = V4 (k, —k) (7.28)
Finally, the anticommutation relations,
(7.21), imply that the order parameter is
antisymmetric under exchange of all its
arguments,

Vop(ky, Ky) = =Wy, (Ky, k) (7.29a)

or, in the case of translational invariance,

WV, 5(k) = -V, (—k) (7.29b)
If the electron spin commutes with the nor-
mal state statistical operator (no spin-orbit
interaction), then the order parameter must
transform either as a spin singlet or a spin
triplet. In the singlet case, which is the most
common, we can write

q’aﬁ (k) = 8aﬁl//(k)

where &,5 = —&g, and (k) = y(—k). In
the triplet case we have

(7.30)

q’aﬁ (k)

_ (—wl () + i, (K)]/V2

3 (k) )
W5 (k)

[, (k) — i, (K)]/v/2
(7.31)

where the three spatial components of the

order parameter, (¢,(K), ¢, (K), ¥;(k)) are
odd functions of the wavevector,

i (k) = —hi(—k) (7.32)

The three components of the triplet order
parameter defined by (7.31) transform under
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rotations in spin-space as a vector, and
clearly break the invariance of the normal
state under such rotations. Therefore, the
triplet order parameter is unconventional,
and the singlet is conventional.

IV. THE BCS HAMILTONIAN

We have argued that in order for the
order parameter to differ from zero the statis-
tical operator must break global gauge sym-
metry. The simplest way to construct such
a statistical operator is to assume the order
parameter is not zero and that the fluctua-
tions about the order parameter are small.
Thus we write

aa(kl)aﬁ(kZ) = <aa(kl)aﬁ(k2)>
+[a,(ky)ag(k,)
_<aa(kl)aﬁ(k2)>] (7.33)
in the Hamiltonian, and expand in powers of
the fluctuation.
We begin with a Hamiltonian that

includes the one-electron band structure and
a two-body interaction between electrons,

H=YE,(k)a}(k)a,(K)
ok

Y al)a k)

{ki.ky k3. ky}

X Vogys (k. ky; ks, k4)a7(k3)a5(k4)
(7.34)

Under translation by a lattice vector the inter-
action transforms as

Vapys (Ki, ko3 Ky, ky) = e litlemlamko R

X Vopys (i, Ky Ky, Ky)

(7.35)

which requires k; +k, —k; —k, = G, where
G is a reciprocal lattice vector.

If we now insert the expansion, (7.33),
into the interaction term in (7.34) and keep

7 BCS THEORY

only terms first order in the fluctuations,
we have

Z aZ(kl)a;(kZ)Vaﬁyﬁ(kl’ ky; Ks, k4)ay(k3)

{ki ko k3, ky}

x as(ky) =3 {{al (kp)ag(ky))
(ki ko k3, ky}
+ [aa(kl)aﬁ(kZ) - (a;(kl)a;(k2)>]}
X Va,B'yS(kl . Kys ks, Ky) {(ay(kS)aﬁ(k4)>
+ [ay(k3)aé(k4) - (ay(k3)a3(k4))]}
~ = Z (al(kl)a};(kz)) VaByB(kl’ k,: ks, k)

(k.o ke Ky }

X(ay(ks)aﬁ(k4)>+ Z (al(kl)a;(kz»

{ki.ky ks ky}
X Vogys (k. ky; ks, k4)ay(k3)a5(k4)
+ 2 al(kl)a;(kz)vaﬁya(kh ky; ks, k)

{ky ko ks Ky}

x (a, (ky)as(k,)) (7.36)

We now use the definition of the order param-
eter, (7.25) and (7.35) to get

1 ’ ’
HBCS = 5 Z \P;B(k)vaﬁ;yﬁ(k; k )\Pﬂ/ﬁ(k )
kk’

+ 2 E,(K)aj (K)a, (k) +

ok

1 * ’ ’ ’
- E Z \Paﬁ(k)vaﬁ;yﬁ(k; k )ay(k )05(—1( )
Kk’

+ % Z a;(k)a;(_k) Vaﬁ;y5 (k’ k/)\IIyS (k/)
Kk’
(1.37)

where we’ve introduced the shorthand
Vapro (K K) = Vg 5(k, —k; K, —k’).

The leading term in (7.37) is just a com-
plex number, the next term is the normal state
one-electron band structure, and the final two
terms are new.

The BCS Hamiltonian can be simplified
even further if we define the gap function,

AaB(k) = Z Vaﬁy&(k; k/)\ll‘yﬁ(k,) (738)
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so that (7.37) now becomes

l k / !
Hpes = 5 > Wos(K) Vegys (K K) W5 (K')

Kk’

+2E,(K)a; (K)a, (k)

423 (4 09)8,5()ah ()

—a,(K)AL5(K) ag(—K)]

Note that the gap function has the same sym-
metries as the order parameter itself. In par-
ticular it is antisymmetric under exchange of
labels,

Aﬁa(_k) = Z Vﬁa;‘yﬁ(_k; k,)\I"yS(k/)

k'yé

(7.39)

= Z VﬂB;Sy(_k; _k,)\lfys(k,)

k'yé

= Z VaB;‘yS(_k; _k/)\pﬁ‘y(_k/)
k'yé

= A, (K) (7.40)

V. THE BOGOLIUBOV
TRANSFORMATION

The BCS Hamiltonian, (7.39), is bilin-
ear in the electron operators, and so it can
be diagonalized by a unitary transforma-
tion, called the Bogoliubov transformation,
that mixes electron creation and annihilation
operators.

The generator for the Bogoliubov trans-
formation is the anti-hermitian operator

B =1 3 [0,400a,(a)(—k)
k

+ 0% (K)a, (k) ag(—k)]  (7.41)

Since the electron operators anticommute,
the coefficients ©,4(k) must be antisymmet-
ric under exchange of spin and band indices
and k — -k,

0,5(k) = —0g,(-k) (7.42)
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The action of the Bogoliubov transformation
on the electron operators is

eBaa (k) eiB = Uaﬁ (k) aﬁ (k) - VaB (k)d; (_k)
= b, (K) (7.43)

which defines the quasiparticle operators
b, (k). The coefficients U,q(k) and V,4(k)
are given by

1 *
Up,l/(k) = 6,1/,1/ + 2_!®p,a (k) ®al/(_k)

1
+ 51O (00,5 (—K)°

Vi (K) = 0, (K)

(7.44a)

1
+ §®W(k)®§5(—k)®ﬁy(k) +---
(7.44b)

The V,, (k) have the same symmetry as
0, (k) itself,

VW(k) = V,,M(—k) (7.45a)
whereas for the U’s we have
Ujﬂ(k) = Uw(k) (7.45b)

The Bogoliubov transformation preserves the
canonical commutation relations for the elec-
tron operators, (7.21), which lead to the fol-
lowing relations:

Uay, (k) V/J.ﬁ (k) - Va;/, (k) U:,B(_k) =0
(7.46a)

Uau (K)U,p(K) = Vi, (K) V5 (—K) = 8,5
(7.46b)

The coefficients ©,4(k), or equivalently
the Bogoliubov amplitudes, are chosen so
that the “off-diagonal” terms, i.e. the terms
that involve the product of two creation or
two annihilation operators, vanish. In order
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to facilitate the calculation of the Bogoli-
ubov amplitudes it is useful to define a two-
component operator

_( aa(k)
aw=(78)
The BCS Hamiltonian can then be written in
the compact form

(7.47)

1 + ,
Hges = 5 ZAL(k) ‘Haﬁ(k) ’ AB(k) +E0
Kk

(7.48)
where the 2 x 2 matrix H,z(K) is

Eaﬁ (k) Aaﬁ (k)

Haﬁ(k) N (_AZB(_k) _Eaﬁ(_k)) (7.49)

The constant Ej arises from reordering the
electron operators,
1
Ey=>YE®) (150
2 ak
and E,g(k) is the diagonal matrix E,z(k) =
E, (k)8 ,z.
The action of the Bogoliubov trans-

formation, (7.43), on the BCS Hamiltonian
(7.48) is

Al (K)- H,p(k)- Aﬁ(k)e_B

U, (k V,.(k
=109 (28 ) e

. (_ng M U*fé_k)) A,K) (7.50)

We see from this that the Bogoliubov trans-
formation acting on the electron opera-
tors induces a unitary transformation of the
matrix H,z(k). In the usual way, the unitary
matrix that diagonalizes H,5(k) can be con-
structed from its eigenvectors. By inspection
of (7.51) we see that the BCS Hamiltonian
is diagonalized if the Bogoliubov amplitudes
satisfy the eigenvalue equation

(82 22 8) (L)
= A, (K) (_gﬁ(('i)k)) (7.522)

7 BCS THEORY

It should be noted that by introducing the
two-component operator A,(k) we have
doubled the size of the vector space. As
a consequence, for every eigenvector with
eigenvalue A, (k) there is a second eigenvec-
tor with eigenvalue —A (k) given by

(5% 22%) (%)
=00 (%)

If we use (7.52a,b), the Hamiltonian takes
the diagonal form

(7.52b)

Hyes = A,TL (k) (AM (l(())SW _A:U“ 8()5/”) Ay(k)
(7.53)

which can be expressed in terms of the elec-
tron operators as

Hyes = Z )\“(k)bL(k)bM(k) + E[) - E(’)/
uk

(7.54)
where

E=iYAm  (5)

is a constant that arises when the quasi-
particle operators are normal ordered. The
eigenvalues A, (K) appearing in (7.52) are the
quasiparticle energies.

VI. THE SELF-CONSISTENT GAP
EQUATION

By treating order parameter in the mean-
field approximation the BCS Hamiltonian
clearly breaks global gauge symmetry, but
we must complete the theory by calculating
the order parameter in the ordered state,

V,5(k) = Z'Tr eiBHBCS[W]aa(k)aB(—k)
(7.56)
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Note that the order parameter appears both
on the right and on the left-hand side of
this equation, so it must be solved self-
consistently.

If we apply the Bogoliubov transforma-
tion to (7.56), we have

W,z (k) = Z7'Tr e=Plscs
(U (K)a, (K) = Vo, (K)af,(=K)]

x [Up, (—K)a,(—K) — Vg, (—k)a} (k)]
(7.57)

The Bogoliubov transformation diagonalizes
the BCS Hamiltonian as in (7.54), so the ther-
mal averages in (7.57) can be done immedi-
ately, with the result

V() = [U,, (K)V,5(k) [1 = n(BA,)]
— Vo (K) Usg(—K)n(BA,)]
(7.58)

where n(x) = (¢*41)"" is the usual Fermi-
Dirac occupation function.

A. Solution of the Gap Equation
Near T,

In general this nonlinear equation is
quite difficult to solve, but near the criti-
cal temperature, where the order parameter
is small, we can treat the symmetry-breaking
terms in Hp¢ as a perturbation and linearize
the gap equation. The details of this calcula-
tion are somewhat involved, and so we rel-
egate them to Appendix A. The final result
is (A.13)

1 - n[BEs(—Kk)] - n[BE,(K)]
Ea(k) + EB(_k)
x A,p(K)

V,5(k) =

(7.59)

The energy dependent factor in (7.59) has a
maximum near E, & EB = (), that is for both
energies near the Fermi surface. Therefore
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bands that are far from the Fermi energy will
contribute very little to the superconducting
order parameter.

If we use the definition of the gap func-
tion, (7.38), the gap equation (7.59) can
be written entirely in terms of the order
parameter,

| —n[BEg(—k)] — n[BE, (k)]
E,(k)+ Eg(—k)
XY Vg p)¥,,(p) (7.60)

\Ifaﬁ (k) =

B. Solution At T=0

The gap equation also simplifies at zero
temperature, where the number of quasi-
particles vanishes. In this case we have,
by (7.46a)

lim W, (k) > U, (k)V, 5 (K)

= lVaB[2®(k)]

5 (7.61)

which tells us that V,5(k) has the same sym-
metry as the order parameter.

C. Nodes of the Order Parameter

Most of the superconducting materials
known before the discovery of the copper-
oxide high temperature superconductors by
Bednorz and Miiller (1986) are of the “s-
wave” type, meaning the order parameter
is a spin-singlet and positive everywhere in
the Brillouin zone. There is convincing evi-
dence that the quasi two-dimensional high-
temperature superconductors are “d-wave”,
with nodal lines along the directions k, =
+k, in the plane perpendicular to the c-
axis. Heavy-fermion superconductors like
UPt; may be “p-wave”, or triplet, ¥, (k) =
—W,5(—Kk), requiring a node at k = 0.

The order parameter must transform as
an irreducible representation of the point
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group of the crystal structure!. If the order
parameter has a single component, it must
transform as a one-dimensional represen-
tation of the point group. Of these one-
dimensional representations, there is always
the identity representation, which corre-
sponds to the case where the order parameter
does not change sign under the operations
of the point group. This is referred to as
“extended s-wave”. It is possible that the
order parameter can still have nodes in
this case. For example, the order parameter
(k) = Py + ¢, (cos k ,a+cos k,a), which is
invariant under the point group D,, appropri-
ate to a copper-oxygen plane in the cuprate
materials, may have nodal lines near the cor-
ners of the Brillouin zone if ¢, < 2i,.

On the other hand, if the order param-
eter transforms as one of the other one-
dimensional representations of the point
group, it must change sign under at least one
element of the point group, P, W,z(Pk) =
— *aB (k)

D. Single Band Singlet Pairing

In the case of spin-singlet pairing in a
single band, the order parameter is

W, (p) =¢€,,¥(p)

where ¢,, = —¢,, and {(p) = (—p) is a
complex scalar function. The same is true of
the gap function A, (p) = £,,A(p) and the
Bogoliubov parameter 0,,(k) = &,,0(k).
If we assume the band energies are spin-
independent and invariant under parity, the
form of the Bogoliubov amplitudes simplify

(7.62)

a great deal (note that &,,&,5 = —98,5) and
we find

U,p(K) = 8,5 cos 0(k)

Vop(K) = &,4sin 0(k) (7.63)

! Anexception to this can occurif two order parame-
ters with different symmetry are degenerate. In this
case the order parameter is said to be “mixed”.
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The quasiparticle energies are given by

Ak) = VE (k) +[A(K)[2

from which we see why A(Kk) is referred to
as the gap function.

The Bogoliubov amplitudes can be
found,

(k)| = % <1+ @>

(7.64)

A(k)
v(K)|? = % (1 — %) (7.65)

and are shown in Fig. 7.1. The expression
for the order parameter, (7.58) then takes the
very simple form

1 —2n[AK)]

W) =~ A

(7.66)

Close to the transition temperature the order
parameter is given by

1 —2n[BE(K)]
TTTER) > V(k, p)y(p)

’ (7.67)

P(k) =

E. S-Wave Pairing

To proceed further we need a model for
the interaction potential. A simple choice (J.
Bardeen, L.N. Cooper and J. R. Schrieffer
1957) that leads to tractable expressions is

V(k, p) = —Vyn(E(K)/Ey)n(E(p)/Ey)
(7.68)
where

1 for—1<x<1

) (7.69)
0 otherwise

n(x) =

Note that the choice of sign in (7.68) antic-
ipates that we will find a solution only if
the effective interaction is attractive. In the
case of phonon-mediated interactions, V, is
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Figure 7.1 Bogoliubov amplitudes in the neighborhood of the Fermi surface.

a measure of the strength of the electron-
phonon coupling and E, = hw, is a typical
phonon energy. We then have

000 = vy (5 S o )
(1.70)
where
(7.71)

k=3 M(E®)/Eg)d(p)

If we substitute (7.70) for the order parameter
in (7.71) we get

1= VOZU(E(P)/EO) <M>

2E(p)
(7.72)

This equation determines the transition tem-
perature, which enters through the Fermi-
Dirac function on the right hand side.

The summand in (7.72) is monotonically
decreasing with temperature. Above the tran-
sition temperature the only solution to the
gap equation is (k) =0. For T < T, a sec-
ond solution exists with (k) # 0.

We can solve (7.72) for the transition
temperature if we replace the sum by an

integral and assume the density of states in
the neighborhood of the Fermi surface is
constant, D(0). With these approximations,
(7.72) becomes

1= VOD(O) /( 2n(E)]>dE

—E,

‘tanh E / 2k,T

CdE

— V,D(0) / (1.73)

In most simple superconductors E,/k;zT, >>
1. The integral in (7.73) can then be done by
parts, and in the remaining integral the upper
limit set to infinity, with the result

27
kT, = =5
o

c

Eye /PO (7.74)

The remarkable thing about this result is that
no matter how weak the interaction between
electrons, there is always a superconducting
state. It is also clear that any sort of series
expansion in V|, will suffer from an essential
singularity at V;, = 0. Figure 7.2 shows a scat-
ter plot of the density of states and transition



182

7 BCS THEORY

T T 1 rvIrrrvry

100;

-

-

Ba(Pb,Bi0; B
a

OPb

10

poo

m
Cq

T TTTTIY

o0Sn

Tc (K)

T

T1
1 oAl

T ETTTT
n
[+

# SrTip

{Bi,Pb)-Sr—-Ca—Cu-0 i
{Okazaki et al., 1990)
=

E {La,Sr) Cun (Kitazawa et al., 1987b)

IA1 54

Transition-metal
oin alloys and compounds

L
T T T TATITT T

(Junod et al., 1988)
Ba ¥Cu 0.’

{La,Ca),Cu0,
AA G(Kltazawa etal.,
Chevrel 1987a)

o I.:i.'l‘l2 4

Al 3 2aaal

1

UBe 13
A

A
(:e!:uzsi2

I3t raagl

1 1 PR L Twey |

100

o0

states )

eV (metal atom) spin

Figure 7.2 Dependence of the superconducting transition temperature
T, on the density of states D(0) for various superconductors (Okazaki

et al., 1990)

temperatures for a variety of superconduct-
ing materials.

F. Zero-Temperature Gap

At zero temperature there are no quasi-
particles and the gap equation becomes

0 =530 n(ER)/ )

x Y n(E(p)/E)y(p)  (71.75)

Once again we define

k=Y m(E(p)/Ey)(p) (7.76)

and, following the same steps that led to
the expression for the transition temperature,
we find

1 =V,D,(0)sinh ™' (E,/A,) (7.77)

In the weak-coupling limit, E,/A, >> 1, the
zero-temperature gap is
Eo -1/vip,0)

A, =
07 9

(7.78)

If we take the ratio of the zero-temperature
gap to the critical temperature we find

24, 2
=" ~353

kyT.  e¥

(7.79)

The full temperature dependence of the gap
is shown in Fig. 7.3 below.

Table 7.1 lists the transition temper-
atures and zero-temperature gaps, and the
dimensionless ratio 2A,/kgT. for several
superconductors. Given the crude approxi-
mations made in order to calculate the ratio
of the zero temperature gap to the transition
temperature, it is remarkable that the value
of this ratio for some real materials is not too
far from the weak-coupling BCS value.
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Many of the physical properties of
superconductors depend on the quasiparticle
density of states. In particular the presence
of the gap is especially important, leading
for example, to an exponential behavior in
the specific heat. If we assume the density of
states in the normal phase is slowly varying
in the neighborhood of the Fermi surface,
then the density of states in the supercon-
ducting state, shown in Fig. 7.4 is

D,(0)A
DA
2 — A2
Dy=10 Al <A  (7.80)
D,(0)A
D.O0r A< —A
V2 _ A2

Table 7.1 Comparison of Energy Gaps for Various Superconductors?

Material T.. K 2A,, meV 2A,/kgT,
Hf 0.13 0.044 39
Cd 0.52 0.14 32
Zn 0.85 0.23 32
Al 1.2 0.35 34
In 3.4 1.05 3.6
Hg 4.2 1.7 4.6
Pb 7.2 2.7 43
Nb 9.3 3.0 3.8
V;Ge(Al5) 11.2 3.1 32
V;Si(A15) 17.1 5.4 3.7
Nb;Sn(A15) 18.1 4.7 3.0
K;Cg 19 5.9 3.6
Rb;Cy, 29 7.5 3.0
Baj (K, 4BiO; 18.5 5.9 3.7
(Ndg.925Ceq g75),CuOy 21 74 4.4
(Lag 925510,075),CuOy4 36 13 4.3
YBa,Cu;0,_5 87 30 4.0
Bi,Sr,Ca,Cu;0, 108 53 5.7
Tl,Ba,CaCu,Og 112 44 4.5
Tl,Ba,Ca,Cu;0,, 105 28 3.1
HgBa,Ca,Cu;04 131 48 43

“ Data on elements from Meservey and Schwartz (1969); data on the A15 compounds from Vonsovsky
et al. (1982); and data on high-temperature superconductors from T. Hasegawa et al. (1991). K;Cq,
and Rb;Cg, values are from Degiorgi er al. (1992), and HgBa,Ca,Cu;04 data are from Schilling
et al. (1994b). Many of the 2A/kg T, ratios are averages of several determinations, sometimes with
considerable scatter; the 2A, values are calculated from columns 2 and 4. The BCS value of 2A,/kg T,
is 3.52. Table 3.1 provides energy gap data for many additional elements.
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G. D-Wave Order Parameter

There is a growing consensus that the
order parameter in the copper-oxide super-
conductors is “d-wave”. These materials
are fairly anisotropic, and many treatments
are quasi two-dimensional, focusing on the
copper-oxygen planes that form a nearly
square lattice. It is also true that many of
the parent materials of the cuprates are anti-
ferromagnetic; doping tends to destroy the
long-range AF order, but strong short range
AF correlations survive in the normal state of
superconducting samples. In this section we
present a very simple “toy model” that leads
to a d-wave order parameter. This model is
not intended to be a realistic representation
of any material, but merely to illustrate how
such a solution to the gap equation can arise.

The point group for the square, D,
has the parity-even one dimensional repre-
sentations listed in the following table (D.L
Scalapino, 1995),

The order parameter must trans-
form as one of these one-dimensional
representations.

The gap equation, (7.66), can be cast in a
more symmetric form by defining a rescaled
order parameter

P(k) = v/ k) x(k) (7.81)

Table 7.2 Irreducible
one-dimensional representations of the
point group D,;. (D.L. Scalapino
(1995))

Irreducible
one-dimensional
representation Basis Function
Ty 1,cos k,a+cos k,a
Iy sin k,asin k,ax
(cos k,a—cos kya)

ry cos k.a—cos kya

+ G G
I sin k.asin kya

7 BCS THEORY

and a rescaled two-body potential,

Wk, p) = v f(k)V(k, p)v f(p)

where f(p) > 0 is the energy-dependent
function

_ 1-2n[BA(p)]
flp) = T8

The gap equation now has the simple form

x(k) =—B 3 W(k, p)x(p)

(7.82)

(7.83)

The simple form (7.68) for the inter-
action potential is insufficient to describe
an order parameter that changes sign within
the Brillouin zone, since, as one can see
from (7.76), the parameter « vanishes in this
case. Therefore let us consider an interaction
W(Kk, p) that is strongly peaked for a momen-
tum transfer ¢ = k — p in the neighborhood

of gy = (7. 7).

Wik, p) = Vod(k—p, qy) (7.84)
The gap equation then becomes
x(k) = —BVox(k —qp) (7.85)

If we assume that V,, > 0, that is the effective
potential is repulsive, it follows that the order
parameter must change sign on translation

by q,

P(k) = —ih(k —qo) (7.86)

This rules out the extended s-wave case,
(k) = iy + ¥, (cos k,a + cos k,a), unless
Y, =0, and an order parameter that trans-
forms as T, leaving the possibility of order
parameters that transform according to the
representations I and T . Contour plots of
these two cases are shown in figures 7.5a,b.

Whether the order parameter is extended
s-wave, d-wave, or the even more compli-
cated form shown in Fig. 7.5b, is ultimately
decided by which one gives the lowest free
energy.
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Figure 7.4 Density of states in the superconducting
state near the Fermi surface.
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H. Multi-Band Singlet Pairing

The superconducting state in MgB, is
believed to involve more than one band. In
order to investigate case where several bands
may lie close to the Fermi surface, we return
to (7.60) and again assume singlet pairing.
We will also assume that the bands are parity
invariant so E;(k) = E;(—k). The gap equa-
tion (7.60) becomes

1 —n[BE;(k)] —n[BE;(k)]
E(k) +E,(K)

X Vi (K;p)W,,, (p)  (7.87)

‘I'ij(k) =

where the Latin indices label the bands

and take the values i =1,2,...n. We can
r _T s ,r
2 2
T : y m
KN 1T
2 2
Or 10
_T _T
2 2
_7r-| 1 1 ’__71-
o _z T R
2 2

Figure 7.5a Contour plot of k, versus k, for the d-wave order parameter belonging to the

representation I';” of the point group Dy,
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Figure 7.5b  Contour plot of k, versus k, for the order parameter belonging to the repre-

sentation Iy of the point group Dyy,.

simplify the structure of (7.87) by defining
the function

1 —n(BE;(p)) — n(BE;(p))
B (Ei(p) + Ej(P))

fij(P) =
(7.88)

Note that f;;(p) > 0, which allows us to
define a rescaled order parameter, x;;(p),

q’ij(P) = fij(P)Xij (p) (7.89)

and a rescaled two-body potential

VVij;mn(k’ p) = fzj(k) Vij;mn(k’ p) V fmn(p)
(7.90)

The self-consistent then

becomes

Xij(k) =B Z Z Wij;mn(k» P) X (P) (7.91)

p mn

gap equation

If we regard this as an eigenvector-
eigenvalue equation, we see that the scaled
order parameter is an eigenvector of W with
eigenvalue 1/. If the largest eigenvalue of
W is wy(B), then the critical temperature is
the solution of the equation

Bch(Bc) =1

Denoting the eigenvector corresponding to

the maximum eigenvalue by d)g.)) (k), the

(7.92)
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order parameter is

(k) =/ f;;(K) b)) (k)

If we assume that the intra-band scat-
tering terms in W are large compared to the
inter-band terms, the well-known methods
of perturbation theory can be applied to the
eigenvalue problem, (7.91). In the usual way
W is separated into two parts,

(7.93)

Wi (K, D) = WS (K, p)+ W, (K, p)

(7.94)
where WI-S?,),,n(k,p) includes all intra-band
interactions (and is therefore diagonal in the
band indices) and Wi%n(k,p) contains all
inter-band interactions. Following standard
perturbation theory, (here the eigenvectors
and eigenvalues are understood to be those
of W©®) we find the first- correction to the

maximum eigenvector is’

(6, WD H)

Wy —w,

g =%

n#0

()
¢;;° (7.952)

and the shift in the maximum eigenvalue
is, to second order (the first order term
vanishes),

|(¢<n>’ W o) |2

Wy —

of =%

n#0

>0 (7.95b)

n

We see that only processes where the num-
ber of electrons in each band remains fixed
contribute to the change in the order param-
eter and eigenvalue to lowest order. It is also
interesting to note that quite generally the
presence of other bands increases the eigen-
value, and therefore the critical temperature.

In the beginning of our discussion
we introduced an effective electron-electron

2The inner product notation used in (7.85)
involves both sums over band indices and a sum
over wavevectors.
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potential without saying anything about its
origin, other than noting that in the BCS
theory the exchange of virtual phonons
gives rise to an attractive interaction. A
detailed calculation of the electron-phonon
coupling is beyond the scope of this book,
so we simply refer to the central result of
Eliashberg, who defines the dimensionless
electron-phonon coupling constant

F o (w)D,, (o
A= 2/dwM (7.96)
0]
0
Superconductors  are  characterized
according to the magnitude of A,
A << 1 weak coupling
A~1 intermediate coupling (7.97)
A>>1 strong coupling

In addition to the attractive electron-
phonon coupling there is a residual screened
Coulomb repulsive interaction characterized
by the dimensionless parameter u}. The net
electron-electron interaction is the sum of
these two terms, and in the expressions (7.74)
and (7.78) we make the substitution

so the transition temperature is given by

T, =1.130 ¢ 5 (7.99)

A number of other expressions for the
critical temperature have appeared in the lit-
erature. McMillan (1968) gives the following
empirical formula

0 1.04(1+A\
TC — _D exp _#
1.45 N—pui(14 062\
(7.100)
Values of N\ and u’ reported in the litera-

ture for various superconductors are listed in
Table 7.3.
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Table 7.3 Electron—Phonon Coupling Constants A and Coulomb Interaction

Parameters u:?

Material T.(K) A [T References

Ru 0.49 0.47 0.15 Table 3.1

Zr 0.61 0.22 0.17 Table 3.1

Os 0.66 0.44 0.12 Table 3.1

Mo 0.92 0.35 0.09 Table 3.1

Re 1.7 0.37 0.1 Table 3.1

Pb 7.2 1.55 Ginzburg and Kirzhnits (1977, p. 171)
Nb 9.3 0.85 Ginzburg and Kirzhnits (1977, p. 171)
NbC 11.1 0.61 Ginzburg and Kirzhnits (1977, p. 171)
TaC 114 0.62 Ginzburg and Kirzhnits (1977, p. 171)
V;Ge 6.1 0.7 Vonsovsky er al. (1982, p. 303)

V;Si 17.1 1.12 Vonsovsky et al. (1982, p. 303)
Nb;Sn 18.1 1.67 Ginzburg and Kirzhnits (1977, p. 171)
Nb;Ge 23.2 1.80 Vonsovsky et al. (1982, p. 303)
K;Cyqo 16.3 0.51 Novikov et al. (1992)

Rb;Cy 30.5 0.61 Novikov et al. (1992)

Cs3Cyq 47.4 0.72 Novikov et al. (1992)

Ba(Pb, Bi)O; 12 1.3 Schlesinger et al. (1989)

(Lag 913510 ,037)CuO, 0.1 Gurvitch and Fiory (1987a,b,c)

(Lag 913S10,037)CuO, 35 2.0 0.18 Rammer (1987)

YBa,Cu;0, 0.2 Gurvitch and Fiory (1987a,b,c)
YBa,Cu;0, 0.3 Tanner and Timusk (1992, p. 416)
YBa,Cu;0, 90 2.5 0.1 Kirtley ef al. (1987)

Bi, Sr,CuOq 0.2 Tanner and Timusk (1992, p. 416)
Bi,Sr,CaCu,Oq 0.3 Tanner and Timusk (1992, p. 416)
Tl,Ba,CaCu, Oy 0.3 Foster et al. (1990)

“ High and low estimates are given for high-temperature superconductors, some of which are averages
of several investigators. Skriver and Mertig (1990) give coupling constants from rare earths.

VII. RESPONSE OF A
SUPERCONDUCTOR TO A
MAGNETIC FIELD

In this section we consider the behavior
of the order parameter in the presence of a
weak, slowly varying magnetic field B which
is given in terms of the vector potential, A
B=VxA (7.101)
Our goal here is to calculate the current den-
sity J induced by the externally applied mag-
netic field, and in this way to demonstrate the
Meissner effect. To simplify the discussion
we will consider singlet pairing in a single
free-electron like band characterized by an

effective mass m. The BCS Hamiltonian in
this model is

ﬁZ
Hpcs “om /d3”

x (V - %A) yl(r)- <V+ %A)
X o(0) = 1 [ & (00, (1)

+% [&r [ @

x [P0 (r. 1)

— 85, ) U, (O ()] (7.102)



VII RESPONSE OF A SUPERCONDUCTOR TO A MAGNETIC FIELD

where u, the chemical potential, sets the
zero-point of the energy scale. Note that the
order parameter (and the gap function) is
now a function of the coordinates,

Wop(r, 1) = (Y, (D) ("))

Following our earlier treatment, the BCS
Hamiltonian can be written up to a c-number
(i.e. complex number) in the form

(7.103)

H —1 /dg
—— | &3r
BCS =5

X /d3r/\I';(r/)HaB(r/, r)Wp(r)
(7.104)

where the two-component field operator is

r
W (r) = (%8) (7.105)
and H,4(r', r) is
H,g(r',r)
—8,5(r',r)
#2 ie \’
X |:ﬂ <Vr+ %A) +/.L:| Ap(r',r)
B —A () o)
h ie
X [ﬁ (Vrf EA) +p{|
(7.106)

As before, the Bogoliubov amplitudes
are the components of the eigenvectors of
H,z(r', r), and satisfy the coupled equations

2 | 2
{_Zﬁ_m (vr+ %A) +M:| Uqp (r)
— [ 8 (0 ¥V () = AU ()
ﬁz . 2
(7 ia) ] v

- /d3r/Aw(r, ') U,p(r') = —AV,4(r)
(7.107)
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In the absence of the magnetic field we
recover translational symmetry, and the
Bogoliubov amplitudes are

Uaﬁ (r) = UaB (k)eik.r

Vaﬁ(r) =V (k)eik-r (7.108)

Substitution into (7.107) with A =0 gives

s — 1) Upp(k)
(5r+)

2m

- Aa,u, (k) VM,B (k) = AUC(B (k)
(% —#) Vest®

2m
—A,, (k) U,z(k) = —AV,4(k) (7.109)

In the presence of a weak, slowly vary-
ing magnetic field we can apply the adi-
abatic approximation, and assume that the
amplitudes in (7.108) are slowly varying
in space,

Uyp(r) = Uyg(k, 1) er

Vg (1) = Vp(k, r)e™” (7.110)
and we can drop the term in the kinetic
energy operator that is quadratic in A,

. 2 .
2
<V,+%A> mvf+§v.A (7.111)

Keeping only the largest terms, (7.109)
becomes

hk> R
T K A®) — ) Uy )
2m m

— Aw(k) Vuﬁ(k; r)= /\Uaﬁ(k; r)
272

(ﬁ k _ Ek«A(l‘) —,U«> VaB(k; r)
2m m

—A,,(K)U,s(k;t) = =AV,4(k; 1)
(7.112a)
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If we move the terms involving the vector
potential to the right, we have

212
(G =) Vesthi )= 84,00Vl

()\ _ ey, A(r)) Uys(k; T)

h2k?
(o =) Vsl 1) = 3,00 Uy i)

()\ _ ey, A(r)) V() (7.112b)

Comparing this with (7.109), we see that
the Bogoliubov amplitudes follow the vector
potential adiabatically through their depen-
dence on the eigenvalue

MK, 1) = A(K) + %k A(r)  (7.113)

The current density is given by

J(r >— [¢ (r) Vifr, ()

V0]~ S A@UE, )
(7.114)

and its thermal average is

) =@Z{ U2 (VU ()

— VU, (r)" Uy ()] n(A)
+[Va ()" VU (1) = VWV (1)U ()]

X [1=n(0)] = =A@ [U () U (1)

x n(A) +V; (r)* Vg (r)(1 —n(A))]
(7.115)

Keeping only terms to first order in the vector
potential, we have

<J<r>>——2(ff) ;

n(f
kal i ’M - A(r)
(7.116)
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where the total electron density is
2 2
ne=2 3 [l n(a)
~PERP (1=n(A)]  @.117)

The current density induced by the applied
field is

G =-Tiam @

where the “density of super-electrons” is

eh on
=n, — = B(——
Mo = Me 3<m> v% ( aA)

(7.119)

and we have used rotational symmetry to write

on 1 on
kikj— = =8,y k*'— 7.120
Xk: "o 3Y Xk: A ( )
Note that at zero temperature the second fac-
tor in Eq. (7.119) vanishes, and the density
of super-electrons is equal to the total density
of electrons.

If we substitute our expression (7.118)
into Ampere’s law, we have London’s
equation

Vx(VxA)= (7.121)
where the London penetration depth, A,, is
given by

6211

s (7.122)
m

ALY = 1o

The perfect diamagnetism that is characteristic
of superconductorsisembodiedin Eq. (7.121).

APPENDIX A. DERIVATION OF THE
GAP EQUATION NEAR T,

The order parameter is given by

V,5(k) =Z7'Tr e P a,(k)ag(—k) (A.1)



APPENDIX A. DERIVATION OF THE GAP EQUATION NEAR T,

The BCS Hamiltonian, (7.39), is bilinear in
the electron operators, which means thermal
averages of the type (A.1) can be calculated
by purely algebraic means.

First, we introduce the Bloch operators

a,(k,7)=e"a,(k)e ™ (A.2)

The equation for the order parameter can be
written as

V,5(k) = Z'Tr e_ﬁHaa(k)e_BHeBHaB(—k)

=z 'Tr e_ﬁHaﬁ(—k, B)a, (k)
(A3)

where we’ve used the cyclic property of the
trace.

Near the transition temperature the sym-
metry breaking terms in the BCS Hamilto-
nian are small and can be treated as a pertur-
bation, so we split the Hamiltonian into two
parts, H = H,+ H, where

Hy=3} E,(K)a;(K)a,(k)  (A4)
and
Hy =5 ¥ [a093,y(W)ah (1)
k
—a,(K)AL(K)ag(-k)]  (A5)
In the interaction picture we write
e ™ =e¢™K(T) (A.6)
where K(7) satisfies
—dK—(T) = H,(1)K(7) (A7)
dr

with
H,(7)=e™H e ™

- Lpfeemnegg
X (k) A (K) + — A, (K)'
x efr(Ea<k>+Eﬁ<*“>)aa(k)aﬁ(_k)]
(A-8)
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Integrating (A.7) to first order gives

K(r)=1- [d7H,(7)

R 2 by

1 eT(Ea+E(-K)) _ |
2 k

x al (K)aj(—k)Az(K)
_ o (Ea(0)+Eg(-K))

E, (k) + Eg(—k)

1
—Agp(k)

X aa(k)aﬁ(—k)] (A.9)

We then have for a, (K, 7) to first order
a,(k, 1) = e "MK (n)a, (k)K(T)

eT(ELFE(P) _

1
=e MLy (k) + =

x [}, (0)a}(~P), 4, (K)] A, ()} = ¢ W,

T (Eu+E(-P) _

x (K) + %e’TE‘*(k) > (p)

AL
o E.P)+E,(-p) *
X [a;(p)Sva(k’ _p) - S;La(k’ p)ai(_p)]
— e’TE“(k)aa(k) — ¢ (k)
eT(E#(fk)+Ea(k)) _1

X % EM _ (k) +Ea(k) Aap,(k)a,;(_p)

(A.10)
Inserting this into (A.3) we have
Vg (k) = (ap(—K, B)ay(k))
_ e—TEﬁ(—k)\I,Ba(_k) — o TEs(K)
eT(EQ(k)+Eﬁ(—k)) .

E, (k) + Eg(—k)

LA (BOn(E,)

(A.11)

where n(E,) = (a},(p)a,(k)) = (efF« +1)""!
is the usual Fermi-Dirac occupation function.
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Using the antisymmetry of the order param-
eter, (A.11) can be written as

e BEs(=K)
1+67Eﬁ(—k)
PE0+EL(-K) _ 4
E, (k) + Eg (k)
=n[Eg(-K)]n[E, (k)]
eﬁ(Ea(k)-%—EB(—k))—l

" TEL(K) + Ey(K)

\PaB (k) =

AaB (k)n(Ea)

Ap(k)
(A.12)
With a little algebra we have

1 —n[Eg(—k)] —n[E, (k)]
E, (k) + Eg(—k)

\Paﬁ(k) = AaB (k)

(A.13)
If we now use the definition of the gap func-
tion, (A.13) becomes Eq. (7.60).
1 —n[Eg(—K)] —n[E, (K)]
E,(K) + Ex(—K)

X Z Vaﬁ;p,v(k; p)\ypv(p) (A14)

\I,aﬁ (k) =

FURTHER READING

Some of the classical articles on the BCS theory
have already been mentioned at the beginning of the
chapter. The article by Cooper (1956), predicting the
formation of the “pairs” that bear his name, provided
the setting for the BCS theory formulated by Bardeen,
Cooper, and Schrieffer in 1957, and elaborated upon
in the books by de Gennes (1966), Fetter and Walecka
(1971), and Schrieffer (1964).

The textbook by Tinkham (1985) provides a good
introduction to the BCS theory, and Tilley and Tilley
(1986) give a briefer introduction.

Gorkov (1959) showed that the Ginzburg-Landau
theory, which was discussed in the previous chapter,
follows from the BCS theory. This provided a solid
theoretical foundation for the GL theory.

Chapters 4-14 of the book, Theories of High
Temperature Superconductivity (Halley, 1988), discuss
applications of the BCS theory. Allen (1990) reviewed
the BCS approach to electron pairing. The pairing state

7 BCS THEORY

in YBa,Cu;0,_; is discussed by Annett er al. (1990).
We will cite some representative articles.

The weak and strong limits of BCS have been dis-
cussed (Carbotte (1990), Cohen, 1987; Cohen and Penn,
1990; Entin-Wohlman and Imry, 1989; Nasu, 1990).
There is a crossover between a BCS proper regime of
weakly coupled, real space-overlapping Cooper pairs
and a Bose—Einstein regime involving a low density
boson gas of tightly bound fermion pairs (Pistolesi and
Strinati, 1994; Quick et al., 1993; Tokumitu et al.,
1993). The BCS theory has been applied to high tem-
perature superconductors (Berlinsky et al., 1993; Thm
and Yu, 1989; Japiassu et al., 1992; Jarrell et al., 1988;
Kitazawa and Tajima, 1990; Lal and Joshi, 1992; Lu
et al., 1989; Marsiglio, 1991; Marsiglio and Hirsch,
1991; Penn and Cohen, 1992; Pint and Schachinger,
1991; Sachdev and Wang, 1991).

The present chapter, although based in part on
the electron—phonon coupling mechanism (Jiang and
Carbotte, 1992b; Kirkpatrick and Belitz, 1992; Kresin
et al., 1993; Marsiglio and Hirsch, 1994; Nicol and
Carbotte, 1993; Zheng et al., 1994), is nevertheless
much more general in its formalism. Unconventional
phonon or nonphonon coupling can also occur (Annett
et al. (1991), Bussmmann-Holder and Bishop, 1991;
Cox and Maple, 1995; Dobroliubov and Khlebnikov,
1991; Keller, 1991; Klein and Aharony, 1992; Kriiger,
1989; Spathis et al., 1992; Tsay et al., 1991; Van Der
Marel, 1990), involving, for example, excitons (Bala
and Olés, 1993; Gutfreund and Little, 1979; Takada,
1989), plasmons (quantized plasma oscillations; Cote
and Griflin, 1993; Cui and Tsai, 1991; Ishii and Ruvalds,
1993), polaritons (Lue and Sheng, 1993), polarons (elec-
tron plus induced lattice polarization; Kabanov and
Mashtakov, 1993; Konior, 1993; Nettel and MacCrone,
1993; Wood and Cooke, 1992) and bipolarons (de
Jongh, 1992; Emin, 1994; Khalfin and Shapiro, 1992).
Both s-wave and d-wave pairings have been considered
(Anlage et al., 1994; Carbotte and Jiang, 1993; Cote and
Griflin, 1993; Lenck and Carbotte, 1994; Li et al., 1993;
Scalapino, 1995; Wengner and Ostlund, 1993; Won
and Maki, 1994). Kasztin and Leggett (1997) discussed
the nonlocality of d-wave superconductivity, Prozovov
and Giannetta (2006) examined the electrodynamics of
unconventional pairing, and Hirsch feld and Golden feld
(1993) commented on the effects of impurities.

Some authors question the applicability of BCS to
high temperature superconductors (Collins et al., 1991;
Kurihara, 1989). Tesanovic and Rasolt (1989) suggested
a new type of superconductivity in very high magnetic
fields in which there is no upper critical field. The
BCS theory has been examined in terms of the Hubbard
(Falicov and Proetto, 1993; Micnas et al., 1990; Sofo
et al., 1992) and Fermi liquid (Horbach et al., 1993,
Ramakumar, 1993) approaches, which are discussed in
Chapter 10.



FURTHER READING

Carbotte (1990) reviewed Eliashberg (1960a, b) the-
ory and its relationship with BCS. Representative arti-
cles concern (a) high temperature superconductors (Jin
et al., 1992; Lu et al., 1989; Marsiglio, 1991; Mon-
thoux and Pines, 1994; Sulewski et al., 1987; Wermbter
and Tewordt, 1991a; Williams and Carbotte, 1991),
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(b) anisotropies (Combescot, 1991; Lenck et al., 1990;
Radtke et al., 1993; Zhao and Callaway, 1994), (c)
transport properties (Kulic and Zeyher, 1994; Ullah and
Dorsey, 1991), (d) weak coupling limits (Combescot,
1990; Crisan, 1887), and (e) strong coupling limits
(Bulaevskii etal., 1988; Heid, 1992 (Pb); Rammer, 1991).
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Cuprate

Crystallographic

I. INTRODUCTION

Chapter 3 shows that the majority of
single-element crystals have highly symmet-
rical structures, generally fcc or bee, in which
their physical properties are the same along
the three crystallographic directions X, vy,
and z. The NaCl-type and A15 compounds
are also cubic. Some compounds do have
lower symmetries, showing that supercon-
ductivity is compatible with many differ-
ent types of crystallographic structure, but
higher symmetries are certainly more com-
mon. In this chapter we will describe the
structures of the high-temperature supercon-
ductors, almost all which are either tetrago-
nal or orthorhombic, but close to tetragonal.

Structures

In Chapter 3, we also gave some exam-
ples of the role played by structure in
determining the properties of superconduc-
tors. The highest transition temperatures in
alloys of transition metals are at the bound-
aries of instability between the bcc and
hcp forms. The NaCl-type compounds have
ordered vacancies on one or another lat-
tice site. The magnetic and superconducting
properties of the Chevrel phases depend on
whether the large magnetic cations (i.e., pos-
itive ions) occupy eightfold sites surrounded
by chalcogenide ions, or whether the small
magnetic ions occupy octahedral sites sur-
rounded by Mo ions.

The structures described here are held
together by electrons that form ionic or cova-
lent bonds between the atoms. No account
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is taken of the conduction electrons, which
are delocalized over the copper oxide planes
and form the Cooper pairs responsible for
the superconducting properties below T,. The
later Chapter 10 will be devoted to explain-
ing the role of these conduction electrons
within the frameworks of the Hubbard model
and band theory. Whereas the present chapter
describes atom positions in coordinate space,
the Hubbard Model/Band Structure chapter
relies on a reciprocal lattice elucidation of
these same materials.

We begin with a description of the per-
ovskite structure and explain some reasons
that perovskite undergoes various types of
distortions. This prototype exhibits a num-
ber of characteristics that are common to the
high-temperature superconducting cuprates
(see Section V). We will emphasize the
structural commonalities of these materi-
als and make frequent comparisons between
them. Our earlier work (Poole er al., 1988)
and the comprehensive review by Yvon
and Francois (1989) may be consulted for
more structural detail on the atom posi-
tions, interatomic spacings, site symmetries,
etc., of these compounds. There have been
reports of superconductivity in certain other
cuprate structures (e.g., Murphy et al., 1987),
but these will not be reported on in this
chapter.

There is a related series of layered
compounds Bi,0,(M,,_R,,05,.,) called
Aurivillius (1950, 1951, 1952) phases, with
the 12-coordinated M = Ca, Sr, Ba, Bi, Pb,
Cd, La, Sm, Sc, etc., and the 6-coordinated
transition metal R = Nb, Ti, Ta, W,
Fe, etc. The m =1 compound Bi,NbOq
belongs to the same tetragonal space group
I4/mmm, D)) as the lanthanum, bismuth,
and thallium high temperature superconduc-
tors (Medvedeva et al., 1993).

We assume that all samples are well
made and safely stored. Humidity can affect
composition, and Garland (1988) found that
storage of YBa,Cu;0,_5 in 98% humidity
exponentially decreased the diamagnetic sus-
ceptibility with a time constant of 22 days.

8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES
Il. PEROVSKITES

Much has been written about the
high-temperature superconductors being per-
ovskite types. The prototype compound
barium titanate, BaTiO;, exists in three
crystallographic forms with the following
lattice constants and unit cell volumes
(Wyckoff, 1964):

cubic: a=b=c= V=6457A
4.0118A
tetragonal: a=b=3.9947, V=6437A" |[(8.1)
c=4.0336
o o3
ortho a=4.009v2A, V=2(64.26)A
rhombic: b =4.018v2A,
c=3.990A

A. Cubic Form

Above 201°C barium titanate is cubic
and the unit cell contains one formula unit
BaTiO; with a titanium atom on each apex,
a barium atom in the body center, and an
oxygen atom on the center of each edge
of the cube, as illustrated in Fig. 8.1. This
corresponds to the barium atom, titanium
atom, and three oxygen atoms being placed

()
-/

@,

M)
N\
Figure 8.1 Barium titanate (BaTiO;) perovskite
cubic unit cell showing titanium (small black circles)
at the vertices and oxygen (large white circles) at the
edge-centered positions. Ba, not shown, is at the body
center position (Poole ef al., 1988, p. 73).
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in positions with the following x, y, and z
coordinates:

E site: Ti (0,0,0) Ti on apex

F site: O 0,0, 1 three oxygens (8.2)
(0,1,0) centered on
(4,0,0) edges

C site: Ba (; %, %) Ba in center.

The barium in the center has 12 nearest-
neighbor oxygens, so we say that it is 12-fold
coordinated, while the titanium on each apex
has 6-fold (octahedral) coordination with the
oxygens, as may be seen from the figure.
(The notation E for edge, F for face, and
C for center is adopted for reasons that
will become clear in the discussion which
follows.) Throughout this chapter we will
assume that the z-axis is oriented vertically,
so that the x and y axes lie in the horizon-
tal plane.

Ordinarily, solid-state physics texts
place the origin (0, 0, 0) of the perovskite
unit cell at the barium site, with titanium in
the center and the oxygens at the centers of
the cube faces. Our choice of origin facili-
tates comparison with the structures of the
oxide superconductors.

This structure is best understood in
terms of the sizes of the atoms involved.
The ionic radii of 0>~ (1.32A) and Ba**
(1.34 A) are almost the same, as indicated
in Table 8.1, and together they form a per-
fect fcc lattice with the smaller Ti*" ions
(0.68 A) located in octahedral holes sur-
rounded entirely by oxygens. The octahe-
dral holes of a close-packed oxygen lattice
have a radius of 0.545A; if these holes
were empty the lattice constant would be
a=23.73 A, as noted in Fig. 8.2a. Each tita-
nium pushes the surrounding oxygens out-
ward, as shown in Fig. 8.2b, thereby increas-
ing the lattice constant. When the titanium is
replaced by a larger atom, the lattice constant
expands further, as indicated by the data in
the last column of Table 8.2. When Ba is

197

Table 8.1 lonic Radii for Selected
Elements?
Small Cu®t  0.72A Y3t 0.89A
Bt 0.74A
Cut  096A TP 095A
Small-Medium  Ca*>*  0.99A  Bi*  096A
Nd** 0995 A
. La*t  1.06A st 1.12A
Medium-Large He™  1.10A
P> 120A  Agt  126A
Large K* 133A 0> 1324
Ba’t  134A  F- 1.33A

“ See Table VI-2 of Poole et al. (1988) for a more
extensive list.

a=373 A

s

»

.

a= 4.00‘&

Figure 8.2 Cross section of the perovskite unit cell
in the z = 0 plane showing (a) the size of the octahedral
hole (shaded) between oxygens (large circles), and (b)
oxygens pushed apart by the transition ions (small cir-
cles) in the hole sites. For each case the lattice constant
is indicated on the right and the oxygen and hole sizes
on the left (Poole et al., 1988, p. 77).
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Table 8.2 Dependence of the Lattice Constants a of Selected
Perovskites AMO; on the Alkaline Earth A (right) and the lonic
Radius of Transition Metal lon M (left); the Alkaline Earth lonic
Radii are 0.99 A (Ca), 1.12 A (Sr), and 1.34 A (Ba?)

°

Lattice constant a, A

Transition Transition metal

metal radius, A Ca Sr Ba
Ti 0.68 3.84 391 4.01
Fe — — 3.87 4.01
Mo 0.70 — 3.98 4.04
Sn 0.71 3.92 4.03 4.12
Zr 0.79 4.02 4.10 4.19
Pb 0.84 — — 4.27
Ce 0.94 3.85 4.27 4.40
Th 1.02 4.37 4.42 4.80

¢ Data from Wyckoff (Vol. 2, 1964, pp. 391ff).

replaced by the smaller Ca (0.99 A) and Sr
(1.12A) ions, by contrast, there is a corre-
sponding decrease in the lattice constant, as
indicated by the data in columns 3 and 4,
respectively, of Table 8.2. All three alkaline
earths, Ca, Sr, and Ba, appear prominently
in the structures of the high-temperature
superconductors.

B. Tetragonal Form

At room temperature barium titanate
is tetragonal and the deviation from cubic,
(c—a)/%(c—l—a), is about 1%. All of the
atoms have the same x, y coordinates as
in the cubic case, but are shifted along the
z-axis relative to each other by ~ 0.1 A, pro-
ducing the puckered arrangement shown in
Fig. 8.3. The distortions from the ideal struc-
ture are exaggerated in this sketch. The puck-
ering bends the Ti—O-Ti group so that the
Ti-O distance increases while the Ti-Ti dis-
tance remains almost the same. This has the
effect of providing more room for the tita-
nium atoms to fit in their lattice sites. We will
see later that a similar puckering distortion
occurs in the high-temperature superconduc-
tors as a way of providing space for the Cu
atoms in the planes.

Figure 8.3 Perovskite tetragonal unit cell showing
puckered Ti—O layers that are perfectly flat in the cubic
cell of Fig. 8.1. The notation of Fig. 8.1 is used (Poole
et al., 1988, p. 75).

C. Orthorhombic Form

There are two principal ways in which
a tetragonal structure distorts to form an
orthorhombic phase. The first, shown at the
top of Fig. 8.4, is for the b-axis to stretch
relative to the a-axis, resulting in the for-
mation of a rectangle. The second, shown at
the bottom of the figure, is for one diago-
nal of the ab square to stretch and the other
diagonal to compress, resulting in the for-
mation of a thombus. The two diagonals are
perpendicular, rotated by 45° relative to the
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Ll 4l
\ al
o
l —a—

Figure 8.4 Rectangular- (top) and thombal- (bottom)
type distortions of a two-dimensional square unit cell of
width a (Poole et al., 1989).

Barium
Z=1/2

Layer Oxygen

/ “®_ Titanium (copper)
b

S

Figure 8.5 Rhombal expansion of monomolecular
tetragonal unit cell (small squares, lower right) to
bimolecular orthorhombic unit cell (large squares) with
new axes 45° relative to the old axes. The atom posi-
tions are shown for the z=0 and z = % layers (Poole
et al., 1988, p. 76).

original axes, and become the @', b’ dimen-
sions of the new orthorhombic unit cell, as
shown in Fig. 8.5. These @', b’ lattice con-
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stants are ~ /2 times longer than the original
constants, so that the volume of the unit
cell roughly doubles; thus, it contains exactly
twice as many atoms. (The same V2 factor
appears in Eq. 8.1 in our discussion of the
lattice constants for the orthorhombic form
of barium titanate.)

When barium titanate is cooled below
5°C it undergoes a diagonal- or rhombal-
type distortion. The atoms have the same
z coordinates (z =0 or %) as in the cubic
phase, so the distortion occurs entirely in the
x, y-plane, with no puckering of the atoms.
The deviation from tetragonality, as given by
the percentage of anisotropy,

100[6 — a

% ANIS = —
z(b-i-a)

=0.22%, (8.3)

is less than that of most orthorhombic copper
oxide superconductors. We see from Fig. 8.5
that in the cubic phase the oxygen atoms in
the z = 0 plane are separated by 0.19 A. The
rhombal distortion increases this O-O sepa-
ration in one direction and decreases it in the
other, in the manner indicated in Fig. 8.6a,
to produce the Ti nearest-neighbor configu-
ration shown in Fig. 8.6b. This arrangement
helps to fit the titanium into its lattice site.

The transformation from tetragonal to
orthorhombic is generally of the rhombal
type for (La,_ Sr,),Cu0O, and of the recti-
linear type for YBa,Cu;0,_;.

D. Planar Representation

Another way of picturing the structure
of perovskite is to think of the atoms as
forming horizontal planes. If we adopt the
notation [E F C] to designate the occupation
of the E, F, and C sites, the sketches of per-
ovskite presented in Figs. 8.1 and 8.3 follow
the scheme

z=1 |[TiO,~] TiatE, O at two F sites
z=1 [0O-Ba] OatE BaatC
z=0 |[TiO,-] TiatE, O at two F sites

(8.4)
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(a)

®)

Figure 8.6  Shift of the oxygens (large circles) in the
a, b-plane around the titanium atom (small circle) of
perovskite from the room-temperature tetragonal (and
cubic) configuration (a) to the rhombal configuration (b)
of its low-temperature orthorhombic structure.

The planes at the heights z =0, 1, and 1 can

be labeled using this notation. The usefulness
of this labeling scheme will be clarified in
Section V.

This completes our treatment of the
structure of perovskite. We encountered
many features that we will meet again in
the analogous superconductor cases, and we
established notation that will be useful in
describing the structure of the cuprates. In
Section V of Chapter 9 we will discuss
several cubic and close-to-cubic perovskite
superconducting compounds.

8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES

1. PEROVSKITE-TYPE SUPERCON-
DUCTING STRUCTURES

In their first report on high-temperature
superconductors Bednorz and Miiller (1986)
referred to their samples as “metallic,
oxygen-deficient. . . perovskite-like mixed-
valence copper compounds.”  Subse-
quent work has confirmed that the new
superconductors do indeed possess these
characteristics.

In the oxide superconductors Cu®"
replaces the Ti*" of perovskite, and in most
cases the TiO,-perovskite layering is retained
as CuO, layers, which is common to all of
the high-temperature superconductors; such
superconductors exhibit a uniform lattice size
in the a, b-plane, as the data in Table 8.3
demonstrate. The compound BaCuO; does not
occur because the Cu** ion does not form, but
this valence constraintis overcome by replace-
ment of Ba®* by a trivalent ion, such as La**
or Y**, by a reduction in the oxygen content,
or by both. The result is a set of “layers” con-
taining only one oxygen per cation located
between each pair of CuO, layers, or none
at all. Each high-temperature superconductor
has a unique sequence of layers.

We saw from Eq. (8.2) that each atom
in perovskite is located in one of three types
of sites. In like manner, each atom at the
height z in a high-temperature superconduc-
tor occupies either an Edge (E) site on the
edge (0, 0, z), a Face (F) site on the mid-
line of a face ((0, %, 7) or (%, 0, z) or
both), or a Centered (C) site centered within
the unit cell on the z-axis (3, 1, z). The
site occupancy notation [E F C] is used
because many cuprates contain a succession
of [Cu O, -] and [~ O, Cu] layers in which
the Cu atom switches between edge and cen-
tered sites, with the oxygens remaining at
their face positions. Similar alternations in
position take place with Ba, O, and Ca layers,
as illustrated in Fig. 8.7.

Hauck et al. (1991) proposed a classi-
fication of superconducting oxide structures
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Table 8.3 Crystallographic Characteristics of Oxide Superconducting and Related Compounds?

Form.
Compound Code Symm  Type  Enlarg. Units ay(A) co(R) ¢y/Cu  %Anis T.(K) Comments
BaTiO, — c A 1 1 4.012 4012 — 0 — T > 200°C
BaTiO, — T A 1 1 3.995 4.03 — 0 — 20°C
BaTiO, — o] A V2 2 4.0134/2 3.990  — 0.23 — T <5°C
BaPbO, — c A 1 1 4273 4273 — 0 0.4
BaPby ;Bi; ;0; — T S V2 4 4.286/2 4304  — 0 12
BaBiO, — M A V2 2 43552 4335  — 0.13 — B=90.17
Ba, (K, 4BiO; — c A 1 1 4293 4293 — 0 30
La,Cu0, 0201 T S 1 2 3.81 1318 659 0 35 Sr, doped
La,CuO, 0200 O S V2 4 3.960v2  13.18 659 685 35 Sr, doped
YBa,Cu, 04 0212 T A 1 1 3.902 1194 398 0 —
YBa,Cu; 04 0212 O A 1 1 3.855 11.68  3.89 1.43 92
Bi,Sr,CaCu, Oy 212 0 S 542 20 3.81/2 30.6 765 0 84
Bi,Sr,Ca,Cu;0,y 2223 O S 52 20 3.83/2 37 6.17 057 110
Tl,Ba,CuOg 2201 T S 1 2 3.83 2324 116 0 90
Tl,Ba,CaCu,0q 212 T S 1 2 3.85 29.4 735 0 110
Tl,Ba,Ca,Cu;0,, 2223 T S 1 2 3.85 3588 598 0 125
TIBa,CuO; 1201 T A 1 1 3.85 909 9.09 0 52
TIBa,CaCu,0, 1212 T A 1 1 3.85 12.7 635 0 80
TIBa,Ca,Cu;0, 1223 T A 1 1 3.81 152 5.1 0 120
TIBa,Ca;Cu,0, 1234 T A 1 1 3.85 19.0 475 114
TIBa,Ca,CusO 3 1245 T A 1 1 3.85 223 4.42 101
HgBa,CuO, 1200 T A 1 1 3.86 9.5 9.5 0 95
HgBa,CaCu, O 1212 T A 1 1 3.86 12.6 6.3 0 122
HgBa,Ca,Cu, 0y 1223 T A 1 1 3.86 17.7 5.2 0 133

“ Code symmetry (cubic C, tetragonal T, orthorhombic O, monclinic M); type (aligned A, staggered S); enlargement in a, b-plane (diagona
distortion +/2, superlattice 5); formula units per unit cell; lattice parameters (ay, ¢y, the single layer compound, and ¢, per Cu ion); % anisotropy;
and transition temperature 7. For the orthorhombic compounds tabulated values of a, are averages of a, and b,. The single layer compound
Bi,Sr,CuOg¢ does not superconduct.

> 40% of Ba replaced by La;

¢ 50% of Tl replaced by Pb.
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Figure 8.7 Types of atom positions in the layers of
a high-temperature superconductor structure, using the
edge, face, center notation [E F C]. Typical site occu-
pancies are given in the upper right (Poole et al., 1989).

in terms of the sequence (a) superconducting
layers [Cu O, -] and [- O, Cu], (b) insulating
layers, suchas [Y ——] or [-—Ca], and (c) hole-
donating layers, such as [Cu O® -] or [Bi - O].

The high-temperature superconductor
compounds have a horizontal reflection plane
(L to z) called o, at the center of the unit
cell and another o, reflection plane at the top
(and bottom). This means that every plane
of atoms in the lower half of the cell at
the height z is duplicated in the upper half
at the height 1 —z. Such atoms, of course,
appear twice in the unit cell, while atoms
right on the symmetry planes only occur once
since they cannot be reflected. Figure 8.8
shows a [Cu O, -] plane at a height z
reflected to the height 1 —z. Note how the
puckering preserves the reflection symme-
try operation. Superconductors that have this
reflection plane, but lack end-centering and
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]
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Figure 8.8 Unit cell of YBa,Cu;0, showing the
molecular groupings, reflection plane, and layer types.

body-centering operations (see Section VII),
are called aligned because all of their cop-
per atoms are of one type; either all on the
edge (0, 0, z) in E positions or all centered
(%, %, z) at C sites. In other words, they all
lie one above the other on the same vertical
lines, as do the Cu ions in Fig. 8.8.

IV. ALIGNED YBa,Cu,0,

The compound YBa,Cu;0;, sometimes
called YBaCuO or the 123 compound, in
its orthorhombic form is a superconduc-
tor below the transition temperature 7, ~
92 K. Figure 8.8 sketches the locations of the
atoms, Fig. 8.9 shows the arrangement of the
copper oxide planes, Fig. 8.10 provides more
details on the unit cell, and Table 8.4 lists
the atom positions and unit cell dimensions
(Beno et al., 1987; Capponi et al., 1987,
Hazen et al., 1987; Jorgensen et al., 1987;
Le Page et al, 1987; Siegrist et al.,
1987; Yan and Blanchin, 1991; see also
Schuller et al., 1987). Considered as a per-
ovskite derivative, it can be looked upon
as a stacking of three perovskite units
BaCuO;, YCuO,, and BaCuQO,, two of them
with a missing oxygen, and this explains why
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Figure 8.9 Layering scheme of orthorhombic YBa,Cu;0, with the puckering indicated. The
layers are perpendicular to the c-axis (Poole et al., 1988, p. 101).
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Figure 8.10 Sketches of the superconducting orthorhombic (left) and
nonsuperconducting tetragonal (right) YBaCuO unit cells. Thermal vibra-
tion ellipsoids are shown for the atoms. In the tetragonal form the oxygen
atoms are randomly dispersed over the basal plane sites (Jorgensen e al.,
1987a, b; also see Schuller et al., 1987).
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Table 8.4 Normalized Atom Positions
in the YBa,Cu;0O, Orthorhombic Unit
Cell (dimensions a=3.83A, b =3.88A,
and c =11.68A)

Layer Atom x y z
Cu(1) 0 0 1
[Cu O] o(1) 0 1 1
0(4) 0 0 0.8432
[0~ Bal Ba ! ! 0.8146
Cu(2) 0 0 0.6445
[Cu 0, ] 0(3) 0 1 0.6219
0(2) i 0 0.6210
v Y b
0(2) i 0 0.3790
[Cu 0, ] 0(3) 0 1 0.3781
Cu(2) 0 0 0.3555
Ba i i 0.1854
[0 - Ba] o(4) 0 0 0.1568
o(1) 0 1 0
[CuO-] cu(l) 0 0 0

¢ ~ 3a. It is, however, more useful to dis-
cuss the compound from the viewpoint of its
planar structure.

A. Copper Oxide Planes

Wesee fromFig. 8.9 that three planes con-
taining Cu and O are sandwiched between two
planes containing Ba and O and one plane con-
taining Y. The layering scheme is given on the
right side of Fig. 8.8, where the superscript
b on O indicates that the oxygen lies along
the b-axis, as shown. The atoms are puck-
ered in the two [Cu O, —] planes that have the
[~ — Y] plane between them. The third cop-
per oxide plane [Cu O° —], often referred to
as “the chains,” consists of —-Cu—O-Cu—O-
chains along the b axis in lines that are per-
fectly straight because they are in a horizon-
tal reflection plane o,; where no puckering
can occur. Note that, according to the figures,
the copper atoms are all stacked one above
the other on edge (E) sites, as expected for an
aligned-type superconductor. Both the copper
oxide planes and the chains contribute to the
superconducting properties.

8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES

B. Copper Coordination

Now that we have described the planar
structure of YBaCuO it will be instructive
to examine the local environment of each
copper ion. The chain copper ion Cu(l) is
square planar-coordinated and the two cop-
pers Cu(2) and Cu(3) in the plane exhibit
fivefold pyramidal coordination, as indicated
in Fig. 8.11. The ellipsoids at the atom posi-
tions of Fig. 8.10 provide a measure of

YBa,Cu,0,

Figure 8.11 Stacking of pyramid, square-planar, and
inverted pyramid groups along the c-axis of orthorhom-
bic YBa,Cu;0, (adapted from Poole er al., 1988,
p- 100). Minor adjustments to make more room can
be brought about by puckering or by distorting from
tetragonal to orthorhombic.
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the thermal vibrational motion which the
atoms experience, since the amplitudes of the
atomic vibrations are indicated by the rela-
tive size of each of the ellipsoids.

C. Stacking Rules

The atoms arrange themselves in the
various planes in such a way as to enable
them to stack one above the other in an effi-
cient manner, with very little interference
from neighboring atoms. Steric effects pre-
vent large atoms such as Ba (1.34A) and
O (1.32A) from overcrowding a layer or
from aligning directly on top of each other
in adjacent layers. In many cuprates stacking
occurs in accordance with the following two
empirical rules:

1. Metal ions occupy either edge or cen-
tered sites, and in adjacent layers alternate
between E and C sites.

2. Oxygens are found in any type of site, but
they occupy only one type in a particular
layer, and in adjacent layers they are on
different types of sites.

Minor adjustments to make more room can
be brought about by puckering or by distort-
ing from tetragonal to orthorhombic.

D. Crystallographic Phases

The YBa,Cu;0,_5 compound comes in
tetragonal and orthorhombic varieties, as
shown in Fig. 8.10, and it is the latter phase
which is ordinarily superconducting. In the
tetragonal phase the oxygen sites in the chain
layer are about half occupied in a random or
disordered manner, and in the orthorhombic
phase they are ordered into —Cu—O- chains
along the b direction. The oxygen vacancy
along the a direction causes the unit cell
to compress slightly so that a < b, and the
resulting distortion is of the rectangular type
shown in Fig. 8.4a. Increasing the oxygen
content so that 8 < 0 causes oxygens to begin
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occupying the vacant sites along a. Superlat-
tice ordering of the chains is responsible for
the phase that goes superconducting at 60 K.

YBaCuO is prepared by heating in the
750-900°C range in the presence of various
concentrations of oxygen. The compound
is tetragonal at the highest temperatures,
increases its oxygen content through oxy-
gen uptake and diffusion (Rothman et al.,
1991) as the temperature is lowered, and
undergoes a second-order phase transition of
the order-disorder type at about 700°C to
the low-temperature orthorhombic phase, as
indicated in Fig. 8.12 (Jorgensen et al., 1987,
1990; Schuller er al., 1987; cf. Beyers and
Ahn, 1991; Metzger et al., 1993; Fig. 8).
Quenching by rapid cooling from a high
temperature can produce at room temper-
ature the tetragonal phase sketched on the
right side of Fig. 8.10, and slow anneal-
ing favors the orthorhombic phase on the

Temperature (K)
400 800 800 1000 1200
1.0 1 I 1 1 1 1 i 1 1 1 1.0
¥Ba,Cu 0, .

0.8~
5‘ {0,1/2,0) site |- -0.5
§. 0.5 - s
§ - - 0.0

R = e
g 0.4+ R ST
£’ .
= h %,
> [-+05
£ 0.2 e
(1200 site T\ -

/%

0.0 s < - +1.0

Qrthorhombic Tetragonal
T 1 T T 1 T 1
0 200 400 600 800 1000

Temperature (°C}

Figure 8.12 Fractional occupancies of the (%, 0, O)
(bottom) and (0, 1,0) (top) sites (scale on left), and
the oxygen content parameter & (center, curve scale on
right) for quench temperatures of YBaCuO in the range
0-1000°C. The & parameter curve is the average of
the two site-occupancy curves (adapted from Jorgensen
et al., 1987a; also see Schuller et al., 1987; see also

Poole et al., 1988).
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left. Figure 8.12 shows the fractional site
occupancy of the oxygens in the chain site
(0, %,O) as a function of the temperature
in an oxygen atmosphere. A sample stored
under sealed conditions exhibited no degra-
dation in structure or change in 7, four years
later (Sequeira et al., 1992). Ultra-thin films

tend to be tetragonal (Streiffer et al., 1991).

E. Charge Distribution

Information on the charge distribution
around atoms in conductors can be obtained
from a knowledge of their energy bands (see
description in Chapter 10). This is most eas-
ily accomplished by carrying out a Fourier-
type mathematical transformation between
the reciprocal k,, k,, k_-space (Chapter 8,
Section II of the first edition) in which the
energy bands are plotted and the coordi-
nate x, y, z-space, where the charge is dis-
tributed. We will present the results obtained
for YBa,Cu;0, in the three vertical symme-
try planes (x, z, and y, z, and diagonal),
all containing the z-axis through the origin,
shown shaded in the unit cell of Fig. 8.13.

Contour plots of the charge density of
the valence electrons in these planes are
sketched in Fig. 8.14. The high density at the
Y3+ and Ba®" sites and the lack of contours
around these sites together indicate that these
atoms are almost completely ionized, with
charges of +3 and +2, respectively. It also
shows that these ions are decoupled from the
planes above and below. This accounts for
the magnetic isolation for the Y site whereby
magnetic ions substituted for yttrium do not
interfere with the superconducting proper-
ties. In contrast, the contours surrounding the
Cu and O ions are not characteristic of an
ordinary ionic compound. The short Cu-O
bonds in the planes and chains (1.93-1.96 A)
increase the charge overlap. The least overlap
appears in the Cu(2)-O(4) vertical bridging
bond, which is also fairly long (2.29 A). The
Cu, O charge contours can be represented
by a model that assigns charges of +1.62
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Figure 8.13 Three vertical crystallographic planes
(x, z-, and y, z-, and diagonal) of a tetragonal unit cell
of YBa,Cu;0;, and standard notation for the four crys-
tallographic directions.

<001>

<100>

<010>

<110>

Figure 8.14 Charge density in the three symmetry
planes of YBaCuO shown shaded in Fig. 8.13. The x, z,
diagonal and the y, z planes are shown from left to right,
labeled (100), (110), and (010), respectively. These
results are obtained from bandstructure calculations, as
will be explained in the following chapter (Krakauer
and Pickett, 1988).
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and —1.69 to Cu and O, respectively, rather
than the values of +2.33 and —2.00 expected
for a standard ionic model, where the charge
42.33 is an average of +2, +2, and +3
for the three copper ions. Thus the Cu-O
bonds are not completely ionic, but partly
covalent.

F. YBaCuO Formula

In early work the formula
YBa,Cu;04_;

was used for YBaCuO because the proto-
type triple pervoskite (YCuO;)(BaCuO,),
has nine oxygens. Then crystallographers
showed that there are eight oxygen sites in
the 14-atom YBaCuO unit cell, and the for-
mula YBa,Cu;0,_s came into widespread
use. Finally, structure refinements demon-
strated that one of the oxygen sites is sys-
tematically vacant in the chain layers, so the
more appropriate expression YBa,Cu;0,_;
was introduced. It would be preferable to
make one more change and use the formula
Ba,YCu;0,_; to emphasize that Y is analo-
gous to Ca in the bismuth and thallium com-
pounds, but very few workers in the field do
this, so we reluctantly adopt the usual “final”
notation. In the Bi-T1 compound notation
of Section VIII, B, Ba,YCu;0,_5 would be
called a 0213 compound. We will follow the
usual practice of referring to YBa,Cu,0,_;
as the 123 compound.

G. YBa,Cu,O, and Y,Ba,Cu,0,,

These two superconductors are some-
times referred to as the 124 compound and
the 247 compound, respectively. They have
the property that for each atom at position
(x, y, z) there is another identical atom at
position (x, y+ %, 7+ %) In other words,
the structure is side centered. This property
prevents the stacking rules of Section C from

applying.
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Figure 8.15 Crystal structure of YBa,Cu,Og show-
ing how, as a result of the side-centering symmetry oper-
ation, the atoms in adjacent Cu—O chains are staggered
along the y direction, with Cu above O and O above
Cu (Heyen er al., 1991; modified from Campuzano
et al., 1990).

The chain layer of YBa,Cu;0, becomes
two adjacent chain layers in YBa,Cu,Os,
with the Cu atoms of one chain located
directly above or below the O atoms of the
other, as shown in Fig. 8.15 (Campuzano
et al., 1990; Heyen et al., 1990a, 1991; Igbal,
1992; Kaldis et al., 1989; Marsh et al., 1988;
Morris et al., 1989a). The transition temper-
ature remains in the range from 40K to 80K
when Y is replaced by various rare earths
(Morris et al., 1989). The double chains do
not exhibit the variable oxygen stoichiometry
of the single ones.

The other side-centered compound,
Y,Ba,Cu,0,;, may be considered according
to Torardi, “as an ordered 1:1 inter-growth
of the 123 and 124 compounds

(YBa,Cu;0,+YBa,Cu,04 = Y,Ba,Cu,0,5)”

(Bordel et al., 1988, Gupta and Gupta,
1993). The 123 single chains can vary in
their oxygen content, and superconductiv-
ity onsets up to 90K have been observed.
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This compound has been synthesized with
several rare earths substituted for Y (Morris
et al., 1989b).

V. ALIGNED HgBaCaCuO
The series of compounds
HgBa2cancun+l 02n+4 ’

where n is an integer, are prototypes
for the Hg family of superconductors. The
first three members of the family, with
n =0, 1,2, are often referred to as Hg—
1201, Hg—1212, and Hg—1223, respectively.
They have the structures sketched in Fig. 8.16
(Tokiwa-Yamamoto et al., 1993; see also
Martin et al., 1994; Putilin et al., 1991). The
lattice constants are a = 3.86 A for all of
them, and ¢ = 9.5, 12.6, and 15.7 A for n =
0, 1, 2, respectively. The atom positions of
the n = 1 compound are listed in Table 8.5
(Hur er al., 1994). The figure is drawn with

(a) (b)
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mercury located in the middle layer of the
unit cell, while the table puts Hg at the origin
(000) and Ca in the middle (31 1). Figure 8.17
presents the unit cell for the n = 1 compound
HgBa,CaCu, 0y, ; drawn with Ca in the mid-
dle (Meng et al., 1993a). The symbol & rep-
resents a small excess of oxygen located in
the center of the top and bottom layers, at
positions % % 0 and % % 1 which are labeled
“partial occupancy” in the figure. If this oxy-
gen were included the level symbol would be
[Hg — O] instead of [Hg ——]. These Hg com-
pound structures are similar to those of the
series T1Ba,Ca,Cu,,0,,,, mentioned above
in Section VIIL.F.

We see from Fig. 8.16 that the cop-
per atom of Hg—1201 is in the center of a
stretched octahedron with the planar oxy-
gens O(1) at a distance of 1.94 A, and the
apical oxygens O(2) of the [O — Ba] layer
much further away (2.78 A). For n = 1 each
copper atom is in the center of the base
of a tetragonal pyramid, and for n =2 the
additional CuO, layer has Cu atoms which

Figure 8.16 Structural models for the series HgBa,Ca,Cu,,0,,,4. The first three members with n =0, 1, 2
are shown (parts a, b, and c, respectively) (Tokiwa-Yamamoto et al., 1993).
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Table 8.5 Normalized Atom Positions
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in the Tetragonal Unit Cell of
HgBa,Cag 4¢Srg 14Cu, Og 57
Layer Atom x y z
Hg 0 0 1 ©® Hg
Heo — —
[He - -] 0(3) 1 1 1 ®
0(2) 0 0 0.843 Ba
[0 -Ba] Ba 1 1 0.778
Cu 0 0 0.621 e o
u - 5 .
Cu 0, o(1 0 : 0.627
o(1) i 0 0.627
[- - Ca] Ca, Sr % % % b Cu
o(1) 1 0 0.373
CuO, - o(1) 0 1 0373 O o
2
Cu 0 0 0.379
B i 1 0.222 @ o
[O - Ba] a 2 2 : (Partial Occupancy)
0(2) 0 0 0.157 pancy
0(3) i i 0
[He - -] Hg 0 0 0

@ Unit cell dimensions a = 3.8584 A and ¢ = 12.6646 A,
space group is P4/mmm, Dih. The Hg site is 91%
occupied and the O(3) site is 11% occupied (6 =0.11).
The data are from Hur et al. (1994).

are square planar coordinated. The layer-
ing scheme stacking rules of Section IV.C
are obeyed by the Hg series of compounds,
with metal ions in adjacent layers alternat-
ing between edge (E) and centered (C) sites,
and oxygen in adjacent layers always at dif-
ferent sites. We see from Table 8.5 that the
[O — Ba] layer is strongly puckered and the
[Cu O, -] layer is only slightly puckered.

The relationships between the layering
scheme of the HgBa,Ca, Cu,, O,,,, series
of compounds and those of the other cuprates
may be seen by comparing the sketch of
Fig. 8.18 with that of Fig. 8.29. We see that
the n = 1 compound HgBa,CaCu, Oy is quite
similar in structure to YBa,Cu;0, with Ca
replacing the chains [Cu O —]. More surpris-
ing is the similarity between the arrangement
of the atoms in the unit cell of each

HgBa,Ca,Cu, 0,4

Figure  8.17 Schematic  structure  of the
HgBa,CaCu,0¢, 5 compound which is also called
Hg-1212 (Meng et al., 1993a).

[Hg -] —
—Hg-1— | _[0-Bd
fHg -] [0 - Ba] [CuO,-]
[0 - Ba] [Cu0,-1 [--Ca]
[--Cal [CuOz-]
[0 - Ba] [CuO,-] [--Ca]
[Hg -] [O - Ba] [CuQa-]
L Hg-1 | [O-Bal

L [Hg -] |

HgBa,CuQ, HgBa,CaCu,0, HgBazt}azcu:,(}B
Figure  8.18 Layering schemes of three

HgBa,Ca,Cu,,0,,,, compounds, using the notation
of Fig. 8.29.

compound and the arrangement of the atoms
in the semi-unit cell of the corresponding

Tl,Ba,Ca,Cu,,,0,,
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compound. They are the same except for the
replacement of the [T1 - O] layer by [Hg ——],
and the fact that the thallium compounds are
body centered and the Hg ones are aligned.

Supercells involving polytypes with
ordered stacking sequences of different
phases, such as Hg-1212 and Hg-1223,
along the ¢ direction have been reported. The
stoichiometry is often

Hg,Ba,Ca;Cu;0,

corresponding to equal numbers of the Hg—
1212 and Hg-1223 phases (Phillips, 1993;
Schilling et al., 1993, 1994).

Detailed structural data have already
been reported on various Hg family com-
pounds such as HgBa,CuO, 5 (Putlin et al.,
1993) and the n = 1 compound with partial
Eu substitution for Ca (Putlin et al., 1991).
The compound

Pb, ;Hg,, ;Sr,Nd, ;Ca, ,Cu; 0,

has Hg in the position (0.065, 0, 0),
slightly displaced from the origin of the
unit cell (Martin et al., 1994). Several
researchers have reported synthesis and pre-
treatment procedures (Adachi et al., 1993;
Itoh et al., 1993; Isawa 1994a; Meng, 1993b;
Paranthaman, 1994; Paranthaman et al.,
1993). Lead doping for Hg has been used
to improve the superconducting properties
(Igbal et al., 1994; Isawa et al., 1993; Martin
et al., 1994).

VI. BODY CENTERING

In Section V we discussed aligned-
type superconductor structures that possess
a horizontal plane of symmetry. Most high-
temperature superconductor structures have,
besides this o, plane, an additional symme-
try operation called body centering whereby
for every atom with coordinates (x, y, 2)
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there is an identical atom with coordinates
as determined from the following operation:

1
z—>z7E=

1
-+,
Y ES 2

x—x+ l, (8.5)
2

Starting with a plane at the height z this oper-
ation forms what is called an image plane
at the height z + % in which the edge atoms
become centered, the centered atoms become
edge types, and each face atom moves to
another face site. In other words, the body-
centering operation acting on a plane at
the height z forms a body centered plane,
also called an image plane, at the height
== % The signs in these operations are
selected so that the generated points and
planes remain within the unit cell. Thus if
the initial value of z is greater than %, the
minus sign must be selected, viz., z — z — 3.
Body centering causes half of the Cu-O
planes to be [Cu O, -], with the copper
atoms at edge sites, and the other half to be
[- O, Cu], with the copper atoms at centered
sites.

Let us illustrate the symmetry features of
a body-centered superconductor by consid-
ering the example of T1,Ba,CaCu,Oy. This
compound has an initial plane [Cu O, —] with
the copper and oxygen atoms at the verti-
cal positions z = 0.0540 and 0.0531, respec-
tively, as shown in Fig. 8.19. For illustrative
purposes the figure is drawn for values of
z closer to 0.1. We see from the figure that
there is a reflected plane [Cu O, —] at the
height 1 — z, an image (i.e., body centered)
plane [- O, Cu] of the original plane at the
height 1 +z, and an image plane [- O, Cu]
of the reflected plane (i.e., a reflected and
body centered plane) at the height %—z.
Figure 8.19 illustrates this situation and indi-
cates how the atoms of the initial plane can
be transformed into particular atoms in other
planes (see Problem 5). Figure 8.20 shows
how the configurations of the atoms in one-
quarter of the unit cell, called the basic
subcell, or subcell I, determine their config-
uratinon in the other three subcells II, III,
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Figure 8.19 Body-centered tetragonal unit cell con-
taining four puckered CuO, groups showing how the
initial group (bottom) is replicated by reflection in the
horizontal reflection plane (z = %), by the body center-
ing operation, and by both.

and IV throught the symmetry operations of
reflection and body centering.

VII. BODY-CENTERED
La,CuO,, Nd,CuO, AND Sr,Ru0,

The body-centered compound
M,Cu0O,

has three structural variations in the same
crystallographic space group, namely the
M =Laand M = Nd types, and a third mixed
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Reflected
Subcell I

Body Centered
Subcell 1l

Reflected and
Body Centered
Subcell IV

Basic
Subcell [

Figure 8.20 Body-centered unit cell divided into
four regions by the reflection and body centering
operations.

variety (Xiao et al., 1989). Table 8.5 lists
the atom positions of the first two types, and
Fig. 8.21 presents sketches of the structures
of all three. The compound Sr,RuQ, is iso-
morphic with La,CuQO,. Each of these cases
will be discussed in turn.

A. Unit Cell of La,Cu0O, Compound
(T Phase)

The structure of the more common
La,CuO, variety, often called the T phase,
can be pictured as a stacking of CuO,La,
groups alternately with image (i.e., body cen-
tered) La,0,Cu groups along the ¢ direction,
as indicated on the left side of Fig. 8.21.
(Cavaet et al., 1987; Kinoshita et al., 1992,
Longo and Raccah, 1973; Ohbayashi et al.,
1987; Onoda et al., 1987; Zolliker et al.,
1990). Another way of visualizing the struc-
ture is by generating it from the group
Cu, 5s0,La, comprising the layers [O-La] and
[Cu O, -] in subcell I shown on the right
side of Fig. 8.22 and also on the left side of
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(a) T phase

{b) T phase
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s Cu

C O

g La, Gd, (81)

() T phase

Figure 8.21 (a) Regular unit cell (T phase) associated with hole=type
(La,_,Sr,),CuO, superconductors, (b) hybrid unit cell (T* phase) of the hole-type
La,_,_,R,Sr,CuO, superconductors, and (c) alternate unit cell (T’ phase) associated
with eléctfon-type (Nd,_,Ce,),CuO, superconductors. The La atoms in the left structure
become Nd atoms in the right structure. The upper part of the hybrid cell is T type, and
the bottom is T’". The crystallographic space group 14/mmm is the same for all three unit
cells (Xiao et al., 1989; see also Oguchi, 1987; Ohbayashi et al., 1987; Poole et al., 1988,

p- 83; Tan et al., 1990).

Fig. 8.23. (The factor % appears here because
the [Cu O, —] layer is shared by two sub-
cells.) Subcell II is formed by reflection from
subcell I, and subcells III and IV are formed
from I and II via the body-centering oper-
ation in the manner of Figs. 8.19 and 8.20.
Therefore, subcells I and II together con-
tain the group CuO,La,, and subcells III and
IV together contain its image (body cen-
tered) counterpart group La,0,Cu. The BiSr-
CaCuO and TIBaCaCuO structures to be dis-
cussed in Section VIII can be generated in
the same manner, but with much larger repeat
units along the ¢ direction.

B. Layering Scheme

The La,CuO, layering scheme consists
of equally-spaced, flat CuO, layers with their
oxygens stacked one above the other, the
copper ions alternating between the (0, 0,
0) and (3, 1, 1) sites in adjacent layers,
as shown in Fig. 8.24. These planes are
body-centered images of each other, and

are perfectly flat because they are reflection

planes. Half of the oxygens, O(1), are in the
planes, and the other half, O(2), between the
planes. The copper is octahedrally coordi-
nated with oxygen, but the distance 1.9 A
from Cu to O(1) in the CuO, planes is much
leess than the vertical distance of 2.4 A from
Cu to the apical oxygen O(2), as indicated in
Fig. 8.25. The La is ninefold coordinated to
four O(1) oxygens, to four O(2) at (% % Z)
sites, and to one O(2) at a (0, 0, z) site.

C. Charge Distribution

Figure 8.26 shows contours of constant-
valence charge density on a logarithmic
scale drawn on the back x, z-plane and
on the diagonal plane of the unit cell
sketched in Fig. 8.13. These contour plots
are obtained from the band structure calcula-
tions described in Chapter 10, Section XIV
of the first edition. The high-charge density
at the lanthanum site and the low charge den-
sity around this site indicate an ionic state
La*". The charge density changes in a fairly
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Figure 8.22 Structure of La,CuO, (center), showing the formula units
(left) and the level labels and subcell types (right). Two choices of unit cell
are indicated, the left-side type unit cell based on formula units, and the more
common right-side type unit cell based on copper-oxide layers.

regular manner around the copper and oxy-
gen atoms, both within the CuO, planes and
perpendicular to these planes, suggestive of
covalency in the Cu-O bonding, as is the
case with the YBa,Cu;0, compound.

D. Superconducting Structures

The compound La,CuQ, is itself an anti-
ferromagnetic insulator and must be doped,
generally with an alkaline earth, to exhibit
pronounced superconducting properties. The
compound (La,_.M,),Cu0O,, with 3% to
15% of M = Sr or Ba replacing La, are
orthorhombic at low temperatures and low M
contents and are tetragonal otherwise; super-
conductivity has been found on both sides of
this transition. The orthorhombic distortion

can be of the rectangular or of the rhombal
type, both of which are sketched in Fig. 8.4.
The phase diagram of Fig. 8.27 shows the
tetragonal, orthorhombic, superconducting,
and antiferromagnetically ordered regions
for the lanthanum compound (Weber ef al.,
1989; cf. Goodenough et al., 1993). We see
that the orthorhombic phase is insulating
at high temperatures, metallic at low tem-
peratures, and superconducting at very low
temperatures. Spin-density waves, to be dis-
cussed in Chapter 10, Section IX, occur in
the antiferromagnetic region.

E. Nd,CuO, Compound (T’ Phase)

The  rarer Nd,CuO, structure
(Skantakumar et al., 1989; Sulewski et al.,
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La,CuO, gud  Nd,Cuo,
[Cu0;1 —  [CuO,-]
[D - La] “ [ - Nd]
La-0] [+ G-l
M [Nd--]
[-0Cu] — [-0Cu]
[ta-op IV INd--]
10~ La] — [-0;-]
I [--Nd]
[CuO,-] —— [Cug,-]

Figure 8.23 Layering schemes of the La,CuO, (T,
left) and Nd,CuO, (T, right) structures. The locations
of the four subcells of the unit cell are indicated in the
center column.

1990; Tan et al., 1990) given on the right
side of Fig. 8.21 and Table 8.6 has all of its
atoms in the same positions as the standard
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La,CuO, structure, except for the apical
O(2) oxygens in the [O-La] and [La-O]
layers, which move to form a [- O, -]
layer between [- — La] and [La - -]
These oxygens, now called O(3), have the
same x, y coordinate positions as the O(1)
oxygens, and are located exactly between
the CuO, planes with z = i or %. We see
from Fig. 8.21 that the CuOg4 octahedra have
now lost their apical oxygens, causing Cu
to become square planar-coordinated CuO,
groups. The Nd is eightfold coordinated
to four O(1) and four O(3) atoms, but
with slightly different Nd-O distances.
The CuO, planes, however, are identical
in the two structures. Superconductors
with this Nd,CuO, structure are of the
electron type, in contrast to other high-
temperature superconductors, in which the
current carriers are holes. In particular, the
electron superconductor Nd, 35Ce ;5CuO,_;
with 7, = 24K has been widely studied
(Fontcuberta and Fabrega, 1995, a review

F g
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O—o O— o -«—Cu0D, 13184
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Figure 8.24 CuO, layers of the La,CuO, structure showing horizontal displacement of Cu atoms
(black dots) in alternate layers. The layers are perpendicular to the c-axis (Poole er al., 1988, p. 87).
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Figure 8.25 Ordering of axially distorted CuOg octa-
hedra in La,CuO, (Poole et al., 1988, p. 88).

LazCuOy

Figure 8.26 Contour plots of the charge density of
La,CuO, obtained from band structure calculations. The
x, z-crystallographic plane labeled (100) is shown on
the left, and the diagonal plane labeled (110) appears
on the right. The contour spacing is on a logarithmic
scale (Pickett, 1989).
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Figure  8.27 Phase diagram for hole-type

La,_,Sr,CuO,_, indicating insulating (INS), antifer-
romagnetic (AF), and superconducting (SC) regions.
Figure VI-6 of Poole et al. (1988) shows experimental
data along the orthorhombic-to-tetragonal transition
line. Spin-density waves (SDW) are found in the AF
region (Weber et al., 1989).

chapter; Allen 1990; Alp et al., 1989b;
Barlingay et al., 1990; Ekino and Akimitsu,
1989a, b; Lederman et al., 1991; Luke et al.,
1990; Lynn et al., 1990; Sugiyama et al.,
1991: Tarason et al., 1989a). Other rare
earths, such as Pr (Lee et al., 1990) and Sm
(Almasan et al., 1992) have replaced Nd.

The difference of structures associated
with different signs attached to the current
carriers may be understood in terms of the
doping process that converts undoped mate-
rial into a superconductor. Lanthanum and
neodymium are both trivalent, and in the
undoped compounds they each contribute
three electrons to the nearby oxygens,

La — La*t +3e",
(8.6)
Nd — Nd** +3e™,
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Table 8.6 Atom Positions in the La,CuO, and Nd,CuO, Structures

La,CuOj, structure

Nd,CuO, structure

Layer Atom x y z Layer Atom x y z
o(1) 1 0 1 o(1) 1 0 1
[Cu 0, -] Cu 0 0 1 [Cu O, -] Cu 0 0 1
1 1
o(1) 0 i 1 o(1) 0 ! 1
1 1 __ 1 1
La_ O] La ! ! 0.862 [- - Nd] Nd ! ! 0.862
0(2) 0 0 0.818 L0, ] 0(3) 0 1 3
- - 1 3
0(2) ! : 0.682 2 o ’ ’ !
_ 2 2 :
[La - O] La 0 0 0.638 [Nd - -] Nd 0 0 0.638
1 1
o(1) 3 0 3 o(1) 3 0 3
[- O, Cu] Cu i i i [- O, Cu] Cu ! 1 1
1 1 1 1
o(1) 0 i i o(1) 0 ! i
[Nd - -] Nd 0 0 0.362
La 0 0 0.362
[La - O] 1 1
0(2) 3 2 0.318 0, ] 0(3) 1 0 !
-V - 1 1
0 - La] 0Q2) 0 0 0.182 0(3) 0 ! !
La i i 0.138 [- - Nd] Nd i i 0.138
o(1) 0 i 0 o(1) 0 i 0
[Cu 0, -] Cu 0 0 0 [Cu 0, -] Cu 0 0 0
o(1) i 0 0 o(1) i 0 0

to produce O?~. To form the superconductors
a small amount of La in La,CuO, can be
replaced with divalent Sr, and some Nd in
Nd,CuO, can be replaced with tetravalent
Ce, corresponding to

Sr — Sr*t 4 2e”
Ce — Ce*t +4e”

(in La,Cu0O,)

8.7)
(in Nd,CuO,)
Thus, Sr doping decreases the number of
electrons and hence produces hole-type car-
riers, while Ce doping increases the electron
concentration and the conductivity is elec-
tron type.

There are also copper-oxide electron
superconductors with different structures,
such as Sr,_,Nd,CuO, (Smith er al., 1991)
and TICa,_,R Sr,Cu,0,_;, where R is a
rare earth (Vijayaraghavan er al., 1989).
Electron- and hole-type superconductivity in
the cuprates has been compared (Katti and
Risbud, 1992; Medina and Regueiro, 1990).

F. La, , ,R,Sr,CuO, Compounds
(T* Phase)

We have described the T structure of
La,CuO, and the T’ structure of Nd,CuO,.
The former has O(2) oxygens and the latter
O(3) oxygens, which changes the coordina-
tions of the Cu atoms and that of the La
and Nd atoms as well. There is a hybrid
structure of hole-type superconducting lan-
thanum cuprates called the T* structure, illus-
trated in Fig. 8.21b, in which the upper half
of the unit cell is the T type with O(2)
oxygens and lower half the T’ type with
O(3) oxygens. These two varieties of half-
cells are stacked alternately along the tetrag-
onal c-axis (Akimitsu et al., 1988; Cheong
et al., 1989b; Kwei et al., 1990; Tan et al.,
1990). Copper, located in the base of an oxy-
gen pyramid, is fivefold-coordinated CuOs.
There are two inequivalent rare earth sites;
the ninefold-coordinated site in the T-type
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halfcell is preferentially occupied by the
larger La and Sr ions, witle the smaller rare
earths R (i.e., Sm, Eu, Gd, or Tb) prefer the
eightfold-coordinated site in the T" halfcell.
Tan et al. (1991) give a phase diagram for
the concentration ranges over which the T
and T* phases are predominant.

G. Sr,RuO, Compound (T Phase)

Superconductivity was found in the lan-
thanum and neodymium cuprates during the
initial years of the high temperature super-
conductivity era, but the phenomenon was
not found in strontium ruthenate until 1994
(Maeno et al.), and did not attract widespread
attention until several years later at the
arrival of the new millennium. The unit cell
dimensions of the three compounds are quite
close to each other

La,CuO, a,=3.79A, ¢,=13.23A

Nd,CuO, a,=3.94A, c,=12.15A

St,RuO, a,=3.87A, c,=12.74A
(8.8)

and the ionic radius of tetravalent ruthe-
nium Ru** (0.67 A) is close to that of diva-
lent copper Cu** (0.72 A). The two cuprates
are insulators, which become conductors and
superconductors at 24K and 35K, respec-
tively, when they are appropriately doped.
Sr,Ru0O,, on the other hand, is a Fermi lig-
uid metal (Wysokinsky et al., 2003) without
doping, and has a much lower transition
temperature T, = 1.5K. The c-axis resis-
tivity, however, becomes nonmetallic above
Ty = 130K, with the in-plane resistivity
remaining always metallic (Maeno et al.,
1996). The lanthanum and neodymium com-
pounds are similar to other cuprates in their
type of superconductivity, whereas strontium
ruthenate is believed to be a more exotic type
of superconductor, hence the recent inter-
est in it. Some of the significant properties
of Sr,RuO, are: the Sommerfeld specific
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heat constant <y, = 37.5mJ/mole K?, the
specific heat jump at T, given by AC =
27mJ/mole (Annett et al., 2002), the resis-
tivity anisotropy p./p., = 500 (Wysokinsky
et al., 2003), the presence of incommensu-
rate spin fluctuations (Sidis et al., 1999),
and the Pauli limiting field Bp,,; = 2T (Maki
et al., 2001).

The Cooper pairs in Sr,RuO, are
believed to be odd parity spin triplets (Litak
et al., 2004), and the compound is said
to exhibit time reversal symmetry break-
ing (Luke et al., 1998). Won and Maki
(2001) pointed out that the only other
spin triplet superconductors found in met-
als are the heavy Fermion compound UPt;,
and the Bechgaard salt organic conductors
(TMTSF),X with the structure sketched in
Fig. 9.39, where the monovalent counter
ion X~ can be, for example, ClO, or PF,
(Won and Maaki, 2001). Analogies have
been pointed out to the triplet superfluid-
ity found in *He (Rice and Sigrist, 1995,
Wysokinsky et al., 2003). The Fermi surface
of Sr,RuO, has the three quasi-two dimen-
sional sheets shown in Fig. 8.28, and these
lead to anisotropic resistivity, susceptibil-
ity, and other properties. Several researchers
have suggested that the superconductivity is
of the odd parity p wave or f wave type
(e.g. Won and Maki, 2000). The presence
of some Ru in the Sr,RuO,-Ru eutectic
system raises the transition temperature to
T, = 3K.

Figure 8.28 Fermi surface of Sr,RuO, calculated
by the tight binding method. The three quasi two-
dimensional sheets «, 8, and 7y are indicated. (Wysokin-
ski et al., 2003, Fig. 1).
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VIIl. BODY-CENTERED BiSrCaCuO
AND TIBaCaCuO

Early in 1988 two new superconduct-
ing systems with transition temperatures
considerably above those attainable with
YBaCuO, namely the bismuth- and thallium-
based materials, were discovered. These
compounds have about the same a and b lat-
tice constants as the yttrium and lanthanum
compounds, but with much larger unit cell
dimensions along c. We will describe their
body-centered structures in terms of their
layering schemes. In the late 1940s some
related compounds were synthesized by the
Swedish chemist Bengt Aurivillius (1950,
1951, 1952).

8 CUPRATE CRYSTALLOGRAPHIC STRUCTURES

A. Layering Scheme

The Bi,Sr,Ca,Cu, 0Oq,,, and
T1,Ba,Ca,Cu,, Oq,,, compounds, where
n is an integer, have essentially the same
structure and the same layering arrangement
(Barry et al., 1989; Siegrist et al., 1988;
Torardi et al., 1988a; Yvon and Francois,
1989), although there are some differences
in the detailed atom positions. Here there are
groupings of CuO, layers, each separated
from the next by Ca layers with no oxygen.
The CuO, groupings are bound together by
intervening layers of BiO and SrO for the
bismuth compound, and by intervening layers
of TIO and BaO for the thallium compound.
Figure 8.29 compares the layering scheme of

[-0Lu]

[Ca--]

[Ca--] [-0Ly]

[-0,u] [Ba-0Q]

[- O,Cu] {Ba- 0] [e-m

[Ba- Q) [o-T1 m-o]

~[Cud - ] [-0,Cu] [o-T1] [m-o] [0 - Ba]
[O - Ba] [La-0] [T-0] [0 - Ba] [Cu0s-]
[CuO,-] [0 - La] [0 - Ba] [Cu,-1 [--Ca]
[--¥] L1cuo.q || |[reuoe-1]| || 1--ca [Cu0,-]
[CuOa-] [0-1a) [O - Ba] [CuD,-] [--Ca]
[0 - Ba] {La- 0] [Ti-0] [O- Ba] [Cu0:z-]
L [CuD-]- - 0tu] [o-Ty [Ti-oj [C - Ba]
[Ba - O} [0-T (m-o]

BaYCu,0, La Cul, [- O.Cu] [Ba-0] [0-TM
[-0Cu] [Ba-0l

Tl,Ba CuO, [Ca--] [- OCu]

[Ca--]

TlBafaCuO,  [.ou

lesaZCazcuaom

Figure 8.29 Layering schemes of various high-temperature superconductors. The
CuO, plane layers are enclosed in small inner boxes, and the layers that make up a
formulaunitare enclosed inlarger boxes. The Bi-Srcompounds Bi, Sr,Ca,, Cu,,, { O¢ .,
have the same layering schemes as their T1-Ba counterparts shown in this figure.
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the Tl,Ba,Ca,Cu, ,0O¢ ,, compounds with
n =0, 1, 2 with those of the lanthanum and
yttrium compounds. We also see from the
figure that the groupings of [Cu O, —] planes
and [— O, Cu] image (i.e., body centered)
planes repeat along the c-axis. It is these
copper-oxide layers that are responsible
for the superconducting properties.

A close examination of this figure shows
that the general stacking rules mentioned in
Section VIL.C for the layering scheme are sat-
isfied, namely metal ions in adjacent layers
alternate between edge (E) and centered (C)
sites, and adjacent layers never have oxy-
gens on the same types of sites. The horizon-
tal reflection symmetry at the central point
of the cell is evident. It is also clear that
YBa,Cu;0; is aligned and that the other four
compounds are staggered.

-
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1
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Figure 8.30 (Torardi er al., 1988a)
presents a more graphical representation
of the information in Fig. 8.29 by show-
ing the positions of the atoms in their
layers. The symmetry and body centering
rules are also evident on this figure. Rao
(1991) provided sketches for the six com-
pounds TIl,,Ba,Ca,Cu,, O, similar to those
in Fig. 8.30 with the compound containing
one (m = 1) or two thallium layers (m = 2),
where n =0, 1, 2, as in the Torardi et al.
figure.

B. Nomenclature

There are always two thalliums and
two bariums in the basic formula for
T1,Ba,Ca,Cu,, Oq,,,, together with n
calciums and n+ 1 coppers. The first three
members of this series for n =0, 1, and 2

. Bu Condustion
Layer
__La
__Cu
. Ba
_m Hinding
or
— =
__Ba
__Gu
_La
Gonduction
—o Layer
—.Ca
——Cu -
—B
]
Binging
_h Layer
—.Ba -
Cu
- Condugtion
Ca Layer

T;Ca,Ba,Cu30,0

Figure 8.30 Crystal structures of T1,Ba,Ca,Cu,,, O, superconducting compounds with n =0, 1, 2 arranged
to display the layering schemes. The Bi,Sr,Ca,Cu,,, Oq,,, compounds have the same respective structures (Torardi

et al., 1988a).
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are called the 2201, 2212, and 2223 com-
pounds, respectively, and similarly for their
BiSr analogues Bi,Sr,Ca,Cu,_ ;O,,,. Since
Y in YBa,Cu;0; is structurally analogous to
Ca in the Tl and Bi compounds, it would
be more consistent to write Ba,YCu;0; for
its formula, as noted in Section IV.F. In this
spirit Ba, YCu;0,_; might be called the 1212
compound, and (La,_,M,),Cu0O,_; could be
called 0201.

C. Bi-Sr Compounds

Now that the overall structures and
interrelationships of the BiSr and TIBa
high-temperature superconductors have been
made clear in Figs. 829 and 830 we
will comment briefly about each compound.
Table 8.3 summarizes the characteristics of
these and related compounds.

The first member of the BiSr series,
the 2201 compound with n = 0, has octa-
hedrally coordinated Cu and 7, ~ 9K
(Torardi et al., 1988b). The second mem-
ber, Bi,(Sr, Ca);Cu,0q_, is a superconduc-
tor with 7, =~ 90K (Subramanian et al.,
1988a; Tarascon et al., 1988b). There are
two [Cu O, —] layers separated from each
other by the [~ — Ca] layer. The spacing
from [Cu O —] to [- — Ca] is 1.66 A, which
is less than the corresponding spacing of
1.99 A between the levels [Cu O, —] and [-
— Y] of YBaCuO. In both cases the copper
ions have a pyramidal oxygen coordination
of the type shown in Fig. 8.11. Superlat-
tice structures have been reported along a
and b, which means that minor modifica-
tions of the unit cells repeat approximately
every five lattice spacings, as explained
in Sect. VIILE. The third member of the
series, Bi,Sr,Ca,Cu;0,,, has three CuO, lay-
ers separated from each other by [-— Ca]
planes and a higher transition tempera-
ture, 100K, when doped with Pb. The two
Cu ions have pyramidal coordination, while
the third is square planar.
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Charge-density plots of
Bi,Sr,CaCu, 04

indicate the same type of covalency in the
Cu — O bonding as with the YBa,Cu;0,
and La,CuO, compounds. They also indi-
cate very little bonding between the adjacent
[Bi — O] and [O - Bi] layers.

D. TI-Ba Compounds
The T1Ba compounds

T]2Ba2cancun+1 06+2n

have higher transition temperatures than their
bismuth counterparts (Igbal et al., 1988b;
Torardi et al., 1988a). The first member of
the series, namely Tl,Ba,CuO, with n =
0, has no [- — Ca] layer and a relatively
low transition temperature of = 85K. The
second member (n = 1), Tl,Ba,CaCu,Oq,
called the 2212 compound, with T, =
110K has the same layering scheme as
its Bi counterpart, detailed in Figs. 8.29
and 8.30. The [Cu O, —] layers are thicker
and closer together than the correspond-
ing layers of the bismuth compound (Toby
et al., 1990). The third member of the series,
Tl,Ba,Ca,Cu,0,,, has three [Cu O, -] lay-
ers separated from each other by [- — Ca]
planes, and the highest transition tempera-
ture, 125 K, of this series of thallium com-
pounds. It has the same copper coordina-
tion as its BiSr counterpart. The 2212 and
2223 compounds are tetragonal and belong
to the same crystallographic space group as
La,CuO;,.

We see from the charge-density plot of
T1,Ba,CuO, shown in Fig. 8.31 that Ba®*
is ionic, Cu exhibits strong covalency, espe-
cially in the Cu-O plane, and Tl also appears
to have a pronounced covalency. The bond-
ing between the [T1 - O] and [O — TI] planes
is stronger than that between the [Bi — O]
and [O — Bi] planes of Bi— Sr.
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Figure 8.31 Contours of constant charge density on a logarithmic scale
in two high-symmetry crystallographic planes of Tl,Ba,CuQO4. Oxygen
atoms O(1), O(2), and O(3) are denoted 1, 2, and 3, respectively. The
planar Cu-O(1) binding is strongest (Hamann and Mattheiss, 1988; see

Pickett, 1989).

E. Modulated Structures

The x-ray and neutron-diffraction pat-
terns obtained during crystal structure
determinations of the bismuth cuprates
Bi,Sr,Ca,Cu, ,0Oq,,, exhibit weak satel-
lite lines with spacings that do not arise
from an integral multiple of the unit cell
dimensions. These satellites have modulation
periods of 21 A, 19.6 A, and 20.8 A, respec-
tively, for the n =0, 1, and 2 compounds (Li
et al., 1989). Since the lattice constant a =
5.41A (b=5.43A) for all three compounds,
this corresponds to a superlattice with unit
cell of dimensions ~ 3.8a, b, c¢, with the
repeat unit along the a direction equal to =
3.8a for all three compounds. A modulation
of 4.7b has also been reported (Kulik et al.,
1990). This structural modulation is called
incommensurate because the repeat unit is
not an integral multiple of a.

Substitutions dramatically change this
modulation. The compound

Bi,Sr,Ca,_,Y,Cu,0,

has a period that decreases from about
48b for x = 0 to the commensurate
value 4.0b for x = 1 (Inoue et al., 1989;
Tamegai et al., 1989). Replacing Cu by
a transition metal (Fe, Mn, or Co) pro-
duces nonsuperconducting compounds with
a structural modulation that is commensu-
rate with the lattice spacing (Tarascon et al.,
1989b). A modulation-free bismuth-lead
cuprate superconductor has been prepared
(Manivannan et al., 1991). Kistenmacher
(1989) examined substitution-induced super-
structures in YBa,(Cu,_,M,);0,. Super-
lattices with modulation wavelengths as
short as 24 A have been prepared by
employing ultra-thin deposition techniques
to interpose insulating planes of PrBa,Cu;0,
(Jakob et al., 1991; Lowndes et al., 1990;
Pennycook et al., 1991; Rajagopal and
Mahanti, 1991; Triscone et al., 1990).
Tanaka and Tsukada (1991) wused the
Kronig-Penney model (Tanaka and Tsukada,
1989a, b) to calculate the quasiparticle spec-
trum of superlattices.
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F. Aligned TI-Ba Compounds

A series of aligned thallium-based
superconducting compounds that have the
general formula TIBa,Ca,Cu, ,Os,,, with
n varying from 0 to 5 has been reported
(Thara et al., 1988; Rona, 1990). These con-
stitute a series from 1201 to 1245. They have
superconducting  transition temperatures
almost as high as the T1,Ba,Ca,Cu, ,0Oq,,,
compounds. Data on these compounds are
listed in Table 8.3.

G. Lead Doping

Over the years a great deal of effort has
been expended in synthesizing lead-doped
superconducting cuprate structures (Itoh and
Uchikawa, 1989). Examples involve sub-
stituting Pb for Bi (Dou et al., 1989;
Zhengping et al., 1990), for Tl (Barry et al.,
1989; Mingzhu et al., 1990), or for both
Bi and Tl1 (Igbal et al., 1990). Differ-
ent kinds of Pb, Y-containing superconduc-
tors have also been prepared (cf. Mattheiss
and Hamann, 1989; Ohta and Maekawa,
1990; Tang et al., 1991; Tokiwa et al.,
1990, 1991).
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IX. SYMMETRIES

Earlier in this chapter we mentioned the
significance of the horizontal reflection plane
0, characteristic of the high-temperature
superconductors, and noted that many of
these superconductors are body centered. In
this section we will point out additional sym-
metries that are present. Table VI-14 of our
earlier work (Poole er al., 1988) lists the
point symmetries at the sites of the atoms in
a number of these compounds.

In the notation of group theory the
tetragonal structure belongs to the point
group 4/mmm (this is the newer inter-
national notation for what in the older
Schonflies notation was written D,,). The
unit cell possesses the inversion operation at
the center, so when there is an atom at posi-
tion (x, y, z), there will be another identical
atom at position (—x, —y, —z). The inter-
national symbol 4/mmm indicates the pres-
ence of a fourfold axis of symmetry C, and
three mutually perpendicular mirror planes
m. The Schonflies notation D,,, also specifies
the fourfold axis, 4 signifying a horizontal
mirror plane o, and D indicating a dihedral
group with vertical mirror planes.

We see from Fig. 8.32 that the z-axis is a
fourfold (90°) symmetry axis called C,, and

x Oy

——_cgl

6,-c,

L/
AN

o c;

xy

/

v N

Figure 8.32 Symmetry operations of the tetragonal unit cell showing a fourfold
rotation axis C,, three twofold axes C,, and reflection planes of the vertical o,, = o,

horizontal o, = 0;,; and diagonal o, types.
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that perpendicular to it are twofold (180°)
symmetry axes along the x and y direc-
tions, called C,, and also along the diago-
nal directions (C;) in the midplane. There
are two vertical mirror planes o, which are
also vertical, and a horizontal mirror plane
o;,. Additional symmetry operations that are
not shown are a 180° rotation C5 around
the z axis,

C; =CiC;, (8.9)
and the improper fourfold rotation S5 around
that corresponds to C; followed by, or pre-
ceded by, oy,

S; =Cjo,=0,C; (8.10)

where C; and o;, commute.
The  orthorhombic  structure has
mmm, D,, symmetry. We see from

Fig. 8.33 that both the rectangular and
rhombal unit cells, which correspond to
Figs. 8.4a and 8.4b, respectively, have
three mutually perpendicular twofold axes,
and that they also have three mutually
perpendicular mirror planes o, which are
not shown. The two cases differ in having
their horizontal axes and vertical planes
oriented at 45° to each other.

IR

¥
/ E

C,

Figure 8.33 Rotational symmetry operations of an
orthorhombic unit cell (a) with rectangular distortion,
and (b) with rhombal distortion from an originally
tetragonal cell.
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Cubic structures, being much higher in
symmetry, have additional symmetry oper-
ations, such as fourfold axes Cj, Cj, and
C; along each coordinate direction, three-
fold axes C; along each body diagonal,
and numerous other mirror planes. These
can be easily seen from an examination of
Fig. 8.1. Buckyballs C,, belong to the icoso-
hedral group, which has twofold (C,), five-
fold (Cs), and sixfold (Cg) rotation axes,
horizontal reflection planes, inversion sym-
metry, and sixfold (S¢) and tenfold (S,,)
improper rotations, for a total of 120 indi-
vidual symmetry operations in all (Cotton,
1963).

X. LAYERED STRUCTURE OF THE
CUPRATES

All cuprate superconductors have the
layered structure shown in Fig. 8.34. The
flow of supercurrent takes place in conduc-
tion layers, and binding layers support and
hold together the conduction layers. Con-
duction layers contain copper-oxide (CuO,)
planes of the type shown in Fig. 8.24 with
each copper ion (Cu”") is surrounded by four
oxygen ions (O%>7). These planes are held
together in the structure by calcium (Ca*")
ions located between them, as indicated in
Fig. 8.35. An exception to this is the yttrium
compound in which the intervening ions are
the element yttrium (Y**') instead of cal-
cium. These CuO, planes are very close to
being flat. In the normal state above T, con-
duction electrons released by copper atoms
move about on these CuO, planes carry-
ing electric current. In the superconducting
state below T, these same electrons form the
Cooper pairs that carry the supercurrent in
the planes.

Each particular cuprate compound has
its own specific binding layer consisting
mainly of sublayers of metal oxides MO,
where M is a metal atom; Fig. 8.36 gives
the sequences of these sublayers for the
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H BINDING LAYERS H

H CONDUCTION LAYERS WITH CuO, H

H BINDING LAYERS H

H CONDUCTION LAYERS WITH CuO, |

H BINDING LAYERS |

H CONCUCTION LAYERS WITH CuO, |

H BINDING LAYERS H

Figure 8.34 Layering scheme of a cuprate superconductor. Figure 8.35 shows details of the conduction
layers for different sequences of copper oxide planes, and Fig. 8.36 presents details of the binding layers
for several cuprates. (Owens and Poole, 1996, Fig. 8.1).

principal cuprate compounds. These bind-
ing layers are sometimes called charge
reservois layers because they provide the
charge for the Cooper pairs that form in the
copper-oxide planes. Figure 8.30 presents a
three-dimensional perspective of how con-
duction and binding layers are arranged
in the thallium compounds containing one,
two, and three copper oxide planes, i.e.,
having n =1, 2, and 3 in the formula
T,Ba,Ca,_,Cu,O,, 4.

The fact that all of the cuprates have
structures with alternating conduction lay-
ers and binding layers stacked along the
7 direction led to the adoption of a
four digit code for designating their com-
position and structure. The general for-
mula for a cuprate superconductor with a
binding layer A;B,O.  , and a conducting

+k
layer S,_,Cu,O,,, is AjBkSnflCunO-

j+k+2n+2°
and most high temperature superconduc-
tors have the more specific formula

AB,S Cu,0;,,,,. A sublayer BO of the
binding layer is always adjacent to a CuO,
sublayer of the conduction layer, with AO
sublayers between BO sublayers. The sepa-

ration atoms S always lie between CuO, sub-
layers of the conduction layer. This means
that a CuO, sublayers can only have BO
or S sublayers adjacent to it. A four digit
code jkmn is often employed to designate the
structure type A;B,S,,Cu,.

In typical cases the binding layer con-
sists of oxides of A atoms which are Bi, T1
or Hg, and oxides of B atoms which are Sr or
Ba. The separation atoms S of the conduction
band are usually Ca, but in the yttrium super-
conductor they are Y. Using the notation
jkmn we have the following examples of four
digit codes:

0201 (La,_,Sr,),CuO,
1212 HgBa,CaCu,O4
1212 CuBa, YCu,0,
(Usually written YBa,Cu,0,)
1223 TIBa,Ca,Cu;0,
2201 Bi, Sr,CuOyq
2234 Tl,Ba,Ca;Cu,0,,
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CuO,

Conduction layer with one copper oxide plane

CUOZ

CuO,

Conduction layer with two copper oxide planes

CuO,

CU02

Conduction layer of yttrium compound with two copper oxide planes

CuO,

CU02

CU02

Conduction layer with three copper oxide planes

Figure 8.35 Conduction layers of the various cuprate superconductors showing sequences of CuO,
and Ca (or Y) planes in the conduction layers of Fig. 8.34. (Owens and Poole, 1996, Fig. 8.3).

Sometimes the A atom symbol is used as
a prefix to the code, and in this notation
five of the above six codes would be writ-
ten: La-0201, Hg-1212, TI-1223, Bi-2201,
and TI1-2234 to designate the corresponding
compounds.

XI. INFINITE-LAYER PHASES

In 1993 superconductivity was dis-
covered in the series of compounds with
the general formula Sr,,,Cu, O, 5; these
compounds represent perhaps the simplest of
the copper oxide superconductors contain-
ing only two metallic elements, strontium
and copper. Like the cuprates these are lay-

ered compounds, and the parameter n des-
ignates the number of copper oxide layers.
The layering scheme is very simple, and it
can be visualized from Fig. 8.37. The bind-
ing layer Sr,O for all of these compounds
consists of successive Sr, O, and Sr planes,
as indicated at the top of Fig. 8.37. This
binding layer is much thinner than those of
the cuprates; conduction layers are similar to
the cuprate ones shown in Fig. 8.35 but with
strontium atoms between the CuO, planes
instead of calcium or yttrium. Thus these
compounds may properly be considered as
cuprate types.

The n =1 compound has a structure
similar to that of La,CuQ,, discussed ear-
lier and shown in Fig. 8.21. This n =1
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LaO

LaO

Lanthanum Superconductor La,CuQ,

BaO

CuO

BaO

Yttrium Superconductor YBa,Cu3;0-

Sro

BiO

BiO

SrO

Bismuth Superconductor Bi,Sr,Ca,,_1Cu 0544

BaO

TIO

TIO

BaO

Thallium Superconductor Tl,Ba,Ca,,_1Cu,0sp+a

BaO

Hg(O)

BaO

Mercury Superconductor HgBa,Ca,,_1Cu,0sp4»

Figure 8.36  Sequences of MO sublayers in the binding layers of Fig. 8.